X Ak

V2R

%

4

<z 1/ v
gy

I

MVP — An Integration of Web Components and Mobile
Agent System‘for.a Mere Versatile Portal

A

UR ISR S i

H[_3_!‘.“ ,E\I [E&[—Ju _{ — = 4 EJ

MVP — R F A~ id RI2 A L admff s
MVP — An Integration of Web Components and Mobile Agent System
for a More Versatile Portal

oy oA KLz Student : Yi-yu Lin

hERE D RTK Advisor : Shyan-Ming Yuan

B o= 2o+ B
R o o
ML oHmR

A Thesis
Submitted to Institute of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

PERRA L ES D

MVP — SHEI7 [$3= SR * SRV

P M e « dr

!

TR REERROESFFERE N AR EL R 85 BRSNS fim
PRt BIRIFEE T § e dﬁ P kW Fogidk e it - I E 4eie
PRI RN Pl et BRI A A E Y e AN AR Y H L0 R L ﬁf&nh#t
Eeh% a0 % BRI SR SAE T/ QJJ‘_EE ﬁi:'l? bz fFo %ﬁ”#“
% :ﬁpm}ﬁi;ﬁ-ﬁﬂ?fmﬁjé dUp TERE B e o rR P2 dh s TS ene s L F B2 PR
XA B HTTP s T3 @ % —‘;‘f;‘ii s BT PIIR B afe N 0 3 3
H_CGI ~ PHP & &_Java Servlet % > H # i 38 ¢ = "3 ¢ & HTTP i s 2
FRFER A 2RI SEE S EEE s > AR ﬁr%m#—a\ 0

Bighwme ¢ o APl - BRI B T ER ek
(Personal Customized Portal))4 2 {7 &+ X 3 A (Mobile Agents)mﬁléi o 4oyt
ko 7 f&*ﬁf%?—*‘?uéﬁf"p%#ﬂ peirgRantIEsa 0 MEE ~ % (Web
Components)rﬂﬂ*‘\ FPERL-BREFr o mrE- BREF R %’K?ﬁtﬁlﬁ - B
fTH RIL A o i (RIT X (Agent)sc F9F P A PHopeand o {
TG op e il b K eE K 4 ;ﬁ— i H R T2 (8 0 i ok
T ?;er"**—*ﬁgabf{%o

p
X

=f

MVP — An Integration of Web Components and Mobile Agent
System for a More Versatile Portal

Student : Yi-yu Lin Advisor : Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

With the flourishing of Internet, and the. mushrooming of kinds of web sites,
various web applications and services are.now.indispensable for millions of users. But
it turns to a nightmare when 'someone-has to.deal with such a huge amount of
applications and services scatteted all overInternet. Most users need to launch several
browser windows, gather information ffom each site, and analysis it in order to
acquire something they expect. Additionally, these applications and services do the
jobs synchronously only. This is because CGI, PHP, Java Servlets, or other dynamic
webpage technologies are deliberately designed to be compatible to the most popular
web protocol: HTTP. As a result, the behavior and the lifecycle of application and
service programs running on the server side are both confined to the reasonable
response time for users or HTTP standard. Thus, these kinds of we applications and
services are not able to perform asynchronous tasks. And thus, more complicated,
time-consuming computation and intellectual decision also have such a constraint on

response time.

In this paper, we will introduce a new framework which integrates the concepts
of Personal Customized Portal and Mobile Agents. This framework not only makes it
much easier for users to gather all necessary applications and services in a single
portal, but also employs them as intelligent and autonomous agents to efficiently
accomplish asynchronous tasks that need more complex computation, reasoning and

decisive ability.

il

Acknowledgements

First of all, I’d like to thank my advisor Shyan-Ming Yuan for lots of
suggestions and instructions. I also want to thank those learned and experienced
senior members in our laboratory, especially those who belong to Web Technology
team: Ming-Chun Cheng and Chi-Huang Chiu. They gave me many invaluable ideas
and guide me to complete this thesis.

I’d also like to thank all the people that have ever had contribution to this
thesis. And of course, I am very grateful to my adorable parents who always strive to
support me in whether physical or mental aspects. Last but not least, I must thank my
friends who keep company with me all the time, especially when I felt bored or

depressed in writing this thesis.

il

Contents

MVP — FHFIT (P S IR o i

MVP — An Integration of Web Components and Mobile Agent System for a More

Versatile Portal ..o i
ACKNOWIEAZEMENLS........eieiiieiiiieiieeit ettt ettt et eebe e e e esbeeseaeeneeas il
L0031 11S) 1L PSSP PR ORI v
LSt OF FIGUIES ..ttt ettt ettt ettt ettt e et e e saeenseenseeennes v
Chapter 1 INtrodUCTIONeieiiieeiiieciiee e e sree e e e e e saaeeeaseeennnes 1
Chapter 2 System architecture Of MVPcccooiiiiiiiiiiiiicece e 9

2.1 Fragmentoooueeeeeeiiieeee et e ce e e esaihin e e eeiteeeeesaeeeeesiaeeeeennnaeeesennaeeeanns 11

2.1.1 Ttinerary........... af: punkeetlalat s M Wonoeenreenieeenenireeeneeaeennnes 12

2.1.2 ACHIONSIIAtEEY ..otk .. fhasfevrmmmmmrnmesss o+ sasFeeenveeensveeessseeessseesssseesssseessssessnnns 13

2.2 Fragment CONTAINGT 0 0 fiussesssssiiteas fenereenseenueenseesneesseesseenseesssesnseesseenne 15
2.3 Fragment MaAn@Q@ETcccuueieieiiiieeeiiiieeeeiieeeeeieeeeeesiaeeeesireeesesneaeeesenneeeeenns 16
Chapter 3 Using Scenarios of MVP Frameworkcccceeviiiiiniiiiniieniieieeieee 19
Chapter 4 Development based on MVP.........cccoooiiiiiiiiiiiceeee e 30
4.1 Development of Portal Applicationcccoccuveviieniieniieeiiienie e 30
4.2 Development of Fragments..........cccvieeiiieiiiieeeiieeciee e 34
Chapter 5 Related WOTKooouiiiiiiiiieecee e 38
ST POTEAL ... e 38
5.2 MODIIE AZENL ..ottt ettt et 40
Chapter 6 Conclusion and Future Work.............cccovieioiiieiiiiieiie et 42
RETETEICES ...ttt et sttt 46

v

List of Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 4-1:
Figure 4-2:

Figure 4-3:

Java Servlet EXxecution SCeNario...........coceveeveeienienennienieneeieseeseeieenes 2
Traditional Web Portal Viewed on Mobile Devices..........cccceeveeeieeniennnne 4
Fragment traveling and aggregationcceeeeeevieerieeiiienieenieeieeiee e 5
Portable Fragments for service aggregation..........cccveeeveeeeieeenveeesveeennnennn 6

Aggregation and rearrangement process for display on Mobile Device..7

Architecture of MVP Framework..........coccooiiiiiiiiiiice 9
Relationship and Interaction of MVP Componentsccccceceereenuennnene 10
Fragment Behaviorscocviiiiiiiiiiieiie e 11
Behaviors of Itinerary object of Fragmentsccccoooeviiiiniiniencnnene. 13
Inner Structure and Behaviors-of ActionStrategyccoceevieniiineennen. 14
A decision tree made of ActionStrategy objects..........ccccevvveriiienienieennnn. 15
Behaviors of Fragment €Containerial .o iiinieiieeieeneeeeieeee e 15
Behaviors of Fragment Manager............ccceevieeiiienieeniienieenieeieeiee e 16
Fragment Traveling from Portal A to Portal B...........cccovveiiiieiiiiiiee 19
Fragment Migration EXamplecccoccvieviieniiiiiieniieiieiecceeee e 22
Traffic Distribution EXamplecccooviiiiiiiiiniieeieeeeeeeee e 25
Fragment Traveling according to the Itinerary and Action Strategy......26
Fragment Locating and Messaging...........ccceeevuveeeiiieeniieeeieeeeieeeeiee e 27
Messaging SCenario L........coevieeiiieiiiiiiieieeie et 28
Messaging Scenario IL.........cccocoiieiiiiiiiiiiie e 29
MVP Sample Portal View on a Desktop Browser...........cccceeeeveeriencnnnee. 32
MVP Sample Portal View on Mobile Devices........cccceecuveerveeenveeecreeenen. 32
Class diagram for Arrangementccueeeeeecieenieerieeneeesieeneeeneeneee e 34

Figure 6-1: Facade gateway scenario

vi

Chapter 1

Introduction

The computer using habit has been substantially changed since World Wide Web
(WWW) emerged from early 90’s. Before WWW appeared, computer users were
similar to the dwellers on desolate islets and accustomed to deal with local data and
limited resources on their own computers. Since early 90’s, WWW has connected the
computers all over the world and offers friendly user interfaces and intuitive using
procedures. Therefore, it becomes very easy for everyone to access various contents
and services via WWW. Most people nowadays even use computers only for access
WWW! All the daily-life errands or, chores, such as news reading, shopping,
searching data and materials for the work;or chattinig and communicating with others,

can be carried out after a few mouse clicks.

By reason of that, here comes more‘and more portals that provide or aggregate
multifarious contents and services and arrange or organize them for using
convenience. It has become a growing tendency that the first thing to do, or even the
only thing for somebody, after connected to Internet is visit certain popular portal. As
for most users, they don’t have to worry about forgetting certain URL. They only need
to launch one browser window, and then almost everything can be done on this portal.
On the portal vendor’s view, the more contents and services he provides, the more

people will visit the portal, and then the more money will come.

Besides, portals, which are called Enterprise Information Portals (EIP) or

Enterprise Application Portal (EAP), have been introduced into management of

information inside enterprises. In this way, kinds of members about the enterprises,
say employees, managers, or investors, can be identified after logging, and be dealt

with accordingly and immediately with a variety of one-stop services and supports.

However, several problems rise while the portals are getting more and more

popular:
Servlet Container
<§.e§uest 1< E
‘ “Response 1> | ==
Boal & & S
service() ed. o . <Reauest2< =
oG 2 o H‘I>Response>
doPost() = o ~, ‘ <2.equest3 —“:H
L W L o "4 “Response 3 —
Figure 1-1: Java Servlet Execution Scenario
I. Traditional Web application cannot do jobs asynchronously. HTTP restricts

the functionalities of portals whether they are for common users or used as EIP or
EAP. For fear of HTTP timeout or a lengthy time for users to wait for, portals
nowadays can simply offer services of querying, updating or modifying, and then
display the data and information in an appropriate way. Furthermore, almost all of
the web technologies for generating dynamic pages, such as Common Gateway

Interface (CGI), PHP: Hypertext Preprocessor (PHP [1]), or Java Servlet [2] and

Java Server Pages (JSP [3]), are deliberately designed for the compatibility to
HTTP. Take Java Servlet for an example, as shown in the Figure 1-1, what a
Servlet instance can do is confined to the period between the initiation of the
request and response. When a request is initiated by a client, a thread will be
spawned in the Servlet container and then execute the Servlet code. The thread
will invoke init () method in the Servlet if this Servlet is executed first time, do
the tasks described in the service () method inclusive of doGet (),
doPost (), or doXXX (), which are corresponding to the HTTP methods, and
then produce response to the client. This process for generating dynamic web page
is typical of synchronous interaction. Furthermore, it is not suitable for more
complicated, time-consuming, and intellectual computation because it can only do
things that must be finished in.a restricted period of time.

As far as portal users are concerned,.they have no choice but to use services
fastened to the portals. For example,.if someone, say user A, is a regular visitor of
portal B, but now he needs some of portal'C’s and portal D’s services, say search
engine and city guide which are much powerful than those on portal B. The only
way for A to do is to open several browser windows and access them respectively.
Consequently, users have to remember many URLs of portals, and then
continuously switch plenty of browser windows to pick the services they want.
This absolutely violates the original intension of web portals.

General mobile devices, suchlike PDAs or mobile phones, have tiny screens
compared with those of desktop computers or laptops. Users therefore will get
awfully poor appearances when trying to browse common web pages, as
demonstrated in Figure 1-2. For the time being, common web portals or EIP and
EAP either don’t take mobile devices users into consideration, or proffer a much

simpler and trimmed version dedicated to fit the size of mobile device screens. It

3

costs much time and efforts to re-author a dedicated version for mobile devices.
Nevertheless, the employment of all kinds of portals from mobile devices is not
supposed to be neglected due to the fact that the number of mobile device users is
getting lager and larger. Users are not supposed to be confused and waste time
being adapted to different user interfaces between normal and dedicated version

which are both for presenting the same content.

FleSce L0100 C5T

Figure 1-2: Traditional Web Portal Viewed on Mobile Devices

In order to solve the problems mentioned above, we propose a whole new
framework: More Versatile Portals (MVP). Two concepts, web components and
mobile agents, are adopted into MVP as the basis. As MVP stands for, these two
concepts are going to make portals more versatile. The first one, web components,
means integral parts that present fragments of a page individually. That is, several web
components can constitute an entire page. This idea is quite different from the

traditional one that always regards a web page as just a tree structure comprised of

HTML tags. And the second one, mobile agents, is a very popular technology and
technique in Distributed Computing. The main idea of mobile agents is to consider a
program or process an automatic and intellectual agent, and this agent can be
transferred among hosts all over the network whenever it needs computing power or

resources from other hosts.

In the MVP architecture, the concepts of web components and mobile agents are
integrated into a single component. We will call it a fragment agent or a Fragment in
brief in the following paragraphs and chapters. As the Figure 1-3 shows, there are
several computational logics, or say Fragments, in every portal. These Fragments
have autonomous behaviors and are able to accept users’ instructions and do the
designated jobs asynchronously. .Fhey can also‘travel around portals according to
certain purposes. Afterwards, they ‘are aggregated to produce a page to show the

results or the user interfaces to the users:

Portal C Portal D
Computational . Computational
Logic ‘ Computational Logic ‘

Logic

Computational Computational
Logic - Logic .
Compu‘tationali E Compu‘tationaki E

Logic Logic

Computational

Logic Computational

Logic

Portal B Portal A

Computational Computational im

Logic Compuytational Logic
Loge Computational Response
Logic weo | wle [we
5 5 3

Computational
Logic - ' H '
Computationa‘li E Computationa e, web, wob

Logic Logic aori | gort) | gont

(hgont 1) | (geni2) | (Agomt3)

| | |
web web web

(Agont?) | (Agont®) | (Agents)

Figure 1-3: Fragment traveling and aggregation

As a result, every portal page can be composed of many Fragments, and each of
which has its own functionalities and tasks to be performed. Portal users are allowed
to gather these specific-purposed Fragments into a single page and designate them to
do tedious and asynchronous work as automatically and intellectually as they can.
People thus can do much more things through MVP than using the traditional portals

that can only do very simple jobs constrained by the response time.

Computational

Logic ® ® ®
Web
mponent 3|
(Agent 3)
Computational
Logic
® ®
Web Web

omponent 4Component 5(Component 6

e Vo @ = YAHo%g (Agent 4) (Agent 5) (Agent 6)
E:n‘wcp tational E:n:fuonal
;%, oy 1’2/ oy ® ® ®
Compyatond Compu(anon;\%) Web Web Web
ogic Logic

Component 7/Component 8(Component 9
(Agent 7) (Agent 8) (Agent 9)

Figure 1-4: Portable Fragments for service aggregation

Moreover, if every portal is based on MVP, the Fragments of each portal can be
interchanged to each other. Fragments all around the network are also able to be
aggregated into one portal to serve certain users. People who are not satisfied to any
of existing portals consequently have a chance to customize a specialized one for
personal requirement. Figure 1-4 provides an example to illustrate this concept. If
Google, eBay, and Yahoo portals are established on MVP framework, we can thus
collect Google search engine, eBay shopping mall, and yahoo news into a single
Fragment-style page. People who were used to open several browser windows
simultaneously can now manipulate all contents and services they need in a single

one.

(039) (0%9) R 1
X
Web Web Web
Component 1{Component 2/Component 3 Web
(Agent 1) (Agent 2) (Agent 3) Component 1
(Agent 1)
X & ®
Web Web Web

Component 4Component 5{Component 6
(Agent 4) (Agent 5) (Agent 6)

b2 b2 b2

Web Web Web
Component 7|/Component 8Component 9
(Agent 7) (Agent 8) (Agent 9)

Figure 1-5: Aggregation and rearrangement process

for display on Mobile Device

Mobile device users are al§o taken mto account. Fragments in MVP framework
are born to present parts of pages respectively. When mobile clients send requests to
MVP-based portals, the portals ¢an rearrange the Fragments to form an appropriate
display. As shown in Figure 1-5, all Fragments are considered cards. When the portals
want to display for the mobile devices, they will be rearranged as a deck of cards and
sent back to the client side. Users may choose the card they want at a time in the
display, or they can only download the cards they want to deal with according to their
personal configuration or connection reliability of the mobile devices. Therefore
portals which exploit MVP are capable of displaying suitable pages for mobile
devices. It is not necessary for portal vendors to re-author dedicated pages for mobile

devices.

The rest parts of this thesis are organized as follows: Chapter 2 explains the

system architecture of MVP; Chapter3 illustrates several useful using scenarios for

the MVP framework; Chapter 4 indicates how to develop Fragments and Portals
based on MVP framework, and give some development examples; Chapter 5
introduces some related work; Chapter 6 give the conclusion and propose plans about

future work.

Chapter 2
System architecture of MVP

MVP is based on Java programming language [4]. Servlet specification of J2EE,
Java Portlet Specification from JSR 168 [5] [6] are also referenced. MVP framework
also adopts concepts of common mobile agents [7] [8] and the design of other

implementation of mobile agent system, such as Aglet [9].

Portzl Weo Avoliczitior)

MVP - : Eragment
Server s Manager
Eragment:
Container

Java Virtualiviachine
Operating System

NETWOTH

Figure 2-1: Architecture of MVP Framework

Figure 2-1 shows the system architecture of MVP. MVP server is established on
the Java Virtual Machine (JVM). It consists of four components: Web Server, Servlet
container, Fragment Container, and Fragment Manager. Web Server and Servlet
container provide an execution environment for certain functionalities of the portal
web application; Fragment Container and Fragment Manager store and manage the

necessary Fragment instances for users. Finally, a portal web application runs on the

Web Server. Portal web application exploits the resources and power of Web Server
and Servlet Container to generates friendly user interfaces, handle user requests,

arrange Fragments, and generate appropriate display for users.

As Figure 2-2 demonstrates, when a request is sent by a user, portal web
application will process it and decide the Fragments that comprise an entire page. The
Fragment Manager is afterwards asked to retrieve required Fragment instances from
Fragment Container, or produce Fragment instances that are required but doesn’t exist
yet. After Fragments generating contents according to the user requests, portal web
application can load these Fragment contents and aggregate their contents to form a

whole page. Consequently, the complete page will be sent to the client who sent the

AN E T
2l :- ..1‘-.‘-_;_‘:;. 7_#;‘- &

request before.

Fragment Manager

Fragment Container
Fragment Fragment
Instance Instance
Fragment Fragment
Instance Instance)

Figure 2-2: Relationship and Interaction of MVP Components

In MVP server, there are no designated distributions or implementations for Web

10

Server and Servlet Container. That is, all kinds of web servers and Servlet containers
are allowed to be used as long as they can correctly process HTTP protocol and
follow the Servlet standard in J2EE. The following three sections are going to explain
respectively the design concepts and internal operation of the rest parts of MVP:

Fragment, Fragment Container, and Fragment Manager.

2.1 Fragment

Fragments play the role of web components when it comes to generating pages
that display user interfaces and execution result. On the other hand, Fragments are

considered agents that are specialized for certain tasks. Therefore, Fragments need to
T

have their own lifecycles to .acco
Eoty |- ==
= =i o [

corresponding designs for both Web “(_:_(.)mp ﬂaerits-aﬁq:_fpobile agents.

|

Fragment:

Itinerary
ActionStrategy

= - action()
fragmentLogic() h
11100 _ Mnitialize:..

‘ User Interface B onder()

Figure 2-3: Fragment Behaviors

As shown in Figure 2-3, action () method in a Fragment will receive the

request passed by the web portal application and act as the request said, and

11

render () method is responsible for generating the user interface and display the
execution result belonging to this Fragment. Besides, acting as a thread, a Fragment is
therefore able to have its own lifecycle. The fragmentLogic () method contains
the code for the Fragment routine behavior, and the Fragment thread will execute the
fragmentLogic () method until the task finishes. Users certainly can request to
change the status and lifecycle of this Fragment thread by setting some attributes. For

instance, if the suspend attribute is set as true, the Fragment is asked to be suspended.

Fragments also require some autonomous and intellectual properties for most of
the tasks. Whenever a Fragment needs to travel around the hosts or make some
decisions, it will act according to what its Ttinerary and ActionStrategy
attributes said. Itinerary holds the necessary route for the task, while
ActionStrategy is a Java-interface that-defines a set of methods which make
decisions. The following two subsections-will-éxplain the design of Ttinerary and
ActionStrategy. Besides, Chapter. 3 will show that how a programmer use
Fragment class to develop his own Fragment agent, and chapter 4 will compare

Fragment with the component of other related or similar research.

2.1.1 Itinerary

Just imagine that your mother ask you to buy her today’s newspaper and
something for breakfast. To accomplish what she wants, you have to determine your
own itinerary. For example, you may go to a newsstand near your home first, and then
buy sandwiches, bread and milk from a food stand or supermarket. Finally, you go
back home and enjoy breakfast with your family. Likewise, a Fragment which is
assigned to perform specified jobs also needs its own itinerary. Before the Fragment is

sent for designated tasks, it must be informed of that where to go and what to do.

12

The Itinerary object of a Fragment is designed for this purpose. It contains
address of all stops while the Fragment is traveling around the network. Whenever a
Fragment is dispatched to do jobs, its Ttinerary object should be configured
correctly. Figure 2-4 illustrates details of Ttinerary. We can see from the figure
that the Itinerary object also provides several methods for the sake of

configuration:

Itinerany:
itinerany

x

addHep() ed Address _

deleteHop() e =
deleteHop!() =Lt €38 .

Figure 2-4: Behaviors of Itinerary object of Fragments

2.1.2 ActionStrategy

A Fragment is always assigned to do different jobs on different hosts or portals.
Whenever a Fragment arrives at a host, it needs to fulfill what it was assigned to do.
In some situation, however, the job to be fulfilled is not very simple so that the
Fragment needs some rules or criteria to help it. For example, if a Fragment is sent to
bid for something such as antiques, it is important to have a smart and effective

strategy. Thus, ActionStrategy is designed for this necessity.

The design of ActionStrategy is similar to a traditional solution of Artificial

13

Intelligence: decision tree. Figure 2-5 and Figure 2-6 show the inner structure and
behaviors of ActionStrategy and collaboration of ActionStrategy instances,
respectively. Figure 2-5 tells that an ActionStrategy object has a decide ()
method. This method contains main computational logic for a certain rule or behavior.
After doing things according to the rule, decide () method produces a result which
determines what to do in the next step. Assume that there is a Fragment which was
assigned to bid for a digital camera and dedicated accessories for it, for example,
storage media and batteries, in an auction. Then if the Fragment gets the batteries that
are designed for a certain brand, it is supposed to bid for the camera of the specified
brand in the next step.
i T,

For a sequence of dependent.mq,'.eigfé;ldp_é:,. wgn ed a data structure that is similar to
i-:."“':,:" i ’ PEL -

a decision tree to solve this;zlprpblerﬁ. A

i

Flgurq 2-6 depicts, we consider an

ActionStrategy object a it}fqde‘-j*_g ion tree. Each ActionStrategy

- - o = n".‘ l\p ' .
object will try to accomplish certain:task and then decide which node should be
TEREENT®
executed next. By traversing an entire decision tree, a Fragment can handle all
conditions whenever a decision is need to be made. In this way, a Fragment can

autonomously do a series of jobs while traveling around the network as long as the

decision tree was configured appropriately in advance.

Nex¢
ifn t::;" ate ActionStrategy:
Cept
accet‘ Do the Job
trate
Next S and
if ac.t:ept

Figure 2-5: Inner Structure and Behaviors of ActionStrategy

14

ActionStrategy ActionStrategy

Figure 2-6: A decision tree made of ActionStrategy objects

2.2 Fragment Container

Fragment Container is jus ? . kinds of MVP data, and there is

another component, Fragment +designed as the stowage keeper.
Whenever the data stored in Fragment Container are need to be modified, Fragment

Manager will be informed and do the modification. This can guarantee the correctness

and consistency of the modification.

Fragment

Manager
Eragment

Container:

Fragment_agents

»
c
=
wid
o
<
o

rlFT=10]=

Figure 2-7: Behaviors of Fragment Container

15

Fragment Container includes two major parts: Fragment agents and
HFTable. Fragment agents is stowage of Fragment instances while HFTable
keeps track of the current position of Fragment instances. The content of
Fragment agents and HFTable should be modified by Fragment Manager
whenever a new Fragment instance is spawn, destroyed, or a Fragment instance has
finished his work on a host and has to travel to the next stop along the determined
route. For example, as demonstrated in Figure 2-7, when a new Fragment instance is
needed to be spawned, Fragment Manager will be notified to create a new Fragment
instance, and store it into the Fragment Container. At the same time, Fragment
Manager inserts a new entry into HFTable for the new Fragment instance. This entry
is a registry indicating the present location of this Fragment instance. Then if this

13 JRLALLE s,
Fragment instance is going to be Woyed F“a‘g?ﬁ}ent Manager will delete the related

Ln@r s\
entry in HFTable of Fragment on ‘:;,g:.w ‘ -‘j v
- '-u ,_ _." "ﬂ

Fragment Manager:
HETable Update’ j update
Message Transfer S3ge

Locati .
‘M Lookup Service

agentDepart() mp £ = I
agentDestroy() &

agentSpawn() ‘ F

Ms loadEragments()

Figure 2-8: Behaviors of Fragment Manager

16

As mentioned in section 2.2, Fragment Manager is the stowage keeper of the
Fragment Container. Thus, Fragment Manager provides managing methods for
several purposes. Figure 2-8 shows that 1oadFragments () obtains the required
Fragment instances in the Fragment Container. While agentSpawn () creates a new
Fragment instance and store it into Fragment Container, agentDestroy () destroys
the perishing Fragment instances in the Fragment instance. In chapter 3, there will be

more detailed explanation for these methods.

Besides, several services are provided in order for the advanced manipulation to
facilitate Fragment behaviors:
1. Agent Departure:

You may regard this service as an airport for Fragment to go abroad. When a
Fragment is going to depart for some purpose; it can invoke agent departure
service, and then this service iwill-transfer the Fragment to the designated
destination.

2. HFTable Update:

HFTable update service in Fragment Manager is responsible for modifying
entries in the HFTable of Fragment Container. As changing current location, a
Fragment should inform the HFTable in its birthplace of the destination address,
and then HFTab1le update service in its birthplace will update the corresponding
entry with the latest information.

3. Message Transfer:

Fragments might need to collaborate for a certain purpose. As a result, they
have to exchange data and information in order to work together. Message
Transfer service can help fragments to interchange information and data by means

of sending messages to each other.

17

4. Lookup Service:
Lookup service of Fragment Manager is designed to obtain the latest location
of a Fragment. Whenever a Fragment or a service is about to find another
Fragment, the lookup service in the birthplace of the target Fragment will be

invoked and return the current position of the Fragment to the requester.

We will see some of the popular using scenarios of MVP framework in the next

chapter.

18

Chapter 3

Using Scenarios of MVP Framework

The specialized services mentioned in the former chapter compose an
infrastructure that facilitates various behaviors of Fragments. We will show some
using scenarios for demonstration in the following paragraphs:

1. A Fragment is appointed to migrate from a portal to another, as Figure 3-1. A
user employs HTTP protocol to issue a request to ask some Fragment leave for
another portal. Fragment Manager then transfers the requested Fragment to the

destination.

Portal A Portal B

Portal Web Application Portal Web Application

Fragment Manager Fragment Manager

Fragment Container Fragment Container

Figure 3-1: Fragment Traveling from Portal A to Portal B

Use case:

L Suppose there are several portals that are all based on MVP framework.

A user A needs some services provided by these portals respectively. For

19

IL.

using convenience, user A might want to aggregate all services he needs
from different portals into a single portal. Thus user A can send request to
the Fragments that are responsible for the services, and direct them to
certain portal for assembling a page full of desired services.

User A might need to negotiate with user B who is registered on a
different portal for some matters or business. For example, as Figure 3-2
shows, a user opb is going to make an appointment with iyasu. In Figure 3-2
(a), we can see that iyasu can directly send his scheduler to opb. User opb
thus can understand the schedule of each month after a glance. And then, in
Figure 3-2 (d), opb can communicate with the coming Fragment and choose

the days he wants for a date, as Figure 3-2 (e) shows. In this way, the

AT EBREF =
2l ‘-' LB } P T

%"

after a few

engagement can be madi clicks on the Fragment instead of

VOGUEBSEr R F 4
b o
| S | Mon | Tue | Wed | Thu | Fii | Sat [-vahoo! SHEGEMNE 7k
A o 2 i 7 5 ZEmartNet i BT T T3
&0 Sol Set Sel prsl e Y
. = “TaipeiWalker
t & 7 ¥ v w 7] B
-
Code: i 7 i) 15 7 W
Sat Sel - Sat Se1
Sl e
I - - 2z = &
Taipei 16~19 C E| il So a1 Sat 0
Taoyuan 16~19C 7 2 9 B
Hsinchu = 16~19C E| Set Sl & Set
Taichung 4~]8¢C Tamtl.lae:h""i’@“':'-”l“m_ b @ s
£ 1-] ar
Tainan 15~19C EI \ } = My Bookmarks Hwe
Kachsiung 16~20C EI ;%a::m_lhm
Hwalian 16~19C ek
Taitung 18-21C [:' blew Yok Tues
poat;

« ltisa Start, but the Yanks Need More
= Do not Bet Against Bonds in Bun at 400

20

(a): User iyasu sends an auto scheduler Fragment to user opb

Epapers

A g
i d
0

a
9101 RY

cotes__) (55)

Waathar Astrology
16~19C
16~19C
16~19C
1a~18C
15-19¢C
16-20C
16~19¢C
18-21C

(5]
[#
[
[#

Search

Weather

16~19C [#]
1619 C
16~9c [#]

16-19¢
1821 C E|

=
—f £
kK

(c): The original page of user opb

21

Search Auto Scheduling Agent

16~19C
16-19C
1418 C
15-19 ¢
16200 @
16~19¢ [a]
1821 C @

Mailbox

=5

- dl
swounnrnB
cote| |)

16-19¢C

T

1620 C

16~15C

18-21C E|

2
e
kL

o]
gwnrnB

ot ()

(e): User opb selects two days for the date

Figure 3-2: Fragment Migration Example

22

I1I.

This situation may also happen in enterprise management when using
EIP and EAP. For example, investors and managers of the company use
individual accounts to login the EIP or EAP for accessing and maintaining
personal data. When a manager has to negotiate with an investor or
employer, he can send a Fragment which carries only the necessary
information and data. Thus, the investor or employer will only see the
related information that the manager wants to display.

Fragment migration also helps traffic distribution. Figure 3-3 shows a
good example for this. Yahoo News aggregates all kinds of News from
many News sources to help users read news conveniently. Thus Yahoo
becomes the traffic bottleneck when users read news on Yahoo, as
illustrated in Figure 3-3 (a). Everyone réads news from Yahoo News though
these kinds of news are all from other news-providers.

If Yahoo is established upon-MVP framework, the Yahoo News Service
can be distributed to other. cellaborative MVP-based Portals, as Figure 3-3
(b). In this way, all of these portals can serve users with Yahoo News, as
depicted in Figure 3-3 (c). Therefore, users who want to access Yahoo News
service can choose to connect to other collaborative portals that also have

Yahoo News Fragment. And then the network traffic is thus distributed.

23

(a): Traffic bottleneck on Yahoo News

Yahoo! FREE
NN E e EN MBS i ER BN

O R o
[T I TS T

DE YT

*0
YaHoO!
HHS

(b): Distribute News Fragment to several portals

24

(c): Network Traffic after News Fragment distribution

Figure 3-3: Traffic Distribution Example

2. A Fragment travels arounhd many hosts. on the network for the sake of
automatically accomplishing .the ‘assignments- Figure 3-4 indicates that a
Fragment on portal A have to travel-among. four portals. After Ttinerary and
ActionStrategy of the Fragment being configured, the Fragment can decide
where to go and what to do by its own.

Use case:

L Fragments can be utilized to conduct tasks that ought to follow some
determined rules and procedures. For example, a user may need to send a
Fragment with official documents that need several staffs or officers to sign
in a certain order. First, the user has to configure the Ttinerary for this
task, and set the ActionStrategy to handle some predicable situations.
In this case, the Fragment must deliver the documents and make sure the
signature order. Some of the officers may not be satisfied with the content
of documents and reject them. Thus the Fragment is supposed to go back to

the former stop and help the staffs there to modify them. After the

25

3.

configuration of Ttinerary and ActionStrategy, the Fragment can
travel among portals, communicate with the appointees, and do the

assignments autonomously.

Portal B Portal C

Figure 3-4: Fragnfent Traveling according to

the Itinérary and-Action Strategy

II. On the other hand, Fragment may need tremendous data and
information distributed in many different portals. Under such circumstances,
the Fragment with the computational logics can be sent to travel the portals.
The only thing that migrates from one portal to another is the code for
computation in the Fragment. This using strategy will prevent network from
enormous data traffic.

Collaboration among Fragments is required when we divide a complicated
task into several much simpler ones. In this condition, it is necessary for
Fragments to negotiate and communicate with each other. MVP framework
provides an infrastructure much similar to the one of telephony. Wherever a

Fragment is, it can invoke the message transfer service in the local host, which is

26

just like to give a phone call. Then the messaging infrastructure will try to find the
receiver according to the provided Fragment address.

Figure 3-5 depicts that how the massaging infrastructure facilitates the
communication among Fragments. Suppose that a Fragment F is on the portal C.
When F is going to communicate with Fragment A which was born on portal A, F
will invoke the massage transfer service on the portal C. Message transfer service
will first ask portal A for the current location of Fragment A. After portal A tells
portal C where Fragment A is, say portal B, the message transfer service of portal

C will send the message to portal B for Fragment A.

Portal A Portal C
!ﬁw -
dcslab.cis.nctu.edu.tw
ﬂe_nt@n%
otherplace cis.nctu

dcslab.cis.nctu.edu.tw

Portal B

otherplace.cis.nctu.edu.tw

Figure 3-5: Fragment Locating and Messaging

Use case:
L In addition to collaboration among several Fragments, this messaging
infrastructure can also be applied for other purposes. Suppose there are two

users who are behind two firewalls individually. They are allowed to use the

27

network only via port 80. Thus they can use HTTP to control two remote

representative Fragments to communicate with each other, as shown in

Figure 3-6.

Portal A Portal B

®

Fragment 1

(=
Fragment 2 | Fragment 3
F ragment 6
® @
Fragment 8

i

Fragment 7

Fragment 7 | Fragment 8 | Fragment 9

ent
®
nt9

= | : # l. F “ ‘ ! :‘

J

Figﬁl;e 3-6: Messaging Scenario I

II. Besides, messaging infrastructure also facilitates communication
among heterogeneous platforms. In spite of proprietary protocol on each
independent platform, platform A can send a Fragment to platform B, and
then the Fragment will be remotely controlled by platform A to invoke

necessary processes or services. Figure 3-7 illustrates such a condition.

28

Platform B Platform A

o: Processes or services on Platform B

h: Invoke processes or services

Figure 3-7: Messaging Scenario 11

29

Chapter 4

Development based on MVP

To develop a portal on MVP framework, there are two things to do. First, write a
portal application that is directly access by the end user. Second, develop Fragments
which will be employed in the written portal application. In this chapter we will
explain that how to develop a portal application and Fragments using MVP

framework.

4.1 Development of Portal Application

It is very simple to develop a portal application based on MVP framework. As
mentioned above, there is a Java Servlet.Container embedded in the MVP framework.
Programmers thus can use Java Servlet to write their own portal application according
their own demands. Besides, programmers need to design their own patterns to
arrange the Fragments’ appearances in a user-friendly way, or use a default pattern
offered by MVP framework: three-column arrangement. Each of the Fragments has an
attribute to indicate the position it should appear at, and thus the arrangement patterns
can make use of this attribute to make up appropriate appearance of a portal page.
Table 4-1 shows a usual program template to form a portal application. As depicted in
the table, myPortal is the sample portal application. Similar to common portal
applications, myPortal extends HttpServlet class from a standard Java Servlet
package. Then the programmers may write the code in the doPost () or doGet ()

method to arrange Fragments’ appearances properly and compose their portal pages.

30

public class myPortal extends HttpServlet{

public void doPost (....) {
//code for determining fragments that constitutes a page
fragments = FragmentManager.loadfragments();
fragments.someAgent.

action (request) ;

this.arrange (fragments) ;

}

private void arrange (ArrayList fragments) {
//get UI generated by render () of fragments
//arrange fragments in certain order
ThreeColumnPattern.arrange (fragments) ;
ThreeColumnPattern.display () ;

}

Table 4-1

First, the portal application may” request Fragment Manager to load required
Fragments from Fragment Container. After loading Fragments, Fragment Manager
returns the references of these Fragments to the portal application. Receiving
fragment references, the portal application should hand the user request to the
designated Fragment. Afterwards, the portal application calls the arrange ()
method to get Uls generated by all Fragments (Uls can be HTML code segments
stored in String type, or even Java Applet), and arrange them in default, user-defined,
or device-dedicated patterns. In this case, arrange () method exploits
ThreeColumnPattern class which is provided by MVP framework as a default
arrangement pattern. The instance of this class will first classify the Fragment

contents into three columns. Thereafter, it will display these Fragment in the

31

designated order to form a whole page.

Search

Auto Scheduling Agent

Mailbox
You have 2 new e-mail
AN Y Times.com: Todav's
Headlines
=infod @enews.sony.com.tw:
What's new today?

Bookmarks
\'ﬂ 80 . - ~ My Bookmarks Hew
i o E 0 E ;E Pget |[Foet (M |y @ Fehoo! FrEF
L
901 121] 73. :9 20@ Plot | set asn
3 Hrkr = ‘ £ .
iz |[EF) b B [s g; s [Tt [(Fs [P
o 31 VOGUESFS T30
Set Set =
Weather = = Yahoo! ZFEEELH =
i T i ahoo &3 gﬁ ER Al e i
Taipel 1610 C Hame: | Schedule@ivan v | dnsr. MOUI388.M5 v [From: 1 | 7a:(! | . =
Megetiae | | Depart
Tacyuan 16~19¢C - - ‘Taipei Walker
R | =2 o)
Heinchu ~ 16~19C T s
Taichung 14~180C Headlines: 5515 1aeeey | Basy {RER
Tainan 15419 ¢ = Army Punishes 7 With Reprimands for Prison Abuse
« White House Rejects Jordan's Request for Statement on Palestinians P
Kaohsiung 16~20C : e China Races to Reverse Falling Grain Production
4 Fortune
Hwalian 16~19 C I:l Sport: L [N=REtLC Il Tellers 5510 1
Taitng 18-2LC » Itsa Start, but the Yanks Need More BEAE
» Don't Bet Apainst Bonds in Run at 400 20047 it
EE AR
SLErEs TR

9 1o 11

Al
1z 13

Wil TR & & af &

Figure 4-2: MVP Sample Portal View on Mobile Devices

32

Figure 4-1 and Figure 4-2 give a sample view of a MVP portal application. The
portal appearance in Figure 4-1 shows a three-column pattern of display. Fragments
appear in the page as HTML tables, and each of them has an appropriate region in the
whole page. With the arrival and departure of Fragments or user preferences, the
arrangement of the page can be flexibly changed. In Figure 4-2, the identical content
of the portal is displayed on a mobile device. We can see that when the portal
application detects that the requesting client is a mobile device, it can rearrange the
portal content in a different pattern. Consequently, the mobile device users will see
one Fragment at a time, and then click to choose the other fragment if they want the
information displayed on other fragments. The left one of Figure 4-2 shows Fragment
about the information of the stock market, while the right one shows the Fragment of

auto scheduling agent.

MVP framework provides.a Java interface Arrangement to be implemented
by other subclasses. The default arrangement’ ThreeColumnPattern also
implements this interface. Therefore, if programmers want to design their own
arrangement pattern, they can write their own arrangement class. The relationship
among these classes is depicted in Figure 4-3. Arrangement interface mainly
consists of two methods: arrange () and display (). The subclasses should
implement these two methods for arrangement. For example, the arrange ()
method of ThreeColumnPattern classifies all Fragment instances into three
groups, while the display () method displays all these Fragments in certain order

to generate the portal page.

33

==interfaces==
Arrangement

+ arranged void
by +displayd ;void 2

a > -
l// ’J 1" _\
B i \ ~

ThreeColumnPattern TwoColumnPattarn QtherPattarni COtherPattern2
- LeftColumn ; ArrayList - LeftColumn ; ArrayList - attribute ; Void - attribute ; Yoid
- MiddleCalum : ArrayList - RightColumn : ArrayList T -
- RightCalummn : ArrayList +arrange void + arranged void

i +arranged vaid + displayd :vaoid + displayd vaoid

+arrange :vaoid + display(: vaid + othermethod? : void + otherMethad :void
+display(; vaid

Figure 4-3: Class diagram for Arrangement

4.2 Development of Fragments

As the former section said; what portal application does is only load Fragment
instances and aggregate content of them: The main interaction between a portal and
users is handled by each of Fragment instances. In this section, we will explain how to

develop Fragments on MVP framework.

It is also quite simple to develop Fragments on MVP framework. In MVP
framework, there is an abstract class Fragment. It leaves four methods for
programmers to implement: action (), fragmentLogic (), init (), and
render (). As Table 4-2, Programmers should write a class that extends the abstract
class Fragment, and then fill the four methods with the necessary code respectively.

The functionalities of the methods are described as follows:

34

public class myFragment extends Fragment{

public void action(....) {

}

}
private void fragmentLogic () {

//Things that default thread will do
}

private void init () {

//do initialization for this fragment

}

private void render () {

//generate the user interface

//request handler

}

Table 4-2

.action ()

The user requests are going:to_be passed to action () method, so the
intention of this method is to handle the incoming request from users. For example,
the user request might contain parameters to fill in some form, to suspend a
Fragment or ask it to leave. The programmer should write the corresponding code

in this method to realize the functionalities that he allows users to invoke.

. fragmentLogic ()

As remarked above, a Fragment is always assigned to complete some tasks,
so it often has a default thread to do the designated jobs. The fragmentLogic ()
method is designed for the default thread. Programmers should fill in this method
with the code that will do the jobs this Fragment is born for. Besides, a Fragment

certainly can be a common web component that cannot act as a mobile agent. In

35

this case, the fragmentLogic () method can be leave to be blank.
3. init ()

This method does the initialization that need only to be done once. For
instance, the programmer can set the name, traveling route, or other configuration
in this method.

4. render ()

Programmers should write the code to generate the appearance of this
Fragment. Basically, it is appropriate to show a Fragment with a HTML table for
the ease to aggregate Fragments on a single page. It is fine to display a Fragment
in whatever way as the programmers wish as long as there is corresponding design
in the portal application. For example, programmers can also embed a Java applet

into a HTML table to provide a‘friendlier userinterface.

MVP framework also provides telated-APls for Fragment developers to access
Fragment Manager. Therefore, when users ask Fragments on a portal to perform as
they suppose, Fragment Manager can facilitate Fragments to accomplish the tasks.
For example, as mentioned in the description of action () method, if Fragments is
assigned to leave or send message to other Fragment, the Fragments have to invoke
the provided APIs for related services of Fragment Manager. These APIs are as
follows:

1. agentSpawn ()

As its name reveals, agentSpawn () method is used to create a new active
Fragment instances. The code in this method takes the name and the path of the
class of the Fragment to load the class and spawn a thread for the Fragment
instance. Then the Fragment instance will be stored into Fragment Container. In

this way, the Fragment instance can do the designated jobs asynchronously in the

36

background. Besides, this method also creates a new entry of HFTable for this
Fragment instance. It results that Fragment Manager can keep track of the latest
location of the Fragment instance, which is helpful to the communication among
all Fragment instances.
. agentDestroy ()

agentDestroy () is the complement method of agentSpawn (). When
this method is invoked, it will first delete the corresponding entry of HFTable,
then stop the thread for this Fragment instance and remove it from the Fragment
Container.
. agentDepart ()

When the Fragment instance is assigned to leave for next stop according to
the itinerary, it has to call agentDeparty(). This method will establish a
connection to the destination in.accordanee with-the configuration of Fragment’s
itinerary. Afterwards, agentDéepaxrt-()—method will use Java Serialization
mechanism to serialize the Fragment instance and its states to the next stop. After
arriving at the destination, the Fragment instance will be deserialized and
recovered to the latest state. Therefore, the Fragment instance can continue to
execute what it has to do.
. inform{()
When a Fragment instance has to communicate with other Fragment instances, it
is necessary to invoke inform () method offered by Fragment Manager. After
invoked, this method will set up a network connection to the host that the target
Fragment instance is situated at. Then the message will be sent to the host, and the
Fragment Manager on that host will deliver it to the target Fragment instance. The
message is sent in String type. Therefore, the Fragment developer can make up

unique message format such as XML message for their own Fragments.

37

Chapter 5
Related Work

MVP integrates two popular technologies in different domains to construct a
whole new framework for building portals. In the following paragraphs, we will
expound the related researches and development of these two domains: portals and

mobile agents, and compare them with the design of MVP respectively.

5.1 Portal

Nowadays the number of Internet, users is getting larger and larger, and each of
them has his own desired servicés. For @xample, housewives might prefer shopping
information while teenagers might prefer sports news and traveling information. As a
result, some of the major portal vendors-are gradually changing their authorizing
strategies to satisfy the requirement ‘of ‘personalization of portals. The most
well-known way to manage personalization issue is employing an idea of web
components to make up a page. These kinds of web components are generally called

Portlets.

In spite of the identical opinion and idea, portal vendors develop their respective
Portlets. There is no open standard for these kinds of web components until Java
Portlet Specification 1.0 was released from Java Community Process (JCP) on
October 2003. But neither the standardized Java Portlet nor other kinds of
vendor-specific Portlet design solves the problem thoroughly: they ignore the users of

mobile devices.

38

Traditional portals always use various techniques which cannot be applied to
mobile devices to fulfill many fancy styles and appearances. The users can only see
the simplified versions or segmented pages of these portals on their mobile devices.
When it comes to the simplified versions, users often hang back for fear of the bad
look-and-feel. In addition, they need to make themselves be accustomed to another
user interface different from the original version. As for researches about segmenting
web pages [10] [11] [12], the result is always poor because there is no common styles
and strategies for page arrangement. On the other hand, though the portlet-based
pages are suitable to rearranging for mobile devices, the portlet-based systems or
frameworks other than MVP do not think over this issue (see Figure 1-2 in chapter 1).
MVP framework considers a page a set of Fragments, and it can rearrange the page
according to the Fragment-based structure. Therefore the display for mobile devices is
easy to be generated. Users will see that one-Fragment is shown at a time, and they
can choose whatever Fragment they want.-Users-can also configure that which

Fragments are needed to be downloaded to mebile devices in advance.

Additionally, when using traditional portals, users will be bound to certain
portals which offer certain services. They have to browse portal A for some services,
and then get to portal B for others. MVP framework can aggregate all kinds of
Fragments based on MVP from any portals throughout Internet by means of migrating
the wanted Fragments to a single portal. In this way, users don’t have to be on the run

browsing numbers of portals any longer.

39

Portlet-based portals also leave two problems:

1. Portlets that follows Java Portlet Specification may adopt Web Services for
Remote Portlets (WSRP [13]) to communicate with remote portlets. But in this
way, portals still cannot acquire remote portlets to execute them locally. Thus, if
the remote portals or their network connections failed, the way WSRP provide to
communicate with remote portlets will also fail.

2. Portlet-based portals generate pages consisting of several portlets. If one or
several of the portlets fail to execute or consume too much time, the performance
of generating a page will get worse because it has to wait for all portlets which

forms the page.

Compared with traditional portlet-based portals, MVP framework can rearrange
pages for mobile devices and gather fragments from all MVP-based portals. Moreover,
all Fragments in a page can be desighed-as-smart as possible, and then they can

negotiate with each other automatically for performance issues.

5.2 Mobile Agent

MVP also proposes a good way to manage and use mobile agents. Other
researches about user interfaces for managing mobile agents can be roughly divided
into two parts:

1. Developing standalone and dedicated applications to manage agents [14].
However, such kind of applications need to be installed in some specific
procedures, and are usually bound to certain platform. Thus, it is inflexible to use

these dedicated applications.

40

2. Adopting web-based user interfaces to manage mobile agents for users’
conveniences [15]. For example, a fragment of HTML code or a Java Applet is
mapped to a mobile agent to control it [16]. Users can use any kinds of client
devices that have a browser to manage and control mobile agents. But it is still not
flexible enough for users to access mobile agents when they want to control
agents that are from other hosts. They cannot share their agents with others and

make use of others’ agents.

Using MVP framework, users can easily employ others’ agents, as known as
Fragments, and manage them in an efficient way. Mobile agents that travel around the
network are seen as ships and then anchored to a portal based on MVP framework.
Agents will be automatically arranged to be displayed on the portal pages, and the
users who use desktop computers or mobile devices ean access the agents through the

portal.

41

Chapter 6

Conclusion and Future Work

MVP framework introduces several new ideas for both web technology and
mobile agents. As for web technology, MVP framework is able to provide more
versatile services that are not limited by HTTP response time. Portal users can use
intact HTTP protocol to assign Fragments to fulfill kinds of asynchronous tasks
autonomously and intellectually. MVP framework can also gather all necessary
services for users to facilitate management and personalization. And in the aspect of
mobile agents, MVP framework provides a much easier way to use and manage them.
Users can centralize all agents they need,with common web browsers into a single

portal, and manipulate these agents simply|in‘a'very.convenient way.

There are still many things to do-with-MVP framework in the future. They are:
1. Provide offline usage of MVP for mobile'device users:

Mobile device users always have unreliable network connection for the sake
of mobility. Under some circumstances, for example, before entering an
environment without wireless connection, they know that the connection will be
broken. If MVP framework offers such a service so that the users can in advance
download the necessary Fragments with the computational logics to their mobile
devices. Then they can do some negotiation or configuration with the Fragments
even they are surrounded by a disconnected environment. After the connection is
resumed, all things that have been done before will be automatically synchronized

with the portal.

42

2. Lookup for Fragments according to their functionalities:

The present MVP framework can only lookup Fragments in accordance with
the complete name of them. That is, the user who wants to lookup some Fragment
must give the complete name such as “schecule@iyasu@dcslab.cis.nctu.edu.tw”,
and then MVP framework will return the current location of the wanted Fragment.
It may be more convenient for users if MVP framework can lookup fragments
according to certain given attribute or purpose. Users or Fragments thus can find

any other adequate and competent Fragments with which they want to collaborate.

3. Locate Fragments in a more effective and efficient way:

In the current design of MVP framework, Fragments have to register to their
birthplaces. Whenever leaving: some host for another, Fragments report their
current location to the birthplaces for keeping track of themselves. Afterwards,
queries are sent to the birthplace; and-the latest location of any Fragment born in
that place will be returned. This scenario-might be inefficient if the Fragments
frequently travel among several hosts. Improved scenarios may need to be
proposed. For example, Fragments can be seen as mobile phone or mobile device
users and the portals can thus be regarded as base stations or access points, and
then MVP framework can adapt the location-aware scenarios of mobile telephony

or wireless technology to locate Fragments.

4. Security issue:
As mentioned in chapter 3, Fragments facilitate communication among
heterogeneous platforms regardless of proprietary protocols. Fragments can
migrate from one platform to another and then execute certain tasks or invoke

certain services on the target platform. Under such circumstances, there are

43

potential crises that malicious Fragments may emerge to do harm to those
platforms who accept these Fragments. Therefore, the security issue will be very
important after the MVP framework is getting more and more popular. Designs

for security should be added into MVP framework in the future.

. Although portals based on MVP framework have Fragment-based structures and
is quite suitable for mobile device display, there are still many portals that are
authored in traditional ways. If someone wants to apply MVP framework to the
existing traditional web portals, the only way at the present time to achieve the
goal is re-authoring the current portals to conform to the specification of MVP
framework. It is really time-consuming and tiring work. A facade gateway needs
to be developed to solve this problem. We can.see the scenario in Figure 6-1. The
facade gateway is a web portal based en MVP framework. Fragments of the
facade gateway can be automatically-mapped to services on the traditional web
portals. If the Fragment-based appearance is needed, users can directly access the
facade gateway whether using normal desktop computers or mobile devices.
Moreover, Fragments can not only be mapped to services on traditional web portal
but at the same time do other jobs such as improving and integrating the
functionality of the correspondent services. In this way, the traditional portal can

also make use of MVP framework.

44

Traditional
Portal A

%,

\ Facade
Traditional\

Traditional J
Portal

Ry

¢
Q

eway scenario

45

[1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

References

PHP, http://www.php.net

Mark Roth, Eduardo Pelegri-Llopart, “JavaServer Pages™ Specification
Version2.0”, Java Specification Requests — 152, November 24, 2003

Danny Coward, Yutaka Yoshida, “Java™ Servlet Specification Version 2.4”,
Java Specification Requests — 154, November 24th, 2003

Sun Microsystems, Java, http://java.sun.com

Alejandro Abdelnur, Stefan Hepper, “Java"™ Portlet Specification Version 1.0,
Java Specification Requests — 168, October 7, 2003

Stefan Hepper, Stephan Hesmér, “Introducing the Portlet Specification”,
http://www.javaworld.com/javaworld/jw-08-2003/jw-0801-portlet.html, August
1, 2003, http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-portlet2.html,
September 5, 2003

David Wong, Noemi Paciorek, Dana Moore, “Java-based mobile agents”,
Communications of the ACM, Volume 42 , Issue 3: 1999, pp. 92-102.

Danny B. Lange, Mitsuru Oshima, “Seven Good Reasons for Mobile Agents”,
Communications of the ACM, Volume 42 , No. 3: 1999, pp. 88-89.

Danny B. Lange, Mitsuru Oshima, “Programming and Deploying Java™

Mobile Agents with AgletsTM”, Addison-Wesley Pub Co, September 15, 1998

[10] Yonghyun Hwang, Eunkyung Seo and Jihong Kim, “WebAlchemist: A

Structure-Aware Web Transcoding System for Mobile Devices”, Proc. Mobile

Search Workshop, Honolulu, Hawaii, May 2002

[11] Jinlin Chen, Baoyao Zhou, Jin Shi, Hongliang Zhang, Qiu Fengwu,

“Function-based object model towards website adaptation”, WWW 2001:

46

587-596

[12] Joseph W. Sullivan, T. Bickmore, A. Girgensohn, “Web Page Filtering and
Re-Authoring for Mobile Users” , The Computer Journal - Special Issue on
Mobile Computing, Volume 42, Issue 6: 1999

[13] Alan Kropp, Carsten Leue, Rich Thompson, “Web Services for Remote
Portlets Specification Version 1.0”, August 2003

[14] Alberto Silva, , M. Mira da Silva and Artur Romao, “User Interfaces with Java
Mobile Agents: The AgentSpace Case Study”, Proceedings of the First
International Symposium on Agent Systems and Applications (ASA '99), Palm
Springs, California. IEEE Computer Society, October, 1999.

[15] Anselm Lingnau, Oswald Drobnik, “Agent-User Communications: Request,
Results, Interaction”, In Proceedings of Second International Workshop on
Mobile Agents, MA’98, Stuttgard, Germany, 1998.

[16] A. Rodrigues da Silva, M. Mira da,Silva, Artur Romao, “Web-based Agent
Applications: User Interfaces-and Mobile Agents”, Proceedings of the
IS&N"2000 Conference (Athens, Greece, February 23-25 2000), Lecture Notes

in Computer Science, Vol. 1774, Springer 2000.

47

