
 

國 立 交 通 大 學 
 

資訊科學系 
 

碩 士 論 文 
 
 
 
 
 

高 彈 性 高 延 展 性 易 用 之 

M M O G 中 介 軟 體 之 設 計 

 
Design Issues of a Flexible, Scalable, Easy-to-use 

MMOG Middleware 
 
 
 

研 究 生：陸振恩 

指導教授：袁賢銘  教授 

 
 
 
 
 

中 華 民 國  九 十 三  年 六 月 



高彈性高延展性易用之 MMOG 中介軟體之設計 

Design Issues of a Flexible, Scalable, and Easy-to-use  
MMOG Middleware 

 
 
 

研 究 生：陸振恩          Student：Chen-En Lu 

指導教授：袁賢銘          Advisor：Shyan-Ming Yuan 

 
 
 

國 立 交 通 大 學 
資 訊 科 學 系 
碩 士 論 文 

 
 

A Thesis 

Submitted to Institute of Computer and Information Science 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Computer and Information Science 

 
June 2004 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十三年六月 



 i

中 華 民 國  九 十 三  年 六 月 

高彈性高延展性易用之 MMOG 中介軟體之設計 

 

研究生: 陸振恩         指導教授: 袁賢銘 

 

國立交通大學資訊科學系 

 

摘要 

 

MMOG(Massively Multiplayer Online Game)是一種可以支援上千人同時在一

個虛擬遊戲世界互動的遊戲類型。然而，開發一個 MMOG 的難度遠超過我們所

想像，很多議題都是遊戲開發者可能會遭遇到的，例如高效能的網路、分散式的

技術、負載平衡等。同時，要開發一個具有競爭力的遊戲，Time-to-Market 也是

十分重要的考量。因此，MMOG 中介軟體解決方案的需求大量增加，而 MMOG

中介軟體的研究也逐漸受到重視。 

在本篇論文中，我們分享在開發 MMOG Middleware 的經驗。一方面，我們

試圖解決開發 MMOG 所會遇到的共同問題。另一方面，我們嘗試的簡化設計遊

戲的 API 以減低開發 MMOG 的難度。除此之外，我們也保留彈性給開發者以部

署各種不同類型的遊戲在平台之上。



 ii

Design Issues of a Flexible, Scalable, and Easy-to-use MMOG Middleware 

 

Student: Chen-en Lu               Advisor: Shyan-Ming Yuan 

 

Department of Computer and Information Science 

National Chiao Tung University 

 

Abstract 

 

MMOG (Massively Multiplayer Online Game) is a game genre, which allows 

more than 1,000 players to play in the same game through a network concurrently. 

However, it is much harder than we think to develop a MMOG. There are plenty of 

issues that MMOG developers may encounter, such as high performance network, 

distributed technology, load balancing, and so forth. In the meantime, time-to-market 

is also an important issue to develop a competitive MMOG. Therefore, the demand of 

middleware solutions for MMOG rises by degrees and the research of MMOG 

middleware gains more and more respect. 

In this paper, we would like to share our experience on designing our MMOG 

middleware. On one hand, we try to overcome the common issues arisen in the 

MMOG environment. On the other hand, we attempt to simplify the API in order to 

reduce the complexity of developing MMOGs. In addition, our platform leaves 

developers the flexibility to adopt the solution and deploy it to any kind of MMOGs. 



 iii

Acknowledgement 

首先我要感謝袁賢銘教授給我的指導，在我的研究領域裡給予我很多的意見，並

且給予我最大的空間來發揮我的創意。也感謝所有幫助我的學長蕭存喻、高子

漢、葉秉哲、鄭明俊、邱繼弘、李宣峰，在我研究的過程中給我不少的指導跟建

議。還有感謝蘇科旭跟葉倫武，在這一年來跟我一起做了很多研究討論，也激盪

出不少的想法。還有所有實驗室內提供電腦給我做實驗的同學，沒有你們我無法

完成實驗。也感謝我的心愛女友彭品勻，在我最無力的時候給我打氣，讓我一直

有動力來完成我的研究。最後我要感謝我的爸媽，給予我這個良好的環境讓我求

學生涯毫無後顧之憂，專心於學業，謹以這篇小小的學術成就來感謝您們的養育

之恩。 



 iv

Table of Contents 

Acknowledgement ................................................................................... iii 

Table of Contents .................................................................................... iv 

List of Figures......................................................................................... vii 

List of Tables............................................................................................ ix 

Chapter 1 Introduction.............................................................................1 

1.1. Preface........................................................................................................1 

1.2. Motivation..................................................................................................1 

1.3. Research Objectives...................................................................................2 

1.4. Research Contribution ...............................................................................4 

1.5. Outline of the thesis ...................................................................................4 

Chapter 2 Background .............................................................................5 

2.1. MMOG Design Concept ............................................................................5 

2.2. Communication Architectures ...................................................................6 

2.2.1. Client-Server Architecture .............................................................6 

2.2.2. Peer-to-peer Architecture ...............................................................6 

2.2.3. Client-Gateway-Server Architecture..............................................6 

2.3. Communication Protocol ...........................................................................7 

2.3.1. Message-based Protocol.................................................................7 

2.3.2. RPC-based Protocol .......................................................................8 

2.4. Related Works ............................................................................................8 

Chapter 3 System Architecture..............................................................10 

3.1. Game Servers ...........................................................................................10 

3.2. Gateways..................................................................................................11 



 v

3.3. Coordinator ..............................................................................................12 

3.4. Client........................................................................................................12 

3.5. Other Components ...................................................................................12 

3.5.1. Proxy............................................................................................12 

3.5.2. Database.......................................................................................13 

3.5.3. Update Server...............................................................................13 

Chapter 4 Implementation Details ........................................................14 

4.1. Network Engine .......................................................................................14 

4.2. Message wrapping and Message routing .................................................15 

4.3. Channel State Synchronization ................................................................16 

4.4. Avatar Migration......................................................................................17 

4.5. Login Issues .............................................................................................19 

4.6. Plugin Framework....................................................................................19 

4.7. Region Migration .....................................................................................20 

4.8. NPC Support ............................................................................................22 

Chapter 5 Design of Programming Interface.......................................24 

5.1. NetEngine Library ...................................................................................24 

5.2. DOIT API.................................................................................................27 

5.2.1. Game Protocol and Game Logic..................................................28 

5.2.2. GameContext and GameSpace ....................................................30 

5.2.3. AvatarChannelListener ................................................................32 

5.2.4. Avatar Migration..........................................................................32 

5.2.5. NPC..............................................................................................32 

5.2.6. Mapping the features to the API ..................................................33 

5.3. Game Deployment ...................................................................................34 

5.4. Plugins Framework ..................................................................................37 



 vi

Chapter 6 Experiment and Evaluation.................................................39 

6.1. Round 1: NetEngine Performance ...........................................................39 

6.1.1. Hardware Configuration ..............................................................39 

6.1.2. Software Configuration................................................................40 

6.1.3. Experiment Result........................................................................41 

6.1.4. Evaluation ....................................................................................41 

6.2. Round 2: Perfomance baseline of DOIT Platforrm .................................42 

6.2.1. Hardware Configuration ..............................................................42 

6.2.2. Software Configuration................................................................43 

6.2.3. Experiment Result........................................................................44 

6.2.4. Evaluation ....................................................................................45 

6.3. Round 3: Simulate the Real Game...........................................................45 

6.3.1. Hardware Configuration ..............................................................45 

6.3.2. Software Configuration................................................................46 

6.3.3. Experiment Result........................................................................48 

6.3.4. Evaluation ....................................................................................53 

6.4. Summary ..................................................................................................55 

Chapter 7 Future Works and Conclusions ...........................................56 

7.1. Conclusions..............................................................................................56 

7.2. Future Works............................................................................................57 

Bibliography ............................................................................................59 

Appendix A System Protocol..................................................................61 

 



 vii

List of Figures 

Figure 2-1: Client-Gateway-Server Architecture...........................................7 

Figure 2-2: System Architecture ..................................................................10 

Figure 3-1: Message Wrapping....................................................................15 

Figure 3-2: Message Routing.......................................................................16 

Figure 3-3: Avatar Migration, source region and destination region are in the 

same server...........................................................................................18 

Figure 3-4: Avatar Migration, source region and destination are in different 

servers.. ................................................................................................18 

Figure 3-5: Login Region.............................................................................19 

Figure 3-6: Server Component-based Framework.......................................20 

Figure 3-7: Region Migration ......................................................................22 

Figure 4-1: Class diagram of NetEngine library..........................................25 

Figure 4-2: class diagram of the DOIT API.................................................28 

Figure 4-3: GameContext ............................................................................30 

Figure 4-4: GameSpace................................................................................31 

Figure 4-5: NPC...........................................................................................33 

Figure 4-6: mmog.xml .................................................................................35 

Figure 4-7: vwlogic.properties.....................................................................36 

Figure 4-8: npc.properties............................................................................36 

Figure 4-9: MyPlugin.properties..................................................................38 

Figure 5-1: Communication architecture of round 1 ...................................40 

Figure 5-2: Experiment result of round1 .....................................................41 

Figure 5-3: Communication architecture of round 2 ...................................43 



 viii

Figure 5-4: Experiment result of round 2 ....................................................44 

Figure 5-5: The move logic..........................................................................46 

Figure 5-6: Communication architecture of round 3 ...................................47 

Figure 5-7: Average response time – total ...................................................48 

Figure 5-8: Standard deviation total ............................................................49 

Figure 5-9: Average response time – migration...........................................50 

Figure 5-10: Standard Deviation – Migration ..............................................51 

Figure 5-11: The total amount of messages forwarded per second in a 

gateway ................................................................................................53 

 



 ix

List of Tables 

Table 5-1: API for our MMOG Middleware................................................34 

Table 6-1: Hardware configuration of round 1 ............................................39 

Table 6-2: Experiment result of round 1 ......................................................41 

Table 6-3: Hardware configuration. of round 2 ...........................................42 

Table 6-4: Experiment result of round 2 ......................................................44 

Table 6-5: Hardware Configuration of round 3 ...........................................45 

Table 6-6: Average Response Time – Total .................................................48 

Table 6-7: standard deviation – total............................................................49 

Table 6-8: Average response time – migration.............................................50 

Table 6-9: Standard Deviation – Migration ..................................................51 

Table 6-10: CPU load...................................................................................52 

Table 6-11: The amount of commands forwarded per second in a gateway52 

Table 6-12: The total amount of messages forwarded per second in a 

gateway ................................................................................................52 

 



 1

Chapter 1 Introduction 

1.1. Preface 

MMOG (Massively Multiplayer Online Game) is a game genre, which allows 

more than 1,000 players to play in the same game through a network concurrently. 

However, it is much harder than we think to develop a MMOG. There are plenty of 

issues that MMOG developers may encounter, such as high performance network, 

distributed technology, load balancing, and so forth. In the meantime, time-to-market 

is also an important issue to develop a competitive MMOG. Therefore, the demand of 

middleware solutions for MMOG rises by degrees and the research of MMOG 

middleware gains more and more respect. 

1.2. Motivation 

Although there are some middleware solutions proposed in the market, such as 

Terazona [1], Butterfly.net [2], it seems that most commercial MMOGs didn’t take 

them into consideration. We think that there are three reasons. First of all, game is a 

product of creativity. It is not acceptable that the creativity is limited by a given 

middleware. Therefore, an inflexible MMOG middleware will be knocked out from 

the choices of MMOG developers. Secondly, the programming interface should be as 

easy as possible. The steep learning curve increases the risk and cost of developing a 

MMOG. Usually, game logic developers do not have to be experts of distributed 

technology. So the middleware providers need to provide exception-free, thread-safe, 

clean, and simple API for developers. The third pertains to the scalability of the 

middleware. The number of serving clients can be linearly scaled up by adding new 



 2

machines to the cluster. In term of the need, it may require some load sharing 

mechanism to deal with the unbalanced loading among clusters. Therefore, we 

developed our MMOG middleware, named DOIT platform. We wish to overcome all 

these issue in this platform. 

1.3. Research Objectives 

There are four objectives in this paper: scalability, flexibility, easy-to-use, and 

high performance. 

Scalability 

Scalability is always the issue on building MMOGs. The traditional single server 

architecture is relatively harder to serve thousands of players concurrently. There is no 

doubt that distributed technology plays an important role in the MMOGs. Scalability 

can be view as two parts. First is the number of players served can scale in a linear 

way. The second is the game objects can be scaled up in a linear way. Most people 

only emphasis the first point, but it is a good practice to separate the scalability of real 

world view and virtual world view.  

Flexibility 

The wired protocol must not be limited by the Middleware. Even if the 

middleware requires some information in the header so that it can properly route and 

dispatch the messages, the defined protocol should be as simple as possible. This is 

because the MMOG middleware should preserve the resilience to MMOG developers. 

Although some middlewares provide client libraries to have interaction with servers, 

there are still various targets which clients run at, such as game consoles, mobile 

devices, and so on. The client libraries provided by provider are never enough to meet 



 3

MMOG developers demand. A good MMOG middleware should provide the 

maximum resilience for the wired protocol. 

Moreover, the game objects in the virtual world are also as flexible as possible. A 

MMOG middleware should not assume the form of game object. For example, the 

player should have the attributes of hp, mp, name, and so on. It will limit the 

creativity of a game. 

Easy-to-use 

Because MMOG platform is very comprehensive, a middleware has the 

responsibility to hide the underlying complexity. The API should be designed as a 

game view instead of the implementation details. 

High Performance 

Networked games demand fast response time, and MMOGs is no exception. In 

[3] we understand that the latency more than 300ms can become aware by players. 

Poor performance will destroy the mood to play. The performance issue can be 

divided into two parts: 

1. Efficient protocol and game logic. The protocol should be decided as efficient as 

possible and the game logic should not send unnecessary message to unrelated 

client.  

2. High performance underlying network and routing technology. Serving 

thousands of players is not a naïve task. If the underlying network is not 

designed well, it could be the bottleneck of the whole system. So is the routing 

strategy of messages. Bad-decided routing strategy will exponentially increase 

the load of system.  

From the middleware view, the first part is beyond the task the middleware can handle, 



 4

but the second one is the responsibility of good MMOG middleware. 

1.4. Research Contribution 

To achieve these objectives, we encounter many problems when designing the 

DOIT platform. In this paper, we address these problems and explain our solution. 

There are four major contributions of this paper. 

1. We craft a scalable MMOG middleware based on client-gateway-server 

architecture. 

2. We introduce an easy-to-use programming model 

3. We discuss the flexibility issues in the MMOG middleware and explain our 

solution 

4. We design a high performance underlying network facility and experiment the 

performance of MMOG platform. 

1.5. Outline of the thesis 

In Chapter 2, we discuss the background of developing the MMOG. In Chapter 3, 

we introduce the components in the platform and their responsibility. In Chapter 4, we 

discuss the implementation details for each function. It will include how the 

components cooperate with each other for a given function and the issues we will face 

and how to overcome them. In Chapter 5, we turn to developers’ perspective. We can 

see how easy to build up a MMOG logic. In Chapter 6, we build up three test beds to 

experiment and evaluation the DOIT platform. In Chapter 7, we give the conclusion 

and future works. 



 5

Chapter 2 Background 

2.1. MMOG Design Concept 

MMOG is a virtual world in which there are thousands of players interact with 

each other simultaneously. Within the virtual world the player is represented by an 

“avatar”. The avatar could be a human, animal, or whatever. To design a mmog, there 

are two principles we should hold: 

1. Command/Update principle 

2. Never trust the clients. 

The first explain that the MMOG is run in the command/update manner, that is to 

say, clients control avatars by sending command messages to server, and the server 

returns clients the update message to indicate the changes of state in the server. The 

reason we should design in this way is because the synchronization of game states is 

very difficult in a huge virtual world. To centralize the game states and the game logic 

is the only way to overcome the synchronization problem. Hence, clients send the 

command message to server rather than process the game logic at local. The server is 

responsible for updating the states of virtual world clients are interested in.  

For the second one, never trust the clients. Although we can leave some game 

logic processed in the client-side, we should take the risks that the client should 

falsify the game states such that the fairness of virtual world will be threatened. 

Therefore, we should leave all the major game logic in the game servers. But we also 

can leave some game logic which is no matter of fairness in the client, such as path 

finding. 



 6

2.2. Communication Architectures 

This subsection discusses the choice of communication architectures that 

MMOG can apply. We address three types of communication architectures and 

discuss the advantages and disadvantages. 

2.2.1. Client-Server Architecture 

Certainly, the traditional client-server architecture can apply to MMOG platform. 

But it suffers from the scalability issue. One server can only serve limited number of 

players. If we want to serve more players than the limit of one server, we should open 

two separated virtual worlds.  

2.2.2. Peer-to-peer Architecture 

Although peer-to-peer is a good architecture for multiplayer game, there are 

many problems for MMOG. The first one is the states consistency problem. How to 

share the states over thousands clients? The second and the most serious problem is 

the cheating problem. In peer-to-peer architecture, the game logic is process in clients’ 

machine. It is very easy to falsify the game states by mean of some hacking tool. The 

fairness of virtual world is very hard to hold. Therefore, the peer-to-peer architecture 

is not suitable for MMOG. 

2.2.3. Client-Gateway-Server Architecture 

The Client-Gateway-Server architecture has been proposed and proven as an 

effective architecture for MMOG [4]. In this architecture, clients connect to the 



 7

MMOG through gateway. Then, a gateway is responsible for dispatching messages to 

the corresponding game server (see Figure 2-1). The benefit of this architecture is that 

the gateway can increase when we need to serve more players. Furthermore, the 

virtual world can also span to the servers. When the virtual world extends, we also 

can add more servers to the server cluster. Undoubtedly, we adopt the 

client-gateway-server architecture in the DOIT platform. In this architecture, we can 

achieve the scalability objective. 

Client

Client

Gateway

Client

Server

ServerGateway

 

Figure 2-1: Client-Gateway-Server Architecture 

2.3. Communication Protocol 

Servers and clients communicate with each other by means of some 

communication protocol. However, we may adopt different kind of communication 

protocol in different situation. We address two kind of protocol and compare their 

advantages and disadvantages. 

2.3.1. Message-based Protocol 

All data are encapsulated as messages in this kind of protocol. The protocol is 

defined as a list of message types. The game developers should define the message 



 8

format for each type. Messages can be text-format or binary-format. The protocol 

with text-format is easy to deal with and easy to debug, but the performance is 

relatively poor. On the contrary, binary-format protocol will gain more performance. 

In the DOIT platform, we select message-based binary-format protocol as our 

communication protocol. To choose message-based is because it is easy to extend and 

program. The asynchronous property of message-based protocol is also suitable for 

most game genre. Concerning the binary-format, the package size and computation 

overhead are not practical for high performance MMOG middleware. 

2.3.2. RPC-based Protocol 

Some games are designed with RPC-based protocol. They regard game objects 

as remote objects. The clients control these game objects in the manner of RPC-like 

call. The advantage is clients can control the game objects in a high-level view.  But 

it has poor performance and poor flexibility due to the synchronous programming 

model. In Wish Engine [5], they use RPC-based Protocol as their transmission 

protocol [6]. 

2.4. Related Works 

In fact, the research middleware platform has been evolved for two years in our 

lab (DCSLab of CIS NCTU). The first work is purposed last year by Lee[7]. In this 

work, he proposed a scalable MMOG platform. However, the easy-to-use and 

flexibility issue were not taken into consideration.  

There are some MMOG middleware products in the market. The first one is 

Terazona[1] by Zona Inc. Terazona use JMS[8] as their underlying communication 

facility. It also exploits multi-tier architecture to achieve scalibilty. The other one is 



 9

Butterfly.net[2]. Butterfly.net adopts the grid computing technology as their MMOG 

solution. They span the regions to multiple servers. They use IP Multcast to 

commucate between nodes. Besides, BigWorlds[9] and Wish Engine[5] are also the 

commercial MMOG middleware products in the market. 

As for the academic domain, there are few researches special for MMOG 

middleware. However, there are many researches relative to this domain. In [10, 11], 

they discuss the dynamic loading issues in dirtibuted vritual environment (DVE). In 

[10], they purpose a scalable load balancing scheme for a large-scale DVE system. In 

[11], they purpose an adaptive load balancing technique of global scope for solving 

the partition problem in DVE systems.  

In [12, 13], they discuss the relevance filtering issues in MMOGs. In [12], they 

present a relevance filtering scheme for a two-tier server architecture optimized for 

MMOGs. They distinguish between interest management of server tier game state and 

bandwidth adaptation of concentrator tier client link thresholds, making the 

concentrator tier totally application independent. In [13], they propose a completely 

distributed publish-subscribe system suporting a content-based publish-subscribe 

model of communication and performs distributed matching using a novel 

content-based routing protocol. 

As for the research of the Networked Virtual Environment (NVE), the book 

“Network Virtual Envirnments”[14] provides much information about this domain. 

There are many concepts of NVE valuable for the design of MMOGs. 



 10

Chapter 3 System Architecture 

Client

Client

Client

Gateway Server
 

Figure 3-1: System Architecture 

In DOIT platform, the client-gateway-server architecture is selected as our 

architecture. This section explains each component in our platform. It contains: Game 

Servers, Gateways, and Coordinator. The Figure 3-1 depicts the architecture. 

3.1. Game Servers 

Game Servers are the most important components in our platform. Game server 

passively accepts the Gateway connection for receiving messages from client and 

actively connects to Coordinator for participating in region migration. Note that there 

is no connection between each server when the system starts up, but one server may 

dynamically connect to another one on the process of region migration. 

A Game Server is capable of computing the game logic and keeps the game 

states. It receives messages from external (mostly sent from client), changes the states 

of virtual world, and then returns the update to the corresponding client and 



 11

component. The game logics are provided by game developers and deployed on Game 

Servers. 

Virtual world is divided into multiple regions. Every Game Server may contain 

zero to many regions and a region can’t span across more than one server. A region is 

the concept of a single virtual world. In the same region, the game logics share the 

same game context, the same game space. In addition, an avatar in a region may 

migrate to another region. The detail is taken up in chapter 4.4. For the load sharing 

purpose, a region in a Game Server may migrate to another Game server. The detail 

will be also discussed further in chapter 4.7. 

3.2. Gateways 

Gateways can be seen as the interface between MMOG platform and the internet. 

On the internal side, they actively connect to game servers; on the external side, they 

passively accept connections from clients. The major responsibility of a Gateways is 

to forward control message from client to the server and forward update messages 

from server to the client. Actually, a gateway does not simply forward messages but 

assembles messages as an internal form. The detail will be discussed further to 

chapter 4.2. 

We can also add some services on a gateway. For example, we can provide 

several kinds of protocol at the external interface. If a client is not under a firewall, he 

or she can communicate with server in UDP/IP in order to gain more efficient 

communication. On the contrast, for clients under a firewall, we provide TCP/IP as 

underlying protocol in order to pass through the firewall. Provided that a game 

demands high security, it can also expose SSL as its communication protocol. Another 

example is that a gateway can also provide hack protection mechanism. The most 



 12

famous hack technology is known as “acceleration program.” It makes sense to add 

the facility at a gateway to protect against this kind of game plugin. 

3.3. Coordinator 

Coordinator is the component that coordinates the process of region migration. It 

monitors the load of game servers and initiates the process of region migration. In the 

current implementation, coordinator is only a console application. The process of 

region migration can only be initiated by a human.  

3.4. Client 

The Client component is a component that player directly interact with. It 

provides graphics presentation of game environment and interaction interface, etc 

Keyboard, mouse, to interact with the game environment. The Client component 

connects to gateway to interact with virtual world. And the protocol is defined game 

by game. 

3.5. Other Components 

The components mentioned above are the core components in the DOIT platform. 

But for a commercial MMOG, these components are not sufficient yet. We 

recommend some components to collaborate with the DOIT platform. 

3.5.1. Proxy 

The Proxy component is a component that forwards messages between client and 

gateway. The difference between gateway and proxy is that a gateway will 



 13

assemble/dissemble messages but a proxy won’t. A proxy is not necessary in the 

whole architecture, but it is a good idea to deploy this component for each ISP in 

order to improve the communication quality from each ISP. 

3.5.2. Database 

Persistence is also an important part for a MMOG. But in our platform, we didn’t 

define any component about persistence. The reason is that there are many O/R 

mapping solution in the real world. It is unnecessary to reinvent the wheels. To 

integrate the persistence mechanism, we can design it as a game logic or a server 

plugin. 

3.5.3. Update Server 

Update server is the component that updates the latest version of client program 

before clients’ logging in the server. Web server is a good idea to implement an update 

server. We can provide a configuration file to indicate which version is the latest one 

and describe where the latest version client program locates at. The configuration file 

is put on a given URL. The client program retrieve the configuration file and compare 

the version with the configuration file version. If the version is old, get the latest 

version from the location specified in the configuration. If the client is written by java, 

Java Web Start technology is a good idea to facilitate the update mechanism. 



 14

Chapter 4 Implementation Details 

In this chapter, we begin to dive into the implementation details for developing a 

MMOG middleware. We make use of java as our programming language. We first 

introduce the underlying network and the basic message routing. Then, we will 

explain the channel state synchronization issue that we will face in client-gateway 

-server architecture. Next, we discuss the process of avatar migration and login issue. 

Furthermore, we will introduce the plugin framework in our Game Server and explain 

the process of region migration, which enable the game server cluster to share the 

load in the runtime. Finally, we talk over how to implement the NPC feature in the 

DOIT platform. 

4.1. Network Engine 

MMOGs communicate with clients in a game-specific protocol. Generally 

speaking, the protocol is defined as message-oriented, which consists of message type 

and payload. Thus, we also define a message-oriented facility called NetEngine. In 

this library, all data are wrapped as messages with two bytes for type, two bytes for 

payload length, and payload with the length specified before.  NetEngine abstract the 

implementation by mean of java interface. We can implement it by TCP, UDP, IP 

Multicast and so on. In current work, we only implement the TCP version, but we 

implement in two different models. First is event-driven model, by selector in java 

NIO. The other is threaded model. The reason is that for difference number of 

connection, the difference model gain better performance [16]. For example, we use 

event-driven model in the external interface of Gateway for the purpose that it 

demands to serve hundreds of client concurrently. The event-driven model is preferred 



 15

in this condition. Relatively, the game server use threaded model to gain more 

efficiency. 

4.2. Message Wrapping and Message Routing 

CTID LEN CUSTOM 0x01 LEN AVID CTID LEN CUSTOM

Gateway GameServer
Command Command

Update Update

Platform Specific

Custom

Platform Internal

CTID LEN CUSTOM CTID LEN CUSTOM

CTID LEN AVID CUSTOM CTID LEN AVID CUSTOM

(1)

(2)

(3)

Client

 

Figure 4-1: Message Wrapping 

The DOIT platform adopts the client-gateway-server architecture. The gateway 

should forward the message between Client and Server. However, there are some 

problems when directly forwarding messages from client and server. The first policy 

in Figure 4-1 depicts the circumstance of directly forwarding. The game server will 

receive a message without the information of which client the message is sent. 

Therefore, we may consider that we can add the client identifier (or avatar identifier) 

for each message (see (2) of Figure 4-1). But where is the identifier generated? It is 

impossible that the identifier is generated by the game logic because the middleware 

can not depend on the game-specific data. So the identifier is generated by 

middleware itself. But the platform internal information exposes to the client is also a 

bad design. Therefore, we finally decide that the gateway injects the avatarid into a 

message when forwarding it to server (see (3) of Figure 4-1). The avatarid is 

generated by gateway when a client connects in. Throughout the connection, the 



 16

avatarid is used to represent the client. So when a command is sent from client, the 

gateway will first wrap the message and forward to server. When a update is sent from 

server, the update message is a wrapped message with the avatarid. Then the gateway 

will unwrapped the message, retrieve the avatarid, forward the message to the 

corresponding client. 

As for routing message from client to server, the gateway should aware of the 

location of each server. In DOIT platform, however, an avatar may migrate from one 

region to another and a region may migrate from one server to another. Hence, when a 

message is forwarded to server, we perform two-level-mapping to find out the 

location the avatar resides. The first mapping is from avatarid to regionid. This table 

will be updated when a avatar is migrated. The second mapping is from regions to 

serverid. This table will be updated when a region migration is performed. Figure 4-2 

depicts the flow of message routing. 

ARTable RSTable

Client
Channels

Server
ChannelsGateway

 

Figure 4-2: Message Routing 

4.3. Channel State Synchronization 

In the client-gateway-server architecture, GameServer is aware of normal 

disconnection by a game-specific logout message, but GameServer is not aware of the 



 17

abnormal disconnection, such as link broken, crash, and so on. Therefore, we should 

synchronize the states between Gateway and GameServer. Thus, we implements a 

listener to listen the events of channel connected and channel disconnected of the 

external NetEngine in the gateway. When a channel is established, the gateway will 

send a AVACONN message to the server and when a channel is closed, the gaeway 

will send a AVADISC message to the server. In addition, the channel can be closed in 

the game logic, the server will send a AVACLOSE message to the gateway if a channel 

is closed by game logic. 

4.4. Avatar Migration 

Due to the virtual world is divided into multiple regions. An avatar may migrate 

from one region to another region dynamically. We call it Avatar Migration. To 

implement this feature, the following should be considered. First, what data should be 

moved to destination? Secondly, the gateway should be aware of this migration in 

order to let gateway dispatch messages to new region for the successive messages. 

Thirdly, we should consider the two conditions that source and target region in the 

same server and they are in the different servers. 

We use AVAMIG sent between gateways and servers. AVAMIG consists of 

avatarid indicating which avatar to migrate, source region id, target region id, and 

avatar data. We must note that the data are provided by developers himself through 

the API in the form of byte array. Figure 4-3 explains the condition that source and 

destination regions are in the same region. The game server migrate the avatar data to 

destination directly. In the meantime, it sends an AVAMIG to notify the gateway the 

update of avatar location. Figure 4-4 explains the condition that source and 

destination regions are in different server. The source game server sends an AVAMIG 



 18

to the gateway, and then the gateway forwards this message to the game server where 

the destination region resides. 

Region
Manager

Src region
1. migrate

2.2 migrate

2.1 AVAMIG
Dest region

Gateway

GameServer

 

Figure 4-3: Avatar Migration, source region and destination region are in the same server. 

Region
Manager

Src region
1. migrate

2. AVAMIG

Gateway

4. migrate Dest region

3. AVAMIG

GameServer

 

Figure 4-4: Avatar Migration, source region and destination are in different servers..   



 19

4.5. Login Issues 

?

Login region

Gateway

1. Connect

2. Login
4. Migrate/Dispatch

5. Migrate
6. Command 7. Command

3. Login Logic

Game Regions

 

Figure 4-5: Login Region 

Most MMOGs allow players to continue their adventure when they login. If one 

player was logout at the region A previously, the player should login at region A. It is 

not easy to implement in the MMOG middleware. The fact that which region the 

player logins is a kind of game logic. Therefore, our gateways never know which 

server the first message to route before a player login. 

To solve the question, we simply let developer to specify which region is login 

region. This region is responsible for processing the login logic, maybe query the 

database. Then, it migrates the avatar to the correct region. Thus, the login region can 

be considered as a kind of dispatcher. It processes the login logic and dispatches the 

avatar to correct region. The Figure 4-5 depicts the flow of login process. 

4.6. Plugin Framework 

In our sever implementation, we build up the server in a component-based 

architecture. We separate components into server scope components and region 

components scope. Besides, For the sake of flexibility, we allow developers to 



 20

provide their own plugin. The Figure 4-6 depicts the architecture. A server scope 

component, as the name implies, lives with the game server. It can be seen as a 

service on a server, such as timer, thread pool, and so on. A region scope component 

lives with the region. A region scope component always tightly couple with a region, 

such as NPC engine. There should be some dependencies between components. A 

region scope component can depend on a server scope component, but a server scope 

component can not depend on a region scope component. 

Game Server

M
essage

H
andlers

Listeners

Kernel

R
egion

Plugins

Server
Plugins

Game-Specific

Server-Scope

Region-Scope

 

Figure 4-6: Server Component-based Framework 

4.7. Region Migration 

In order to share the load between game server clusters, a region can migrate 

from one server to another dynamically. We call it Region Migration. Here come the 

problems: the way to collaborate between several components, the way to send 

migrating data, the data to migrate, the way to migrate game-specific objects, the way 

to migrate region scope plugin, and the way for region scope components to bind 



 21

server scope services. 

We use the component coordinator to coordinate the process of region migration. 

The migrating flow is explained in the Figure 4-7. When a coordinator broadcasts an 

RMINIT message to initiate a region migration, the destination sever opens a port and 

passively waits for the connection from source region. When the destination server is 

ready for accepting the socket from the source server, it sends RMREADY message to 

the coordinator. The coordinator forwards this message to source server. As source 

server receives this message, it connects to the destination and begins to send 

migration data as stream. As all data are sent successfully, the destination server sends 

the RMCOMPLETE to notify the completion of migration. Then the coordinator 

broadcasts this result to all participants. Otherwise, the RMFAIL message is sent to 

notify that some failure occurred when migrating.  

However, it is important to know what data are sent when migrating. First, the 

system data of region should be migrated. Secondly, the game specific data which is 

created and managed by developers’ code should be migrated. Thirdly, the region 

scope plugin should be migrated. The dependencies are crosscut between these 

objects. It will be a big problem to recover all the data and dependency in the new 

server. Fortunately, java serialization mechanism solves all these problems. Region in 

our system is designed as a Serializable capsule. The complex dependency can be 

serialized and restored to the origin form by mean of java serialization.  

The other issue is that the region scope components and plugin may depend on 

server scope components resided on server. Therefore, before a region’s migrating 

from a server, these region components should be unbind from server, as well as after 

a region’s migrating to a new server, they should bind to the new server. Thus, the 

base class of region scope component provide bind() and unbind() abstract 



 22

method. Through these callback methods, the component itself can handle the logic of 

bind and unbind logic. 

 

 

Figure 4-7: Region Migration 

4.8. NPC Support 

NPC is an abbreviation of Non Player Character. In most MMOG platform, 

NPCs reside in a special standalone component. It is a good idea to separate the game 

logic and AI logic, but it increases the communication overhead. In most cases, NPCs 

reside in only a region. It is more efficient to communicate between the game world if 

the NPC and virtual world in the same server. Thus, we tend to implement the NPC 



 23

feature on the game server. 

The NPC feature is designed as a region scope component. It makes use ofthe 

timer component, which is a server scope component, to wake up NPCs in a fixed rate. 

The NPC logic is divided into two parts: AI logic and game logic. The NPC 

component is response to collaborate between these two parts. The discussion of 

design detail is postponed to Chapter 5.2.5. 



 24

Chapter 5  

Design of Programming Interface 

In this chapter, we will shift the emphasis away from implementation of DOIT 

platform to use of it. In order to simplify the development, there are three layers of 

library introduced in this chapter. The first is the NetEngine library, which is the 

underlying network engine of DOIT platform. We also can make use of it at the 

client-side to communicate with DOIT platform. The second is the DOIT API. It 

provides the classes and interfaces to implement the game logic. The last one is the 

DOIT plugin framework. If we hope to extend the DOIT platform, we can customize 

a plugin and plug it onto the server. In the meantime, we will introduce how to 

develop a game application to the DOIT platform. 

5.1. NetEngine Library 

NetEngine is a message-oriented lightware service. Namely, all data are sent as a 

concept of message. The Figure 5-1 presents the whole picture of NetEngine library. 

The NetEngine class is the core façade class. We also start to introduce this library 

from this class.  

NetEngine can be used as client or server. To be a client, we call the connect() 

method with the specified address to open a connection. This method will return a 

Channel object. To be a server, we call the listen() method with the specified 

address. The NetEngine will listen to a specified port. It is necessary to register a 

listener implementing the interface ChannelListener. When a channel connects 

in, the NetEngine will call back the channelConnected() of 



 25

ChannelListener. In the same way, when a channel disconnects, the system will 

call back the channelDisconnected() of ChannelListener 

To send a message, we make use of send() method of Channel. This method 

should pass in an object implementing Message class. For each type of message, 

developers should define a class extending the Message class. It must override the 

encode() and decode() abstract methods. The system will call back these two 

methods in order to encode/decode the message data to/from byte buffers. In addition, 

we recommend that these message classes adhere the JavaBeans [17] convention, that 

is, if a class has a property named id, it should provides the setId() and getId() 

methods in this class. It will make it easier to get use of the message objects.  

 

Figure 5-1: Class diagram of NetEngine library 



 26

To receive a message, we should first register a message handler and a message 

factory for a given type of message. The factory should implement the 

MessageFactory class and overrides the createMessage() method. The 

handler should implement the MessageHandler class and overrides the 

onMessage() method. When a message comes, the NetEngine will first analyze the 

type of message from its header. Then it creates the message from the corresponding 

message factory and call the decode() method such that it can read the message 

from binary stream. Subsequently, it dispatches the message to the corresponding 

message handler. 

Channel is abstraction of connection. We can send a message by send() 

method. In addition, the channel can be seen as a session to the remote peer. We can 

store some attributes associating to this session. NetEngine supports two channel 

establishment methods: active connecting by connect method and passively listening 

by listen. And when a connection is established, we can get the connection handle 

Channel by ChannelListener. 

The following is some example to use NetEngine. 

Server-side Example: 

import java.net.InetSocketAddress; 

import mmog.net.*; 

import mmog.net.tcp.TCPNetEngine; 

//... 

NetEngine engine = new TCPNetEngine(); 

InetSocketAddress sockaddr = 

      new InetSocketAddress(13579); 

engine.register(MyMessage.TYPE, 

                  new MyMessageFactory(), 

                  new MyMessageHandler()); 

//... 

engine.listen(sockaddr); 



 27

Client-side Example: 

import java.net.InetSocketAddress; 

import mmog.net.*; 

import mmog.net.tcp.TCPNetEngine; 

//... 

NetEngine engine = new TCPNetEngine(); 

InetSocketAddress sockaddr = 

    new InetSocketAddress("localhost", 13579); 

engine.register(MyMessage.TYPE, 

                new MyMessageFactory(), 

                new MyMessageHandler()); 

Channel channel = engine.connect(sockaddr); 

MyMessage msg = new MyMessage(); 

channel.send(msg); 

//... 

5.2. DOIT API 

DOIT API provides all the classes and interfaces to develop a game on the DOIT 

platform. In this API, developers can totally develop the game in view of game 

without the complexity of networking, distributed system, and multi-thread issues. 

The DOIT API is somewhat similar to NetEngine because it also have the 

message-oriented property. But the DOIT API is specially designed for game 

development. It will provide some features aimed at game. The Figure 5-2 is the class 

diagram of the DOIT API. 

 



 28

 

Figure 5-2: Class diagram of the DOIT API 

5.2.1. Game Protocol and Game Logic 

Our platform inherits from NetEngine. So we define the game protocol in the 

same manner as using NetEngine library, that is, we should define a message class 

extending the Message class for each type of message. Similarly, we also need to 

provide a message factory for each message class. To write a game logic, we should 

provide a message handler extending GameMessageHandler for each type of 

message.  This design is inspired from Java Servlet API [18]. The developers should 

override the onMessage() method to handle the message. When a message comes, 

the system will call back the onMessage() method. It will pass in a 



 29

GameMessageInfo object. From this object, we can get the message, message type, 

and game object channel. In particular, the game object channel represents the source 

of the message to be handled. 

The game object channel which is an instance of GameObjChannel class is 

the similar concept of Channel in NetEngine library. The difference is that the game 

object channel represents the channel to communicate a game object. In the current 

version of DOIT API, we provide two kind of GameObjChannel. They are 

AvatarChannel and NPCChannel respectively. As the name implied, the 

AvatarChannel is a channel to an avatar. We can send a message to a client 

indirectly through this class. As for the NPCChannel, it is a channel to a NPC, we 

can send a message to the NPC bot thought this class.  

A game object channel can associate with a game object which extends the 

GameObject class. The GameObject class is the base class of all game objects. 

That is, developers can customize a game object by extending the GameObject 

class. The GameObjChannel delegate some methods call to his associating game 

object. They include getX(), getY(), and status() these three methods. 

Certainly, the getX() and getY() are the accessor methods to get the location 

information. As for the status() method, it return a Message instance according to 

its current state. They will be useful for GameSpace and GameSpaceUtil class. 

Therefore, we can conclude the basic flow to design a game. 

1. Defines the game protocol. 

2. Define the message classes and corresponding message factory classes. 

3. Define the game objects. 

4. Implements the message handlers. 



 30

5.2.2. GameContext and GameSpace 

In GameMessageHandler, we can receive a message for a given type, 

process message, and send updates back to the game object channel. But it is only 

possible to send updates to original game objects. We need more functionality to deal 

with game objects. In this subsection, we introduce the two classes, GameContext 

and GameSpace. 

 

Figure 5-3: GameContext 

GameContext represents the context of the game. The concept is similar to 

ServletContext in the Servet API. But the game context only associates with the 

current region. We can store and retrieve attributes to and form the context. Besides, 

we can also obtain some information of the game. The GameContext instance can 

be obtained from the init() method of MessageHandler, 

AvatarChannelListner, and AvatarMigrationListener. The Figure 5-3 

is the class information of GameContext. 



 31

 

Figure 5-4: GameSpace 

GameSpace can be seen as a data structure of the virtual worlds. We can add, 

remove, move, and find game objects from the GameSpace. The element type of 

GameSpace is GameObjChannel. Before adding a GameObjChannel to a 

GameSpace, we should first associate it with a game object. It is because 

GameSpace set and retrieve the location information from setX()/getX() and 

setY()/getY() methods of GameObjChannel. These methods delegate the 

implementation to the same methods of GameObject associated by the 

GameObjChannel. Therefore, the GameSpace prohibit a GameObjChannel 

without GameObject from added to it. The size of GameSpace is specified in the 

game descriptor (see chapter 5.3). The GameSpace instance can be obtained from 

the GameContext. 

GameSpaceUtil is a class let us use GameSpace more conveniently. We 

usually need to send a message to surroundings of a game object. We can call the 

sendMsgToSurroundings() method. It will get the GameObjChannels from 

the given range and send the message respectively. Likewise, if we need to receive 

updates from surroundings, we can call the recvUpdtFromSurroundings() 



 32

method. It will get the GameObjChannels from the given range, get the updates 

from status()method of GameObjChannels, and send them to the given 

channel. 

5.2.3. AvatarChannelListener 

We can have greater control over the lifecycle of avatar by means of 

AvatarChannelListener. A listener implementing 

AvatarChannelListener can receive the events when an avatar connect or 

disconnect. Even though the client disconnected abnormally, the disconnect event also 

raise correctly. 

5.2.4. Avatar Migration 

In DOIT API, we use migrate() method of AvatarChannel to migrate a 

avatar to another. In this method, we should specify the region to migrate, the location, 

and the migration data. The migration data is type of byte array. We can put arbitrary 

data in it. Besides, the developers may implement the interface 

AvatarMigrationListener to get the event about some avatars’ migration.  

5.2.5. NPC 

NPC (Non Player Character) is also supported in DOIT Platform. In our design, 

we separate the game logic and AI logic into two parts, NPCBot and 

GameMessageHandler respectively. They communicate with each other by means 

of sending messages. The game server is responsible for relaying messages between 

them (see Figure 5-5). The advantage is that we can process game logic in the same 

way as processing game logic of avatars. Moreover, it prevents codes of different 



 33

purpose from mixing together. To write NPC AI, we should write a class 

implementing NPCBots. There are three method should be overridden, onInit(), 

onUpdate(), onTimer(). onInit() is called when a NPC is created. 

onUpdate() is called when a message comes. The message is sent from his 

corresponding NPCChannel. onTimer() is called periodically by GameServer. The 

timer interval is defined in the description file. 

NPCBot GameMessage
HandlerGameServer

1. command 2. onMessage()

3. update4. onUpdate()

NPC AI NPC Logic  

Figure 5-5: NPC 

5.2.6. Mapping the features to the API 

In Chapter 4, we explained the features of the DOIT platform. It is interesting to 

map these to the API. Table 5-1 lists the features mapping to the API. We can found 

that the underlying complexity is totally hidden under the easy API.  

Features Related API Notes 

Customized 

Protocol 

Extends Message, 

Extends 

MessageFactory

Use encode() and decode() callback 

methods to turn underlying protocol to object 

form, and vice versa 

Customized 

game objects 

Extends 

GameObject 

GameObject implements 

java.io.Serializable 

Game Logic Extends 

MessageHandler

Overrides onMessage() method to handle 

message. 



 34

Channel Event 

Forwarding 

Implements 

AvatarChannelL

istener 

Overrides avatarConnect()/ 

avatarDisconnected()  

Avatar 

Migration 

Implements 

AvatarMigratio

nListener, Uses 

AvatarChannel.

migrate() 

Overrides avatarMigrateIn()/ 

avatarMigrateOut() 

Region 

Migration 

Transparent  

NPC Support extends NPCBot, 

Use NPCChannel 

Overrides onInit()/ onTimeout()/ 

onUpdate() 

Virtual World Uses GameSpace Provides add()/remove()/ find()/move() 

methods 

Game Context Uses 

GameContext 

Provides put/get attributes 

Table 5-1: API for our MMOG Middleware 

5.3. Game Deployment 

All the game logic run on the DOIT platform, so we must deploy them onto the 

DOIT platform. All game logics are wrapped as a game application. It should put at 

the “game” directory in the DOIT platform. In this directory, we put the classes in the 

“classes” subdirectory, and we put all the libraries in the “libs” subdirectory. Besides, 

there are two files necessary in the game application: mmog.xml and 

vwlogic.proerties. In mmog.xml, it describes which components are in the game 



 35

platform and which regions are in the virtual world and the initial assignment of 

regions. The Figure 5-6 is an example. For the sake of simplicity, we don’t describe it 

in detail. 

<?xml version="1.0"?> 

<!DOCTYPE mmog SYSTEM "mmog.dtd"> 

<mmog> 

    <components> 

        <server name="server1" host="localhost" port="8765"/> 

        <server name="server2" host="localhost" port="8764"/> 

        <gateway name="gateway1" host="localhost" port="5678"/> 

        <gateway name="gateway2" host="localhost" port="5679"/> 

        <coordinator host="localhost" port="8778"/> 

    </components> 

    <maps> 

        <map name="map0"> 

            <region name="regionlogin" x1="0" y1="0" x2="0" y2="0" 

login="true"/> 

        </map> 

        <map name="map1"> 

            <region name="region1" x1="0" y1="0" x2="100" y2="100"/> 

            <region name="region2" x1="100" y1="0" x2="200" y2="100"/>

            <region name="region3" x1="0" y1="100" x2="100" y2="200"/>

            <region name="region4" x1="100" y1="100" x2="200" y2="200"/>

        </map> 

    </maps> 

    <assignments> 

        <assignment region-ref="regionlogin" server-ref="server1" /> 

        <assignment region-ref="region1" server-ref="server1" /> 

        <assignment region-ref="region2" server-ref="server1" /> 

        <assignment region-ref="region3" server-ref="server2" /> 

        <assignment region-ref="region4" server-ref="server2" /> 

    </assignments> 

</mmog> 

Figure 5-6: mmog.xml 

Concerning the vwlogic.properties, it lists the classes of game logics, including 



 36

GameMessageHandler, MessageFactory, AvatarChannelListener, and 

AvatarMigrationListener. Especially, the GameMessageHandler and MessageFactory 

must associate with a message type. The Figure 5-7 is a simple example of 

vwlogic.properties 

# 1=MessageFactory 

# 2=MessageHandler 

# 3=AvatarChannelListener 

# 5=AvatarMigrationListener 

1=cis.game.common.message.LoginMessageFactory/0x01 

2=cis.game.server.handler.LoginMessageHandler/0x01 

1=cis.game.common.message.MoveMessageFactory/0x03 

2=cis.game.server.handler.MoveMessageHandler/0x03 

1=cis.game.common.message.NpcBornMessageFactory/0x06 

2=cis.game.server.handler.NpcBornMessageHandler/0x06 

1=cis.game.common.message.LogoutMessageFactory/0xFF 

2=cis.game.server.handler.LogoutMessageHandler/0xFF 

3=cis.game.server.listener.MyAvatarListener/0x00 

5=cis.game.server.listener.MyMigrationListener/0x00 

Figure 5-7: vwlogic.properties 

Optionly, we may provide the npc.properties if we want to provide NPCs in our 

game. In this file, we must specify the NPCBot classes of NPCs, the number of NPCs 

for a given type of NPC in a given region. The Figure 5-8 is a simple example of 

npc.properties 

mmog.npc.bot.good=cis.game.server.npc.GoodNPCBot 

mmog.npc.bot.bad=cis.game.server.npc.BadNPCBot 

mmog.npc.region.region1=good,100 

mmog.npc.region.region1=bad,50 

mmog.npc.region.region2=good,50 

mmog.npc.region.region2=bad,100 

Figure 5-8: npc.properties 



 37

5.4. Plugins Framework 

In DOIT platform, we can plug service components to extend the functionality. 

As mention in Chapter 4.6，plugins are divided server scope plugins and region scope 

plugins. To write a server scope plugin, we should write a class extending 

mmog.server.ServerScopePlugin. When the server starts up, the server will 

call back the init() method of ServerScopePlugin. The system will pass in the 

ServerContext and plugin initial parameters to this method. In 

ServerContext, we can get the information of server and look up other server 

components in this server.  

As for designing a region scope plugin, we should provide a class extending 

mmog.server.RegionScopePlugin. Similarly, when a region is initiated, the 

server will call back the init() method of RegionScopePlugin. The difference 

is that there is no RegionContext parameter passed in the init() method of 

RegionScopePlugin. It will be postponed to bind() method. Region scope 

plugins live with a region. When a region is bound to a server, all the region scope 

plugins in this region will have the bind() called. Relatively, when a region is 

unbound from a server, all the region scope plugins in this region will have the 

unbound called. It must be noted that init() is only called once throughout the 

lifecycle of game platform, and however, bind()/unbind() is called once 

whenever a region is migrated in/out. Moreover, region scope plugins should 

implement java.io.Serializable. Because region scope plugins migrate 

accompany with regions, the plugin should be the serialization form. Note to add the 

transient keyword to the field which is not able to serialize. We can restore this field 

in the bind() method. 



 38

A plugin should be pack as a jar file and put in the “plugins” directory of DOIT 

platform. For each plugin, we should provide a plugin definition file. In this file, we 

can define the type classname of plugin, plugin type, plugin initial parameters. The 

Figure 5-9 is an example of plugin definition file. 

# MyPlugin.properties 

# put plugins config here 

mmog.plugin.server.test = hello.MyPlugin 

mmog.plugin.server.test.foo = bar 

mmog.plugin.server.test.foo2 = bar2 

Figure 5-9: MyPlugin.properties 



 39

Chapter 6 Experiment and Evaluation 

We start to evaluate our platform in this chapter. To evaluate the performance of 

our platform, we experimented in three rounds. In the first round, we hope to realize 

the performance of the NetEngine. We implement a simple echo server by using 

NetEngine. In the second round, in the same way, we implement a simple echo server. 

The difference is that the echo server is implemented with client-gateway-server 

architecture. We provide a simple EchoMessageHandler and deploy it on our platform. 

The purpose is that we hope to know the performance baseline of our game platform. 

In the last round, we simulate the real online game. We implement the most 

significant game logic, login and move. Besides, the virtual world is divided into four 

regions. So an avatar may migrate from one region to another. Through this 

experiment, we hope to observer the performance of the real game.  

6.1. Round 1: NetEngine Performance 

In the first round, we tried to find out the limit of the NetEngine.  

6.1.1. Hardware Configuration 

For the hardware configuration, we use one machine as the server and 10 

machines as clients. The Table 6-1 describes the detail configuration. 

Usage Number Configuration 

Server 1 P4 2.4GHz CPU with 1MB ram 

Client 10 P4 1.6~2.4GHz CPU with 512MB ram 

Table 6-1: Hardware configuration of round 1 



 40

6.1.2. Software Configuration 

ServerClient
Client

Client
 

Figure 6-1: Communication architecture of round 1 

In order to perform stress test, we designed a virtual client generator program to 

simulate multiple players in a single machine. We run this program in 10 machines 

simultaneously, and we increased the number of clients by 50 for each run each 

machine. Namely, the number of client is increased by 500 for each run. We totally 

test 8 runs, and the client number scale from 500 to 4000. Each client sent one 

message per second and lasted for 10 minutes. Clients and the server run on the same 

LAN and they are connected with 100 Mbit Ethernet (see Figure 6-1). 

The server performed simple echo action. Such that, when the server was 

received a message, it simply sent back this message to client. The echo message 

contains a 4-bytes serial number field, which is used to identify which message is sent 

back. For each test, we run for 10 minutes and use the data in the medium 8 minutes 

as the effective data. We analyzed the log data and evaluated the average response 

time and standard deviation for each test. 



 41

6.1.3. Experiment Result 

Client number 
Average Response 

Time 
Standard Deviation 

500 0.3 3 

1000 0.99 5 

1500 2.68 17 

2000 4.06 26 

2500 9.34 75 

3000 7.75 30 

3500 24.9 84 

4000 55.11 534 

Table 6-2: Experiment result of round 1 

Round1

0

100

200

300

400

500

0 1000 2000 3000 4000

Client Number

re
sp

on
se

 ti
m

e 
(m

s)

Avg.

SD

 

Figure 6-2: Experiment result of round1 

6.1.4. Evaluation 

Through this experiment result, we discovered that it got excellent performance 

under 3000 clients concurrently. The average response time is less than 10 ms and the 



 42

standard deviation is less than 75ms. This performance is very ideal for a game 

environment. When the client number reaches to 4000, the average response time is 

also less than 100 ms, but the deviation is more than 500 ms. It begins to have 

unstable behavior.  

6.2. Round 2: Perfomance baseline of DOIT Platforrm 

In our platform, we adopt the client-gateway-server architecture. It is desirable to 

realize the performance baseline under this architecture. In this round, we also use the 

simple echo program to experiment with the performance baseline of 

client-gateway-server architecture. 

6.2.1. Hardware Configuration 

In this round, we prepared one more machine to run as a gateway. This machine 

has the same configuration as the server.  

Usage Number Configuration 

Server 1 P4 2.4GHz CPU with 1MB ram 

Gateway 1 P4 2.4GHz CPU with 1MB ram 

Table 6-3: Hardware configuration. of round 2 



 43

6.2.2. Software Configuration 

Server
Client

Client
Client

Gateway

140.113.88.* 192.168.1.*

 

Figure 6-3: Communication architecture of round 2 

Similarly, we designed a client generator program to perform stress test. The 

client number also scaled from 500 to 4000 between 8 runs. The most different point 

is that the test environment was separated into 2 LAN. Clients connected to the 

gateway in a subnet and the gateway connected to server in another one (see Figure 

6-3). Therefore, the traffic from client to gateways didn’t inference the one between 

the gateway and the server. 

Concerning the test program, we designed an echo server as well. The difference 

is that the echo semantic was implemented as a game logic and we deployed it to the 

game platform. So this program can be considered as the simplest game and the 

performance can be considered as the performance baseline. Similarly, there were 8 

runs and each run lasted for ten minutes. 



 44

6.2.3. Experiment Result 

Client number 
Average Response 

Time 
Standard Deviation 

500 17.87 43.13 

1000 13.09 27.20 

1500 12.18 30.28 

2000 18.27 34.21 

2500 17.83 37.63 

3000 20.17 45.72 

3500 27.66 121.29 

4000 33.22 135.09 

Table 6-4: Experiment result of round 2 

Round2

0

100

200

300

400

500

0 1000 2000 3000 4000

Client Number

R
es

po
in

se
 t

im
e 

(m
s) Avg.

SD

 

Figure 6-4: Experiment result of round 2 



 45

6.2.4. Evaluation 

We observe that the result was very similar to the result of round 1. Although the 

average response was slightly larger than that of round 1, it was also less than 100 

even if the client number reached to 4000. The standard deviation also had the level 

near 100 ms. It is interesting to note that the average response time in 500 clients was 

higher than that in 1000 clients. The reason could be caused that it fully exploited the 

benefit of message aggregation in test of 1000 clients such that it got the better 

performance than that in 500 clients. The similar result also appeared in round 3. 

6.3. Round 3: Simulate a Real Game 

In the last round, we tried to simulate the real game environment and observed 

the performance.  

6.3.1. Hardware Configuration 

We used two computers for servers, two for gateways, ten for clients. The detail 

configuration is list as follow. 

Usage Number Configuration 

Server 2 P4 2.4GHz CPU with 1MB ram 

Gateway 2 P4 2.4GHz CPU with 1MB ram 

Client 10 P4 1.6~2.4GHz CPU with 512MB ram 

Table 6-5: Hardware Configuration of round 3 



 46

6.3.2. Software Configuration 

AOI

AOI

 

Figure 6-5: The move logic 

To simulate the real game world, we implemented the most significant game 

logic, avatar movement, in the test program. However, the different implementation of 

the move logic will affect the result obviously. So we should make more effort to 

describe the implementation detail of move logic. We should first define the term AOI 

(Area of Interest) as the area in which all events are interesting to a given game object. 

This game object is interested in all the game objects in AOI. Then, we explain the 

move logic by mean of the Figure 6-5. Assume that one avatar moves right, as the 

figure indicates, we should send the player update message to all the game objects 

inside the AOI and the region of the oblique line. This is because the game objects in 

the AOI of new location should be interested in the new state of this avatar. The game 

objects in the leftmost of the AOI of the old location should receive the player update 

to indicate that this avatar was move out of their AOI. In addition to send updates to 

the surrounding objects, the avatar also needs to extend his eye sight. So the states of 

the game objects in the oblique line area should also be sent back to avatar.  

 



 47

ServerClient Gateway

Gateway Server

ClientClientClientClient

ClientClientClientClientClient

140.113.88.* 192.168.1.*

 

Figure 6-6: Communication architecture of round 3 

The Figure 6-6 depicts the communication architecture of this round. The virtual 

world was divided into 4 equal size regions plus a login region. They were deployed 

to 2 game servers. In addition, we provided two gateways for clients to connect in. 

Similarly, we put the two servers in the private network. The gateway was responsible 

for routing messages between internal and external network. Due to multiple regions, 

it is possible that one avatar will migrate from one region to another, the avatar 

migration also be implemented in this round. 

Concerning the test program, there were also 10 machines running the client 

generator program. We separated them into two groups. Machines in the same group 

connected to the same gateway. There were 8 runs in this round. The number of 

clients is increase with the number of 50 in each client generator program. Therefore, 

the gateway had 2000 clients connected concurrent at most, and the game platform 

had 4000 clients in the virtual world concurrently. Furthermore, we performed 

different tests for different map size and AOI size. The map had 500 x 500 and 1000 x 

1000 two different sizes, and AOI had 9 x 9 and 16 x 16 two different sizes. We hope 

to realize the performance in different environment. Besides, in each test, we pick the 



 48

updates with avatar migration to do further analysis. 

6.3.3. Experiment Result 

Average Response Time - Total 

 

500x500  

9x9 

1000x1000 

9x9 

500x500 

16x16 

1000x1000 

16x16 

500 20.13 18.69 19.84 24.79 

1000 20.85 19.43 24.08 17.05 

1500 25.24 15.23 24.83 17.88 

2000 20.94 12.18 31.29 15.90 

2500 19.37 13.28 50.89 29.08 

3000 26.12 18.36 235.71 20.84 

3500 63.09 19.69 489.58 43.57 

4000 124.69 25.51 4186.74 52.19 

Table 6-6: Average Response Time – Total 

Average Response Time - Total

0.00

100.00

200.00

300.00

400.00

500.00

0 1000 2000 3000 4000

Client Number

R
es

po
ns

e 
T

im
e 

(m
s)

500x500

9x9

1000x1000

9x9

500x500

16x16

1000x1000

16x16

 

Figure 6-7: Average response time – total 



 49

Standard Deviation - Total 

 

500x500 

9x9 

1000x1000 

9x9 

500x500 

16x16 

1000x1000 

16x16 

500 53.43 45.44 52.06 60.26 

1000 54.95 38.69 55.53 40.60 

1500 59.73 39.51 57.73 52.84 

2000 52.91 32.74 73.60 39.06 

2500 52.19 35.50 175.10 54.50 

3000 73.72 42.80 829.66 155.52 

3500 269.75 51.34 1013.89 136.74 

4000 586.98 97.16 5709.61 245.59 

Table 6-7: standard deviation – total 

 

Standard Deviation - Total

0.00

100.00

200.00

300.00

400.00

500.00

0 1000 2000 3000 4000

Client Number

R
es

po
ns

e 
T

im
e 

(m
s)

500x500

9x9

1000x1000

9x9

500x500

16x16

1000x1000

16x16

 

Figure 6-8: Standard deviation total 

 

 



 50

Average Response Time - Migration 

 

500x500 

9x9 

1000x1000 

9x9 

500x500 

16x16 

1000x1000 

16x16 

500 43.79 27.55 35.55 47.49 

1000 30.00 31.34 39.34 32.82 

1500 29.34 26.70 41.59 23.08 

2000 33.21 20.91 40.01 32.29 

2500 27.16 22.70 74.58 39.25 

3000 36.44 30.84 200.78 30.26 

3500 71.17 27.21 623.84 58.70 

4000 115.99 32.11 5184.81 62.83 

Table 6-8: Average response time – migration 

 

 

Average Response Time - Avatar Migration

0.00

100.00

200.00

300.00

400.00

500.00

0 1000 2000 3000 4000

Client Number

R
es

po
ns

e 
T

im
e 

(m
s) 500x500

9x9
1000x1000

9x9
500x500

16x16
1000x1000

16x16

 

Figure 6-9: Average response time – migration 

 



 51

 

Standard Deviation - Migration 

 

500x500 

9x9 

1000x1000 

9x9 

500x500 

16x16 

1000x1000 

16x16 

500 74.11 46.75 68.77 85.84 

1000 58.26 52.23 70.18 61.07 

1500 58.67 52.20 79.08 53.59 

2000 65.85 54.53 78.22 62.56 

2500 58.61 46.79 378.09 62.41 

3000 74.18 58.76 911.63 100.19 

3500 194.15 51.05 916.62 144.49 

4000 479.83 92.61 6277.19 211.02 

Table 6-9: Standard Deviation – Migration 

 

 

Standard Deviation - Avatar Migration

0.00

100.00

200.00

300.00

400.00

500.00

0 1000 2000 3000 4000

Client Number

R
es

po
ns

e 
T

im
e 

(m
s)

500x500

9x9

1000x1000

9x9

500x500

16x16

1000x1000

16x16

 

Figure 6-10: Standard Deviation – Migration 



 52

 500x500 9x9 1000x1000 9x9 500x500 16x16 1000x1000 16x16

 Gateway Server Gateway Server Gateway Server Gateway Server 

500 6 2 2 2 2 2 5 2 

1000 24 3 12 2 6 5 11 4 

1500 32 9 17 3 10 5 22 6 

2000 36 9 24 9 22 11 25 9 

2500 40 10 38 10 50 14 43 10 

3000 78 10 58 10 90 18 66 17 

3500 95 15 86 13 98 25 88 25 

4000 98 36 89 17 100 33 90 28 

Table 6-10: CPU load 

500x500 9x9 1000x1000 9x9 500x500 16x16 1000x1000 16x16

T
otal C

lients 

G
atew

ay C
lients 

P
rediction 

A
ctual 

P
rediction 

A
ctual 

P
rediction 

A
ctual 

P
rediction 

A
ctual 

500 250 300 330 262.5 275 378 397 282 298 

1000 500 700 925 550 578 1012 1128 628 670 

1500 750 1200 1691 862.5 906 1902 2086 1038 1076 

2000 1000 1800 1962 1200 1256 3048 3350 1512 1644 

2500 1250 2500 2817 1562.5 1655 4450 4853 2050 2182 

3000 1500 3300 3663 1950 2070 6108 6415 2652 2822 

3500 1750 4200 4679 2362.5 2540 8022 7849 3318 3538 

4000 2000 5200 5782 2800 3018 10192 10826 4048 4312 

Table 6-11: The amount of commands forwarded per second in a gateway 

  500x500 9x9 1000x1000 9x9 500x500 16x16 1000x1000 16x16 

500 580 525 647 548 

1000 1425 1078 1628 1170 

1500 2441 1656 2836 1826 

2000 2962 2256 4350 2644 

2500 4067 2905 6103 3432 

3000 5163 3570 7915 4322 

3500 6429 4290 9599 5288 

4000 7782 5018 12826 6312 

Table 6-12: The total amount of messages forwarded per second in a gateway 



 53

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000

500x500 9x9

1000x1000 9x9

500x500 16x16

1000x1000 16x16

 

Figure 6-11: The total amount of messages forwarded per second in a gateway 

6.3.4. Evaluation 

In Figure 6-7 and Figure 6-8 we can observe that different map size and different 

AOI size will lead to obviously different result. In all the tests, we find that the data of 

map size 500 x 500 and AOI 16 x 16 got the worst result. We think that the result can 

be expected because it have the largest density in this configuration. In this 

configuration, the average response time grows steadily under 2500 clients 

concurrently. But it starts to have dramatic growth after 2500 clients. Concerning the 

two configuration of 1000 x 1000, 16 x 16 and 500 x 500, 9 x 9, there is no obvious 

growth until the client number reaches to 3500 clients. But the amount of growth is 

steady and slow. Concerning the configuration of 1000 x 1000, 9 x 9, the average 

responses time is almost under good result throughout the test. 

If we observe the percentage of CPU usage in Table 6-10, we can find that the 

performance bottleneck is on the gateway. The CPU usage is always under 50% in the 

servers. We take a future look. We recorded the update sent per second in the gateway 



 54

at the Table 6-11. We consider it have tight relation to the performance. The main 

game logic is move message. According to the move game logic described above, the 

number of update messages should be a function of total clients, map size, aoi size, 

and clients in the gateway. We first consider how many update messages are sent 

when one move message is process. First of all, the update message should be sent 

back to the avatar himself. Furthermore, the updates from surroundings and updates to 

surroundings can totally seem as function of the avatar in his AOI. It can calculate by 

aoi
map
ntotal ×

, where totaln  is the total client number and map and aoi are map size and 

AOI size respectively. So a move message can cause 
)1( +× aoi

map
ntotal

 update 

messages. Finally, the client sent one move message per second. So the updates per 

second can be described as the following formula  

gat
total naoi

map
n

update ×+×= )1( , where ngat is the number of clients on a gateway 

More concisely, we use d as the number of game objects in an aoi, then the updates 

per second is described as following 

gatndupdate ×+= )1( , where aoi
map
n

d total ×=  

and the total messages the gateways processed is 

 gatgategate ndndnupdatecommandtotal ×+=×++=+= )2()1(  

Therefore, we calculate the prediction number of update messages processed by 

gateway according the last formula and list it in the “Prediction” column for each 

configuration in Table 6-11. The prediction data is very close to the actual data. The 

actual data is slightly more than prediction data. The reason could be that there were 

some avatar migrations occurred and the avatar migration may cause much more 

updates. Finally, we calculate the total messages per second processed by a gateway 



 55

by the given update messages per second plus the command message sent by clients. 

The result is listed in Table 6-12 and depicted in Figure 6-11. According the result we 

get above and map it to this diagram, we can find that a gateway can bear 5000~6000 

messages per second. 

Finally, we observe the impact of avatar migration in Figure 6-9 and Figure 6-10. 

The trend of updates of avatar migration is very similar to the general message 

updates. The average response time is 1.5 times larger than general message. But it is 

acceptable because the avatar migration does not happens often.  

6.4. Summary 

To evaluate our platform, we use three rounds to experiment our platform. In the 

first round, we hope to realize the performance of underlying NetEngine. Until the 

client numbers reach to 4000, the average response time also have the level of less 

than 100 ms. But there is steep rise of standard deviation when the client number 

reach to 4000. In the second round, we try to find the performance baseline of 

client-gateway-architecture. The result is very similar to round 1 expect that the 

average response time is slightly larger than that of round1. So the 

client-gateway-server architecture doesn’t downgrade the performance very much. In 

round 3, we simulate the real game world. We implement the most significant game 

logic, avatar movement, in our experiment platform. We found that the performance 

bottleneck lay on the gateways. Furthermore, we observed the amount of update 

messages forwarded by gateway. We construct a formula to calculate the number of 

updates for one command. The result is that the gateway can bear about 5000~6000 

messages per second. 



 56

Chapter 7 

Future Works and Conclusions 

7.1. Conclusions 

To craft a MMOG middleware is not an easy job. In this paper, we figured out 

the issues we may encounter when designing an MMOG middleware. We discuss 

them in four criteria: scalability, flexibility, easy-to-use, and high performance. 

In scalability, we use client-gateway-server architecture to scale up the platform. 

In view of real world, we can scale up the number of clients connected by way of 

multiple gateways. In view of virtual world, we can scale up the number of game 

objects by way of spanning regions over the server cluster. 

In flexibility, we reserve as few footprints as possible for the protocol. We also 

reserve the most resilience of game objects for developer. In addition, developer can 

extend the platform by designing their own plugin. There are also some flexibility 

concerns in designing the feature of Avatar Migration and Region Migration. We 

always hope the data can be migrated successfully as well as the data format is as 

flexible as possible. Furthermore, we use the Login Region pattern to overcome the 

login problem. 

In easy-to-use, we simplify the underlying complexity of MMOGs by clean and 

thread safe API. We provide three layer of API: NetEngine library, DOIT API, plugin 

framework. Using DOIT API, game developer can develop a MMOG rapidly. We also 

suggest a easy way to send updates and receive update from an game object (by 

means of GameSpace and GameSpaceUtil). We also purpose a way to separate 



 57

the AI logic and game logic when designing the logic of NPC. 

In high performance, we use an abstract NetEngine library, and different 

threading model for different demand. We deploy the event-driven NetEngine at the 

external interface of gateway for serving numerous clients concurrently while 

deploying the threaded NetEngine at the internal interface of gateway for exploiting 

the message aggregation feature to gain better performance. We also provided 3 

experiments on our platform. We found, in some configuration, it got good 

performance when there are 4000 players on the same virtual world concurrently with 

2 gateways and 2 servers. The bottleneck lay on the gateway component. It can hold 

5000 messages per second with acceptable response time. We also can add more 

gateways in this platform if we need better service quality and quantity. 

7.2. Future Works 

In the current work, we focused on the scalable, flexible, high performance and 

easy-to-use issues. However, there are still plenty of issues should be taken into 

consideration. 

Failover mechanism is absent in the current work. We hope that if a game server 

is done, we can recover the game states and continue to serve the clients. We may 

make use of the Serializable Capsule mechanism in Region Migration. We serialize 

the region state to the persistence store instead of another game server. 

Cheating prevention is another place that has not been taken into consideration in 

the current work. The cheating prevention can be implemented as a gateway plugin. 

We may allow the game developers to monitor and the incoming command messages 

and filter out the illegal message. Besides, we may provide the SSL version of 



 58

NetEngine in order to meet the requirement for high demand of online game, such as 

online shopping mall. 

We also hope to provide a script language framework for game developers for 

writing game logics. There are some good script language implementation for java 

platform, like Jython and Groovy. We may provide a scripting framework on top of 

the DOIT API.  

Furthermore, the easy-to-manage is also important for MMOG middlewares. The 

components are distributed over plenty of machines. It is desirable to have a centralize 

management console. In fact, we have made efforts on this feature. We adopt the 

JMX[19] and JMX Remote technology. 

The last one is the location-free communication. In the current work, it is easy to 

implement the feature that the avatars talk to others around him. However, we didn’t 

provide the mechanism to communicate with a group located around the future world 

in the current work. We hope to provide this kind of location-free communication in 

our framework. Maybe the JMS[8] is a good choice to implement this feature. 



 59

Bibliography 

[1] Zona Inc., http://www.zona.net/ 

[2] Butterfly.net, http://www.butterfly.net/ 

[3] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, Emmanuel Agu. The 

Effect of Latency on User Performance in Warcraft III. In Proceedings of ACM 

NetGames at Electronic Arts Headquarters Redwood City, California, USA 

May 22-23, 2003. 

[4] M. Mauve, S. Fischer, J. Widmer. A generic proxy system for networked 

computer games, In Proceedings of ACM NETGAMES ’02, pp.25-28. 

[5] Wish Engine, http://www.mutablerealms.com/ 

[6] Massively Multiplayer Middleware , 

http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=1

15 

[7] Xuan-Feng Lee, Tsun-Yu Hsiao, Shyan-Ming Yuan. A Scalable Middleware 

Architecture for Supporting Massive Multiplayer Virtual Worlds. In Proceeding 

of Symposium on Digital Life and Internet Technologies 2003. 

[8] Sun Microsystems Inc. Java Message Service,  

http://java.sun.com/products/jms/ 

[9] BigWorld Technology, http://www.bigworldgames.com/ 

[10] K. Lee and D. Lee. A Scalable Load Balancing Scheme for Large-Scale 

Multi-Server Distributed Virtual Environment Systems. In Proceedings of ACM 

Symposium on Virtual Reality Software and Technology (VRST2003), Osaka, 

Japan, 1-3 October 2003. 

[11] P. Morillo, J.M. Ordu.na, M.Fern andez. An Adaptive Load Balancing 



 60

Technique for Distributed Virtual Environment Systems. Proceedings of the 

IASTED International Conference Parallel and Distributed Computing and 

Systems November 3-5, 2003 in Marina del Rey, CA, USA. 

[12] Lars Aarhus, Knut Holmqvist and Martin Kirkengen. Generalized TwoTier 

Relevance Filtering of Computer Game Update Events. Proceedings of ACM 

NetGames 2002. 

[13] Ashwin R. Bharambe. Mercury: A Scalable Publish/Subscribe System for 

Internet Games. Proceedings of ACM NetGames 2002. 

[14] Sandeep Singhal, Michael Zyda. Networked Virtual Environments, Design and 

Implementation. Published by Addison-Wesley, 1999. 

[15] Daniel Bauer. Network Infrastructure for Massively Distributed Games. 

Proceedings of ACM NetGames 2002. 

[16] Matt Welsh, Steven D. Gribble, Eric A. Brewer, and David Culler. A Design 

Framework for Highly Concurrent Systems. UC Berkeley Technical Report 

UCB/CSD-00-1108, Submitted for publication, April, 2000. 

[17] Sun Microsystems Inc. JavaBeans Architecture, 

http://java.sun.com/products/javabeans/ 

[18] Sun Microsystems Inc. Java Servlets API, 

http://java.sun.com/products/servlet/ 

[19] Sun Microsystems Inc. Java Management Extension, 

http://java.sun.com/products/JavaManagement/ 



 61

Appendix A System Protocol 

ID Name Direction Description 

0x01 CTRL G S The control message 

0x02 UPDATE G S The update message 

0x03 AVACONN G S Notify that a channel connected. 

0x04 AVADISC G S Notify that a channel disconnected 

0x05 AVACLOSE S G Notify that a avatar channel is close by game 

logic 

0x06 AVAMIG G S 

S G 

Send when a avatar migrated. 

0x07 GATHEL G C 

G S 

Say hello and tell the gateway information. 

0x08 SRVHEL S C Say hello and tell the server information 

0x09 RMINIT C broascast(*1) Send when a coordinator initiate an region 

migration 

0x0A RMREADY S C The destination server says he is ready to receive 

migration data. 

0x0B RMCOMPLETE S C 

C broadcast(*1)

Send when the region migration is complete 

0x0C RMFAIL S C 

C broadcast(*1)

Send when a region migration fails. 

0x0D AVACONN_ACK S G ACK of AVACONN 

0x0E AVAMIG_ACK S G ACK of AVAMIG 

G: Gateway, S: Server, C: Coordinator 

*1 A coordinator broascasts the messages to evey participents of the region migration. 

 



 62

0x01 CTRL 

Direction: G S 

Description: 

The control message 

Format: 

 long avatarid 

 short controlType 

 short controlLength 

 byte[] wrappedMessage 

 

0x02 UPDATE 

Direction: G S 

Description: 

The update message 

Format: 

 long avatarid 

 short updateType 

 short updateLength 

 byte[] wrappedMessage 

 

0x03 AVACONN 

Direction: G S 

Description: 

Notify that a client connected. 

Format: 

long avatarid 



 63

 

0x04 AVADISC 

Direction: G S 

Description: 

Notify that a client disconnected. 

Format: 

long avatarid 

 

0x05 AVACLOSE 

Direction: S G 

Description: 

Notify that a avatar channel is close by game logic 

Format: 

 long avatarid 

 

0x06 AVAMIG 

Direction: G S, S G 

Description: 

Send when a avatar migrated. 

Format: 

long avatarid 

int srcRegionid 

int destRegionid 

int x 

int y 

short dataLength 



 64

byte[] data 

 

0x07 GATHEL 

Direction: G S, G S 

Description: 

Say hello and tell the gateway information 

Format: 

int gatewayid 

 

0x08 SRVHEL 

Direction: S C 

Description: 

Say hello and tell the server information 

Format: 

int serverid 

 

0x09 RMINIT 

Direction: C broadcast 

Description: 

 Send hen a coordinator initiate a region migration 

Format: 

 int rmid 

 int regionid 

 int srcServerid 

 int destServerid 

 



 65

0x0A RMREADY 

Direction: S C, C S 

Description: 

The destination server says he is ready to receive migration data. This message 

will be forwarded to source server by the coordinator. 

Format: 

int rmid 

int host 

int port 

 

0x0B RMCOMPLETE 

Direction: S C, C broadcast 

Description: 

Send when the region migration is complete. 

Format: 

 int rmid 

 

0x0C RMFAIL 

Direction: S C, C broadcast 

Description: 

Send when the region migration fails. 

Format: 

 int rmid 

 

0x0D AVACONN_ACK 

Direction: S G 



 66

Description: 

ACK of AVACONN 

Format: 

long avatarid 

 

0x0E AVAMIG_ACK 

Direction: S G 

Description: 

ACK of AVAMIG 

Format: 

long avatarid 

 


