
無資料遺失之重新啟動架構在網際網路服務上之設計

與實作

研究生：蔡眷民 指導教授：張瑞川教授

國立交通大學資訊科學系

論 文 摘 要

 近年來網際網路上的各種服務愈來愈被廣泛的應用來解決問題或尋找資

料。這也使得這些網際網路服務更容易因為長期的運作，或是同時服務大量的客

戶，而發生突發性的暫時錯誤。因此，我們提出了一個無資料遺失的重新啟動架

構，使得網際網路服務能夠永續的運作。

 以往已有一些無資料遺失的重新啟動方法，例如檢查點的建立技術，但是這

會造成不小的網際網路服務運作效能減低，而且也並不完全適用於解決突發性的

暫時錯誤。另外，FT-TCP 也一個是使網際網路服務能不中斷的方法，但是再重

新啟動的時候可能會耗費較多的時間。而我們的架構能夠達到一樣的效果但是又

有使得整體效能降低不多，而且重新啟動的時候也不會耗費太多的時間。

 我們的架構包含了兩個部分。首先，需要修改網際網路服務使他的運作狀態

能被存放在安全的地方，這是為了避免重新啟動之後的資料流失。另外，我們還

提供了一些系統核心上的支援，使得網際網路服務所用到的輸入輸出頻道能被保

留並且自動的完成整個重新啟動的流程。最後，我們將這個架構套用在一個熱門

的網頁伺服器上，並且驗證了我們的想法。

 I

A Framework for Zero-Loss Internet Service Restart

through Application-Kernel Cooperation

Student：Chuan-Ming Tsai Advisor：Prof. Ruei-Chuan Chang

Institute of Computer and Information Science

National Chiao-Tung University

Abstract

 Internet services are more and more widely used for resolving problems or

finding information recently. Thus, Internet services have to run for a long time and

must serve a huge number of clients concurrently. This causes them easy to suffer

from the transient fault and software aging problem, which will cause serious damage

when them occurs at some critical Internet services such as commercial web sites. In

order to keep Internet service permanently running, we propose a zero-loss restart

framework to resolve the transient fault or aging problem of Internet services.

Our framework consists of three parts, the service state abstraction, the kernel I/O

channel keeping kernel support, the automatic restarting mechanism kernel support. In

addition, we deploy our framework on a popular tiny web server, thttpd.

The former zero-loss restart mechanism such as checkpoint and restart has the

shortcoming of high runtime overhead and can not totally resolve the transient fault.

Another popular zero-loss restart mechanism is the FT-TCP which also has the

shortcoming of high recovery time. As result of experimental, our framework only

costs lower than 6.8% runtime overhead and lower than 8.5% recovery overhead to

perform the zero-loss restart.

 II

Acknowledgements

I am so grateful to have much guidance from my advisor Professor R. C. Chang.

He taught me the essential of research, guided me the way of thinking, and brought

the knowledge of operating system to me. I also very appreciate Dr. Da-Wei Chang

who advised me so much so that I am able to finish my thesis.

Besides, each member of Computer System Lab. brought me laugh and

knowledgeable discussion which pushed me forward. Finally, I would like to thank

my parents and my friends. They showed me the unlimited love when I really need it.

Chuan-Ming Tsai

Institute of Computer and Information Science

National Chiao-Tung University

2004/6

 III

CONTENTS

論 文 摘 要 .. I

ABSTRACT...II

ACKNOWLEDGEMENTS... III

CONTENTS .. IV

LIST OF FIGURES .. VI

LIST OF TABLES...VII

CHAPTER 1 INTRODUCTION ...1

1.1. MOTIVATION ...1
1.2. THESIS ORGANIZATION...3

CHAPTER 2 RELATED WORK ..4

CHAPTER 3 KERNEL SUPPORTS OF ZERO-LOSS SERVICE RESTART......8

3.1 FAULT DETECTION..9
3.2 KEEPING I/O INFORMATION ..11

3.2.1 I/O CHANNEL KEEPING...11
3.2.2 DATA-HOLDING READ OPERATION ..12

3.3 RESTART FLOW...18
3.4 EXPERIMENTAL RESULT OF KERNEL SUPPORTS..19

CHAPTER 4 PROGRAMMING GUIDELINES OF ZERO-LOSS
RESTARTABLE SERVICE...23

4.1 PROGRAMMING STYLE OF RESTARTABLE SERVICE.......................................24
4.1.1 USING HREAD() SYSTEM CALL ...24
4.1.2 USING REREGIST() SYSTEM CALL ...25
4.1.3 USE GETREGINFO() SYSTEM CALL ..26
4.1.4 USING SHARED MEMORY FOR STATE HANDOVER27

4.2 PROGRAMMING GUIDELINES FOR ZERO-LOSS RESTART...............................28

CHAPTER 5 CASE STUDY: ZERO-LOSS RESTARTABLE THTTPD WEB
SERVER ...30

5.1 ZERO-LOSS RESTARTABLE THTTPD ..30
5.1.1 ORIGINAL THTTPD ..30
5.1.2 ZERO-LOSS RESTARTABLE THTTPD ..31

 IV

5.2 EXPERIMENTAL RESULTS..35
5.2.1 OVERHEAD ...36
5.2.2 RESTART...38

CHAPTER 6 CONCLUSION AND FUTURE WORK ...41

6.1 CONCLUSION...41
6.2 FUTURE WORK ..41

REFERENCE...43

 V

List of Figures

Figure 3.1: Life Cycle of a General Restartable Service…………………...…8
Figure 3.2: Prototype of Restart Registration System Call…………………..10
Figure 3.3: Comparison between the original read and data-holding read

operations………………………………………………………..13
Figure 3.4 Prototype of Data-Holding Read System Call…………………..13
Figure 3.5: Definition of the dhr structure………………….……...………...14
Figure 3.6: Structure dhr and structure dhr_buf……………………………..14
Figure 3.7: Flowchart of Hread() Function………………………………….16
Figure 3.8: Restart Flow……………………………………………………..18
Figure 3.9: Performance of Hread() under Different

DHR_ONE_BUFFER_SIZE……………………………………20
Figure 3.10: Performance Comparison of Read() and Hread() under Different

User Buffer Sizes………………………………………………..21
Figure 3.11: Time Complexity of Reregist() and Ggetreginfo() System Call...21
Figure 4.1: Example pseudo code of using data-holding read system call…..24
Figure 4.2: Example pseudo code of using restart registration system call….25
Figure 4.3: Example pseudo code of using get registration information system

call……………………………………………………………….26
Figure 5.1: Stage Flow of Request Handling in Thttpd……………………...30
Figure 5.2: State Variables of Thttpd………………………………………..32
Figure 5.3: Four Shared Memory Areas in Modified Thttpd………………..33
Figure 5.4: State Diagram of Connection in ZLR_thttpd……………………34
Figure 5.5: Throughput Comparison between the Original Thttpd and

ZLR_Thttpd……………………………………………………...36
Figure 5.6: Response Time Comparison between the Original thttpd and

ZLR_Thttpd……………………………………………………...37
Figure 5.7: The effect at client side when a server fault occurs……………..38
Figure 5.8: Throughput Comparison between Original Thttpd and

ZLR_Thttpd with fault…………………………………………..39
Figure 5.9: Response Time Comparison between Original Thttpd and

ZLR_Thttpd with fault…………………………………………..40

 VI

List of Tables

Table 3.1: Kernel-level Execution Time for Restarting a New Service
Generation……………………………………………………….22

Table 5.1: Space Overhead Caused by the Kernel Temporary Space………37

 VII

CHAPTER 1

INTRODUCTION

1.1. Motivation

In the recent years, Internet services have become more and more popular in our

regular life. Moreover, the emergence of many transaction based Internet services

such as on-line banking, trading, and shopping has put a requirement of high

availability on such services. According to the previous research [18], a few minutes

of downtime will lead to a great loss of money for these services.

However, due to the long serving time and huge number of clients, Internet

services are easily to suffer from transient faults or software aging problem [10]. The

former are caused by transient hardware or human errors, while the latter are mainly

due to software bugs1.

Current approach to workaround the faults is to restart the service. However, the

original service state will be lost after the service restart. For example, restarting a

web server will result in the lost of all the on-line request information at the

application level and all the open file information, including the TCP connection

information, at the kernel level. This is unacceptable for many commercial or

transaction based web sites.

Previous approaches have limitations for solving this problem. Some can not

1 Even with serious testing, it is not possible to remove all the bugs in a production system. With the

aging of the system, some bugs may reveal and cause the system to crash. This is called software aging

problem. And, we call the resulting faults as software aging faults. Strictly speaking, software aging

faults are a kind of transient faults. However, we separate the two because they cannot always be

resolved by the same approach. The detail will be mentioned later in the related work section.

 1

recover from the software aging faults [19]. Others require a long recovery time or

expensive server replicas. Still others put a requirement that a service should be made

up of many fine-grained and loosely-couple components, which not only needs large

modifications to many existing Internet service programs but also degrades the system

performance.

In this thesis, we propose a framework that can achieve the goal of zero-loss

service restart. By applying the framework to an Internet service, the problem caused

by transient faults and software aging can be resolved. In addition, the framework

requires little service recovery time and runtime overhead. Finally, the framework is

cost effective since it does not require expensive server replicas. It can restart the

service on the original machine with no state lost.

The basic idea of the framework is to achieve the goal of zero-loss service restart,

through the cooperation between the service and the operating system. We design the

required kernel mechanisms to support a zero-loss service restart. First, we keep the

I/O channels that are currently used by the service, and migrate them to the new

service instance after the service restart. Keeping the I/O channels is required since

the channels are a part of the service state. Second, we hold the unprocessed data that

has been read into the memory space of the old service instance in the kernel space.

After the service restart, the data can be read and processed again by the new service

instance. Third, we design a kernel-level automatic service-restarting procedure,

which allows the administrator to keep away from the service recovery job. The

procedure is triggered by a fault detection mechanism that can detect the transient and

software aging fault.

Our framework needs cooperation from the service side. Specifically, inspired by

 2

the concept of crash only software [5, 6], we require the service store its state a

long-live, dedicated state storage provided by the kernel. This enables the service state

to be safely migrated to the new service instance. In addition, a service should

implement a recovery procedure to store its state according to the content in the state

storage. Although modification to the service code is required, the modification is

straightforward. Since each service already maintains the service state in its internal

data structures, storing/restoring the state to/from the state storage is trivial. This

allows our framework to be applied on most of the existing Internet services.

We implement the kernel supports in a Linux kernel module. Moreover, we adopt

the service-side cooperation on a popular tiny web server, thttpd [1]. According to the

performance results, the runtime overhead of our framework is less than 6.8%. And,

the throughput degradation due to the service recovery is only 8.5%. This proves that

our framework is efficient for Internet services.

1.2. Thesis Organization

The rest of the thesis is organized as follows. We describe the related work in

Chapter 2, which is follow by the detailed illustration of our kernel support mentioned

in Chpater3. In Chapter 4, we propose several programming guidelines, and describe

how we apply the framework on thttpd. Chapter 5 shows the performance result of

our framework. Specifically, the overhead and restart effect are measured. Finally, we

conclude and discuss future work in Chapter 6.

 3

CHAPTER 2

RELATED WORK

In this chapter, we describe the previous works that were used or can be used for

building fault tolerant Internet service systems.

Checkpointing [19] is one of the most well known approaches for system recovery.

It checkpoints the software state into a stable storage. When a fault happens, the

system can be recovered from the last checkpointed state. This approach can be

applied on different levels, such as user library level [20, 24], compiler level [13, 14,

15], operating system level [9, 11], or hardware level [21]. Although this approach

can recover a system from transient faults, it can not deal with the software aging

problem. This is because the checkpointed state is aged, instead of fresh. Therefore, a

fault happened due to the software aging will appear again immediately after the last

checkpointed state is restored. Another drawback of this approach is that many

checkpoint techniques incur large overheads since the large amount of the

checkpointed state and the access to the stable storage.

The concept of developing recovery-oriented software for dealing with errors is

proposed by the Recovery-Oriented Computing (ROC) project [17], which is a joint

effort of U. C. Berkeley and Stanford University. Different from the previous research

that usually addressed on the Mean Time to Failure (MTTF), ROC offered high

availability by reducing the Mean Time to Repair (MTTR). In ROC, several

techniques that are related to ours were proposed. Rewind-Repair-and-Replay (3R) [4]

tries to recover the errors caused by the administrators. As the name indicates, when a

fault happens, it rewinds the system to a state before the error occurs, tries to repair

 4

the error, and then replays the operations. Since we address on the transient faults and

the software aging problem, there is no need to rewind and repair. Therefore, service

restart is more suitable for addressing the problems than the 3R approach.

Recursive Recovery (RR) [5, 6] is another technique proposed by ROC. Similar to

our work, it addresses the transient faults and the software aging problem by using the

software restart mechanism. Under this approach, a service is made up of fine-grained

and loosely-coupled components. And, only the faulty components are restarted when

a fault occurs, which speeds up the restarting process. The limitation of this approach

is that it requires the system to be made up of fine-grained and loosely-coupled

components. Many existing Internet service programs are not able to satisfy the

requirement. Moreover, the inter-component communication will degrade the system

performance. By contrast, our approach doesn’t have the requirement and is more

feasible for existing Internet services.

Scalable Network Services (SNS) [7] presents an architecture that supports

scalable and fault tolerant Internet services. Similar to RR, a service is made up of

several components. And, component failures can be detected by other components.

However, SNS assumes that a component only have soft state, which can be

reconstructed after the component restart. This is not valid for most of the existing

Internet service programs. For example, a web server should have the state of the

on-line requests at the user level and the open file information (including the TCP

connection information) at the kernel level. Generally, the state is lost if the web

server process crashes.

Service Continuation [22] allows an on-line client session to be migrated from one

server to another cooperative server. Similar to our work, it uses an application-kernel

 5

cooperation approach for session state migration. However, it relies on a connection

migration protocol such as M-TCP [23], which requires modifications to the

client-side TCP. Moreover, it copes with network congestion or server overload

conditions and doesn’t deal with server failures.

FT-TCP proposed a method to resolve the faults on TCP-based Internet services.

It inserts wrappers around the TCP layer to log the state of the TCP connections

associated with the service. If the system crashes, the TCP connections are

reestablished. And, the service state is reproduced by running a new copy of the

service application from the beginning and feeding it with the logged I/O requests.

That is, it replays the process before the server crashes. The advantage of this

approach is that it does not need to modify the service applications. However, the

replaying process may take a long time. We eliminate the need for replaying the

service application and reestablishing the TCP connections since we address on

transient and software aging faults happen on the service itself and we take an

application-kernel cooperation approach. This results in much better performance,

especially for popular Internet services.

There are still some research efforts that address on the fault tolerant web services

[2, 25, 26]. They use the server replication approach to improve the availability of the

web server. When the primary server fails, the on-line requests can be migrated to the

backup server. These approaches regard the service unavailability of a server as a

node failure and thus use the backup node to take over the following jobs. By contrast,

we address on the transient faults and the software aging problem happen on the

service itself. Therefore, we take a more efficient and cost effective approach that

restarts the service on the original node. We keep the state and the I/O channels of the

 6

service, and hand over them to the new service generation to achieve the goal of

zero-lost service restart.

 7

CHAPTER 3

KERNEL SUPPORTS OF
ZERO-LOSS SERVICE RESTART

As shown in Figure 3.1, the life cycle of a general restartable service consists of

four kinds of phases. The first phase is the service initialization phase. In this phase,

the service initializes their serving environment, and then the service will enter a

stable state to wait for providing services. The second phase is service execution

phase. In this phase, the service serves requests until a fault occurs. The third phase is

process restarting phase. In this phase, kernel detects the fault of the service and

restarts a new instance of the service with the same non-broken I/O channels. And, the

forth phase is the service recovery phase. In this phase, the restarted service restores

its state information. After the service recovery phase, the restarted service goes back

to the service execution phase. It continues serving the on-processing requests when

the fault occurs, and starts accepting new requests. From the figure we can see that, a

process generation begins when the process is started (created or restarted), and ends

when the process is terminated (either normally or abnormally). A process generation

may consist of the service initialization and service execution phases (i.e., for the first

generation), or the service recovery and service execution phases (i.e., for the the

other generations).

Service
Initialization

Phase

Service
Execution

Phase

Process
Restarting

Phase

Service
Recovery

Phase

Service
Execution

Phase

Kernel
Period First (Process) Generation Second (Process) Generation

Figure 3.1: Life Cycle of a General Restartable Service

 8

Existing APIs exported by operating systems have some problems to achieve the

goal of zero-loss service restart. Firstly, the detection and restarting of a failed process

is hard to be fully automatic. It requires the administrator to manually restart a new

process. Secondly, no matter a process exits normally or abnormally, its open files

will be closed by kernel. This will break all of the channels between service and the

outside world. Moreover, even if the open files can be kept, the unprocessed data that

was read into the failed process is still hard to be recovered. This is true for

non-storage-based files, such as pipe, sockets and etc. When a read is issued on such a

file, the data will be copied to the user buffer, and the kernel-level buffer will be freed.

If the process fails at this time, the data will be lost. Therefore, to achieve the goal of

zero-loss restart, some additional kernel support is needed.

In this paper, we propose three kernel functionalities that can be integrated into an

operating system to support zero-loss service restart. The functionalities are fault

detection, I/O channel keeping, and restart management. In addition, we add three

system calls that allow user-level service programs to register their restartable service

and holding the unprocessed data.

3.1 FAULT DETECTION

When a fault cause a service to crashes, the operation system will terminate the

service process and release the resources owned by the service. Therefore, our fault

detection mechanism is based on the interception of the abnormal process termination.

Specifically, the fault detection is implemented by intercepting the do_exit() function

to check the error_code parameter in linux kernel. A specific bit of the error_code

parameter will be turned on if the process termination is caused by a fault (e.g.,

 9

segmentation violation, trap). Therefore, we can simply check the bit to see if the

process termination is abnormal.

However, the software transient fault and software aging are not the only way to

go above path. Some kinds of software bugs will go through the same path but will

soon occur again after the faulty process is restarted. These kinds of software bugs are

not suitable to resolve by restarting the faulty process. Therefore, in order to avoid

intercepting these kinds of software bugs we add a per service process variable,

last_restart_time, to record the last time that the service process was restarted. During

fault detection, we consider it is a transient fault if the difference between current time

and last_restart_time of the service process is large than a certain threshold (currently,

1 minute). Oppositely, we consider it is a software bug if it is too soon to need to be

restarted.

 In our system, a service has to register its information to the kernel if wants to be

zero-loss restaratable. When the fault occurs in a restartable process, the kernel uses

the registration information to create a new generation of the process and performs the

recovering job. The information can be registered through a reregist() system call,

which is shown in Figure 3.2.

ssize_t reregist (char* bin_path,

 char* argv[],

char* envp[]

 int child_id,)

Figure 3.2: Prototype of Restart Registration System Call

 The first three parameters represent the path and arguments of the service

program. And, the child_id parameter is used to identify the role of the current

 10

process. In a multi-process service, different processes may play different roles and

hence require different action for recovery. By registering the role of the current

process, the restarted process can perform the recovery actions accordingly. In general,

the child_id can be set as 0 for a single-process service. For a multi-process service,

the developer can specify a unique child_id for each child process.

 In addition, we also provide a getreginfo() system call so that the service process

can retrieve the its registration information. This is primary used by the next service

generation to get the registration information of its previous generation. The detail

usage of these two system calls will be described in Section 4.1.2 and Section 4.1.3.

3.2 KEEPING I/O INFORMATION

To achieve the goal of zero-loss restart, the I/O channels of a service should not

be terminated when a service crashes. Instead, they should be kept and handed over to

the next service generation. Keeping I/O channels consists of two tasks. One is to

prevent the I/O channels from being closed, and the other is to keep the input data in

these channels. We discuss these two tasks in Section 3.2.1 and Section 3.2.2,

respectively.

3.2.1 I/O Channel Keeping

 The I/O channels are regarded as files in most Unix-like operating systems,

including Linux. For each process, the Linux kernel maintains an open file table for it,

which contains all the opened files of this process. Therefore, we can keep the I/O

channels of a service process by preventing all the files in the corresponding open file

table from being closed. A simple approach for keeping the I/O channels is to increase

 11

the reference count of the open file table. As a result, the kernel will not close the files

and frees table when the faulty process exits. When the service is restarted we can

hand the table to the new service generation so that it can continue providing service

with those I/O channels.

3.2.2 Data-Holding Read Operation

As we mentioned above, a process failure will cause, all the data that has been

read into the process memory space but not yet been processed to be lost. To avoid

this problem, we propose an alternative read operation, namely data-holding read.

Figure 3.3(a) shows the comparison between original read operation and data-holding

read operation. From the figure we can see that, the original read operation copies

data from the per-file source buffer to the user-specified buffer. For a

non-storage-based file object such as pipe or socket, the copied data in the source

buffer will be freed. As a result, the data will be lost if the user-level service crashes

at that time. Therefore, the original read operation is not sufficient for supporting

zero-loss service restart. Specifically, if a process fails with some unprocessed data

left in it, the data will be lost.

Figure 3.3(b) shows the data-holding read operation. The difference between the

read and the data-holding read operations is that data is removed explicitly in the

latter. That is, the user program can specify not only how many bytes to read but also

how many bytes to delete. To achieve this goal, we maintain a kernel level temporary

space between the per-file source buffer and the destination user buffer. This

temporary space is used to keep the data which has already been read to the user

buffer but has not been specified to be deleted. Thus, already-read data can be

 12

retained in the temporary space until the user program doesn’t need it.

Figure 3.4 shows the prototype of data-holding read system call. Users invoke it to

read rlen bytes of data from the file fd to the user buffer buf, as well as to delete dlen

bytes of data from the kernel temporary space.

The kernel-level temporary space is implemented as the per-file dhr (data-holding

read) structure. A dhr structure is created for a file when the user program invokes

hread() on that file at the first time. Figure 3.5 lists the fields in the dhr structure and

the related data structures.

ssize_t hread(unsigned int fd,

char * buf,

size_t rlen,

size_t dlen)

Figure 3.4 Prototype of Data-Holding Read System Call

sys read

file obj.
type

pipe read socket read file read

user buffer

sys hread

file obj.
type

pipe read socket read file read

user buffer

source buffers

source buffers

temporary
space

(a) Original Read (b) Data Holding Read

Figure 3.3: Comparison between the original read and data-holding read operations

 13

struct dhr {

 struct file* file;

 unsigned int read_pt;

 unsigned int destroy_pt;

 unsigned int write_pt;

 struct dhr_buf* dhr_buf_head;

 };

define DHR_ONE_BUFFER_SIZE 4096

struct dhr_buf {

 struct dhr_buf* prev;

 char buf[DHR_ONE_BUFFER_SIZE];

 struct dhr_buf* next;

};

e

head_of_dhr

file

Each dhr structure h

of fix sized buffers (i.e.

dhr structure uses three

The read_pt and destro

deleted by the user proc

read_pt represents the b

user program. The write

dhr buf

struct
dhr

undeleted data

Figure 3.5: Definition of the dhr structur

destroy_pt

read_pt

write pt

NULL

head

NULL

next

next
prev

prev

struct dhr buf

Figure 3.6: Structure dhr and structure dhr_buf
as a pointer to its corresponding file, and a pointer to a chain

, dhr_buf) for holding the already-read data. In addition, the

pointers to manage the buffer chain, as shown in Figure 3.6.

y_pt point to the last bytes of data that has been read and

ess, respectively. Therefore, the data between destroy_pt and

ytes that are already been read but not been deleted by the

_pt indicates the number of bytes have been copied into the

14

dhr. It is worth to note that the values of read_pt and write_pt may be different. We

will discuss it later in this section.

At the end of this section, we describe the procedure of the data-holding read

system call, which is shown in Figure 3.7.

 15

When a user program calls the system call, the kernel locates or creates the dhr

structure for the file, and then performs the following procedure.

1. The kernel checks to see if the user program wants to delete more data than it can

Has dhr of
this file ?

Map fd to
file pointer

Create dhr
of this file

destroy_pt+dlen >
read pt+rlen

rlen = 0

return error

return 0Delete dlen
bytes data

rlen < write_pt
- read pt

Copy rlen bytes
from dhr

return
rlen

Original read system
call

(n2:= copied bytes)

Copy data
from user buf

to dhr

destroy_pt+dlen >
read_pt + (n1+n2)

Clean user
buf

return error

Do delete job

Hread(fd, buf, rlen, dlen)

Yes

No

Yes

No

Yes

No

Yes

No

Copy write_pt - read_pt
bytes from dhr

(n1:= copied bytes)

Yes

No

return (n1+n2)

Figure 3.7: Flowchart of Hread() Function

 16

read (i.e., dlen+destroy_pt > rlen+read_pt). If it does, the kernel just returns an

error.

2. If rlen is 0, the kernel just deletes dlen of data in the temporary space and returns

0.

3. The kernel checks if there is enough unread data in the dhr buffer chain (i.e., rlen

< write_pt - read_pt).

3a. If there is, the kernel tries to copy rlen bytes of data from temporary space

to the user buffer. And then, the kernel updates the read_pt, and returns

rlen.

3b. Otherwise, the kernel copies all the bytes between write_pt and read_pt and

performs the original read function to read the remaining data from the

per-file source buffer to the user buffer. Since the original read operation

copies data directly to the user buffer, we have to copy the data from the

user buffer into the dhr buffer chain in order to hold the data in the

temporary space.

4. The write_pt is updated accordingly.

5. The kernel checks to see if the data deletion goes beyond the available data (i.e.,

dlen+destroy_pt > write_pt).

5a. If it does, the kernel clears the user buffer and returns an error. This buffer

clearing is necessary since we want to preserve the all-or-none semantic of

the system call. Note that, in this case, the read_pt and write_pt will become

different.

5b. Otherwise, the kernel updates the read_pt to the value of the write_pt, deletes

dlen bytes of data, and update destroy_pt accordingly. Once the destroy_pt

 17

goes beyond a buffer in the buffer chain, the buffer will be freed.

6. At last, the kernel returns how many bytes that have been copied to the user

program.

During the process restarting phase, the kernel will set the read_pt as the

destroy_pt for each file opened by the user service. This allows the restarted service it

to read the data that has not been completely by its previous generation.

3.3 RESTART FLOW

The fully automatic and zero-data-loss restart is controlled by the restart manager.

Figure 3.8 shows the restart flow.

Fault
detected

Keeping Creating
new kernel

thread

Exiting
current I/O

channels faulty process

First of all, a fault of the service process is detected by the fault detection routine.

Then, the kernel performs the I/O channel keeping operation to prevent the I/O

channels of the service process from being closed. For all the I/O channels, the kernel

rewinds the read_pt in the kernel temporary space to the value of the destroy_pt.

 A kernel thread is then created, which will eventually become the next

generation of the failed service process. At the moment, the faulty process can be

Restoring
I/O

channels

Executing
user-mode

process

Faulty process

Restarted process

Process Restarting Phase

Figure 3.8: Restart Flow

 18

terminated. And, the kernel thread invokes the exec_usermode_helper() function to

turn itself into a user-level process and execute the binary image of the service. As a

result, a new generation of the service is started. Finally, the I/O channels can be

handed over to the new service generation. This is done by copying the kept pointer

that reference to the open file table into the task control block of the new service

generation.

3.4 EXPERIMENTAL RESULTS OF THE KERNEL SUPPORT

In this section, we present the experimental results of the kernel support. Since

buffers in the kernel temporary space are allocated/deallocated on demand, small

buffer size will increase the number of allocation/deallocation and degrades the

performance of hread(). In this experiment, we measure the impact of the buffer size

(i.e., DHR_BUFFER_SIZE) on the performance of hread(). We use a small test

program that reads a file through hread() with different buffer sizes, and record the

resulting times in CPU ticks. Figure 3.9 shows the result. As shown in the figure, the

performance improves as the buffer size increases. However, the improvement

becomes little when the buffer is larger than 4096 bytes. As a result, we choose 4096

as the buffer size in current implementation.

 19

User Buffer Size = 512 (bytes)

1487
146015131532

17641914

2355

0

500

1000

1500

2000

2500

3000

512 1024 2048 4096 6144 8192 10240

Buffer Sizes (bytes)

C
P

U
 T

ic
ks

F

system

figure

overhe

buffer

copy_

copy d

from t

the ex

the ov

readin

freque

servic

Figure 3.9: Performance of Hread() under Different DHR_ONE_BUFFER_SIZE
igure 3.10 compares the performance of the original read() and the hread()

 calls under different user buffer sizes that the test program specifies. From the

 we can see that when the user buffer size is smaller than 512 bytes, the

ad of hread() ranges from 36% to 46%. And, with the increase of the user

 size, the overhead grows. The largest part of the overhead happens in the

from_user() function, which is a standard function used by the linux kernel to

ata from a user-mode buffer. And, we use the function to copy the read data

he user buffer to the kernel temporary space. According to our measurement,

ecution time of the function grows rapidly as the data size increases. Although

erhead seems to be large, we still consider it be acceptable because that the

g frequency of non-storage based files is usually far less than the writing

ncy for many Internet services, such as web services, FTP service, streaming

e, and etc. We will verify it in Section 5.2.1.

20

DHR_ONE_BUFFER_SIZE = 4096

724 842 1050 1462
2649

5596

12225

987 1230 1532 2565
5121

11681

27183

36.62
46.08 45.9

75.44

93.31

108.73

122.35

0

5000

10000

15000

20000

25000

30000

128 256 512 1024 2048 4096 8192

User Buffer Size (bytes)

C
PU

 T
ic

ks

0

20

40

60

80

100

120

140

O
ve

rh
ea

d
(%

)

original read holding read overhead (%)

c

s

g

 Figure 3.10: Performance Comparison of Read() and Hread() under Different User Buffer Sizes
Besides hread(), we also measure the execution time of the other two system

alls we added (i.e., reregist() and getreginfo()). Figure 3.11 shows the result. Both

ystem calls require less than 2 us.

1.873

1.678

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

reregist() getreginfo()

E
xe

cu
ti

on
 T

im
e

(u
s)

reregist() getreginfo()

l

At la

eneration
Figure 3.11: Time Complexity of Reregist() and Ggetreginfo() System Cal
st, a breakdown of the kernel execution time spent for starting a new service

 is given in Table 3.1. The time begins when the fault is detected and ends

21

at the end when the I/O channels are restored. From the table we can see that, keeping

and restoring I/O channels is quite efficient (specifically, only about 7.4 us). Most of

time is spent on creating the kernel thread for resuming the new service generation

and executing the exec_usermod_helper() function.

 I/O channel
keeping

Kernel thread
creating

User-mode
process

executing
I/O channel

restoring

Execution Time 7.294 us 15.264 us 185.78 us 0.125 us

 n

Table 3.1: Kernel-level Execution Time for Restarting a New Service Generatio
22

CHAPTER 4

PROGRAMMING GUIDELINES OF
ZERO-LOSS RESTARTABLE SERVICE

The kernel support that we described in Chapter 3 provides a basics building

block for a restarable environment. However, cooperation from the service developers

is also needed to achieve the goal of zero-loss service restart. The cooperation

includes the following jobs. First, the service developers have to use the system calls

mentioned in Chapter 3 to register/retrieve the service information, and hold the

useful data in the kernel. Second, the developers should use a dedicated state storage

to store the service state. Third, the service developers should follow the

programming guidelines mentioned in Section 4.2 to facilitate the recovery procedure

at service recovery phase.

In Section 4.1, we will illustrate how to use those kernel supported system calls

mentioned in the previous chapter. And, we will also propose a model that allows two

successive service generations communicate through a dedicated storage. In Section

4.2, we describe the programming guidelines.

 23

4.1 PROGRAMMING STYLE OF RESTARTABLE SERVICE

4.1.1 Using Hread() System Call

void handle_new_connection() {

 int read_fd;

 char* buf = malloc(…);

 char* request = malloc(…);

 read_fd = socket(PF_INET, SOCK_STREAM, 0);

 bind(read_fd, …);

 listen(read_fd, …);

 ...

 int sz, count = 0;

 while(!read_full_request(request)) {

In this section we describe how to use the hread() system call to avoid data loss

when a fault crashes the services. Figure 4.1 shows the pseudo code of handling a

request using the hread() system call. In the while loop, the program reads a full

request from socket read_fd. Since the data has not been processed, the forth

parameter (i.e., dlen) is set to 0 in order to keep the data in the kernel temporary space.

After receiving the request, the process_rcv_data() is invoked to process the request

data and generate the result. Finally, the hread() system call is invoked again with the

rlen parameter set to 0 and the dlen parameter set to the data length of the request data.

This invocation is used to delete the request from the kernel temporary space.

If a fault occurs before the end of the process_rev_data() function, the request

 if((sz = hread(read_fd, buf, 10, 0)) > 0) {

 strncpy((char*)(request+count), buf, 10); Read a full request
 count += sz;

 }

 } Really process the received data
 process_rcv_data(request);

After processed, delete what you have
processed in the kernel temporary space

 hread(read_fd, buf, 0, count);

 ...

 close(read_fd); Close the socket
}

Figure 4.1: Example pseudo code of using data-holding read system call

 24

data still remains in the kernel temporary space. As we described in Section 3.3, the

kernel will rewind the read pointer to the position of the destroy pointer when the

service is restarted. Therefore, after the new generation starts, it can read the request

from the kernel temp space and process it. On the other hand, if the fault occurs

between the process_rev_data() and the second hread() function, the new generation

has the ability to know that the result was generated. As a consequence, it will delete

the request in the kernel temporary space. To know that the result was generated,

there must be a communication channel between the successive generations, which is

described in Section 4.1.4.

4.1.2 Using Reregist() System Call

#define CHILD_ID_INIT_VALUE 1

void main(char* argv[]) {

 int cid; Register the main process of the service

 reregist(“/usr/local/sbin/service”, 0, argv, NULL);

 ...
Register the child process as
child_id = 1 cid = fork();

 if(cid == 0) { // child process starts

 reregist(“”, CHILD_ID_INIT_VALUE, argv, NULL);

 ...

}

 else { // parent process

 ...

}

 ...

}

Figure 4.2: Example pseudo code of using restart registration system call

 25

Reregist() system call is used to register a restartable service. In most of the cases,

the developer invokes reregist() during the program initialization. Figure 4.2 shows

the typical usage of reregist() system call. In the figure, the first reregist() invocation

means that the developer wants the main process of the service to be restartable. And,

the second reregist() invocation registers the child process as a restartable process.

Note that the child_id parameter is different in these two invocations. This allows the

restarted process to know which child process (or main process) it is.

4.1.3 Use Getreginfo() System Call

#include <registration.h>

int is_restarted = 0;

void main(char* argv[]) {

 struct reg_info* reg_info = (struct reg_info*)malloc(sizeof(struct

reg_info));

 if(getreginfo(reg_info)) {

 is_restarted = reg_info->is_restarted;

}

if(is_restarted) { // recovery path

 switch(reg_info->child_id) {

 case 0: break;

case 1: goto child_process_1;

 ...

}

...

}

else { // normal execution path

...

}

}

Figure 4.3: Example pseudo code of using get registration information system call

 26

 Figure 4.3 shows an example of using the getreginfo() system call. The most

important function of this system call is to tell whether the current process is original

or restarted. If it is restarted, the process should execute the recovery path. Otherwise,

it executes the normal path. Note that both paths should be programmed by the

service developer. And, this system call should be called at the beginning of the

program to determine the execution path of this generation. In addition, this system

call also returns the child_id. With that information, the current process can know the

child identifier of its previous generation. Therefore, the developer can divide the

recovery path into a number of recovery procedures. Each procedure takes responsible

for recovering a child process or the main process. As a result, the new generation can

execute the corresponding recovery procedure to recover its previous generation.

4.1.4 Using Shared Memory for State Handover

To achieve the goal of zero-loss service restart, the developers should separate

state from logic when developing the service. The service state has to be stored in a

dedicated storage, which should be live across successive service generations. This

allows the state to be handed over to the new generation. In our system, the dedicated

storage is implemented by shared memory.

We use shared memory because of the following reasons. First, the shared

memory attached on a process is available until the process detaches it. Therefore, if a

service does not detach the shared memory before it terminates, the next generation

will be able to attach the same shared memory area. Second, shared memory is

efficient so that there will be little performance impact for storing service state in

shared memory.

 27

However, there is a problem when using shared memory as the state store. That is,

the shared memory had better be attached at the same address for two successive

generations. This is because that the service state stored in the shared memory may

contain pointers which point to the data in the shared memory. If the shared memory

area can not be attached at the same address, the new generation must adjust the

pointers in the shared memory. For example, if we store a linked list in the shared

memory, the values of all the links should be adjusted when the new generation

attaches the shared memory to a different address.

Therefore, the developer should reduce the usage of pointers for maintaining the

service state. If there are still some necessary pointers, the developers should write a

procedure to adjust these pointers. In order to accomplish the adjustment, the

application can store the attached address in a fixed location of the shared memory

when it attaches the shared memory. Therefore, the new generation can calculate the

difference value of the attached address and update all the pointers in the shared

memory accordingly.

4.2 PROGRAMMING GUIDELINES FOR ZERO-LOSS RESTART

In this section, we propose several programming guidelines that make the service

operate at its logical level and hence become zero-loss between generations.

Avoid registering the signal handlers of the signals that cause the abnormal

termination of the process. Such as SIGSEGV, SIGTRAP, SIGABRT, and etc are

this kind of signals. It is in order to let the abnormal termination of the faulty service

can be caught by our fault detector instead of the programmer specified function.

Abstract the state variable of the service. The state variables contain all the

 28

necessary information that represents the service state during the service execution. A

piece of state information should be included into the state variables if the restarted

service can’t reconstruct the whole service state without it. The state variable of the

service needs to be stored in the dedicate storage and be updated when necessary.

This allows the service to be executed as a stateless client of the state storage.

Design recovery procedures for service recovery. The recovery procedures will

be executed during the service recovery phase. In a recovery procedure, the service

must reconstruct its state from the state variables. And then, it tries to finish the

ongoing jobs of the previous generation when the fault occurs.

Divide the execution into several stages. This can reduce the recovery time.

When a stage is finished, the service can record the progress and starts the next stage.

When a service restarts, the next generation can go through the unfinished stage as in

its normal path. The recovery time is reduced since the jobs in the already finished

stages are not needed to be performed again. For example, the page request

processing in a web server can be divided into four stages: request reading, request

parsing, response header sending, and response body sending. For large responses, the

last stage can further be divided into more sub-stages. When the service restarts, the

new generation can get the processing progress of the request. If, for example, the

first two stages are finished, the new generation can start sending the response header.

 29

CHAPTER 5

CASE STUDY: ZERO-LOSS RESTARTABLE
THTTPD WEB SERVER

In this chapter, we present a case study that applies all the operations and program

guidelines mentioned in Chapter 3 and 4 to a well-known tiny web server,

thttpd-2.25b [1], in order to make it zero-loss restartable. We chose web server as the

target because of its popularity on Internet. Thttpd is an open source web server, with

simple and well-organized code.

In the following, we will briefly describe the design and execution flow of the

original thttpd in Section5.1.1. In Section 5.1.2 we will present how we modify the

original thttpd to achieve the goal of zero-loss restart. Furthermore, we will analyze

the experimental results in Section 5.2.

5.1 ZERO-LOSS RESTARTABLE THTTPD

5.1.1 Original Thttpd

In this section, we will describe the execution flow of thttpd. Thttpd uses

single-process implementation of HTTP 1.1 protocol [8], and it divides the procedure

of handling a request into two stages, namely reading and sending. Figure 5.1 shows

the stage flow of request handling in thttpd.

Reading Sending

Got an
incoming

connection
Finish

Sending
Response

Generated

Start End

Figure 5.1: Stage Flow of Request Handling in Thttpd

 30

 When thttpd starts, it creates, binds, and listens on a TCP socket. Then, it probes

for incoming requests by performing select() on the TCP socket. If there is no request,

the server keeps on probing. When the server gets a request, it creates a connection

entity structure for this request and the connection enters into the reading stage. The

connection entity structure contains almost all the information needed to construct the

total state variables of thttpd. This will be discussed in the next section. In the reading

stage, the server reads the request from the client, parses the request, and generates

the corresponding response. After the response is generated, the connection enters

into the sending stage. In this stage, the server writes out the response to the client.

Note that connections are processed concurrently. Different connections may be

in different stages. Moreover, request probing and processing are also handled

concurrently. It is worth to mention that, reading and sending stages in thttpd are

divided into more fine-grained sub-stages. In reading stage, the server doesn’t

perform blocking read operation. Therefore, several read operations may be needed to

get the full request. And the server will try to handle other requests between two

successive read operations. Similarly, in the sending state, the server will also try to

write a part of the response and then handle other requests or accept new requests.

5.1.2 Zero-Loss Restartable Thttpd

In this section, we describe how we modified the thttpd to make it zero-loss

restarable. The modified version is called ZLR_thttpd. First of all, we replaced all

socket read operations in thttpd with hread(), and applied the reregist() and the

getreginfo() on thttpd. We will not describe the detail of these modifications because

that they are simply like what we have mentioned in Chpater 4.

 31

The other modifications are described in the following. First, we identified the

state variables of thttpd. In the previous section, we mentioned that the connection

entity structure is used to represent a connection in thttpd, and it contains all the

information of an on-processing connection. Therefore, we can get the state

variables of a connection by extracting the fields in this structure that are necessary

for the recovery procedures. Instead of separating the original data structures in thttpd

into state variable part and no_state variable part, we make a copy of all state

variables and store the copy into the shared memory. And, we update the variable in

shared memory before the corresponding variable in thttpd is modified. These can

avoid large modifications to the original thttpd.

struct httpd_state_var {

 int conn_stage;

 int conn_fd;

 char* expnfilename;

 int method;

 off_t bytes_sent;

};

struct global_state_var {

 int listen_fd;

 int num_connects;

 int max_connects;

};

○1

○2

○3

))

 Figure 5.2(a) shows

structure. The fields in this

contains the most importan

conn_stage field represents

data socket used for commu

the reading stage of a con

name in the server, and the

are generated after the requ

stage. The bytes_sent field

Figure 5.2: State Variables of Thttpd
(a
the per-connection state variab

 structure can be divided into th

t fields of a connection, conn_s

the connection stage, and the con

nicating with the client. The secon

nection. The expnfilename repre

method field indicates the HTTP m

est is parsed. The last part is upd

represents how many bytes of resp

32
(b
les, the http_state_var

ree parts. The first part

tage and conn_fd. The

n_fd field represents the

d part is updated during

sents the requested file

ethod. These two fields

ated during the sending

onse have been written

to the data socket. In addition to the per-connection state variables, the global

variables are maintained in the global_state_var structure as shown in Figure 5.2(b).

The listen_fd represents the socket that the server uses to receive requests from the

clients. The num_connects field indicates how many connections are currently

processed in the server. And, the max_connect field indicates the maximum number

of connections that the server can process simultaneously.

 The second modification we made was using shared memory areas to store the

state variables of thttpd. Totally, four shared memory areas are used. As Figure 5.3

shows, these four areas are pointed by four pointers, shm_pointers, httpd_state_vars,

char_area, and global_vars, respectively.

shm_pointers

○1 expnfilename
httpd_state_vars

chars_area expnfilename

 The area pointed by httpd_state_vars is used to store the httpd_state_var

structures of all the connections. The char_area points to a fix-sized shared memory

area that is used to store the expnfilename fields of all the httpd_state_var structures.

The above two pointers are stored in another shared memory area, which is pointed by

global_vars

○2

○1 sizeof (httpd_state_var)

○2 fix size chars area
○3

○3 sizeof (global_state_var)

Figure 5.3: Four Shared Memory Areas in Modified Thttpd

 33

the shm_pointers pointer. In addition, the global_vars points to a shared memory area

that stores the global_state_var structure of the server.

The final modification we made was to add a recovery path which will be

executed during the service recovery phase. Since thttpd is a single-process

application, the path contains a single recovery procedure only. In order to facilitate

the recovery, we added a new stage, processing, between the reading and sending

stages. As shown in Figure 5.4, the stage is entered when a request is completely read

and parsed. In this stage, the server will use the parsing result of the request to

generate the response. This stage is added to prevent the service going back to the

reading stage while the request has been parsed. The recovery procedure performs

two jobs. First, it restores all the variables from the shared memory area. Second, it

handles the recovery of each on-processing connection according to the connection

stage. For the reading stage, it tries to finish the reading and parsing job. For the

processing stage, it tries to read the requested file again into the memory space of the

thttpd. For the sending stage, the recovery procedure reads the requested file again

into the memory space of the thttpd, and then sends the response to client. Note that

only the remaining response will be sent since we have recorded the number of sent

bytes.

Reading Sending

Start End

Got an
incoming

connection
Finish

Sending

ResponseRequest
GeneratedParsed

Processing

Figure 5.4: State Diagram of Connection in ZLR thttpd

 34

5.2 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of ZLR_thttpd. We first compare its

performance with that of the original thttpd when no fault occurs. Then, we verify the

functionality of our restart mechanisms by injecting a fault, and we measure the

performance of ZLR_thttpd with that fault occurs. The performance is measured by

using the WebStone [16] benchmark version 2.5 with the standard testbed profile.

 Our experimental environment consists of a client and a server machine, which

are connected through a 1Gigabit Ethernet link. Each machine has an Intel 1.6GHz

Pentium 4 CPU with 256 MB DDR RAM. The operating system is Linux kernel,

version 2.4.18. The thttpd (or the ZLR_thttpd) run on the server machine, while the

WebStone runs on the client machine.

 35

5.2.1 Overhead

60

110

160

210

260

310

360

1 2 4 6 8 10 12

Webstone Client Numbers

W
eb

 S
er

ve
r T

hr
ou

gh
pu

t (
M

bi
ts

/s
ec

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Th
ro

ug
hp

ut
 D

ec
re

as
e

P
er

ce
nt

ag
e

(%
)

Thttpd ZLR_Thttpd Overhead (%)

Figure 5.5: Throughput Comparison between the Original Thttpd and ZLR_Thttpd.

 Figure 5.5 shows the throughput comparison between the original thttpd and the

ZLR_thttpd. The x-axis represents the number of WebStone clients. Each client will

establish a large number of connections with the server during the experiment time.

The y-axis indicates the server throughput numbers reported by Webstone. From the

figure we can see that, our framework results a little throughput degradation. The

overhead comes from the backup of the state variables to the shared memory and the

using of the hread() for socket reading. Besides, the figure also shows the overhead of

the ZLR_thttpd, so that we can see the overhead ranges from 0.6% to 3.2%. We

consider that it is acceptable.

 36

0

1

2

3

4

5

6

7

1 2 4 6 8 10 12

Webstone Client Numbers

W
eb

 S
er

ve
r R

es
po

ns
e

Ti
m

e
(m

s)

0
1
2
3
4
5
6
7
8
9
10

R
es

po
ns

e
Ti

m
e

In
cr

ea
se

Pe
rc

en
ta

ge
 (%

)

Thttp ZLR_Thttp Overhead (%)

.

ZL

Th

6.8

ha

Webst
Client Nu

Spac
Overhead

by

cli

sti

Figure 5.6: Response Time Comparison between the Original thttpd and ZLR_Thttpd
Figure 5.6 compares the response time between the original thttpd and the

R_thttpd. From the figure we can see that, there is little difference between the two.

e figure also shows the response time differences, which range from 0.75% to

8%. We consider that it is also acceptable.

According to the results of the above experiments, we show that our framework

s low runtime overhead when it is applied on a web server.

one
mber

10 20 30 40 50 60 70 80 90 100

e
(bytes)

30160 36920 39000 49400 49400 59800 60320 66560 78000 92040

Table 5.1: Space Overhead Caused by the Kernel Temporary Space

In addition to the timing overhead, we also measure the space overhead caused

 the in-kernel temporary space. Table 5.1 shows the required space under different

ent numbers. Although the space overhead increases as the client number grows, it

ll remains small for large client numbers.

37

5.2.2 Restart

In this section, we first verify the functionality of our framework. Specifically,

we show that ZLR_thttpd can be restarted with no state lost when a fault occurs.

0

1000000

2000000

3000000

4000000

5000000

6000000

0 0.1 0.2 0.3 0.4 0.5

Client Execution Time (sec)

N
um

be
r

of
 B

yt
es

 R
ec

ei
ve

d
by

 t
he

 C
li
en

t

Thttpd ZLR_Thttpd + Fault

Figure 5.7: The effect at client side when a server fault occurs

 In this experiment, we show that the ZLR_thttpd can keep on serving an online

client once a fault occurs. We make the client issue a connection and request a

5Mbyte web page from the server. During the experiment time, we inject a fault by

sending a segment violation signal to the server. This triggers the restart mechanism.

Figure 5.7 shows the result.

The fault is injected after the server has sent 3000000 bytes of the response. As

shown in the figure, the server can continue serving (with a new generation) after a

fault occurs in it. Remarkably, there is nearly no slow down on the data receiving

when a fault happens. The reason is that the TCP connection is still alive when the

 38

ZLR_thttpd fails. With the fast restart of the ZLR_thttpd and the TCP layer buffering,

the server-side TCP can keep sending data to the client before the ZLR_thttpd restarts.

60

110

160

210

260

310

360

1 2 4 6 8 10 12

Webstone Client Numbers

W
eb

 S
er

ve
r T

hr
ou

gh
pu

t (
M

bi
ts

/s
ec

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
6.5
7
7.5
8

Th
ro

ug
hp

ut
 D

ec
re

as
e

P
er

ce
nt

ag
e

(%
)

Thttpd ZLR_Thttpd + Fault Overhead (%)

Z

r

w

t

Figure 5.8: Throughput Comparison between Original Thttpd and ZLR_Thttpd with fault.
 Figure 5.8 shows the throughput comparison between the thttpd and the

LR_thttpd when a fault occurs. From the figure we can see that, ZLR_thttpd only

esult in little throughput degradation. The difference ranges from 0.68% to 5.67%,

hich is similar to that reported in Figure 5.5. As we mentioned before, this is due to

he fast recovery and TCP buffering.

39

0

1

2

3

4

5

6

7

1 2 4 6 8 10 12

Webstone Client Numbers

W
eb

 S
er

ve
r R

es
po

ns
e

Ti
m

e
(m

s)

0

2

4

6

8

10

12

R
es

po
ns

e
Ti

m
e

In
cr

ea
se

Pe
rc

en
ta

ge
 (%

)

Thttp ZLR_Thttpd + Fault Overhead (%)

Figure 5.9: Response Time Comparison between Original Thttpd and ZLR_Thttpd with
fault.

 Figure 5.9 compares the response time between the original thttpd and the

ZLR_thttpd with a fault occurs. Similar to the throughput result, there is little

difference between the two servers, which ranges from 1.52% to 8.52%.

According to the above two experiments, we can see that our framework has low

overhead (i.e., less than 8.52%) when a fault occurs.

 40

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

In this thesis, we proposed a framework that achieves the goal of zero-loss restart

for Internet services through application-kernel cooperation. The framework consists

of the logic-state-divided programming style and some required kernel supports. One

of the kernel supports is keeping the I/O channel of the faulty Internet service. It has

small overhead than reconstruct the communication channel from outside, and it is

suitable for Internet service restart. We also provided a kernel support to keep the

input data when fault occurs. It is suitable for Internet service which’s read frequency

is much lower than its write frequency. Finally, we designed an automatic service

restart procedure, which contains a fault detection mechanism. The fault detection

mechanism can tell the difference between transient fault and general software bug

(except software aging problem).

In addition, we deploy our framework on thttpd. The experimental results show

that our framework can recover the service from transient faults. Moreover, the

runtime and restart overheads are less than 6.8% and 8.5% respectively for small web

server, thttpd. It implies that our framework feasible for achieving the goal of

non-stop serving.

6.2 FUTURE WORK

The shared memory usage of our framework requires service developers to

maintain and adjust the pointers stored in it. To ease the effort of the developers, the

 41

adjustment can be implemented in a user library. Moreover, shared memory regions

can automatically be attached by the kernel during restarting phase.

A large-scaled Internet service may consist of several corporative processes with

parent-child relationship. Sometimes the service relies on the process relationship to

work correctly. In the current implementation, we do not maintain the relationship

once a process is failed and then restarted. The relationship maintenance will be

integrated into out framework in the future.

 42

REFERENCE

[1] ACME Laboratories, "thttpd - tiny/turbo/throttling HTTP server", available at

http://www.acme.com/software/thttpd/.
[2] N. Aghdaie, Y. Tamir, “Client-Transparent Fault-Tolerant Web Service”, 20th

IEEE International Performance, Computing, and Communications Conference,
Phoenix, AZ, pp. 209-216, April 2001.

[3] L. Alvisi, T.C. Bressoud, A. El-Khashab, K. Marzullo, and D. Zagorodnov,
“Wrapping Server-Side TCP to Mask Connection Failures”, In Proceedings of
INFOCOM 2001, pages 329–337, 2001.

[4] Aaron B. Brown, David A. Patterson, “Undo for Operators: Building an
Undoable E-mail Store”, USENIX Annual Technical Conference, General Track
2003: 1-14.

[5] George Candea, Armando Fox, “Crash-only software”, In Proc. 9th Workshop
on Hot Topics in Operating Systems, Lihue, HI, June 2003.

[6] George Candea, James Cutler, Armando Fox, “Improving Availability with
Recursive Microreboots: A Soft-State System Case Study”, Performance
Evaluation Journal, Vol. 56, Nos. 1-3, March 2004.

[7] Y. Chawathe, E. A. Brewer, "System Support for Scalable and Fault Tolerant
Internet Service", In Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing (Middleware
'98), Lake District, UK, Sep. 1998.

[8] R. Fielding, J. Gettys, J. Mogul, H.Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616, June, 1999.

[9] Shang-Te Hsu, Ruei-Chuan Chang, "Continuous Checkpointing: Joining the
Checkpointing with Virtual Memory Paging", Software Practices and
Experiences, Vol. 27, No. 9, pages 1103-1120, 1997.

[10] Y. Huang, C. Kintala, N. Kolettis, N. D. Fulton, "Software Rejuvenation:
Analysis, Module and Applications", in Proceedings of the 25th Symposium on
Fault Tolerant Computer Systems, pp. 381-390, Pasadena, CA, June 1995.

[11] C. R. Landau, "The Checkpoint Mechanism in KeyKOS", in Proceedings of the
Second International Workshop on Object Orientation in Operating Systems, pp.
86-91, September 1992.

[12] LBNL's Network Research Group, "tcpdump - dump traffic on a network",
available at http://www.tcpdump.org/.

 43

[13] C.C.J. Li, W.K. Fuchs, "CATCH-Compiler-Assisted Techniques for
Checkpointing", In Proc. of the 20th Annual International Symp. Fault-Tolerant
Computing, pages 74-81.

[14] K. Li, J.F. Naughton, J.S. Plank, "Real-time, Concurrent Checkpoint for Parallel
Programs", In Proc. 2nd Annual ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, pages 79-88, ACM, March 1990.

[15] J. Long, W.K. Fuchs, J.A. Abraham, "Compiler-Assisted Static Checkpoint
insertion", In Proc. of the 22th Annual International Symp. on Fault-Tolerant
Computing, pages 58-65, July 1992.

[16] Mindcraft Inc., "Webstone: The Benchmark for Web Servers", available at
http://www.mindcraft.com/benchmarks/webstone/.

[17] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen,
James Cutler, Patricia Enriquez, Armando Fox, Matthew Merzbacher, David
Oppenheimer, Naveen Sastry, William Tetzlaff, Jonathan Traupman, Noah
Treuhaft, "Recovery-Oriented Computing (ROC): Motivation, Definition,
Techniques, and Case Studies", Computer Science Technical Report
UCB//CSD-02-1175, March 15, 2002.

[18] Performance Technologies Inc., 2001. The Effects of Network Downtime on
Profits and Productivity - A White Paper Analysis on the Importance of
Non-stop Networking. White Paper. Available at
http://whitepapers.informationweek. com/detail/RES/ 991044232_762.html.

[19] James S. Plank, “An Overview of Checkpointing in Uniprocessor and
Distributed Systems, Focusing on Implementation and Performance”, Technical
Report UTCS -97-372, 1997.

[20] James S. Plank, Micah Beck, Gerry Kingsley, Kai Li, "Libckpt: Transparent
Checkpointing under Unix", In Proceedings of the Usenix Winter 1995
Technical Conference, pp. 213-223, New Orleans, LA, January, 1995.

[21] M.E. Staknis. "Sheaved Memory: Architectural Support for State Saving and
Restoration in Paged Systems", In Proc. of the 3rd International Conference on
Architectural Support for Programming Languages and Operating System
(ASPLOS), pages 96-103, May 1989.

[22] Florin Sultan, Aniruddha Bohra, Liviu Iftode, "Service Continuations: An
Operating System Mechanism for Dynamic Migration of Internet Service
Sessions", p177, SRDS'03.

[23] F. Sultan, K. Srinivasan, D. Iyer, L. Iftode, "Migratory TCP: Connection
Migration for Service Continuity in the Internet", In Proceedings of the 22nd
International Conference on Distributed Computing Systems, pp. 469-470,

 44

Vienna, July 2002.
[24] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pi-Yu Chung, Chandra Kintala,

"Checkpointing and Its Applications", In Proceedings of the International
Symposium on Fault-Tolerant Computing, pp. 22-31, June 1995.

[25] Chu-Sing Yang, Mon-Yen Luo, “Realizing fault resilience in Web-server
cluster”, Proceedings of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), p.21-es, November 04-10, 2000, Dallas, Texas, United States.

[26] Chu-Sing Yang, Mon-Yen Luo, “Constructing zero-loss Web services”, In
Proceedings of the 20th IEEE International Conference on Computer
Communications (INFOCOM 2001), IEEE Computer Soc. Press, Los Alamitos,
CA, 1781--1790.

[27] D. Zagorodnov, K. Marzullo, L. Alvisi, and T. Bressoud, “Engineering
Fault-Tolerant TCP/IP Servers Using FT-TCP”, In Proceedings of the 2003
International Conference on Dependable Systems and Networks, San Francisco,
California, 22-26 April, 2003.

 45

	論文摘要
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Chapter 1��INTRODUCTION
	Chapter 2��RELATED WORK
	Chapter 3��KERNEL SUPPORTS OF�ZERO-LOSS SERVICE RESTART
	Fault Detection
	Keeping I/O Information
	I/O Channel Keeping
	Data-Holding Read Operation
	Restart Flow
	Experimental Results of the Kernel Support

	Chapter 4��PROGRAMMING GUIDELINES OF�ZERO-LOSS RESTARTABLE S
	Programming Style of Restartable Service
	Using Hread() System Call
	Using Reregist() System Call
	Use Getreginfo() System Call
	Using Shared Memory for State Handover
	Programming Guidelines For Zero-Loss Restart

	Chapter 5��CASE STUDY: ZERO-LOSS RESTARTABLE�THTTPD WEB SERV
	Zero-Loss Restartable Thttpd
	Original Thttpd
	Zero-Loss Restartable Thttpd
	Experimental Results
	Overhead
	Restart

	Chapter 6��CONCLUSION AND FUTURE WORK
	Conclusion
	Future work

	REFERENCE

