s’

BXE

I

=i

EANEXR

&

T4

i

- BEE S AARBRE A P

=

A Framework of MM OG Development and Management

System

A S

hERE R E R

Hi &2 N Ju o = F ook

g R 5 A @ M RREF 2 OF g oR

BoyoA L RAe Student : Ko-Hsu Su

T

AThesis
Submitted to Institute of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer and Information Science
June 2004

Hsinchu, Taiwan, Republic of China

PEARAY L E

A Framework of MMOG Development and Management System

Advisor : Shyan-Ming Yuan

’E‘_m?/jﬂ j\}E—
AR kAR E &

SUE BT

- AR S A RMPRRE SR PRk sk

iR R kTR

M FTAREEL

K2

PSR R B STENE S 0 F AR RAR T SR FRAR Bl ~ <
7 St e g AT RS R B 2 PRE R ILC LT g
PR P o A S A MY SREREAAY AR P L § A

C AR A RS RBEREA T n 2 Pl 2 E Tk S

W REBEE L 1 cF AL HE T {5

A Framework of MM OG Development and M anagement System

Student:Ko-Hsu Su Advisor: Shyan-Ming Y uan

Department of Computer and Information Science
National Chiao Tung University

Abstract

In recent years, by the massively multiplayer online game (MM OG) market become
growing continuously, there are more and:more game devel opment factories to invest
large resource in MM OG develgpment. So the MM OG devel opment and management
system research become more impartant. According to the message oriented MMOG
platform which be commonly used in the devel opment flow, this paper present a
framework of development and management system under the MMOG platform.
Under the framework, the MM OG devel opment and management work will become

more simply and with more elasticity

ACKNOWLEDGEMENTS

W ZEE A | if\-@},ﬁ‘ﬁj’f\m;}p%?(;}i- F Rk B ;\)¥§§$_mi
SR A /”\‘ﬁ”f‘“ f“ﬁﬁ%*’r“f“-%‘?n LN G S a%
BHEAF PR AL UZ U R ROl DT AN B L e AT

U lizgES G\?/Fﬁ—_l_?\;mc‘ E’ry,g:r;i o

T ARFUEH- FEEFTV RS BREE 2 BEIF S NG
FLREFF e inirg ?fﬂFﬁ?’“%iik&’%’*v:%f’r%mﬁ:%\»m;ﬁ»f i
U I

o

¥R

Er]

o=
i
LS AR R HA N A AN fr FH N2 AGHE ERE FY fo BE B

J)a,\‘.g'ﬁ—&i o o e BRI L S ,*ﬂf?‘r; HE A pﬁ’»_‘m&& AT G A
GHRTY CRBE P LRI ERE TR

CONTENTS

ABSTRACT IN CHINESE......ci ot |
ABSTRACT IN ENGLISH ... I
ACKNOWLEDGEMENTS......ooiii e [l
CONTENT St r e e nn e v
LIST OF FIGURES.........oo e VI
CHAPTER 1 [INTRODUCTION.....cciiiiiiiiiiiesieie e 1
1.1 MMOGPLATFORM OVERVIEW. ..o, 1

12 MMOGDEVELOPMENT ..ottt 4
121 DEVELOPER’'SVIEW FOR MMOG.......ccccviiniiniiiinis 5

122 MMOG SERVER MANAGEMENT ... 6

1.3 OVERVIEW ... o st o 6
CHAPTER 2 FRAMEWORK DESEGN . .. detrecriieiiieiiceeseeeseeseee e 8
21 MMOG DEVELOPMENTL.SYSTEM ..o 8
211 DESCRIBE THE MM OG CONTENT BY XMLcccccvvnenee. 10

212 CODE GENERATION ..o 12

22 MMOG MANAGEMENT SYSTEM ..o 13
221 IJMX OVERVIEW ..o 14

222 MMOG MANAGEMENT SYSTEM DESIGN........ccccvvinenen. 16
CHAPTER 3 SYSTEM IMPLEMENTATIONcccciiiiiis 19
31 DOIT PLATFORM OVERVIEWccciiiiiiiiee 19

32 DEVELOPMENT SYSTEM IMPLEMENTIONccocovniiiiiiiien, 20

33 SERVER MANAGEMENT SYSTEM IMPLEMENTATION........... 27
331 GAME SERVER LAYER ..o 28

332 CENTRAL MANAGEMENT SERVER LAYER..........c.c....... 32

v

333 MANAGER LAYER. ..o

CHAPTER 4 CONCLUSIONS...

CHAPTER S FUTURE WORKS

BIBLIOGRAPHYcccoiiiiiiicee

LIST OF FIGURES

Figure 1-1 the message-oriented MMOG Platform architecture............cccooeveevrvrenne 3
Figure 1-2 Developer‘ s view for MMOG Development..........cccoeveveeveceececcieseeseeenn, 5
Figure 2-1 MMOG message Script doCument...........c.veveeveiieeinein e eennnn 11
Figure 2-2 MMOG message xml schema document................cceveeeveinivennnnnnn. 12
Figure 2-3 MMOG Code generation flow.............coveiii i 13
Figure 2-4 IMX Management Architecture................cccoveiiiiiiieiieieneneen. 2015
Figure 2-5 MBean Server Invoke Mechanism.............coviii i e, 15
Figure 2-6 MMOG Management System Architecture..................ceeeeveveenn ... 16
Figure3-1 DOIT Platform Architecture.............cooviieiiiiie e e 19
Figure 3-2 DOIT Platform Inner Message Process Flow.............c.cccvvvviiennn21
Figure 3-3 Examples of the Message FOormatiats. vvveienie e 22
Figure 3-4 The Code of MoveMessage and LoginMessage..................cevveee. .. 23
Figure 3-5 The Code of LoginMessageHandler and LoginMessageFactory........... 26
Figure 3-6 DOIT Platform Code GenerationEngine.............cccocvvvvvieennen 27
Figure 3-7 DOIT Platform Management System Architecture........................... 28
Figure 3-8 Management Plug-in Work Flow...............ccccoii 029
Figure 3-9 Central Management Server Work FIOW. ..o 32

Figure 3-10 Overview of the ServerManagementFactory Class.........................34

VI

CHAPTER 1 INTRODUCTION

1.1 MMOG PLATFORM OVERVIEW

MMOG is an acronym that stands for Massive Multiplayer Online Game. This is the
kind of online game that allows a huge number of players (greater than 1,000) to play
in the same game concurrently. Unlike other small online games which the game
states are maintained by a few players, the MMOG states are maintained by all of the
players. There are some kinds of MMOG like MMORPG (Massively Multiplayer
Online Role-Playing Game) and MMOFPS (Massively Multiplayer Online First

Person Shot) and etceteras.

According to different kinds of MMOG, the necessary of game server’s Scalability,
Availability, Flexibility and Simplicity will..be different. Each player in the game
world can make interaction with each-others-by making move, trade, attack or other
actions. That is all the requests from the clientswill be received by servers and will be
processed by game servers immediately, and client will receive the server’s response.
The development of high performance MMOG server has become one of the most
important thing when design a MMOG. Therefore the MMOG Platform has been

Introduced.

The MMOG Platform is a middleware solution which can solve the connection
problem between client and server, and it also provide a effective inner message
process mechanism and handle fault tolerance. So it will reduce the game developer’s
load, they just only implement the message protocols, NPC logics, MAP configure
file, server configure file and then insert the game logics into the message handlers,

then the server could be work. It can curtail the development time, and the game

1

developers can keep their mind on game content design. Therefore, the MMOG
Platform plays a very important role of a MMOG, whether it has powerful ability or
not it will directly affect the full game's performance. The MMOG Pl atform not only
can be used in MMOG development, but also can be used for a message
transformation middleware, so it can be used in other applications generally. For this
reason, there are many factories invest large resource in MMOG Platform research
like [ZONA], [BIGWORLD] and etc, and they put their focus on several topics like

easy of development, easy of deployment and easy of maintenance.

Figure 1-1 shows a normal message-oriented MMOG Platform framework. The
message oriented is mean that the connection between server and client is
accomplished by message transformation. At the server side the most underlay
component is NetEngine, it is-responsible fer the physical network transformation
work. And above the NetEngine jthe-component manager provide components
management service, all of the components must register to the manager and could be
obtain by manager’s component lookup. The message handler will process the
message which sending from client and pass through NetEngine to handler. The game
component contain some information like game objects, game NPCs, game map

information and other game content information.

The server component contains some service like timer service, load balance service,
log service and other services about server performance. The Plug-in component can
be any game based plugging like server management Plug-in, encryption Plug-in. The
other components are platform based components and they may register to the
manager like fault tolerance component, persistent database storage component and

other components defined by developer. The server APl is a set of APl which

2

provided by platform include the component lookup API, server setup API, and server
management API. By using the server API the developer can implement the server

control and management applications.

Message-Oriented MMOG Platform

Client Api Server Api

abessapy

=2
)]
3
o
1)
=

jusuodwon
jusuodwon
sweD
h sjuauodwon
juauodwoa
usuodwod
jusuodwos
sjusuodwon

Component
Manager

Component
Manager

-
=2
-
L3
?
O
o
-
oy

T
=
0
m
=]

@
3
o

NetEngine NetEngine

] e e e - - — -

= T 4
Figure 1-1 the me&ageorlenteﬂa‘M M@@'qu Az;chltecture

At the client side the most underlay component is NetEngine too, and it also have a
component manager which doing the same work as server side component manager.
The 3D graphic engine is responsible for the 3D model display draw, and the message
component defines the message protocols. The control handler will handle the entire
player's control action which produced by the mouse action or keyboard action or
others, and according to different control action that will lead to a kind of message be
produced and then be sent to server. The game component is game base component, it
include the game rule, role, event, object, environment and sound files or information
which the player action will reference to. Other components can be a game plug-in or
encryption program, or other platform based component. The client APl defines the

development API like 3D Engine and al components control API.

1.2 MMOG DEVELOPMENT

The total workload of a MMOG development is very huge and need various
developers like network programmers, art designers, musicians, and game contents
designers and system maintenance workers. It can be division into four parts there are
client, gateway, server and database. Each part of the development must focus on
different characteristics. The client’s development focuses on the presentation, control
interface, encryption mechanism and the game content. The gateway’s and server’s
development focus on high performance NetEngine, message processor, load balance
mechanism, and fault tolerance. And database focuses on data reliability and

persistency storage.

The development way could be divided in two'ways. First, al of the programs from
client to server are developed-by.the game.designer themselves. According to the
method, it will cost lots of time for.whole-work, and the performance is not good.
Another way is to use the MMOG . platform-to design a MMOG. We can use the
platform’s development system to develop. The development time will be reduced
and we will get better server performance. According to economic benefits, using
MMOG platform to develop will be a better choice. The development system's
functionality and working flow will be different based on different platform. A useful
MMOG development system should have several feature like easy to use, background
is not necessary, have strong functions and with flexibility. Therefore, this paper
introduces a development system framework for the MMOG platform; we will use
XML to edit a MMOG content description document and also design a code
generation engine, then we can generate the code by load the document into the
engine. Therefore, the whole MMOG development works will become more simply,

fast and elasticity.[3]

121 DEVELOPER'SVIEW FOR MMOG

Figure 1-2 is the developer’s view for MMOG development, all components in this
figure must be designed when develops the MMOG. The red components are
provided by the MMOG platform, and the developer will not necessary to pay
attention to their operation mechanism, so they can be used directly. Include the client
core, gateway core, server core and network engine components and they are the most
important components for the MM OG to affect the whole performance. The light blue
components are game based components, according to different kinds of MMOG they
will have different way to be designed, including the client side presentation, control,
game logic and database components. And the deep blue components are platform
based, to design them must according to the assignment way defined by platform, so
each MMOG which using the same platform will. have the same way and format to
design these components. The development system we introduced will focus on these

components’ development way and implemented it on a MMOG platform.

Client Gateway Server DataBase
Gateway Server Network
Core Core Engine
Network MMOG Message
Engine configure Protocol
Game Message
Object Handler

Network
Engine

MMOG
configure

Management

Message
Protocol

plugin

I I I
I I I
I I I
I I I
I I I
I I I
I I I
| Management | Npc Game |
: plugin : Logic Logic :
I I I
I I I
I I I
I I I
I I I

Figure 1-2 Developer‘ s view for MMOG Devel opment

122 MMOG SERVER MANAGEMENT

After the MMOG environment has be build up, the server management will be an
important work. The whole MMOG is a distributed environment, it composed by
game servers and gateways. So the MMOG’ management will have some distributed
environment problems. For example, by the player’s count are grow up continuously
and the inner mistakes are produce, the server performance will drop down or even
crash. Under this situation, we must record each server’s state continuously, and make
some system maintenance mechanism according to different server’s state. So in order
to handle the above-mentioned problems, the server management system was
presented. The server management system is central management architecture and it
provides the functions of server lookup and modulate, we can use them to log the
servers states and modulate at the'right moment then we can keep the servers on the

best state.

The server management system could be implemented by many ways. In the past, the
management system was implemented according to different customer‘s definition,
and we don't have a standard management way. This paper presents a IMX (Java
Management extensions) based management system. JMX provides standard
management architecture for distributed systems. We use a two layer IMX invoke
mechanism to design a central management system framework, and also implement it

on aMMOG environment. [4]

1.3 OVERVIEW
In chapter 2, the development and management system are presented. Base on the
systems we presented, we implement them on the DOIT MMOG platform, and we

will describe the design details for the system’s work flow and architecture in chapter

6

3. And in chapter 4, we will make some concludes and discuss the future works of

this system at the chapter 5.

CHAPTER 2 FRAMEWORK DESIGN

We will introduce the framework design of the MMOG development and
management system under the MMOG platform in this chapter. At the first section,
we will discuss the general MMOG development flow and then we will present a
development system to improvement it by using XML to describe the game contents
and auto generates the code. The next section, we will present a JIMX based
management system, and discus the advantages based on the system architecture and

the work flow.

21 MMOG DEVELOPMENT SYSTEM

In the general MMOG development flow, the first step is to define the game contents
like game roles, environment, events, game objects, NPCs and game playing scenario.
After decide the game contents; the next step-is to develop the server side and client
side code. In order to develop these-code. by using the platform’s API, the
programmers must precede the developer's teaching course to learning how to
development. That is developers must know the programming language and the
functionality of the APIs which the platform assignment and provide, and then they
will start to develop the code according to the definition of the game contents. And
the game content designers must define a content script document thyself which tells
the programmers what should they do, and the developers must understand that what

the document mean is.

Under this development flow, we find some parts that can be replaced by other way
and will increase the development speed and reduce the development complexity.
First, the game content description document format should be provided by the

platform that uses a popular language to define. Therefore, the game content designers

8

could write the description document by using the language and the programmers
could understand the document’s content more easy and it also reduce the
communication time between content designers and programmers which wasted on

talk about the content’ s definition.

The second, we find that the programmer will write alot of the duplicate code during
the development process. Because the development of the MMOG component’s
program will follow an architecture which assigned by the platform and these
programs may have the some methods or attributes are the same. Under this condition,
the same MMOG component’s programs will have a part of codes are similarity and
the differentiations between them are the method operation logic and other attributes
which are defined by themselves. Therefore, we draw out the similarity part of the
programs and use the XML description document to describe the different parts like
methods and attributes. Then we design-a-code generation engine according to the
document’s format and the regular of the programs. The code generation engine will
generate the code according to the distribution of the document. Therefore, we can
load the document into the code generation engine, and then the programs will be
generated automatically. At last, the programmers must insert the code into the
programs which can’'t be generated by the engine, and then the development work will
be finished. According to the method, the whole development flow will be simplified

and the development speed will be more fest.

Therefore, the design of the MMOG development system can be partition into some
parts. First, we must analyze all of the programs which must be development at the
game server. After we get the relationship and programming rule between these

programs, we define the description data structure and also choice a description

9

language to describe these programs. At last, we design a code generation engine

according to the relationship between the programs and the description language.

211 DESCRIBE THE MMOG CONTENT BY XML

A MMOG content description language should have some futures like be suitable for
describe and process the data, easy to be edited, support multi language code and with
the verify mechanism. Therefore, we choice the XML (eXtensible Markup Language)
to describe the MMOG contents, because XML is specially design for data
description and exchange, and it is self-describing (the markup describes the structure
and type names of the data, although not the semantics) and the XML fileis atext file
which could be edit by any text edit software, and it also support multi language code,
and by using a XML schema file:we could verify the XML document whether it is

valid or not.

The MMOG contents description ‘could.be partition into some parts like messages;
NPCs, MAPs, Game objects, Game logic, server configure files and others. Each kind
of the data will have their own data structure, and all of these data structure can be
representing by the data structure tree. Therefore, we defined the datatags at first, and
then build the data structure tree according to the relationship between these data.
Then the content designer can write the description document follow this data
structure. In order to verify the document if it is valid, we will design a XML schema

file to implement this work.

Figure 2-1 isa XML file which describes the MMOG messages includes the version,
package name, class path, and each message's contents. Each message represents a

kind of player's action; according to different player actions we need a kind of

10

message to handle this action. Therefore, we define some messages in this XML
document, and use aMMOG message xml schema document to verify it in the Figure
2-2. According to the method, the content designer could define data follow a

standard structure, and will be more convenient to search or edit the document.

<Tuml version="1.0" encoding="utf-8" 7=
- =MMOG_Message smins: xsi="http:/ /www.w3.org/2001/XMLSchema-instance"

#sinoMamespacesSchemalocation="mmog_message.xsd">

<Wersion=1.0</Yersions=

<PackageMame=mmog.message</PackageMame:>
<Classpath=GC:f fsdk_test/=/Classpath>
- «Messages:

- «Messagex
<MessageMame=LoginMessage</MessageMame:=
zMessageTypex0x01</MessageTypes

- «Paramsx=
- <Paramz=
<ParamMame=id</ParamMamez=
<ParamTwpezlong</ParamTypes
«/Paramz
- =Param:
<ParamMame>pass</ParamMames>
<ParamTypesString</ParamTvpes
«/Paramz
«/Paramsz
</Messages

- <Messages
<Messagetame=MoveMessage</MessageMame=
<MessageType=0x02</MessageType:=

- <Paramsx
- =Paramz
<ParamMame=direction</Paramtame=
<ParamType=byte</ParamTypex=
< /Paramz
- =Paramz
<ParamMamezaccept</ParamMame=
<ParamTvype=boolean</ParamType:=
< /Paramz
«/Paramsz
</Messages
</Messagess=
</ MMOG_Messages

Figure 2-1 MMOG message script document

11

<{?xml version=""1.8"7>
<®sd:ischema xmlns:xsd="http://fvuw.wd. org/2001/8HLSchemna’ >
{xsd:element name=""HMOG_Hessage™ type=""mmog_message_type"/>
<xsd:complexType name=""mmog_message_type">
<xsd:element name="Uersion™ type="xs:string"/>
<{xsd:element name="PackageName" type="'xs:string"/>
<xsd:element name="Classpath" type=""xs:string"/>
<{xsd:element name="Hessages" type="messages_tuype™>
</¥sd:complexTypel

<xsd:complexType name="messages_type">
<#sd:element name="Hessage' type="messafge_type'>
{/xsd:conplexType>]

{xsd:complexType name="message_type">

<xsd:element name="MessageName" type="'xs:string"/>
<{xsd:element name="MessageType" type="'xs:string"/>
<ssd:element name="Params" type="Params_type">
</xsd:complexType

<xsdicomplexType name="Params_type™>

<xsd:element name="Param" type="Param_type">
<fxsd:complexTypes

<asd:complexType name="Param_type'>

<xsd:element name="ParamMame" type="xs:string"/>
<xsd:element name="ParamType" type=""xs:string"/>

</xsd:complexType
<fxsd:schema>

Figure 2-2 MMOG message xml schema document

212 CODE GENERATION

After defined the game contents document, the programmers must development the
programs according to the definition of contents. The programmers must devel opment
all components programs of the MMOG, the whole work is very complexity and
complicated. In order to reduce the programmers' load, we load the document into the
code generation engine and make a part of the programs be generated automatically.
The programs we generated still need to be edit by programmer, because the code
generation engine only generate the code which can be described, and others like
method operation logic which could not be described in the description document
must be write into the program by them self. The code generation engine use a XML
parser to parser the XML description document, and send the data which were got in

the parser process to the corresponding generator, then the generator will be

12

responsible to generate the codes.

-
1
1
1
1
Other codes I:>
generator

Game

Game Object
generator :> Object code
XML MAP configure
Soript generator I:> Conflgure
Document = s

generator code

1

[

[

[

: Message Handler |:> Handler

) generator

! cade

I Message |::>

: generator " Message
cade

Figure 2-3 show the MMOG Co&é;'gengrati on flléi;v. Each generator handle a kind of
code, it will store this kind of program’s architecture and the part of the same code
and will have some method to generate the part of the different code according to

received data.

2.2 MMOG MANAGEMENT SYSTEM

The MMOG management system usually resides on different machines. That means a
MMOG management system is a distributed application. The design of a MMOG
management system mainly involves dealing with the distributing, controlling. Before
the JIMX, there does not existence any standard management ways based on java

about system setup, management, and lookup and shut down works. Therefore,

13

different software or applications will have different management way. The
software’s management way or function are designed according to the customers
necessary. We design the MMOG management system based on the JMX, and we
build up a central management server which can be connect by any JMX support
remote connection management ways, and we can add or delete the game servers

dynamically.[5][6]

221 IJMX OVERVIEW

The Java Management Extensions (JMX) technology is an open technology for
management and monitoring that can be deployed wherever management and
monitoring are needed. By design; this standard is suitable for adapting legacy
systems, implementing new management-and monitoring solutions and plugging into

those of the future.

Figure 2-4 is the IMX management architecture; it is implemented by three levels
architecture. First, in order to manage the applications, we will create an MBean
which be the most basic management component of IMX at the instrumentation level,
it provide the functions to management the application. And then we register the
MBean to the MBean server and it will be add to the MBean server’ s repository at the
agent level. The MBean server can management the applications by invoke the
MBeans, and it provide a unify management interface which can be invoke by remote
managers. At the distributed service level, the MBean server doesn’t provide the
remote service connection functions itself, but we can achieve it by create a remote
connector or connection protocol MBeans at the server. And then the managers which

using different VM can remote setup or management the components on the MBean

14

server through the connectors.

Distributed Java Virtual Machine

Service Level Agent Level Instrumentation
Level

Connector]

. Protocol
. Adapter

Figure 2-4 IMX Management Architecture

-
9] 10]
LC

connector or other connection prof

request includes some values like MBean name, method name, calling attributes and

signatures.
Java Virtual Machine
MBean
Server
name
lookup
Invoke(Object name,
String methodname, Invoke(String methodname,
Object] | args, Object]] args,
String][| signature); String[] signature);

Figure 2-5 MBean Server Invoke Mechanism

15

After server receive the request it will find out the MBean from the MBean repository
according to the assigned MBean name, and then send ainvoke request to the MBean.
The MBean will execute the assignment method and send the return value to the
MBean server. And server will return this value to the management application which
sent this request. Therefore, programmers can use this mechanism to implement a

management application.

222 MMOG MANAGEMENT SYSTEM DESIGN

The MMOG environment is combined by many servers. And each server maintains
different components of the MMOG, and they will have some services different from
others. Therefore, each server will .need their ewn management application, and we
need a central management console which provide a unify management interface.
Therefore in order to build up:a central-management environment, we introduced a

MMOG management system architecture show inthe Figure 2-6.

Game Server A

MBean
Server
|
Management Server Game Server B

JMXconnector J— .

— » || MBean HashTable MBean

Server Server

- Facto
HTTP connection 1 @ / ot
» Facto

Factol ™
MBean
Invoke({ Object name, Invoke(Object name, Server
String methodname, String methodname, I
String servername, Object]] args,

String[] signature); String[] signature);

Figure 2-6 MMOG Management System Architecture

16

It is three-layer IMX architecture; it includes the central management server, game
servers and remote management application. The system manager can connect to the
central management server by using the browser or others management application,
and then invoke the methods of the MBean which register at the central management
server. The central management server can invoke the methods of the MBean which
register at the game server by using the game server factory object reference.
According to each game server, the central management server will have each game
server's server factory object reference. The game server factory is a management
agent for corresponding game server, and it is responsible for the connection to the

game server and invokes the Mbean’ s method on the game server.

Under this architecture, each game'server will build up an MBean server, and design a
Mbean according to the resouree which want-to be management. The MBean define
the method like GetValue, SetViaue ior InvokeM ethed, and implemented by using the
game server’'s management API. After. build-up the MBean server, and register the
Mbean in it, the game server will connect to the central management server and make

aregistry procedure which using the IMX invoke mechanism.

Because the game servers may be add or shut down dynamically during the running
time. We must control all of the game servers in the MMOG environment. Therefore,
we must design a dynamic server management mechanism, it allows each game server
can be join to the management system actively or passive. We will create a registry
MBean at the central management server which responsible for game servers registry
procedure. After receive the registry request from the game server, management
server will create a game server factory and add it to the hash table. The game server

factory store the game server's name, IP address and port. And it haves some

17

functions like connect to game server or invoke a game server's MBean's method.
The management server have a hash table which store all server factory’s reference
and it will have a servers management MBean which responsible for find out the
server factory form the hash table according to the manager’ s assignment and execute
the server factory’s method to achieve a remote management function invoke

mechanism.

Therefore, the whole management work will become simply and with more elasticity.
The manager just only send a request which includes a server name, method name and
other attributes to the central management server, then the server will accomplish this
request and send the return value to the manager. And when a new game server is add
to the MMOG environment, it can‘be management immediately by using the registry
procedure. And we can invoke-a method to refresh the hash table at the management
server, because the game servers maybe crash.at the runtime so we need to handle this

event and remove the server factory-from the hash table.

18

CHAPTER3 SYSTEM IMPLEMENTATION

In this chapter, we choice the DOIT MMOG platform to implement the management
and development system we presented on it. At first we will introduce the DOIT
MMOG platform, and according to the design of the platform we let a part of the
server code be generating by our development system, and create an MBean by using
the DOIT platform server API. Then we implemented a central management system

which provides IMX connector and HT TP connection.

3.1 DOIT PLATFORM OVERVIEW

DOIT is an acronym that stands for Distributed Organized Information Terra. It was
designed by the National Chiao Tung University Department of Computer and
Information Science Distributed Computing System Laboratory. It is a server side
platform technology, and it-has some futures-like Scalability, Availability
, Flexibility and Simplicity. It can support-ten-thousand of people to interaction in the
virtual world in the same time. The DOIT platform system is three-tier architecture

includes the servers, gateways and clients show in the Figure 3-1.

2

@

Figure 3-1 DOIT Platform Architecture

Gateway Server

19

Each client connects to the game server through the gateway, and their action request
will be process at different server according to their virtual position. The full virtual
world will be divided into several regions which each server responsible for a part of
the virtual world, and will be modulated dynamically according to the degree of

server load.

3.2 DEVELOPMENT SYSTEM IMPLEMENTION

The DOIT platform provides the high performance game servers and gateways but
doesn’t include the clients. Because the client side development will be different
according to different kind of the MMOG. The platform keeps the elasticity of the
client side design, it alows the client side development according to game devel oper
design themselves. The client side.design can be implement by JAVA or C++ or other
program language and can use the high performance: network engine which provided
by platform. The only thing which the programmer: should be considered in the client
side development process is the message protocol definition; it must be implemented

follow the server side definition.

At the server side, there are some components must be implemented according to the
definition of the platform. There are message, message handler, message factory, NPC
configure, and server configure, vwlogic list document and game objects. Figure 3-2
shows the DOIT platform inner message process flow, it explains the relationship
between the message, message handler and message factory. When an unknown
message is sand to the server, it will be process at the ControlMessageHandler first.
According to the AVID of the message, the message will be delivery to the relative
region. AVID is the player's avatar id in the virtual world, and each AVID will be

assign to one region according to the player’s position in the virtual world. The region

20

will find out the message handler at the Object Adapter according to the type value of
the message, and then send the message to the handler. The handler will cast the
unknown message to the original message type by using the message factory. And

then execute the message operation, and create an update message return to the client.

Unknown Message

001 LEN AVID CTID LEM CUSTOM

Server
ControlMessage .
Handler Region
Gateway +
essage
Handler opjectadapter

Message
Factory

Figure3-2 DOIT Platform InnerM&aageProc&ssFl ow
The components which programmers must development are the messages, message
handlers, and message factories in the inner message process flow and they are the
generality part of the work load in the server side development. Therefore, the
development system which we presented will focus on to these components
development. In order to descript these components, the first step is to define the
XML schema document according to the format of the message, and find out the
relationship between these components. In the DOIT platform, each message is
defined as a byte buffer. In the Figure 3-2, there is an unknown type message be sent
to the server. This message is composed by two components. First is the fixed

component, they include a message type, total message length, avatar id, player id and

21

the length of custom component. Each message will have the same format at the first
component and next component is the custom format. According to the different
messages' function, the client will need to send some different attributes to the servers
for the game logic operation. Therefore, the custom component is composed by some
attributes. In the DOIT platform, we support some types of the attributes include int,
string, Boolean, byte, short, long and float. For example, a player login message is
sent when a new client join to the virtual world and it must include the player id and
password attribute. So the custom component in the player login message is
composed by a player id string and a password string, the full format is show in the

Figure 3-3.

Login message

0x01 Total Avatarid CTid Custom Playerid password
length length

Move message

0x02 Total Avatarid CTid Custom Direction accept
length length

Figure 3-3 Examples of the Message Format

Because of the total length, avatar id, ct id, custom length attributes value are
assigned dynamically during the message sending process, so we will not necessary to
describe them. We must describe the others, include the message type, and custom
attributes and we aso describe the message version number, package name and the

class path. Figure 2-1 is a MMOG message description document; it describes the

22

login and move message protocol. And we defined an xml schema document to verify
it; the xml schema document is show in the Figure 2-2. After defined the MMOG
script document, the next step is to design the code generation engine. The code
generation engine will generate the code according to the attributes' value which we
described in the script document. Therefore, we analyze the code which we want to

generate to induce some regular and relationship between these codes.

package mmog.message; package mmog.message;
import mmog.net; import mmog.net;
import java.nio; import java.nio;
public class public class
extends Hessage { extends Hessage {
private bDyte direction, private Tong id;
private boolean accept; private String pass;
public HoveHessage() { public LoginHessage() {
H H
public void decode{ByteBuffer bb) { public void decode{ByteBuffer bb) {
direction = bb.get(}; id = bb.getlong{};
if (bb.getShort().intValue() == 8) { Short s = bb.getShort();
accept = "true"; pass = hh.get(s.intUalue());
e
else {
accept = “flase”; public void encode{ByteBuffer bbh) {
3 bb.putlong(id);
3 bb .putShort((3hort) pass.getBytes().length};
bb.put{pass.getBytes());

public void encode{ByteBuffer bb) {

-put{direction);
if (accept == "false") { public int type{} {
bb.putShort(0); return
¥ H
else {
bb.putShort{1); public long getld() {
3 return id;
H H
public int type() { public veid setId{long id) {
return [Bx02]; this.id = id;
H }
public byte getDirection() { public String getPass{) {
return direction; return pass;
H }
puhl%c u?id s?tDirecFiun(?yte direction}) { public void setPass(String pass) {
) this.direction = direction; this.pass = pass;
H

public boolean isfAccept() {
return accept:

S

public wvoid setficcept({boolean accept) {
this.accept = accept;

¥

H

Figure 3-4 The Code of MoveMessage and LoginMessage

Figure 3-4 shows the code of the move and login message. We block all the

23

components which are different form another in the programs. The first block is the
red color block; it includes the message name and attributes name and type and the
message type value which all described in the MMOG script document. Therefore,
this block code will be generated according to the MMOG script document directly
without others logic determination. Next is the blue color block; because each
message program will have encode and decode method, and the method logic

operation will be different according to the attributes included by the message.

The decode method function is to put the attributes' value from the byte buffer, and
the encode method is doing the inverse work. Therefore, we must insert the code into
the method according to the type of the attributes. In the decode method, we must use
the JAVA byte buffer API to get.the values from the byte buffer, and the sequence
which we get the attributes must.follow the sequence of the attributes which we
described in the MMOG script. document..And ‘the encode method is also. For
example, we described the move 'message.in the Figure 2-1, it defined the move
message have two attributes; direction and accept, and they will have the same order

in the byte buffer.

Therefore, in the decode method, we assign direction attribute value by using the get()
method to get a byte value from the byte buffer and then we use some code to get the
accept attribute value. Because the JAV A byte buffer API doesn’t provide the method
to get or put the Boolean and string value, we use a shot value to replace the Boolean
value, and we use a short value and a byte array to replace the string. In the decode
method, we use getShort() method to get a short value from the byte buffer and to
differentiate the value. If it is equal to zero then it represent the Boolean value false, if

it isequal to one then it represent the Boolean value true. So, we can assign a Boolean

24

value to the accept attribute according to the short value. If the attribute type is the
string, then we use a short value to record the length of the string and use the bytes to
store the string. By the same way, in the encode method we also need to use some
JAVA byte buffer API to put the value into the byte buffer according to the type and

sequence of the attributes.

Thelast block isthe purple color block, if composed by the get and set methods. Each
attributes in the message will accompany a get and a set method. We must insert these
methods according to the attributes' name and type. For example, in the move
message, the attribute direction will have the getDirection() and the setDirection()
methods. In the getDirection() method, we will return a byte value which is the value
of the direction attribute. And in the setDirection().method, we will send a byte value
into the method, and this value will.be assigned to.the direction. Others attribute will

follow the same way to generate the get and-set-methods.

Besides the message code, we will also generate the message factory and message
handler code. The code of the login message factory and handler is show in the
Figure 3-5. They are also follow afixed format and the only thing that different is the
class name. We just only insert the message name into the program where the red
block area. Therefore, we can generate these codes fast without do any logic
determine. After generated the code, the last work is to generate the vwlogic
properties file. The game server will load the message handlers dynamically when
system startup according to the description of the vwlogic propertiesfile. The vwlogic
properties file will store the entire handler and factories name and class path, and the
record format is show in the next page. Each line represents a message handler or

factory and it distributes the class path and message type.

25

1=cis.game.common.message.L oginM essageFactory/0x01
2=cis.game.server.handler.L oginM essageHandl er/0x01
1=cis.game.common.message.M oveM essageFactory/0x02
2=cis.game.server.handler.MoveM essageHandl er/0x02

package mmog.message;

import mmog.net.x;
import mmog.doit.=x;
import java.util.=x;

public class ander

implements GameMessageHandler {
private static Logger log = Logger.getLogger(LoginHessageHander.class);
private GameContext context;
private Container container;
public void init{GameContext context) {
this.context = context;
container = context.getContainer(};

¥

public void onHessage({MessageInfo msginfo) {
[/=——-need something to work---*/ |

¥

H

package mmog.message;

import mmog.net.HessageFactory;
import mmog.net.Hessage;

public class [LoginHessageFactory
implenents MessageFactory {
public LoginHessageFactory() {
b

blic H 1 tel () {
P eeturn new[LoginMessagel):
¥
Figure 3-5 The Code of LoginMessageHandler and LoginMessageFactory

After analyzed the code of the message, factory and handler, then we designed a code
generation engine according to the results. The code generation engine must have
some functions like load, parser and generate each kind of the code. Figure 3-6 is the
DOIT platform code generation engine architecture. At first, we load the MMOG
script document from the assignment path, and then use a XML parser [DOM] to
parser the MMOG script document. According to the content of the document, call

each generator to generate the code.

26

vwlogic L vwlogic

1

1

Message Factory Factory
generator I:> code

1

|
Message Handler :> Handler
geherator i code

1
Message |
generator =:> Message
code

Figure 3-6 DOIT Platform Code Generation Engine

These codes are not accomplish, because there are still have some logic code which
can’'t be generated and need to be inserted into the program. Like the message handler
program, the onMessage method is responsible for process the message, and it will
need to connect to the database-or feferéfke tib: thé "s‘erver state. Therefore, we didn’t

define the script way in advance; the programmer must insert the logic code into the

method according to their necm"""n 9

3.3 SERVER MANAGEMENT SYSTEM IMPLEMENTATION

The implementation of the management system will follow the IMX architecture. The
system architecture is show in the Figure 3-7. It was divided into three layers, game
server layer, central management server layer and manager layer. At the game server
layer, we packaged the resource which we want to management into the Mbean, and
register the local server information to the central management server. At the centra
management server layer, we use a central management mechanism to management
all of the game servers, and provide a remote connection port which allow the remote
control. At the manager layer, we defined some remote management APl and we

implemented a remote management application by using these API. The system

27

manager can use this application to management the MM OG game servers. The entire
management system work flow and design detail will be discussed in the follow

subsection.

Manager User Interface

Central Management Server API

Manager Layer

Mbean Server

Servers Management Mbean

Server! ServerFactory Server2 ServerFactory IRGEMRELE LT

Server Layer
Mbean Server
MbeanLoader plug-in | Server manager Mbean

Game Server Game Server Layer

b :-‘.“' ‘.:.-.‘._ i_r‘.,lfl;__' 1 ' ;‘.- -
Figure 3-7 DOIT Platform Manai@gmgﬁt System A},F*Chltectur e

o i L
'R]

3.31 GAME SERVER LAYER

At the game server layer, the architecture and work flow are show in the Figure 3-8.
We designed a management plug-in program named MbeanLoader. This program is
designed follow the DOIT platform plug-in module and will be executed when the
server is startup. It will do some works; it will startup an Mbean server and also
creates a Serveranager Mbean which implemented by DOIT platform server
management API, then it will register this Mbean to the Mbean server and connect to
the central management server and make the register mechanism. Therefore, there are
some programs we need to development includes the Serveranager Mbean and

M beanL oader.

28

JMXConnectorServer
(2) Startup

Mbean Server

Repository

(3) Create

(4) Register | (1) Startup

(5) Register

Management Plug-in
MbeanlLoader Central

Plug-in Manager Management
Server

Game Server

Figure 3-8 Management Plug-in Work Flow

In the DOIT platform, the server.provides some management API. We use these AP
to implement the Serveranager-Mbean. Therefore, we defined a ServerManagement
MBean interface follow the IM X definition.“The interface defined the server state get
and set debug and remote register invoke methods. The Serveranager Mbean will

implement this interface and will be registered to the Mbean server.

public interface ServerManagerMBean {
public Integer getregioncount();
public void setregionnumber(Integer regionnumber);
public String getregionname();
public void setdebug(Integer debug);
public void Debug();
public Integer getAVAcount();
public Integer getNPCcount();
public Integer getRegionlD();
public void resetRegion();
public void register()

29

There is a part of the ServerManager code in the below. The getregioncount() method
is to get the server region count. The method content is to use the MBeanL oader
object reference to lookup the RegionManager object reference, and then use the
RegionManager’ s getRegionCount() method to get the count. So, each of the method

in the ServerManager will be implemented by the same way.

public class ServerManager implements ServerManagerMBean {
public MBeanL oader mbeanloader;

public Integer regioncount;

public ServerManager() {
}

public Integer getregioncount() {
RegionManager a = (RegionManager) mbeanloader.context.
lookupComponent(
RegionManager. COMPONENT _NAME);
return new I nteger(a.getRegronCount());

}

After implemented the Serveranager Mbean, we must implement the MbeanL oader
program. Because it is a plug-in for the DOIT platform, so we must development it
according to the platform plug-in definition. The DOIT platform defined a plug-in
interface; each plug-in program will implement this interface, and they will get the
server component manager object reference. By this object reference, the plug-in
program can get the server state or call some component method. Therefore, the entire
MbeanL oader code can be divided into four parts. First is the platform defined part,
this part is composed by a init(ServerContext context, Hashtable properties) method.
This method will be invoked by the game server when this plug-in program was start.

The game server will send the ServerContext object reference and a Hashtable

30

reference to the method, and then the MbeanL oader will get these object reference.

Hereistheinit() method content:

public void init(ServerContext context, Hashtable properties) throws MM OGComponentException {
this.properties = properties,

this.context=context;
}
The next part is to startup an Mbean server. During this process, we must assign a port

number to the Mbean server, and also create a JIMXConnectorServer for remote

connection. This part of the code is show in the below.

L ocateRegistry.createRegistry(port);

MBeanServer mbs = MBeanServerFactory.createM BeanServer();

IMXServiceURL url = new

JIM X ServiceURL ("service:jmx:rmi:///jndi/rmi://localhost:"#port+"/server");

JMX ConnectorServer cs =JM X ConnectorServerkFactory.newJV X ConnectorServer(url, null, mbs);
cs.start();

The third part is to create a ServerManager Mbean; and register it to the Mbean server.

This part of the code is show in the below.

sm = new ServerManager();
sm.mbeanloader = this;

mbs.registerM Bean(sm,new ObjectName("M Beans.type=mmog_management.ServerManager"));

The last part is to connect to the centra management server and make a register
procedure. We will use a IMX Connector to connect to the central server, and then set
the local server name, port and IP to it. At last, we will invoke the addserver method
to create a server factory which represents this game server’'s remote control

component. The code is show in the below.

31

IMXServiceURL url = new JMX ServiceURL ("service;jmx:rmi:///jndi/rmi://" + managementserverip +
":" +managementserverport + "/server");

JM X Connector jmxc = IM X ConnectorFactory.connect(url, null);

MBeanServerConnection mbsc = jmxc.getM BeanServerConnection();

ObjectName mbeanName = new

ObjectName("' M Beans:type=mmog_management.ServersM anagement");
mbsc.setAttribute(mbeanName, new Attribute(" servername”, servername));
mbsc.setAttribute(mbeanName,new Attribute("serverip”, address.getHostAddress()));
mbsc.setAttribute(mbeanName, new Attribute(" serverport”, port));

mbsc.invoke(mbeanName, "addserver”, null, null);

3.3.2 CENTRAL MANAGEMENT SERVER LAYER

At the central management server layer, the architecture and work flow are show in
the Figure 3-9. At first, we design a program named ManagementServer which is
responsible for the initialize of the central. management server; it will startup an
Mbean server and creates a ServersManagement Mbean and also registers it to the
Mbean server. After the management server have start, it will waiting for the remote
connection. It provides two kind-of the service; oneis for the game server and another

is for the manager.

JMXConnectorServer

(3) Startup

4 Y
Include Reference
v Mbean Server

Create (4)Register
= Repository

{1)Startup

(2)Create

ManagementServer

Figure 3-9 Central Management Server Work Flow

32

The game server can connect to the central management server to make a registry
procedure which be introduced at the chapter 2.2.2. When the central management
server receives this request, it will create a ServerFactory object according to the
game server’s register information. When the central management server receives the
manager’s request, it will find out the responsible server factory, and call this server
factory to execute the manager’s request. Therefore, at the central management server
layer, the components which must be development are the ManagementServer,

ServerFactory and ServersM anagement M bean.

The ManagementServer’s function is similar to the ServerManager which at the game
server layer. Therefore, we omit the description of its design detail. We will discuss
focus on other part. The ServersManagement Mbean will provide the function for
manager to get each server's. state, and the registry function for game server.
The ServersM anagementM bean-interface.is-show in the below. It is dividing into two
kinds. First is the get state method like.the regroncount() method in the code. This

kind of method will be implemented by using the ServerFactory object reference.

According to different server name, we can get the different ServerFactory object
reference, and each ServerFactory object will provide the methods which connect to
the game server and to invoke each method in the ServerManagerMBean. And the
second kind of the method is the registry method like the addserver() method in the
code. The complete registry procedure is that, the game server will connect to the
central management server, and then registry his information by invoke the
setservername(), setserverip() and setserverport() methods in the ServersManagement
Mbean. And then invoke the addserver() to create a ServerFactory object, and put this

object reference to the Hash table.

33

public interface ServersManagementMBean {
public void setservername(String servername);
public void setserverip(String serverip);
public void setserverport(String serverport);
public void setdebug(lnteger debug);
public void addserver();
public ServerManagementFactory getservermanagementfactory();
public Integer regioncount();
public String regionname();
public void Debug();
public void setregionnumber(Integer regionnumber);
public Integer getserverecount();
public ManagementData getmdata();
public Regiondata getregiondata();
}

After the implementation of the ServersManagement Mbean, another component we
must development is the ServerManagementFactory class. Figure 3-10 shows the
overview of the ServerManagementFactory class. It has the one to one relationship to
the ServerMnanger Mbean. According to-each-method of the ServerMnanger Mbean,
the ServerManagementFactory will also_have the same name method. Because the
ServerManagementFactory plays a intermediary role, it is responsible for the
connection to the game server and invoke the Mbean;s method. Therefore, it will have

the same methods as the ServerMnanger Mbean.

uopIAUUOD XM

1
I
ServerManagement : ServerManager |
| Factory - Mbean
getregionname() f t { getregionname()
setdebug() I : | setdebug()
Debug() | | [Debug()
getRegionlD() ' : | getReglonlD()
register() f E { gister()

Figure 3-10 Overview of the ServerManagementFactory Class

3.3.3 MANAGERLAYER

At manager layer, the managers can do management work by the management
application. We defined a set of the servers management APl to implement the
management application. The servers management APl are show in the below.
We design a ServersManagementFactory class; it provides some management
methods which can be used by the management application. We can construct a
ServersManagementFactory object by a centra management server’s IP address and
the server port number. And then we can use this object’s method to connect to the

central management server, and also get some game server’s state.

public class ServersManagementFactory

{

public ServersManagementFactory(String host, String port)

public MBeanServerConnection connect().{

public int getregioncount(String serverpame)

public String getregionname(String servername, Integer-i)

public void debug(String servername,nteger debug)

public String[] getservers()

public Vector getregionsbyServerName(String servername)

public Regiondata getregiondata(String servername, Integer regionnumber)

}

35

CHAPTER 4 CONCLUSIONS
After we implemented the development and management system under the DOIT

MMOG platform, we have got some results in the below.

(1) To use the XML to be the MMOG content description language will have some
advantage based on the XML's characteristic. First, the game content designer will
have a simply way to learn the description syntax, and they can edit a MMOG
description document by any text edit software. Second, because the XML uses
the Unicode encoding, so the content designer can use any language code to edit
the document. Third, alot of the datain the MMOG are formed by structured data,
so they are suitable be described by XML. After edited the description document,
we can use a XML schema file to verify if it is valid, and we can also use the

existing XML parser to analyze the document content and then process these data.

(2) By load the MM OG content description decument into the code generation engine,
we can generate the server side message processing component code. After
generating the code, the programmers just only write the game operation logic
code into the message handler; then the MMOG server side development will be
finished. According to the method, it will reduce the work load of the
programmers and also accelerate the development speed. In addition, because we
use the XML to describe the message protocol, we can modify the message
protocol by change the message attributes’ order in the description document, and
also generate the code. Therefore, we can get the new version of message code,
and we can implement the MM OG encryption mechanism by modify the message

protocol continuously.

36

(3) In the development of the MMOG management system, we use the IMX to solve
the network communication problems and use the Mbean server to implement a
central management server. It will reduce the work load of the MMOG
management system development. And due to all of the resource which we want
to management will be packaged into the Mbean in our management system. If
there have some new resource also must be management, then we just only add
some methods into the Mbean and make an Mbean re-registry action, and then we
can keep on the management work and also add these new management resource.
And the manager can connect to the management server by http connection or
other IMX support connection protocols. According to the method, it will make

the management work with more elasticity and more convenient.

37

CHAPTERS5 FUTURE WORKS

In our MMOG development system, the development flow is that. At first, we must
write a MMOG content description document follow a XML schema which defined
by the MMOG platform. And then load this document into the code generation engine;
it will generate the code according to the document content. Under this flow, each
MMOG platform will define a XML schema, and the game content designer will
describe the game content according it. Therefore, a MMOG description document

will be accepted by one uniqgue MMOG platform.

In order to let a MMOG to run on different MMOG platform, we hope to define a
standard MMOG description language based on XML in the future. It will be defined
as amost basic set of the data tagswhich can be used in any kinds of the MMOG, and
it also provides a custom tag mechanism. The user can define tags himself by the
customization mechanism for- different .components between different kinds of
MMOG. To use this language, the game. content designer can write a MMOG
description document follow a standard XML schema and this document can be
loaded by many different code generation engine and also generate the code.
According to the method, game content designer just only write a MMOG description
document, and then we can generate the game code in different MMOG platform.

Therefore, we can create the same MM OG on different MM OG platform.

In addition, the DOIT MMOG platform just defined the server side development way,
therefore the code generation engine which we designed for it will only responsible
for generate the server side code. Because there are exist some components are
similarly between the game server and the client, and they can be described in the

document. Therefore, we hope that there are a part of the client side code can be

38

generated by the code generation engine too. So we must design different
programming language based code generation engine for different client side

implementation way.

At the MMOG management system, we hope to add some system inspection
mechanism into the central management server to handle the distributed system
management problems. They can be the load balance mechanism, fault detection or

others. It will increase the management system’s functionality and the reliability.

39

BIBLIOGRAPHY
[1] Zonalnc., http://www.zona.net
[2] BigWorld Technology, http://www.bigworldgames.com/

[3] Extensible Markup Language (XML), http://www.w3.org/ XML/

[4] Java Management Extensions (JM X),
http://java.sun.com/products/JavaM anagement/

[5] Wang Shaofeng, Sun Jiaguang. "A Framework Design of Workflow Management
System with JavaRMI", ACM SIGPLAN Notices, Sep.2001, Vol.36, No.9,
p86-93

[6] Wang Shaofeng. "The Role of Java RMI in Designing Workflow Management
System”, ACM SIGSOFT Software Engineering Notes, Mar. 2001, Vol.26, No.2,
pp49-52

[7] Mulligan, J. & Patrovsky, B=(2003), Developing ©Online Games: An Insider's

Guide, New Riders.

[8] Lager SDK, http://www.lager.com.tw/sdk/index.html

40

