

國 立 交 通 大 學

資訊科學系

碩 士 論 文

MVP ─ 網頁元件與行動代理人系統的整合

MVP ─ An Integration of Web Components and Mobile

Agent System for a More Versatile Portal

研 究 生：林奕宇

指導教授：袁賢銘 教授

中 華 民 國 九 十 三 年 六 月

MVP ─ 網頁元件與行動代理人系統的整合

MVP ─ An Integration of Web Components and Mobile Agent System
for a More Versatile Portal

研 究 生：林奕宇 Student：Yi-yu Lin

指導教授：袁賢銘 Advisor：Shyan-Ming Yuan

國 立 交 通 大 學
資 訊 科 學 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

MVP ─ 網頁元件與行動代理人系統的整合

ABSTRACT IN CHINESE

研究生：林奕宇 指導教授：袁賢銘

國立交通大學資訊科學研究所

摘要

隨著網際網路的蓬勃發展及各式各樣的網站如雨後春筍般興盛，功能多樣的

網站應用與服務對數以百萬計的使用者來說已是不可或缺的。但一想到要如何有

效率地使用這些應用與服務，卻是場惡夢。大部分的使用者為了要使用各網站提

供的不同功能，必須要打開多個瀏覽器視窗，然後往返在數個網站之間，藉以把

各項服務提供的資訊拼湊出自己所需要的結果。除此之外，現今的網站應用與服

務多半是以最普遍的 HTTP 通訊協定與使用者溝通，所以伺服器端的程式，不論

是 CGI、PHP 或是 Java Servlet 等，其功能都會受限於必須符合 HTTP 通訊協定

回應時間，而無法做出太過複雜、耗時的運算，或是具有智慧的決策。
在這篇論文中，我們將引入一個全新的架構，其中包含了客製化網站

(Personal Customized Portal)以及的行動代理人(Mobile Agents)的觀念。如此一

來，不但讓使用者可以輕易地把自己所需要的各項功能，以網頁元件(Web
Components)的形式集中整理在一個網頁上，而且每一個網頁原件都被視為一個

行動代理人。這些代理人(Agent)能夠有自主行為，而且有自己的生命週期，更

可以有自己的簡易行事策略與判斷能力，經過一些簡單的設定之後，將能更有效

率地為使用者達成任務。

 i

MVP ─ An Integration of Web Components and Mobile Agent
System for a More Versatile Portal

ABSTRACT IN English

Student：Yi-yu Lin Advisor：Shyan-Ming Yuan

Department of Computer and Information Science
National Chiao Tung University

Abstract

With the flourishing of Internet and the mushrooming of kinds of web sites,
various web applications and services are now indispensable for millions of users. But
it turns to a nightmare when someone has to deal with such a huge amount of
applications and services scattered all over Internet. Most users need to launch several
browser windows, gather information from each site, and analysis it in order to
acquire something they expect. Additionally, these applications and services do the
jobs synchronously only. This is because CGI, PHP, Java Servlets, or other dynamic
webpage technologies are deliberately designed to be compatible to the most popular
web protocol: HTTP. As a result, the behavior and the lifecycle of application and
service programs running on the server side are both confined to the reasonable
response time for users or HTTP standard. Thus, these kinds of we applications and
services are not able to perform asynchronous tasks. And thus, more complicated,
time-consuming computation and intellectual decision also have such a constraint on
response time.

In this paper, we will introduce a new framework which integrates the concepts

of Personal Customized Portal and Mobile Agents. This framework not only makes it
much easier for users to gather all necessary applications and services in a single
portal, but also employs them as intelligent and autonomous agents to efficiently
accomplish asynchronous tasks that need more complex computation, reasoning and
decisive ability.

 ii

Acknowledgements

 First of all, I’d like to thank my advisor Shyan-Ming Yuan for lots of
suggestions and instructions. I also want to thank those learned and experienced
senior members in our laboratory, especially those who belong to Web Technology
team: Ming-Chun Cheng and Chi-Huang Chiu. They gave me many invaluable ideas
and guide me to complete this thesis.
 I’d also like to thank all the people that have ever had contribution to this
thesis. And of course, I am very grateful to my adorable parents who always strive to
support me in whether physical or mental aspects. Last but not least, I must thank my
friends who keep company with me all the time, especially when I felt bored or
depressed in writing this thesis.

 iii

Contents

MVP ─ 網頁元件與行動代理人系統的整合 ..i

MVP ─ An Integration of Web Components and Mobile Agent System for a More

Versatile Portal ...ii

Acknowledgements.. iii

Contents ..iv

List of Figures ..v

Chapter 1 Introduction ...1

Chapter 2 System architecture of MVP ...9

2.1 Fragment ..11

2.1.1 Itinerary...12

2.1.2 ActionStrategy...13

2.2 Fragment Container ...15

2.3 Fragment Manager ...16

Chapter 3 Using Scenarios of MVP Framework ...19

Chapter 4 Development based on MVP...30

4.1 Development of Portal Application ...30

4.2 Development of Fragments..34

Chapter 5 Related Work...38

5.1 Portal ..38

5.2 Mobile Agent ...40

Chapter 6 Conclusion and Future Work...42

References..46

 iv

List of Figures

Figure 1-1: Java Servlet Execution Scenario ...2

Figure 1-2: Traditional Web Portal Viewed on Mobile Devices....................................4

Figure 1-3: Fragment traveling and aggregation ...5

Figure 1-4: Portable Fragments for service aggregation..6

Figure 1-5: Aggregation and rearrangement process for display on Mobile Device..7

Figure 2-1: Architecture of MVP Framework..9

Figure 2-2: Relationship and Interaction of MVP Components10

Figure 2-3: Fragment Behaviors ..11

Figure 2-4: Behaviors of Itinerary object of Fragments ..13

Figure 2-5: Inner Structure and Behaviors of ActionStrategy14

Figure 2-6: A decision tree made of ActionStrategy objects..15

Figure 2-7: Behaviors of Fragment Container ...15

Figure 2-8: Behaviors of Fragment Manager...16

Figure 3-1: Fragment Traveling from Portal A to Portal B..19

Figure 3-2: Fragment Migration Example ...22

Figure 3-3: Traffic Distribution Example ..25

Figure 3-4: Fragment Traveling according to the Itinerary and Action Strategy......26

Figure 3-5: Fragment Locating and Messaging ...27

Figure 3-6: Messaging Scenario I ..28

Figure 3-7: Messaging Scenario II...29

Figure 4-1: MVP Sample Portal View on a Desktop Browser.....................................32

Figure 4-2: MVP Sample Portal View on Mobile Devices..32

Figure 4-3: Class diagram for Arrangement ..34

 v

Figure 6-1: Façade gateway scenario...45

 vi

Chapter 1

Introduction

The computer using habit has been substantially changed since World Wide Web

(WWW) emerged from early 90’s. Before WWW appeared, computer users were

similar to the dwellers on desolate islets and accustomed to deal with local data and

limited resources on their own computers. Since early 90’s, WWW has connected the

computers all over the world and offers friendly user interfaces and intuitive using

procedures. Therefore, it becomes very easy for everyone to access various contents

and services via WWW. Most people nowadays even use computers only for access

WWW! All the daily-life errands or chores, such as news reading, shopping,

searching data and materials for the work, or chatting and communicating with others,

can be carried out after a few mouse clicks.

 By reason of that, here comes more and more portals that provide or aggregate

multifarious contents and services and arrange or organize them for using

convenience. It has become a growing tendency that the first thing to do, or even the

only thing for somebody, after connected to Internet is visit certain popular portal. As

for most users, they don’t have to worry about forgetting certain URL. They only need

to launch one browser window, and then almost everything can be done on this portal.

On the portal vendor’s view, the more contents and services he provides, the more

people will visit the portal, and then the more money will come.

Besides, portals, which are called Enterprise Information Portals (EIP) or

Enterprise Application Portal (EAP), have been introduced into management of

 1

information inside enterprises. In this way, kinds of members about the enterprises,

say employees, managers, or investors, can be identified after logging, and be dealt

with accordingly and immediately with a variety of one-stop services and supports.

However, several problems rise while the portals are getting more and more

popular:

Servlet

init()
Request 1

Request 2

Request 3
doGet()

doXXX()
doPost()

service()
Invoked

Invoked Invoked

Response 1

Response 2

Response 3Return

Return

Return

Invoked
when first created

Servlet Container

Figure 1-1: Java Servlet Execution Scenario

1. Traditional Web application cannot do jobs asynchronously. HTTP restricts

the functionalities of portals whether they are for common users or used as EIP or

EAP. For fear of HTTP timeout or a lengthy time for users to wait for, portals

nowadays can simply offer services of querying, updating or modifying, and then

display the data and information in an appropriate way. Furthermore, almost all of

the web technologies for generating dynamic pages, such as Common Gateway

Interface (CGI), PHP: Hypertext Preprocessor (PHP [1]), or Java Servlet [2] and

 2

Java Server Pages (JSP [3]), are deliberately designed for the compatibility to

HTTP. Take Java Servlet for an example, as shown in the Figure 1-1, what a

Servlet instance can do is confined to the period between the initiation of the

request and response. When a request is initiated by a client, a thread will be

spawned in the Servlet container and then execute the Servlet code. The thread

will invoke init() method in the Servlet if this Servlet is executed first time, do

the tasks described in the service() method inclusive of doGet(),

doPost(), or doXXX(), which are corresponding to the HTTP methods, and

then produce response to the client. This process for generating dynamic web page

is typical of synchronous interaction. Furthermore, it is not suitable for more

complicated, time-consuming, and intellectual computation because it can only do

things that must be finished in a restricted period of time.

2. As far as portal users are concerned, they have no choice but to use services

fastened to the portals. For example, if someone, say user A, is a regular visitor of

portal B, but now he needs some of portal C’s and portal D’s services, say search

engine and city guide which are much powerful than those on portal B. The only

way for A to do is to open several browser windows and access them respectively.

Consequently, users have to remember many URLs of portals, and then

continuously switch plenty of browser windows to pick the services they want.

This absolutely violates the original intension of web portals.

3. General mobile devices, suchlike PDAs or mobile phones, have tiny screens

compared with those of desktop computers or laptops. Users therefore will get

awfully poor appearances when trying to browse common web pages, as

demonstrated in Figure 1-2. For the time being, common web portals or EIP and

EAP either don’t take mobile devices users into consideration, or proffer a much

simpler and trimmed version dedicated to fit the size of mobile device screens. It

 3

costs much time and efforts to re-author a dedicated version for mobile devices.

Nevertheless, the employment of all kinds of portals from mobile devices is not

supposed to be neglected due to the fact that the number of mobile device users is

getting lager and larger. Users are not supposed to be confused and waste time

being adapted to different user interfaces between normal and dedicated version

which are both for presenting the same content.

Figure 1-2: Traditional Web Portal Viewed on Mobile Devices

In order to solve the problems mentioned above, we propose a whole new

framework: More Versatile Portals (MVP). Two concepts, web components and

mobile agents, are adopted into MVP as the basis. As MVP stands for, these two

concepts are going to make portals more versatile. The first one, web components,

means integral parts that present fragments of a page individually. That is, several web

components can constitute an entire page. This idea is quite different from the

traditional one that always regards a web page as just a tree structure comprised of

 4

HTML tags. And the second one, mobile agents, is a very popular technology and

technique in Distributed Computing. The main idea of mobile agents is to consider a

program or process an automatic and intellectual agent, and this agent can be

transferred among hosts all over the network whenever it needs computing power or

resources from other hosts.

In the MVP architecture, the concepts of web components and mobile agents are

integrated into a single component. We will call it a fragment agent or a Fragment in

brief in the following paragraphs and chapters. As the Figure 1-3 shows, there are

several computational logics, or say Fragments, in every portal. These Fragments

have autonomous behaviors and are able to accept users’ instructions and do the

designated jobs asynchronously. They can also travel around portals according to

certain purposes. Afterwards, they are aggregated to produce a page to show the

results or the user interfaces to the users.

Portal D

Computational
Logic

Computational
Logic

Computational
Logic

Portal C

Computational
Logic

Computational
Logic

Computational
Logic

Portal B

Computational
Logic

Computational
Logic

Computational
Logic

Portal A

Computational
Logic

Computational
Logic

Computational
Logic Web

Component 3
(Agent 3)

Web
Component 2

(Agent 2)

Web
Component 1

(Agent 1)

Web
Component 4

(Agent 4)

Web
Component 5

(Agent 5)

Web
Component 6

(Agent 6)

Web
Component 7

(Agent 7)

Web
Component 8

(Agent 8)

Web
Component 9

(Agent 9)

Request

Response
Computational
Logic

Computational
Logic

Computational
Logic

Computational
Logic

Figure 1-3: Fragment traveling and aggregation

 5

As a result, every portal page can be composed of many Fragments, and each of

which has its own functionalities and tasks to be performed. Portal users are allowed

to gather these specific-purposed Fragments into a single page and designate them to

do tedious and asynchronous work as automatically and intellectually as they can.

People thus can do much more things through MVP than using the traditional portals

that can only do very simple jobs constrained by the response time.

Web
Component 3

(Agent 3)

Web
Component 2

(Agent 2)

Web
Component 1

(Agent 1)

Web
Component 4

(Agent 4)

Web
Component 5

(Agent 5)

Web
Component 6

(Agent 6)

Web
Component 7

(Agent 7)

Web
Component 8

(Agent 8)

Web
Component 9

(Agent 9)

Computational
Logic

Computational
Logic

Computational
Logic

Computational
Logic

Computational
Logic

Computational
Logic

Computational
Logic

Computational
Logic

Computational
Logic

Computational
Logic

Computational
Logic

Computational
Logic

Figure 1-4: Portable Fragments for service aggregation

Moreover, if every portal is based on MVP, the Fragments of each portal can be

interchanged to each other. Fragments all around the network are also able to be

aggregated into one portal to serve certain users. People who are not satisfied to any

of existing portals consequently have a chance to customize a specialized one for

personal requirement. Figure 1-4 provides an example to illustrate this concept. If

Google, eBay, and Yahoo portals are established on MVP framework, we can thus

collect Google search engine, eBay shopping mall, and yahoo news into a single

Fragment-style page. People who were used to open several browser windows

simultaneously can now manipulate all contents and services they need in a single

one.

 6

Web
Component 3

(Agent 3)

Web
Component 2

(Agent 2)

Web
Component 1

(Agent 1)

Web
Component 4

(Agent 4)

Web
Component 5

(Agent 5)

Web
Component 6

(Agent 6)

Web
Component 7

(Agent 7)

Web
Component 8

(Agent 8)

Web
Component 9

(Agent 9)

Web
Component 1

(Agent 1)

Figure 1-5: Aggregation and rearrangement process

for display on Mobile Device

Mobile device users are also taken into account. Fragments in MVP framework

are born to present parts of pages respectively. When mobile clients send requests to

MVP-based portals, the portals can rearrange the Fragments to form an appropriate

display. As shown in Figure 1-5, all Fragments are considered cards. When the portals

want to display for the mobile devices, they will be rearranged as a deck of cards and

sent back to the client side. Users may choose the card they want at a time in the

display, or they can only download the cards they want to deal with according to their

personal configuration or connection reliability of the mobile devices. Therefore

portals which exploit MVP are capable of displaying suitable pages for mobile

devices. It is not necessary for portal vendors to re-author dedicated pages for mobile

devices.

The rest parts of this thesis are organized as follows: Chapter 2 explains the

system architecture of MVP; Chapter3 illustrates several useful using scenarios for

 7

the MVP framework; Chapter 4 indicates how to develop Fragments and Portals

based on MVP framework, and give some development examples; Chapter 5

introduces some related work; Chapter 6 give the conclusion and propose plans about

future work.

 8

Chapter 2

System architecture of MVP

 MVP is based on Java programming language [4]. Servlet specification of J2EE,

Java Portlet Specification from JSR 168 [5] [6] are also referenced. MVP framework

also adopts concepts of common mobile agents [7] [8] and the design of other

implementation of mobile agent system, such as Aglet [9].

NetworkNetwork

Operating SystemOperating System

Java Virtual MachineJava Virtual Machine

ContainerContainer
ServletServlet

FragmentFragment
ContainerContainer

FragmentFragment
ManagerManager

Web ServerWeb Server

Portal Web ApplicationPortal Web Application

MVP MVP
ServerServer

Figure 2-1: Architecture of MVP Framework

 Figure 2-1 shows the system architecture of MVP. MVP server is established on

the Java Virtual Machine (JVM). It consists of four components: Web Server, Servlet

container, Fragment Container, and Fragment Manager. Web Server and Servlet

container provide an execution environment for certain functionalities of the portal

web application; Fragment Container and Fragment Manager store and manage the

necessary Fragment instances for users. Finally, a portal web application runs on the

 9

Web Server. Portal web application exploits the resources and power of Web Server

and Servlet Container to generates friendly user interfaces, handle user requests,

arrange Fragments, and generate appropriate display for users.

 As Figure 2-2 demonstrates, when a request is sent by a user, portal web

application will process it and decide the Fragments that comprise an entire page. The

Fragment Manager is afterwards asked to retrieve required Fragment instances from

Fragment Container, or produce Fragment instances that are required but doesn’t exist

yet. After Fragments generating contents according to the user requests, portal web

application can load these Fragment contents and aggregate their contents to form a

whole page. Consequently, the complete page will be sent to the client who sent the

request before.

Fragment Container
Fragment
Instance

Fragment
Instance

Fragment
Instance

Fragment
Instance

Fragment Manager

Portal Web Application

R
eq

ue
st

R
es

po
ns

e

Figure 2-2: Relationship and Interaction of MVP Components

 In MVP server, there are no designated distributions or implementations for Web

 10

Server and Servlet Container. That is, all kinds of web servers and Servlet containers

are allowed to be used as long as they can correctly process HTTP protocol and

follow the Servlet standard in J2EE. The following three sections are going to explain

respectively the design concepts and internal operation of the rest parts of MVP:

Fragment, Fragment Container, and Fragment Manager.

2.1 Fragment

 Fragments play the role of web components when it comes to generating pages

that display user interfaces and execution result. On the other hand, Fragments are

considered agents that are specialized for certain tasks. Therefore, Fragments need to

have their own lifecycles to accomplish their individual missions. There are

corresponding designs for both web components and mobile agents.

Fragment:Fragment:
ItineraryItinerary
ActionStrategyActionStrategy

action()action()
fragmentLogicfragmentLogic()()
init() init() InitializeInitialize……
render()render()
……

Request

User Interface

Figure 2-3: Fragment Behaviors

 As shown in Figure 2-3, action() method in a Fragment will receive the

request passed by the web portal application and act as the request said, and

 11

render() method is responsible for generating the user interface and display the

execution result belonging to this Fragment. Besides, acting as a thread, a Fragment is

therefore able to have its own lifecycle. The fragmentLogic() method contains

the code for the Fragment routine behavior, and the Fragment thread will execute the

fragmentLogic() method until the task finishes. Users certainly can request to

change the status and lifecycle of this Fragment thread by setting some attributes. For

instance, if the suspend attribute is set as true, the Fragment is asked to be suspended.

 Fragments also require some autonomous and intellectual properties for most of

the tasks. Whenever a Fragment needs to travel around the hosts or make some

decisions, it will act according to what its Itinerary and ActionStrategy

attributes said. Itinerary holds the necessary route for the task, while

ActionStrategy is a Java interface that defines a set of methods which make

decisions. The following two subsections will explain the design of Itinerary and

ActionStrategy. Besides, Chapter 3 will show that how a programmer use

Fragment class to develop his own Fragment agent, and chapter 4 will compare

Fragment with the component of other related or similar research.

2.1.1 Itinerary

 Just imagine that your mother ask you to buy her today’s newspaper and

something for breakfast. To accomplish what she wants, you have to determine your

own itinerary. For example, you may go to a newsstand near your home first, and then

buy sandwiches, bread and milk from a food stand or supermarket. Finally, you go

back home and enjoy breakfast with your family. Likewise, a Fragment which is

assigned to perform specified jobs also needs its own itinerary. Before the Fragment is

sent for designated tasks, it must be informed of that where to go and what to do.

 12

 The Itinerary object of a Fragment is designed for this purpose. It contains

address of all stops while the Fragment is traveling around the network. Whenever a

Fragment is dispatched to do jobs, its Itinerary object should be configured

correctly. Figure 2-4 illustrates details of Itinerary. We can see from the figure

that the Itinerary object also provides several methods for the sake of

configuration:

Itinerary:Itinerary:
itineraryitinerary

addHopaddHop()()

deleteHopdeleteHop()()
deleteHopdeleteHop() () Designated Address

index of itinerary

Designated Address

Figure 2-4: Behaviors of Itinerary object of Fragments

2.1.2 ActionStrategy

 A Fragment is always assigned to do different jobs on different hosts or portals.

Whenever a Fragment arrives at a host, it needs to fulfill what it was assigned to do.

In some situation, however, the job to be fulfilled is not very simple so that the

Fragment needs some rules or criteria to help it. For example, if a Fragment is sent to

bid for something such as antiques, it is important to have a smart and effective

strategy. Thus, ActionStrategy is designed for this necessity.

 The design of ActionStrategy is similar to a traditional solution of Artificial

 13

Intelligence: decision tree. Figure 2-5 and Figure 2-6 show the inner structure and

behaviors of ActionStrategy and collaboration of ActionStrategy instances,

respectively. Figure 2-5 tells that an ActionStrategy object has a decide()

method. This method contains main computational logic for a certain rule or behavior.

After doing things according to the rule, decide() method produces a result which

determines what to do in the next step. Assume that there is a Fragment which was

assigned to bid for a digital camera and dedicated accessories for it, for example,

storage media and batteries, in an auction. Then if the Fragment gets the batteries that

are designed for a certain brand, it is supposed to bid for the camera of the specified

brand in the next step.

 For a sequence of dependent decisions, we need a data structure that is similar to

a decision tree to solve this problem. As Figure 2-6 depicts, we consider an

ActionStrategy object a node of a decision tree. Each ActionStrategy

object will try to accomplish certain task and then decide which node should be

executed next. By traversing an entire decision tree, a Fragment can handle all

conditions whenever a decision is need to be made. In this way, a Fragment can

autonomously do a series of jobs while traveling around the network as long as the

decision tree was configured appropriately in advance.

ActionStrategyActionStrategy::
argueargue
acceptaccept

decide()decide()

Next Strategyif not accept

Next Strategy

if accept

Do the Job
and

Make decision

Figure 2-5: Inner Structure and Behaviors of ActionStrategy

 14

ActionStrategyActionStrategy ActionStrategyActionStrategy ActionStrategyActionStrategy ActionStrategyActionStrategy

ActionStrategyActionStrategy ActionStrategyActionStrategy

ActionStrategyActionStrategy

Figure 2-6: A decision tree made of ActionStrategy objects

2.2 Fragment Container

 Fragment Container is just like stowage of kinds of MVP data, and there is

another component, Fragment Manager, that is designed as the stowage keeper.

Whenever the data stored in Fragment Container are need to be modified, Fragment

Manager will be informed and do the modification. This can guarantee the correctness

and consistency of the modification.

Fragment Fragment
Container:Container:

Fragment_agentsFragment_agents

HFTableHFTable

Fragment Fragment
ManagerManager

Spawn, Destroy,

Depart, …

FragmentFragment

D
o

A
ct

io
ns

Insert, Delete,

Modify, …

Figure 2-7: Behaviors of Fragment Container

 15

 Fragment Container includes two major parts: Fragment_agents and

HFTable. Fragment_agents is stowage of Fragment instances while HFTable

keeps track of the current position of Fragment instances. The content of

Fragment_agents and HFTable should be modified by Fragment Manager

whenever a new Fragment instance is spawn, destroyed, or a Fragment instance has

finished his work on a host and has to travel to the next stop along the determined

route. For example, as demonstrated in Figure 2-7, when a new Fragment instance is

needed to be spawned, Fragment Manager will be notified to create a new Fragment

instance, and store it into the Fragment Container. At the same time, Fragment

Manager inserts a new entry into HFTable for the new Fragment instance. This entry

is a registry indicating the present location of this Fragment instance. Then if this

Fragment instance is going to be destroyed, Fragment Manager will delete the related

entry in HFTable of Fragment Container.

2.3 Fragment Manager

Fragment Manager:Fragment Manager:
HFTableHFTable Update Update updateupdate
Message TransferMessage Transfer
Lookup ServiceLookup Service

agentDepartagentDepart()()

agentDestroyagentDestroy()()

agentSpawnagentSpawn()()

loadFragmentsloadFragments()()
……

FF

FF

FF

Fragments

Location
Massage

Figure 2-8: Behaviors of Fragment Manager

 16

 As mentioned in section 2.2, Fragment Manager is the stowage keeper of the

Fragment Container. Thus, Fragment Manager provides managing methods for

several purposes. Figure 2-8 shows that loadFragments() obtains the required

Fragment instances in the Fragment Container. While agentSpawn() creates a new

Fragment instance and store it into Fragment Container, agentDestroy() destroys

the perishing Fragment instances in the Fragment instance. In chapter 3, there will be

more detailed explanation for these methods.

 Besides, several services are provided in order for the advanced manipulation to

facilitate Fragment behaviors:

1. Agent Departure:

You may regard this service as an airport for Fragment to go abroad. When a

Fragment is going to depart for some purpose, it can invoke agent departure

service, and then this service will transfer the Fragment to the designated

destination.

2. HFTable Update:

HFTable update service in Fragment Manager is responsible for modifying

entries in the HFTable of Fragment Container. As changing current location, a

Fragment should inform the HFTable in its birthplace of the destination address,

and then HFTable update service in its birthplace will update the corresponding

entry with the latest information.

3. Message Transfer:

Fragments might need to collaborate for a certain purpose. As a result, they

have to exchange data and information in order to work together. Message

Transfer service can help fragments to interchange information and data by means

of sending messages to each other.

 17

4. Lookup Service:

Lookup service of Fragment Manager is designed to obtain the latest location

of a Fragment. Whenever a Fragment or a service is about to find another

Fragment, the lookup service in the birthplace of the target Fragment will be

invoked and return the current position of the Fragment to the requester.

 We will see some of the popular using scenarios of MVP framework in the next

chapter.

 18

 Chapter 3

Using Scenarios of MVP Framework

 The specialized services mentioned in the former chapter compose an

infrastructure that facilitates various behaviors of Fragments. We will show some

using scenarios for demonstration in the following paragraphs:

1. A Fragment is appointed to migrate from a portal to another, as Figure 3-1. A

user employs HTTP protocol to issue a request to ask some Fragment leave for

another portal. Fragment Manager then transfers the requested Fragment to the

destination.

Portal A Portal B

Fragment Container Fragment Container

Fragment Manager

Portal Web Application

Fragment Manager

Portal Web Application

FF

R
eq

ue
st

R
es

po
ns

e

R
eq

ue
st

Fragment 3Fragment 2Fragment 1

Fragment 4
New

valArri
Fragment 6

Fragment 7 Fragment 8 Fragment 9

R
es

po
ns

e

FF

Figure 3-1: Fragment Traveling from Portal A to Portal B

Use case:

I. Suppose there are several portals that are all based on MVP framework.

A user A needs some services provided by these portals respectively. For

 19

using convenience, user A might want to aggregate all services he needs

from different portals into a single portal. Thus user A can send request to

the Fragments that are responsible for the services, and direct them to

certain portal for assembling a page full of desired services.

II. User A might need to negotiate with user B who is registered on a

different portal for some matters or business. For example, as Figure 3-2

shows, a user opb is going to make an appointment with iyasu. In Figure 3-2

(a), we can see that iyasu can directly send his scheduler to opb. User opb

thus can understand the schedule of each month after a glance. And then, in

Figure 3-2 (d), opb can communicate with the coming Fragment and choose

the days he wants for a date, as Figure 3-2 (e) shows. In this way, the

engagement can be made after a few clicks on the Fragment instead of

phone communication which is prone to mistake.

 20

(a): User iyasu sends an auto scheduler Fragment to user opb

(b): The Fragment has left

(c): The original page of user opb

 21

(d): The Fragment has arrived at the page of user opb

(e): User opb selects two days for the date

Figure 3-2: Fragment Migration Example

 22

This situation may also happen in enterprise management when using

EIP and EAP. For example, investors and managers of the company use

individual accounts to login the EIP or EAP for accessing and maintaining

personal data. When a manager has to negotiate with an investor or

employer, he can send a Fragment which carries only the necessary

information and data. Thus, the investor or employer will only see the

related information that the manager wants to display.

III. Fragment migration also helps traffic distribution. Figure 3-3 shows a

good example for this. Yahoo News aggregates all kinds of News from

many News sources to help users read news conveniently. Thus Yahoo

becomes the traffic bottleneck when users read news on Yahoo, as

illustrated in Figure 3-3 (a). Everyone reads news from Yahoo News though

these kinds of news are all from other news providers.

If Yahoo is established upon MVP framework, the Yahoo News Service

can be distributed to other collaborative MVP-based Portals, as Figure 3-3

(b). In this way, all of these portals can serve users with Yahoo News, as

depicted in Figure 3-3 (c). Therefore, users who want to access Yahoo News

service can choose to connect to other collaborative portals that also have

Yahoo News Fragment. And then the network traffic is thus distributed.

 23

(a): Traffic bottleneck on Yahoo News

(b): Distribute News Fragment to several portals

 24

(c): Network Traffic after News Fragment distribution

Figure 3-3: Traffic Distribution Example

2. A Fragment travels around many hosts on the network for the sake of

automatically accomplishing the assignments. Figure 3-4 indicates that a

Fragment on portal A have to travel among four portals. After Itinerary and

ActionStrategy of the Fragment being configured, the Fragment can decide

where to go and what to do by its own.

Use case:

I. Fragments can be utilized to conduct tasks that ought to follow some

determined rules and procedures. For example, a user may need to send a

Fragment with official documents that need several staffs or officers to sign

in a certain order. First, the user has to configure the Itinerary for this

task, and set the ActionStrategy to handle some predicable situations.

In this case, the Fragment must deliver the documents and make sure the

signature order. Some of the officers may not be satisfied with the content

of documents and reject them. Thus the Fragment is supposed to go back to

the former stop and help the staffs there to modify them. After the

 25

configuration of Itinerary and ActionStrategy, the Fragment can

travel among portals, communicate with the appointees, and do the

assignments autonomously.

Portal A Portal D

Portal CPortal B

FF

Itinerary

Action
Strategy

FF

FF

FF

FF
FF

FF

FF

Figure 3-4: Fragment Traveling according to

the Itinerary and Action Strategy

II. On the other hand, Fragment may need tremendous data and

information distributed in many different portals. Under such circumstances,

the Fragment with the computational logics can be sent to travel the portals.

The only thing that migrates from one portal to another is the code for

computation in the Fragment. This using strategy will prevent network from

enormous data traffic.

3. Collaboration among Fragments is required when we divide a complicated

task into several much simpler ones. In this condition, it is necessary for

Fragments to negotiate and communicate with each other. MVP framework

provides an infrastructure much similar to the one of telephony. Wherever a

Fragment is, it can invoke the message transfer service in the local host, which is

 26

just like to give a phone call. Then the messaging infrastructure will try to find the

receiver according to the provided Fragment address.

 Figure 3-5 depicts that how the massaging infrastructure facilitates the

communication among Fragments. Suppose that a Fragment F is on the portal C.

When F is going to communicate with Fragment A which was born on portal A, F

will invoke the massage transfer service on the portal C. Message transfer service

will first ask portal A for the current location of Fragment A. After portal A tells

portal C where Fragment A is, say portal B, the message transfer service of portal

C will send the message to portal B for Fragment A.

Portal A

dcslab.cis.nctu.edu.tw

Portal C

Portal B

otherplace.cis.nctu.edu.tw

FF

agent@iyasu@
dcslab.cis.nctu.edu.tw

agent@iyasu@
otherplace.cis.nctu.edu.tw

inform A of

something

AA

Figure 3-5: Fragment Locating and Messaging

Use case:

I. In addition to collaboration among several Fragments, this messaging

infrastructure can also be applied for other purposes. Suppose there are two

users who are behind two firewalls individually. They are allowed to use the

 27

network only via port 80. Thus they can use HTTP to control two remote

representative Fragments to communicate with each other, as shown in

Figure 3-6.

Portal A Portal B

FF22FF11

Fragment 3Fragment 2Fragment 1

Fragment 4
New

alArriv
Fragment 6

Fragment 7 Fragment 8 Fragment 9

FF11

Fragment 3Fragment 2Fragment 1

Fragment 4
Ne

Arriv
w

al
Fragment 6

Fragment 7 Fragment 8 Fragment 9

FF22

HTTP HTTP

Figure 3-6: Messaging Scenario I

II. Besides, messaging infrastructure also facilitates communication

among heterogeneous platforms. In spite of proprietary protocol on each

independent platform, platform A can send a Fragment to platform B, and

then the Fragment will be remotely controlled by platform A to invoke

necessary processes or services. Figure 3-7 illustrates such a condition.

 28

Platform B Platform A

AA

AA
AA

FF
MVP Messaging

: Processes or services on Platform B

: Invoke processes or services

Figure 3-7: Messaging Scenario II

 29

Chapter 4

Development based on MVP

To develop a portal on MVP framework, there are two things to do. First, write a

portal application that is directly access by the end user. Second, develop Fragments

which will be employed in the written portal application. In this chapter we will

explain that how to develop a portal application and Fragments using MVP

framework.

4.1 Development of Portal Application

 It is very simple to develop a portal application based on MVP framework. As

mentioned above, there is a Java Servlet Container embedded in the MVP framework.

Programmers thus can use Java Servlet to write their own portal application according

their own demands. Besides, programmers need to design their own patterns to

arrange the Fragments’ appearances in a user-friendly way, or use a default pattern

offered by MVP framework: three-column arrangement. Each of the Fragments has an

attribute to indicate the position it should appear at, and thus the arrangement patterns

can make use of this attribute to make up appropriate appearance of a portal page.

Table 4-1 shows a usual program template to form a portal application. As depicted in

the table, myPortal is the sample portal application. Similar to common portal

applications, myPortal extends HttpServlet class from a standard Java Servlet

package. Then the programmers may write the code in the doPost() or doGet()

method to arrange Fragments’ appearances properly and compose their portal pages.

 30

F

r

f

d

m

s

o

T

a

c

public class myPortal extends HttpServlet{

 public void doPost(……){

 //code for determining fragments that constitutes a page

fragments = FragmentManager.loadfragments();

fragments.someAgent.

action(request);

……

//Other user-dependant code

……

this.arrange(fragments);

 }

 private void arrange(ArrayList fragments){

//get UI generated by render() of fragments

//arrange fragments in certain order

ThreeColumnPattern.arrange(fragments);

ThreeColumnPattern.display();

}

}

Table 4-1

First, the portal application may request Fragment Manager to load required

ragments from Fragment Container. After loading Fragments, Fragment Manager

eturns the references of these Fragments to the portal application. Receiving

ragment references, the portal application should hand the user request to the

esignated Fragment. Afterwards, the portal application calls the arrange()

ethod to get UIs generated by all Fragments (UIs can be HTML code segments

tored in String type, or even Java Applet), and arrange them in default, user-defined,

r device-dedicated patterns. In this case, arrange() method exploits

hreeColumnPattern class which is provided by MVP framework as a default

rrangement pattern. The instance of this class will first classify the Fragment

ontents into three columns. Thereafter, it will display these Fragment in the

31

designated order to form a whole page.

Figure 4-1: MVP Sample Portal View on a Desktop Browser

Figure 4-2: MVP Sample Portal View on Mobile Devices

 32

Figure 4-1 and Figure 4-2 give a sample view of a MVP portal application. The

portal appearance in Figure 4-1 shows a three-column pattern of display. Fragments

appear in the page as HTML tables, and each of them has an appropriate region in the

whole page. With the arrival and departure of Fragments or user preferences, the

arrangement of the page can be flexibly changed. In Figure 4-2, the identical content

of the portal is displayed on a mobile device. We can see that when the portal

application detects that the requesting client is a mobile device, it can rearrange the

portal content in a different pattern. Consequently, the mobile device users will see

one Fragment at a time, and then click to choose the other fragment if they want the

information displayed on other fragments. The left one of Figure 4-2 shows Fragment

about the information of the stock market, while the right one shows the Fragment of

auto scheduling agent.

 MVP framework provides a Java interface Arrangement to be implemented

by other subclasses. The default arrangement ThreeColumnPattern also

implements this interface. Therefore, if programmers want to design their own

arrangement pattern, they can write their own arrangement class. The relationship

among these classes is depicted in Figure 4-3. Arrangement interface mainly

consists of two methods: arrange() and display(). The subclasses should

implement these two methods for arrangement. For example, the arrange()

method of ThreeColumnPattern classifies all Fragment instances into three

groups, while the display() method displays all these Fragments in certain order

to generate the portal page.

 33

Figure 4-3: Class diagram for Arrangement

4.2 Development of Fragments

 As the former section said, what portal application does is only load Fragment

instances and aggregate content of them. The main interaction between a portal and

users is handled by each of Fragment instances. In this section, we will explain how to

develop Fragments on MVP framework.

 It is also quite simple to develop Fragments on MVP framework. In MVP

framework, there is an abstract class Fragment. It leaves four methods for

programmers to implement: action(), fragmentLogic(), init(), and

render(). As Table 4-2, Programmers should write a class that extends the abstract

class Fragment, and then fill the four methods with the necessary code respectively.

The functionalities of the methods are described as follows:

 34

public class myFragment extends Fragment{

 public void action(……){

//request handler

}

 private void fragmentLogic(){

//Things that default thread will do

}

private void init(){

//do initialization for this fragment

}

private void render(){

//generate the user interface

}

}

Table 4-2

1. action()

The user requests are going to be passed to action() method, so the

intention of this method is to handle the incoming request from users. For example,

the user request might contain parameters to fill in some form, to suspend a

Fragment or ask it to leave. The programmer should write the corresponding code

in this method to realize the functionalities that he allows users to invoke.

2. fragmentLogic()

As remarked above, a Fragment is always assigned to complete some tasks,

so it often has a default thread to do the designated jobs. The fragmentLogic()

method is designed for the default thread. Programmers should fill in this method

with the code that will do the jobs this Fragment is born for. Besides, a Fragment

certainly can be a common web component that cannot act as a mobile agent. In

 35

this case, the fragmentLogic() method can be leave to be blank.

3. init()

This method does the initialization that need only to be done once. For

instance, the programmer can set the name, traveling route, or other configuration

in this method.

4. render()

Programmers should write the code to generate the appearance of this

Fragment. Basically, it is appropriate to show a Fragment with a HTML table for

the ease to aggregate Fragments on a single page. It is fine to display a Fragment

in whatever way as the programmers wish as long as there is corresponding design

in the portal application. For example, programmers can also embed a Java applet

into a HTML table to provide a friendlier user interface.

MVP framework also provides related APIs for Fragment developers to access

Fragment Manager. Therefore, when users ask Fragments on a portal to perform as

they suppose, Fragment Manager can facilitate Fragments to accomplish the tasks.

For example, as mentioned in the description of action() method, if Fragments is

assigned to leave or send message to other Fragment, the Fragments have to invoke

the provided APIs for related services of Fragment Manager. These APIs are as

follows:

1. agentSpawn()

As its name reveals, agentSpawn() method is used to create a new active

Fragment instances. The code in this method takes the name and the path of the

class of the Fragment to load the class and spawn a thread for the Fragment

instance. Then the Fragment instance will be stored into Fragment Container. In

this way, the Fragment instance can do the designated jobs asynchronously in the

 36

background. Besides, this method also creates a new entry of HFTable for this

Fragment instance. It results that Fragment Manager can keep track of the latest

location of the Fragment instance, which is helpful to the communication among

all Fragment instances.

2. agentDestroy()

agentDestroy() is the complement method of agentSpawn(). When

this method is invoked, it will first delete the corresponding entry of HFTable,

then stop the thread for this Fragment instance and remove it from the Fragment

Container.

3. agentDepart()

When the Fragment instance is assigned to leave for next stop according to

the itinerary, it has to call agentDepart(). This method will establish a

connection to the destination in accordance with the configuration of Fragment’s

itinerary. Afterwards, agentDepart() method will use Java Serialization

mechanism to serialize the Fragment instance and its states to the next stop. After

arriving at the destination, the Fragment instance will be deserialized and

recovered to the latest state. Therefore, the Fragment instance can continue to

execute what it has to do.

4. inform()

When a Fragment instance has to communicate with other Fragment instances, it

is necessary to invoke inform() method offered by Fragment Manager. After

invoked, this method will set up a network connection to the host that the target

Fragment instance is situated at. Then the message will be sent to the host, and the

Fragment Manager on that host will deliver it to the target Fragment instance. The

message is sent in String type. Therefore, the Fragment developer can make up

unique message format such as XML message for their own Fragments.

 37

Chapter 5

Related Work

MVP integrates two popular technologies in different domains to construct a

whole new framework for building portals. In the following paragraphs, we will

expound the related researches and development of these two domains: portals and

mobile agents, and compare them with the design of MVP respectively.

5.1 Portal

Nowadays the number of Internet users is getting larger and larger, and each of

them has his own desired services. For example, housewives might prefer shopping

information while teenagers might prefer sports news and traveling information. As a

result, some of the major portal vendors are gradually changing their authorizing

strategies to satisfy the requirement of personalization of portals. The most

well-known way to manage personalization issue is employing an idea of web

components to make up a page. These kinds of web components are generally called

Portlets.

In spite of the identical opinion and idea, portal vendors develop their respective

Portlets. There is no open standard for these kinds of web components until Java

Portlet Specification 1.0 was released from Java Community Process (JCP) on

October 2003. But neither the standardized Java Portlet nor other kinds of

vendor-specific Portlet design solves the problem thoroughly: they ignore the users of

mobile devices.

 38

Traditional portals always use various techniques which cannot be applied to

mobile devices to fulfill many fancy styles and appearances. The users can only see

the simplified versions or segmented pages of these portals on their mobile devices.

When it comes to the simplified versions, users often hang back for fear of the bad

look-and-feel. In addition, they need to make themselves be accustomed to another

user interface different from the original version. As for researches about segmenting

web pages [10] [11] [12], the result is always poor because there is no common styles

and strategies for page arrangement. On the other hand, though the portlet-based

pages are suitable to rearranging for mobile devices, the portlet-based systems or

frameworks other than MVP do not think over this issue (see Figure 1-2 in chapter 1).

MVP framework considers a page a set of Fragments, and it can rearrange the page

according to the Fragment-based structure. Therefore the display for mobile devices is

easy to be generated. Users will see that one Fragment is shown at a time, and they

can choose whatever Fragment they want. Users can also configure that which

Fragments are needed to be downloaded to mobile devices in advance.

Additionally, when using traditional portals, users will be bound to certain

portals which offer certain services. They have to browse portal A for some services,

and then get to portal B for others. MVP framework can aggregate all kinds of

Fragments based on MVP from any portals throughout Internet by means of migrating

the wanted Fragments to a single portal. In this way, users don’t have to be on the run

browsing numbers of portals any longer.

 39

Portlet-based portals also leave two problems:

1. Portlets that follows Java Portlet Specification may adopt Web Services for

Remote Portlets (WSRP [13]) to communicate with remote portlets. But in this

way, portals still cannot acquire remote portlets to execute them locally. Thus, if

the remote portals or their network connections failed, the way WSRP provide to

communicate with remote portlets will also fail.

2. Portlet-based portals generate pages consisting of several portlets. If one or

several of the portlets fail to execute or consume too much time, the performance

of generating a page will get worse because it has to wait for all portlets which

forms the page.

Compared with traditional portlet-based portals, MVP framework can rearrange

pages for mobile devices and gather fragments from all MVP-based portals. Moreover,

all Fragments in a page can be designed as smart as possible, and then they can

negotiate with each other automatically for performance issues.

5.2 Mobile Agent

MVP also proposes a good way to manage and use mobile agents. Other

researches about user interfaces for managing mobile agents can be roughly divided

into two parts:

1. Developing standalone and dedicated applications to manage agents [14].

However, such kind of applications need to be installed in some specific

procedures, and are usually bound to certain platform. Thus, it is inflexible to use

these dedicated applications.

 40

2. Adopting web-based user interfaces to manage mobile agents for users’

conveniences [15]. For example, a fragment of HTML code or a Java Applet is

mapped to a mobile agent to control it [16]. Users can use any kinds of client

devices that have a browser to manage and control mobile agents. But it is still not

flexible enough for users to access mobile agents when they want to control

agents that are from other hosts. They cannot share their agents with others and

make use of others’ agents.

Using MVP framework, users can easily employ others’ agents, as known as

Fragments, and manage them in an efficient way. Mobile agents that travel around the

network are seen as ships and then anchored to a portal based on MVP framework.

Agents will be automatically arranged to be displayed on the portal pages, and the

users who use desktop computers or mobile devices can access the agents through the

portal.

 41

Chapter 6

Conclusion and Future Work

MVP framework introduces several new ideas for both web technology and

mobile agents. As for web technology, MVP framework is able to provide more

versatile services that are not limited by HTTP response time. Portal users can use

intact HTTP protocol to assign Fragments to fulfill kinds of asynchronous tasks

autonomously and intellectually. MVP framework can also gather all necessary

services for users to facilitate management and personalization. And in the aspect of

mobile agents, MVP framework provides a much easier way to use and manage them.

Users can centralize all agents they need with common web browsers into a single

portal, and manipulate these agents simply in a very convenient way.

There are still many things to do with MVP framework in the future. They are:

1. Provide offline usage of MVP for mobile device users:

Mobile device users always have unreliable network connection for the sake

of mobility. Under some circumstances, for example, before entering an

environment without wireless connection, they know that the connection will be

broken. If MVP framework offers such a service so that the users can in advance

download the necessary Fragments with the computational logics to their mobile

devices. Then they can do some negotiation or configuration with the Fragments

even they are surrounded by a disconnected environment. After the connection is

resumed, all things that have been done before will be automatically synchronized

with the portal.

 42

2. Lookup for Fragments according to their functionalities:

The present MVP framework can only lookup Fragments in accordance with

the complete name of them. That is, the user who wants to lookup some Fragment

must give the complete name such as “schecule@iyasu@dcslab.cis.nctu.edu.tw”,

and then MVP framework will return the current location of the wanted Fragment.

It may be more convenient for users if MVP framework can lookup fragments

according to certain given attribute or purpose. Users or Fragments thus can find

any other adequate and competent Fragments with which they want to collaborate.

3. Locate Fragments in a more effective and efficient way:

 In the current design of MVP framework, Fragments have to register to their

birthplaces. Whenever leaving some host for another, Fragments report their

current location to the birthplaces for keeping track of themselves. Afterwards,

queries are sent to the birthplace, and the latest location of any Fragment born in

that place will be returned. This scenario might be inefficient if the Fragments

frequently travel among several hosts. Improved scenarios may need to be

proposed. For example, Fragments can be seen as mobile phone or mobile device

users and the portals can thus be regarded as base stations or access points, and

then MVP framework can adapt the location-aware scenarios of mobile telephony

or wireless technology to locate Fragments.

4. Security issue:

 As mentioned in chapter 3, Fragments facilitate communication among

heterogeneous platforms regardless of proprietary protocols. Fragments can

migrate from one platform to another and then execute certain tasks or invoke

certain services on the target platform. Under such circumstances, there are

 43

potential crises that malicious Fragments may emerge to do harm to those

platforms who accept these Fragments. Therefore, the security issue will be very

important after the MVP framework is getting more and more popular. Designs

for security should be added into MVP framework in the future.

5. Although portals based on MVP framework have Fragment-based structures and

is quite suitable for mobile device display, there are still many portals that are

authored in traditional ways. If someone wants to apply MVP framework to the

existing traditional web portals, the only way at the present time to achieve the

goal is re-authoring the current portals to conform to the specification of MVP

framework. It is really time-consuming and tiring work. A façade gateway needs

to be developed to solve this problem. We can see the scenario in Figure 6-1. The

façade gateway is a web portal based on MVP framework. Fragments of the

facade gateway can be automatically mapped to services on the traditional web

portals. If the Fragment-based appearance is needed, users can directly access the

façade gateway whether using normal desktop computers or mobile devices.

Moreover, Fragments can not only be mapped to services on traditional web portal

but at the same time do other jobs such as improving and integrating the

functionality of the correspondent services. In this way, the traditional portal can

also make use of MVP framework.

 44

Traditional
Portal A

Traditional
Portal B

Traditional
Portal C

Web
Component 3

(Agent 3)

Web
Component 2

(Agent 2)

Web
Component 1

(Agent 1)

Web
Component 4

(Agent 4)

Web
Component 5

(Agent 5)

Web
Component 6

(Agent 6)

Web
Component 7

(Agent 7)

Web
Component 8

(Agent 8)

Web
Component 9

(Agent 9)

RequestResponse

Web
Component 1

(Agent 1)

Request

Response

FF11

Façade
Gateway

FF99

......

ServicesServices

ServicesServices

ServicesServices

Figure 6-1: Façade gateway scenario

 45

References

[1] PHP, http://www.php.net

[2] Mark Roth, Eduardo Pelegrí-Llopart, “JavaServer Pages™ Specification

Version2.0”, Java Specification Requests – 152, November 24, 2003

[3] Danny Coward, Yutaka Yoshida, “Java™ Servlet Specification Version 2.4”,

Java Specification Requests – 154, November 24th, 2003

[4] Sun Microsystems, Java, http://java.sun.com

[5] Alejandro Abdelnur, Stefan Hepper, “JavaTM Portlet Specification Version 1.0”,

Java Specification Requests – 168, October 7, 2003

[6] Stefan Hepper, Stephan Hesmer, “Introducing the Portlet Specification”,

http://www.javaworld.com/javaworld/jw-08-2003/jw-0801-portlet.html, August

1, 2003, http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-portlet2.html,

September 5, 2003

[7] David Wong, Noemi Paciorek, Dana Moore, “Java-based mobile agents”,

Communications of the ACM, Volume 42 , Issue 3: 1999, pp. 92-102.

[8] Danny B. Lange, Mitsuru Oshima, “Seven Good Reasons for Mobile Agents”,

Communications of the ACM, Volume 42 , No. 3: 1999, pp. 88-89.

[9] Danny B. Lange, Mitsuru Oshima, “Programming and Deploying JavaTM

Mobile Agents with AgletsTM”, Addison-Wesley Pub Co, September 15, 1998

[10] Yonghyun Hwang, Eunkyung Seo and Jihong Kim, “WebAlchemist: A

Structure-Aware Web Transcoding System for Mobile Devices”, Proc. Mobile

Search Workshop, Honolulu, Hawaii, May 2002

[11] Jinlin Chen, Baoyao Zhou, Jin Shi, HongJiang Zhang, Qiu Fengwu,

“Function-based object model towards website adaptation”, WWW 2001:

 46

587-596

[12] Joseph W. Sullivan, T. Bickmore, A. Girgensohn, “Web Page Filtering and

Re-Authoring for Mobile Users” , The Computer Journal - Special Issue on

Mobile Computing, Volume 42, Issue 6: 1999

[13] Alan Kropp, Carsten Leue, Rich Thompson, “Web Services for Remote

Portlets Specification Version 1.0”, August 2003

[14] Alberto Silva, , M. Mira da Silva and Artur Romão, “User Interfaces with Java

Mobile Agents: The AgentSpace Case Study”, Proceedings of the First

International Symposium on Agent Systems and Applications (ASA '99), Palm

Springs, California. IEEE Computer Society, October, 1999.

[15] Anselm Lingnau, Oswald Drobnik, “Agent-User Communications: Request,

Results, Interaction”, In Proceedings of Second International Workshop on

Mobile Agents, MA’98, Stuttgard, Germany, 1998.

[16] A. Rodrigues da Silva, M. Mira da Silva, Artur Romão, “Web-based Agent

Applications: User Interfaces and Mobile Agents”, Proceedings of the

IS&N'2000 Conference (Athens, Greece, February 23-25 2000), Lecture Notes

in Computer Science, Vol. 1774, Springer 2000.

 47

