
Chapter 3
Data Hiding in Image Mosaics by
Visible Boundary Regions and Its
Copyright Protection Application
Against Print-And-Scan Attacks

In this chapter, the proposed method for embedding data by visible boundary

regions in an image mosaic is described. The idea of the method comes from image

coding in cryptography [12]. Visible boundary regions are added to each tile image of

the image mosaic and can be regarded as visible features. These features both can be

extracted from the mosaic with the digital form and can be detected after the mosaic

goes through a print-and-scan process. The print-and-scan process includes two jobs:

printing a digital mosaic and scanning the mosaic of a paper format. These processes

cause several types of attacks to the watermark, including image scaling, image

rotation, and color distortion.

The remainder of this chapter is organized as follows. An introduction is given in

Section 3.1. Section 3.2 describes the proposed data hiding method by the use of

visible boundary regions of tile images. In Section 3.3, the application of the method

to copyright protection against print-and-scan attacks is described. And finally, in

Section 3.4, some discussions are made.

3.1 Introduction

 34

Image mosaics are different from other digital images in their abundant contents

and their ways of display. They may be shown in various media, such as displayed by

a computer, or printed as posters or artistic productions. To prevent them from illegal

personal or commercial uses, copyright protection of image mosaics becomes an

important issue.

Recently, many data hiding techniques have been proposed and becomes one

chief method to protect the copyrights of digital images. Invisible or visible

watermarks can be embedded in and extracted from digital images with data hiding

techniques to prove image ownerships. Although some of them are robust enough

against many kinds of attacks, such as image rotation and scaling, most of them are

weak when applied to deal with print-and-scan attacks.

3.1.1 Properties of Image Mosaics
Actually, image mosaics are frequently used as posters, covers of magazines, and

billboards. It shows that they quite often do not exist in digital forms but in real copies.

Therefore, for the purpose of copyright protection of image mosaics, the embedded

watermark must strong to survive print-and-scan attacks.

The image mosaic has an important property in its impression on the human

visual system. It combines colors in a small region such that an observer will only see

an overall average color for that region at a distance. This important property gives us

hints to deal with data hiding methods.

3.1.2 Problem Definition
In this study, the data hiding technique by adding visible boundary regions is

proposed. The issues include firstly how to reduce the noticeable changes of the tile

image while adding the visible boundary regions, and secondly how to detect the side

 35

of an added boundary region correctly to extract embedded data. Because the data

hiding method is applied to each tile images of an image mosaic, how to determine

the tile size of a mosaic for tile image segmentation becomes another critical topic for

study.

3.2 Proposed Data Hiding Technique
by Visible Boundary Regions

In this section, the proposed method for hiding data in image mosaics and

extracting data from image mosaics will be described. The method takes advantage of

the property of image mosaics in the human visual system that we have mentioned

before. A visible boundary region is added to each tile image of an image mosaic to

generate a stego-mosaic. The stego-mosaic is still an image mosaic but each tile has

changed slightly.

3.2.1 Properties of Visible Boundary Regions
A visible boundary region means observers can be aware of the existence of the

region if he/she looks at the tile image very carefully. The size of a visible boundary

region is eighth of the tile image and all pixels in the region have the same color. The

regions obvious have a great effect on the impressions of image mosaics. However, if

the colors of these visible boundary regions are filled to fit the corresponding target

images and then become the part of the given tile images, the effect on image mosaics

will be reduced.

Besides, a property of visible boundary regions in statistics is that the variances

of added regions are extremely small. The variance here represents the variation of the

 36

RGB value of each pixel in the region. This property will by far be used in data

extraction process.

3.2.2 Proposed Data Embedding Process
Without doubts, all rectangular digital images have four sides. In our embedding

scheme, it is assumed that different sides represent different meanings. Figure 1

illustrates this simple rule. The left, right, upper, and lower sides in an image are

regarded in this study to represent two bits “00”, ”01”, “10”, and “11,” respectively, as

shown in Table 3.1.

Table 3.1 Types of boundary regions and their meanings.

Region

Types

Bits 00 01 10 11

In the data embedding process, an input data stream D with L characters is

converted into a binary form in advance, which is denoted by d1d2d3d4d5…d8xL. The

characters are grouped into many consecutive bit pairs, i.e.｛｛d1d2｝, ｛d3d4｝, ｛d5d6｝…

｛d8xL-1d8xL｝｝. The embedding process runs in the image mosaic creation stage when

placing the selected tile images to the target image. Visible regions will be added to

the tile images according to the current two bits and Table 3.1. The sizes of the added

regions are all taken to be one eighth of the tile images size and the colors are the

average color of that region of the tile image. Tile images are resized to guarantee the

integrity of the image content. For the purpose of facilitating the hidden data

extraction process, “variance check” and “noise generation” processes are applied to

 37

three sides of boundary regions after the visible boundary region is added to the fourth

side. The detail of the data embedding process can be expressed as an algorithm as

follows, and Figure 2 illustrates the flowchart of the process.

Algorithm 3.1: Data embedding by visible boundary regions.

Input: an original image I, an image database D, an embedding stream S, a

secret key K, and a variance threshold T.

Output: a stego-image mosaic M.

Steps.

Step1. Find tile image sequences from the given D that fit best to I by Step 1

through Step 3 of Algorithm 2.1.

Step2. Compute the hiding capacity C according to the size of I.

Step3. Generate a stego-stream S’ in a binary form by the operation of K and S

and repeat S’ many times until the length of the stego-stream reach to the

hiding capacity C.

Step4. Partition S’ into many character groups S’i with each group having only

two bits.

Step5. Add visible boundary region into each tile image by the following steps:

A. Resize the tile image according to S’i.

B. Add a visible region according to the S’i.

C. Compute the variances of the other three boundary regions except the

added one; if the value is smaller than T, then gaussian noise is added

(with zero mean and variance=30).

D. Repeat Step 5.C until the variances of the other three boundary regions

are all larger than T.

E. Repeat Step 5 until the process has been done for each tile image in T.

Step6. Produce an image mosaic by Step 4 of Algorithm 2.2.

 38

3.2.3 Proposed Data Extraction Process
The extraction process includes two parts. The first part is to detect the tile size

of the image mosaic. The second part is to extract the embedded data.

A. Tile size detection

Because an image mosaic is made up of many tile images, so it contains several

horizontal and vertical edges between two adjacent tiles obviously. We take advantage

of this property in dealing with tile size detection.

An edge detection process is first used to find the horizontal and vertical edges of

an image mosaic. Then statistical techniques are applied to estimate the distances

between two adjacent edges. The tile size will be derived exactly with the two ways

for verifications of the estimation results. Before describing the tile size detection

algorithm, two definitions of terms are made as follows.

1. Projection in Y-axis: A projection in the Y-axis is the summation of all pixel

values in one row of an image. The number of the projections in the Y-axis

are equal to the number of columns in an image.

2. Projection in X-axis: A projection in the X-axis as well as the projection in

the Y-axis is the summation of all pixel values in one column of an image.

The total numbers of the projections in the X-axis are equal to the number

of rows in an image.

The following algorithm shows the detail about tile size detection algorithm.

Algorithm 3.2: Tile size detection.

Input: an image mosaic M.

Output: a tile of the height H, and a width of the tile W.

Steps.

 39

Image
Database D

Embed data into
each tile image

The
embedding

stream S

Check four region
variances of each tile

Image Mosaic

Resize each tile image

Secret Key K

Original Image I

Get each stego-tile images

Generate the stego-
embedding stream S�
and partition to many

groups with 2 Bits

Add gaussian noise
(Variance=30)

The embedding
reference table

Compute hiding
capacity

For Each Tile Image

Vars >T

Yes

No

Get best matching tile
images

Figure 3.1 Flowchart of visible boundary embedding process.

Step1. Detect the edges of M by applying two 3x3 sobel mask as shown in

Figure 3.2 and get a white and black Sobel image S.

 40

-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

Figure 3.2. 3x3 Sobel mask.

Step2. Derive two histograms X and Y that are the histograms of the projections

in the X-axis and in the Y-axis respectively.

A. Let Sij denote the gray value on location (i, j) of image S, where w is

the width of S and h is the height of S, }255,0{∈ijS , and i = 0, 1,

2, …, h - 1, j = 0, 1, …, w - 1.

B. Let xi denote the summation of the ith row and yj denote the

summation of the jth column. Define fx and fy to be two mapping

functions from gray value indices to histogram values defined as

follows:

fx (i) = f∑ −

=
=

1

0

h

j iji Sx y(j) = ∑ −

=
=

1

0

w

i ijj Sy

C. Let X denote the histogram of xi and Y denote the histogram of yj:

X = { xi }, i = 0, 1, …, h - 1.

Y = { yj }, j = 0, 1, …, w - 1.

Step3. Get two sets PX and PY of the peaks in X and Y by applying a Laplacian

mask as shown in Figure 3.3 and a thresholding technique with two

predefined thresholds Tx, Ty.

A. Apply a one-dimension Laplacian mask.

-1 2 -1

Figure 3.3 Laplacian mask.

B. Calculate two thresholds Tx and Ty as follows:

 41

Tx = , T)(
1~01 ihi

xMaxc
−=

× y =)(
1~02 iwi

yMaxc
−=

×

where c1, c2 are two pre-defined coefficients. Also, define Max to be the

function that will return the maximum value of the input set.

C. Find the sets of the peaks PX and PY according to the following rules:

}.{,

};{,
PYjletthenTyandYyif

PXiletthenTxandXxif

yjj

xii

∈>∈
∈>∈

Step4. Derive the center of each peak group PXc and PYc of the PX and PY with

the operations of a clustering method and a pre-defined radius R in the

following way.

A. Let PXi denotes the ith elements of the PX, and let PYj denotes the jth

elements of the PY.

B. Define the center of each group of the PX and PY according the

following rules:

}.{)),(()(

};{)),(()(

)(~)(

)(~)(

c
jjyRjRjjjy

c
iixRiRiiix

PYPYthenPXfMaxPXfif

PXPXthenPXfMaxPXfif

∈=

∈=

+−=

+−=

Step5. Derive the histogram Sx and Sy of the differences between two adjacent

peaks in PXc or PYc by the following way.

A. Let Sxi denote the ith difference of the ith from the (i+1)th peaks of

PXc, and let Syj denote the jth difference of the jth from the (j+1)th

peaks of PYc. Compute Sxi and Syi according to the following formula:

Sxi = PXc
 (i+1) - PXc

 i where i=0 ~ | PXc |-2;

Syi = PYc
(j+1) - PYc

j where j=0 ~ | PYc |-2.

B. Collect all the Sxi and Syj to compose the histograms of Sx and Sy.

Step6. Get the temporary tile sizes Wt and Ht according the following rule:

Wt = k, if ;)(
1|~|0 iSxik SxMaxSx
−=

=

 42

Ht = h, if .)(
2|~|0 jSyjh SyMaxSy
−=

=

Step7. Re-compute the Wt and Ht by using the projection histograms X and Y.

A. Get the exact sets PXt of the local maximums in X by comparing the

histogram values around each histogram index whichis a multiple of

Wt.

B. Apply Step 5 and Step 6 to the PXt and reassign the Wt.

C. Apply the same process A and B to Y to get Ht.

Step8. Correct the Wt and Ht by the division of the width and height of the image

mosaic M. If the remainder is not zero, a number ”1” will be added or

subtracted until the remainder is zero.

Step9. Assign Wt and Ht to be the output values for W and H.

In fact, the described algorithm is not complicated. The main idea of the

algorithm is to get the average distance between two adjacent edges. But the problems

are both that the tile number of a row or a column in the mosaic is unknown and that it

is also difficult to find local maximums in the histogram without the numbers of tiles.

As a result, this method is a kind of non-supervised learning which tries to find out the

tile number and size by analyzing the statistics of the peaks. Step 4 is applied because

if the peaks set, which is derived in Step 3, are used for the subtraction process in Step

5, the results will probably be outliers and noise. Besides, in order to get a correct tile

size, the temporary results are verified twice both in Step 7 and in Step 8. A Sobel

image obtained in Step 1 is shown in Figure 3.4. Figures 3.5 illustrates the projections

in the X-axis and in the Y-axis of the Sobel image, respectively. A flowchart of the

process is shown in Figure 3.6.

 43

Figure 3.4 The Sobel image of an image mosaic.

B. Data Extraction Process

The data extraction process will be applied after the tile size is detected in Part A.

The essence of the data extraction process is based on analyzing the variances of four

boundary regions in a tile image. The boundary region with the smallest variance is

determined to be the added region. According to Table 3.1, we can extract the

embedded data.

Algorithm 3.3: Data Extraction by Visible Boundary Regions.

Input: an Image Mosaic M, a height of tile image H, a width of tile image W, and

a secret key K.

Output: the extracted data E.

Step.

Step1. Divide M into tile images sequentially according to the input H and W.

 44

Projection in X-axis

0

100000

200000

300000

400000

500000

600000

1

15
2

30
3

45
4

60
5

75
6

90
7

10
58

12
09

13
60

15
11

16
62

18
13

19
64

Projection in Y-axis

0

100000

200000

300000

400000

500000

600000

1

15
2

30
3

45
4

60
5

75
6

90
7

10
58

12
09

13
60

15
11

16
62

18
13

19
64

Figure 3.5 Histogram of (a) Projection of X-axis, (b) Projection of Y-axis.

Step2. Calculate the variances of the four boundary regions of a tile image.

Step3. Compare the four variances to get the side with the minimum variance.

Step4. Derive and save the two bits of one character group according to Table

3.1.

Step5. Repeat Step 2 through Step 4 until completing the process for all tile

images and return the record E1.

Step6. Get the extracted data by the procedure of E1 and K.

 45

Edge Detection by a 3x3
sobel mask

Get projections in Y-axisGet projections in X-axis

Enhance the projections by a Laplacian mask

Compute thresholds Tx Ty

Get peaks by Tx Get peaks by Ty

Get center of each peak group

Subtract two adjacent centers of peak groups

Get the temporary height of
a tile image by counting the

subtractions

Get the temporary width of a
tile image by counting the

subtractions

Check temporary width by
the projections of the sobel

image in X-axis

Check temporary height by
the projections of the sobel

image in Y-axis

Recompute the average
width of a tile image

Recompute the average
height of a tile image

Check the results by division of the mosaic

Image Mosaic

Get the width of a tile image Get the height of a tile
image

Figure 3.6 Flowchart of tile size detection process.

 46

3.3 Copyright Protection against
Print-and-Scan Attack

In this section, an application for copyright protection against print-and-scan

attacks is described. Here we are focusing on dealing with the image after the

print-and-scan process instead of the original digital form. The use of a semi-visible

watermark is also proposed to protect the copyright of the image mosaic.

3.3.1 Description of Print-and-Scan Attack
Printing and scanning are two common processes for using digital documents in

our daily life. In this study, the printing process means to publish a digital image in

print and the scanning process means to digitize the image in paper form. Both

printing and scanning processes are regarded as attacks to the digital or non-digital

image according to the following descriptions. As far as the printing process is

concerned, the problem of color distortion will happen no matter how great a printer is.

The color distortion comes from the translation of the virtual RGB values into real

colors. Besides, the image size will also be scaled due to the printer setups or paper

sizes. In the scanning process, an image is digitized into the form of digital data.

Attacks at least include color distortions and changes of image sizes. The reasons

seem the same as those for the printing process. Furthermore, the problem of paper

tilting in scanning is also concerned about because the image derived after the

scanning process may not be straight. The tilt problem can be considered as a

combination of several attacks because it may result in both color distortion and

image scaling.

In this study, we only try to reorient a tilted image rather than to correct the other

 47

two attacks, namely, color distortion and image scaling. We control the experiments of

the print-and-scan process by some parameters, such as the number of points per inch

for printing and the size of print paper. The related details about the setups of the

printer and the scanner used in this study are described in Section 3.3.5.

3.3.2 Definition of Semi-visible Watermark
Many data hiding techniques are in wide use for copyright protection of digital

images by embedding invisible watermarks. Invisible watermarks are definitely little

sensitive to observers and can be extracted through appropriate algorithms. Although

the invisible watermark is efficient in the protection of image copyright, it cannot stop

the uses of digital images in private by illegal users. Some researchers presented

methods to embed the removable visible watermarks instead of invisible watermarks

to prevent digital images from illegal access directly. Only legal users can remove the

embedded visible watermark and recover the original image. However, it is possible

that observers, due to the embedded visible watermark, do not like to see the cover

image. This result is a limit on the usage of embedding removable visible watermarks

in practice.

In this study, the use of an irremovable semi-visible watermark is proposed. The

irremovable semi-visible watermark is by far a watermark that can be seen by

observers for it is also visible. Particularly, it can be insensitive to the human beings

as well just like an invisible watermark because the embedded data are similar to the

background of images. The functions of the semi-visible watermark are not only to

achieve copyright protection but also to prevent them from illegal access. For the

copyright protection purpose, the semi-visible watermark can be extracted and

verified to prove the ownership of the image. And the influence on image contents

that disturbs observers is also reduced by the property of the semi-visible watermark.

 48

3.3.3 Proposed Semi-visible Watermark

Embedding Process
The method of semi-visible watermark embedding is similar to that described in

Section 3.2.1. The main difference between Section 3.2.1 and this section is that in

this section the semi-visible watermark embedding process is emphasized.

Algorithm 3.4: Semi-visible Watermark Embedding by use of Visible

Boundary Regions.

Input: an original image I, an image database D, a watermark W for embedding,

a secret key K, and a variance threshold T.

Output: a stego-image mosaic M.

Steps.

Step1. Read W to get the embedded stream S.

Step2. Apply Step 2 of Algorithm 3.1 using the given S and K to get a

stego-stream S1.

Step3. Apply Step 3 through Step 5 of Algorithm 3.1 by taking the given S1 as an

input to get an output M.

3.3.4 Proposed Semi-visible Watermark

Extraction Process
The proposed semi-visible watermark extraction method against print-and-scan

attacks includes four parts. Above all, the tilt adjustment algorithm is first used to

detect the angle of a tilted image and re-orient it to solve the tilt problem after the

scanning process. Then the tile size detection and data extraction methods that are

described in Algorithm 3.2 and Algorithm 3.3 are applied. Finally, the watermark is

 49

recovered by a voting scheme.

A. Tilt adjustment

The proposed tilt adjustment algorithm is based on edge detection and projection

methods. Before scanning a printed mosaic picture with a table scanner, the picture is

placed on a flat surface and a window is selected to specify the scanning scope. Here

we assume that the picture is rectangular in shape and is placed carefully enough with

its boundaries at a very small angle with respect to the corresponding scanning

window boundaries. We also assume that the scanning scope is larger than the size of

the picture to be scanned. In the scanning result which is an image, those non-image

regions, each called a border of the image, are shown with a monotone color (i.e.,

black or white). In the proposed tilt adjustment algorithm, the image is rotated with a

small angle many times to find out the tilt angle of the image by the projection

method. A tilt angle is obtained after the edge detection by comparing the maximum

value of the projections of all the rotated images. Finally the image is re-oriented with

the detected tilt angle. Figure 3.7 shows the concept of tilt detection and the tilt

adjustment algorithm is expressed as follows.

Algorithm 3.5: Tilt adjustment.

Input: an image mosaic M.

Output: a straight image mosaic S.

Step.

Step1. Apply Step1 and Step2 of Algorithm 3.2 to the given image M to get the

projection histogram X.

Step2. Save the maximum value of X by taking a predefined range.

Step3. Obtain a new image M’ by rotating M with a predefined small angle.

Step4. Repeat Step1 through Step 3 by taking the new M’ as an input until

 50

reaching a predefined number of times.

Step5. Compare the values saved in Step2 after finishing the looping in Step4 to

get the overall maximum value P.

Step6. Decide the rotating angle A by mapping P to the rotated angle.

Step7. Rotate M with angle A to get straight image mosaic S.

Str
Im

Figure 3.7 Diagram for the tilt d

projections value.

B. Border detection

The border detection algorithm

the projection methods. A border ne

border area is smaller than those o

concept of the border detection met

detected.

Algorithm 3.6: Border detecti

Input: an image mosaic M.

Output: an image mosaic M’ w

Steps.

Project to Y-axis
Straight
Image

aight
age

etection. The straight image has the maximum

 is proposed by the use of the edge detection and

ed be detected because the projection value of the

f the areas without borders. Figure 3.8 shows the

hod. The border will be removed after it has been

on and removal.

ithout border.

51

Step1. Apply Step1 of Algorithm 3.2 to get a Sobel image S.

Step2. Compute the projection values of S in the X-axis and in the Y-axis with a

predefined number of intervals.

Step3. Compare the projection values to each other to get the maximum value.

Step4. Define the border area by the four corner points of S.

Step5. Derive M’ by removing the border area.

C. Tile size detection

The tile size detection method is just the same as Section 3.2.3.A. The details are

omitted here.

Image with

border

1 2 3

Figure 3.8 Diagram for border detection. (1) The picture of an image with a border. (2)

A part of the Sobel image. (3) Partial projection histogram in the Y-axis of

the Sobel image.

D. Data extraction process and watermark recovery

The data extraction process is almost the same as Section 3.2.3 B. However, here

a process for watermark recovery by a voting scheme is applied additionally.

The voting scheme will be used when the hiding capacity is larger than the

embedded data by three times. It improves the ability for the tolerance of extraction

errors. Moreover, the data extraction process can still work well regardless of the

voting scheme. Figure 3.9 illustrates the flowchart of the process.

 52

Algorithm 3.6: Data extraction process and watermark recovery.

Input: an image mosaic M, and a secret key K.

Output: a recover watermark W.

Steps.

Step1. Reorient the image mosaic M to be upright by applying Algorithm 3.5.

Step2. Remove the border of an image mosaic by the principle of the projection

method in Algorithm 3.5.

Step3. Get the height and width of tile images by Algorithm 3.2.

Step4. Divide M into tile images using the PX and PY obtained from Algorithm

3.2.

Step5. Get the stego--stream S’ by applying Step 2 through Step 5 of Algorithm

3.3.

Step6. Get the embedded steam S by the randomization operation using the given

secret key K and S’.

Step7. If the length of S is larger than the predefined size three times, then go to

Step 8.

Step8. Get the originally embedded stream by a voting scheme.

Step9. Recover the watermark from the results in Step 8.

3.3.5 Experimental Results
Some experimental results of applying the above-mentioned methods are shown

in this section. The related setups of the experiments are shown in Table 3.2 and the

results are shown in Figure 3.10. We also conducted experiments on the tilt factor in

the watermark extraction process, as shown in Figure 3.11 and Table 3.3. More

experimental results of watermark extraction through print-and-scan are shown in

Figure 3.12 and Table 3.4.

 53

Tilt Correction

Image Mosaic

Tile Angle Detection

Border Detection

Divide into many tile
images

Compute the variances of
four boundary regions

Compare four variances
and get the embedding

data by a table

Get all embedding data

> 3 x predefined
Length ?

Recover the watermark

Get the embedding data by
a voting scheme

Yes

No

Extracted Watermark

For Each Tile Image

Figure 3.9 Flowchart of the data extraction process and watermark recovery.

 54

Table 3.2 Related setup of the experiment.

Watermark 32×32 pixels, black and white image

Image Mosaic 1024×1024 pixels, 24bits compressed color image

Tile Image 32×32 pixels, 24bits color image

Printer Setup Color laser printer with A4 size and r-correction r=1.2

Scanner Setup 250dpi with 100% aspect ratio

Scanned Image Uncompressed image

(1-1) (1-2)

(2-1) (2-2)

 55

(3-1) (3-2)

(4-1) (4-2)

(5-1) (5-2)

 56

Figure 3.10 Watermark extraction process against the print-and-scan attack. It shows

the color distortions of scanned image mosaics are quite obvious. The

image mosaics in left side are the original mosaics and in right side are

the image mosaics obtained by the print-and-scan process.

Table 3.3 Watermarks and the error rates extracted from the image mosaics shown in

Figure 3.10. (Error rate = numbers of the correct pixels / total number of

the pixels)

 Original watermark

 Watermark Error rate Watermark Error rate

(1-1)

0.995 (1-2)

0.955

(2-1)

0.995 (2-2)

0.846

(3-1)

0.994 (2-2)

0.872

(4-1)

0.999 (4-2)

0.932

(5-1)

0.997 (5-2)

0.815

 57

0

100000

200000

300000

400000

500000

600000

1

14
3

28
5

42
7

56
9

71
1

85
3

99
5

11
37

12
79

14
21

15
63

17
05

18
47

19
89

0

0.3

0.5

Figure 3.11 The distribution of the projection of Figure 3.10 (1-2) in the Y-axis used

for the tilt detection. It shows that the distribution of the projections trend

to be flat. As a result, the tilt image is harder for applying the peak finding

algorithm.

Table 3.4 Watermark extracted from different tilt mosaics.

Angle +0o +0.1 o +0.2 o +0.3 o +0.4 o +0.5 o

Extracted
Watermark

Error rate 0.955 0.937 0.905

Cannot
detect the
tile angle

Cannot
detect the
tile angle

Cannot
detect the
tile angle

3.4 Discussions and Summary

In this study, we proposed a data hiding method against print-and-scan attacks

for copyright protection by embedding semi-visible watermarks. That is, the

embedded watermark can survive certain attacks, such as image scaling, image

rotation, and color distortion. Moreover, three methods have been proposed for the

purposes of facilitating the watermark extraction process. The experimental results

 58

show that the methods are practical and the semi-visible watermarks can be extracted

correctly. It seems the error rates of the watermark extraction shown in Table 3.8 are

image-dependent. Many factors influence the results of watermark extraction, such as

the scanner setups and the quality of printers. Besides, the number of different colors

in the tile image may be an important factor to the watermark extraction process. We

may face the problems that if there is almost only one color in the tile image, the

watermark extraction strategy will possibly fail in the determination of the tile image

side with the smallest variance. It is the reason why the error rate of the watermark

extraction through the print-and-scan process became worse than that for the original

image mosaic.

 59

Chapter 4
Data Hiding in Image Mosaics by
Histogram Modification and Its
Application in Image Authentication

In this chapter, a novel method for embedding data in an image mosaic is

described. Recalling the techniques of mosaic modification described in Chapter 2,

we have figured out a way to take advantage of the modifications for data hiding. The

idea of the proposed method is based on histogram data hiding [11]. That is, data are

embedded by altering the pixel values of each tile image in accordance with the color

histogram of the target image. The data hiding method is by far employed in the

spatial domain because it deals with the RGB values of the pixels. As a result, images

with the BMP format are used in this study. We also propose an application based on

this data hiding method for authentication of image mosaics.

The remainder of this chapter is organized as follows. An introduction is given in

Section 4, including a review of related works and the problem definition. Section 4.2

describes the proposed data hiding method and its use for image authentication. In

Section 4.3, some experimental results are shown and the chapter is summarized with

some discussions.

4.1 Introduction

An image mosaic is composed of many tile images. However the color variety of

a certain tile image sometimes might cause a prominent bad impression of the mosaic.

 60

We have proposed a method for adaptively modifying the colors within the mosaic in

Section 2.5 to reduce the distortion effect of this type. In this section, the method is

improved for the data hiding purpose with a new technique.

4.1.1 Review of Data Hiding in Histograms

Ni, et al. [11] presented a novel reversible data hiding algorithm in the spatial

domain. Data are embedded in the maximum point of the histogram by modifying the

pixel values slightly. The method shifts the histogram in a way to empty out the bin of

the maximum point of the histogram. If the gray value of a pixel belongs to the bin of

the maximum point of the histogram, it is considered as an embeddable pixel. Then a

bit “1” or “0” is embedded by changing the gray values of these embeddable pixels. In

the extraction process, a signature is required to provide the information of where the

bin of the maximum point is located in the histogram. The data can be extracted by

comparing the gray value with that of the maximum point. And the original image is

recovered by an inverse shifting of the histogram. The hiding capacity of the method

is highly dependent on the distribution of the colors in the image.

4.1.2 Problem Definition

Based on the technique proposed in Section 2.5, the data hiding technique may

be applied during the modification of a pixel’s color. As a result, the issues include

both how to embed a bit during modification and what pixel is to be selected for

modification. No matter what issues we are concerned about, the goals of hiding data

in the mosaic include both improving the quality of the mosaic and increasing the

hiding capacity. The above survey of related works inspired us to figure out a method

 61

for choosing embeddable pixels. The proposed method is described in the following

section.

4.2 Proposed Image Authentication
Technique for Image Mosaics by
Histogram Modification in Hue
Channel

Recalling the previously-mentioned techniques of color modification, we see that

the HSI color model is an ideal tool for the modification because it is natural and

intuitive to humans. In this section, a method proposed to take advantage of the hue

property of tile and target images is described. We also use the proposed data hiding

method to achieve the purpose of image authentication.

4.2.1 Properties of Hue Channel in Image Mosaics

In the HSI color model, intensity is the key factor in describing color sensation

and is sensitive to the human visual system. Hue describes a pure color, whereas

saturation measures the degree of how a pure color is diluted by white light. Besides,

the hue component is circular, which means that the hue value for 0 is identical to that

for 360.

The distribution of the hue component in a small region of a mosaic is usually

centralized near a specific value. However, the distribution of the hue components of

the tile images is normally distributed because a tile image is usually rich in details

and colors. Because the pixels with their color distribution far away from that of the

 62

target image are considered disharmonious on the impressions, the idea of the

proposed method is to adjust the color distribution of the tile image to approximate

that of the target image. That is, the hue component is used in this study for the

purpose of the modification of pixel values to hide data in the mosaic.

4.2.2 Authentication Signal Generation and

Embedding Process

In this section, we describe the proposed data hiding method by use of the

histogram of the hue component. Then the proposed application of it to image

authentication is described, including the authentication signal generation and

embedding processes.

A. Proposed Data Hiding Technique by Histogram Modification

The concept of hiding data in the hue component is based on the description of

Section 2.6. The adaptive modification method is modified slightly to fit the purpose

of data hiding here. The algorithm of the proposed data hiding technique is described

briefly as follows.

We use the “Lena” image and a partial region of an original image as shown in

Figure 4.2 as an example to illustrate our algorithm. In the example we assume that

the “Lena” image (128×128) shown in Figure 4.2(1) is the best matching tile image

with respect to a partial region of an original image as the target image (128×128)

shown in Figure 4.2(3). Figure 4.2 also shows the histograms of the hue components

of the tile and the target images. Figure 4.3 illustrates how to embed data by changing

the histogram of the hue component. In this study, the hue component is quantized by

 63

units of 30 to become 12 bins.

(1) (2)

(3) (4)

Figure 4.1 The tile and target image and their histogram of the hue components with

12 bins, respectively. (1) The tile image. (2) The histogram of the hue

component of (1). (3) The target image. (4) The histogram of the hue

component of (2).

Algorithm 4.1: Data Hiding by Histogram Modification in Hue Channel.

Input: a target image Target, a tile image Tile, and data bit S to be embedded.

Output: a modified tile image Tile’.

Step.

Step 1. Convert the colors of Target and Tile from the RGB model to the HSI

one.

Step 2. Calculate the histograms, Htar and Htile, of the hue components of Target

and Tile and quantized them into 12 bins.

Step 3. Find the peak bin of Htar, denoted as . tarHmax

Step 4. Derive embeddable pixels by scanning the entire image according to the

following rules.

 64

A. Let H(Pi) denote the hue value of a pixel Pi.

B. Decide embeddable pixels according to the following rule:

Step 5. Quantize into 3 bins, denoted as , , and .

Reassign the hue value of the pixels that belong to into

and empty out and as shown in Figure 4.2.

tarHmax
tarH 1max

tarH 2max
tarH 3max

tarHmax
tarH 2max

tarH 1max
tarH 3max

(Max1)

Empty

(Max2)

Pixels

(Max3)

Empty

Figure 4.2 The max bin is quantized into three parts.

1 0

Figure 4.3 The max bin is used to embed data. The hue components of the pixels in

the bin are reassigned according to the data for embedding. A pixel

belonging to the red region represent bit “1” and a pixel belonging to the

green region represent bit “0”.

Step 6. Embed data by scanning the entire image Tile according to the following

 65

rules.

A. Decide the embeddable pixels by the rule:

⎩
⎨
⎧

∉∈
∈∈

.6},{
; },{

StependthenpixelsembeddablePandTilePif
BtogothenpixelsembeddablePandTilePif

ii

ii

B. Perform the following embedding rules:

Step to the RGB one.

B. Authentication Signals Generation and Embedding Process

The authentication signals are generated by a randomization procedure using a secret

Algorithm 4.2: Authentication Signals Embedding Process.

ation signal S, and

Outpu

Duplicate S with a pre-defined number n of times to be S’.

×8 blocks.

f

 7. Convert the colors from the HSI model in

⎪⎩

⎪
⎨
⎧

+×=∈

+×=∈

.5.730)(}{),

;5.2230)(}{),

max1max

max3max
tar

i
tar

i

tar
i

tar
i

HPHsetandHH(P letthenevenisSif

HPHsetandHH(P letthenoddisSif

key as the input seed. Then the 8×8 blocks of the tile image are processed to carry out

the above-mentioned histogram modification in the hue channel. The authentication

signals are embedded pixel by pixel, block by block, and tile by tile. Figure 4.4 shows

the flowchart of the embedding process and the embedding algorithm is described as

follows.

Input: a sequence of the best matching images I, an authentic

a threshold of hiding capacity T.

t: an image mosaic M.

Steps.

Step 1.

Step 2. Let Ii denote one image of the sequence I and divide Ii into 8

Step 3. Derive the Htile, Htar, tarHmax according to Steps 1, 2, 3 of Algorithm 4.1.

Step 4. Derive the embeddable pixels of each 8×8 block according to Step 4 o

 66

Algorithm 4.1 and increase the number of embeddable pixels by the

given T according to the following rules:

A. Count the number N of embeddable pixels as follows:

B. until N is larger than T.

Step 5.

Step 6. tep 4 ile images are

4.2.3 I Process

hentication process is

described in this section. The method of data extraction is mainly to compare the hue

value

Input: an image mosaic M and a secret key K.

 of the tile images by Algorithm 3.2.

Divide M into multiple tile images using h and w.

 of

⎪⎩

⎪
⎨
⎧

∉∉∈

∈∈∈

.},{)(

;},{)(

max

max

pixelsembeddablePthenHPHandTilePif

pixelsembeddablePthenHPHandTilePif

i
tar

ii

i
tar

ii

tarHmaxEnlarge the range of

Embed S’ according to Step 6 of Algorithm 4.1.

Repeat Step1 through S until all the blocks and t

finish the embedding process.

mage Authentication

The data extraction process as well as the image aut

 with the maximum bin peak of each 8×8 block of each tile image. The data

extraction algorithm is described as follows.

Algorithm 4.3: Data Extraction Process.

Output: the signals S embedded in M.

Steps.

Step 1. Get the height h and the width w

Step 2.

Step 3. Calculate the histogram H of the hue component of each 8×8 block

each tile image and quantized it into 12 bins.

 67

Image
Database

Get Best Matching Tile
Images

Embed Data into Each Tile
Image

Get Each Stego- Tile
Images

Authentication
Signal

Original Image

Divide each tile image into
several regions

Divide each region into
8x8 blocks

Compute hiding range R
of the bin

Increase the range for
hiding

Derive max bin of the
histogram in hue channel

from target image

R > T ?no Yes

Stego-Mosaic
Figure 4.4 Flowchart of proposed embedding process.

Step 4. Derive the maximum peak bin Max of the 8×8 block.

the following rule,

Step 6. Compose the extracted bits to be S.

≥+∗− ".0",5.7|)5.2230()(| bitextractMaxxHif i

Step 5. Extract data by scanning the entire block according

assuming that H(Pi) denotes the hue value of pixel Pi:

⎨
⎧ ≥+∗− ;"1",5.7|)5.730()(| bitextractMaxxHif i

⎩

 68

The image authentication process is pixel by pixel, block by block, and tile by

tile. In this study, two thresholds are given for the purpose of authenticating each 8×8

block in each tile image. The process for image authentication is described as follows.

Algorithm 4.4: Image Authentication Process.

Input: an image mosaic M, a secret key K, and two thresholds T and T .

Output: an authentication report R.

ep 4 of

Generate the embedded steam S by taking K as a seed.

e bit, where

 4.2. In the voting

Step 4. A

th

Step 5. A locks

1 2

Steps.

Step 1. Derive the maximum peak bin Max by applying Step 1 through St

Algorithm 4.3.

Step 2.

Step 3. Derive the extracted data S’ of each 8×8 block by applying a voting

scheme with T1 as the voting threshold in the following way.

A. Let S1 denotes the extracted data of the 8×8 block.

B. According to a predefined data-embedding unit, divide S1 into multiple

parts, S1, S2, S3, …, Sn with each part containing at least on

n is a number as described in Step 1 of Algorithm

scheme, the bits of S1, S2, S3,…, Sn are taken sequentially to vote the

corresponding bit of S’ by the following rule:

if the votes of bit “1” are bigger than T1, then set the corresponding bit

of S’ to be bit “1”; otherwise, if the votes of bit “0” are bigger than T1,

then set the corresponding bit of S’ to bit “0”.

uthenticate each 8×8 block by comparing S and S’. If S is identical to S’,

en the block is regarded authentic; otherwise, unauthentic.

uthenticate each tile image by counting the number of authentic b

with the threshold T2 according the following rule:

 69

Step 6.

4.3

4.3.1 Experimental results

Some experimental results are given in this section. Figure 4.5 shows an image

ows an image mosaic resulting from

the proposed method of histogram modification. Figure 4.7 shows two experimental

resul

p 6.

4.3 Experimental Results and Summary

4.3.1 Experimental results

Some experimental results are given in this section. Figure 4.5 shows an image

ows an image mosaic resulting from

the proposed method of histogram modification. Figure 4.7 shows two experimental

resul

 Generate the authentication report. Generate the authentication report.

Experimental Results and Summary

mosaic with no hidden data while Figure 4.6 shmosaic with no hidden data while Figure 4.6 sh

ts of image authentication. ts of image authentication.

Figure 4.5 Image mosaic without modification

⎨
;authentic⎧ ≥ ,2 isimagetilethethenTblocksauthenticofnumbertheif

⎩ ., cunauthentiisimagetiletheotherwise

 70

Figure 4.6 The image mosaic of Figure 4.4 with modification

Figure 4.7 The difference image between Figure 4.5 and Figure 4.4

 71

(1)

(2)

(3)

(4)

Figure 4.8 Tamper detection of the cover-mosaic. (1) A tampered mosaic. (2) The

enlarged tampered region. (3) The result of block-based image

authentication. (4) The result of tile-based image authentication.

4.3.2 Summary and Discussions

A data hiding method by histogram modification based on the use of 8×8 blocks

has been proposed in this chapter. Generally speaking, the histogram modification

method will sometimes cause the distortion of the tile images. They are highly

depended on the size of the image database that used for mosaic creation. However, if

 72

the image database is large, then the selected tile image will be very possible similar

to the target image and the image distortions result from the proposed histogram

modification method will be reduced. The image quality could also be controlled by

the threshold T1 which determines the data hiding capacity. On the other hand, data

hiding in the spatial domain is more fragile than that in the frequency domain, so it is

easier to achieve the tampering detection to carry out image authentication.

 73

