
Chapter 1
Introduction

1.1 Motivation

Creating a personal virtual face on computers is still inconvenient in today’s

world. We are more frequently using personal computers to interact with our friends

or give commands to computers. Being able to create virtual faces on computers and

use them in daily communication will necessarily make people feel more comfortable

and friendly to one another.

There are many types of virtual faces: 2D or 3D, photorealistic or

non-photorealistic, etc. To produce a realistic animated 3D virtual face is still

expensive today. For some applications, realism is not the only major importance. A

well-expressed facial expression makes the conversation livelier and lets people know

natural and extended meanings.

A cartoon-like virtual face can be used to reflect facial expressions including

emotions and lip movements. In the past studies, cartoon faces were made by

computer graphics techniques to show one’s facial expressions.

There are more advantages in using non-photorealistic cartoon faces than using

photorealistic ones, as described in the following.

(1) There is more freedom in designing stylish cartoon faces. We can design the

shapes and positions of each component, such as paths, regions, etc. We can

even choose at will the stroke types or colors of each component.

(2) Expressions can be modified and exaggerated by relocating predefined feature
 1

points. That is, we can easily change expressions by adjusting the input

parameters of the feature point positions.

(3) Last but not least, cartoon faces are more interesting but may be created with

less data. Personalized cartoon faces make themselves more meaningful for

representing people. We can easily preserve them ourselves or share them with

others.

However, a ten-minute animated cartoon needs at least 14400 frames. If we deal with

them frame by frame, it will waste lots of time. We want to “control” our cartoon

faces as easily as possible.

Computer facial animation has been developed for more than 30 years. It aims at

modeling a virtual face to freely show facial expressions. Real-time motion capture

techniques for this purpose have been studied for several years. Generally, by such

techniques if one wants to make a penetrating real-time observation of his/her facial

expressions to control a virtual face, he/she must put some markers on his/her face

and then dynamically track them by sensors. After mapping the tracked markers to the

virtual face, corresponding facial expressions can be created. However, this approach

is usually complicated and expensive, and is inappropriate for general uses.

To demonstrate the feasibility of low-cost virtual face creation, we may use

web-cameras to capture human faces. After detecting facial feature regions, facial

feature points should be extracted and related parameters computed. Then cartoon

faces can be created automatically by modifying the parameters. To animate personal

cartoon faces more realistically, some basic emotions also need be specified.

Moreover, lip movements may be synthesized from speech, and expressions may be

synthesized from a video sequence of the user’s face without adopting the

above-mentioned technique of attaching markers on faces.

In the goal of this study is to design an automatic system for an animated cartoon
 2

face with moving lips uttering a synchronized Mandarin speech. It is hoped that by the

use of the system, virtual teachers, virtual service agents, and so on, may be designed

conveniently and become popular and useful in our life someday.

1.2 Survey of Related Studies

Generally speaking, the work of automatic generation of talking cartoon faces

includes two main phases: automatic personal face generation and computer

animation with speech synchronization.

Ruttkay et al. [4] defined a set of facial animation components to build a

non-photorealistic cartoon face. Each component has its own potential dynamical

behavior to be used in the animation. The work focused on how to animate a cartoon

face without creating a personal cartoon face. Furthermore, some methods were

proposed to create a skeleton-based cartoon faces [5, 6]. And in Litwinowicz et al. [7],

a way is provided to animate skeleton-based faces. PicToon, designed in [8], is a

cartoon system which can be used to generate a personalized cartoon face from an

input picture. An example-based method is taken to generate the sketch lines of an

input picture. By stroke rendering, a stylish cartoon face is created. PicToon also

provides an audio-visual mapping between a character’s voice and lips.

In order to animate a cartoon face for speaking, Li et al. [9] proposed a method

to animate cartoon faces not only for lip synthesis, but also derived from speech

signals a series of cartoon templates based on emotions. For Mandarin speaking, Lin

and Tsai [1] reduced 411 viseme parameters to 167 classes to animate a photorealistic

virtual face. Visemes were clustered by articulation and mouth shapes. A time

separation concept was used for mouth synthesis and audio synchronization.
 3

Moreover, we want to “control” our cartoon face by input facial images in the

sense that the created cartoon face is similar to an input face image. Some methods

were proposed to animate a virtual face by attaching markers on faces [14, 15]. If one

wants to track facial features from sequential images without any marker, he/she

needs to use some image processing techniques [13]. Tsai [2] proposed a

moment-preserving thresholding technique. An effective eye-pair detection method

was proposed in [10]. And Grinias et al. [11] provided a method to detect faces.

1.3 Overview of Proposed Method

An overview of the proposed approach is described in this section. First, some

definitions of terms used in this study are introduced in Section 1.3.1. And several

assumptions made for this study are listed in Section 1.3.2. Finally a brief description

of the proposed method is given in Section 1.3.3.

1.3.1 Definitions of Terms
The definitions of several terms used later in this thesis are listed as follows.

(1) Neutral Face: MPEG-4 specifies some conditions for a head in its neutral state

[12] as follows:

� Gaze is in the direction of the Z axis.

� All face muscles are relaxed.

� Eyelids are tangent to the iris.

� The pupil is one third of the iris diameter.

� The lips are in contact.

� The line of the lips is horizontal and at the same height of lip corners.
 4

� The mouth is closed and the upper teeth touch the lower ones.

� The tongue is flat and horizontal with the tip of the tongue touching the

boundary between the upper and lower teeth.

In the proposed system, a face with a normal expression is called a neutral face.

(2) Neutral Facial Image: A neutral facial image is an image with a large frontal

neutral face in it.

(3) Sequential Facial Images: Sequential facial images are video sequences of a

user’s speaking face. One of these facial images is assigned to be a neutral facial

image.

(4) Facial Features: In the proposed system, we are concerned about several facial

features. They are hair, face, eyebrows, eyes, nose, mouth, and ears of each facial

image.

(5) Facial Expression: A facial expression is a facial aspect or vocal intonation

indicative of feeling. Here, Facial expressions include emotions and lip

movements.

(6) Phoneme: A phoneme is a basic enunciation of a language. For example, ㄅ, ㄧ,

ㄚ are phonemes in Mandarin.

(7) Syllable: A syllable consists of phonemes. For example, ㄅㄨ , ㄧㄚ are

syllables in Mandarin.

(8) Visemes: A viseme is the visual counterpart of a syllable.

(9) Speech Analyzer: A speech analyzer takes a speech file and a script file as input

for speech recognition to get timing information of each syllable.

(10) Key Frame: A key frame can be any frame with the timeline feature in the

animation at which you can precisely control the appearance of a cartoon face.

 5

1.3.2 Assumptions
In real cases, it is complicated to detect faces in a disordered environment. In

order to reduce the complexity of our work, a few assumptions and restrictions are

made in this study. They are described as follows.

(1) Colors of skin, hair, and background are not mixed.

(2) Frontal lights were used in the environment with no shadow or light shadow

behind a head.

(3) A large frontal face is located in the center of each captured image.

(4) The skew angle of the face does not exceed ±10°.

(5) The face position and the skew angle of each sequential facial image are almost

fixed.

1.3.3 Brief Descriptions of Proposed Method
An overall procedure of the proposed method is illustrated in Fig. 1.1.

Cartoon Face CreatorAnimation Editor

Cartoon Generator

Neutral Facial
Images

Sequential Facial
Images

Speech

Result

Web cameraMicrophone

Script

Speech Analyzer

Fig. 1.1 A flowchart of proposed system.

 6

The proposed system for talking cartoon face generation includes three major

parts: a cartoon face creator, an animation editor, and a cartoon generator. The cartoon

face creator creates neutral cartoon faces from neutral facial images. The animation

editor manages animation processes for cartoon faces. Finally, the cartoon generator

renders the style of cartoon faces.

We use a web camera and a microphone to get a single neutral facial image and a

video clip of the user’s speaking face. If one chooses to capture a single neutral facial

image, a personal cartoon face will be created by the proposed cartoon face creator. If

one wants to animate it, he/she may specify emotions or uses a speech file and a script

file as input to synthesize lip movements by the animation editor. Finally, the cartoon

generator will output a file of an animated talking cartoon face to the user.

Alternatively, one may uses a video clip as input. After choosing one of the

sequential facial images as a neutral facial image to create a neutral cartoon face, the

animation editor will automatically track facial features of the remaining facial images

to animate the cartoon face. Finally, the cartoon generator will output a file of an

animated talking cartoon face which looks like the input video clip.

An illustration of the environment setup adopted in this study is shown in Fig.

1.2.

Fig. 1.2 Environment setup of this study.

 7

1.4 Contributions

Some major contributions of this study are listed as follows.

(1) A system for integration of creating and animating personal cartoon faces is

designed.

(2) An effective hierarchical bi-level thresholding method for extracting the face

regions, hair regions, and background regions is proposed.

(3) An effective knowledge-based method for detecting facial features is proposed.

(4) An effective method for tracking facial features is proposed.

(5) An adaptive method for simulating graphic-based personal cartoon faces is

proposed.

(6) A method of composing nine basic mouth shapes to synthesize Mandarin

visemes is included.

(7) A method for synchronization of speech and cartoon faces is proposed.

(8) A method for smoothing facial animation is proposed.

(9) An editable and opened vector-based XML language of W3C (World Wide Web

Consortium) standard-SVG (Scalable Vector Graphics) is effectively used in the

proposed system.

 8

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, a more

detailed overview of the proposed method is described to introduce the following

chapters. In Chapter 3, a method of extracting facial feature regions is described. And

then, a method of extracting facial feature points is described in Chapter 4. Up to

Chapter 4, personal cartoon faces were created.

The methods we adopt for rendering a cartoon face from single facial image and

from sequential facial images for synchronizing it with a speech file are described in

Chapter 5 and Chapter6, respectively. A final integration process using an application

program SVG (Scalable Vector Graphics) and some experimental results are given in

Chapter 7. Finally, conclusions and some suggestions for future works are included in

Chapter 8.

 9

Chapter 2
Overview of Proposed Method for
Talking Cartoon Face Generation

2.1 System Organization

In this chapter, a more detailed overview of proposed system is described. The

three major parts of the system, a cartoon face creator, an animation editor, and a

cartoon generator, will be introduced further.

The cartoon face creator is used to create a personal cartoon face, with which we

can detect the colors, geometries, and shapes of an input neutral facial image for

cartoon face creation. If the user chooses a video clip as input, the cartoon face creator

gets the first frame from the video sequence as a neutral facial image. In order to

create a personal cartoon face, three main steps are included. The first is extraction of

facial feature regions, which is applied to achieve a coarse detection of facial feature

regions. The second step is extraction of facial feature points, which is expected to

locate feature points for cartoon face drawing. The last step is definition of basic

facial expression parameters for use in face animation.

The animation editor is used to deal with the animation of neutral cartoon faces.

When a user chooses a single neutral facial image as input, the animation editor

supports two kinds of processes: (1) synthesis of lip movements with synchronization

with a speech file in accordance with a script file, and (2) assignment of emotions.

Alternatively, if a user chooses a video clip as input, the animation editor tracks facial

 10

features of the remaining frames to deal with the animation of the neutral cartoon

face.

The cartoon generator is used to handle the final integration process from the

views of both the temporal domain and the spatial domain using an application

program SVG (Scalable Vector Graphics). From the temporal domain, the cartoon

generator deals with animation and combines the speech file to make it synchronize

with animation; and from the spatial domain, it controls the looks of a cartoon face. A

flowchart of the organization and the animation generation stages of the proposed

system are illustrated in Fig. 2.1.

Neutral Facial
Images

Sequential Facial
Images

Speech

Results

Web cameraMicrophone

Script

Speech Analyzer

Cartoon Face CreatorAnimation Editor

Definition of Basic Facial
Expression Parameters

Extraction of
Facial Feature Regions

Extraction of
Facial Feature Points

Tracking of
Facial Features

Synthesis of
Lip Movements

Assignment of Emotions

Specification of Temporal
Domain

Specification of Spatial
Domain

Cartoon Generator

Fig. 2.1 System organization and generation stages.

 11

2.2 Uses of Facial Features, Control
Points, and Key Frames

Terms used in the cartoon face creator includes facial features (including facial

feature regions and facial feature points) and control points. In order to animate

cartoon faces, the use of key frames helps the animation editor to handle the

animation.

Uses of facial feature regions and facial feature points are illustrated in Section

2.2.1 and 2.2.2, respectively. In Section 2.2.3, the use of control points is described.

The concept of key frame use is illustrated in Section 2.2.4.

2.2.1 Facial Feature Regions
The use of facial feature regions gives us the information about the positions and

ranges of facial features. Because each facial feature has its own characteristics, we

have to extract its regions out for individual detailed detection. As shown in Fig.

2.2(a), the background regions, hair regions, and face regions are first separated. After

knowing where the face regions are, other facial feature regions can be extracted

using a knowledge-based technique, as shown in Fig. 2.2(b). A more detailed method

to extract facial feature regions will be described in Chapter 3.

(a) (b)

Fig. 2.2 Facial feature regions used in the proposed system. (a) Background, hair, and face regions.

(b) Eyebrows, eyes, nose, and mouth regions.

 12

2.2.2 Facial Feature Points
The use of facial feature points helps us to draw a neutral cartoon face. The use

of facial feature points also has the capability to condense a large amount of raw data

into a few meaningful points. By reassigning locations to or dragging these feature

points, we can deform cartoon faces directly. In the proposed system, 72 facial feature

points are used to draw a cartoon face. A result of extraction of facial feature points is

shown in Fig. 2.3. In Chapter4, a more detail description of the proposed extraction

method will be described.

Fig. 2.3 Facial feature points used in the proposed system.

2.2.3 Control Points
Some facial feature points are assigned to be control points for animating

particular facial features. For example, if we want to deform mouth shapes, we only

have to change points 8.9, 8.4, 8.2, and 8.3, as shown in Fig. 2.4. The other feature

points of the mouth, like 8.1, 8.10, 2.2, 2.3, will move automatically by a pre-defined

rule.

8.9 8.1 8.10
8.4 8.3

8.2

2.3
2.2

Fig. 2.4 Feature points of mouth.

 13

2.2.4 Key Frames
A timeline was used as a basic structure for animation. If we want to have a

1-minute cartoon with 25 frames per second, we must preserve at least 1500 frames.

The most important part of animation is dealing with key frames. By knowing

when and how a facial expression shows, the positions of the control points are

defined in corresponding key frames. And then, after applying an interpolation

technique to compute the remaining frames between key frames, cartoon faces can be

animated, as shown in Fig. 2.5.

Time(s)

Speech

Frames

Key Frame Key Frame

Fig. 2.5 A basic concept of key frame use.

2.3 Talking Cartoon Face Generation
from Single Images

In this section, the basic idea of talking cartoon face generation from single

images is illustrated in Section 2.3.1. And an overall generation process is described

in Section 2.3.2.

 14

2.3.1 Basic Idea
If a user wants to generate a talking cartoon face from single images, he/she must

take a neutral facial image as input data first. The cartoon face generator will then

process the image to create a neutral cartoon face. In the meanwhile, basic facial

expression parameters must also be defined for the animation editor to use.

Because there is only one input image, we can just animate the cartoon face by

synthesizing moving lips and emotions. To synthesize moving lips, an additional

speech analyzer is used to extract timing information of syllables from a speech file

and a script file. A syllabus may be composed of several basic mouth shapes from

adjusting the basic facial feature parameters. By assigning key frames with

corresponding mouth shapes, cartoon faces can be animated.

To synthesize emotions, the user can assign the talking cartoon face a freely

specified emotion. By reassigning locations to the feature points of eyebrows and eyes,

the cartoon faces may appear to be more different.

Finally, the cartoon generator will render the style of cartoon faces and

synchronize the speech file with the animation. A file of an animated talking cartoon

face with moving lips uttering a synchronized Mandarin speech can be generated as

the final output.

More detailed descriptions of the involved steps of the method will be described

in Chapter 5.

2.3.2 Generation Process
Fig. 2.6 illustrates a flowchart of the stages of talking cartoon face generation

from single images. First, a neutral facial image is used as input to the cartoon face

creator. After extracting facial feature regions and facial feature points, control points

 15

then are assigned to define basic facial expression parameters. After that, a neutral

cartoon face is created.

Second, the animation editor is used to deal with the animation of the neutral

cartoon face. A speech file and a script file are used to synthesize moving lips. Also, a

user can freely specify emotions. Then, the animation editor will combine these two

processes.

Finally, the cartoon generator outputs a file of an animated talking cartoon face.

Speech

Web Camera

Synthesis of
Lip

Movements

a u i a u i um a

A Syllable: ㄠ A Syllable: ㄧㄠ A Syllable: ㄇㄧㄠ

Neutral
Facial
Image

Animation Editor Cartoon Face Creator

Extraction of
Facial Feature

Regions

Extraction of
Facial Feature Points

Definition of Basic
Facial Expression

Parameters

Results

Specification of Temporal Domain Specification of Spatial Domain

Speech

Microphone

Script

Speech Analyzer

Frames ☺ ☺

Time(s)

Cartoon Generator

Fig. 2.6 Stages of talking cartoon face generation from single images.

 16

2.4 Talking Cartoon Face Generation
from Image Sequences

In this section, the basic idea of talking cartoon face generation from image

sequences is illustrated in Section 2.4.1. And an overall generation process is

described in Section 2.4.2.

2.4.1 Basic Idea
Alternatively, if a user wants to generate a talking cartoon face from a given

image sequence, he/she must take a video clip of the user’s talking face as input. The

video clip will be separated into a sequence of facial images and a speech file. The

cartoon face creator will then select the first frame as a neutral facial image to create a

neutral cartoon face. Basic facial expression parameters will be defined for the use of

adjusting the neutral facial image to get face tracking results.

The animation editor will then process the remaining frames to make the neutral

cartoon face act like the face in the video. Every frame of the video sequence will be

regarded as a key frame. In the proposed system, an effective tracking method is

proposed to track the eyes, and mouth. By assigning the tracking information as key

frames in a proper sequence, cartoon faces will be animated.

Finally, the cartoon generator will recombine the speech file with the animated

cartoon face, and then output a file of an animated talking cartoon face in the sense

that the created cartoon face is similar to the user’s face.

More detailed descriptions of the involved steps of the method will be described

in Chapter 6.

 17

2.4.2 Generation Process
Fig. 2.7 illustrates a flowchart of the stages of talking cartoon face generation

from image sequences. First, the first frame of a video sequence selected to be a

neutral facial image as input to the cartoon face creator. After extracting the facial

feature regions and facial feature points, control points will then be assigned to define

basic facial expression parameters. After that, a neutral cartoon face is created.

Second, the animation editor will then extract facial features from the remaining

frames to animate the cartoon face. Finally, the cartoon generator recombines the

speech file and the animated cartoon face to yield as output a file of an animated

talking cartoon face.

Speech

Frames

Time(s)

Sequential
Facial

Images

Animation Editor Cartoon Face Creator

Extraction of
Facial Feature

Regions

Extraction of
Facial Feature Points

Definition of Basic
Facial Expression

Parameters

Results

Specification of Temporal Domain Specification of Spatial Domain

Tracking
Process

Neutral
Facial
Image

Video Clip

Cartoon Generator

Fig. 2.7 Stages of talking cartoon face generation from sequential images.

 18

Chapter 3
Extraction of Facial Feature Regions

3.1 Introduction

In this study, a method is proposed to extract facial feature regions. First, a

hierarchical bi-level thresholding method is proposed to extract the background

regions, hair regions, and face regions in a given face image. By applying a region

refinement method, a final background region, a hair region, and a face region are

obtained. In the meanwhile, based on Chan et al. [10], a pair of eye regions is detected

for subsequent use. A review of Chan’s method is described in Section 3.2. A more

detailed description of the proposed method is given in Section 3.3.

Furthermore, a knowledge-based technique was applied to extract other facial

feature regions, including eyebrow regions, eye regions, a nose region, and a mouth

region. A more detailed description of the method is given in Section 3.4.

Finally, a method for detection of cheek boundaries and ear regions is proposed

in Section 3.5. An overall illustration of the proposed methods with experimental

results is shown in Fig. 3.1.

Neutral Facial Image Background, Hair, and
Face

Eyebrows, Eyes, Nose,
Mouth, and Cheek

Boundaries

Hierarchical
Bi-level

Thresholding
Method

Knowledge-
based

Technique

Fig. 3.1 An overall illustration result of extraction of facial feature regions.

 19

3.2 Review of Eye-pair Detection
Method

Chan et al. [10] proposed a fast frontal face detection method that pairs probable

eye regions together to extract face areas. Fig. 3.2 illustrates the individual stages of

the process.

Video Frame

I

Region Eye-pair Face Area Face

Fig. 3.2 Stages of the fast frontal face detection method by Chan et al. [10].

In Chan’s method, the initial stage is to acquire an image and segment it into

regions. Only the first significant bits in the red, green, and blue channels are used to

reduce color data. Regions are then extracted by visiting every pixel as a seed pixel

and flood filling surrounding areas that have the same values as that of the current

seed pixel. In order to reduce the computational complexity, regions are filtered

according to a set of rules related to the regions’ heights, widths, etc. Next, the

eye-pair generation process attempts to pair the extracted regions together to check if

they have the potential to be an eye-pair. Finally, in the face area extraction stage, a

square region is extracted for final face verification which is based on a neutral

network technique. An illustration of the square region is shown in Fig. 3.3.

Fig. 3.3 The square region proposed in Chan et al. [10].

 20

3.3 Extraction of Background, Hair,
and Face Regions

The HSI (Hue, Saturation, and Intensity) color model is used in this study to

handle images because it is closely related to the way in which humans perceive

colors. The hue component describes the color itself in the form of an angle between 0

to 360 degrees, as shown in Fig. 3.4. The range of the S component is [0, 1]. And the

intensity range is between [0, 1], where 0 means black, and 1 means white.

Fig. 3.4 HSI color space.

The proposed hierarchical bi-level thresholding method mentioned previously is

described in Section 3.3.1. The 1st level of this hierarchical bi-level thresholding

method is applied in the intensity channel to extract dark regions and light regions.

The detail is described in Section 3.3.2. An optimal eye-pair generation method based

on dark regions is then proposed and described in Section 3.3.3. Based on light

regions, the 2nd level of the above-mentioned hierarchical bi-level thresholding

method is applied in the hue channel to extract face regions and background regions,

and the detail is described in Section 3.3.4. Finally, Section 3.3.5 describes the

 21

previously-mentioned final region refinement method to get a final face region and a

hair region.

3.3.1 Proposed Hierarchical Bi-level Thresholding
The 1st level bi-level thresholding of the proposed hierarchical bi-level

thresholding method is used to separate dark regions (including eye regions and hair

regions) and light regions (including background regions and face regions) in the

intensity channel. Two of the dark regions are detected to be an optimal eye-pair. Then

the remaining regions are regarded as hair regions.

Since the light regions consist of face regions and background regions, a 2nd level

bi-level thresholding is applied in the hue channel to separate them apart. After

applying the region refinement method, a final face region and a hair region are

obtained. On the contrary, the background region is eliminated. A flowchart of using

the proposed hierarchical bi-level thresholding method to extract the above mentioned

three kinds of facial feature regions is shown in Fig. 3.5.

Light Regions Dark Regions

Face
Regions

Background
Regions

Hair
Regions

Hue Channel

Intensity Channel

Neutral Face Image

Bi-level Thresholding

Bi-level Thresholding

Eye-pair
Detection

Fig. 3.5 Flowchart of hierarchical bi-level thresholding method.

 22

3.3.2 1st Level Bi-level Thresholding in Intensity

Channel
As defined in Chapter1, a neutral facial image is an image with a large frontal

neutral face in it. Therefore, we assume that a central rectangle can be used to collect

the color information of a user’s face. The following algorithm implements the

previously-mentioned 1st level thresholding to get a binary image and two sets of

different kind of regions.

Algorithm 4.1. Bi-level thresholding in intensity channel.

Input: A neutral facial image N and a central rectangle Rect with size . nm×

Output: A binary image B1, a set of dark regions D, and a set of light regions L.

Steps:

1. Transform N into the intensity channel to get ()yxI , , where

denotes the intensity value at pixel

()yxI ,

()yx, .

2. Compute a mean value m1 and a standard deviation value s1 in Rect by the

following way:

()∑
∈×

=
ctyx

yxI
nm

m
Re,

1 ,1 ; (3.1)

()()
2/1

Re,

2
11 ,

1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−×
= ∑

∈ ctyx

myxI
nm

s . (3.2)

3. Compute a threshold value t1 by:

111 smt −= . (3.3)

4. Threshold I with t1 to get a binary image ()yxB ,1 by the following

equation:

() ()
()⎩

⎨
⎧

≤
>

=
1

1
1 , ,0

, ,1
,

tyxIif
tyxIif

yxB . (3.4)

 23

Thus, pixels of labeled 1 correspond to light pixels, whereas

pixels labeled 0 correspond to dark pixels.

(yxB ,1)

)

)

5. Find pixels of with values of 0, use them as seeds, and apply

region growing to extract a set of dark regions D.

(yxB ,1

6. Find pixels of with values of 1, use them as seeds, and apply

region growing to extract a set of light regions L.

(yxB ,1

An experimental result of the above algorithm is shown in Fig. 3.6.

Fig. 3.6 An exp

(a) Ne

3.3.3 Optimal Ey
Since the set of dark re

of facial feature regions (inc

extract two eye regions firs

Chan’s method [10] for

eye-pairs, a method is pro

following algorithm.

Algorithm 4.2. Optimal e

Input: A set of dark region

(a)

erimental result of bi-level thresholdin

utral facial image in intensity channel.

e-Pair Detection
gions D generated by Algorithm

luding eye regions and hair regi

t and regard the remaining regi

eye-pair generation will outpu

posed to select an optimal eye

ye-pair detection.

s D generated by Algorithm 4.1

24
(b)

g in intensity channel.

(b) Binary image B1.

 4.1 consists of two kinds

ons), we need a method to

ons as hair regions. Since

t one or more probable

-pair, as described in the

Output: Eye-pair regions and , where are the region indices of an

eye-pair.

jE kE kj,

Steps:

1. Apply Chan’s method [10] to D to conduct eye-pair generation to get a

probable set of eye-pair regions E. Let Ei denote the ith eye-pair in E.

2. Compute the areas of the two regions, denoted by and , of each

eye-pair E

1,iE 2,iE

i in the following way, where , and

are normalized:

2,1, ii AreaArea ≥ 1,iArea

2,iArea

� heightEwidthEArea iii .. 1,1,1, ×= ;

� heightEwidthEArea iii .. 2,2,2, ×= .

3. Compute a score of each eye-pair Ei by:

2

2
2,1, iii

i

SAreaArea
Score

−×
= , where

2,i

1,i
i Area

Area
S = (3.5)

For the largest set ,iScore 1,ij EE = and 2,ik EE = .

An experimental result of the above algorithm is shown in Fig. 3.7.

(a) (b) (c)

Fig. 3.7 An experimental result of optimal eye-pair detection. (a) Binary image B1. (b) Probable

eye-pairs generated by Chan’s method. (c) An optimal eye-pair.

 25

3.3.4 2nd Level Bi-level Thresholding in Hue Channel
Since the set of light regions L generated by Algorithm 4.1 consist of two kinds

of facial feature regions (including face regions and background regions), in order to

separate them apart, the 2nd level of the proposed hierarchical bi-level thresholding

method is applied in the hue channel to achieve the goal.

Algorithm 4.3. Bi-level thresholding in hue channel.

Input: A neutral facial image N, a binary image B1 created by Algorithm 4.1, and a

central rectangle Rect with size nm× .

Output: A binary image B2, a set of face regions F, and a set of background regions

Bg.

Steps:

1. Transform N into the hue channel and normalize it into the range of [-127,

128] to get H. Let ()yxH , denote the hue value of pixel . ()yx,

2. Compute a mean value m2 and a standard deviation value s2 in Rect by the

following way:

()∑
∈×

=
ctyx

yxH
nm

m
Re,

2 ,1 ; (3.6)

()()
2/1

Re,

2
22 ,

1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−×
= ∑

∈ ctyx

myxH
nm

s . (3.7)

3. Threshold H by applying the Euclidean distance by the following

equations:

() () 2,, myxHyxd H −= ; (3.8)

() ()
() ()⎩

⎨
⎧

=≤
>

=
1, ,,,0

,,1
,

12

2
2 yxBsyxdif

syxdif
yxB

H

H . (3.9)

Thus, the pixels of ()yxB ,2 labeled 1 correspond to background pixels,

 26

whereas pixels labeled 0 correspond to face pixels.

4. Find pixels of with values of 0, use them as seeds, and apply

region growing to extract a set of face regions F.

(yxB ,2)

)5. Find pixels of with values of 1, use them as seeds, and apply

region growing to extract a set of background regions Bg.

(yxB ,2

An experimental result of the above algorithm is shown in Fig. 3.8.

(a) (b) (c)

Fig. 3.8 An experimental result of bi-level thresholding in hue channel. (a) Binary image B1.

(b) Neutral facial image in hue channel. (c) Binary image B2.

3.3.5 Region Refinements
After applying the proposed hierarchical bi-level thresholding method, four sets

of regions including dark regions D, light regions L, face regions F, and background

regions Bg are extracted. Besides, an optimal eye-pair detection method is used to

generate two eye regions and . Fig. 3.9 shows the above mentioned using

four sets of regions and two eye regions.

jE kE

In order to obtain final face regions and hair regions, a region refinement process

is proposed to achieve the goal.

 27

(a) (b) (c)

Fig. 3.9 Four sets of regions and two eye regions. (a) Dark regions D (black) and light regions L

(white) of B1. (b) Face regions F (black) and background regions (white) of B2. (c) Eye

regions (red rectangles).

Algorithm 4.4. Region refinement for face regions and hair regions.

Input: A binary image B1, a binary image B2, a set of face regions F, and a set of

background regions Bg.

Output: A face regions Ffinal, and a hair region Hfinal.

Steps:

1. Choose pixels at the boundary of B2 having values of 1 to get a set of

regions Bg’, with BgBg ∈' .

2. Obtain a face region by the following equation:

()'BgBgFFfinal −∪= . (3.10)

3. Compute a new binary image B3 by the following equation:

() () ()yxBANDyxByxB , ,, 213 = , (3.11)

where AND is a logic operator.

4. Find pixels at the boundary of B3 with values of 1, use them as seeds, and

apply region growing to get a set of regions H’.

5. Obtain a hair region by the following equation:

'HRH final −= , where R represents the entire image region (3.12)

 28

An experimental result of the above algorithm is shown in Fig. 3.10.

(a) (b) (c)

Fig. 3.10 An experimental result of region refinements for face regions and hair regions. (a) Face

region (black). (b) Bi-level image B3. (c) Hair region (black).

3.4 Extraction of Facial Feature
Regions

The proposed knowledge-based technique mention previously is based on a

concept to estimate the positions and ranges of facial feature regions by the

information about the detected eye-pair. The proposed method includes three basic

processes. First, a more precise detection of a pair of eyeballs for the estimation of the

positions and ranges of other facial features is described in Section 3.4.1. The second

process is a series of preprocessing steps applied to the neutral facial image to get a

binary edge image, which is described in Section 3.4.2. Finally, a knowledge-based

estimation is used to detect the positions and ranges of eyebrow regions, eye regions,

nose regions, and mouth regions, as described in Section 3.4.3.

 29

3.4.1 Eyeball Detection for Position Estimation
In Chan et al. [10], a square region dd 22 × is proposed to cover the main facial

features, where d is the Euclidean distance between the centers of the pair of eye

regions. In Section 3.3.3, we have described how to detect a pair of regions as an

eye-pair. However, it is still not precise enough for the use of the knowledge-base

technique. For each region of the eye-pair, a circle with the maximum number of

points in it is detected to be an eyeball. Additionally, information about the position

and diameter of each eyeball is obtained. Some definitions are listed as follows:

� is the x position of the center of the left/right eyeball

circle;

xEyeball RightLeft ./

� is the y position of the center of the left/right eyeball

circle;

yEyeball RightLeft ./

� is the radius of the left/right eyeball circle; radiusEyeball RightLeft ./

� is the height of the left/right eyeball circle; heightEyeball RightLeft ./

� EyeMid is the position (x, y) of the center between EyeballLeft and

EyeballRight.

After computing a Euclidean distance d between two eyeballs (as shown in Fig.

3.11(a)), a square region is detected (as shown in Fig. 3.11(b)). dd 22 ×

(a) (b)

Fig. 3.11 A result of eyeball detection. (a) Eyeballs with a distance d between them. (b) A 2d×2d square region.

 30

3.4.2 Knowledge-based Edge Detection by Local

Thresholding
In the proposed system, the information of edge points is used to detect facial

feature regions, including eyebrow regions, eye regions, nose regions, and mouth

regions. A method is needed to generate a useable binary edge image, as described in

the following algorithm.

Algorithm 4.5. Edge detection by local thresholding.

Input: A grey-level image I generated by Step1 of Algorithm 4.1, and a value d

defined in Section 3.4.1.

Output: A binary edge image . edgeB

Steps:

1. Detect the edges of I by applying the Sobel operator, as shown in Fig.

3.12, to implement Eq. (3.13) to get an edge image S.

-1 -2 -1 -1 0 1

0 0 0 -2 0 2

1 2 1 -1 0 1

Fig. 3.12 Sobel operators.

() () ()
() ()741963

321987

22

22,

zzzzzz

zzzzzzyxS

++−+++

++−++=
, (3.13)

 where z5 denotes ()yxI , , z1 denotes ()1,1 −− yxI , and so on.

2. Mirror map the right half side of S in the dd 22 × rectangle range to

another side according to the positions of two eyeballs.

 31

3. Speculate three horizontal division lines, DivEE (eyebrows to eyes), DivEN

(eyes to nose), and DivNM (nose to mouth), by an experimental result. And

then divide S into four parts.

� 12/.. −−= heightEyeballyEyeballDiv LeftLeftEE

� 3/. dyEyeMidDivEN +=

� dyEyeMidDivNM += .

4. Threshold each part of S by apply Tsai’s moment-preserving thresholding

method [2] to get the binary edge image . edgeB

An experimental result is shown in Fig. 3.13.

(a) (b)

Fig. 3.13 A result of knowledge-based edge detection by local thresholding. (a) Sobel edge image S.

(b) Binary edge image Bedge with three horizontal divisions shown on it.

3.4.3 Knowledge-based Facial Feature Extraction
The main idea of the proposed knowledge-based facial feature extraction method

is to speculate an initial search region of each facial feature to extract a final region in

 by a region growing method. The extracted edgeB dd 22 × square range is used here

to speculate the initial position and range of each facial feature region. The detailed

rules for extracting facial feature regions in edge image are illustrated in the edgeB

 32

following as an algorithm.

Algorithm 4.6. Knowledge-based facial feature extraction.

Input: Two eyeball regions (including and detected in

Section 3.4.1), a position of EyeMid defined in Section 3.4.1, a value d

defined in Section 3.4.1, and three division lines (including Div

LeftEyeball RightEyeball

EE , DivEN

and DivNM illustrated in Section 3.4.2).

Output: A final left eyebrow region RLeft_eyebrow, a final left eye region RLeft_Eye, a final

nose region RNose, and a final mouth region RMouth.

Steps:

1. Speculate an initial search range of the left eye RinitialLeft_Eye to extract

the final left eye region RLeft_Eye in the following way:

RinitialLeft_Eye = [P1, P2], where

and ,).5.0. ,..(1 heightEyeballyEyeballheightEyeballxEyeballP LeftLeftLeftLeft ×−−=

).5.0. ,..(heightEyeballyEyeballheightEyeballxEyeballP2 LeftLeftLeftLeft ×++= .

2. Speculate an initial search range of the left eyebrow RinitialLeft_Eyebrow to

extract the final left eyebrow region RLeft_Eyebrow in the following way:

RinitialLeft_Eyebrow = RLeft_Eye translated upper than the division line DivEE.

3. Speculate an initial search range of the nose RinitialNose to extract the

final nose region RNose in the following way:

RinitialNose = [P3 P4], where

and ,) ,.(3 ENLeft DivxEyeballP =

()()ENNMENRight DivDivDivxEyeballP −×+= 7.0 ,.4 .

4. Speculate an initial search range of the mouth RinitialMouth to extract the

final mouth region RMouth in the following way:

 33

RinitialMouth = [P5 P6], where

()NLLeft DivxEyeballP ,.5 = , and

()3/ ,.6 dDivxEyeballP NMRight += .

An illustration of the searching rages represented as rectangles is shown in Fig.

3.14.

dEN_NM0.7*d EN_NM

DivEE

DivNM

d/3

DivEN

Fig. 3.14 Search range definition for knowledge-based facial feature extraction.

Some restrictions are also made in this study to avoid errors caused by noise, as

described in the following:

� The boundaries of each final facial feature regions do not exceed the

dd 22 × square range.

� The width boundaries of the final nose region and mouth region do not

exceed the centers of eyeballs.

� A central vertical cut can be used for fine tuning to the final nose

region and mouth region. A detailed method of finding a vertical cut of

each region is described in the following algorithm.

 34

Algorithm 3.7 Central vertical cut detection of nose region and mouth region.

Input: A grey-level image I generated by Step1 of Algorithm 4.1, a final nose region

RNose, and a final mouth region RMouth.

Output: A central vertical cut of RNose called LNose and a central vertical cut of RMouth

called LMouth.

Steps:

1. Let the region RNose be denoted by [(x1, y1), (x2, y2)].

2. Set x = (x1 + x2)/2.

3. Compute a width w with the following equation:

()
2

)(21 xxxxw −+−
= . (3.14)

4. Set the left half region RLeft as [(x-w, y1) (x-1, y2)], and the right half

region RRight as [(x+1, y1) (x+w, y2)].

5. Compute a dissimilarity value Dx by the following equation:

() ()∑∑
= =

+−−=
2

1 1
 , ,

y

yj

w

i
x jixIjixID . (3.15)

6. Shift x for the next detection in the following way.

6.1. Subtract 1 from x and go to Step 3.

6.2. Add 1 to x and go to Step 3.

7. Set the vertical line LNose equal to the x with a minimal Dx.

8. Repeat Steps 2 to 6 to get a vertical line LMouth.

An experimental result is shown in Fig. 3.15.

 35

(a) (b)

Fig. 3.15 A result of extraction of facial feature regions. (a) Speculated positions and ranges of facial

features (yellow rectangle). (b) Final extraction results of facial feature regions.

3.5 Detection of Cheek Boundaries and
Ear Regions

After extracting the above mentioned facial feature regions, there are still some

features needed to be detected. In order to extract ear regions, cheek boundaries need

to be detected first.

In order to detect cheek boundaries, a vertical projection method is applied to the

set of face regions Ffinal. After mirror-mapping the right-side projection information to

the left side, the proposed method also considers the symmetry characteristic of

human faces. Finally, we find a position near the dd 22 × square range with a local

minimum projection value as the desired cheek boundaries.

After detecting the position of cheek boundaries, the proposed method divides

two parts of the set of face regions Ffinal as ear regions.

An experimental result is shown in Fig. 3.16.

 36

(a) (b)

Fig. 3.16 A result of detection of cheek boundaries. (a) Projection information. (b) Cheek boundaries

shown on a neutral facial image.

3.6 Experimental Results

Some experimental results of applying the proposed methods for extraction of

facial feature regions are shown here. Two different neutral facial images are

processed and shown in Fig. 3.17 and Fig. 3.18.

 37

(a) (b)

(c) (d)

(e) (f)

Fig. 3.17 An example of experimental results. (a) A given neutral facial image. (b) A result of optimal

eye-pair detection. (c) A result of face regions. (d) A result of hair regions. (e) A result of

eyeball detection and 2d×2d rectangle range. (e) A result of facial feature extraction.

 38

(a) (b)

(c) (d)

(e) (f)

Fig. 3.18 Another example of experimental results. (a) A given neutral facial image. (b) A result of

optimal eye-pair detection. (c) A result of face regions. (d) A result of hair regions. (e) A result

of eyeball detection and 2d×2d rectangle range. (e) A result of facial feature extraction.

 39

Chapter 4
Extraction of Facial Feature Points

4.1 Introduction

There are two main reasons for the need of extracting facial feature points. First,

the use of facial feature points helps us to draw cartoon faces simply by applying

some curve drawing algorithms. Secondly, by reassigning locations to or dragging

these facial feature points, we can deform cartoon faces directly.

For the first reason mentioned previously, a face model with facial feature points

need be built first. In the MPEG-4 standard, 84 feature points are specified to define

facial animation. However, these 84 feature points are not suitable for cartoon face

drawing. In this study, a model is designed according to the MPEG-4 standard and

two curve drawing algorithms proposed, as described in Section 4.2.

Afterwards, a method is proposed to extract the required facial feature points

mentioned previously from the facial feature regions in a given face to draw a

personal cartoon face. A more detailed description of the method is given in Section

4.3.

In order to deform cartoon faces more easily, some feature points are assigned to

be control points. Besides, some related parameters are extracted for the purposed of

face deformation. A more detailed description of the method is given in Section4.4.

Finally, some experimental results of applying the previously mentioned methods

are shown in Section 4.5.

 40

4.2 Face Model Construction

Section 4.2.1 gives a brief review of MPEG-4. TReview of Two Curve Drawing

Algorithms are described in Section 4.2.2.

4.2.1 Review of MPEG-4
MPEG-4 is an ISO/IEC standard developed by MPEG (Moving Picture Experts

Group), the committee that also developed the Emmy Award winning standards

known as MPEG-1 and MPEG-2. MPEG-4 provides the standardized technological

elements for the following three fields:

1. digital television;

2. interactive graphics applications (synthetic content);

3. interactive multimedia (World Wide Web, distribution of and access to

content)

In Ostermann [12], a part of face animation in MPEG-4 is collected. MPEG-4

specifies a set of facial animation parameters (FAPs), each related to a facial action. In

order to provide a reference for defining FAPs, a face model with 84 feature points

located in a face is created, as shown in Fig. 4.1.

Fig. 4.1 84 feature points in MPEG-4.

 41

Since FAPs represent a set of basic facial actions in which some animation

parameters must be defined, facial animation parameter units (FAPUs) are defined as

fractions of distances between key facial features, like eye separation ES0, eye-nose

separation ENS0, and so on, as shown in Fig. 4.2. The definition of FAPUs allows the

FAPs to produce more reasonable animations.

Fig. 4.2 FAPUs in MPEG-4.

However, the feature points and facial animation parameter units are not suitable

for cartoon face drawing. For example, a hair contour, maybe of long hair, cannot be

represented only by nine feature points including 10.10, 11.2, 11.1, 11.3, 10.9, 10.1,

10.2, 11.5, and 11.4, as shown in Fig. 4.1. Therefore, it is very essential for us to set

up an adoptable face model.

4.2.2 Review of Two Curve Drawing Algorithm
In order to set up an adoptable face model mentioned previously, a way to draw

the cartoon faces by assigning some feature points must be confirmed first.

Two curve drawing algorithms, including one for curve subdivision and the other

for drawing cubic Bezier curves, with different characteristics are designed in the

proposed system. They are both supported by the application program SVG, which

 42

will be described in Chapter 7. More detailed illustrations are given in Sections

4.2.2.1 and 4.2.2.2, respectively.

4.2.2.1. Corner-cutting Subdivision
The goal of designing a curve subdivision approximation method is to obtain a

smooth curve from a small number of line segments with a set of points. An approach

to curve subdivision is corner-cutting subdivision, in which the basic concept is to

repeatedly chop off corners of a polygon until reaching a terminating condition, as

shown in Fig. 4.3.

Fig. 4.3 An illustration of corner-cutting subdivision.

The detailed method for corner-cutting is described in the following algorithm,

and illustrated in Fig. 4.4.

Algorithm 4.1. Corner-cutting subdivision algorithm.

Input: Two line segments 0 1P P and 1 2PP , and a value depth.

Output: A curve C1.

Steps:

1. If depth > 0, compute three mid points P01, Pm, and P12 by the following

equations.

 43

P01 = (P0 + P1)/2; (4.1)

P12 = (P1 + P2)/2; (4.2)

Pm = (P01 + P12)/2. (4.3)

1.1. Recursively apply Algorithm 4.1 with the following parameters:

P0 = P0;

P1 = P01;

P2 = Pm;

width = width − 1.

1.2. Recursively apply Algorithm 4.1 with the following parameters:

P0 = Pm;

P1 = P12;

P2 = P2;

width = width − 1.

2. If depth ≤ 0, set C1= 0 1P P + 1 2PP .

In essence, the above-mentioned curve subdivision method tries to obtain a

smooth curve from a set of points. The larger the value of depth, the smoother the

resulting curve looks like. Additionally, any application language that supports line

drawing can be employed to represent the resulting curves of this algorithm.

Fig. 4.4 An illustration of corner-cutting algorithm.

 44

4.2.2.2. Cubic Bezier Curve Approximation
Bezier curves are used in computer graphics to produce curves which appear

reasonably smooth with a simple polynomial equation in it. It is originally developed

by a French automobile engineer Pierre Bézier in the 1970's for CAD/CAM

operations. The polynomial equation mentioned previously is illustrated in the

following equation:

() ()
0

1
m

m im i
i i

i
P t C t t P−

=

= −∑ , (4.4)

where

i
i

i

x
P

y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, !
!()!

m
i

mC
i m i

=
−

,

and 0 ≤ t ≤ 1.

In our system, a cubic Bezier curve with m=4, which is widely supported in

many applications. A cubic Bezier curve can be defined by four points, including an

origin endpoint Q0 , a destination endpoint Q3, and two control points (including Q1

and Q2). An important property of cubic Bezier curve is that the point R3 will joint the

curve, where R3 is generated by the following equations, , as illustrated in Fig. 4.5:

R1 = (Q0+Q1)/2; (4.5)

S2 = (Q2+Q3)/2; (4.6)

R2 = R1/2+(Q1+Q2)/4; (4.7)

S1 = S2/2+(Q1+Q2)/4; (4.8)

R3 = (R2+S1)/2. (4.9)

 45

Fig. 4.5 Cubic Bezier curve.

By dragging the points Q1 and Q2, R3 is also moved. Therefore, by applying this

property, a simple curve approximation method is proposed and described in the

following.

A. Dragging Q1 and Q2 together with the same direction of x or y.

By dragging Q1 and Q2 together up, down, left, or right, a new position of R3 is

computed. By recursively measuring the error distance between R3 and a destination

point and the moving the control points, a kind of curve approximation is made. An

experimental result of dragging control points downward to implement the curve

approximation in which the lowest point is assigned to be the destination point, is

illustrated in Fig. 4.6.

(a) (b) (c)

Fig. 4.6 An experimental result of dragging control points with the same direction. (a) Iteration 1 with

error distance of 19.75 pixels. (b) Iteration 2 after moving 19 pixels down warding with

error distance of 5.75 pixels. (c) Recursively doing the approximation until the error

distance smaller than 1 pixel.

 46

B. Dragging Q1 and Q2 together with diverse directions of x or y.

By dragging Q1 and Q2 to be nearer or further, we can additionally have a sharper

or flatter curve. An experimental result is illustrated with changing the jaw shapes in

Fig. 4.7.

(a) (b) (c)

Fig. 4.7 An experimental result of control points with diverse directions. (a) A normal jaw curve. (b)

A sharper jaw curve. (c) A flatter jaw curve.

Therefore, the above-mentioned cubic Bezier curve can be used to obtain a

smooth curve from four points at a time. Many application languages support the use

of skimpily assigning four points to get a Bezier curve. By dragging the control points

Q1 and Q2, we can easily change the shapes of Bezier curves.

4.2.3 Proposed Facial Feature Points
By adding or eliminating some feature points of the face model in MPEG-4

according to the two curve drawing algorithms described previously, a new face

model with 72 facial feature points is proposed in this study, as illustrated in Fig. 4.8.

 47

2.1

2.14 2.13

11.1

11.2 11.3
4.2

4.6

4.44.4a
4.1 4.3 4.3a

4.5

3.83.12 3.4

3.2 3.1

3.3

9.14 9.13
9.2 9.1

9.4 9.59.15

10.2 10.1
9.6 9.7

10.10 10.9

10.8 10.78.9 8.1 8.10
8.4 8.3

8.2

2.3
2.2

11.2a 11.3a

3.11 3.7

Fig. 4.8 72 feature points in the proposed system.

Utilizing the different properties of the two curve drawing algorithms, we apply a

corner-cutting subdivision algorithm with depth=2 to draw the hair and eyebrows. On

the contrary, we apply the cubic Bezier curve algorithm to draw eyebrows and the

remaining facial features.

 48

4.3 Extraction of Facial Feature Points

After setting up the face model with facial feature points, a method for extraction

of facial feature points in a given facial image is needed for the purpose of creating a

personal cartoon face. In this section, we describe how the facial feature points are

extracted in this study from the previously described facial feature regions. By

knowing what and how many points of a feature needed to be extracted, a

corresponding solution is obtained. In Section 4.3.1, a method for extraction of

eyebrows, eyes, nose, and mouth points is proposed and described. Section 4.3.2

describes the method for extraction of face, ear, and hair points.

4.3.1 Extraction of Eyebrows, Eyes, Nose, Mouth,

and Jaw Points
In this section, the proposed methods for extraction of feature points based on

each facial feature region are described in turn.

A. Extraction of eyebrow points

According to the face model in Section 4.2.3, there are four feature points in

each eyebrow region. The detailed extraction method is described in the following

algorithm.

4.2

4.6

4.44.4a

(a) (b)

Fig. 4.9 An illustration of extraction of eyebrow points. (a) Left eyebrow points in the proposed face

model. (b) Detection of the left eyebrow points in left eyebrow region.

 49

Algorithm 4.2. Extraction of eyebrow points.

Input: A left eyebrow region RLeft_eyebrow, a value w, and two eyeball regions

EyeballLeft and EyeballRight detected in Section 3.4.1.

Output: Four left eyebrow points 4.2, 4.4, 4.4a, 4.6, and four right eyebrow points

4.1, 4.3, 4.3a and 4.5.

Steps:

1. Average the leftmost w columns of pixel positions in RLeft_eyebrow as the

point of 4.6.

2. Average the rightmost w columns of pixel positions in RLeft_eyebrow as the

point of 4.2.

3. Separate the remaining columns of pixels into two parts of regions Left

and Right.

4. For the region Right, travel from column to column, and take the average

of the centers of all columns as point 4.4.

5. For the region Left, travel from column to column, and take the average

of the centers of all column as point 4.4a.

6. Compute the right eyebrow points by the left eyebrow points according to

the positions of two eyeballs.

B. Extraction of eye points

According to the face model in Section 4.2.3, there are five feature points in each

eye region. One of the eye points is the center of the eyeball which was detected in

Section 3.4.1. The detailed extraction method of the remaining feature points is

described in the following algorithm.

 50

3.12 3.4

3.2

3.8

(a) (b)

Fig. 4.10 An illustration of extraction of eye points. (a) Left eye points in the proposed face model.

(b) Detection of the left eye points in left eye region.

Algorithm 4.3. Extraction of eye points.

Input: A left eye region RLeft_eye, a value w, and two eyeball regions EyeballLeft and

EyeballRight detected in Section 3.4.1.

Output: Four left eye points 3.8, 3.12, 3.2, 3.4, four right eye points 3.7, 3.11, 3.1,

and 3.3.

Steps:

1. Average the leftmost w columns of pixel positions in RLeft_eye as the point

of 3.12.

2. Average the rightmost w columns of pixel positions in RLeft_eye as the

point of 3.8.

3. Set point 3.2 according to the definition of the neutral face in the

following way:

Point ()2/.. ,.2.3 heightEyeballyEyeballxEyeball LeftLeftLeft −= .

4. Set point 3.4 according to the definition of the neutral face in the

following way:

Point ()2/.. ,.4.3 heightEyeballyEyeballxEyeball LeftLeftLeft += .

5. Compute the right eye points by the left eye points according to the

positions of two eyeballs.

 51

C. Extraction of nose points

According to the face model in Section 4.2.3, there are nine feature points in the

nose region. Since the edge information of the nose region is not always adoptable for

pixel-by-pixel detection, here, we only use some given information to get the desired

feature points. The detailed method is described in the following algorithm.

9.14 9.13
9.2 9.1

9.4 9.59.15

9.6 9.7

Fig. 4.11 Left eye points in the proposed face model.

Algorithm 4.4. Extraction of nose points.

Input: A nose region RNose, two eye points (including 3.8 and 3.11), a vertical cut

LNose detected in Section 3.4.3, a position of EyeMid, and two eyeball regions

EyeballLeft and EyeballRight detected in Section 3.4.1.

Output: Nine nose points 9.6, 9.7, 9.14, 9.13, 9.2, 9.1, 9.4, 9.5, and 9.15.

Steps:

1. Let RNose = [(x1, y1), (x2, y2)].

2. Let LNose denote a line described by x=xN.

3. Set point 9.6 and 9.7 in the following way:

Point 9.6 = (3.8.x + (3.11.x-3.8.x)/3, EyeMid.y);

Point 9.7 = (3.11.x − (3.11.x-3.8.x)/3, EyeMid.y).

4. Set point 9.14 and 9.13 in the following way:

Point 9.14 = (x1 + (x2 − x1)/8, y1);

 52

Point 9.13 = (x2 − (x2 − x1)/8, y1).

5. Set point 9.2 and 9.1 in the following way:

Point 9.2 = (x1, (y1+3× y2)/4);

Point 9.1 = (x2, (y1+3× y2)/4).

6. Set point 9.4 and 9.5 in the following way:

Point 9.4 = (x1 + (x2 − x1)/8, y2);

Point 9.5 = (x2 − (x2 − x1)/8, y2).

7. Set point 9.15 in the following way:

Point 9.15 = (xN, y2).

D. Extraction of mouth points

According the face model in Section 4.2.3, there are eight feature points in the

mouth region. Since the mouth shape itself has a symmetry property, we will only

detect the left-side feature points and the compute the remaining feature points. The

detailed method is described in the following algorithm.

8.9 8.1 8.10
8.4 8.3

8.2

2.3
2.2

(a) (b)

Fig. 4.12 An illustration of extraction of mouth points. (a) Mouth points in the proposed face model.

(b) Detection of the mouth points in mouth region.

 53

Algorithm 4.5. Extraction of mouth points.

Input: A mouth region RMouth, a value w, and a vertical cut LMouth detected in Section

3.4.3

Output: Eight mouth points 8.1, 8.9, 8.10, 8.4, 8.3, 2.2, 2.3, and 8.2.

Steps:

1. Let RMouth denotes a region of [(x1, y1), (x2, y2)].

2. Let LMouth denote a line described by x=xM.

3. Average the leftmost w columns of pixel positions in RMouth as the point

of 8.4.

4. Average the topmost w rows of pixel positions in the half part of RMouth as

the point of 8.9.

5. Average the topmost (8.4.y- x1) pixel position along the vertical cut LMouth

as the point of 8.1.

6. Set point 2.2, 2.3, 8.2 in the following way:

Point 2.2 = (xM, 8.4.y);

Point 2.3 = (xM, 8.4.y);

Point 8.2 = (xM, y2).

7. Compute points 8.10 and 8.3 according to the central vertical cut LMouth.

4.3.2 Extraction of Face, Ear, and Hair Points
In this section, the proposed method for extraction of face, ear, and hair points is

described. The main idea to extract these feature points is to choose a start point and

searching. When the start point moves to a position that satisfies a predefined rule, the

search is stopped and the position is record as one feature point. This method is

sensitive to noise, and so we need to refine the face region and hair region, as

described in Chapter 3.
 54

A. Extraction of face points (including jaw points), and ear points

In Chapter 3, we already knew the face region and ear region. Here we only

describe the proposed method for extraction of the major face points. An illustration is

shown in Fig. 4.13. Some basic rules to extract face points (including points 2.1, 2.14,

2.13, 11.2, 11.1, and 11.3) and nose points (including points 10.2, and 10.10) are listed

as follows:

2.1

2.14 2.13

11.1

11.2 11.3

10.1

10.10 10.9

10.8 10.7

10.2

(a) (b)

Fig. 4.13 An illustration of extraction of face points. (a) Face points in the proposed face model.

(b) Detection of the face points in face region.

1. Start from the mouth point 8.2, search downward until reaching a position which

does not belong to the face region Ffianl, and take it as the jaw point 2.1. If we

cannot detect point 2.1, we speculate a position for it in the following way:

Point 2.1 = (8.2.x, 8.2.y+0.7×d).

2. Start from the mouth point 8.9, search to the left and right simultaneously, until

reaching positions which do not belong to the face region Ffianl as another two

jaw points 2.14, 2.13. If the cheek boundary is reached, then backtrack to the

position of point 8.9, move downward 1 pixel, and start search again.

 55

3. Start from position (2.14.x, MidEye.y+d/2), search upward, until reaching a

position which does not belong to the face region Ffianl, and take it as the face

point 11.2.

4. Start from position (2.13.x, MidEye.y+d/2), search like the way for point 11.2 to

get a face point 11.3.

5. Average the positions of the topmost several rows in the face region Ffianl to get

face point 11.1.

6. Finally, ear points can be detected by averaging the outmost several rows to get

ear points 11.2 and 11.1.

B. Extraction of hair points

An illustration is shown in Fig. 4.14. Some basic rules to extract hair points are

listed as follows:

(a) (b)

Fig. 4.14 An illustration of extraction of hair points. (a) Hair points in the proposed face model.

(b) Detection of the hair points in hair region.

1. Us the points 2.14, 2.13, 11.2, and 11.3 as basic points to divide the hair contour

with several segments, as shown in Fig. 4.14(b).

2. Us one of the points 2.14, 2.13, 11.2, or 11.3 as a start point, search outward,

 56

until reaching a position which does not belong to the hair region Hfianl, and take

it as one of the hair points.

4.4 Cartoon Face Deformation

In order to animate cartoon faces more easily, some feature points are assigned to

be control points. The major moving elements are eyes, the mouth, and the jaw. To

move them in a more reasonable way, some animation parameter units need to be

specified, as described in Section 4.4.1. A way to animate cartoon faces in a simpler

way is described in Section 4.4.2.

4.4.1 Proposed Facial Animation Parameter Units
Some animation parameter units used in the proposed system is illustrated in Fig.

4.15. Each can be estimated by computing the Euclidean distance between two feature

points.

d
r1 r2 Right Eye HLeft Eye H

Jaw H

Upper Lip H Upper Lip H2

Lower Lip H

Eyebrow HEyebrow H2

MNS0

MW0

Fig. 4.15 Facial animation parameter units in the proposed system.

 57

4.4.2 Assignment of Control Points
Eyes and the mouth are basic animation elements in this study. An easier way to

control their actions can simplify the animation process.

For the action of eyes, we can simply change the position of the eyeball to make

an eye movement effect. Additionally, by changing the value of LeftEyeH and

RightEyeH, we can easily create an eye blinking effect. Points and parameters related

to these effects are illustrated in the following figure.

d
r1 r2 Right Eye HLeft Eye H

Fig. 4.16 An illustration of eye deformations.

Next, in order to control the movement of the lips more easily, a method is also

proposed in this study. By reassigning the locations of mouth points 8.9, 8.4, 8.2, and

8,3, the other mouth points will be computed automatically. Additionally, by using the

facial animation parameters MNS0 and MW0, we can automatically simulate thick

lips or thin lips for use during speaking. The jaw point 2.1 is automatically computed

without reassigning its location. Moving mouth 8.9 will make the jaw point 2.1

moving simultaneously with the parameter JawH, where point 2.1 = (8.2.x, 8.2.y +

JawH). Points and parameters related to these effects are illustrated in the following

figure.

Jaw H

Upper Lip H Upper Lip H2

Lower Lip H MW0

MNS08.9

8.4 8.3

8.2

2.1

Fig. 4.17 An illustration of mouth deformations.

 58

4.5 Experimental Results

Some experimental results of applying the proposed methods for extraction of

facial feature points are shown here. Two different neutral facial images are processed

and shown in the following.

(a) (b)

(c) (d)

Fig. 4.18 An example of experimental results. (a) A result of detection of facial feature points. (b) A

result of neutral cartoon face rendered by SVG. (c) A result of a cartoon face with relocating

some facial points. (d) A result of a cartoon face with relocating the control points of eyes

and mouth.

 59

(a) (b)

(c) (d)

Fig. 4.19 The second example of experimental results. (a) A result of detection of facial feature points.

(b) A result of neutral cartoon face rendered by SVG. (c) A result of a cartoon face with

relocating some facial points. (d) A result of a cartoon face with relocating the control points

of eyes and mouth.

 60

(a) (b)

(c) (d)

Fig. 4.20 The third example of experimental results. (a) A result of detection of facial feature points.

(b) A result of neutral cartoon face rendered by SVG. (c) A result of a cartoon face with

relocating some facial points. (d) A result of a cartoon face with relocating the control points

of eyeballs (shifting up) and mouth.

 61

Chapter 5
Talking Cartoon Face Generation
from Single Images

5.1 Introduction

Up to now, we have known how to create a personal cartoon face from a given

neutral facial image, how to change its looks, and how to animate it using the

techniques described in the previous chapters. However, we do not want to create an

animated cartoon face by dealing with it frame by frame. In this study, two ways are

proposed to help users to create a talking cartoon face automatically for general uses.

The first is to create a talking cartoon face from a single facial image, but animate it

by using a speech file and a script file. That is, users, for example, can take pictures to

make cartoon faces whenever they want their personal cartoon faces to speak on

behalf of themselves.

On the contrary, if a user wants to create an animated cartoon face with fewer

operations, the second way may be employed to attain the goal by simply using a

video clip of the user’s talking face as input. Then the generated talking cartoon face

will act like the user’s face in the video clip. Furthermore, cartoon faces are created

with less data, and so people can easily share them through the Internet, cellular

phones, etc, with their friends.

In this chapter, the first way mentioned previously is described, and the second

way is described in the next chapter.

 62

In order to animate the cartoon faces from a speech file and a script file, we have

to know the relationships among them. By applying a speech analyzer, time

information of the syllables of the speech file can be extracted in this study. However,

knowing when to speak a word is still not enough. We must know “how” to speak.

Nine basic mouth shapes are proposed to translate syllables into combinations of

several basic mouth shapes. By assigning basic mouth shapes into proper key frames,

the cartoon face can be animated.

In Section 5.2, a definition of basic mouth shapes is described. In order to know

the relationship between the mouth shapes, an analysis of time intervals between

mouth shapes of syllables is given in Section 5.3. Next, the stage of talking cartoon

face generation by synthesizing moving lips is described in Section 5.4. Additionally,

a talking cartoon face can be assigned an emotional expression in this study, as

described in Section 5.5.

5.2 Definition of Basic Mouth Shapes

Chinese words are monosyllables with 21 initials, 38 finals, and 5 tones. There

are 1345 syllables for Mandarin speaking. If the differences in tones are ignored, the

1345 syllables can be reduced to 411 syllables. In Yeh [16], the 21 kinds of initials

were reduced to 7 according to the manners of articulation. After a classification of

the initials, the 411 syllables can even be reduced to 167 postures.

However, the above mentioned classification techniques are based on “real”

faces. In the case of cartoon faces, especially when the concern is about the mouth

shapes only, the number of postures can be reduced further, as done in this study.

 63

5.2.1 Phonetic Transcription
There exist many languages in our world. In order to read an unknown word,

people always transcript it into some basic phonetic symbols. For Mandarin speaking,

some basic phonetic transcriptions, such as .the Chinese phonetic transcription and the

Taiwan Tongyoung Romanization, have already exited. Taking the Taiwan

Tongyoung Romanization as an example, we show a transcription of the Mandarin

phonetics into a set of English alphabets in Table 5.1.

Table 5.1 An illustration of the basic elements of Taiwan Tongyoung Romanization.

ㄅ ㄆ ㄇ ㄈ ㄉ ㄊ ㄋ ㄌ

b p m f d t n l

ㄍ ㄎ ㄏ ㄐ ㄑ ㄒ

g k h ji ci si

ㄓ ㄔ ㄕ ㄖ ㄗ ㄘ ㄙ

jr ch sh r z c s

ㄚ ㄛ ㄜ ㄧ ㄨ ㄩ ㄝ ㄦ

a o e i u u e er

ㄞ ㄟ ㄠ ㄡ ㄢ ㄤ ㄣ ㄥ

ai ei ao ou an ang en eng

We can see from Table 5.1 that the Mandarin phonetics are composed of some

basic English alphabets, and that each English alphabet has its own mouth shapes. A

concept worth notice here is that a Mandarin syllable which consists of phonemes is a

combination of some basic mouth shapes.

 64

5.2.2 Extraction of Basic Mouth Shapes
In Yeh [16], the 21 kinds of initials, as mentioned previously, were reduced to 7

according to the manners of articulation, as illustrated in Table 5.2:

Table 5.2 Classification of initials according to the manner of articulation proposed in Yeh [16].

Pace of Articulation

Upper Obstruction Lower Obstruction
Members of the Classes

Lip shut

Relaxed narrow

ㄅ、ㄆ、ㄇ

Protrusion

Relaxed narrow

ㄈ

Tongue to gum

Medium oval

ㄉ、ㄊ、ㄋ、ㄌ

Medium oval

ㄍ、ㄎ、ㄏ

Front tongue

ㄐ、ㄑ、ㄒ

Tip to gum

ㄓ、ㄔ、ㄕ、ㄖ

Tightened narrow

ㄗ、ㄘ、ㄙ

 65

Because talking cartoon face generation by the proposed system only concern

about the mouth shapes of the pronunciation, the above mentioned 7 kinds of

Mandarin initials can be reduced further to 3 basic initial mouth shapes, as shown in

Table 5.3.

Table 5.3 Three basic mouth shapes of Mandarin initials.

Mouth Shape Symbols Members of the classes

m ㄅ、ㄆ、ㄇ

f ㄈ

h’ ㄉ、ㄊ、ㄋ、ㄌ、ㄍ、ㄎ、ㄏ、ㄐ、ㄑ、ㄒ、

ㄗ、ㄘ、ㄙ、ㄖ、ㄗ、ㄘ、ㄙ

Similarity, the Mandarin finals can be reduced to a set of combinations with 7

basic mouth shapes based on the Taiwan Tongyoung Romanization, as shown in

Table 5.4.

Table 5.4 A set of combinations with 7 basic mouth shapes of Mandarin finals.

Mouth Shape

Symbols

Members of the

classes

Combinations of

Mouth Shapes

Members of the

classes

a ㄚ au ㄠ

e ㄝ ou ㄡ

i ㄧ en ㄢ

o ㄛ an ㄤ

u ㄨ、ㄩ ei ㄟ

n ㄥ ai ㄞ

h ㄣ、ㄦ、ㄜ

 66

Any given syllable which consists of phonemes can be translated into a

combination of basic mouth shape symbols. For example, phoneme “ㄨ” can be

translated into “u”, phoneme “ㄠ” into “au”, and a syllable “ㄧㄠ” into “iau”, etc.

It is noticed that two “h’s” exist in both of the classes of Mandarin initials and

Mandarin finals. Both h’ and h represent the same open mouth shape; however, h’ is

eliminated in this study if there is a symbol (including a, i, u, e, o) behind it. For

example, the syllable “ㄍㄨ” is translated into “h’u”, where there is an u right behind

h’, and the final transcription of “ㄍㄨ” will be automatically corrected to be “u.”

The reason for the above mentioned rule is that for Mandarin speaking, the

pre-posture of the open mouth shape is always missed. Lin and Tsai [1] only checked

the initial of the syllable if it is one of the phonemes “ㄅ”, “ㄆ”, “ㄇ”, “ㄈ” by

ignoring the open mouth shapes of the remaining phonemes of the Mandarin initials.

5.2.3 Basic Mouth Shapes
After classifying the Mandarin initials and the Mandarin finals into 9 basic

mouth shapes, the shape of each need be defined. An experiment was carried out to

define the basic mouth shapes for uses of cartoon faces. Additionally, we can easily

define the mouth shape using the concept of control points, which is mentioned

previously in Chapter 4, as shown in Fig. 5.1.

8.9 8.1 8.10
8.4 8.3

2.3
2.2

8.2 Lower Lip H MW0

MNS0

(a) (b)

Fig. 5.1 Basic components for definition of basic mouth shapes. (a) Control points (solid circle) of

mouth. (b) Facial animation parameter units of mouth and nose.

 67

Let each basic mouth shape be defined by a set of {8.9, 8.2, 8.4, 8.3}. The

relevant definitions are as follows.

A. Basic mouth shapes of Mandarin initials.

1. Basic mouth shape m: m is the initial mouth shape in the neutral state:

m = {8.9Netural, 8.2Netural, 8.4Netural, 8.3Netural}.

2. Basic mouth shape f: A part of the lower lip is hidden by the upper lip:

f = {8.9Netural, up, 8.4Netural, 8.3Netural},

where up = (8.9Netural.x, 8.9Netural.y− 0.5×LowerLipH).

3. Basic mouth shape h’ and h:

h’/h = {up, dn, lf, rt},

where up = (8.9Netural.x − 0.3×MNS0, 8.9Netural.y);

 dn = (8.2Netural.x, 8.2Netural.y + 0.3×MNS0);

 lf = (8.4Netural.x, 8.4Netural.y − 1);

 rt = (8.3Netural.x, 8.3Netural.y − 1).

(a) (b) (c)

Fig. 5.2 Basic mouth shapes of Mandarin initials rendered by SVG. (a) Basic mouth shape m. (b)

Basic mouth shape f. (c) Basic mouth shape h.

 68

B. Basic mouth shape of Mandarin finals.

1. Basic mouth shape a:

a = {up, dn, lf, rt},

where up = (8.9Netural.x, 8.9Netural.y − 0.3×MNS0);

 dn = (8.2Netural.x, 8.2Netural.y + 0.8×MNS0);

 lf = (8.4Netural.x + MW0/8, 8.4Netural.y);

 rt = (8.3Netural.x − MW0/8, 8.3Netural.y).

2. Basic mouth shape i:

i = {8.9, dn, lf, rt},

where dn = (8.2Netural.x, 8.2Netural.y + MNS0/6);

 lf = (8.4Netural.x − MW0/12, 8.4Netural.y −3);

 rt = (8.3Netural.x + MW0/12, 8.3Netural.y −3).

3. Basic mouth shape u:

u = {up, dn, lf, rt},

where up = (8.9Netural.x, 8.9Netural.y − 0.3×MNS0);

 dn = (8.2Netural.x, 8.2Netural.y + 0.3×MNS0);

 lf = (8.4Netural.x, 8.4Netural.y − 1);

 rt = (8.3Netural.x, 8.3Netural.y −1).

4. Basic mouth shape e :

e = {8.9, dn, lf, rt},

where dn = (8.2Netural.x, 8.2Netural.y + MNS0/2);

 lf = (8.4Netural.x − MW0/12, 8.4Netural.y −3);

 rt = (8.3Netural.x + MW0/12, 8.3Netural.y −3).

5. Basic mouth shape o :

o = {up, dn, lf, rt},

where up = (8.9Netural.x, 8.9Netural.y − 0.3×MNS0);
 69

 dn = (8.2Netural.x, 8.2Netural.y + 0.5×MNS0);

 lf = (8.4Netural.x + 0.2×MW0, (up.y+dn.y)/2);

 rt = (8.3Netural.x − 0.2×MW0, lf.y).

6. Basic mouth shape n :

n = {up, dn, lf, rt},

where up = (8.9Netural.x, 8.9Netural.y − 0.25×MNS0);

 dn = (8.2Netural.x, 8.2Netural.y + 0.5×MNS0);

 lf = equals to the last former mouth shape;

 rt = equals to the last former mouth shape.

(a) (b) (c)

(d) (e) (f)

Fig. 5.3 Basic mouth shapes of Mandarin finals rendered by SVG. (a) Basic mouth shape a. (b) Basic

mouth shape i. (c) Basic mouth shape u. (d) Basic mouth shape e. (e) Basic mouth shape o.

(f) Basic mouth shape n.

 70

5.3 Analysis of Time Intervals between
Mouth Shapes of Syllables

A syllable is combined with four basic mouth shapes at most in this study. We

have to know when to show each mouth shape during the pronunciations of syllables.

Since the mouth shapes are extracted according to the Taiwan Tongyoung

Romanization, each mouth shape of a syllable can be roughly recognized by general

listening. Some experiments were conducted to determine the time intervals between

mouth shapes. We choose the Mandarin initials and Mandarin finals as the samples for

the experiments. After recording an audio with several continuous syllables, we select

a part of a syllable, and then try to find the time interval between two pronunciations

of the basic mouths by carefully listening.

For example, a syllable “ㄟ”is translated into “ei” by the previously mentioned

method. We suppose that there is a start time for the pronunciation of the basic mouth

shape “i” and try to recognize it, as shown in Fig. 5.4.

Fig. 5.4 The waveform of the syllable “ㄟ” and the start time of the second phoneme.

Repeatedly applying the work for all the Mandarin initials and all the Mandarin

finals, we get some experimental results of syllables with one to three basic mouth

shapes. Therefore, by combining the Mandarin initials and the Mandarin finals, we

 71

can get the syllables with four basic mouth shapes.

Some experimental results are shown in the following.

A. A syllable with two basic mouth shapes.

There are 44 Mandarin finals with 2 basic mouths. By repeatedly doing three

times, the experimental results of gathering the start times of the first time intervals of

the pronunciations of the basic mouth shapes are illustrated in Fig. 5.5.

Fig. 5.5 A statistic result of the start time of the second basic mouth shape of the syllables with 2

basic mouth shapes.

A normal distribution with mean = 0.8095 and variance = 0.0494 normalized by

the total audio time was obtained. Therefore, we assume that the second mouth shape

is given at the time with a proportion of 80.95% of the total time of the syllable.

Taking “ㄠ” as an example, we have the result shown in Fig. 5.6.

Fig. 5.6 An illustration of time intervals of two basic mouths.

 72

B. A syllable with three basic mouth shapes.

There are 30 Mandarin finals with 3 basic mouths. By repeatedly doing three

times, the experimental results of gathering the first time intervals and the second time

intervals of the pronunciations of the basic mouth shapes is illustrated in Fig. 5.7.

(a) (b)

Fig. 5.7 A statistic result of the syllables with 3 basic mouth shapes. (a) The start time of the second

basic mouth shape. (b) The time interval between the second and the third basic mouth

shape.

From the experimental results of the first time interval between the first and

second basic mouth shapes, a normal distribution with mean = 0.4337 and variance =

0.0564 normalized by the total audio time was obtained. Besides, with the

experimental results of the time interval between the second and the third basic mouth

shapes, a normal distribution with mean = 0.3975 and variance = 0.0486 normalized

by the remaining audio time is obtained. Therefore, we assume that the second mouth

shape is given at the time with a proportion 43.37%, and the third mouth shape is

given at the time with a proportion 39.75% of the total syllable time. Taking “ㄧㄠ”

as an example, we have the result shown in Fig. 5.8.

 73

Fig. 5.8 An illustration of time intervals of three basic mouths.

C. A syllable with four basic mouth shapes.

10 syllables with 4 basic mouths were taken for experiments. By repeatedly

doing three times, the experimental results of gathering the first time intervals and the

second time intervals of the pronunciations of the basic mouth shapes are illustrated in

Fig. 5.9.

(a) (b)

(c)

Fig. 5.9 A statistic result of the syllables with 4 basic mouth shapes. (a) The start time of the second

basic mouth shape. (b) The time interval between the second and the third basic mouth

shape. (c) The time interval between the third and the forth basic mouth shape.

 74

With the experimental results of the first time intervals between the first and

second basic mouth shapes, a normal distribution with mean = 0.245 and variance =

0.0443 normalized by the total audio time was obtained. With the experimental results

of the time intervals between the second and the third basic mouth shapes, a normal

distribution with mean = 0.2115 and variance = 0.0316 normalized by the remaining

audio time is obtained. Finally, the experimental results of the time intervals between

the third and the forth basic mouth shapes, a normal distribution with mean = 0.2588

and variance = 0.0412 normalized by the remaining audio time is obtained.

Therefore, we assume that the second mouth shape is given at the time with a

proportion 24.5%, that the third mouth shape is given at the time with a proportion of

21.15%, and that the forth mouth shape is given at the time with a proportion of

25.88% of the total syllable time. Taking “ㄇㄧㄠ” as an example, we have the result

shown in Fig. 5.10.

Fig. 5.10 An illustration of time intervals of four basic mouths.

5.4 Talking Cartoon Faces Generation
by Synthesizing Moving Lips

An overall illustration of talking cartoon face generation is described in Fig.

5.11.

 75

Speech

Frames

Microphone

a u i a u i um a

A Syllable :ㄠ A Syllable :ㄧㄠ A Syllable :ㄇㄧㄠ

Basic Facial Feature
Parameters

Speech
Analyzer

Script

Fig. 5.11 An overall illustration of talking cartoon face generation.

There are two main steps to create a talking cartoon face by synthesizing moving

lips after extracting the information of a speech file and a script file by a speech

analyzer.

1. Obtaining time information for syllables.

Based on this step, we know when and what to speak. The information of

the time of each syllable is obtained for the subsequent use.

2. Extracting basic mouth shapes from each syllable and assigning the

related parameters to proper key frames.

Based on this step, we know how to speak. For each syllable, by the

previously mentioned method, a combination of basic mouth shapes is

obtained. Additionally, by referencing the results of analysis of the time

intervals of mouth shapes given in Section 5.3, we know how to assign the

basic mouth shapes to proper key-frames.

Finally, by applying an interpolation technique between frames and then

synchronizing with the speech file, a talking cartoon face by synthesizing moving lips

is created.

 76

5.5 Talking Cartoon Faces Generation
by Synthesizing Emotions

Additionally, we can assign the talking cartoon face a freely specified emotion.

By reassigning locations to the feature points of eyebrows and eyes, the cartoon faces

may appear to be more different.

Some experimental results are given in Fig. 5.12.

(a) (b) (c)

(d) (e)

Fig. 5.12 Some experimental results of emotions rendered by SVG. (a) Neutral cartoon face. (b)

Smile. (c) Sad. (d) Angry. (e) Surprise.

5.6 Experimental Results

An experimental result of talking cartoon faces is shown here. By applying the

 77

moving lip synthesis technique mentioned previously, a speech file of saying two

Mandarin words “您好” is used to create a talking cartoon face. Next, by assigning a

“surprise” emotion, a talking cartoon face is obtained as shown in Fig. 5.13.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5.13 A resulting sequence of the talking cartoon face for speaking “您好” with a surprise

emotion and a randomly generated eye-blinking.

 78

Chapter 6
Talking Cartoon Face Generation
from Image Sequences

6.1 Introduction

Another way to generate a talking cartoon face is to take a video clip of a user’s

speaking face as input, and then transform it into a talking cartoon face. A flowchart

of talking cartoon face generation from image sequences is shown in Fig. 6.1.

Video Clip

Speech Image Sequence

A Neutral Facial
Image

Sequential
Facial Images

Cartoon Face
Creator

Animation
Editor

Cartoon Generator

Result

Fig. 6.1 A flowchart of talking cartoon face generation from image sequence.

After the proposed system gets an image sequence and a speech file, the cartoon

 79

face generator will automatically choose the first frame as a neutral cartoon face of

the user. Some threshold values and parameters will be reserved for subsequent uses.

The animation editor will use the reserved values mentioned previously to

process each of the sequential images, and then apply the tracking procedure to

effectively detect the desired facial feature regions.

After extracting the desired facial feature region, the method for extracting facial

feature points described previously is applied. By using these facial feature points as

animation information, the neutral cartoon face can be animated. Since the process of

the neutral facial image analysis has been mentioned previously, here we only focus

on how to track the demanded facial feature points.

In Section 6.2, a method for tracking eyeball regions is described. Section 6.3

describes a method for tracking mouth regions. In Section 6.4, an extraction method

for extraction of facial feature points, especially for extraction of control points is

described. Finally, some experimental results are given in Section 6.5.

6.2 Tracking for Eyeball Regions

In the proposed system, a method for tracking eye regions is proposed. The main

idea of the method is described as follows:

1. Reserve a threshold value t1 and a pair of eyeball regions EyeballLeft and

EyeballRight during the creation of the neutral cartoon face for further uses.

2. Use t1 for the 1st level hierarchical bi-level thresholding in the intensity channel

to get a binary image B1’.

3. Use the pixels of EyeballLeft and EyeballRight as seeds and applying region

growing on B1’ to extract some possible eye regions.
 80

4. Use the eye-pair detection method mentioned in Chapter 3 to get a new pair of

eye regions. If no eye-pair is detected, use the old pair of eye regions to

substitute new ones.

5. Use the eyeball detection method to get new eyeballs EyeballLeft and EyeballRight.

6. Reserve the new eye-pair regions for eye-pair tracking in the next facial image

and go to Step 2 until the last image of the video sequence has been dealt with.

A detailed illustration of the above procedure is shown in Fig. 6.2

Lighter Regions Darker Regions

Face
Regions

Background
Regions

Hair
Regions

Hue Channel

Intensity Channel

Neutral Facial Image

Facial Feature
Regions

Edge Image

Bi-level Thresholding

Bi-level Thresholding

Eye-pair
Detection

Sequential Facial
Images

Eye-pair Regions

Fig. 6.2 A flowchart of tracking for eyeball regions in image sequences.

6.3 Tracking Mouth Regions

In the proposed system, a method for tracking mouth regions is proposed. The

main idea of the method is described as follows:

1. Reserve the three horizontal division lines, DivEE, DivEN, DivNM, the four

threshold values of four parts of the edge image, and a mouth region RMouth

computed during the creation of the neutral cartoon face for further uses.

 81

2. Use the parameters mentioned in Step1 to threshold the Sobel edge image of each

subsequent facial image.

3. Use the pixels of RMouth as seeds, and apply region growing to extract a new

mouth region.

4. Go to Step 2 until the last frame of the sequential image has been processed.

A detailed illustration is shown in Fig. 6.3.

Lighter Regions Darker Regions

Face
Regions

Background
Regions

Hair
Regions

Hue Channel

Intensity Channel

Neutral Facial Image

Facial Feature
Regions

Edge Image

Bi-level Thresholding

Bi-level Thresholding

Eye-pair
Detection

Sequential Facial
Images

Mouth Regions

Eye-pair Regions

Fig. 6.3 A flowchart of tracking for Mouth regions in image sequences.

6.4 Extraction of Facial Feature Points

After extracting eyeball regions and mouth regions, a method of region

refinement mentioned previously is applied. Next, a method for extraction of facial

feature points mentioned previously is use to extract eye points and mouth points,

especially to detect control points for animation. The tracking results of the sizes of

mouth shapes need be adjusted with the nine basic mouth shapes.

 82

6.5 Experimental Results

In this chapter, a method for tracking facial features to accomplish face

animation through image sequences is proposed. Some cartoon faces were animated

by successful image tracking results. An experimental result of the extracted

animation information and the corresponding animated cartoon faces are shown in Fig.

6.4 and Fig. 6.5. Another experimental result is shown in Fig. 6.6.

(a) (b)

Fig. 6.4 An example of experimental results. (a) A given neutral facial image (the first facial image of

the video sequence). (b) A result of automatic neutral cartoon faces generation.

 83

(a) (b)

(c) (e)

(e) (f)

Fig. 6.5 An example of tracking results. (a) A tracking result of one of the image sequence. (b)

Related cartoon face of (a). (c) A tracking result of one of the image sequence. (d) Related

cartoon face of (c). (e) A tracking result of one of the image sequence. (f) Related cartoon

face of (e).

 84

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6.6 Another experimental result. (a) A given neutral facial image (the first facial image of the

video sequence). (b) A result of automatic neutral cartoon faces generation. (c)(e)(g)

 85

Tracking results of th

Chapter 7
Cartoon Generator an

e image sequence. (d)(f)(h) Related cartoon faces.

d
Experimental Results

7.1 Introduction

described. Finally, some applications are described and shown in Section 7.4.

7.2 Overview of SVG

In the proposed system, the generated talking cartoon faces are rendered by an

application language SVG (Scalable Vector Graphics), which is an editable and

opened vector-based XML language of W3C (World Wide Web Consortium). The

reasons why we use it in this study are described in Section 7.2. In Section 7.3, a more

detailed method for using the SVG language to display talking cartoon faces is

SVG is a language for describing two-dimensional vector and mixed

vector/raster graphics in XML. It allows three types of graphic objects: vector graphic

shapes, images (including JPEG, PNG, and GIF, and so on), and text. Each of them

can be grouped, styled, transformed, and so on. SVG also supports some common

effects on objects, including alpha mask, clipping, etc. It also has the capability for

interacting with people and for more abundant applications when combined with other

 86

languages, including HTML, JavaScript, SMIL, and so on. Additionally, SVG

draw

cations involving virtual cartoon faces.

as lis

he related syntax provided by it.

3. n standard. There are already some tools for creating, playing, and

4. Last but not the least, S or

easi

A si ing:

<!DO
"http /svg10.dtd">

<svg 00px" height="250px">
xt x="50px" y="30px" style="stroke:blue; fill:red; font-size:18" >

ent.

</text>

ings are vector-based; they can be freely scaled without destroying their quality.

It is very suitable for appli

There are still some other main advantages of using SVG in the proposed system,

ted in the following:

1. It supports the two curve drawing methods used in the proposed system. We can

draw a cartoon face simply by applying t

2. The source codes of SVG are readable, editable, and searchable. It can be easily

created without using specific software.

SVG is an ope

converting SVG to certain other file formats. It is convenient to use it for general

applications.

VG drawings can always be created with less data f

er sharing.

mple example showing a line of styled text is shown in the follow

<?xml version="1.0" standalone="no"?>
CTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"

://www.w3.org/TR/2001/REC-SVG-20010904/DTD

width="4
<te
Every SVG document has an <svg> elem

</svg>

The result of the above source code is shown in Fig 7.1.

Fig. 7.1 A result of an SVG source code.

 87

Since the source code of SVG is meaningful and editable, we just have to write

the desired code into an SVG file. We can directly view the SVG drawing by an IE

browser.

7.3

e is the way from the view in the spatial domain and the other is from

the view in the temporal domain, both being described in Section 7.3.1 and 7.3.2,

e view of the spatial domain, the main goal is to draw a cartoon with the

concept of layers using the SVG language. A concept of the spatial domain is shown

in Fig. 7.2.

 SVG Animation

In order to get a desired talking cartoon face, two kinds of views are applied for

rendering. On

respectively.

7.3.1 From the View of Spatial Domain
From th

Fig. 7.2 An illustration of spatial domain.

A neutral cartoon face can be drawn by the syntax provided by SVG, including

path (including cubic Bezier cruve), circle, polyline, etc. In Chapter 4, a face model

with facial feature points was mentioned. A cartoon face is obtained by assigning the

locations of feature points as parameters to specified syntax.

 88

2.1

2.14 2.13

11.1

11.2 11.3
4.2

4.6

4.44.4a
4.1 4.3 4.3a

4.5

3.83.12 3.4

3.2 3.1

3.3

9.14 9.13
9.2 9.1

9.4 9.59.15

10.2 10.1
9.6 9.7

10.10 10.9

10.8 10.78.9 8.1 8.10
8.4 8.3

8.2

2.3
2.2

11.2a 11.3a

3.11 3.7

Fig. 7.3 A proposed face model with 84 facial feature points.

In the proposed system, “polyline”, which describes a shape created by a number

of straight lines, is used to draw the hair with the hair points as parameters to it. It is

also used for eyebrow drawings.

<polyline points="30,200 30,50 130 50 30,200"

style="stroke:#000000; fill:#FF0000; stroke-width:2" />

As seen above, we can specify the shape of the polyline by assigning demanded

points. The style of the polyline can even more be modified by specifying the

parameters of the style.

Fig. 7.4 An illustration of the polyline shape.

Next, “circle” is used for eyeball drawings. Since the eyeball will be concealed

during eye-blinking, a special effect of clipping is applied here to solve the problem.

The basic syntex of “circle” is described as follows:

 89

<circle cx="100" cy="100" r="50"

style="stroke:#FF0000; fill:#FF0000; stroke-width:2 " />

As seen above, we can specify the shape of the circle by assigning the position of

the center of a circled and the radius. The style of the circle can even more be

modified by specifying the parameters of the style.

Fig. 7.5 An illustration of the circle shape.

A rendering result of eyes is shown in Fig. 7.66. The remaining facial features

are drawn by applying the syntax of the cubic Bezier curve, as shown in Fig. 7.7.

Fig. 7.6 An illustration of eye drawing.

Fig. 7.7 An illustration of the cubic Bezier curve.

We can also specify the colors of each component. Thus, we can modify the

cartoon faces by reassigning the shapes and styles of the svg drawings. Fig 7.8(a)

shows a default rendering style of a cartoon face. Fig 7.8(b) uses cubic curve to draw

the eyebrows. A cute type cartoon face is created by modify a jaw shape, two eyeball

shapes, and a nose shape by a predefined rule.

 90

(a) (b) (c)

Fig. 7.8 A result of different types of cartoon face. (a) Normal type. (b) Different types of eyebrows

and nose. (c) Cute type.

There are two main abstract layers in the proposed system: the static layer and

the dynamic layer. The static layer at the back is used to draw the components which

are existing all the time. On the contrary, the dynamic layer is used to draw animation

components.

Besides, we can add one or more layers to draw something else.

Fig. 7.9 A result of adding a layer for clothing with cute-type faces.

7.3.2 From the View of Temporal Domain
From the view of temporal domain, the main goal is to synchronize the speech

file with the animations using the SVG language.

 91

Fig. 7.10 An illustration of temporal domain.

A. Speech file playing

The syntax for audio playing provided by the application language SVG is

shown in the following.

<a:audio xlink:href="young.wav" begin="0s"/>

As seen above, we can specify when the audio file starts to play.

B. Animation simulation

In the proposed system, a kind of animation is to simulate a frame sequence by

the following way:

<g visibility="hidden">
<set attributeName="visibility" from="hidden" to="visible"

begin="0.000000s" dur="0.040000s"/>
..Components of a frame..

</g>

As seen above, we can use “g” to group a set of facial components which belong

to a frame, and then specify the properties of time and visibility to simulate animation

by the concept of frame rate.

Since each frame can be animated, we can use this property to shake the head, as

shown in Fig. 7.11.

 92

Fig. 7.11 Cute type cartoon face with head shaking animation.

7.4 An Application to Electronic Books

The generated talking cartoon faces can be viewed through the IE or Netscape

browser by installing a plug-in. An application is shown in Fig. 7.12.

Fig. 7.12 An application of proposed methods to electronic books.

 93

7.5 Experimental Results

In this study, talking cartoon faces can be generated from single images or

sequential images. First, we use a single facial image as input to generate a talking

cartoon face. The detailed method is described in Chapter 5. The input neutral facial

image used here is shown in Fig. 7.13. The way to animate the cartoon face is by

synthesizing moving lips from a given speech of two Mandarin words “您好”. An

experimental result is shown in Fig. 7.15.

Fig. 7.13 The neutral facial image used for the experiment.

Another experiment is using a video clip with a user’s speaking face as input to

generate an animation of a talking cartoon face. The detailed method for use in this

experiment is described in Chapter 6. The proposed system takes the first frame of the

video sequence to generate a cartoon face, and then animates the face by facial

features tracked in the image sequence. The video sequence is shown in Fig. 7.14. The

user was saying two Mandarin words “夕陽”. An experimental result is shown in Fig.

7.16.

 94

Fig. 7.14 A video sequence used for the experiment.

 95

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 7.15 A resulting sequence of the talking cartoon face for “您好” with a random generated

eye-blinking.

 96

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7.16 Another experimental results of talking cartoon face generation from image sequences,

where the speaker in the video clip is speaking “夕陽”.

 97

Chapter 8
Conclusions and Suggestions for
Future Works

8.1 Conclusions

In this study, a system for automatic generation of talking cartoon faces has been

implemented. We have presented a way to automatically create a personal cartoon

face from a given neutral facial image, and then animate it by moving-lip synthesis

and facial feature tracking. The system consists of three components, including a

cartoon face creator, an animation editor, and a cartoon generator.

By the cartoon face creator, facial feature regions and facial feature points can be

extracted automatically from a neutral facial image to create a personal cartoon face.

This is achieved by the use of a hierarchical bi-level thresholding method and a

knowledge-based image analysis technique proposed in this study. A face model of 72

facial feature points is proposed for cartoon face drawing. Dragging theses feature

points can directly deform the cartoon face. Several of these facial feature points are

assigned to be control points for easier animation of cartoon faces.

Next, using the animation editor, animation information can be extracted from an

image sequence to make the cartoon face look like the person in the image sequence.

Cartoon faces can also be animated by the use of sequential facial images through

automatic tracking of the facial features. Animation information can also be extracted

from a speech and a script. A method for translating each syllabus into a combination

 98

of 9 basic mouth shapes is proposed. A syllabus may be composed of one to four basic

mouth shapes. Furthermore, relations between mouth shapes are also analyzed in this

study. A moving-lip synthesis technique for cartoon face animation is thus proposed.

Finally, in the component of the cartoon generator, an editable and opened

vector-based XML language of W3C (World Wide Web consortium) standard, namely,

the SVG (Scalable Vector Graphics), is used for rendering and synchronizing the

cartoon face with speech. The outlook of the cartoon face can be specified in this

component.

The experimental results shown in the previous chapters have revealed the

feasibility of the proposed system.

8.2 Suggestions for Future Works

Several suggestions to improve the proposed system are listed as follows.

(1) Improvement on facial feature detection--- In order to demonstrate low-cost

processing, the facial feature detection method need be improved to fit more

application environments.

(2) Improvement on similarity measurement between users and generated cartoon

faces --- Detections of glasses, wrinkles, and hair styles of given facial images

can be improved. More personal mouth shapes can be used for synthesizing

moving lips.

(3) Improvement on animations of human facial expressions --- If a user chooses a

video clip as input, he may want the generated cartoon faces act more like

him/her. A more delicate tracking of facial features can improve the satisfaction

of more people. Even more, the speech file can be analyzed by the given
 99

technique proposed in this study to improve the result of talking cartoon faces.

(4) Real-time animation generation --- By using the existing techniques for facial

feature tracking of sequential images, there exits a potential for real-time

animation generation.

(5) Rendering cartoon faces with more types --- In the component of the cartoon

generator, more cartoon types can be supported for face rendering to raise the

quality of the resulting cartoon faces. Moreover, a way to learn a cartoonist’s

cartoon style would make the cartoon face more attractive for more people.

 100

References

[1] Y. C. Lin and W. H. Tsai, “A Study on Virtual Talking Head Animation by 2D

Image Analysis and Voice Synchronization Techniques,” M. S. Thesis,

Department of Computer and Information Science, National Chiao Tung

University, Hsinchu, Taiwan, Republic of China, June 2002.

[2] W. H. Tsai, “Moment-preserving thresholding: a new approach,” Computer

Vision, Graphics, and Image Processing, 1985, vol. 29, pp. 377-393.

[3] Y. S. Chen, C. H. Su, J. H. Chen, C. S. Chen, Y. P. Hung, C. S. Fuh,

“Video-Based Eye Tracking for Autostereoscopic Displays,” Optical

Engineering, Dec. 2001, vol. 40, no. 12, pp. 2726-2734.

[4] Z. Ruttkay , H. Noot, “Animated CharToon faces,” Proceedings of the 1st

international symposium on Non-photorealistic animation and rendering,

Annecy, France, June 05-07, 2000 pp.91-100.

[5] G. J. Edwards, A. Lanitis, C. J. Taylor, T. F. Cootes, “Face recognition using

statistical models,” Image Processing for Security Applications, IEE Colloquium

on Image Processing for Security Applications, UK, Mar. 10, 1997, pp. 2/1-2/6.

[6] Rein-Lien Hsu, A. K. Jain, “Generating discriminating cartoon faces using

interacting snakes,” IEEE Transactions on Pattern Analysis and Machine

Intelligent, 2003, vol. 25, pp. 1388 -1398.

[7] P. Litwinowicz and L. Williams. “Animating images with drawings,”

SIGGRAPH94 Conference Proceeding, Addision Wesley, Auguest 1996, pp.

225-236.

[8] H. Chen, N. N. Zheng, L. Liang, Y. Li, Y. Q. Xu, H. Y. Shum, “PicToon: a

personalized image-based cartoon system,” Proceedings of the tenth ACM

 101

http://portal.acm.org/citation.cfm?id=340928&dl=ACM&coll=portal&CFID=21414912&CFTOKEN=54290451
http://portal.acm.org/citation.cfm?id=340928&dl=ACM&coll=portal&CFID=21414912&CFTOKEN=54290451
http://portal.acm.org/citation.cfm?id=340928&dl=ACM&coll=portal&CFID=21414912&CFTOKEN=54290451

international conference on Multimedia, France, 2002, pp.171-178.

[9] Y. Li, F. Yu, Y. Q. Xu, E. Chang, H. Y. Shum, “Speech Driven Cartoon

Animation with Emotions,” Proceedings of the ninth ACM international

conference on Multimedia, 2001, pp. 365 – 371.

[10] S. C. Y. Chan , P. H. Lewis, “A Pre-filter Enabling Fast Frontal Face Detection,”

Proceedings of the Third International Conference on Visual Information and

Information Systems, June 02-04, 1999, pp.777-784.

[11] I. Grinias, Y. Mavrikakis, G. Tziritas, “Region Growing Colour Image

Segmentation Applied to Face Detection,” Intern. Workshop on Very Low Bitrate

Video Coding, 2001.

[12] J. Ostermann, “Animation of Synthetic Faces in MPEG-4,” Proceedings of the

Computer Animation, June 08-10, 1998, p.49.

[13] T. Goto, M. Escher, C. Zanardi, N. Magnenat-Thalmann, “MPEG-4 based

animation with face feature tracking,” Proc. Erographics Workshop on Computer

Animation and Simulation'99, Milano, Italy, September. 7-8 1999, Springer,

Wien New York, pp.89-98.

[14] D. Burford, E. Blake, “Real-time facial animation for avatars in collaborative

virtual environments,” Proceedings of South African Telecommunications

Networks and Applications Conference '99, 1999, pp. 178-183.

[15] Guenter, C. Grimm, D. Wolf, H. Malvar, F. Pighin, “Making faces,” Computer

Graphics Proceedings SIGGRAPH’98, 1998, pp. 55-66.

[16] T. M. Yeh, Drills and Exercises in Mandarin Pronunciation, National Taiwan

Normal University, ROC, May 1982.

 102

https://portal.acm.org/poplogin.cfm?dl=ACM&coll=portal&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D714169&CFID=21372644&CFTOKEN=53354532
https://portal.acm.org/poplogin.cfm?dl=ACM&coll=portal&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D714169&CFID=21372644&CFTOKEN=53354532
https://portal.acm.org/poplogin.cfm?dl=ACM&coll=portal&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D714169&CFID=21372644&CFTOKEN=53354532
http://portal.acm.org/citation.cfm?id=791545&dl=ACM&coll=portal&CFID=21415040&CFTOKEN=78987843
http://portal.acm.org/citation.cfm?id=791545&dl=ACM&coll=portal&CFID=21415040&CFTOKEN=78987843

	Introduction
	Motivation
	Survey of Related Studies
	Overview of Proposed Method
	Definitions of Terms
	Assumptions
	Brief Descriptions of Proposed Method

	Contributions
	Thesis Organization

	Overview of Proposed Method for Talking Cartoon Face Generat
	System Organization
	Uses of Facial Features, Control Points, and Key Frames
	Facial Feature Regions
	Facial Feature Points
	Control Points
	Key Frames

	Talking Cartoon Face Generation from Single Images
	Basic Idea
	Generation Process

	Talking Cartoon Face Generation from Image Sequences
	Basic Idea
	Generation Process

	Extraction of Facial Feature Regions
	Introduction
	Review of Eye-pair Detection Method
	Extraction of Background, Hair, and Face Regions
	Proposed Hierarchical Bi-level Thresholding
	1st Level Bi-level Thresholding in Intensity Channel
	Optimal Eye-Pair Detection
	2nd Level Bi-level Thresholding in Hue Channel
	Region Refinements

	Extraction of Facial Feature Regions
	Eyeball Detection for Position Estimation
	Knowledge-based Edge Detection by Local Thresholding
	Knowledge-based Facial Feature Extraction

	Detection of Cheek Boundaries and Ear Regions
	Experimental Results

	Extraction of Facial Feature Points
	Introduction
	Face Model Construction
	Review of MPEG-4
	Review of Two Curve Drawing Algorithm
	Corner-cutting Subdivision
	Cubic Bezier Curve Approximation
	Proposed Facial Feature Points

	Extraction of Facial Feature Points
	Extraction of Eyebrows, Eyes, Nose, Mouth, and Jaw Points
	Extraction of Face, Ear, and Hair Points

	Cartoon Face Deformation
	Proposed Facial Animation Parameter Units
	Assignment of Control Points

	Experimental Results

	Talking Cartoon Face Generation from Single Images
	Introduction
	Definition of Basic Mouth Shapes
	Phonetic Transcription
	Extraction of Basic Mouth Shapes
	Basic Mouth Shapes

	Analysis of Time Intervals between Mouth Shapes of Syllables
	Talking Cartoon Faces Generation by Synthesizing Moving Lips
	Talking Cartoon Faces Generation by Synthesizing Emotions
	Experimental Results

	Talking Cartoon Face Generation from Image Sequences
	Introduction
	Tracking for Eyeball Regions
	Tracking Mouth Regions
	Extraction of Facial Feature Points
	Experimental Results

	Cartoon Generator and Experimental Results
	Introduction
	Overview of SVG
	SVG Animation
	From the View of Spatial Domain
	From the View of Temporal Domain

	An Application to Electronic Books
	Experimental Results

	Conclusions and Suggestions for Future Works
	Conclusions
	Suggestions for Future Works

