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論 文 摘 要 

  

 近年來網際網路上的各種服務愈來愈被廣泛的應用來解決問題或尋找資

料。這也使得這些網際網路服務更容易因為長期的運作，或是同時服務大量的客

戶，而發生突發性的暫時錯誤。因此，我們提出了一個無資料遺失的重新啟動架

構，使得網際網路服務能夠永續的運作。 

 以往已有一些無資料遺失的重新啟動方法，例如檢查點的建立技術，但是這

會造成不小的網際網路服務運作效能減低，而且也並不完全適用於解決突發性的

暫時錯誤。另外，FT-TCP 也一個是使網際網路服務能不中斷的方法，但是再重

新啟動的時候可能會耗費較多的時間。而我們的架構能夠達到一樣的效果但是又

有使得整體效能降低不多，而且重新啟動的時候也不會耗費太多的時間。 

 我們的架構包含了兩個部分。首先，需要修改網際網路服務使他的運作狀態

能被存放在安全的地方，這是為了避免重新啟動之後的資料流失。另外，我們還

提供了一些系統核心上的支援，使得網際網路服務所用到的輸入輸出頻道能被保

留並且自動的完成整個重新啟動的流程。最後，我們將這個架構套用在一個熱門

的網頁伺服器上，並且驗證了我們的想法。 

 I



A Framework for Zero-Loss Internet Service Restart 

through Application-Kernel Cooperation 

Student：Chuan-Ming Tsai   Advisor：Prof. Ruei-Chuan Chang 

Institute of Computer and Information Science 

National Chiao-Tung University 

 

Abstract 
 

 Internet services are more and more widely used for resolving problems or 

finding information recently. Thus, Internet services have to run for a long time and 

must serve a huge number of clients concurrently. This causes them easy to suffer 

from the transient fault and software aging problem, which will cause serious damage 

when them occurs at some critical Internet services such as commercial web sites. In 

order to keep Internet service permanently running, we propose a zero-loss restart 

framework to resolve the transient fault or aging problem of Internet services. 

Our framework consists of three parts, the service state abstraction, the kernel I/O 

channel keeping kernel support, the automatic restarting mechanism kernel support. In 

addition, we deploy our framework on a popular tiny web server, thttpd. 

The former zero-loss restart mechanism such as checkpoint and restart has the 

shortcoming of high runtime overhead and can not totally resolve the transient fault. 

Another popular zero-loss restart mechanism is the FT-TCP which also has the 

shortcoming of high recovery time. As result of experimental, our framework only 

costs lower than 6.8% runtime overhead and lower than 8.5% recovery overhead to 

perform the zero-loss restart. 
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CHAPTER 1 
 
INTRODUCTION 
 

1.1. Motivation 

In the recent years, Internet services have become more and more popular in our 

regular life. Moreover, the emergence of many transaction based Internet services 

such as on-line banking, trading, and shopping has put a requirement of high 

availability on such services. According to the previous research [18], a few minutes 

of downtime will lead to a great loss of money for these services. 

However, due to the long serving time and huge number of clients, Internet 

services are easily to suffer from transient faults or software aging problem [10]. The 

former are caused by transient hardware or human errors, while the latter are mainly 

due to software bugs1. 

Current approach to workaround the faults is to restart the service. However, the 

original service state will be lost after the service restart. For example, restarting a 

web server will result in the lost of all the on-line request information at the 

application level and all the open file information, including the TCP connection 

information, at the kernel level. This is unacceptable for many commercial or 

transaction based web sites. 

Previous approaches have limitations for solving this problem. Some can not 

                                                 
1 Even with serious testing, it is not possible to remove all the bugs in a production system. With the 

aging of the system, some bugs may reveal and cause the system to crash. This is called software aging 

problem. And, we call the resulting faults as software aging faults. Strictly speaking, software aging 

faults are a kind of transient faults. However, we separate the two because they cannot always be 

resolved by the same approach. The detail will be mentioned later in the related work section. 
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recover from the software aging faults [19]. Others require a long recovery time or 

expensive server replicas. Still others put a requirement that a service should be made 

up of many fine-grained and loosely-couple components, which not only needs large 

modifications to many existing Internet service programs but also degrades the system 

performance. 

In this thesis, we propose a framework that can achieve the goal of zero-loss 

service restart. By applying the framework to an Internet service, the problem caused 

by transient faults and software aging can be resolved. In addition, the framework 

requires little service recovery time and runtime overhead. Finally, the framework is 

cost effective since it does not require expensive server replicas. It can restart the 

service on the original machine with no state lost. 

The basic idea of the framework is to achieve the goal of zero-loss service restart, 

through the cooperation between the service and the operating system. We design the 

required kernel mechanisms to support a zero-loss service restart. First, we keep the 

I/O channels that are currently used by the service, and migrate them to the new 

service instance after the service restart. Keeping the I/O channels is required since 

the channels are a part of the service state. Second, we hold the unprocessed data that 

has been read into the memory space of the old service instance in the kernel space. 

After the service restart, the data can be read and processed again by the new service 

instance. Third, we design a kernel-level automatic service-restarting procedure, 

which allows the administrator to keep away from the service recovery job. The 

procedure is triggered by a fault detection mechanism that can detect the transient and 

software aging fault. 

Our framework needs cooperation from the service side. Specifically, inspired by 
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the concept of crash only software [5, 6], we require the service store its state a 

long-live, dedicated state storage provided by the kernel. This enables the service state 

to be safely migrated to the new service instance. In addition, a service should 

implement a recovery procedure to store its state according to the content in the state 

storage. Although modification to the service code is required, the modification is 

straightforward. Since each service already maintains the service state in its internal 

data structures, storing/restoring the state to/from the state storage is trivial. This 

allows our framework to be applied on most of the existing Internet services. 

We implement the kernel supports in a Linux kernel module. Moreover, we adopt 

the service-side cooperation on a popular tiny web server, thttpd [1]. According to the 

performance results, the runtime overhead of our framework is less than 6.8%. And, 

the throughput degradation due to the service recovery is only 8.5%. This proves that 

our framework is efficient for Internet services. 

 

1.2. Thesis Organization 

The rest of the thesis is organized as follows. We describe the related work in 

Chapter 2, which is follow by the detailed illustration of our kernel support mentioned 

in Chpater3. In Chapter 4, we propose several programming guidelines, and describe 

how we apply the framework on thttpd. Chapter 5 shows the performance result of 

our framework. Specifically, the overhead and restart effect are measured. Finally, we 

conclude and discuss future work in Chapter 6. 
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CHAPTER 2 
 
RELATED WORK 
 
In this chapter, we describe the previous works that were used or can be used for 

building fault tolerant Internet service systems. 

Checkpointing [19] is one of the most well known approaches for system recovery. 

It checkpoints the software state into a stable storage. When a fault happens, the 

system can be recovered from the last checkpointed state. This approach can be 

applied on different levels, such as user library level [20, 24], compiler level [13, 14, 

15], operating system level [9, 11], or hardware level [21]. Although this approach 

can recover a system from transient faults, it can not deal with the software aging 

problem. This is because the checkpointed state is aged, instead of fresh. Therefore, a 

fault happened due to the software aging will appear again immediately after the last 

checkpointed state is restored. Another drawback of this approach is that many 

checkpoint techniques incur large overheads since the large amount of the 

checkpointed state and the access to the stable storage. 

The concept of developing recovery-oriented software for dealing with errors is 

proposed by the Recovery-Oriented Computing (ROC) project [17], which is a joint 

effort of U. C. Berkeley and Stanford University. Different from the previous research 

that usually addressed on the Mean Time to Failure (MTTF), ROC offered high 

availability by reducing the Mean Time to Repair (MTTR). In ROC, several 

techniques that are related to ours were proposed. Rewind-Repair-and-Replay (3R) [4] 

tries to recover the errors caused by the administrators. As the name indicates, when a 

fault happens, it rewinds the system to a state before the error occurs, tries to repair 
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the error, and then replays the operations. Since we address on the transient faults and 

the software aging problem, there is no need to rewind and repair. Therefore, service 

restart is more suitable for addressing the problems than the 3R approach. 

Recursive Recovery (RR) [5, 6] is another technique proposed by ROC. Similar to 

our work, it addresses the transient faults and the software aging problem by using the 

software restart mechanism. Under this approach, a service is made up of fine-grained 

and loosely-coupled components. And, only the faulty components are restarted when 

a fault occurs, which speeds up the restarting process. The limitation of this approach 

is that it requires the system to be made up of fine-grained and loosely-coupled 

components. Many existing Internet service programs are not able to satisfy the 

requirement. Moreover, the inter-component communication will degrade the system 

performance. By contrast, our approach doesn’t have the requirement and is more 

feasible for existing Internet services. 

Scalable Network Services (SNS) [7] presents an architecture that supports 

scalable and fault tolerant Internet services. Similar to RR, a service is made up of 

several components. And, component failures can be detected by other components. 

However, SNS assumes that a component only have soft state, which can be 

reconstructed after the component restart. This is not valid for most of the existing 

Internet service programs. For example, a web server should have the state of the 

on-line requests at the user level and the open file information (including the TCP 

connection information) at the kernel level. Generally, the state is lost if the web 

server process crashes.  

Service Continuation [22] allows an on-line client session to be migrated from one 

server to another cooperative server. Similar to our work, it uses an application-kernel 
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cooperation approach for session state migration. However, it relies on a connection 

migration protocol such as M-TCP [23], which requires modifications to the 

client-side TCP. Moreover, it copes with network congestion or server overload 

conditions and doesn’t deal with server failures. 

FT-TCP proposed a method to resolve the faults on TCP-based Internet services. 

It inserts wrappers around the TCP layer to log the state of the TCP connections 

associated with the service. If the system crashes, the TCP connections are 

reestablished. And, the service state is reproduced by running a new copy of the 

service application from the beginning and feeding it with the logged I/O requests. 

That is, it replays the process before the server crashes. The advantage of this 

approach is that it does not need to modify the service applications. However, the 

replaying process may take a long time. We eliminate the need for replaying the 

service application and reestablishing the TCP connections since we address on 

transient and software aging faults happen on the service itself and we take an 

application-kernel cooperation approach. This results in much better performance, 

especially for popular Internet services. 

There are still some research efforts that address on the fault tolerant web services 

[2, 25, 26]. They use the server replication approach to improve the availability of the 

web server. When the primary server fails, the on-line requests can be migrated to the 

backup server. These approaches regard the service unavailability of a server as a 

node failure and thus use the backup node to take over the following jobs. By contrast, 

we address on the transient faults and the software aging problem happen on the 

service itself. Therefore, we take a more efficient and cost effective approach that 

restarts the service on the original node. We keep the state and the I/O channels of the 
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service, and hand over them to the new service generation to achieve the goal of 

zero-lost service restart. 
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CHAPTER 3 
 
KERNEL SUPPORTS OF 
ZERO-LOSS SERVICE RESTART 
 
As shown in Figure 3.1, the life cycle of a general restartable service consists of 

four kinds of phases. The first phase is the service initialization phase. In this phase, 

the service initializes their serving environment, and then the service will enter a 

stable state to wait for providing services. The second phase is service execution 

phase. In this phase, the service serves requests until a fault occurs. The third phase is 

process restarting phase. In this phase, kernel detects the fault of the service and 

restarts a new instance of the service with the same non-broken I/O channels. And, the 

forth phase is the service recovery phase. In this phase, the restarted service restores 

its state information. After the service recovery phase, the restarted service goes back 

to the service execution phase. It continues serving the on-processing requests when 

the fault occurs, and starts accepting new requests. From the figure we can see that, a 

process generation begins when the process is started (created or restarted), and ends 

when the process is terminated (either normally or abnormally). A process generation 

may consist of the service initialization and service execution phases (i.e., for the first 

generation), or the service recovery and service execution phases (i.e., for the the 

other generations). 

Service 
Initialization 

Phase 

Service 
Execution 

Phase 

Process 
Restarting 

Phase 

Service 
Recovery 

Phase 

Service 
Execution 

Phase 

Kernel 
Period First (Process) Generation Second (Process) Generation 

Figure 3.1: Life Cycle of a General Restartable Service 
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Existing APIs exported by operating systems have some problems to achieve the 

goal of zero-loss service restart. Firstly, the detection and restarting of a failed process 

is hard to be fully automatic. It requires the administrator to manually restart a new 

process. Secondly, no matter a process exits normally or abnormally, its open files 

will be closed by kernel. This will break all of the channels between service and the 

outside world. Moreover, even if the open files can be kept, the unprocessed data that 

was read into the failed process is still hard to be recovered. This is true for 

non-storage-based files, such as pipe, sockets and etc. When a read is issued on such a 

file, the data will be copied to the user buffer, and the kernel-level buffer will be freed. 

If the process fails at this time, the data will be lost. Therefore, to achieve the goal of 

zero-loss restart, some additional kernel support is needed. 

In this paper, we propose three kernel functionalities that can be integrated into an 

operating system to support zero-loss service restart. The functionalities are fault 

detection, I/O channel keeping, and restart management. In addition, we add three 

system calls that allow user-level service programs to register their restartable service 

and holding the unprocessed data. 

 

3.1 FAULT DETECTION 

When a fault cause a service to crashes, the operation system will terminate the 

service process and release the resources owned by the service. Therefore, our fault 

detection mechanism is based on the interception of the abnormal process termination. 

Specifically, the fault detection is implemented by intercepting the do_exit() function 

to check the error_code parameter in linux kernel. A specific bit of the error_code 

parameter will be turned on if the process termination is caused by a fault (e.g., 
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segmentation violation, trap). Therefore, we can simply check the bit to see if the 

process termination is abnormal. 

However, the software transient fault and software aging are not the only way to 

go above path. Some kinds of software bugs will go through the same path but will 

soon occur again after the faulty process is restarted. These kinds of software bugs are 

not suitable to resolve by restarting the faulty process. Therefore, in order to avoid 

intercepting these kinds of software bugs we add a per service process variable, 

last_restart_time, to record the last time that the service process was restarted. During 

fault detection, we consider it is a transient fault if the difference between current time 

and last_restart_time of the service process is large than a certain threshold (currently, 

1 minute). Oppositely, we consider it is a software bug if it is too soon to need to be 

restarted. 

 In our system, a service has to register its information to the kernel if wants to be 

zero-loss restaratable. When the fault occurs in a restartable process, the kernel uses 

the registration information to create a new generation of the process and performs the 

recovering job. The information can be registered through a reregist() system call, 

which is shown in Figure 3.2. 

ssize_t reregist ( char* bin_path, 

     char* argv[],  

char* envp[]  

       int child_id,) 

Figure 3.2: Prototype of Restart Registration System Call 
 

 The first three parameters represent the path and arguments of the service 

program. And, the child_id parameter is used to identify the role of the current 
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process. In a multi-process service, different processes may play different roles and 

hence require different action for recovery. By registering the role of the current 

process, the restarted process can perform the recovery actions accordingly. In general, 

the child_id can be set as 0 for a single-process service. For a multi-process service, 

the developer can specify a unique child_id for each child process. 

 In addition, we also provide a getreginfo() system call so that the service process 

can retrieve the its registration information. This is primary used by the next service 

generation to get the registration information of its previous generation. The detail 

usage of these two system calls will be described in Section 4.1.2 and Section 4.1.3. 

 

3.2 KEEPING I/O INFORMATION 

To achieve the goal of zero-loss restart, the I/O channels of a service should not 

be terminated when a service crashes. Instead, they should be kept and handed over to 

the next service generation. Keeping I/O channels consists of two tasks. One is to 

prevent the I/O channels from being closed, and the other is to keep the input data in 

these channels. We discuss these two tasks in Section 3.2.1 and Section 3.2.2, 

respectively. 

 
3.2.1 I/O Channel Keeping 

 The I/O channels are regarded as files in most Unix-like operating systems, 

including Linux. For each process, the Linux kernel maintains an open file table for it, 

which contains all the opened files of this process. Therefore, we can keep the I/O 

channels of a service process by preventing all the files in the corresponding open file 

table from being closed. A simple approach for keeping the I/O channels is to increase 
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the reference count of the open file table. As a result, the kernel will not close the files 

and frees table when the faulty process exits. When the service is restarted we can 

hand the table to the new service generation so that it can continue providing service 

with those I/O channels. 

 

3.2.2 Data-Holding Read Operation 

As we mentioned above, a process failure will cause, all the data that has been 

read into the process memory space but not yet been processed to be lost. To avoid 

this problem, we propose an alternative read operation, namely data-holding read. 

Figure 3.3(a) shows the comparison between original read operation and data-holding 

read operation. From the figure we can see that, the original read operation copies 

data from the per-file source buffer to the user-specified buffer. For a 

non-storage-based file object such as pipe or socket, the copied data in the source 

buffer will be freed. As a result, the data will be lost if the user-level service crashes 

at that time. Therefore, the original read operation is not sufficient for supporting 

zero-loss service restart. Specifically, if a process fails with some unprocessed data 

left in it, the data will be lost. 

Figure 3.3(b) shows the data-holding read operation. The difference between the 

read and the data-holding read operations is that data is removed explicitly in the 

latter. That is, the user program can specify not only how many bytes to read but also 

how many bytes to delete. To achieve this goal, we maintain a kernel level temporary 

space between the per-file source buffer and the destination user buffer. This 

temporary space is used to keep the data which has already been read to the user 

buffer but has not been specified to be deleted. Thus, already-read data can be 
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retained in the temporary space until the user program doesn’t need it. 

 

Figure 3.4 shows the prototype of data-holding read system call. Users invoke it to 

read rlen bytes of data from the file fd to the user buffer buf, as well as to delete dlen 

bytes of data from the kernel temporary space. 

 

The kernel-level temporary space is implemented as the per-file dhr (data-holding 

read) structure. A dhr structure is created for a file when the user program invokes 

hread() on that file at the first time. Figure 3.5 lists the fields in the dhr structure and 

the related data structures. 

 

 

ssize_t hread( unsigned int fd,

char * buf, 

size_t rlen, 

size_t dlen ) 

Figure 3.4 Prototype of Data-Holding Read System Call 

sys read 

file obj. 
type 

pipe read socket read file read

user buffer

sys hread

file obj.
type 

pipe read socket read file read 

user buffer 

source buffers 

source buffers 

temporary 
space 

(a) Original Read (b) Data Holding Read 

Figure 3.3: Comparison between the original read and data-holding read operations 
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struct dhr { 

 struct file* file; 

 unsigned int read_pt; 

 unsigned int destroy_pt; 

 unsigned int write_pt; 

 struct dhr_buf* dhr_buf_head; 

 }; 

# define DHR_ONE_BUFFER_SIZE 4096 

struct dhr_buf { 

 struct dhr_buf* prev; 

 char buf[DHR_ONE_BUFFER_SIZE]; 

 struct dhr_buf* next; 

}; 

 
e 

 

head_of_dhr 

file 

 

Each dhr structure h

of fix sized buffers (i.e.

dhr structure uses three 

The read_pt and destro

deleted by the user proc

read_pt represents the b

user program. The write

dhr buf

struct 
dhr 

undeleted data 

 

Figure 3.5: Definition of the dhr structur
 

destroy_pt 

read_pt

write pt 

NULL 

head 

NULL

next 

next 
prev

prev

struct dhr buf

 
Figure 3.6: Structure dhr and structure dhr_buf
as a pointer to its corresponding file, and a pointer to a chain 

, dhr_buf) for holding the already-read data. In addition, the 

pointers to manage the buffer chain, as shown in Figure 3.6. 

y_pt point to the last bytes of data that has been read and 

ess, respectively. Therefore, the data between destroy_pt and 

ytes that are already been read but not been deleted by the 

_pt indicates the number of bytes have been copied into the 
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dhr. It is worth to note that the values of read_pt and write_pt may be different. We 

will discuss it later in this section. 

At the end of this section, we describe the procedure of the data-holding read 

system call, which is shown in Figure 3.7. 
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When a user program calls the system call, the kernel locates or creates the dhr 

structure for the file, and then performs the following procedure. 

1. The kernel checks to see if the user program wants to delete more data than it can 

Has dhr of 
this file ? 

Map fd to 
file pointer 

Create dhr 
of this file 

destroy_pt+dlen > 
read pt+rlen 

rlen = 0 

return error

return 0Delete dlen 
bytes data

rlen < write_pt 
- read pt 

Copy rlen bytes 
from dhr 

return 
rlen 

Original read system 
call 

(n2:= copied bytes) 

Copy data 
from user buf 

to dhr 

destroy_pt+dlen > 
read_pt + (n1+n2)

Clean user 
buf 

return error

Do delete job

Hread( fd, buf, rlen, dlen)

Yes

No 

Yes

No

Yes

No

Yes

No

Copy write_pt - read_pt 
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return (n1+n2)

Figure 3.7: Flowchart of Hread() Function 
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read (i.e., dlen+destroy_pt > rlen+read_pt). If it does, the kernel just returns an 

error. 

2. If rlen is 0, the kernel just deletes dlen of data in the temporary space and returns 

0. 

3. The kernel checks if there is enough unread data in the dhr buffer chain (i.e., rlen 

< write_pt - read_pt). 

3a. If there is, the kernel tries to copy rlen bytes of data from temporary space 

to the user buffer. And then, the kernel updates the read_pt, and returns 

rlen. 

3b. Otherwise, the kernel copies all the bytes between write_pt and read_pt and 

performs the original read function to read the remaining data from the 

per-file source buffer to the user buffer. Since the original read operation 

copies data directly to the user buffer, we have to copy the data from the 

user buffer into the dhr buffer chain in order to hold the data in the 

temporary space. 

4. The write_pt is updated accordingly. 

5. The kernel checks to see if the data deletion goes beyond the available data (i.e., 

dlen+destroy_pt > write_pt). 

5a. If it does, the kernel clears the user buffer and returns an error. This buffer 

clearing is necessary since we want to preserve the all-or-none semantic of 

the system call. Note that, in this case, the read_pt and write_pt will become 

different. 

5b. Otherwise, the kernel updates the read_pt to the value of the write_pt, deletes 

dlen bytes of data, and update destroy_pt accordingly. Once the destroy_pt 
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goes beyond a buffer in the buffer chain, the buffer will be freed. 

6. At last, the kernel returns how many bytes that have been copied to the user 

program. 

During the process restarting phase, the kernel will set the read_pt as the 

destroy_pt for each file opened by the user service. This allows the restarted service it 

to read the data that has not been completely by its previous generation. 

 

3.3 RESTART FLOW 

The fully automatic and zero-data-loss restart is controlled by the restart manager. 

Figure 3.8 shows the restart flow. 

Fault 
detected 

Keeping Creating 
new kernel 

thread 

Exiting 
current I/O 

channels faulty process

 

First of all, a fault of the service process is detected by the fault detection routine. 

Then, the kernel performs the I/O channel keeping operation to prevent the I/O 

channels of the service process from being closed. For all the I/O channels, the kernel 

rewinds the read_pt in the kernel temporary space to the value of the destroy_pt. 

 A kernel thread is then created, which will eventually become the next 

generation of the failed service process. At the moment, the faulty process can be 

Restoring
I/O 

channels

Executing 
user-mode 

process 

Faulty process 

Restarted process

Process Restarting Phase 

Figure 3.8: Restart Flow
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terminated. And, the kernel thread invokes the exec_usermode_helper() function to 

turn itself into a user-level process and execute the binary image of the service. As a 

result, a new generation of the service is started. Finally, the I/O channels can be 

handed over to the new service generation. This is done by copying the kept pointer 

that reference to the open file table into the task control block of the new service 

generation. 

 

3.4 EXPERIMENTAL RESULTS OF THE KERNEL SUPPORT 

In this section, we present the experimental results of the kernel support. Since 

buffers in the kernel temporary space are allocated/deallocated on demand, small 

buffer size will increase the number of allocation/deallocation and degrades the 

performance of hread(). In this experiment, we measure the impact of the buffer size 

(i.e., DHR_BUFFER_SIZE) on the performance of hread(). We use a small test 

program that reads a file through hread() with different buffer sizes, and record the 

resulting times in CPU ticks. Figure 3.9 shows the result. As shown in the figure, the 

performance improves as the buffer size increases. However, the improvement 

becomes little when the buffer is larger than 4096 bytes. As a result, we choose 4096 

as the buffer size in current implementation. 
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Figure 3.9: Performance of Hread() under Different DHR_ONE_BUFFER_SIZE
igure 3.10 compares the performance of the original read() and the hread() 

 calls under different user buffer sizes that the test program specifies. From the 

 we can see that when the user buffer size is smaller than 512 bytes, the 

ad of hread() ranges from 36% to 46%. And, with the increase of the user 

 size, the overhead grows. The largest part of the overhead happens in the 

from_user() function, which is a standard function used by the linux kernel to 

ata from a user-mode buffer. And, we use the function to copy the read data 

he user buffer to the kernel temporary space. According to our measurement, 

ecution time of the function grows rapidly as the data size increases. Although 

erhead seems to be large, we still consider it be acceptable because that the 

g frequency of non-storage based files is usually far less than the writing 

ncy for many Internet services, such as web services, FTP service, streaming 

e, and etc. We will verify it in Section 5.2.1. 

20



DHR_ONE_BUFFER_SIZE = 4096

724 842 1050 1462
2649

5596

12225

987 1230 1532 2565
5121

11681

27183

36.62
46.08 45.9

75.44

93.31

108.73

122.35

0

5000

10000

15000

20000

25000

30000

128 256 512 1024 2048 4096 8192

User Buffer Size (bytes)

C
PU

 T
ic

ks

0

20

40

60

80

100

120

140

O
ve

rh
ea

d 
(%

)

original read holding read overhead (%)

 

 

c

s

 

 

g

 

 Figure 3.10: Performance Comparison of Read() and Hread() under Different User Buffer Sizes
Besides hread(), we also measure the execution time of the other two system 

alls we added (i.e., reregist() and getreginfo()). Figure 3.11 shows the result. Both 

ystem calls require less than 2 us. 
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st, a breakdown of the kernel execution time spent for starting a new service 

 is given in Table 3.1. The time begins when the fault is detected and ends 
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at the end when the I/O channels are restored. From the table we can see that, keeping 

and restoring I/O channels is quite efficient (specifically, only about 7.4 us). Most of 

time is spent on creating the kernel thread for resuming the new service generation 

and executing the exec_usermod_helper() function. 

 

 I/O channel 
keeping 

Kernel thread 
creating 

User-mode 
process 

executing 
I/O channel 

restoring 

Execution Time 7.294 us 15.264 us 185.78 us 0.125 us 

 n 

 

Table 3.1: Kernel-level Execution Time for Restarting a New Service Generatio
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CHAPTER 4 
 
PROGRAMMING GUIDELINES OF 
ZERO-LOSS RESTARTABLE SERVICE 
 
The kernel support that we described in Chapter 3 provides a basics building 

block for a restarable environment. However, cooperation from the service developers 

is also needed to achieve the goal of zero-loss service restart. The cooperation 

includes the following jobs. First, the service developers have to use the system calls 

mentioned in Chapter 3 to register/retrieve the service information, and hold the 

useful data in the kernel. Second, the developers should use a dedicated state storage 

to store the service state. Third, the service developers should follow the 

programming guidelines mentioned in Section 4.2 to facilitate the recovery procedure 

at service recovery phase.  

In Section 4.1, we will illustrate how to use those kernel supported system calls 

mentioned in the previous chapter. And, we will also propose a model that allows two 

successive service generations communicate through a dedicated storage. In Section 

4.2, we describe the programming guidelines. 
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4.1 PROGRAMMING STYLE OF RESTARTABLE SERVICE 

4.1.1 Using Hread() System Call 

void handle_new_connection() { 

 int read_fd; 

 char* buf = malloc(…); 

 char* request = malloc(…); 

 

 read_fd = socket(PF_INET, SOCK_STREAM, 0); 

 bind(read_fd, …); 

 listen(read_fd, …); 

 ... 

 

 int sz, count = 0; 

 while( !read_full_request(request) ) { 

 

In this section we describe how to use the hread() system call to avoid data loss 

when a fault crashes the services. Figure 4.1 shows the pseudo code of handling a 

request using the hread() system call. In the while loop, the program reads a full 

request from socket read_fd. Since the data has not been processed, the forth 

parameter (i.e., dlen) is set to 0 in order to keep the data in the kernel temporary space. 

After receiving the request, the process_rcv_data() is invoked to process the request 

data and generate the result. Finally, the hread() system call is invoked again with the 

rlen parameter set to 0 and the dlen parameter set to the data length of the request data. 

This invocation is used to delete the request from the kernel temporary space.  

If a fault occurs before the end of the process_rev_data() function, the request 

  if( (sz = hread(read_fd, buf, 10, 0)) > 0) { 

   strncpy((char*)(request+count), buf, 10); Read a full request 
   count += sz; 

  } 

 } Really process the received data 
 process_rcv_data(request); 

After processed, delete what you have 
processed in the kernel temporary space 

 hread(read_fd, buf, 0, count); 

 ... 

 close(read_fd); Close the socket 
} 

Figure 4.1: Example pseudo code of using data-holding read system call 
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data still remains in the kernel temporary space. As we described in Section 3.3, the 

kernel will rewind the read pointer to the position of the destroy pointer when the 

service is restarted. Therefore, after the new generation starts, it can read the request 

from the kernel temp space and process it. On the other hand, if the fault occurs 

between the process_rev_data() and the second hread() function, the new generation 

has the ability to know that the result was generated. As a consequence, it will delete 

the request in the kernel temporary space. To know that the result was generated, 

there must be a communication channel between the successive generations, which is 

described in Section 4.1.4. 

 

4.1.2 Using Reregist() System Call 

#define CHILD_ID_INIT_VALUE 1 

 

void main(char* argv[]) { 

 int cid; Register the main process of the service 

 

  

 reregist(“/usr/local/sbin/service”, 0, argv, NULL); 

 ... 
Register the child process as 
child_id = 1  cid = fork(); 

 if(cid == 0) { // child process starts 

  reregist(“”, CHILD_ID_INIT_VALUE, argv, NULL); 

  ... 

} 

 else { // parent process 

  ...  

} 

 ... 

} 

Figure 4.2: Example pseudo code of using restart registration system call 
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Reregist() system call is used to register a restartable service. In most of the cases, 

the developer invokes reregist() during the program initialization. Figure 4.2 shows 

the typical usage of reregist() system call. In the figure, the first reregist() invocation 

means that the developer wants the main process of the service to be restartable. And, 

the second reregist() invocation registers the child process as a restartable process. 

Note that the child_id parameter is different in these two invocations. This allows the 

restarted process to know which child process (or main process) it is. 

4.1.3 Use Getreginfo() System Call 

#include <registration.h> 

int is_restarted = 0; 

 

void main(char* argv[]) { 

 struct reg_info* reg_info = (struct reg_info*)malloc(sizeof(struct  

reg_info)); 

 if( getreginfo(reg_info) ) { 

  is_restarted = reg_info->is_restarted; 

} 

if( is_restarted ) { // recovery path 

 switch( reg_info->child_id ) { 

 case 0: break; 

case 1: goto child_process_1; 

 ... 

} 

... 

} 

else { // normal execution path 

... 

} 

} 

Figure 4.3: Example pseudo code of using get registration information system call 
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 Figure 4.3 shows an example of using the getreginfo() system call. The most 

important function of this system call is to tell whether the current process is original 

or restarted. If it is restarted, the process should execute the recovery path. Otherwise, 

it executes the normal path. Note that both paths should be programmed by the 

service developer. And, this system call should be called at the beginning of the 

program to determine the execution path of this generation. In addition, this system 

call also returns the child_id. With that information, the current process can know the 

child identifier of its previous generation. Therefore, the developer can divide the 

recovery path into a number of recovery procedures. Each procedure takes responsible 

for recovering a child process or the main process. As a result, the new generation can 

execute the corresponding recovery procedure to recover its previous generation. 

 

4.1.4 Using Shared Memory for State Handover 

To achieve the goal of zero-loss service restart, the developers should separate 

state from logic when developing the service. The service state has to be stored in a 

dedicated storage, which should be live across successive service generations. This 

allows the state to be handed over to the new generation. In our system, the dedicated 

storage is implemented by shared memory. 

We use shared memory because of the following reasons. First, the shared 

memory attached on a process is available until the process detaches it. Therefore, if a 

service does not detach the shared memory before it terminates, the next generation 

will be able to attach the same shared memory area. Second, shared memory is 

efficient so that there will be little performance impact for storing service state in 

shared memory. 
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However, there is a problem when using shared memory as the state store. That is, 

the shared memory had better be attached at the same address for two successive 

generations. This is because that the service state stored in the shared memory may 

contain pointers which point to the data in the shared memory. If the shared memory 

area can not be attached at the same address, the new generation must adjust the 

pointers in the shared memory. For example, if we store a linked list in the shared 

memory, the values of all the links should be adjusted when the new generation 

attaches the shared memory to a different address. 

Therefore, the developer should reduce the usage of pointers for maintaining the 

service state. If there are still some necessary pointers, the developers should write a 

procedure to adjust these pointers. In order to accomplish the adjustment, the 

application can store the attached address in a fixed location of the shared memory 

when it attaches the shared memory. Therefore, the new generation can calculate the 

difference value of the attached address and update all the pointers in the shared 

memory accordingly. 

 

4.2 PROGRAMMING GUIDELINES FOR ZERO-LOSS RESTART 

In this section, we propose several programming guidelines that make the service 

operate at its logical level and hence become zero-loss between generations. 

Avoid registering the signal handlers of the signals that cause the abnormal 

termination of the process. Such as SIGSEGV, SIGTRAP, SIGABRT, and etc are 

this kind of signals. It is in order to let the abnormal termination of the faulty service 

can be caught by our fault detector instead of the programmer specified function. 

Abstract the state variable of the service. The state variables contain all the 

 28



necessary information that represents the service state during the service execution. A 

piece of state information should be included into the state variables if the restarted 

service can’t reconstruct the whole service state without it. The state variable of the 

service needs to be stored in the dedicate storage and be updated when necessary. 

This allows the service to be executed as a stateless client of the state storage. 

Design recovery procedures for service recovery. The recovery procedures will 

be executed during the service recovery phase. In a recovery procedure, the service 

must reconstruct its state from the state variables. And then, it tries to finish the 

ongoing jobs of the previous generation when the fault occurs. 

Divide the execution into several stages. This can reduce the recovery time. 

When a stage is finished, the service can record the progress and starts the next stage. 

When a service restarts, the next generation can go through the unfinished stage as in 

its normal path. The recovery time is reduced since the jobs in the already finished 

stages are not needed to be performed again. For example, the page request 

processing in a web server can be divided into four stages: request reading, request 

parsing, response header sending, and response body sending. For large responses, the 

last stage can further be divided into more sub-stages. When the service restarts, the 

new generation can get the processing progress of the request. If, for example, the 

first two stages are finished, the new generation can start sending the response header. 
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CHAPTER 5 
 
CASE STUDY: ZERO-LOSS RESTARTABLE 
THTTPD WEB SERVER 
 
In this chapter, we present a case study that applies all the operations and program 

guidelines mentioned in Chapter 3 and 4 to a well-known tiny web server, 

thttpd-2.25b [1], in order to make it zero-loss restartable. We chose web server as the 

target because of its popularity on Internet. Thttpd is an open source web server, with 

simple and well-organized code. 

In the following, we will briefly describe the design and execution flow of the 

original thttpd in Section5.1.1. In Section 5.1.2 we will present how we modify the 

original thttpd to achieve the goal of zero-loss restart. Furthermore, we will analyze 

the experimental results in Section 5.2. 

 

5.1 ZERO-LOSS RESTARTABLE THTTPD 

5.1.1 Original Thttpd 

In this section, we will describe the execution flow of thttpd. Thttpd uses 

single-process implementation of HTTP 1.1 protocol [8], and it divides the procedure 

of handling a request into two stages, namely reading and sending. Figure 5.1 shows 

the stage flow of request handling in thttpd. 

 

Reading Sending

Got an 
incoming 

connection
Finish 

Sending 
Response

Generated

Start End 

Figure 5.1: Stage Flow of Request Handling in Thttpd
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 When thttpd starts, it creates, binds, and listens on a TCP socket. Then, it probes 

for incoming requests by performing select() on the TCP socket. If there is no request, 

the server keeps on probing. When the server gets a request, it creates a connection 

entity structure for this request and the connection enters into the reading stage. The 

connection entity structure contains almost all the information needed to construct the 

total state variables of thttpd. This will be discussed in the next section. In the reading 

stage, the server reads the request from the client, parses the request, and generates 

the corresponding response. After the response is generated, the connection enters 

into the sending stage. In this stage, the server writes out the response to the client. 

Note that connections are processed concurrently. Different connections may be 

in different stages. Moreover, request probing and processing are also handled 

concurrently. It is worth to mention that, reading and sending stages in thttpd are 

divided into more fine-grained sub-stages. In reading stage, the server doesn’t 

perform blocking read operation. Therefore, several read operations may be needed to 

get the full request. And the server will try to handle other requests between two 

successive read operations. Similarly, in the sending state, the server will also try to 

write a part of the response and then handle other requests or accept new requests. 

 

5.1.2 Zero-Loss Restartable Thttpd 

In this section, we describe how we modified the thttpd to make it zero-loss 

restarable. The modified version is called ZLR_thttpd. First of all, we replaced all 

socket read operations in thttpd with hread(), and applied the reregist() and the 

getreginfo() on thttpd. We will not describe the detail of these modifications because 

that they are simply like what we have mentioned in Chpater 4. 
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The other modifications are described in the following. First, we identified the 

state variables of thttpd. In the previous section, we mentioned that the connection 

entity structure is used to represent a connection in thttpd, and it contains all the 

information of an on-processing connection.  Therefore, we can get the state 

variables of a connection by extracting the fields in this structure that are necessary 

for the recovery procedures. Instead of separating the original data structures in thttpd 

into state variable part and no_state variable part, we make a copy of all state 

variables and store the copy into the shared memory. And, we update the variable in 

shared memory before the corresponding variable in thttpd is modified. These can 

avoid large modifications to the original thttpd. 

struct httpd_state_var { 

    int conn_stage; 

    int conn_fd; 

    char* expnfilename; 

    int method; 

    off_t bytes_sent; 

}; 

struct global_state_var { 

    int listen_fd; 

    int num_connects; 

    int max_connects; 

}; 

○1

○2

○3

 ) )
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to the data socket. In addition to the per-connection state variables, the global 

variables are maintained in the global_state_var structure as shown in Figure 5.2(b). 

The listen_fd represents the socket that the server uses to receive requests from the 

clients. The num_connects field indicates how many connections are currently 

processed in the server. And, the max_connect field indicates the maximum number 

of connections that the server can process simultaneously. 

 The second modification we made was using shared memory areas to store the 

state variables of thttpd. Totally, four shared memory areas are used. As Figure 5.3 

shows, these four areas are pointed by four pointers, shm_pointers, httpd_state_vars, 

char_area, and global_vars, respectively. 

shm_pointers 

○1  expnfilename
httpd_state_vars 

chars_area expnfilename

 

 The area pointed by httpd_state_vars is used to store the httpd_state_var 

structures of all the connections. The char_area points to a fix-sized shared memory 

area that is used to store the expnfilename fields of all the httpd_state_var structures. 

The above two pointers are stored in another shared memory area, which is pointed by 

global_vars

○2  

○1  sizeof ( httpd_state_var ) 

○2  fix size chars area 
○3  

○3  sizeof (global_state_var ) 

Figure 5.3: Four Shared Memory Areas in Modified Thttpd 
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the shm_pointers pointer. In addition, the global_vars points to a shared memory area 

that stores the global_state_var structure of the server. 

 

The final modification we made was to add a recovery path which will be 

executed during the service recovery phase. Since thttpd is a single-process 

application, the path contains a single recovery procedure only. In order to facilitate 

the recovery, we added a new stage, processing, between the reading and sending 

stages. As shown in Figure 5.4, the stage is entered when a request is completely read 

and parsed. In this stage, the server will use the parsing result of the request to 

generate the response. This stage is added to prevent the service going back to the 

reading stage while the request has been parsed. The recovery procedure performs 

two jobs. First, it restores all the variables from the shared memory area. Second, it 

handles the recovery of each on-processing connection according to the connection 

stage. For the reading stage, it tries to finish the reading and parsing job. For the 

processing stage, it tries to read the requested file again into the memory space of the 

thttpd. For the sending stage, the recovery procedure reads the requested file again 

into the memory space of the thttpd, and then sends the response to client. Note that 

only the remaining response will be sent since we have recorded the number of sent 

bytes. 

Reading Sending 

Start End 

Got an 
incoming 

connection 
Finish 

Sending 

ResponseRequest 
GeneratedParsed 

Processing

Figure 5.4: State Diagram of Connection in ZLR thttpd
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5.2 EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of ZLR_thttpd. We first compare its 

performance with that of the original thttpd when no fault occurs. Then, we verify the 

functionality of our restart mechanisms by injecting a fault, and we measure the 

performance of ZLR_thttpd with that fault occurs. The performance is measured by 

using the WebStone [16] benchmark version 2.5 with the standard testbed profile. 

 Our experimental environment consists of a client and a server machine, which 

are connected through a 1Gigabit Ethernet link. Each machine has an Intel 1.6GHz 

Pentium 4 CPU with 256 MB DDR RAM. The operating system is Linux kernel, 

version 2.4.18. The thttpd (or the ZLR_thttpd) run on the server machine, while the 

WebStone runs on the client machine. 
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5.2.1 Overhead 
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Figure 5.5: Throughput Comparison between the Original Thttpd and ZLR_Thttpd.  

 

 Figure 5.5 shows the throughput comparison between the original thttpd and the 

ZLR_thttpd. The x-axis represents the number of WebStone clients. Each client will 

establish a large number of connections with the server during the experiment time. 

The y-axis indicates the server throughput numbers reported by Webstone. From the 

figure we can see that, our framework results a little throughput degradation. The 

overhead comes from the backup of the state variables to the shared memory and the 

using of the hread() for socket reading. Besides, the figure also shows the overhead of 

the ZLR_thttpd, so that we can see the overhead ranges from 0.6% to 3.2%. We 

consider that it is acceptable. 
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Figure 5.6: Response Time Comparison between the Original thttpd and ZLR_Thttpd
Figure 5.6 compares the response time between the original thttpd and the 

R_thttpd. From the figure we can see that, there is little difference between the two. 

e figure also shows the response time differences, which range from 0.75% to 

8%. We consider that it is also acceptable. 

According to the results of the above experiments, we show that our framework 

s low runtime overhead when it is applied on a web server. 

one 
mber 

10 20 30 40 50 60 70 80 90 100 

e 
(bytes) 

30160 36920 39000 49400 49400 59800 60320 66560 78000 92040

Table 5.1: Space Overhead Caused by the Kernel Temporary Space 

In addition to the timing overhead, we also measure the space overhead caused 

 the in-kernel temporary space. Table 5.1 shows the required space under different 

ent numbers. Although the space overhead increases as the client number grows, it 

ll remains small for large client numbers. 
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5.2.2 Restart 

In this section, we first verify the functionality of our framework. Specifically, 

we show that ZLR_thttpd can be restarted with no state lost when a fault occurs. 
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Figure 5.7: The effect at client side when a server fault occurs 

 

 In this experiment, we show that the ZLR_thttpd can keep on serving an online 

client once a fault occurs. We make the client issue a connection and request a 

5Mbyte web page from the server. During the experiment time, we inject a fault by 

sending a segment violation signal to the server. This triggers the restart mechanism. 

Figure 5.7 shows the result. 

The fault is injected after the server has sent 3000000 bytes of the response. As 

shown in the figure, the server can continue serving (with a new generation) after a 

fault occurs in it. Remarkably, there is nearly no slow down on the data receiving 

when a fault happens. The reason is that the TCP connection is still alive when the 
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ZLR_thttpd fails. With the fast restart of the ZLR_thttpd and the TCP layer buffering, 

the server-side TCP can keep sending data to the client before the ZLR_thttpd restarts. 
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Figure 5.8: Throughput Comparison between Original Thttpd and ZLR_Thttpd with fault.
 Figure 5.8 shows the throughput comparison between the thttpd and the 

LR_thttpd when a fault occurs. From the figure we can see that, ZLR_thttpd only 

esult in little throughput degradation. The difference ranges from 0.68% to 5.67%, 

hich is similar to that reported in Figure 5.5. As we mentioned before, this is due to 

he fast recovery and TCP buffering. 
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Figure 5.9: Response Time Comparison between Original Thttpd and ZLR_Thttpd with 
fault.  

 Figure 5.9 compares the response time between the original thttpd and the 

ZLR_thttpd with a fault occurs. Similar to the throughput result, there is little 

difference between the two servers, which ranges from 1.52% to 8.52%. 

According to the above two experiments, we can see that our framework has low 

overhead (i.e., less than 8.52%) when a fault occurs. 
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CHAPTER 6 
 
CONCLUSION AND FUTURE WORK 
 

6.1 CONCLUSION 

In this thesis, we proposed a framework that achieves the goal of zero-loss restart 

for Internet services through application-kernel cooperation. The framework consists 

of the logic-state-divided programming style and some required kernel supports. One 

of the kernel supports is keeping the I/O channel of the faulty Internet service. It has 

small overhead than reconstruct the communication channel from outside, and it is 

suitable for Internet service restart. We also provided a kernel support to keep the 

input data when fault occurs. It is suitable for Internet service which’s read frequency 

is much lower than its write frequency. Finally, we designed an automatic service 

restart procedure, which contains a fault detection mechanism. The fault detection 

mechanism can tell the difference between transient fault and general software bug 

(except software aging problem). 

In addition, we deploy our framework on thttpd. The experimental results show 

that our framework can recover the service from transient faults. Moreover, the 

runtime and restart overheads are less than 6.8% and 8.5% respectively for small web 

server, thttpd. It implies that our framework feasible for achieving the goal of 

non-stop serving. 

 

6.2 FUTURE WORK 

The shared memory usage of our framework requires service developers to 

maintain and adjust the pointers stored in it. To ease the effort of the developers, the 
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adjustment can be implemented in a user library. Moreover, shared memory regions 

can automatically be attached by the kernel during restarting phase. 

A large-scaled Internet service may consist of several corporative processes with 

parent-child relationship. Sometimes the service relies on the process relationship to 

work correctly. In the current implementation, we do not maintain the relationship 

once a process is failed and then restarted. The relationship maintenance will be 

integrated into out framework in the future. 
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