B+ i X

5 | O B o E M F 0 0* 2
M MOG =24 @ % 2 k% 2+

Design Issues of a Flexible, Scalable, Easy-to-use
MMOG Middleware

SRR T

hEFHE TR H

FEREB L+= XA



BB EM S 2 MMOG ¥ A kg2 Kt
Design Issues of a Flexible, Scalable, and Easy-to-use
MMOG Middleware

R N A = X Student : Chen-En Lu

R 2T & Advisor : Shyan-Ming Yuan

A Thesis
Submitted to Institute of Computer and Information Science
College of Electrical Engineering.and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

PEARYL Sz ERT



PFERB L+= F7XA
PFE RIS B R [ MMOG (17 ﬁf«'?%dfﬁ%‘%

Pk PRI e ]

CRESTRS CELE e
i

MMOG(Massively Multiplayer Online Game)kL— i’ I'J 3 #% - * [l it -
(ks FREBEH] DAl 2 FOPAE T o ShYS BB — [l MMOG VEE, m & =5 (15
R > LR ST S T Fj:ﬁié‘iiﬂiﬂﬁl@ > (NS HEAOAEEE ~ o) =t po
FfS s PR ST [ o fotRE o 7 fWEUE TP > Time-to-Market kL

STEIRIPVHEL o [N MMOG FL/ ﬁj?ﬂﬁfiﬁ%iﬁpﬁﬂ% EHETI iy MMOG
L PR T S -

T )ﬁ,&ﬂ;u?i/ FIEo 251755 7 B3 MMOG Middleware [IUssie o — o> Z5 1
C T 3 MMOG e[V IFIRIRE - b= T =5 PR et
B APLT [ [SHHHE MMOG [V o [ =l 9t > 25 = [l gt LR 3

S0 BRI T Y



Design Issues of a Flexible, Scalable, and Easy-to-use MMOG Middleware

Student: Chen-en Lu Advisor: Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

MMOG (Massively Multiplayer Online Game) is a game genre, which allows
more than 1,000 players to play in the ,same game through a network concurrently.
However, it is much harder than‘we think to-develop a MMOG. There are plenty of
issues that MMOG developers:-may encounter, such as high performance network,
distributed technology, load balancing,.and-so-forth- In the meantime, time-to-market
is also an important issue to develop a .competitive MMOG. Therefore, the demand of
middleware solutions for MMOG rises by degrees and the research of MMOG

middleware gains more and more respect.

In this paper, we would like to share our experience on designing our MMOG
middleware. On one hand, we try to overcome the common issues arisen in the
MMOG environment. On the other hand, we attempt to simplify the API in order to
reduce the complexity of developing MMOGs. In addition, our platform leaves

developers the flexibility to adopt the solution and deploy it to any kind of MMOGs.



Acknowledgement

Py Rl RSB PAGAE fUdpaE  S PV FERpIE B Z PG 2
£ %ﬁ‘J'«&ﬁ*ﬁJﬂ?F'E?éﬁTﬁ? FYRUEIEC o S BT RIS PSR A S~
Y~ YT~ ST ~ SRR~ A > T IV A ] %“f N TE S s
o L E | TR R i rixF—r F ey - E i ﬁﬁu’“@ﬁ?ﬁ
LT DRVAERE o BE R AT ﬁ}lﬁﬁi&ﬁ@”%ﬂifﬂ? R EAIREN (NESEeE
FRY R o BT P e *y?félﬁﬁiéi PRIV R JFUEJJ‘I%%’ﬁf&f%‘ BT

EIE] R RIS PO - B ST RIRBE & I 5 Ihﬂl[* ENEIRE S Sy
R NER fe Py BB TVET)

‘v‘

__I:I

R VR B

—ﬁ[



Table of Contents

ACKNOWIEAGEMENT ......eiiiecie e ii
Table of CONTENTS ......ooviiiieiee e v
LIST OF FIQUIES....eeeiicie et vii
LISt OF TADIES......ceiie e, IX
Chapter 1 INtrodUCTION........cooviiie e 1
L1 PrEFACE.... i 1

1.2. IMOUIVATION ...ttt 1

1.3, ReSearch ODJECHIVES. ... 2

1.4, Research ContribULION ..., . cuurereeiinieineneese e 4

1.5.  Outline of the thesiS . ... Bl .ol e 4
Chapter 2 BaCKgroUNd ... ... e iieiie o siee e sree e saeesnee s 5
2.1, MMOG DeSign CONCEPL. i eeiuimumssman s aderieeerereinresiesiesiiaeeieseesre e s sne s 5

2.2, Communication ArChItECTUMES L.l . e e 6
2.2.1.  Client-Server ArChiteCtUre .........ccooeiiieiiiicieeeeese s 6

2.2.2. Peer-to-peer ArChiteCtUre .........covveveeiee e 6

2.2.3. Client-Gateway-Server ArchiteCture..........cooceveereeiesieneeie e 6

2.3, Communication ProtoCol ...........cccooeiiiiiiiiiicseese e 7
2.3.1. Message-based ProtoCol..........ccoeiieiiiiiieiesesee e 7

2.3.2.  RPC-based ProtoCol..........cccccuuiriiininiiiiniee e 8

2.4, RelAted WOTKS ......oouiiiiieeciee s 8
Chapter 3 System ArchiteCture...........cccooceie e 10
3.1, GAIME SEIVEIS....ceiiiiiieiiiieite st 10

3.2, GAEBWAYS. .. eiiiiiie ittt ettt ettt ettt 11



3.3 COOMTINALON ...ttt 12
B, ClIBNE it 12
3.5, Other COMPONENTS ......coviiiriiiieiieiieee et 12
3.5.1 PIOXY ittt 12
3.5.2 DaAtaDASE ...t s 13
3.5.3. UPAALE SEIVET.......e et 13
Chapter 4 Implementation Details............ccccoviiiiniiiiniic e 14
4.1, NetWOrK ENGINE ....oooviiiiiiecece s 14
4.2.  Message wrapping and Message roUtiNg ...........ccoerereeieerereneneseseniens 15
4.3.  Channel State Synchronization .............cccccevviveiicie e 16
4.4, AVatar MIgration ........cocoiiiiiieieiesesese e 17
4.5, LOQIN ISSUES .vevveeee s ite et eseestee s s aiai e s taeneesseestaestesneesraesseensesseesreennesees 19
4.6, PlUQIN FrameWOTK .., e sssasur sianeanss s i eeeseesseesseesseneeseessessessesssesseesses 19
4.7. Region Migration ..co...... b iereeorrrresmms e asseseesseseessesssessesseessesssssesssessessees 20
Vi TR \N = O ST o] o Lo ] o A e ST PTRUR TR 22
Chapter 5 Design of Programming Interface...........cccoccceveviviiveinennn, 24
5.1, NetENgINe LiBrary ... 24
0.2 DOIT AP .t 27
5.2.1.  Game Protocol and Game LOgIC...........covrvririeiieieninc e 28
5.2.2. GameContext and GameSPAaCE ........cccvevveveereeieieeie e 30
5.2.3.  AvatarChannelLiSteNer .........ccooeiiiiiiiiiieieee e 32
5.2.4.  Avatar Migration..........cccecveieiiiieere e 32
5.2.5. NP C e e 32
5.2.6. Mapping the features to the APl .........cccccovvieiieiecicceee e, 33

5.3, Game DEPIOYMENT .....ooviiiiiiiiie e 34
5.4.  Pluging FrameWOIK ..........cccviiieiiiiiiiie e 37



Chapter 6 Experiment and Evaluation.............ccccooceiiiiiniiciiiennnennn, 39

6.1. Round 1: NetEngine Performance ...........cccccvvveiiiieiieeci e 39
6.1.1. Hardware Configuration ...........cccccevenineniinisieeee s 39

6.1.2.  Software Configuration.............ccccceeveiiieiieeni s 40

6.1.3. EXperiment RESUIL........cccooi i 41

6.1.4.  EVAlUALION .....oooiiiiiiiiiec e 41

6.2.  Round 2: Perfomance baseline of DOIT Platforrm ............ccccooeovvieenn, 42
6.2.1. Hardware Configuration ...........c.cccoveiieviiie s 42

6.2.2.  Software Configuration...........ccccoereriieiinienieese e, 43

6.2.3. EXperiment RESUIL.........ccoooiiiiiiee e 44

6.2.4. EVAIUALION ... 45

6.3.  Round 3: Simulate the'Real Game..iilu.......cooeiiiiiiieee 45
6.3.1. Hardware CONFIGUIATION .i.vvivis i cafieeeeeeeeeeieeie e sieeee e sie e 45

6.3.2.  Software ConfigUratioN rrermms. .. ivarreerveiieieeririieseeseereeseesreesee e 46

6.3.3. EXPEriMENt RESUI iuuesmessiits e eereeeeeeriesieesie e siee e see e ee e nes 48

6.3.4.  EVAlUALION ...t 53

6.4, SUMMAIY ..ottt nn e 55
Chapter 7 Future Works and ConcluSIONS..........c.ccccvevvevieiiesiieenieeneen,s 56
7.1 CONCIUSIONS ...ttt bbb 56

7.2, FULUIE WOTKS ...ttt 57
BiDHOGrapny ........ooii 59
Appendix A System ProtocCol..........ccccevviiiiiiieiiesie e 61

Vi



List of Figures

Figure 2-1: Client-Gateway-Server ArchiteCture..........cccocevevevesivesivesesnenn 7
Figure 2-2: System ArChItECIUIE .......ooeeiiiie e 10
Figure 3-1: Message WIrapPINg ......ccueeveieeriereeseeieseesieeeesseesieeaesseeseeeneens 15
Figure 3-2: MesSage ROULING.......couiiiriieie e 16

Figure 3-3: Avatar Migration, source region and destination region are in the
SAME SEIVET. ..ttt ettt ettt ettt ettt be e s e e e snbe e e snneeeas 18

Figure 3-4: Avatar Migration, source region and destination are in different

R 1=] V<] £ PPN 18
Figure 3-5: LOgin REGION........vmueeeeeieiieniesieseesie e sie e sie e see e 19
Figure 3-6: Server Componentzbased:Framework..............cc.ccoeervriviinnnennns 20
Figure 3-7: Region IMHGIAtION ......ciciearimee it eeeeeeieseesieeeesreesieeeesnee e e 22
Figure 4-1: Class diagram of NetEngine library...........cccccocovviivniiiiinnnnn, 25
Figure 4-2: class diagram of the DOIT APl ..o 28
Figure 4-3: GamECONTEXE ......evueiiiieieiie e e 30
FIQUIE 4-4: GaMESPACE. ... .civeeieeieeieeiesteesteeeeseeste s e sre e e ste e sneesreenee e 31
FIGUIE 4-5: NPC ... e e 33
Figure 4-6: MMOg.XMI ..o 35
Figure 4-7: VWIOQIC.PrOPErtIES . .....eevviiie e 36
Figure 4-8: NPC.PIOPEITIES ...c..eiviecieeie et 36
Figure 4-9: MyPIUGIN.PrOPEITIES. ......oiveiieie e 38
Figure 5-1: Communication architecture of round 1 ..........ccccovevvvierinennnn, 40
Figure 5-2: Experiment result of roundl ..........cccoocvoiiiniiinnne e 41
Figure 5-3: Communication architecture of round 2 ..........cccccovevvivevnennn, 43

Vvii



Figure 5-4: Experiment result of round 2 ...........cooooiiiiiniins 44

Figure 5-5: The MOVE [0QIC........ccoveiiiiieiieecece e 46
Figure 5-6: Communication architecture of round 3 ... 47
Figure 5-7: Average response time —total ............ccccccovveeieiieic e, 48
Figure 5-8: Standard deviation total .............ccccoiriiiiiiiiiiccc s 49
Figure 5-9: Average response time — migration............ccccceeevevieeveeieeseennnnn, 50
Figure 5-10: Standard Deviation — MIigration .....cccoeevreerininisicinsissisens 51

Figure 5-11: The total amount of messages forwarded per second in a

GATBWAY ...ttt 53

viii



List of Tables

Table 5-1: API for our MMOG Middleware.............ccccovviiininciiinciennn, 34
Table 6-1: Hardware configuration of round 1 .........cccccoovvieiiinneeneceee 39
Table 6-2: Experiment result of round L.......cccccoovviievieiivieese e 41
Table 6-3: Hardware configuration. of round 2 ...........ccoccovieviiiniennnene. 42
Table 6-4: Experiment result of round 2.........cceovvieevveieiieese e 44
Table 6-5: Hardware Configuration of round 3 ..........cccoccoveeiiiinnenneneen, 45
Table 6-6: Average Response Time = Total ..oovvevviiiiiieiiiiiienccce, 48
Table 6-7: standard deviation — total...........ccoceviiiiiiiiii e, 49
Table 6-8: Average response time — migration............cccoecevvereeiesieeseernennes 50
Table 6-9: Standard Deviation =MEGIAOM. .......ccovvvririiiiiiiin e, 51
Table 6-10: CPU 10a0:.. ittt it 52

Table 6-11: The amount of commands forwarded per second in a gateway 52
Table 6-12: The total amount of ‘messages forwarded per second in a

QALEWAY ...ttt 52



Chapter 1 Introduction

1.1.Preface

MMOG (Massively Multiplayer Online Game) is a game genre, which allows
more than 1,000 players to play in the same game through a network concurrently.
However, it is much harder than we think to develop a MMOG. There are plenty of
issues that MMOG developers may encounter, such as high performance network,
distributed technology, load balancing, and so forth. In the meantime, time-to-market
is also an important issue to develop a competitive MMOG. Therefore, the demand of
middleware solutions for MMOG, rises by degrees and the research of MMOG

middleware gains more and more respect,

1.2.Motivation

Although there are some middleware solutions proposed in the market, such as
Terazona [1], Butterfly.net [2], it seems that most commercial MMOGs didn’t take
them into consideration. We think that there are three reasons. First of all, game is a
product of creativity. It is not acceptable that the creativity is limited by a given
middleware. Therefore, an inflexible MMOG middleware will be knocked out from
the choices of MMOG developers. Secondly, the programming interface should be as
easy as possible. The steep learning curve increases the risk and cost of developing a
MMOG. Usually, game logic developers do not have to be experts of distributed
technology. So the middleware providers need to provide exception-free, thread-safe,
clean, and simple API for developers. The third pertains to the scalability of the

middleware. The number of serving clients can be linearly scaled up by adding new
1



machines to the cluster. In term of the need, it may require some load sharing
mechanism to deal with the unbalanced loading among clusters. Therefore, we
developed our MMOG middleware, named DOIT platform. We wish to overcome all

these issue in this platform.

1.3.Research Objectives

There are four objectives in this paper: scalability, flexibility, easy-to-use, and

high performance.
Scalability

Scalability is always the issue on building MMOGs. The traditional single server
architecture is relatively harder to serve thousands:of players concurrently. There is no
doubt that distributed technology plays an important-role in the MMOGs. Scalability
can be view as two parts. First-is the -number-of players served can scale in a linear
way. The second is the game objects can be-scaled up in a linear way. Most people
only emphasis the first point, but it is a good practice to separate the scalability of real

world view and virtual world view.
Flexibility

The wired protocol must not be limited by the Middleware. Even if the
middleware requires some information in the header so that it can properly route and
dispatch the messages, the defined protocol should be as simple as possible. This is
because the MMOG middleware should preserve the resilience to MMOG developers.
Although some middlewares provide client libraries to have interaction with servers,
there are still various targets which clients run at, such as game consoles, mobile
devices, and so on. The client libraries provided by provider are never enough to meet

2



MMOG developers demand. A good MMOG middleware should provide the

maximum resilience for the wired protocol.

Moreover, the game objects in the virtual world are also as flexible as possible. A
MMOG middleware should not assume the form of game object. For example, the
player should have the attributes of hp, mp, name, and so on. It will limit the

creativity of a game.

Easy-to-use

Because MMOG platform is very comprehensive, a middleware has the
responsibility to hide the underlying complexity. The API should be designed as a

game view instead of the implementation details.

High Performance

Networked games demand: fast response time, and MMOGs is no exception. In

[3] we understand that the latency more than 300ms can become aware by players.

Poor performance will destroy the mood to play. The performance issue can be

divided into two parts:

1. Efficient protocol and game logic. The protocol should be decided as efficient as
possible and the game logic should not send unnecessary message to unrelated
client.

2.  High performance underlying network and routing technology. Serving
thousands of players is not a naive task. If the underlying network is not
designed well, it could be the bottleneck of the whole system. So is the routing
strategy of messages. Bad-decided routing strategy will exponentially increase
the load of system.

From the middleware view, the first part is beyond the task the middleware can handle,
3



but the second one is the responsibility of good MMOG middleware.

1.4.Research Contribution

To achieve these objectives, we encounter many problems when designing the
DOIT platform. In this paper, we address these problems and explain our solution.
There are four major contributions of this paper.

1. We craft a scalable MMOG middleware based on client-gateway-server
architecture.

2. We introduce an easy-to-use programming model

3. We discuss the flexibility issues in the MMOG middleware and explain our
solution

4. We design a high performance, underlying network facility and experiment the

performance of MMOG platform.

1.5.Qutline of the thesis

In Chapter 2, we discuss the background of developing the MMOG. In Chapter 3,
we introduce the components in the platform and their responsibility. In Chapter 4, we
discuss the implementation details for each function. It will include how the
components cooperate with each other for a given function and the issues we will face
and how to overcome them. In Chapter 5, we turn to developers’ perspective. We can
see how easy to build up a MMOG logic. In Chapter 6, we build up three test beds to
experiment and evaluation the DOIT platform. In Chapter 7, we give the conclusion

and future works.



Chapter 2 Background

2.1.MMOG Design Concept

MMOG is a virtual world in which there are thousands of players interact with
each other simultaneously. Within the virtual world the player is represented by an
“avatar”. The avatar could be a human, animal, or whatever. To design a mmog, there
are two principles we should hold:

1. Command/Update principle

2. Never trust the clients.

The first explain that the MMOG is run inthe.command/update manner, that is to
say, clients control avatars by sending command. messages to server, and the server
returns clients the update message to indicate the changes of state in the server. The
reason we should design in this way is.because the synchronization of game states is
very difficult in a huge virtual world. To centralize the game states and the game logic
is the only way to overcome the synchronization problem. Hence, clients send the
command message to server rather than process the game logic at local. The server is

responsible for updating the states of virtual world clients are interested in.

For the second one, never trust the clients. Although we can leave some game
logic processed in the client-side, we should take the risks that the client should
falsify the game states such that the fairness of virtual world will be threatened.
Therefore, we should leave all the major game logic in the game servers. But we also
can leave some game logic which is no matter of fairness in the client, such as path

finding.



2.2.Communication Architectures

This subsection discusses the choice of communication architectures that
MMOG can apply. We address three types of communication architectures and

discuss the advantages and disadvantages.

2.2.1.Client-Server Architecture

Certainly, the traditional client-server architecture can apply to MMOG platform.
But it suffers from the scalability issue. One server can only serve limited number of
players. If we want to serve more players than the limit of one server, we should open

two separated virtual worlds.

2.2.2.Peer-to-peer Architecture

Although peer-to-peer is a good-architecture for multiplayer game, there are
many problems for MMOG. The first one is the states consistency problem. How to
share the states over thousands clients? The second and the most serious problem is
the cheating problem. In peer-to-peer architecture, the game logic is process in clients’
machine. It is very easy to falsify the game states by mean of some hacking tool. The

fairness of virtual world is very hard to hold. Therefore, the peer-to-peer architecture

is not suitable for MMOG.

2.2.3.Client-Gateway-Server Architecture

The Client-Gateway-Server architecture has been proposed and proven as an

effective architecture for MMOG [4]. In this architecture, clients connect to the



MMOG through gateway. Then, a gateway is responsible for dispatching messages to
the corresponding game server (see Figure 2-1). The benefit of this architecture is that
the gateway can increase when we need to serve more players. Furthermore, the
virtual world can also span to the servers. When the virtual world extends, we also
can add more servers to the server cluster. Undoubtedly, we adopt the
client-gateway-server architecture in the DOIT platform. In this architecture, we can

achieve the scalability objective.

N/
/\

Figure 2-1: Client-Gateway-Server Architecture

2.3.Communication Protocol

Servers and clients communicate with each other by means of some
communication protocol. However, we may adopt different kind of communication
protocol in different situation. We address two kind of protocol and compare their

advantages and disadvantages.

2.3.1.Message-based Protocol

All data are encapsulated as messages in this kind of protocol. The protocol is

defined as a list of message types. The game developers should define the message



format for each type. Messages can be text-format or binary-format. The protocol
with text-format is easy to deal with and easy to debug, but the performance is
relatively poor. On the contrary, binary-format protocol will gain more performance.
In the DOIT platform, we select message-based binary-format protocol as our
communication protocol. To choose message-based is because it is easy to extend and
program. The asynchronous property of message-based protocol is also suitable for
most game genre. Concerning the binary-format, the package size and computation

overhead are not practical for high performance MMOG middleware.

2.3.2.RPC-based Protocol

Some games are designed with RPC-based protocol. They regard game objects
as remote objects. The clients control these game objects in the manner of RPC-like
call. The advantage is clients can control the game objects in a high-level view. But
it has poor performance and poagr. flexibility-due to the synchronous programming
model. In Wish Engine [5], they use 'RPC-based Protocol as their transmission

protocol [6].

2.4.Related Works

In fact, the research middleware platform has been evolved for two years in our
lab (DCSLab of CIS NCTU). The first work is purposed last year by Lee[7]. In this
work, he proposed a scalable MMOG platform. However, the easy-to-use and

flexibility issue were not taken into consideration.

There are some MMOG middleware products in the market. The first one is
Terazona[1l] by Zona Inc. Terazona use JMS[8] as their underlying communication

facility. It also exploits multi-tier architecture to achieve scalibilty. The other one is
8



Butterfly.net[2]. Butterfly.net adopts the grid computing technology as their MMOG
solution. They span the regions to multiple servers. They use IP Multcast to
commucate between nodes. Besides, BigWorlds[9] and Wish Engine[5] are also the

commercial MMOG middleware products in the market.

As for the academic domain, there are few researches special for MMOG
middleware. However, there are many researches relative to this domain. In [10, 11],
they discuss the dynamic loading issues in dirtibuted vritual environment (DVE). In
[10], they purpose a scalable load balancing scheme for a large-scale DVE system. In
[11], they purpose an adaptive load balancing technique of global scope for solving

the partition problem in DVE systems.

In [12, 13], they discuss the relevance filtering issues in MMOGs. In [12], they
present a relevance filtering scheme for @ two-tier server architecture optimized for
MMOGs. They distinguish between interest management of server tier game state and
bandwidth adaptation of concentrator tier client link thresholds, making the
concentrator tier totally application independent. In [13], they propose a completely
distributed publish-subscribe system suporting a content-based publish-subscribe
model of communication and performs distributed matching using a novel

content-based routing protocol.

As for the research of the Networked Virtual Environment (NVE), the book
“Network Virtual Envirnments”[14] provides much information about this domain.

There are many concepts of NVE valuable for the design of MMOGs.



Chapter 3 System Architecture

N T %
@ (
Cm— -

Gateway Server

Figure 3-1: System Architecture

In DOIT platform, the chient-gateway-server -architecture is selected as our
architecture. This section explains each-component in our platform. It contains: Game

Servers, Gateways, and Coordinator. The Figure 3-1 depicts the architecture.

3.1. Game Servers

Game Servers are the most important components in our platform. Game server
passively accepts the Gateway connection for receiving messages from client and
actively connects to Coordinator for participating in region migration. Note that there
IS no connection between each server when the system starts up, but one server may

dynamically connect to another one on the process of region migration.

A Game Server is capable of computing the game logic and keeps the game
states. It receives messages from external (mostly sent from client), changes the states

of virtual world, and then returns the update to the corresponding client and

10



component. The game logics are provided by game developers and deployed on Game

Servers.

Virtual world is divided into multiple regions. Every Game Server may contain
zero to many regions and a region can’t span across more than one server. A region is
the concept of a single virtual world. In the same region, the game logics share the
same game context, the same game space. In addition, an avatar in a region may
migrate to another region. The detail is taken up in chapter 4.4. For the load sharing
purpose, a region in a Game Server may migrate to another Game server. The detail

will be also discussed further in chapter 4.7.

3.2.Gateways

Gateways can be seen as the interface between MMOG platform and the internet.
On the internal side, they actively connect to game servers; on the external side, they
passively accept connections from elients. The major responsibility of a Gateways is
to forward control message from client to the server and forward update messages
from server to the client. Actually, a gateway does not simply forward messages but
assembles messages as an internal form. The detail will be discussed further to

chapter 4.2.

We can also add some services on a gateway. For example, we can provide
several kinds of protocol at the external interface. If a client is not under a firewall, he
or she can communicate with server in UDP/IP in order to gain more efficient
communication. On the contrast, for clients under a firewall, we provide TCP/IP as
underlying protocol in order to pass through the firewall. Provided that a game
demands high security, it can also expose SSL as its communication protocol. Another

example is that a gateway can also provide hack protection mechanism. The most
11



famous hack technology is known as *“acceleration program.” It makes sense to add

the facility at a gateway to protect against this kind of game plugin.

3.3.Coordinator

Coordinator is the component that coordinates the process of region migration. It
monitors the load of game servers and initiates the process of region migration. In the
current implementation, coordinator is only a console application. The process of

region migration can only be initiated by a human.

3.4.Client

The Client component is a cemponent that player directly interact with. It
provides graphics presentation ‘of game:environment and interaction interface, etc
Keyboard, mouse, to interact ‘with the.game environment. The Client component
connects to gateway to interact with. virtual world:’And the protocol is defined game

by game.

3.5.0ther Components

The components mentioned above are the core components in the DOIT platform.
But for a commercial MMOG, these components are not sufficient yet. We

recommend some components to collaborate with the DOIT platform.

3.5.1.Proxy

The Proxy component is a component that forwards messages between client and

gateway. The difference between gateway and proxy is that a gateway will

12



assemble/dissemble messages but a proxy won’t. A proxy is not necessary in the
whole architecture, but it is a good idea to deploy this component for each ISP in

order to improve the communication quality from each ISP.

3.5.2.Database

Persistence is also an important part for a MMOG. But in our platform, we didn’t
define any component about persistence. The reason is that there are many O/R
mapping solution in the real world. It is unnecessary to reinvent the wheels. To

integrate the persistence mechanism, we can design it as a game logic or a server

plugin.

3.5.3.Update Server

Update server is the component that updates the' latest version of client program
before clients’ logging in the server. \Web server is.a good idea to implement an update
server. We can provide a configuration file to indicate which version is the latest one
and describe where the latest version client program locates at. The configuration file
IS put on a given URL. The client program retrieve the configuration file and compare
the version with the configuration file version. If the version is old, get the latest
version from the location specified in the configuration. If the client is written by java,

Java Web Start technology is a good idea to facilitate the update mechanism.

13



Chapter 4 Implementation Details

In this chapter, we begin to dive into the implementation details for developing a
MMOG middleware. We make use of java as our programming language. We first
introduce the underlying network and the basic message routing. Then, we will
explain the channel state synchronization issue that we will face in client-gateway
-server architecture. Next, we discuss the process of avatar migration and login issue.
Furthermore, we will introduce the plugin framework in our Game Server and explain
the process of region migration, which enable the game server cluster to share the
load in the runtime. Finally, we talk over how to implement the NPC feature in the

DOIT platform.

4.1.Network Engine

MMOGs communicate with clients in a game-specific protocol. Generally
speaking, the protocol is defined as message-oriented, which consists of message type
and payload. Thus, we also define a message-oriented facility called NetEngine. In
this library, all data are wrapped as messages with two bytes for type, two bytes for
payload length, and payload with the length specified before. NetEngine abstract the
implementation by mean of java interface. We can implement it by TCP, UDP, IP
Multicast and so on. In current work, we only implement the TCP version, but we
implement in two different models. First is event-driven model, by selector in java
NIO. The other is threaded model. The reason is that for difference number of
connection, the difference model gain better performance [16]. For example, we use
event-driven model in the external interface of Gateway for the purpose that it

demands to serve hundreds of client concurrently. The event-driven model is preferred

14



in this condition. Relatively, the game server use threaded model to gain more

efficiency.

4.2.Message Wrapping and Message Routing

Command R Command _
Client — Gateway _ GameServer
Update Update
( ) CTID LEN CUSTOM CTID LEN CUSTOM
( ) CTID LEN AVID CUSTOM CTID LEN AVID CUSTOM
(3) I |
CTID LEN CUSTOM 0x01 LEN AVID CTID LEN CUSTOM

[ Platform Specific

[ ] Custom

- Platform Internal

Figure 4-1: Message Wrapping

The DOIT platform adopts the ,client-gateway-server architecture. The gateway
should forward the message between. Client.and Server. However, there are some
problems when directly forwarding messages from client and server. The first policy
in Figure 4-1 depicts the circumstance of directly forwarding. The game server will
receive a message without the information of which client the message is sent.
Therefore, we may consider that we can add the client identifier (or avatar identifier)
for each message (see (2) of Figure 4-1). But where is the identifier generated? It is
impossible that the identifier is generated by the game logic because the middleware
can not depend on the game-specific data. So the identifier is generated by
middleware itself. But the platform internal information exposes to the client is also a
bad design. Therefore, we finally decide that the gateway injects the avatarid into a
message when forwarding it to server (see (3) of Figure 4-1). The avatarid is

generated by gateway when a client connects in. Throughout the connection, the

15



avatarid is used to represent the client. So when a command is sent from client, the
gateway will first wrap the message and forward to server. When a update is sent from
server, the update message is a wrapped message with the avatarid. Then the gateway
will unwrapped the message, retrieve the avatarid, forward the message to the

corresponding client.

As for routing message from client to server, the gateway should aware of the
location of each server. In DOIT platform, however, an avatar may migrate from one
region to another and a region may migrate from one server to another. Hence, when a
message is forwarded to server, we perform two-level-mapping to find out the
location the avatar resides. The first mapping is from avatarid to regionid. This table
will be updated when a avatar is migrated., The second mapping is from regions to
serverid. This table will be updated wheq a region‘ migration is performed. Figure 4-2

depicts the flow of message routing.

iéi

i?ii

ARTable RSTable

Client Server
Channels Gateway Channels

Figure 4-2: Message Routing

4.3.Channel State Synchronization

In the client-gateway-server architecture, GameServer is aware of normal

disconnection by a game-specific logout message, but GameServer is not aware of the

16



abnormal disconnection, such as link broken, crash, and so on. Therefore, we should
synchronize the states between Gateway and GameServer. Thus, we implements a
listener to listen the events of channel connected and channel disconnected of the
external NetEngine in the gateway. When a channel is established, the gateway will
send a AVACONN message to the server and when a channel is closed, the gaeway
will send a AVADISC message to the server. In addition, the channel can be closed in
the game logic, the server will send a AVACLOSE message to the gateway if a channel

is closed by game logic.

4.4.Avatar Migration

Due to the virtual world is divided into,multiple regions. An avatar may migrate
from one region to another region. dynamically. We call it Avatar Migration. To
implement this feature, the following should be considered. First, what data should be
moved to destination? Secondly; the gateway-should be aware of this migration in
order to let gateway dispatch messages to new region for the successive messages.
Thirdly, we should consider the two conditions that source and target region in the

same server and they are in the different servers.

We use AVAMIG sent between gateways and servers. AVAMIG consists of
avatarid indicating which avatar to migrate, source region id, target region id, and
avatar data. We must note that the data are provided by developers himself through
the API in the form of byte array. Figure 4-3 explains the condition that source and
destination regions are in the same region. The game server migrate the avatar data to
destination directly. In the meantime, it sends an AVAMIG to notify the gateway the
update of avatar location. Figure 4-4 explains the condition that source and

destination regions are in different server. The source game server sends an AVAMIG

17



to the gateway, and then the gateway forwards this message to the game server where
the destination region resides.

GameServer

1. migrat _
e. Srg region
2.1 AVAMIG .

F Dest region
2.2 migrat

Gateway -
[]

Figure 4-3: Avatar Migration, source region and destination region are in the same server.

“GameServer

2. AVAMIGE|

= 1. migrat
e ./e. Srg region

Gateway 5 AvAMIG -
- I

4. migrate ptregion

Figure 4-4: Avatar Migration, source region and destination are in different servers..

18



4.5.Login Issues

Game Regions

7. Command

6. Command r)

1. Connect 5. Migrate

»
>

Gateway

4. Migrate/Dispatch

/ / Login region

3. Login Logic

2. Login

Figure 4-5: Login Region

Most MMOGs allow players to continue their adventure when they login. If one
player was logout at the region A-previously; the player should login at region A. It is
not easy to implement in the MMOG middleware.=The fact that which region the
player logins is a kind of game logic. Therefore; our gateways never know which

server the first message to route before.a playerlogin.

To solve the question, we simply let developer to specify which region is login
region. This region is responsible for processing the login logic, maybe query the
database. Then, it migrates the avatar to the correct region. Thus, the login region can
be considered as a kind of dispatcher. It processes the login logic and dispatches the

avatar to correct region. The Figure 4-5 depicts the flow of login process.

4.6.Plugin Framework

In our sever implementation, we build up the server in a component-based
architecture. We separate components into server scope components and region

components scope. Besides, For the sake of flexibility, we allow developers to

19



provide their own plugin. The Figure 4-6 depicts the architecture. A server scope
component, as the name implies, lives with the game server. It can be seen as a
service on a server, such as timer, thread pool, and so on. A region scope component
lives with the region. A region scope component always tightly couple with a region,
such as NPC engine. There should be some dependencies between components. A
region scope component can depend on a server scope component, but a server scope

component can not depend on a region scope component.

—

) = a 1 I
S n

2 v 2 S & S 2
) = ’ <
= » = &

f g e-Specific

ion-Scope

‘ rver-Scope

Kernel

Game Server

Figure 4-6: Server Component-based Framework

4.7.Region Migration

In order to share the load between game server clusters, a region can migrate
from one server to another dynamically. We call it Region Migration. Here come the
problems: the way to collaborate between several components, the way to send
migrating data, the data to migrate, the way to migrate game-specific objects, the way

to migrate region scope plugin, and the way for region scope components to bind

20



Server scope services.

We use the component coordinator to coordinate the process of region migration.
The migrating flow is explained in the Figure 4-7. When a coordinator broadcasts an
RMINIT message to initiate a region migration, the destination sever opens a port and
passively waits for the connection from source region. When the destination server is
ready for accepting the socket from the source server, it sends RMREADY message to
the coordinator. The coordinator forwards this message to source server. As source
server receives this message, it connects to the destination and begins to send
migration data as stream. As all data are sent successfully, the destination server sends
the RMCOMPLETE to notify the completion of migration. Then the coordinator
broadcasts this result to all participants. Otherwise, the RMFAIL message is sent to

notify that some failure occurred.when migrating.

However, it is important to know what data are' sent when migrating. First, the
system data of region should be migrated. Secondly, the game specific data which is
created and managed by developers’ code should be migrated. Thirdly, the region
scope plugin should be migrated. The dependencies are crosscut between these
objects. It will be a big problem to recover all the data and dependency in the new
server. Fortunately, java serialization mechanism solves all these problems. Region in
our system is designed as a Serializable capsule. The complex dependency can be

serialized and restored to the origin form by mean of java serialization.

The other issue is that the region scope components and plugin may depend on
server scope components resided on server. Therefore, before a region’s migrating
from a server, these region components should be unbind from server, as well as after
a region’s migrating to a new server, they should bind to the new server. Thus, the

base class of region scope component provide bind() and unbind() abstract
21



method. Through these callback methods, the component itself can handle the logic of

bind and unbind logic.

Coordinatar Sre Server Dest Serer Gateway

Init R

7 hroadcast RMI

Init R
l Create ServerSock l
I'send RMREADY
Ready R
feend RMREADY] >
Connectto Dest
Sending RM data

Receiving RM data
R Complete

Complete RM Hsend RMCOMPLETE

Ihroadcast RMCOMPLETE

Complete RM Complete RM Complete R

Figure 4-7: Region Migration
4.8.NPC Support

NPC is an abbreviation of Non Player Character. In most MMOG platform,
NPCs reside in a special standalone component. It is a good idea to separate the game
logic and Al logic, but it increases the communication overhead. In most cases, NPCs
reside in only a region. It is more efficient to communicate between the game world if

the NPC and virtual world in the same server. Thus, we tend to implement the NPC

22



feature on the game server.

The NPC feature is designed as a region scope component. It makes use ofthe
timer component, which is a server scope component, to wake up NPCs in a fixed rate.
The NPC logic is divided into two parts: Al logic and game logic. The NPC
component is response to collaborate between these two parts. The discussion of

design detail is postponed to Chapter 5.2.5.

23



Chapter 5

Design of Programming Interface

In this chapter, we will shift the emphasis away from implementation of DOIT
platform to use of it. In order to simplify the development, there are three layers of
library introduced in this chapter. The first is the NetEngine library, which is the
underlying network engine of DOIT platform. We also can make use of it at the
client-side to communicate with DOIT platform. The second is the DOIT API. It
provides the classes and interfaces to implement the game logic. The last one is the
DOIT plugin framework. If we hope to extend the DOIT platform, we can customize
a plugin and plug it onto the server’'lIn theé meantime, we will introduce how to

develop a game application to the DOIT platform.

5.1.NetEngine Library

NetEngine is a message-oriented lightware service. Namely, all data are sent as a
concept of message. The Figure 5-1 presents the whole picture of NetEngine library.
The NetEngine class is the core facade class. We also start to introduce this library

from this class.

NetEngine can be used as client or server. To be a client, we call the connect()
method with the specified address to open a connection. This method will return a
Channel object. To be a server, we call the 1isten() method with the specified
address. The NetEngine will listen to a specified port. It is necessary to register a
listener implementing the interface ChannelListener. When a channel connects

in, the NetEngine will call back the channelConnected() of

24



ChannelListener. In the same way, when a channel disconnects, the system will

call back the channelDisconnected() of ChannelListener

To send a message, we make use of send() method of Channel. This method
should pass in an object implementing Message class. For each type of message,
developers should define a class extending the Message class. It must override the
encode() and decode() abstract methods. The system will call back these two
methods in order to encode/decode the message data to/from byte buffers. In addition,
we recommend that these message classes adhere the JavaBeans [17] convention, that
is, if a class has a property named id, it should provides the setld() and getld()

methods in this class. It will make it easier to get use of the message objects.

=2interfaces=» =<interface==
MetEndgine MessageHandler
+ connect() : Channel + onMessageimsginfo  Messagelnfa) ; vaid
+ listend : void

+ addChannellistener : void
+ removeChannellistener() : void
+ register() : void

—""_—;—?
+ unregister() : void \\“3

|
+ registerCefault) : void zzinterface== ==interface==
+ unregisterDefaultd - void tessageF actary Messagelnfo
+cloged waid
+ createiessage) - Message + gefTyped @int
+ getlength int
: + getChanneld : Channel
i +getessagel)  Message
==rreate==
=zinterface== [
ChannelListener N
Message
+ channelCannected( waid
+ channelDisconnectedd : vaid + tyoafl - int
. + decodef) | vold
: + ancodef] | vold ==interface==
| Channel
Vi
ChannelEvent + send() - void
- channel| + closed : void
+is0pend  boolean
+ ChannelEvent() + setAttributed ©woid
+ getChanneld . Channel + gethttributed © Object
+ removeAttribute | void
+ getAtiributerlamesd  Enumeration

Figure 5-1: Class diagram of NetEngine library

25



To receive a message, we should first register a message handler and a message
factory for a given type of message. The factory should implement the
MessageFactory class and overrides the createMessage() method. The
handler should implement the MessageHandler class and overrides the
onMessage () method. When a message comes, the NetEngine will first analyze the
type of message from its header. Then it creates the message from the corresponding
message factory and call the decode() method such that it can read the message
from binary stream. Subsequently, it dispatches the message to the corresponding

message handler.

Channel is abstraction of connection. We can send a message by send()
method. In addition, the channel can be seen as a session to the remote peer. We can
store some attributes associating to thisjsession. NetEngine supports two channel
establishment methods: active connecting by connect method and passively listening
by listen. And when a connection. is established, ‘we can get the connection handle

Channel by ChannelListener.

The following is some example to use NetEngine.

Server-side Example:

import java.net.lnetSocketAddress;
import mmog.net.*;
import mmog.net.tcp.TCPNetEngine;
//. ..
NetEngine engine = new TCPNetEngine();
InetSocketAddress sockaddr =
new InetSocketAddress(13579);
engine.register(MyMessage.-TYPE,
new MyMessageFactory(),
new MyMessageHandler());
//. ..

engine.listen(sockaddr);

26



Client-side Example:

5.2.

platform. In this API, developers can totally develop the game in view of game

without the complexity of networking, distributed system, and multi-thread issues.

The

message-oriented property. But the DOIT API is specially designed for game

development. It will provide some features aimed at game. The Figure 5-2 is the class

import java.net.lnetSocketAddress;
import mmog.net.*;
import mmog.net.tcp.TCPNetEngine;
//. .
NetEngine engine = new TCPNetEngine();
InetSocketAddress sockaddr =
new InetSocketAddress('localhost™, 13579);

engine.register(MyMessage.-TYPE,

new MyMessageFactory(),

new MyMessageHandler());
Channel channel = engine.connect(sockaddr);
MyMessage msg = new MyMessage();
channel _.send(msQg) ;
//. ..

DOIT API

DOIT API provides all the:classes and interfaces'to develop a game on the DOIT

DOIT API is somewhat similar to NetEngine because it also have the

diagram of the DOIT API.

27




==interface==
GameMessageHandler

+ destroy() : void

+ init{icontext | GameContexd) ; void
+ onhessagelmsginfo : GamemMessagelnfo) : void

=<zinterface==
mmog::net:MessageF actory

+ createMessaged  Message

=zcreptes=
i
I
1

AV

mmog: net essage

+ hpef int
+ ghcodeihi | ByteBuffer) | void
+ decodefhb | BiteBuffer) | void

- message

W

|

GameMessagelnfo

+type sint
+ channel ; GameOQhjChannel
+ message - Message

o contains
- channel *

=<intarfacas=
Gameontext

=<zinterfaces=
GameSpace

GameQbiChanhel

+ sehdimag) T vold

+ setGameObjectigameOhject) ; void

+ getGameOhbject) : GameOhject
+ getd :int

+gety( o int

+ status) : Message

73R

AvatarChannelListener

AvatarChanhel

Gamelbiect

+¥int
+yint

+ statusd : Messange

NPCChanna!

AvatarMigrationListener

+ migkateregion, x, v, data) : vold
+ plosel) | void
+ isCpent) : booieah

+ getNPCBok) | NPCBot

Figure 5-2: Class diagram of the DOIT API

5.2.1.Game Protocol and Game Logic

Our platform inherits from NetEngine. So we define the game protocol in the
same manner as using NetEngine library, that is, we should define a message class
extending the Message class for each type of message. Similarly, we also need to
provide a message factory for each message class. To write a game logic, we should

provide a message handler extending GameMessageHandler for each type of

message.

override the onMessage () method to handle the message. When a message comes,

the system will call back the onMessage() method.

28

Game logic developer
can extends the green
classes for their game

This design is inspired from Java Servlet API [18]. The developers should

It will pass in



GameMessage InTo object. From this object, we can get the message, message type,
and game object channel. In particular, the game object channel represents the source

of the message to be handled.

The game object channel which is an instance of GameObjChannel class is
the similar concept of Channel in NetEngine library. The difference is that the game
object channel represents the channel to communicate a game object. In the current
version of DOIT API, we provide two kind of GameObjChannel. They are
AvatarChannel and NPCChannel respectively. As the name implied, the
AvatarChannel is a channel to an avatar. We can send a message to a client
indirectly through this class. As for the NPCChannel, it is a channel to a NPC, we

can send a message to the NPC bot thought this class.

A game object channel can associate with a-game object which extends the
GameObject class. The GameObject class is the base class of all game objects.
That is, developers can customize a game object by extending the GameObject
class. The GameObjChannel delegate some methods call to his associating game
object. They include getX(), getY(), and status() these three methods.
Certainly, the getX() and getY() are the accessor methods to get the location
information. As for the status() method, it return a Message instance according to

its current state. They will be useful for GameSpace and GameSpaceUti I class.

Therefore, we can conclude the basic flow to design a game.
1. Defines the game protocol.
2. Define the message classes and corresponding message factory classes.
3. Define the game objects.

4. Implements the message handlers.

29



5.2.2.GameContext and GameSpace

In GameMessageHandler, we can receive a message for a given type,
process message, and send updates back to the game object channel. But it is only
possible to send updates to original game objects. We need more functionality to deal
with game objects. In this subsection, we introduce the two classes, GameContext

and GameSpace.

=zinterface==
GameContext

+ setattributedname ; String, value : Object) : void

+ getattributedname : String) - Object

+ getsttributeMamesd ; Enumeration

+ removesttributefvalue : String) - waid

+ getGameSpaced : GameSpace

+ getRegionMamen : String

+ getGamePathd ; String

+ loimessage ; Stringd ;void

+ loafmessage | String, throweahle | Throwahble) ; void

Figure 5-3: GameContext

GameContext represents the context of the game. The concept is similar to
ServiletContext in the Servet API. But the game context only associates with the
current region. We can store and retrieve attributes to and form the context. Besides,
we can also obtain some information of the game. The GameContext instance can
be obtained from the @nit() method of MessageHandler,
AvatarChannelListner, and AvatarMigrationListener. The Figure 5-3

is the class information of GameContext.

30



==interface==
GameSpace

+ addivalue : GameObjChannel) :void

+ removelvalue | GameObjChannel) : hoolean

+find gl cint ywl cint, %2 Cint, w2 int)  GameOhjChannel]
+find() . GameObjChannel[]

+findOhjects(l int, w1 Cint, «2 cint, w2 int - GameOhbject]
+findChjects()  GameOhject]

+ moveivalue | GameObjChannel) : hoolean

+ getBoundsd ; Rectangle

+ containsLocationd ;int, v int) : boolean

+ containsChannelichannel : GameQhjChannel) : haolean

Figure 5-4: GameSpace

GameSpace can be seen as a data structure of the virtual worlds. We can add,
remove, move, and find game objects from the GameSpace. The element type of
GameSpace is GameObjChannel.r Before adding a GameObjChannel to a
GameSpace, we should first associate “it. with -a game object. It is because
GameSpace set and retrieve the location information from setX()/getX() and
setY()/getY() methods of GameObjChannel. These methods delegate the
implementation to the same methods of GameObject associated by the
GameObjChannel. Therefore, the GameSpace prohibit a GameObjChannel
without GameOb ject from added to it. The size of GameSpace is specified in the
game descriptor (see chapter 5.3). The GameSpace instance can be obtained from

the GameContext.

GameSpaceUtil is a class let us use GameSpace more conveniently. We
usually need to send a message to surroundings of a game object. We can call the
sendMsgToSurroundings() method. It will get the GameOb jChannels from
the given range and send the message respectively. Likewise, if we need to receive

updates from surroundings, we can call the recvUpdtFromSurroundings()

31



method. It will get the GameObjChannels from the given range, get the updates
from status()method of GameObjChannels, and send them to the given

channel.

5.2.3.AvatarChannelListener

We can have greater control over the lifecycle of avatar by means of
AvatarChannelListener. A listener implementing
AvatarChannelListener can receive the events when an avatar connect or
disconnect. Even though the client disconnected abnormally, the disconnect event also

raise correctly.

5.2.4.Avatar Migration

In DOIT API, we use migrate() method of AvatarChannel to migrate a
avatar to another. In this method, we should specify the region to migrate, the location,
and the migration data. The migration data is type of byte array. We can put arbitrary
data in it. Besides, the developers may implement the interface

AvatarMigrationListener to get the event about some avatars’ migration.

5.2.5.NPC

NPC (Non Player Character) is also supported in DOIT Platform. In our design,
we separate the game logic and Al logic into two parts, NPCBot and
GameMessageHandl er respectively. They communicate with each other by means
of sending messages. The game server is responsible for relaying messages between
them (see Figure 5-5). The advantage is that we can process game logic in the same

way as processing game logic of avatars. Moreover, it prevents codes of different
32



purpose from mixing together. To write NPC Al, we should write a class
implementing NPCBots. There are three method should be overridden, onInit(),
onUpdate(), onTimer(). onlnit() is called when a NPC is created.
onUpdate() is called when a message comes. The message is sent from his
corresponding NPCChannel. onTimer () is called periodically by GameServer. The

timer interval is defined in the description file.

1. command 2. onMessage() GameMessa o
_— E—

NPCBot GameServer g
— — Handler
4. onUpdate() 3. update

NPC Al NPC Logic

Figure 5-5: NPC

5.2.6.Mapping the features'to the API

In Chapter 4, we explained the features of the' DOIT platform. It is interesting to
map these to the API. Table 5-1 lists the features mapping to the APIl. We can found

that the underlying complexity is totally hidden under the easy API.

Features Related API Notes
Customized Extends Message, | Use encode() and decode() callback
Protocol Extends methods to turn underlying protocol to object

MessageFactory | form, and vice versa

Customized Extends GameObject implements
game objects | GameObject Jjava.i1o.Serializable
Game Logic Extends Overrides onMessage () method to handle

MessageHandler | message.

33



Channel Event | Implements Overrides avatarConnect()/
Forwarding AvatarChannelL | avatarDisconnected()
istener
Avatar Implements Overrides avatarMigrateln()/
Migration AvatarMigratio | avatarMigrateOut()
nListener, Uses
AvatarChannel .
migrate()
Region Transparent
Migration
NPC Support | extends NPCBot, Overrides onInit()/ onTimeout()/
Use NPCChannel onUpdate()
Virtual World | Uses GameSpace Provides add ()/remove()/ find()/move()

methods

Game Context

Uses

GameContext

Provides put/get attributes

Table 5-1: API for our MMOG Middleware

5.3.Game Deployment

All the game logic run on the DOIT platform, so we must deploy them onto the

DOIT platform. All game logics are wrapped as a game application. It should put at

the “game” directory in the DOIT platform. In this directory, we put the classes in the

“classes” subdirectory, and we put all the libraries in the “libs” subdirectory. Besides,

there are two files necessary

in

the game application. mmog.xml and

vwlogic.proerties. In mmog.xml, it describes which components are in the game

34




platform and which regions are in the virtual world and the initial assignment of
regions. The Figure 5-6 is an example. For the sake of simplicity, we don’t describe it

in detail.

<?xml version="1.0"?>
<IDOCTYPE mmog SYSTEM "‘mmog.dtd'>
<mmog>
<components>
<server name="'serverl" host="localhost"™ port="8765"/>
<server name="'server2" host=""localhost" port="8764"/>
<gateway name="‘gatewayl’ host=""localhost" port="5678"/>
<gateway nhame="‘gateway?2' host=""localhost" port="5679"/>
<coordinator host="localhost"™ port="8778"/>
</components>
<maps>
<map name='‘map0''>
<region name="regionlogin™ Xx1="0" y1="0" x2="0" y2="0"
login=""true"/>
</map>
<map name='‘mapl''>
<region name="regionl® xI="0" y1="0" x2="100" y2="100"/>
<region name="‘region2" x1=""100" y1=""0" x2=""200" y2="'100"/>
<region name="‘region3" x1="0" y1="100" x2="100" y2="200"/>
<region name="region4" x1=""100" y1="100" x2="200" y2=""200""/>
</map>
</maps>
<assignments>
<assignment region-ref="regionlogin” server-ref="serverl" />
<assignment region-ref="regionl" server-ref="serverl"” />
<assignment region-ref="region2" server-ref="serverl"” />
<assignment region-ref="region3" server-ref="server2" />
<assignment region-ref="region4" server-ref="server2" />

</assignments>

</mmog>

Figure 5-6: mmog.xml

Concerning the vwlogic.properties, it lists the classes of game logics, including

35



GameMessageHandler, MessageFactory, AvatarChannelListener, and
AvatarMigrationListener. Especially, the GameMessageHandler and MessageFactory
must associate with a message type. The Figure 5-7 is a simple example of

vwlogic.properties

# 1=MessageFactory

# 2=MessageHandler

# 3=AvatarChannelListener

# 5=AvatarMigrationListener
1=cis.game.common.message.LoginMessageFactory/0x01
2=cis.game.server.handler.LoginMessageHandler/0x01
1=cis.game.common.message .MoveMessageFactory/0x03
2=cis.game.server _handler _MoveMessageHandler/0x03
1=cis.game.common.message.NpcBornMessageFactory/0x06
2=cis.game.server .handler _NpcBornMessageHandler/0x06
1=cis.game.common.message.LogoutMessageFactory/0xFF
2=cis.game.server.handler.LogoutMessageHandler/0xFF

3=cis.game.server.listener.-MyAvatarkistener/0x00

5=cis.game.server.listener.MyMigrationListener/0x00

Figure 5-7: vwlogic.properties

Optionly, we may provide the npc.properties if we want to provide NPCs in our
game. In this file, we must specify the NPCBot classes of NPCs, the number of NPCs
for a given type of NPC in a given region. The Figure 5-8 is a simple example of

npc.properties

mmog . npc.bot.good=cis.game.server.npc.GoodNPCBot
mmog.npc.bot.bad=cis.game.server.npc.BadNPCBot
mmog.npc.region.regionl=good, 100
mmog.npc.region.regionl=bad,50
mmog.npc.region.region2=good, 50

mmog.npc.region.region2=bad, 100

Figure 5-8: npc.properties

36



5.4.Plugins Framework

In DOIT platform, we can plug service components to extend the functionality.
As mention in Chapter 4.6 > plugins are divided server scope plugins and region scope
plugins. To write a server scope plugin, we should write a class extending
mmog . server .ServerScopePlugin. When the server starts up, the server will
call back the init() method of ServerScopePlugin. The system will pass in the
ServerContext and plugin initial parameters to this method. In
ServerContext, we can get the information of server and look up other server

components in this server.

As for designing a region scopé plugin,swe should provide a class extending
mmog . server .RegionScopeP lugin.. Similarly, when a region is initiated, the
server will call back the init() method:of RegionScopePlugin. The difference
is that there is no RegionContext parameter passed in the init() method of
RegionScopePlugin. It will be postponed to bind() method. Region scope
plugins live with a region. When a region is bound to a server, all the region scope
plugins in this region will have the bind() called. Relatively, when a region is
unbound from a server, all the region scope plugins in this region will have the
unbound called. It must be noted that ini1t() is only called once throughout the
lifecycle of game platform, and however, bind()/unbind() is called once
whenever a region is migrated in/out. Moreover, region scope plugins should
implement java.io.Serializable. Because region scope plugins migrate
accompany with regions, the plugin should be the serialization form. Note to add the
transient keyword to the field which is not able to serialize. We can restore this field

in the bind () method.

37



A plugin should be pack as a jar file and put in the “plugins” directory of DOIT
platform. For each plugin, we should provide a plugin definition file. In this file, we
can define the type classname of plugin, plugin type, plugin initial parameters. The

Figure 5-9 is an example of plugin definition file.

# MyPlugin_properties
# put plugins config here
mmog.-plugin.server.test = hello.MyPlugin

mmog.plugin.server.test.foo = bar

mmog.-plugin.server.test.foo2 = bar2

Figure 5-9: MyPlugin.properties

38



Chapter 6 Experiment and Evaluation

We start to evaluate our platform in this chapter. To evaluate the performance of
our platform, we experimented in three rounds. In the first round, we hope to realize
the performance of the NetEngine. We implement a simple echo server by using
NetEngine. In the second round, in the same way, we implement a simple echo server.
The difference is that the echo server is implemented with client-gateway-server
architecture. We provide a simple EchoMessageHandler and deploy it on our platform.
The purpose is that we hope to know the performance baseline of our game platform.
In the last round, we simulate the real online game. We implement the most
significant game logic, login and move. Besides, the virtual world is divided into four
regions. So an avatar may migrate from one-region to another. Through this

experiment, we hope to observer the performance of the real game.

6.1.Round 1: NetEngine Performance

In the first round, we tried to find out the limit of the NetEngine.

6.1.1.Hardware Configuration

For the hardware configuration, we use one machine as the server and 10

machines as clients. The Table 6-1 describes the detail configuration.

Usage Number Configuration
Server 1 P4 2.4GHz CPU with 1MB ram
Client 10 P4 1.6~2.4GHz CPU with 512MB ram

Table 6-1: Hardware configuration of round 1

39



6.1.2.Software Configuration

Server

Client

Figure 6-1: Communication architecture of round 1

In order to perform stress test, we designed a virtual client generator program to
simulate multiple players in a single machine. We run this program in 10 machines
simultaneously, and we increased the number of clients by 50 for each run each
machine. Namely, the number of client’is increased by 500 for each run. We totally
test 8 runs, and the client number| scale from, 500 to 4000. Each client sent one
message per second and lasted for 10 minutes. Clients and the server run on the same

LAN and they are connected with-100 Mbit Ethernet (see Figure 6-1).

The server performed simple echo action. Such that, when the server was
received a message, it simply sent back this message to client. The echo message
contains a 4-bytes serial number field, which is used to identify which message is sent
back. For each test, we run for 10 minutes and use the data in the medium 8 minutes
as the effective data. We analyzed the log data and evaluated the average response

time and standard deviation for each test.

40



6.1.3.Experiment Result

Client number Average. Response Standard Deviation

Time

500 0.3

1000 0.99

1500 2.68 17

2000 4.06 26

2500 9.34 75

3000 7.15 30

3500 24.9 &4

4000 55.11 534

Table 6-2: Experiment result of round 1

Roundl

500 /
400 T Ave
300 /
200 /
100 : ,:
O |
0 1000 2000 3000 4000
Client Number

response time (ms)

Figure 6-2: Experiment result of round1

6.1.4.Evaluation

Through this experiment result, we discovered that it got excellent performance

under 3000 clients concurrently. The average response time is less than 10 ms and the

4



standard deviation is less than 75ms. This performance is very ideal for a game
environment. When the client number reaches to 4000, the average response time is
also less than 100 ms, but the deviation is more than 500 ms. It begins to have

unstable behavior.

6.2.Round 2: Perfomance baseline of DOIT Platforrm

In our platform, we adopt the client-gateway-server architecture. It is desirable to
realize the performance baseline under this architecture. In this round, we also use the
simple echo program to experiment with the performance baseline of

client-gateway-server architecture.

6.2.1.Hardware Configuration

In this round, we prepared:-one more-machine to'run as a gateway. This machine

has the same configuration as the‘server.

Usage Number Configuration
Server 1 P4 2.4GHz CPU with 1MB ram
Gateway 1 P4 2.4GHz CPU with 1MB ram

Table 6-3: Hardware configuration. of round 2

42



6.2.2.Software Configuration

140.113.88.* 192.168.1.*

) Gatewa
Client y

Figure 6-3: Communication architecture of round 2

Similarly, we designed a client generator program to perform stress test. The
client number also scaled from 500 to 4000 between 8 runs. The most different point
is that the test environment wasSeparated into- 2 LAN. Clients connected to the
gateway in a subnet and the gateway connected to'server in another one (see Figure
6-3). Therefore, the traffic from client to"gateways didn’t inference the one between

the gateway and the server.

Concerning the test program, we designed an echo server as well. The difference
is that the echo semantic was implemented as a game logic and we deployed it to the
game platform. So this program can be considered as the simplest game and the
performance can be considered as the performance baseline. Similarly, there were 8

runs and each run lasted for ten minutes.

43



6.2.3.Experiment Result

A R
Client number Verage. esponse Standard Deviation
Time

500 17.87 43.13

1000 13.09 27.20

1500 12.18 30.28

2000 18.27 34.21

2500 17.83 37.63

3000 20.17 45,72

3500 27.66 121.29

4000 33122 135.09

Table 6-4: Experiment result of round 2
Round?2
_ S0 Sy,
£ 400 —=—SD
(D]
£ 300
2
= 200
o
o, "
s 100
e ',:g:g::;—_—',—_i,'/_/o———‘
O |

0

1000

2000 3000 4000
Client Number

Figure 6-4: Experiment result of round 2

44




6.2.4.Evaluation

We observe that the result was very similar to the result of round 1. Although the
average response was slightly larger than that of round 1, it was also less than 100
even if the client number reached to 4000. The standard deviation also had the level
near 100 ms. It is interesting to note that the average response time in 500 clients was
higher than that in 1000 clients. The reason could be caused that it fully exploited the
benefit of message aggregation in test of 1000 clients such that it got the better

performance than that in 500 clients. The similar result also appeared in round 3.

6.3.Round 3: Simulate a Real Game

In the last round, we tried to simulate:the real-game environment and observed

the performance.

6.3.1.Hardware Configuration

We used two computers for servers, two for gateways, ten for clients. The detail

configuration is list as follow.

Usage Number Configuration

Server 2 P4 2.4GHz CPU with 1MB ram
Gateway 2 P4 2.4GHz CPU with 1MB ram

Client 10 P4 1.6~2.4GHz CPU with 512MB ram

Table 6-5: Hardware Configuration of round 3

45



6.3.2.Software Configuration

ACI A AIN\4
Z .'.'. \‘

A—— A0l —

Figure 6-5: The move logic

To simulate the real game world, we implemented the most significant game
logic, avatar movement, in the test program. However, the different implementation of
the move logic will affect the result obviously. So we should make more effort to
describe the implementation detail'of move.egic. We should first define the term AQI
(Area of Interest) as the area in-which all events are interesting to a given game object.
This game object is interested m all:the game objects in AOI. Then, we explain the
move logic by mean of the Figure 6-5,/Assume that one avatar moves right, as the
figure indicates, we should send the player update message to all the game objects
inside the AOI and the region of the oblique line. This is because the game objects in
the AOI of new location should be interested in the new state of this avatar. The game
objects in the leftmost of the AOI of the old location should receive the player update
to indicate that this avatar was move out of their AOI. In addition to send updates to
the surrounding objects, the avatar also needs to extend his eye sight. So the states of

the game objects in the obligue line area should also be sent back to avatar.

46



140.113.88.* 192.168.1.*

Client Gateway Server

Figure 6-6: Communication architecture of round 3

The Figure 6-6 depicts the communication architecture of this round. The virtual
world was divided into 4 equal size regions plus a login region. They were deployed
to 2 game servers. In addition, we provided two-gateways for clients to connect in.
Similarly, we put the two servers in the private network. The gateway was responsible
for routing messages between internal and external network. Due to multiple regions,
it is possible that one avatar will _migrate from'one region to another, the avatar

migration also be implemented in this round.

Concerning the test program, there were also 10 machines running the client
generator program. We separated them into two groups. Machines in the same group
connected to the same gateway. There were 8 runs in this round. The number of
clients is increase with the number of 50 in each client generator program. Therefore,
the gateway had 2000 clients connected concurrent at most, and the game platform
had 4000 clients in the virtual world concurrently. Furthermore, we performed
different tests for different map size and AOI size. The map had 500 x 500 and 1000 x
1000 two different sizes, and AOI had 9 x 9 and 16 x 16 two different sizes. We hope

to realize the performance in different environment. Besides, in each test, we pick the

47



updates with avatar migration to do further analysis.

6.3.3.Experiment Result

Average Response Time - Total
500x500 | 1000x1000 | 500x500 | 1000x1000
9x9 9x9 16x16 16x16

so0| 2013 18.69 19.84 24.79

1000/ 2085 19.43 24.08 17.05

1500/ 25.24 15.23 24.83 17.88

000 20.94 12.18 31.29 15.90

ss00| 1937 13.28 50.89 29.08

3000]  26.12 18.36 235.71 20.84

3500|  63.09 19.69 489.58 43.57

a000|  124.69 2551 | 4186.74 | 52.19

Table 6-6: Average Response Time — Total
Average Response Time - Total
500.00
——500x500
£ 400,00 x9
2 —=—1000x1000
= 300.00 9%9
(D]
5 20000 500x300
z 16x16
10000 | i 1000x1000
= S S 16X16
0.00 = . ‘
0 1000 2000 3000 4000
Client Number

Figure 6-7: Average response time — total

48




Standard Deviation - Total
500x500 | 1000x1000 | 500x500 1000x1000
9x9 9x9 16x16 16x16
500 53.43 45.44 52.06 60.26
1000 54.95 38.69 55.53 40.60
1500 59.73 39.51 57.73 52.84
2000 52.91 32.74 73.60 39.06
2500 52.19 35.50 175.10 54.50
3000 73.72 42.80 829.66 155.52
3500/ 269.75 51.34 1013.89 | 136.74
4000| 586.98 97.16 5709.61 245.59
Table 6-7: standard deviation — total
Standard Deviation - Total
500.00
——500x500
Z 40000 | 9x9
= —=—1000x1000
£ 300.00
5 /,/ 9x9
% 200.00 SOOXSOO
2 / 16x16
[®]
~ 10000 . ‘_,,J——/ 1000x 1000
e | 16x16
0.00
0 1000 2000 3000 4000
Client Number

Figure 6-8: Standard deviation total

49




Average Response Time - Migration
500x500 | 1000x1000 | 500x500 | 1000x1000

9x9 9x9 16x16 16x16
500 43.79 27.55 35.55 47.49
1000/  30.00 31.34 39.34 32.82
1500/ 29.34 26.70 41.59 23.08
2000, 3321 20.91 40.01 32.29
2500  27.16 22.70 74.58 39.25
3000 36.44 30.84 200.78 30.26
3500|7117 27.21 623.84 58.70
4000 11599 32.11 5184.81 62.83

Table 6-8: Average response time — migration

500.00
400.00
300.00
200.00
100.00

0.00

Response Time (ms)

Average Response Time - Avatar Migration

——500x500
9x9

—=—1000x1000
9x9
500x500

16x16
1000x1000

N
AR “Y::#:?'—'}’é
|

1£-1£

0 1000

2000 3000 4000

Client Number

Figure 6-9: Average response time — migration

50




Standard Deviation - Migration
500x500 | 1000x1000 | 500x500 | 1000x1000

9x9 9x9 16x16 16x16
500 411 46.75 68.77 85.84
1000]  98.26 52.23 70.18 61.07
1500|  58.67 52.20 79.08 53.59
2000/  65.85 54.53 78.22 62.56
2500/ ©8.61 46.79 378.09 62.41
3000 74.18 58.76 911.63 100.19
3500 194.15 51.05 916.62 144.49
4000 479.83 92.61 6277.19 211.02

Table 6-9: Standard Deviation - Migration

Standard Deviation - Avatar Migration
500.00
/ ——500x500

g 400.00 9x9
e —=—1000x1000
E 300.00 9x9
% 200.00 | 500x500
% 16x16
10000 e &%ﬁi/ 1000x1000

- 16x16

OOO | | | |
0 1000 2000 3000 4000
Client Number

Figure 6-10: Standard Deviation - Migration

51



500x500 9x9 1000x1000 9x9 500x500 16x16 1000x1000 16x16
Gateway | Server | Gateway | Server |Gateway | Server | Gateway | Server
500 6 2 2 2 2 2 5 2
1000 24 3 12 2 6 5 11 4
1500 32 9 17 3 10 5 22 6
2000 36 9 24 9 22 11 25 9
2500 40 10 38 10 50 14 43 10
3000 78 10 58 10 90 18 66 17
3500 95 15 86 13 98 25 g8 25
4000 98 36 &9 17 100 33 90 28
Table 6-10: CPU load
5? g; 500x500 9x9 1000x1000 9x9 | 500x500 16x16 | 1000x1000 16x16
2|8 &8 |38 | 7| & 1 &
= E? 5 5 5 3
500 | 250 300 330 |2262.5 275 378 397 282 298
1000 | 500 700 925 550 578 1012 1128 628 670
1500 | 750 | 1200 | 1691 <+ 862.5 906 1902 2086 1038 1076
2000 | 1000 | 1800 | 1962 |+1200 1256 3048 3350 1512 1644
2500 | 1250 | 2500 | 2817 | 156257 1655 4450 4853 2050 2182
3000 | 1500 | 3300 | 3663 | 1950 2070 6108 6415 2652 2822
3500 | 1750 | 4200 | 4679 |2362.5| 2540 8022 7849 3318 3538
4000 | 2000 | 5200 | 5782 | 2800 3018 | 10192 | 10826 4048 4312

Table 6-11: The amount of commands forwarded per second in a gateway

500x500 9x9 | 1000x1000 9x9 | 500x500 16x16 {1000x1000 16x16
500 580 525 647 548
1000 1425 1078 1628 1170
1500 2441 1656 2836 1826
2000 2962 2256 4350 2644
2500 4067 2905 6103 3432
3000 5163 3570 7915 4322
3500 6429 4290 9599 5288
4000 7182 5018 12826 6312

Table 6-12: The total amount of messages forwarded per second in a gateway

52




14000
12000 F

10000

——500x500 9x9
8000 /’///' —=— 1000x1000 9x9
6000 500500 16x16

1000x1000 16x16

4000
2000 f

=
O 1
0 1000 2000 3000 4000 5000

Figure 6-11: The total amount of messages forwarded per second in a gateway

6.3.4.Evaluation

In Figure 6-7 and Figure 6=8 we can observe that different map size and different
AOI size will lead to obviously different result: Inall the tests, we find that the data of
map size 500 x 500 and AOI 16 x 16 got the 'worst result. We think that the result can
be expected because it have the largest density in this configuration. In this
configuration, the average response time grows steadily under 2500 clients
concurrently. But it starts to have dramatic growth after 2500 clients. Concerning the
two configuration of 1000 x 1000, 16 x 16 and 500 x 500, 9 x 9, there is no obvious
growth until the client number reaches to 3500 clients. But the amount of growth is
steady and slow. Concerning the configuration of 1000 x 1000, 9 x 9, the average

responses time is almost under good result throughout the test.

If we observe the percentage of CPU usage in Table 6-10, we can find that the
performance bottleneck is on the gateway. The CPU usage is always under 50% in the

servers. We take a future look. We recorded the update sent per second in the gateway

53



at the Table 6-11. We consider it have tight relation to the performance. The main
game logic is move message. According to the move game logic described above, the
number of update messages should be a function of total clients, map size, aoi size,
and clients in the gateway. We first consider how many update messages are sent
when one move message is process. First of all, the update message should be sent
back to the avatar himself. Furthermore, the updates from surroundings and updates to

surroundings can totally seem as function of the avatar in his AOI. It can calculate by

n .
total X a0i "
map , Where "ol s the total client number and map and aoi are map size and
n .
(—22l » a0i +1)
AOI size respectively. So a move message can cause MaP update

messages. Finally, the client sent.one move message per second. So the updates per

second can be described as the following formula

g » Wherengzeis the number of clients on a gateway

n .
update = (22 x a0i +1) xn
map
More concisely, we use d as the number of game objects in an aoi, then the updates

per second is described as following

n .
where d = x 30i
map

and the total messages the gateways processed is

update =(d +1)xn

gat !

total = command +update = n,, +(d +1)xn, =(d +2)xn_,

gate gate

Therefore, we calculate the prediction number of update messages processed by
gateway according the last formula and list it in the “Prediction” column for each
configuration in Table 6-11. The prediction data is very close to the actual data. The
actual data is slightly more than prediction data. The reason could be that there were
some avatar migrations occurred and the avatar migration may cause much more

updates. Finally, we calculate the total messages per second processed by a gateway
54



by the given update messages per second plus the command message sent by clients.
The result is listed in Table 6-12 and depicted in Figure 6-11. According the result we
get above and map it to this diagram, we can find that a gateway can bear 5000~6000

messages per second.

Finally, we observe the impact of avatar migration in Figure 6-9 and Figure 6-10.
The trend of updates of avatar migration is very similar to the general message
updates. The average response time is 1.5 times larger than general message. But it is

acceptable because the avatar migration does not happens often.

6.4.Summary

To evaluate our platform, we use'three rounds to experiment our platform. In the
first round, we hope to realize the performance of underlying NetEngine. Until the
client numbers reach to 4000, the average response.time also have the level of less
than 100 ms. But there is steeprise of standard ‘deviation when the client number
reach to 4000. In the second round, we try to find the performance baseline of
client-gateway-architecture. The result is very similar to round 1 expect that the
average response time is slightly larger than that of roundl. So the
client-gateway-server architecture doesn’t downgrade the performance very much. In
round 3, we simulate the real game world. We implement the most significant game
logic, avatar movement, in our experiment platform. We found that the performance
bottleneck lay on the gateways. Furthermore, we observed the amount of update
messages forwarded by gateway. We construct a formula to calculate the number of
updates for one command. The result is that the gateway can bear about 5000~6000

messages per second.

55



Chapter 7

Future Works and Conclusions

7.1.Conclusions

To craft a MMOG middleware is not an easy job. In this paper, we figured out
the issues we may encounter when designing an MMOG middleware. We discuss

them in four criteria: scalability, flexibility, easy-to-use, and high performance.

In scalability, we use client-gateway-server architecture to scale up the platform.
In view of real world, we can scale up, the_number of clients connected by way of
multiple gateways. In view of virtual world;swe can scale up the number of game

objects by way of spanning regions over the Server cluster.

In flexibility, we reserve asfew footprints as-possible for the protocol. We also
reserve the most resilience of game objects for developer. In addition, developer can
extend the platform by designing their own plugin. There are also some flexibility
concerns in designing the feature of Avatar Migration and Region Migration. We
always hope the data can be migrated successfully as well as the data format is as
flexible as possible. Furthermore, we use the Login Region pattern to overcome the

login problem.

In easy-to-use, we simplify the underlying complexity of MMOGs by clean and
thread safe API. We provide three layer of API: NetEngine library, DOIT API, plugin
framework. Using DOIT API, game developer can develop a MMOG rapidly. We also
suggest a easy way to send updates and receive update from an game object (by

means of GameSpace and GameSpaceUtil). We also purpose a way to separate
56



the Al logic and game logic when designing the logic of NPC.

In high performance, we use an abstract NetEngine library, and different
threading model for different demand. We deploy the event-driven NetEngine at the
external interface of gateway for serving numerous clients concurrently while
deploying the threaded NetEngine at the internal interface of gateway for exploiting
the message aggregation feature to gain better performance. We also provided 3
experiments on our platform. We found, in some configuration, it got good
performance when there are 4000 players on the same virtual world concurrently with
2 gateways and 2 servers. The bottleneck lay on the gateway component. It can hold
5000 messages per second with acceptable response time. We also can add more

gateways in this platform if we need better,service quality and quantity.

7.2.Future Works

In the current work, we focused on the scalable, flexible, high performance and
easy-to-use issues. However, there are still plenty of issues should be taken into

consideration.

Failover mechanism is absent in the current work. We hope that if a game server
is done, we can recover the game states and continue to serve the clients. We may
make use of the Serializable Capsule mechanism in Region Migration. We serialize

the region state to the persistence store instead of another game server.

Cheating prevention is another place that has not been taken into consideration in
the current work. The cheating prevention can be implemented as a gateway plugin.
We may allow the game developers to monitor and the incoming command messages

and filter out the illegal message. Besides, we may provide the SSL version of

57



NetEngine in order to meet the requirement for high demand of online game, such as

online shopping mall.

We also hope to provide a script language framework for game developers for
writing game logics. There are some good script language implementation for java
platform, like Jython and Groovy. We may provide a scripting framework on top of

the DOIT API.

Furthermore, the easy-to-manage is also important for MMOG middlewares. The
components are distributed over plenty of machines. It is desirable to have a centralize
management console. In fact, we have made efforts on this feature. We adopt the

JMX][19] and JIMX Remote technology.

The last one is the location-free.communication. In the current work, it is easy to
implement the feature that the avatars talk to.others around him. However, we didn’t
provide the mechanism to communicate with-a-group located around the future world
in the current work. We hope to provide. this-kind of location-free communication in

our framework. Maybe the JMS[8] is a good choice to implement this feature.

58



Bibliography

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

Zona Inc., http://www.zona.net/

Butterfly.net, http://www.butterfly.net/

Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, Emmanuel Agu. The
Effect of Latency on User Performance in Warcraft I11. In Proceedings of ACM
NetGames at Electronic Arts Headquarters Redwood City, California, USA
May 22-23, 2003.

M. Mauve, S. Fischer, J. Widmer. A generic proxy system for networked
computer games, In Proceedings of ACM NETGAMES ’02, pp.25-28.

Wish Engine, http://www._mutablerealms.com/

Massively Multiplayer Middlewares
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=1
15

Xuan-Feng Lee, Tsun-Yu Hsiao, Shyan-Ming Yuan. A Scalable Middleware
Architecture for Supporting Massive Multiplayer Virtual Worlds. In Proceeding
of Symposium on Digital Life and Internet Technologies 2003.

Sun Microsystems Inc. Java Message Service,
http://java.sun.com/products/jms/

BigWorld Technology, http://www.bigworldgames.com/

K. Lee and D. Lee. A Scalable Load Balancing Scheme for Large-Scale
Multi-Server Distributed Virtual Environment Systems. In Proceedings of ACM
Symposium on Virtual Reality Software and Technology (VRST2003), Osaka,
Japan, 1-3 October 2003.

P. Morillo, J.M. Ordu.na, M.Fern andez. An Adaptive Load Balancing

59



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Technique for Distributed Virtual Environment Systems. Proceedings of the
IASTED International Conference Parallel and Distributed Computing and
Systems November 3-5, 2003 in Marina del Rey, CA, USA.

Lars Aarhus, Knut Holmgvist and Martin Kirkengen. Generalized TwoTier
Relevance Filtering of Computer Game Update Events. Proceedings of ACM
NetGames 2002.

Ashwin R. Bharambe. Mercury: A Scalable Publish/Subscribe System for
Internet Games. Proceedings of ACM NetGames 2002.

Sandeep Singhal, Michael Zyda. Networked Virtual Environments, Design and
Implementation. Published by Addison-Wesley, 1999.

Daniel Bauer. Network Infrastructure for Massively Distributed Games.
Proceedings of ACM NetGames 2002.

Matt Welsh, Steven D. Gribble, Eric A. Brewer; and David Culler. A Design
Framework for Highly Concurrent-Systems. UC Berkeley Technical Report
UCB/CSD-00-1108, Submitted for.publication, April, 2000.

Sun Microsystems Inc. JavaBeans Architecture,
http://java.sun.com/products/javabeans/

Sun Microsystems Inc. Java Servlets API,
http://java.sun.com/products/serviet/

Sun Microsystems Inc. Java Management Extension,

http://java.sun.com/products/JavaManagement/

60



Appendix A System Protocol

ID Name Direction Description
0x01 | CTRL G->S The control message
0x02 UPDATE G->S The update message
0x03 | AVACONN G->S Notify that a channel connected.
0x04 | AVADISC G->S Notify that a channel disconnected
0x05 | AVACLOSE S>G Notify that a avatar channel is close by game
logic
0x06 | AVAMIG G->S Send when a avatar migrated.
S>G
0x07 | GATHEL G->C Say hello and tell the gateway information.
G->S
0x08 | SRVHEL S->C Say hello and tell the server information
0x09 RMINIT C broascast(*1) | Send when a coordinator initiate an region
migration
0x0A | RMREADY S=>C The destination server says he is ready to receive
migration data.
0x0B | RMCOMPLETE Sl Send when the region migration is complete
C broadcast(*1)
0x0C | RMFAIL S=>C Send when a region migration fails.
C broadcast(*1)
0x0D | AVACONN_ACK S>G ACK of AVACONN
Ox0E | AVAMIG_ACK S>G ACK of AVAMIG

G: Gateway, S: Server, C: Coordinator

*1 A coordinator broascasts the messages to evey participents of the region migration.

61




0x01 CTRL
Direction: G=>S
Description:
The control message
Format:
long avatarid
short controlType
short controlLength

byte[] wrappedMessage

0x02 UPDATE
Direction: G=>S
Description:

The update message
Format:

long avatarid

short updateType

short updateLength

byte[] wrappedMessage

0x03 AVACONN
Direction: G=>S
Description:
Notify that a client connected.
Format:

long avatarid



0x04 AVADISC
Direction: G=>S
Description:
Notify that a client disconnected.
Format:

long avatarid

0x05 AVACLOSE
Direction: S=>G
Description:
Notify that a avatar channel is‘close by gamelogic
Format:

long avatarid

0x06 AVAMIG
Direction: G=2S, S=>G
Description:

Send when a avatar migrated.
Format:

long avatarid

int srcRegionid

int destRegionid

int x

inty

short dataLength
63



byte[] data

0x07 GATHEL
Direction: G=S, G>S
Description:
Say hello and tell the gateway information
Format:

int gatewayid

0x08 SRVHEL
Direction: S>C
Description:
Say hello and tell the server information
Format:

int serverid

0x09 RMINIT
Direction: C broadcast
Description:
Send hen a coordinator initiate a region migration
Format:
int rmid
int regionid
int srcServerid

int destServerid

64



0x0A RMREADY
Direction: S>C, C>S
Description:
The destination server says he is ready to receive migration data. This message
will be forwarded to source server by the coordinator.
Format:
int rmid
int host

int port

0x0B RMCOMPLETE
Direction: S=>C, C broadcast
Description:
Send when the region migration:is'complete.
Format:

int rmid

0x0C RMFAIL
Direction: S=>C, C broadcast
Description:

Send when the region migration fails.
Format:

int rmid

0x0D AVACONN_ACK

Direction: S=>G
65



Description:
ACK of AVACONN
Format:

long avatarid

Ox0E AVAMIG_ACK
Direction: S=>G
Description:

ACK of AVAMIG
Format:

long avatarid

66



