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ABSTRACT

In this thesis, a Goal-Oriented Self-Organizing Map (GOSOM) is proposed to
cluster documents according to user’'s goas. GOSOM is motivated by
Self-Organzing Map (SOM) model and allows the user to specify what kinds of
results should be clustered. The specified goas are analyzed by Latent Semactic
Analysis (LSA) to determine their relationships to input vectors. GOSOM properly
enhances the features of input vectors when caculating similarity in the clustering
process; in this manner, GOSOM is capable of guiding the clustering result toward
user’s goals. Additionally, a weighted majority voting algorithm is provided to label
the clustering result with respect to the specified goals. Furthermore, GOSOM
presents a user relevance feedback mechanism to improve the performance of
clustering. A system called Goal-Oriented Document Clustering system (GODOC) is
implemented to verify that GOSOM is superior to convensional SOM. Experiment
results show that GOSOM significantly improve 21.67% in accuracy, 28.47% in

recal.

Keywords: Self-Organizing Map, Latent Semantic Anaysis, Document

Clustering, Goal-Oriented
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Landauer (1998) LSA

(Human Compuiter Interaction, HCI) cl c2 c3 c3
c4 ¢S5 4 (Mathematical Graph Theory)

mlL m2 m3 m4 3

Example of text data: Titles of Some Technical Memos

cl: machine for ABC applications

c2: A opinion of

c3: The management

c4: and engineering testing of

c5: Relation of perceived to error measurement

m1: The generation of random, binary, ordered

m2: The intersection of pathsin
ma3: IV: Widths of and well-quasi-ordering
M4. A survey
3
2 ( 3 )
12 - (Word-by-Context)
X X
i cl ¢c2 ¢3 c4 ¢c5 ml m2 m3 m4]
human 1 0 0 1 0 0 0 0 0
interface 1 O 1 0 O 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
X =| response O 1 0 0 1 0 0 0 0
time 0O 1 0 0 1 0 0 0 0
EPS 0O 0 1 1 o0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 O 0 O 0 1 1 1 0
graph 0O O O o0 o 0 1 1 1
minors 0O 0O O 0 o 0 0 1 1

=
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(022 -011 029 -041 -011 -034 052 -0.06 -0.41]
020 -0.07 014 -055 028 050 -007 -001 -0.11
024 004 -016 -059 -011 -025 -030 006 049
040 006 -034 010 033 038 000 000 001
064 -0.17 036 033 -016 -021 -017 003 027

- 027 011 -043 007 008 -0.17 028 -0.02 -0.05
027 011 -043 007 008 -0.17 028 -0.02 -0.05
030 -014 033 019 011 027 003 -002 -017
021 027 -0.18 -003 -054 008 -047 -0.04 -058
001 049 023 003 059 -039 -029 025 -023
004 062 022 000 -007 011 016 -068 0.23

1003 045 014 -001 -030 028 034 068 018 |

(334 0 0 O 0O o0 O 0 0 |
0 254 0 O 0 0 O 0 0
0 0O 23 0 0 0 O 0 0
0 0 Omtedsr0 » G O 0 0
S=| 0 0 0 0O 150 0 O 0 0
0 0 0 0O 0 131 O 0 0
0 0 0 0O O O0 08 0 0
0 0 0 O O O o0 05 O
| 0 0 0 O 0O o0 © 0 036

020 061 046 054 028 000 001 002 0.08]

-006 017 -013 -023 011 019 044 062 053
011 -050 021 057 -051 010 019 025 0.08
-095 -003 004 027 015 002 002 001 -003
PE| 005 -021 038 -021 033 039 035 015 -0.60
-008 -026 072 -037 003 -030 -021 000 036
018 -043 -024 026 067 -034 -015 025 0.04
-001 005 001 -002 -006 045 -076 045 -0.07
-006 024 002 -008 —-026 —-062 002 052 —045]
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cl c2 c3 c4 ¢c5 ml m?2 m3 m4

human 016 040 038 047 018 —-005 -012 -016 -0.09
interface 014 037 033 040 016 -003 -007 -010 -004
computer 015 051 036 041 024 002 006 009 012
user 026 084 061 070 039 003 008 012 019
system 045 123 105 127 056 -007 -015 -021 —-0.05
X'=|response 016 058 038 042 028 006 013 019 022
time 016 158 038 042 028 006 013 019 022
EPS 022 055 051 063 024 -007 -014 -020 -011
survey 010 053 023 021 027 014 031 044 | 042
trees -006 023 -014 -027 014 024 055 077 | 066
graph -006 034 -015 -030.020 031 069 098 085
| minors —-004 025 -010 -021 015 022 050 071 062

X' X "trees’ X m4
0 m4 "graph”  "minor” "tree”
X' "trees’ m4 0.66
" survey” m4 1 X'
0.42 "survey” m4 — "Mathematical
Graph Theory” LSA
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SOM Euclidean

Distance ( 5)[Kohonen98]

Similarity (X, m(t)) = \/Z(Dimi(X)-Dimi(m(t)))z

5 Euclidean Distance

Similarity ' (X, m (1)) = \/zWl-(Dim,.(X)-Dim,.(m(t)))Z

6

X m(z) i

(Weight) #,

1

W. = F(max R(i,usergoal ; )
j

7
usergoal, j R LSA
- R, j) i j - 11
[Deerwesterd0]  F(R(, /) R, /)
o R e
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i Terml Term2 Term3 Term4 Term5 Term6 TermT
Terml 1 0.6 -01 03 0.1 04 0.2
Term2 0.6 1 -03 -01 -075 -09 -05
R - Term3 -01 -0.3 1 -04 -04 -07 -02
|Term4 03 -01 -04 1 -08 -08 09
Term5 01 -075 -04 -08 1 0.7 -09
Term6 04 -09 -07 -08 07 1 -0.85
| Term? 02 -05 -02 0.9 -09 -0.85 1 |
6 LSA -
Term 2 4 7 ( usergoal, = Term 2
usergoal, =Term4 usergoal, = Term 7) /4
R Term 1 [0.6,0.3,0.2]
max R(i,usergoal ;) =0.6 W, = F(0.6) =0.8
3.1.3 (Cluster Labeling)
SOM
(Feature)
(
) (Labeling)
3131 (Weightd Mgjority Voting)
Roussinov (2001) (Adaptive Search)
(Majority Voting)
[MavroudiOZ]
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TermGoal(i) = arg max R(i,usergoal;)
usergoal .

]

R LSA -
2. 312 i
W= F(max R(i, usergoalj )
j
3. j (p.9) i

0, if TermGoal, # usergoal,
Score(i,usergoal;) = _
m, (i) ,else

m () (r.9) m i

4, Score(i,usergoal ;) ]

(r.9)

SumofGoal(usergoal ;) = Z Score(i,usergoal ;) x W,

5. (r.q)

Label , , = arg max SumofGoal (usergoal )

usergoal ;
(1.1

[ ] 3x3

7 Teem2 4 7 R LSA
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R@, j)+1

- 6 F(R(G /)= M
2
7
[ 13 ] [ 11 ] 11 ] ]

5.1 4.3 21

6.9 5.6 2.2

7.1 55 35

45 3.2 7.1

5.5 45 6.2

9.1 8.7 5.0

[ 25 ] [ 38 ] [ 45 ]

43 35 4.4

3.6 4.2 5.1

M = 38 4.9 6.1
6.7 8.7 7.1

8.1 9.1 958

41 5.1 6.5

[ 58 ] (25 ] [ 76

47 22 1.3

21 3.9 5.9

5.6 3.7 35

7.3 6.7 43

21 55 1.1

| 55 96 | 82 | |

TermGoal(1) = arg max R(i,usergoal ) = arg max [0.6 0.3
usergoal, :

usergoal
= usergoal,

TermGoal(2) = usergoal, TermGoal(3) = usergoal,

TermGoal(4) = usergoa, TermGoal(5) = usergoal,

TermGoal(6) = usergoal, TermGoal(7) = usergoal,
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W, = F(max R(i,usergoal |)) = F(max[0.6 0.3 0.2]) =F(0.6) =0.8
J J

w,=1  W,=04
w,=1  W,=0125
w,=01 W,=1

° (1,1) i

Score(lusergoal) =1.3 Score(1,usergoal,) =0 Score (Lusergoal ;) =0
Score(2,usergoal) =5.1 Score(2,usergoal,) =0  Score(2,usergoal;) =0
Score(3,usergoal) =0  Score(3,usergoal,) =0  Score(3,usergoal ;) = 6.9
Score(4,usergoal) =0  Score(4,usergoal,) =7.1 Score(4,usergoal ;) =0
Score(S,usergoal) =4.5 Score(5usergoal,) =0  Score(5,usergoal ;) =0
Score(6,usergoal) =0  Score(6,usergoal,) =5.5 Score(6,usergoal ;) =0
Score(T,usergoal) =0  Score(7,usergoal,) =0  Score(7,usergoal ;) =9.1

(]
SumofGoal(usergoal;) =1.3x 0.8+ 5.1x1+4.5x 0.125 = 6.7025
SumofGoal(usergoal,) = 7.1x1+5.5%x0.1=7.65
SumofGoal(usergoal,) =6.9x0.4+9.1.x1=11.86

([
Label |, = arg max [6.7025,7.65,11.86] = usergoal ,

usergoa, j
@y
3132 (Unrelated)
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1. LSA - R R, /) i

Fe) F(e)=511
2
1 1
2. == w2 RE.J)
2
A
3 a a—l, l, ) 3
2 3

m, (i)
(p.q) m i
° R 6 M 7 (1,3)
o SumofGoal(usergoal ;)
3.8675 4.12 5.88
° a=0.5 £=-0.057

3.8675<4.12<588<05x F(-0.057) x(11+21+22+35+71+

6.2+5.0)=0.5x0.4715x27.2 = 6.4124
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314 (User Relevance Feedback)

312

(Retrieval System)

n f
t d, |
Label(d,) i R(term,term;)  term,
term, - B 4
0<p,7y<1
1 d 8

importance (d,,term ) =d (term ) x W,

8 d,

1

d,(term,) term, d, w 7

1 a

2. 8 y Xt
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2 term;
9
R(term, ,term;) > Avg(term;) term,  Label(d,)

usergoal , 10

L, R(term,,term,)

Avg(term;) = Z
k=1 t

R(term,, Label(d,)),., =R, +[R,; —(=D]x S x (1~ ﬂ)f

10 usergoal

yxt=3 [=01 f=1 Label(d)=Term2 R 6
1 2 Term3 Term5
Termé Terml Temd4 Tem7 Term?2 3 Term3

Term5 Term6

Term3 Avg(term,) —-0.157

27: R (term3 ,term k)
k=1

Terml Term3

Term2

R(term,,term,),  =0.6+16x0.1x (1-0.1)" = 0.744

R(termg,term,), . =-0.3+0.7x0.1x (1-0.1)" = -0.237
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(Goal-Oriented Document

Clustering System, GODOC)

Kohonen (1998) WEBSOM  Hotano (1999)

GODOC 3.1 GOSOM SOM
8 GODOC
GODOC Specified
Goadls
Document User Result
Matched . 3
Preprocessing Interface User Feedback
Documents <
2 2 A |4
Document
Specified
Vectors
Goals dser
Result Feedback
v \ 4 3 v
GOSOM
8 GODOC
1. GODOC
2.
GOSOM
3. GOSOM
4,
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321 (Document Preprocessing)

GODOC (Stop Word)

http://www.mandarintools.com

3.2.2 (User Interface)

9 html

Caucho Resin GOSOM JAVA

NE #ME wAT) MOARW TRD

wi-Re= o3 A3 O Gaar gk - S@.d 2 |

w0 - =] o
ﬂ

W ' — T IT
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(http://udndata.com/library)

PChome (http://www.pchome.com.tw) Google

(http://www.google.com) Yahoo

(http://tw.news.yahoo.com/polity/cnal)

2002/01/01~2004/02/13 2001/01/01~2004/02/13

100 100
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intra-cluster, inter-cluster...
Slonim (2000) Liu (2002)
Supervised Text Classfifcation (Accuracy )

11

N
Y 8(e;, Ans)
Accuracy="=

N
11 Accuracy [Liu02]

x=y 0 (Xy)=1 o (Xy)=0 g, [ Ans,

12 X# y# X=y

o' (x,y)=1 o' (x,y)=0 a, [ Ans,

l l

Zé'(ai,Ansi)

=

Accuracy ==
N-Sum

other

12 Accuracy
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other

Accuracy
(Recall) 13
Recall(Class ,) = H%H
" Jans |
13 Recdll
o A |ans | A
Recall (Recall
)
421
GOSOM
Accuracy Recall
(Data Set) 1 (Tf=1) 3

Accuracy  Recall
Accuracy GOSOM

SOM 24.6% Recall 24.25%
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1 2
Method SOM GOSOM SOM GOSOM
Size 6*6 6*6 6*6 6*6
Accuracy 0.44 0.56 0.59 0.72
Recall 0.548 0.693 0.737 0.9
3 1
4.2.2
Accuracy  Recall
Accuracy 18.75% Recall
32.7% GOSOM SOM
Method SOM GOSOM
Size 6*6 6*6
Accuracy 0.48 0.57
Recall 0.424 0.563
4 2
4.2.3

GOSOM
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GOSOM Accuracy
Recall 5
0 0.1 0 0.15 0 0.15
Accuracy 0.56 0.61 0.72 0.78 0.57 0.525
Recall 0.693 0.751 |09 0.975 0.563 0.527
5 3
Acuuracy Recall
— Acuuracy 8.9%
Recall Acuuracy 8.3% Recall 8.3%
GOSOM
Recall  Accuracy
GOSOM
314 -
3 —
- 3
4.2.3

GOSOM
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(Goal-Oriented Document Clustering System, GODOC)

1 LSA (Latent Sematic Analysis) SOM
2. (Weighted Magjority Voting) (Cluster
Labeling)
3. GOSOM (User Relevance
Feedback)
(Accuracy) (Recall) SOM

21.67% 28.47%

GOSOM



Space)

LSA (Concept

(Ontology)

SOM

(Neighborhood Function)

(Model Vector) SOM

(Ontology)
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