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Thermally Stable Optimum Design of Power

Heterojunction Bipolar Transistors

Student: Chih-Hao Liao Advisor: Dr. Chien-Ping Lee

Department of Electronics Engineering and Institute of Electronics,

National Chiao Tung University

ABSTRACT

In this dissertation, the design of ballasting resistors for thermally stable operation

of multi-finger transistors was investigated. When the devices are operated at high pow-

ers, devices will become unstable due to the phenomenon of the thermal coupling effect.

To prevent the thermal instability of multi-finger transistors, ballasting resistors are of-

ten used. How to design the ballasting resistors is key issue of the thermal stability.

The thermal resistance is the most importance parameter of thermal problem. Theoret-

ical calculation of the thermal resistance was shown and the properties of the thermal

resistance dependent on device geometry were discussed. The effect of temperature de-

pendent thermal conductivity on the heat flow equation and the thermal resistance were

also explained. The coupled current-voltage equations were derived and discussed to

explain the origin of the thermal coupling effect. A linearized temperature dependent

band-gap energy expression is used to simplify the definition of the thermal-electrical

feedback coefficient and the coupled current-voltage equations. The procedure utilized
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to solve the coupled current-voltage equations by using the Newton-Raphson method

was developed.

Multi-finger transistors with nonuniform distribution of ballasting resistance have

been analyzed by using the simple model. Analytical formulas for the best ballasting re-

sistance distribution for optimum thermal stability operation were derived. Comparing

to conventional method of using uniform ballasting resistance, the new schemes with

optimized design could result in a significant increase in the device current under stable

operation. With the ideal ballasting resistance distribution, the optimum ballasting re-

sistance for absolutely stable operation was obtained by solving an eigenvalue equation.

The second largest real positive eigenvalue of this eigenvalue equation is the optimum

ballasting resistance. A design procedure for the thermally stable optimum design was

developed. By extending the works on the multiple-finger transistor thermal stability

from the simple thermal-electrical feedback equations to the accurate model equations

and taking the temperature dependence of the thermal conductivity into account, two

design flows, uniform current design and uniform temperature design, of the best bal-

lasting resistance distribution for optimum thermal stability operation were developed.

Using these design flows, we could design the best ballasting resistance needed for ther-

mally stable operation under the specified current level or junction temperature.
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Chapter 1

Introduction

B ipolar transistors are useful for power amplifications. With the advances in fiber

communications, wireless and satellite communications, there is a strong de-

mand on the power transistors in microwave and millimeter frequencies. GaAs based

heterojunction bipolar transistors (HBTs), because of their excellent performance of

high-speed, high gain, high power density, high power-added efficiency (PAE), and su-

perior linearity, have become the dominant devices used in these applications [1]. In

recent year, they dominate the application of cellular-handset power stages and become

the excellent candidate of base stations for third-generation (3G) cellular networks and

Universal Mobile Telecommunication System (UMTS) mobile networks which require

high-power and extremely linear power amplifiers.

1.1 Background

Transistors used for power applications often have multiple fingers to spread out cur-

rent and dissipated heat. However, because of the heat generated and the nonuniform

heat distribution, transistors will become unstable at high power operation seriously

limiting the power handling capability of transistors. The equation that describes the

current-voltage behavior of a multi-finger transistor device is not just to multiply one

1



1.2 Motivation

finger equation to the total number of fingers. This simple scaling is only correct when

the transistor is operated at low power bias. As the power increases, the temperature

of each finger is not the same anymore. Usually, the fingers at the center of transistor

will be hotter than the fingers at the side. Because that each finger temperature will be

affected by the dissipated powers of other fingers, the current-voltage behavior of each

finger will also be affected by the other finger. It is the phenomenon of the thermal cou-

pling effect and is the reason that transistors will become unstable. When this happens,

thermal runaway is observed for Si BJTs and current collapse is observed for GaAs

based HBTs [2]-[5]. The discussions in this work are concentrated on InGaP/GaAs

HBTs. And the conclusion is also applicable to any material based HBTs.

1.2 Motivation

The poor thermal conductivity of GaAs often causes the devices to be self-heated

when operated at high powers. The junction built-in voltage decreases as the temper-

ature rises due to self-heating. The device can go into a negative resistance region as

a result of this phenomenon. When this happens, the device easily becomes unstable

because a same voltage bias can result in two different currents. The instability can

cause one or several fingers to suck up all the current while others become not func-

tional. This is the phenomenon of the current collapse. The mechanism of the current

collapse phenomenon is like that as the dissipated power increases the hotter finger will

conduct more current because of the nature of the current-voltage behavior of HBTs.

The higher finger current will result in hotter finger as well. This is a positive feedback

loop and eventually only the hottest finger can conduct current. For a power transistor,

only one finger conducting the total current of device means that the device must be

burned out. In order to have sufficient power output, the finger number of transistors

needs to increase largely to reduce the average power handled per finger to avoid the

thermal unstable effect. It will result in inefficient chip area usage when designing a
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large power device.

To prevent the thermal instability of multi-finger transistors, ballasting resistors are

often used. The voltage drop across these resistors compensates the build-in voltage

change due to temperature rise caused by self-heating and as a result the thermal sta-

bility is improved. Traditionally, the fingers and the ballasting resistors connected to

the fingers are usually identical to one another. However, because of the nonuniform

heat dissipation, it has been realized that the uniform layout commonly used for the fin-

gers of power transistor is not ideal for thermal stability. A non-optimized design can

easily over correct the problem and even make the problem worse. If we over design

the ballasting resistors, the performance of the device will suffer. For this reason, an

optimal design of ballasting resistors is very important. We need to know an minimal

value of ballasting resistors to just make the device stable. In this work, we tried to find

the optimum values of the ballasting resistors for each finger. And the optimum design

procedure for thermally stable multi-finger transistor was developed.

1.3 Overview and Outline

In Chapter 2, we first discuss the thermal resistance which is the origin of the ther-

mal feedback phenomenon of semiconductor devices. Although it is usually treated as

a fitting parameter and without any explanation, it has more physical significance than

just a fitting parameter and is derivable from the fundamental heat flow equation. The

analysis of this work is based on the assumption that the thermal resistance matrix is

already known. This chapter will talk about the methods to obtain the thermal resis-

tance and discuss its properties. Both of the theoretical and experimental methods to

determine the thermal resistance will be investigated and compared. Based on the re-

sults, some useful remarks about the chip layout design to reduce the thermal resistance

will be given. Additionally, when the temperature dependent thermal conductivity is

taken into account, by the help of Kirchoff transform, the thermal resistance obtained
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by solving the temperature independent kth heat flow equation can be used to rewrite

the temperature equation of a device from a linear function of the dissipated power to a

nonlinear one. The theoretical background of the extraction methods will be explained

by the temperature dependent thermal conductivity effect.

In Chapter 3, the temperature dependence of the current-voltage equation is taken

into account. This interaction between current and temperature is called self-heating

because the device temperature usually becomes higher than that without this effect.

The self-heating effect will make the current-voltage equation nonlinear and couple the

current-voltage behavior of each finger together. Because of the thermal coupling effect,

the finger temperature and the finger current will affect each other. The coupled current-

voltage expressions of each finger are functions of other finger currents. The coupled

current-voltage equations in simple model and accurate model was defined and derived

in this chapter. The method to solve the coupled current and temperature simultaneously

was also discussed. The MATLABr [6] program code used to solve the coupled current-

voltage equations was listed in Appendix A.

In Chapter 4, we solved the basic coupled current-voltage equations in simple model.

We found that there is an ideal distribution for the ballasting resistance. Significant im-

provement in thermal stability can be obtained when the ideal distributions are used.

Simple analytical formulas for the ideal distributions of the emitter ballasting resistance

to achieve the highest stable operation current are derived by using the concept of can-

cellation of positive and negative feedback. With the ideal distribution, we have also

found an optimum emitter ballasting resistance for absolutely thermal stable operation

condition that the device never becomes unstable. Base on the above results, a design

procedure for multi-finger transistors is developed [7].

In Chapter 5, we extended our model to the accurate model and take the temperature

dependence of thermal conductivity into account. A more physical model will give us a

more practical result. By this manipulation, although the behavior of the current-voltage

curves are quit different from the simple model, the basic concept of the ideal ballasting
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1.3 Overview and Outline

resistance distribution and the absolutely stable condition are still similar and only need

small modification. We could use the same derivation procedure to derive the ballasting

resistance equations for the accurate model. Two practical design procedures based on

uniform current and uniform temperature consideration were obtained and described

from the accurate model [8]. The results with the temperature dependent and constant

thermal conductivity were also compared.
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Chapter 2

The Thermal Resistance

T he thermal resistance is the central parameter to describe the thermal behaviors

of semiconductor devices. This important parameter, which is usually treated as

a fitting parameter and without any explanation, is the origin of the thermal feedback

phenomenon of devices. It has more physical significance than just a fitting parameter

and is derivable from the fundamental heat flow equation. The analysis of this work

is based on the assumption that the thermal resistance matrix Rth is already known.

Therefore, this chapter will discuss the thermal resistance further in advance, including

the methods to obtain it and its properties. There are two main categories of methods

to determine the thermal resistance Rth, theoretically and experimentally. Both of these

two methods will be investigated and compared in this work. The theoretical result will

show that Rth is a function of device geometry and inverse proportional to the thermal

conductivity kth of substrate wafers. Based on this result, some useful remarks about

the chip layout design to reduce Rth will be given.

Additionally, when the temperature dependent thermal conductivity is taken into

account, by the help of Kirchoff transform, the thermal resistance obtained by solving

the temperature independent kth heat flow equation still served as an essential parameter.

The only change needed in this case is that one has to rewrite the temperature equation

of a device from a linear function of the dissipated power to a nonlinear one. Of course,
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this change will affect device thermal behavior substantially but it will not increase

too much mathematical efforts. The following discussion will include this temperature

dependent thermal conductivity effect to understand the theoretical background of the

extraction methods.

2.1 Thermal Conductivity of GaAs and InGaP

The thermal conductivity is a basic material parameter. It is the key factor of ther-

mal behaviors of all devices. Although the temperature dependent property of GaAs

has been revealed for decades, a large discrepancy of data between literatures is still a

problem. Anholt has collected several expressions and values of the GaAs thermal con-

ductivity from different references (Table 4.1 in [9]). The deviations of parameters used

by different authors are remarkably. The physical preferable temperature dependence

expression could be written as [10], [11]

kth (T ) = kth0

(
T

300

)−b

. (2.1)

This expression has the mathematical advantages of integration and differentiation with

respect to temperature. Table 2.1 summarizes the values used in this work and the

values of silicon [12] and gold for reference. The experiment data which could be

used to determine the parameters in this expression can be found in [13]-[16]. Because

that HBT devices are always fabricated on semi-insulating substrate wafers, Blanc’s

kth0 (W/cm-◦C) b

GaAs 0.45 1.25

InGaP 0.05 0

Si 1.56 1.31

Au 3.17 -

Table 2.1. The thermal conductivity of GaAs, InGaP, Si and gold.
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2.2 Theoretical Calculation

[16] measurement result of high-resistivity sample is used in this work, i.e. kth0 =

0.45 W/cm-◦C. The temperature dependence is taken from Amith’s [14] work on lattice

thermal conductivity at high temperature, i.e. b = 1.25, under the assumption that the

difference between total thermal conductivity and lattice thermal conductivity is small

for GaAs.

The thermal conductivity of InGaP is another thermal parameter in the InGaP/GaAS

material system. The parameters of InGaP are listed and discussed here for reference. In

author’s knowledge, there is no direct measurement data of InGaP has been published.

Adachi’s [17] interpolation method is another way to obtain the InGaP value and is used

in this work. According to [17], the thermal resistivity of InP, WInP, is 1.47 cm-◦C/W

and GaP, WGaP, is 1.30 cm-◦C/W. With the assumption of the alloy-disorder bowing

factor CIn−Ga = 72 cm-◦C/W, the thermal resistivity of InGaP, WInGaP, can be com-

puted by substituted these three values into the interpolation formula

WInGaP (x = 0.51) = xWGaP + (1− x) WInP + CIn−Gax (1− x) .

The final value of the thermal conductivity of InGaP is 0.05 W/cm-◦C. Since there

is no reliable temperature dependent data for InGaP, a temperature independent kth is

assumed for simplicity.

2.2 Theoretical Calculation

In order to obtain the thermal resistance Rth theoretically, the fundamental heat flow

equation must be solved for the 3D temperature distribution inside the whole chip. For

most semiconductor devices, the heating source, the fingers in our case, can be treated as

a zero thickness surface source at the top of the wafer because the thickness of the active

region of devices is usually much smaller than the substrate. With this configuration, the

solved temperature distribution function can be used to define Rth. The property of Rth

and the effect of temperature dependent thermal conductivity will be discussed in the
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2.2 Theoretical Calculation

following subsections.

2.2.1 The Heat Flow Equation

The steady state heat flow equation is

∇ · [kth(T )∇T ] = 0. (2.2)

When the thermal conductivity kth is a constant, this equation will reduce to

∇2T = 0 (2.3)

or
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0. (2.4)

The boundary conditions of the problem at hand are

∂T

∂x

∣∣∣∣
x=0,a

= 0 (2.5)

∂T

∂y

∣∣∣∣
y=0,b

= 0 (2.6)

∂T

∂z

∣∣∣∣
z=0

= − pi

kth

(2.7)

T |z=c = TA. (2.8)

where pi is the dissipated power density of finger i and i is the finger index. Furthermore,

it is reasonable in most case to assume that the fingers will dissipate power uniformly

across the whole finger area of each finger. In other words, pi is constant for each finger

as a uniform heat source at the top of the chip. Fig. 2.1 is the schematic diagram of the

problem and boundary conditions that one needs to deal with. The physical meaning of

these boundary conditions are that the bottom of the chip is held on ambient or heat plate

temperature TA, only the finger area is the power source, and other surfaces are adiabatic.
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f3f2x

y

z

w

l

y

0

z=c

y=b

x=a

f1

Fig. 2.1. Schematic diagram of a 3-finger device. f1, f2, and f3 are the finger labels.

The heat flow equation (2.4) and its boundary conditions (2.5)-(2.8) can be solved by

the standard mathematical procedure and the result will be shown in Section 2.2.2. The

commonly used definition of thermal resistance is that the thermal resistance Rth is

equal to the temperature rising T −TA divided by the dissipated power P , which can be

rewritten as

T = TA + RthP. (2.9)

It is the result of constant thermal conductivity and only correct to the first order. In

other words, a constant Rth must come from constant kth and a temperature dependent

Rth means kth must be temperature dependent. As it will be shown in Section 2.2.2, be-

cause that Rth is inverse proportional to kth, the temperature dependence of the thermal

resistance is

Rth(T ) = Rth0

(
T

300

)b

(2.10)

where Rth0 is the thermal resistance of devices at 300 K. In the temperature dependent

kth case, (2.9) is not valid and a nonlinear equation of temperature is needed.

As taking the temperature dependent kth into account, the general heat flow equation
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2.2 Theoretical Calculation

(2.2) must be used. This equation can be solved by using the Kirchoff transform [18]

through defining a linearized temperature U (x, y, z) as

U (x, y, z) = TA +
1

kth(TA)

∫ T (x,y,z)

TA

kth(T )dT . (2.11)

Then, the heat flow equation (2.2) can be linearized to the same form as the temperature

independent case, which is

∇2U = 0. (2.12)

And the boundary conditions (2.5)-(2.8) are still unchanged in this problem except that

kth of (2.8) becomes kth(TA). As a result of the same form of differential equation and

boundary conditions, the solution of (2.12) will be the same as the solution of (2.3) by

letting kth = kth(TA) and Rth = Rth(TA), and (2.9) is also valid for U as

U = TA + Rth(TA)P. (2.13)

Substituting (2.1) into (2.11), one can obtain

U = TA −
(

TA

300

)b
300

b− 1

[(
T

300

)−(b−1)

−
(

TA

300

)−(b−1)
]

. (2.14)

By using (2.10), the real temperature T can be obtained from (2.14) as

T = TA

[
1− b− 1

TA

(U − TA)

] −1
b−1

= TA

[
1− b− 1

TA

Rth0

(
TA

300

)b

P

] −1
b−1

.

(2.15)

From the above derivation, it can be found that the thermal resistance calculated by

the constant kth condition is also a parameter of the temperature dependent kth case.

The only change of the new cases is that one needs to compute the real temperature T

from the linearized temperature U by using (2.15). Therefore, Rth0 can be treated as a
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universal parameter of thermal problems.

2.2.2 Theoretical Thermal Resistance

Many authors have solved the heat flow equation (2.4) by using the Fourier series ex-

pansion to analyze the thermal properties of HBT devices [19], [20]. A detail derivation

can be found in Chapter 5 of [21]. In the following paragraph, the result of [21] will be

used and simplified. Following the long derivation in Chapter 5 of [21], the temperature

distribution at every point inside the chip can be solved. But we are usually interested

only in the temperature distribution at the top surface, z = 0, where the fingers are

located. That is

T (x, y, 0) = TA +
clw

ab

N∑
i=1

pi

kth

+
2w

ab

∞∑
m=1

tanh(βmc)

β2
m

cos(βmx)
N∑

i=1

pi

kth

Fi

+
2l

ab

∞∑
n=1

tanh(νnc)

ν2
n

cos(νny)
N∑

i=1

pi

kth

Gi

+
4

ab

∞∑
m=1

∞∑
n=1

tanh(γmnc)

βmνnγmn

cos(βmx) cos(νny)
N∑

i=1

pi

kth

FiGi

(2.16)

where
Fi = 2 cos(βmxi) sin(βm

l

2
)

Gi = 2 cos(νnyi) sin(νn
w

2
)

βm =
mπ

a

νn =
nπ

b

γmn =
√

β2
m + ν2

n,

a is the x-direction dimension of the chip, b is the y-direction dimension of the chip, c is

the thickness of the substrate, w is the finger width, l is the finger length, i is the finger

index, and N is the total number of fingers. The schematic diagram of this problem is
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Fig. 2.1. Although (2.16) is valid for every points at the top surface, we only concern

about the highest temperature of a finger that is the temperature at the center of each

finger. Therefore, this problem becomes only need to simply consider the relationship

between two highest temperature points at the chip surface, the center point of finger i

and the center point of finger j. It can be concluded from the observation on (2.16) that

the finger temperature can be written as

Ti = TA +
N∑

j=1

Rthij
Pj (2.17)

where Pj = wlpj is the dissipated power of finger j and Rthij
is the thermal resistance

between finger i and finger j. It can be found that Ti is a function of dissipated power of

all fingers and coupled with other fingers through the parameter Rthij
. From (2.17) and

(2.16), the definition of thermal resistance can be expressed as

Rthij
=

c

abkth

+
2

abkthl

∞∑
m=1

tanh(βmc)

β2
m

cos(βmxi)Fj

+
2

abkthw

∞∑
n=1

tanh(νnc)

ν2
n

cos(νnyi)Gj

+
4

abkthlw

∞∑
m=1

∞∑
n=1

tanh(γmnc)

βmνnγmn

cos(βmxi) cos(νnyi)FjGj

=
c

abkth

+
4a2

abkthlπ2

∞∑
m=1

1

m2
tanh(

mπc

a
) cos(

mπxi

a
) cos(

mπxj

a
) sin(

mπl

2a
)

+
4b2

abkthwπ2

∞∑
n=1

1

n2
tanh(

nπc

b
) cos(

nπyi

b
) cos(

nπyj

b
) sin(

nπw

2b
)

+
16ab

abkthwlπ3

∞∑
m=1

∞∑
n=1

tanh(rmnπc)

mnrmn

[
cos(

mπxi

a
) cos(

mπxj

a
) sin(

mπl

2a
)

cos(
nπyi

b
) cos(

nπyj

b
) sin(

nπw

2b
)

]

(2.18)
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where

rmn =

√
(
m

a
)2 + (

n

b
)2.

If i = j, (2.18) gives the self-thermal resistance of fingers. If i 6= j, (2.18) gives the

coupling thermal resistance between fingers. For simplicity, it is reasonable to assume

that the first finger, the finger i, is located at center of chip and the second finger, the

finger j, is shifted along the y-axis by a finger separation ∆y. These assumptions can

be written as
xi = xj =

a

2

yi =
b

2

yj =
b

2
+ ∆y.

Now, the thermal resistance between finger i and finger j is

Rthij
=

c

abkth

+
4a2

abkthlπ2

∞∑
m=1

1

m2
tanh(

mπc

a
) cos(

mπ

2
) cos(

mπ

2
) sin(

mπl

2a
)

+
4b2

abkthwπ2

∞∑
n=1

1

n2
tanh(

nπc

b
) cos(

nπ

2
) cos(

nπyj

b
) sin(

nπw

2b
)

+
16ab

abkthwlπ3

∞∑
m=1

∞∑
n=1

tanh(rmnπc)

mnrmn

[
cos(

mπ

2
) cos(

mπ

2
) sin(

mπl

2a
)

cos(
nπ

2
) cos(

nπyj

b
) sin(

nπw

2b
)

]
.

(2.19)

By using the properties of the cosine function

cos(
nπ

2
) =





0 n = odd

−1 n = 2, 6, 10, · · ·

1 n = 4, 8, 12, · · ·
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and
cos(

2nπyj

b
) = cos(nπ +

2nπ∆y

b
)

= (−1)n cos(
2nπ∆y

b
),

and replacing the summation indices m and n by 2m and 2n, (2.19) can be rewritten

more concisely as

Rthij
=

c

abkth

+
a2

abkthlπ2

∞∑
m=1

1

m2
tanh(

2mπc

a
) sin(

mπl

a
)

+
b2

abkthwπ2

∞∑
n=1

1

n2
tanh(

2nπc

b
) sin(

nπw

b
) cos(

2nπ∆y

b
)

+
2ab

abkthwlπ3

∞∑
m=1

∞∑
n=1

tanh(2rmnπc)

mnrmn

sin(
mπl

a
) sin(

nπw

b
) cos(

2nπ∆y

b
).

(2.20)

Finally, in most case, we will prefer a square chip, i.e. a = b, because of the efficiency

of wafer area usage. Under this assumption, the result can be simplified further as

Rthij
=

c

a2kth

+
1

kthlπ2

∞∑
m=1

1

m2
tanh(

2mπc

a
) sin(

mπl

a
)

+
1

kthwπ2

∞∑
n=1

1

n2
tanh(

2nπc

a
) sin(

nπw

a
) cos(

2nπ∆y

a
)

+
2a

kthwlπ3

∞∑
m=1

∞∑
n=1

tanh(
2πc

a

√
m2 + n2)

mn
√

m2 + n2
sin(

mπl

a
) sin(

nπw

a
) cos(

2nπ∆y

a
).

(2.21)

This equation is easy to implement into computer program code but it is time consum-

ing. Especially, the convergence of this equation will become very slow when the finger

is much smaller than the chip. The most valuable advantage of (2.21) is its ability of cal-

culating the coupling thermal resistance. There is an important property of (2.21) that

Rth is inversely proportional to kth. If measured Rth is different from the theoretical
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result, it is straightforward to define an effective thermal conductivity to meet the mea-

surement data. The reason is that a real thermal environment is more complicated than

Fig. 2.1 shown. Adjusting kth to fit the measurement results is an easy way to include

other heat flow path effect. In this work, (2.21) will be used to calculate the theoreti-

cal thermal resistance and to analyze the properties of thermal resistance dependent on

device geometry. The infinite summations in (2.21) are replaced by finite summations

terminated at a large number of summation order. If without any mention, the results

using (2.21) will be obtained by summing the series up to order 30,000.

There is a closed-form analytical formula that provides an easy and fast way to

calculate the self-thermal resistance which is derived by Rinaldi [22]-[23]. He uses the

method of image, which is usually used in electrostatics problems, to solve the boundary

value problem of heat flow equation. Because of the feature of the method of image,

Rinaldi’s formula assumes an infinitely large chip in x−y plane. It means that the chip

size effect is not included. And he also uses the assumption c > w+l to cut the recursion

formula into closed form in z direction. Therefore, when the chip thickness becomes

small, his formula will become incorrect and not a closed-form analytical one. Although

there are these disadvantages, the advantage of his formula is taking the thickness and

the depth of the heat source into account. Two of his formulas will be used in this work.

The formula for a heat source of depth h/2 and thickness h extending from the top
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surface is

Rthii
(h) =

1

2πkth

1

wlh

{
− w2

2
arctan

[
2hl

w
√

w2 + l2 + 4h2

]

− l2

2
arctan

[
2hw

l
√

w2 + l2 + 4h2

]

− 2h2 arctan

[
wl

2h
√

w2 + l2 + 4h2

]

+ wl ln

[ √
w2 + l2

−2h +
√

w2 + l2 + 4h2

]

+ wh ln

[
l +

√
w2 + l2 + 4h2

−l +
√

w2 + l2 + 4h2

]

+ lh ln

[
w +

√
w2 + l2 + 4h2

−w +
√

w2 + l2 + 4h2

]}

− 1

2πkth

ln 2

c

(2.22)

and the formula for a zero thickness heat source at the top surface is

Rthii
=

1

2πkth

[
1

l
ln

(
l +

√
w2 + l2

−l +
√

w2 + l2

)
+

1

w
ln

(
w +

√
w2 + l2

−w +
√

w2 + l2

)]

− 1

2πkth

ln 2

c
.

(2.23)

A comparison between (2.21)-(2.22) was shown in Fig. 2.3-2.4. It will be found that

the solutions of (2.22) are always smaller than (2.23) because that a zero thickness heat

source is the worst case of this problem [22]. As the heat source becomes thicker the

thermal resistance and the finger temperature rise will decrease. But for HBTs, which

commonly are mesa structure, the heat source is more close to the zero thickness case

because the generated heat only could conduct through the bottom of the mesa to the

substrate and than the heat sink. The contribution of heat conduction from the sidewall

of the mesa could be neglected since the air surrounding the mesa will block the heat

conduction. The heat source will look like a surface source at the top of the substrate

and its area size not larger than the mesa area size. We usually use the emitter finger
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size, not the mesa size, as the heat source area size. It is because in normal operation,

the electric field inside the collector is very high and the electron from the emitter into

the collector will be accelerated straightly through to the sub-collector. As a result, the

collector current will be confined inside the region under the emitter and generate heat

here. Using emitter size is more suitable than mesa size.

2.2.3 Properties of Thermal Resistance

Fig. 2.2(a) and (b) shows the effect of finger area size A. The finger width w and

finger length l are controlled by the aspect ratio r = l/w. There are five aspect ratios

r used in (2.23) and two in (2.18) to compute the Rth. As the finger area A becomes

smaller (2.18) needs more terms to get a converged solution. In this case, we use order

100,000 to get the solutions. Fig. 2.2(b) shows thermal resistance increases as finger area

decreases. The reason is quit straightforward to understand. When we feed the same

power into two fingers of different area, the small one will have higher temperature

rise. It is because the definition of thermal resistance is temperature rise divided by

input power, not power density. Since power density is the real operation constrain of a

device, a quantity of thermal resistance times finer area is more meaningful to describe

the thermal behavior of devices. Fig. 2.2(b) shows this quantity. From this figure, we

know that a small finger will has less temperature rise when two devices conduct the

same current density and bias voltage. The benefit of scaling down is very obviously in

thermal consideration.

Fig. 2.3 shows the effect of finger shape. There are three devices of different finger

area A whose finger width w and finger length l will be changed accordingly to keep the

finger area constant. The curves in Fig. 2.3 are symmetric with respect to the vertical

line at w =
√

A and only the left half part of the curves are shown. The result that the

solutions of (2.21) and (2.23) are very close to each other confirms the validity of (2.23)

as the chip size a large enough. From Fig. 2.3, two observation will be obtained. First,

the thermal resistance will reach its maximum value when the finger is square, i.e. w =
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Fig. 2.2. The size effect of finger area for aspect ratio r = l/w fixed at 1, 5, 10, 25, and 50. (a)

Thermal resistance as a function of finger area. (b) The quantity of thermal resistance times finger area

as a function of finger area. Symbols were calculated by (2.21) and lines by (2.23). The other parameters

that hold constant are a = 1000 µm, c = 100 µm, and ∆y = 0 µm.
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2.2 Theoretical Calculation

l. Second, the larger finger area is the smaller thermal resistance. The first observation

implies that a long and narrow finger is preferred in the thermal consideration. But

the second does not say we need a large finger. The reason has been explained in the

previous paragraph.

Fig. 2.4 shows the effect of substrate thickness c. Because of the derivation of (2.23)

using the assumption c > w + l, which had mentioned in Section 2.2.2, as the thick-

ness shrink the solutions of (2.23) and (2.22) will deviate from the solutions of (2.21).

From Fig. 2.4, we can find that thinning the substrate is not an effective way to reduce

thermal resistance. When the substrate thickness thinning from 700 µm to 50 µm the

thermal resistance is only reduced by 2.7 percent for 2.8 µm× 12 µm device and 6.6

percent for 3 µm× 40 µm device. It can be found that the decreasing is faster for large

thermal resistance device. Although thinning the substrate is not an effective way, the

improvement may be obvious when the original thermal resistance is very large.

Fig. 2.5 shows the effect of chip size a. Thermal resistance will increase quickly

when the chip size a shrinks to be smaller than 100 µm. It is because the conducted

heat starts to be confined in x-y direction and the heat density inside the substrate will

be higher. This result can be used to explain how large chip size a is enough when

applying (2.23). The thermal resistance will stay in a rather constant value when chip

size increases to be larger than 200 µm. Actually, the key parameter is the distance

between finger edge and chip edge, not the chip size. It is more correctly to say that

200 µm is the minimum distance between finger edge and chip edge that (2.23) is valid.

Fig. 2.6 shows the effect of finger separation ∆y. Coupling thermal resistance de-

creases as finger separation increases. Even the coupling thermal resistance when the

separation is less than half of finger width can be defined. It represents the temperature

rise inside the finger itself. We can find that the coupling thermal resistance decreases

slowly as the separation smaller than w/2 but decrease rapidly as the separation larger

than w/2. The coupling thermal resistance inside a finger is more or less constant. From

this result, it is reasonable to use the center point temperature of a finger to represent the
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Fig. 2.3. Thermal resistance as a function of finger width for finger area fixed at 100, 50, and 25 µm2.

Symbols were calculated by (2.21), thick lines by (2.23) with, and thin lines by (2.22). The other param-
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Fig. 2.6. Thermal resistance as a function of finger separation for devices of 2.8 µm× 12 µm,
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than 10 µm and log scale as finger separation larger than 10 µm. Data were calculated by (2.21). The

other parameters that hold constant are a = 1000 µm and c = 100 µm.
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2.3 DC Measurement

whole finger temperature.

2.3 DC Measurement

There are many experimental methods in literature to measure the thermal resis-

tance of devices. Scott [24] has compared these methods systematically and completely.

These methods could be divided into two major groups, including pulsed I−V [25] and

DC measurement [26]-[29]. Although pulsed I−V method is more directly from the

physical point of view, this method needs more complicated instrument setup because

the pulse width must be less than 1 µs. It means this method is difficult to obtain satis-

factory results and needs advanced measurement skill. In this work, the subjects will be

concentrated on DC measurement method and two measurement methods, Marsh’s [29]

method and Bovolon’s [28] method, will be applied to the experimental data of a 2× 20

InGaP/GaAs HBT to extract the thermal resistance.

The DC method could be also classified into two major kinds by their theoretical

foundations. To explain their difference, two types of variables must be defined first.

The first is the sensing variable and the second is the controlling variable. The sensing

variable could be the current gain β or the base-emitter voltage VBE that is monitored

during the measurement. The controlling variable could be the dissipated power P or

the heat plate temperature TA that is controlled to drive the measurement. Changing

sensing variable from one to another is theoretically equivalent. In this work, β will

be used as the only sensing variable for the sake of brevity. Now, the difference of

these two methods can be defined as follows: The first kind of the DC method uses

the assumption to extract Rth that the junction temperature Tj with different controlling

variables but equal sensing variables will be the same. Otherwise, the second kind uses

the ratio of the derivatives of sensing variables with respect to the controlling variables

as Rth. Liu’s [27] method and Marsh’s [29] method are the first kind. Dawson’s [26]

method and Bovolon’s [28] method are the second kind. The reasons will be described
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2.3 DC Measurement

in the following subsections.

2.3.1 The Equal Sensing Variables Method

Liu [27] supposes that the intercept points of measurement curves under different

controlling variables in the IC−VBE plane will have the same Tj and Tj will approach

heat plate temperature TA as the dissipated power P is small. Therefore, he measure

the regressive IC−VBE curves at constant TA with varied high collector voltage VC

and linear IC−VBE curves at low VC with different TA. The low VC curves serve as

temperature probes to determine Tj of the regressive curves and then extract the thermal

resistance Rth. Liu’s method has a shortcoming that it is difficult to measure the junction

temperature of a device under high biasing current operation. Because of the existence

of knee voltage, collector voltage cannot decrease low enough to keep both low power

requirement and normal operation requirement at the same time. Besides, as the current

becomes large the emitter resistance will distort the IC−VBE curves at low VC bias from

linear and make the task more difficult. For this reason, Liu’s method is only suitable

for the low current condition.

Marsh [29] supposes β is only the function of Tj and IC . Consequently, he measures

IC−VC curves at constant IB with varied TA and then intercepts each curve with a

specified horizontal constant IC line to extract the linear dissipated power versus heat

plate temperature P−TA curves. Because of each (IC , VC) pair have the same β and IC ,

the last variable Tj should be also the same. Therefore, every points on the P−TA line

under the same IC will have the same Tj . Then, the slope of P−TA line can be used to

extract Rth. Now, we use Marsh’s method to measure the thermal resistance of a 2× 20

InGaP/GaAs HBT whose substrate had been thinned to 100 µm thick. The theoretical

Rth of this device assuming a = 1000 µm as shown in Fig. 2.4 is 1389 ◦C/W. Fig. 2.7

shows the measured IC−VC curves at six different heat plate temperature and constant

base current IB = 1 mA. The intercept points of eight specified currents and IC−VC

curves are shown as P−TA curves in Fig. 2.8. The linear relationship (2.9) between
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Fig. 2.7. Measured I−V curves of a 2×20 InGaP/GaAs HBT for IB = 1 mA at heat plate temperature

changing from 300 K to 450 K with 30 K step. The specified collector current increases from 36 mA

to 50 mA with 2 mA step to interpolate the linear dissipated power versus heat plate temperature P−TA

data of Fig. 2.8.

temperature and power can be rewritten as

P =
T − TA

Rth

. (2.24)

By using this equation, we can apply linear fit to these eight lines of different specified

current to extract Rth and Tj . The fitted results are also shown in Fig. 2.8. We can

find that the fitted thermal resistance is still a function of junction temperature. Fig. 2.9

shows the results that the extracted thermal resistances of Fig. 2.8 are fitted by (2.10).

Although it seems reasonable that Rth0 = 650 ◦C/W and b = 1.37 are obtained, there is

a theoretical contradiction that (2.9) and (2.24) are based on the assumption of temper-

ature independent thermal conductivity which implies a temperature independent Rth.

Unless the dissipated power of devices is small enough to make the first order expansion

of (2.15) applicable, the assumption of Marsh’s method that the same β and IC implies
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2.3 DC Measurement

the same Tj obviously is not quit correct. The junction temperature Tj of the high power

part of the curves in Fig. 2.8 should be higher than the extracted value. For this reason,

Marsh’s method is only suitable for low power condition.

2.3.2 The Derivatives of Sensing Variables Method

Dawson [26] measures the slope of linear IC−P curves at constant IB and TA, and

the slope of linear IC−TA curves at constant IB and P . The ratio of these two slopes is

Rth. The reason will be explained in the following paragraph. Here, IC is equivalent to

β because the IB is held constant. Therefore, changing IC to another sensing variable

VBE is theoretically equivalent. One drawback of Dawson’s method is that the validity

of his method is restricted to low Tj region because of the nonlinearity of the sensing

variables. This drawback can be improved by Bovolon’s [28] method. His method is

almost the same as Dawson’s beside the concept of differential thermal resistance at

operating points. Bovolon measures the derivative of IC with respect to P at constant

TA and the derivative of IC with respect to TA at constant P . Similarly, the ratio of

these two derivatives is Rth. Because that Bovolon’s measurement is with respect to

small perturbation of controlling variables, not the wide range slopes, his method is

mathematically correct and free from the nonlinear error of sensing variables. Scott

[24] categorizes Dawson’s method as the first kind, the equal sensing variables method.

But we thought Dawson’s method should be the second kind, the derivatives of sensing

variables method. It is because this method measures the slope of β or VBE versus P

and TA to calculate Rth without equalizing the sensing variables.

The theoretical foundation of this method will be explained, now. We relist (2.15)

here for convenient.

T = TA

[
1− b− 1

TA

Rth0

(
TA

300

)b

P

] −1
b−1
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This nonlinear relationship can be rewritten as

P =
−1

b− 1

300

Rth0

[(
T

300

)−(b−1)

−
(

TA

300

)−(b−1)
]

. (2.25)

By using (2.15) and (2.25), the following relations of partial derivatives between these

three variables, T , P , and TA, will be obtained.

∂T

∂P

∣∣∣∣
TA=const.

=

(
∂P

∂T

∣∣∣∣
TA=const.

)−1

= Rth0

(
T

300

)b

(2.26)

∂T

∂TA

∣∣∣∣
P=const.

=

(
∂TA

∂T

∣∣∣∣
P=const.

)−1

=

(
T

TA

)b

(2.27)

∂TA

∂P

∣∣∣∣
T=const.

=

(
∂P

∂TA

∣∣∣∣
T=const.

)−1

= −Rth0

(
TA

300

)b

(2.28)

These three equations (2.26)-(2.28) are the foundations of the derivatives of sensing

variables method. There are many combinations of the ratio of derivatives corresponding

to different measurement methods that can be used to determine Rth. The most common

one of them is to divide (2.26) by (2.27).

∂T

∂P

∣∣∣∣
TA=const.

∂T

∂TA

∣∣∣∣
P=const.

=

∂T

∂β

∂β

∂P

∣∣∣∣
TA=const.

∂T

∂β

∂β

∂TA

∣∣∣∣
P=const.

= Rth0

(
TA

300

)b

(2.29)

It is because that β is an explicit function of T . The ∂T/∂β terms in the denominator

and numerator of (2.29) are equal and can be canceled out. The final result is

∂β

∂P

∣∣∣∣
TA=const.

∂β

∂TA

∣∣∣∣
P=const.

= Rth0

(
TA

300

)b

. (2.30)

This equation is the kernel of the derivatives of sensing variables method. In a linear
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model, such as Dawson’s and Bovolon’s, because of b = 0, the ratio of these two deriva-

tives gives the constant thermal resistance. Equation (2.30) is more general to be able to

include the temperature dependent effect of thermal resistance.

Now, we use Bovolon’s method and (2.30) to measure the thermal resistance of the

same 2×20 InGaP/GaAs HBT device in Section 2.3.1. The measured data we need is the

same IC−VC curves in Fig. 2.7 as Marsh’s method. And then, we convert these curves

to current gain versus dissipated power β−P curves as shown in Fig. 2.10. By using the

data of Fig. 2.10, we can calculate these two derivatives we need. The derivatives are

taken by averaging the slopes of two adjacent data points. The slopes are calculated by

the forward difference, i.e. slope = (yi+1 − yi)/(xi+1 − xi). The first and last points

of each data sequence will vanish after differentiating. Careful measurement is needed

when applying Bovolon’s method because of the use of derivatives by which any small

fluctuation will be amplified and cause large error. The measured Rth and the fitted

lines by using (2.30) are shown in Fig. 2.11. The measured Rth for each temperature

almost lay on the same level as (2.30) expected. It is a good proof that Bovolon’s

method is theoretically correct and better than Marsh’ method. The fitted parameters

Rth0 = 1100 ◦C/W and b = 1.15 are obtained.

2.4 Summary

The values of the thermal conductivity and its temperature dependence of GaAs

and InGaP in literature had been reviewed. The values used in this work are given in

Table 2.1. The effect of temperature dependent thermal conductivity on the heat flow

equation and the thermal resistance was also explained. Theoretical calculation of the

thermal resistance was shown and the properties of the thermal resistance dependent on

device geometry were discussed. A small, long and narrow finger is better for the sake

of reducing thermal resistance. Thinning the substrate is not an effective way to reduce

thermal resistance. Tow methods of DC measurement were investigated and had been
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applied to a 2×20 InGaP/GaAs HBT. It was found that Marsh’s method is only suitable

in low power operation and Bovolon’s method is preferred.
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Chapter 3

The Coupled Current-Voltage

Equations

W hen the temperature dependence of the current-voltage equation is taken into

account, the device current will be affected by the device temperature and

in turn the device temperature will be changed by the device current. This interaction

between current and temperature is called self-heating because the device temperature

usually becomes higher than that without this effect. The self-heating effect will make

the current-voltage equation nonlinear and a method to solve current and temperature si-

multaneously is needed. The current-voltage equations we need to solve will be defined

first in this chapter.

For a multi-finger transistor, the equation that describes the current-voltage behavior

of the whole device is not just to multiply one finger equation to the total number of fin-

gers. This simple scaling is only correct when the device is operated under low power

condition. As the power increases, the temperature of each finger is not the same any-

more. Usually, the fingers at the center of transistor will be hotter than the fingers near

the edge. Because that each finger temperature will be affected by the dissipated power

of other fingers, the current-voltage behavior of each finger will also be affected by the

other fingers and the current of each finger will not be the same. It is the phenomenon
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3.1 The Current-Voltage Equation with Self-Heating

of the thermal coupling effect. When this coupling effect happens, a single expression

cannot describe the current-voltage behavior of the whole device. We need a set of sep-

arated coupled current-voltage expressions for each finger and the current of each finger

is a function of other finger currents. In this chapter, the coupled IC−VBE equations

will be derived and the method to solve them will also be discussed. The equations and

the solving method will be used in the following chapters to design a thermally stable

multi-finger transistor.

3.1 The Current-Voltage Equation with Self-Heating

The classical Ebers-Moll expression of collector current versus emitter-base voltage

equation, IC−VBE equation, is [19]

IC = IS

[
exp

(
qVBEj

kT

)
− 1

]
(3.1)

where IS is the temperature dependent reverse saturation current and VBEj is the base-

emitter junction voltage given by

VBEj = VBE − (IC + IB)(RE0 + REb)− IB(RB + RBb)

= VBE − ICRE (3.2)

where RE0 and RB are the emitter and base resistance, REb and RBb are the ballasting

resistors for emitter ballasting and for base ballasting, and RE is the total resistance seen

into the emitter and given by

RE =

(
1 +

1

β

)
(RE0 + REb) +

1

β
(RB + RBb) (3.3)

where β is the current gain. In most case, RE can be treated as a constant because

that RE0, RB, REb, and RBb are almost temperature independent and the temperature
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3.1 The Current-Voltage Equation with Self-Heating

dependence of β is small, especially true for InGaP/GaAs HBT. The ballasting resistors

will be discussed in the following chapters.

There are two expressions of IS depending on its origin of physics. For drift-

diffusion limited devices, IS is

IS =
qADnNCNV

WBNB

exp
(
− q

kT
Eg

)
(3.4)

where A is the device area, Dn is the diffusion constant, NC is the conduction band

density of states, NV is the valence band density of states, WB is the base width, NB is

the base doping, and Eg is the band-gap voltage of the base layer material. We known

NC and NV have the temperature dependence ∼ T 1.5. If we substitute the Einstein rela-

tion Dn = (kT/q)µn , where µn is the mobility, into (3.4) and assume the temperature

dependence of mobility as µn ∼ T−x where x > 0, the temperature dependent reverse

saturation current IS of (3.4) can be obtained as

IS ∼ T 4−x exp
[
− q

kT
Eg(T )

]
. (3.5)

For thermionic emission limited devices, IS is [30]

IS = AA∗T 2 exp
[ q

kT
(−Eg − Vp −∆EC)

]
. (3.6)

where A∗ is the effective Richardson constant, Vp is the energy difference between the

valence band edge and the hole quasi-Fermi level Efp of the base layer, i.e. EV − Efp,

and ∆EC is the conduction band discontinuity at base-emitter junction. Here, we neglect

the voltage drop of the base depletion region because that the base doping is very high

in modern HBT devices. It implies that the base depletion region is negligible small and

the voltage drop on it is also small. In order to eliminate the variable Vp in (3.6), we

substitute the relation NB = p = NV exp(qVp/kT ) into (3.6). Although this relation is

derived from the Boltzmann statistics which is valid for non-degenerate semiconductor,
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3.1 The Current-Voltage Equation with Self-Heating

it still could give us a qualitative analysis of the temperature dependence of IS . After

substituting this relation, (3.6) becomes

IS = AA∗T 2NV

NB

exp
[
− q

kT
(Eg + ∆EC)

]
.

If we assume the effect of ∆EC can be written as

exp
(
− q

kT
∆EC

)
∼ T y,

the temperature dependent reverse saturation current IS of (3.6) can be obtained as

IS ∼ T 3.5+y exp
[
− q

kT
Eg(T )

]
(3.7)

where y > 0 because of the fact that ∆EC is almost temperature independent and results

in as the temperature increasing the exponential term will also increasing. As the results

of (3.4) and (3.6), we know that no matter the dominated effect of device current is

drift-diffusion limited or thermionic emission limited, IS has a general form as

IS = IS0

(
T

300

)γ

exp
[
− q

kT
Eg(T )

]
(3.8)

where IS0 is the temperature independent reverse saturation current or the reverse satu-

ration current at 300 K, and the exponent γ is a constant. From (3.5) and (3.7), we know

that if γ > 4, the current is thermionic emission dominated and if γ < 3.5, the current

is drift-diffusion dominated. In the range 3.5 < γ < 4, these two mechanisms are both

possible.

In this work, because we only concern about the normal operation of devices, i.e.

the base-emitter junction forward biased, the second term in the square brackets of (3.1),

−1, can be neglected safely. Combining (3.2) and (3.8), we have the general expression
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Fig. 3.1. The fit of the Gummel data of a 2 × 20 InGaP/GaAs HBT to (3.11) which measured at heat

plate temperature changing from 300 K to 450 K with 30 K step. The fit range is limited to the low

power data which is selected from VBE ≥ 1.0 V to IC ≤ 2 mA. Small symbols are measured data, large

symbols are the measured data used in fit, and the line is the fit curve of (3.17). The fitted parameters

and variances of parameters are listed in the figure. “Chiˆ2/DoF” is the reduced chi-square. “Rˆ2” is the

R-square or the square of correlation coefficient.

of the IC−VBE equation as

IC = IS0

(
T

300

)γ

exp
{ q

kT
[VBE − Eg(T )− ICRE]

}
(3.9)

and take the logarithm of both sides of (3.9) as

VBE =
kT

q

(
ln

IC

IS0

− γ ln
T

300

)
+ Eg(T ) + ICRE. (3.10)

Fig. 3.1 shows the fit of the varied temperature Gummel data, which are the IC−VBE

curves measured with collector and base shorted, of a 2 × 20 InGaP/GaAs HBT. The
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3.1 The Current-Voltage Equation with Self-Heating

fitting equation is

VBE =
nkTA

q

(
ln

IC

IS0

− γ ln
TA

300

)
+ Eg(TA) (3.11)

where n is the ideal factor which is close to one, n = 1.022 for our device, and will set

to unity in the following discussions for simplicity. We use the equation (3.17), which

will be discussed later, for Eg(TA) and take the band-gap narrowing effect into account.

We use Harmon’s [31] equation for GaAs to compute the band-gap narrowing value of

the base material, i.e.

∆Eg = 2.55× 10−8 N
1
3
B V (3.12)

where NB is the base doping level. For our devices, NB = 4 × 1019 cm−3 and the

corresponding ∆Eg = 87.2 mV. The extracted γ is about 4.21 which implies that our

device is most possibly thermionic emission dominated. It is a common property of

HBTs. But the value of fitted γ is still close to the largest possible value of the drift-

diffusion dominated case. And we cannot exclude this possibility completely. It may be

because that the conduction band discontinuity ∆EC between InGaP and GaAs is small,

electrons could pass through the base-emitter junction with little blocking.

From the definition of the thermal-electrical feedback coefficient φ and (3.10), we

can obtain an expression as [32]

φ = −∂VBE

∂T

∣∣∣∣
IC=const.

= −k

q

(
ln

IC

IS0

− γ ln
T

300
− γ

)
− ∂Eg

∂T
. (3.13)

The negative sign in the definition is to make φ positive because that VBE decreases as

T increases. We can see that the thermal-electrical feedback coefficient φ = φ(IC , T ) is

actually a function of collector current and temperature even though it is usually treated

as a constant because of the slow variations of ln IC and ln T . Although (3.9) and (3.10)

are the more accurate equations, we often want a simplified formula in practice to look

inside the physics of the thermal feedback effect. We use the Taylor series to expanse
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3.1 The Current-Voltage Equation with Self-Heating

VBE(IC , T ) in (3.10) about T = TA to the first order.

VBE(IC , T ) = VBE(IC , TA) +
∂VBE

∂T
(T − TA)

=
kTA

q

(
ln

IC

IS0

− γ ln
TA

300

)
+ Eg(TA) + ICRE

− φ(IC , TA)(T − TA)

(3.14)

From (3.14), if we set φ(IC , TA) to be a constant, we can get the commonly used thermal

feedback IC−VBE equation [2].

IC = IO exp

{
q

kTA

[VBE + φ(T − TA)− ICRE]

}
(3.15)

where IO is given by

IO = IS0

(
TA

300

)γ

exp

[
−qEg(TA)

kTA

]
. (3.16)

We will call (3.15) the simplified IC−VBE equation. In this equation, it is very clear that

the contribution of the self-heating effect on collector current is opposite to the effect

from the emitter resistance. The emitter resistance acts as a negative feedback element

but the self-heating effect acts as a positive feedback element. In order to achieve a

thermal stable transistor, we can utilize the negative feedback effect of emitter resistance

to compensate the positive feedback effect of self-heating. This is the original ideal of

this work.

The last parameter we have mentioned but not discussed in IC−VBE equation is

the band-gap voltage Eg which is an important factor to affect the thermal behavior of

devices. The temperature dependence of band-gap voltage Eg can be represented by the

well-known Varshni’s empirical formula [33].

Eg(T ) = Eg0 − αT 2

T + Tβ

(3.17)
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Fig. 3.2. The linear fit of (3.18) in the temperature range from 250 K to 700 K. The thick line is the

curve of (3.17), and the thin line is the fitted line (3.20). The fitting equation and the fitted parameters are

listed in the figure. “R” is the correlation coefficient. “SD” is the standard deviation of the fit.

For GaAs, that is

Eg,GaAs(T ) = 1.519− 5.405× 10−4 T 2

T + 204
V. (3.18)

Sometimes, it is more convenient to represent Eg as a linear function of temperature.

We use the linear fit of (3.18) in the temperature range from 250 K to 700 K as the linear

expression of Eg, i.e.

Eg,GaAs(T ) = 1.570− 4.88× 10−4T V. (3.19)

Fig 3.2 is a comparison between (3.18) and (3.19) and shows that two curves fit very

closely. The maximum deviation in the fitted temperature range is about 3.3 mV and in

the temperature range from 290 K to 670 K is less than 1.5 mV. The validity of (3.19)

in this temperature range is confirmed. We still need to take the band-gap narrowing

effect into account to obtain our final expression of the band-gap voltage by subtract
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3.2 The Coupled Current-Voltage Equations

∆Eg from Eg,GaAs(T ). Combining (3.12) and (3.19), we have

Eg,GaAs,bgn(T ) = E∗
g0 − α∗T

= 1.483− 4.88× 10−4T V.
(3.20)

This linear expression of Eg will simplify the whole problem largely but with small

error. It is the reason why we use (3.20) in the following thermal stable problems. By

substituting (3.20) into (3.13), the thermal-electrical feedback coefficient φ is obtained

as

φ(IC , T ) = −k

q

(
ln

IC

IS0

− γ ln
T

300

)
+ γ

k

q
+ α∗. (3.21)

With (3.21), we can simplify (3.10) as

VBE =
kT

q

(
ln

IC

IS0

− γ ln
T

300

)
+ E∗

g0 − α∗T + ICRE

= E∗
g0 − φT + γ

k

q
T + ICRE.

(3.22)

Define a new variable φ∗,

φ∗ ≡ φ− γ
k

q
(3.23)

then, (3.22) becomes

VBE = E∗
g0 − φ∗T + ICRE. (3.24)

We will call (3.24) the accurate IC−VBE equation. In this work, both the accurate and

simplified IC−VBE equations will be solved and used to derive the thermal stable design

of ballasting resistors.

3.2 The Coupled Current-Voltage Equations

Although the simplified IC−VBE equation (3.15) and the accurate IC−VBE equation

(3.24) are both only functions of finger temperature Ti and current ICi
apparently, from

the discussion of Section 2.2 and (2.17), it can be found that the finger temperature is a
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3.2 The Coupled Current-Voltage Equations

function of all finger powers Pj . The finger temperature Ti will be affected by the power

of other fingers and then change the behavior of the finger current ICi
. The amount of

the influence of the power of other fingers on the finger temperature Ti is determined by

the values of coupling thermal resistance. Therefore, the coupling effect is originated

from the finger temperature coupling dependence on the power of other fingers through

the coupling thermal resistances.

For a multi-finger transistor, the fingers usually mean emitter fingers. Although the

emitter fingers are separated in device structure, they are electrically connected by metal

line to the contact pads. The voltage bias of all fingers is the same. We will assume VC

and VBE are the same for all fingers in the following analysis. The dissipate power Pi

for each finger is

Pi = ICi
VC + IBi

VBE

= ICi
VC +

ICi

β
VBE

∼= ICi
VC .

(3.25)

Here, we neglect the power contribution of IBi
and VBE . It is because that β is quit large

and base-emitter voltage is several times smaller than collector-emitter voltage under

normal operation. Therefore, the finger temperature can be simplified as just a function

of collector currents of all fingers, i.e. Ti = Ti(IC1 , IC2 , IC3 , · · · ICN
). Then, we

can combine (2.15) and (2.17) to obtain the coupled temperature equation of the finger

temperature Ti as a function of the finger current ICj
and the derivative of Ti with respect

to the finger current ICj
. For the constant thermal conductivity case, they are

Ti = TA + VC

N∑
j=1

Rthij
ICj

(3.26)

∂Ti

∂ICj

= VCRthij
. (3.27)
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3.2 The Coupled Current-Voltage Equations

For the temperature dependent thermal conductivity case, they are

Ti = TA

[
1− b− 1

TA

VC

N∑
j=1

Rthij
ICj

] −1
b−1

(3.28)

∂Ti

∂ICj

=

(
Ti

TA

)b

VCRthij
(3.29)

where

Rthij
= Rth0ij

(
TA

300

)b

.

The calculation of the derivative of Ti with respect to the finger current ICj
is necessary

when solving the coupled IC−VBE equations by using the Newton-Raphson method

which will be discussed in Section 3.3.

From the simplified IC−VBE equation (3.15) and the accurate IC−VBE equation

(3.24), we found that both of them can be expressed as

VBE = VBE(ICi
, Ti) i = 1, 2, 3 · · ·N (3.30)

for a N -finger device. Because that the finger temperature is a function of currents

of all fingers, the expression of (3.30) is a set of coupled functions of currents of

all fingers. We subtract the equation of each finger in (3.30) by the equation of se-

lected finger r, whose current is assumed constant, and define the goal function gir =

gir(IC1 , IC2 , IC3 , · · · ICr−1 , ICr+1 , · · · ICN
) as the voltage difference Vbei

−Vber , where

i = 1, 2, 3 · · ·N but i 6= r.

gir = VBE(ICi
, Ti)− VBE(ICr , Tr) i 6= r (3.31)

We call finger r as the reference finger. There are N sets of goal functions corresponding

to the N fingers to be the reference finger in turn. The rank of the problem at hand is

reduced by one, from N coupled equations to N − 1 goal functions. When solving the
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3.2 The Coupled Current-Voltage Equations

coupled equations, we will set ICr as a known constant and only need to solve the other

N − 1 unknowns ICi,i 6=r
actually. It has some advantages when solving large problems.

In order to achieve our goal to solve the coupled IC−VBE equation, we theoretically just

need to find out a solution of ICi,i 6=r
to make the goal functions zero. In Section 3.3, the

method to find out the solution of gir(ICi,i6=r
) = 0 will be discussed.

In this work, we will use three models to calculate the IC−VBE curves. The models

include the simple model, the accurate model with constant thermal conductivity, and

the accurate model with temperature dependent thermal conductivity. For the simple

model, using the simplified IC−VBE equation (3.15), we can write down the coupled

equations as

ICi
= IO exp

{
q

kTA

[VBE + φ(Ti − TA)− ICi
REi

]

}
(3.32)

Because that (3.15) is already a first order approximation, it is unnecessary to use high

order equation (3.28) for Ti. Therefore, substituting the constant thermal conductivity

case equation (3.26) into Ti. we can write down the coupled equations and the goal

function for a N -finger device as

VBE =
kTA

q
ln

ICi

IO

− φVC

N∑
j=1

Rthij
ICj

+ ICi
REi

i = 1, 2, 3 · · ·N (3.33)

gir =
kTA

q
ln

ICi

ICr

−φVC

N∑
j=1

(Rthij
−Rthrj

)ICj
+(ICi

REi
−ICrREr) i 6= r. (3.34)

From (3.34) and using (3.27), the derivative of gir with respect to the finger current ICj

is
∂gir

∂ICj

=

(
kTA

q

1

ICi

+ REi

)
δij − φVC(Rthij

−Rthrj
) (3.35)

where δij is the Kronecker delta which is defined by

δij ≡





0 for i 6= j

1 for i = j

.
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3.2 The Coupled Current-Voltage Equations

The derivative of the goal function will be used in Section 3.3 to solve the coupled

IC−VBE equations.

For the accurate model, using the accurate IC−VBE equation (3.24), we can write

down the coupled equations and the goal function for a N -finger device as

VBE = E∗
g0 − φ∗i Ti + REi

ICi
i = 1, 2, 3 · · ·N (3.36)

gir = −(φ∗i Ti − φ∗rTr) + (REiICi
−RErICr) i 6= r (3.37)

where

φ∗i = −k

q

(
ln

ICi

IS0

− γ ln
Ti

300

)
+ α∗. (3.38)

From (3.38), the derivative of φ∗i with respect to the finger current ICj
is

∂φ∗i
∂ICj

= −k

q

1

ICi

δij + γ
k

q

1

Ti

∂Ti

∂ICj

. (3.39)

From (3.37) and using (3.39), the derivative of gir with respect to the finger current ICj

is

∂gir

∂ICj

=

(
k

q

Ti

ICi

+ REi

)
δij −

(
γ
k

q
+ φ∗i

)
∂Ti

∂ICj

+

(
γ
k

q
+ φ∗r

)
∂Tr

∂ICj

=

(
k

q

Ti

ICi

+ REi

)
δij − φi

∂Ti

∂ICj

+ φr
∂Tr

∂ICj

.

(3.40)

With constant thermal conductivity, substituting (3.27) into (3.40), we obtain

∂gir

∂ICj

=

(
k

q

Ti

ICi

+ REi

)
δij − φiVCRthij

+ φrVCRthrj
. (3.41)

With temperature dependent thermal conductivity, substituting (3.29) into (3.40), we

obtain

∂gir

∂ICj

=

(
k

q

Ti

ICi

+ REi

)
δij − φi

(
Ti

TA

)b

VCRthij
+ φr

(
Tr

TA

)b

VCRthrj
. (3.42)
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For the accurate model, both with constant thermal conductivity and with temperature

dependent thermal conductivity are use (3.37) as their goal function. The only difference

is that (3.41) is used for the constant thermal conductivity case and (3.42) is used for the

temperature dependent thermal conductivity case. All of them will be used in Section 3.3

to solve the coupled IC−VBE equations.

3.3 Solving of The Coupled Current-Voltage Equations

From the discussion of Section 3.2, we found that both the coupled IC−VBE equa-

tions (3.33) and (3.36) are very nonlinear. In order to solve these nonlinear equations,

the Newton-Raphson method [21] are usually used. The simulation results of Chap-

ter 4 and Chapter 5 are all obtained by using this method to solve the coupled IC−VBE

equations. It is important to describe this method in detail. We will derive the solving

procedure and the working equations of different models in this section.

We firstly define two new variables, the reduced collector current vector ĨC and the

reduced collector current step vector ∆ĨC, as

ĨC = ( IC1 IC2 IC3 · · · ICr−1 ICr+1 · · · ICN
)T

∆ĨC = ( ∆IC1 ∆IC2 ∆IC3 · · · ∆ICr−1 ∆ICr+1 · · · ∆ICN
)T .

Then, we can express gir = gir (̃IC) and the set of goal functions of finger r, which is

composed by N − 1 equations of gir (̃IC), can be obtained as

gr(̃IC) =

[
g1r (̃IC) g2r (̃IC) g3r (̃IC) · · · gr−1,r (̃IC) gr+1,r (̃IC) · · · gNr (̃IC)

]T

.

(3.43)

We expand (3.31) by using the Taylor expansion to the first order.

gir (̃IC + ∆ĨC) = gir (̃IC) +
N∑

j=1,j 6=r

∂gir

∂ICj

∆ICj
i 6= r (3.44)
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Each raw of (3.43) can be expanded by using (3.44). By using the notation of matrix,

the expansion of goal functions set gr(ĨC) can be written as

gr(̃IC + ∆ĨC) = gr(̃IC) + dgr∆ĨC (3.45)

where

dgr =




∂g1r

∂IC1

∂g1r

∂IC2

· · · ∂g1r

∂ICr−1

∂g1r

∂ICr+1

· · · ∂g1r

∂ICN

∂g2r

∂IC1

∂g2r

∂IC2

· · · ∂g2r

∂ICr−1

∂g2r

∂ICr+1

· · · ∂g2r

∂ICN

...
...

...
...

...

∂gr−1,r

∂IC1

∂gr−1,r

∂IC2

· · · ∂gr−1,r

∂ICr−1

∂gr−1,r

∂ICr+1

· · · ∂gr−1,r

∂ICN

∂gr+1,r

∂IC1

∂gr+1,r

∂IC2

· · · ∂gr+1,r

∂ICr−1

∂gr+1,r

∂ICr+1

· · · ∂gr+1,r

∂ICN

...
...

...
...

...

∂gNr

∂IC1

∂gNr

∂IC2

· · · ∂gNr

∂ICr−1

∂gNr

∂ICr+1

· · · ∂gNr

∂ICN




. (3.46)

The key ideal of the Newton-Raphson method is that we want to find the step ∆ĨC from

one starting guess ĨC to be such that gr(̃IC + ∆ĨC) is zero. Therefore, if we set the left

hand side of (3.45) to be zero, we found that the step ∆ĨC can be solved as

∆ĨC = −(dgr)
−1gr(̃IC). (3.47)

In general, the Newton-Raphson method works like that once the k-th guess ĨCk
is

known, the Newton-Raphson method uses (3.47) to give us the information of the next

guess ĨCk
+ ∆ĨCk

. If gr(̃ICk
+ ∆ĨCk

) is not zero, we will use ĨCk+1
= ĨCk

+ ∆ĨCk

as the new guess and use (3.47) again to calculate the new next guess ĨCk+1
+ ∆ĨCk+1

.

This is an iterative process that the whole procedure will be repeated until a satisfactory
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3.3 Solving of The Coupled Current-Voltage Equations

result is obtained.

The solving procedure we used in this work is described here. First, we select fin-

ger 1 as the reference finger and the goal function set g1 is determined. Then, we need

to decide the initial guess of ĨC as ĨC0 and the current of the reference finger ICr , which

will keep constant during the solving process, to start the Newton-Raphson solving pro-

cedure. It is because the coupled IC−VBE equations are nonlinear, one value of ICr may

have several solutions by using different initial guess of ĨC0 . In this work, a combina-

tion of a large enough high current initial guess and a small enough low current initial

guess for each finger will be used. For the three fingers device example, there are eight

possibilities of initial guesses, e.g. high high high, high high low, high low high, ... etc.

Some initial guesses will inevitably have the same solutions. Although trying all initial

guesses is redundant and wasted, it is the easiest way to solve all solutions. Sometimes,

it is necessary to do “try and error” task to find out all the solutions.

Once ICr and the proper initial guess ĨC0 are determined, the solving process is

that ĨC0 is substituted into (3.47) to find out the value of ∆ĨC0 . The new guess of the

solutions becomes ĨC1 = ĨC0 + ∆ĨC0 . If the absolute value of all elements of ∆ĨC0 are

smaller than convergence criterion, we get the solution. If not, we substitute ĨC1 into

(3.47) to find out the next step value ∆ĨC1 and check the convergence criteria again.

This process can be done iteratively until a satisfactory result is obtained. After solving

the solution of ĨC for the selected ICr and ĨC0 , the next initial guess will be used to repeat

the solving process. When all initial guesses have been tried, we will increase ICr if it

starts from low start value or decrease if it starts from high start value. And then, we

repeat process that change different initial guesses and solve the solution iteratively. The

whole IC−VBE curve will be traced by sweeping ICr from predetermined start value to

stop value with the accompanied solving procedure. After sweeping ICr , the next finger

is selected as the reference finger and the whole procedure is repeated until all fingers

are selected. If the device is symmetric, only half of the fingers need to be the reference

finger.
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3.4 The Phenomenon of The Thermal Coupling Effect

The MATLABr [6] program code used in this work with the above mentioned pro-

cedure could be found in Appendix A. We arrange the solving procedure used in the

program as follows:

1) Select finger r as the reference finger, where r = 1, 2, 3, · · ·N . And then, the goal

function set gr is build.
2) Select one combination of initial guess. There are 2N combinations of the initial

guess of ĨC. Each combination will determine the start value of finger r, ICr , and

the initial guess ĨC0 . Use ĨC0 as the first guess.
3) Set the value of ICr . Sweep ICr from the start value to stop value to get he whole

IC−VBE curve.
4) Substitute the guess ĨCk

into (3.43) and (3.46) to calculate gr(̃ICk
) and dgr(̃ICk

).

And then, ∆ĨCk
is obtained by using (3.47).

5) Check if the absolute value of all elements of ∆ĨCk
are smaller than convergence

criteria. If the convergence criteria is not met, use ĨCk+1
= ĨCk

+ ∆ĨCk
as the

new guess and go back to 4).
6) Check if the sweep of ICr is done. If it is done, go to 2). If not, go back to 3).
7) Check if all combinations of initial guess are used. If all are used, go to 1). If not,

go back to 2).
8) Check if all fingers are used as the reference finger. If all are used, the problem is

solved. If not, go back to 1)

For the simple model, (3.43) is substituted by (3.34) and (3.46) is substituted by (3.35.

For the accurate model with constant thermal conductivity, (3.43) is substituted by (3.37)

and (3.46) is substituted by (3.41). For the accurate model with temperature dependent

thermal conductivity, (3.43) is substituted by (3.37) and (3.46) is substituted by (3.42).

3.4 The Phenomenon of The Thermal Coupling Effect

Transistors used for power applications often have multiple fingers to spread out

device output current and generated heat. Under the same collector current, the base-

emitter voltage VBE decrease as the device temperature increase. When transistors are
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Fig. 3.3. The measured IE−VBE curves of a two-separated-fingers InGaP/GaAs HBT. The values of

collector voltage biased for each curve are varied from 3 V to 8 V with 1 V step.

thermally unstable, thermal runaway is observed for constant VBE bias and current col-

lapse is observed for constant IB bias. The most important phenomenon of the thermal

coupling effect is the current collapse in multi-finger transistors. It is originated from the

uneven temperature distribution between fingers when the output power is large makes

the current distribution between fingers non-uniform. Eventually, all device current will

only conduct through the hottest finger and kill the device. When this happens, we call

the transistor is thermally unstable. The drawback of this phenomenon is that the scal-

ing of the device output power by increasing fingers becomes ineffective. Ballasting

resistors are often used to prevent the thermal instability of multi-finger transistors. The

mechanism is that the negative feedback provided by ballasting resistors cancels the

thermal positive feedback and stabilizes the device. As over-cancelation by resistors is

unwanted, the values of ballasting resistors need to be optimized. The optimization of

the ballasting resistors is the ultimate goal of this work.

Fig. 3.3 shows the measured IE−VBE curves of a two-separated-fingers InGaP/GaAs

HBT under varied VCE . The finger size is 2.8 µm× 12 µm per single finger and the
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Fig. 3.4. The measured IE−VCE curves of a two-separated-fingers InGaP/GaAs HBT under constant

IB bias. (a) IE−VCE curves for each finger and (b) the total current (thick lines) and the current for each

finger (thin lines). The finger size is 2.8 µm× 12 µm per single finger and the spacing between fingers

is 17.8 µm. The values of base current biased for each curve are varied from 168 µA to 840 µA with

168 µA step.
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Fig. 3.5. The comparison of measured and simulated IE−VBE curves of the two-separated-fingers In-

GaP/GaAs HBT at VCE = 6 V. (a) the measured curves and the simulated curves with RE1 = 6.5 Ω

and RE2 = 4.9 Ω and (b) the simulated curves with RE1 = 6.5 Ω and RE2 = 4.9 Ω case and with

RE1 = RE2 = 5.3 Ω case. The model used is the accurate model with constant thermal conductiv-

ity. Parameters used are IO = 2.1 × 10−25 A, E∗
g0 = 1.483 V, α∗ = 4.88 × 10−4 V/K, γ = 4.21,

kth,eff = 0.45 W/cm-◦C, b = 0, VC = 6 V, Rth1 = 1834 ◦C/W, and Rth2 = 174 ◦C/W.
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spacing between fingers is 17.8 µm.It is obviously that as the dissipated power increase

the curves will be bent more seriously, and only one finger still turn on and another one

will be turned off. Fig. 3.4(a) and (b) also shows similar behaviors of the measured

IE−VCE curves under constant IB bias of the same device. The fingers will separated

as a hot finger and a cold finger. The total current curves in Fig. 3.4(b) show degradation

started at about VCE = 5.5 V for IB = 840 µA curve, VCE = 6.0 V for IB = 672 µA

curve, and VCE = 6.5 V for IB = 504 µA curve. It is because that when the degradation

happens, the two-finger device acts as an one-finger device. The degradation is the cur-

rent collapse effect. It is an evidence of the ineffectiveness of increasing finger number

to increase power.

Fig. 3.5(a) and (b) shows the comparison of measured and simulated IE−VBE curves

of the two-separated-fingers InGaP/GaAs HBT at VCE = 6 V. The model used in sim-

ulation is the accurate model with constant thermal conductivity. The parameters used

are listed in the figure caption. Although the layouts of these two fingers are identical,

the measured curves of these two fingers are still quit different. It might be due to the

process deviation. Therefore, we had to add different emitter resistance for each fin-

ger to get a better fit. In Fig. 3.5(a), there are two solutions for simulated curves. In

Fig. 3.5(b), the solutions are merged together for the identical RE case. The intercept

point is the unstable point of this case. It means that even these two fingers are iden-

tical, the current collapse phenomenon will still happen at the unstable point. It is the

property of this coupled physical system. There are always many sets of solutions and

many unstable, or intercept, points in this system. The reason will be explained in the

following chapters.

3.5 Summary

The coupled current-voltage equations were derived and discussed. A linearized

temperature dependent band-gap voltage expression is used to simplify the definition
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3.5 Summary

of the thermal-electrical feedback coefficient and the coupled IC−VBE equations. The

goal function is defined and used to solve the thermal coupling problems. There are three

models that need to be solved, including the simple model, the accurate model with con-

stant thermal conductivity, and the accurate model with temperature dependent thermal

conductivity. The Newton-Raphson method is discussed and the equations needed to

solve the coupled IC−VBE equations of the three models are derived. The procedure

utilized to solve the coupled IC−VBE equations by using the Newton-Raphson method

was developed.
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Chapter 4

Thermally Stable Optimum Design of

Multifinger HBTs in Simple Model

T ransistors used for power applications often have multiple fingers to spread out

current and dissipated heat. However, because of the heat generated and the

uneven heat distribution, transistors can become unstable at high power and seriously

limit the power handling capability of transistors. When this happens, thermal runaway

is observed for Si BJTs and current collapse is observed for GaAs based HBTs. To pre-

vent the thermal instability of multi-finger transistors, ballasting resistors are often used.

The voltage drop across these resistors compensates the build-in voltage change due to

temperature rise caused by self-heating and as a result the thermal stability is improved.

This compensation is a mechanism of the cancellation of positive feedback and negative

feedback [34]-[35]. Many papers have devoted to the thermal modeling of transistors

and the design of ballasting resistors [36]-[40]. In real device implementation, each fin-

ger of the transistor is connected in series to a ballasting resistor, which can be either a

part of the transistor made from epilayers or an external thin-film resistor. The fingers

and the ballasting resistors connected to the fingers are usually identical to one another.

However, because of the nonuniform heat dissipation, it has been realized that the uni-

form layout traditionally used for the fingers is not ideal for thermal stability. Instead,
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4.1 Ideal Emitter Ballasting Resistance Distribution:
Nonuniform Ballasting Resistors

the use of a nonuniform distribution in the ballasting resistors [41], the emitter finger

sizes [19], the spacing between fingers [20], [42] and both finger size and spacing [43]

has been proposed to improve the thermal stability. But the remaining question is: what

are the optimum distributions for the ballasting resistors? A non-optimized design can

easily over correct the problem and even make the problem worse.

In this chapter, we solved the basic coupled IC−VBE equations. We found that there

is an ideal distribution for the ballasting resistors. Significant improvement in thermal

stability can be obtained when the ideal distributions are used. Simple analytical for-

mulas for the ideal distributions of the emitter ballasting resistors to achieve the highest

stable operation current are derived. With the ideal distribution, we have also found an

optimum emitter ballasting resistance for absolutely thermal stable operation condition

that the device never becomes unstable. Base on the above results, a design procedure

for multi-finger transistors is developed [7].

4.1 Ideal Emitter Ballasting Resistance Distribution:

Nonuniform Ballasting Resistors

In a multi-finger transistor, the fingers are thermally coupled, which results in a

nonuniform temperature distribution with the fingers near the center hotter than the fin-

gers on the sides even before the transistors become unstable. To examine the thermal

behavior of those fingers, we first use a three-finger configuration for analysis because

the coupled equations can be solved easily and it can illustrate the nonuniform tem-

perature distribution for multiple fingers. The behavior of transistors with number of

fingers greater than three will be discussed later. Liu et. al. have solved a two-finger

problem [32], but it cannot reflect the uneven distribution of current and temperature of

multifingers due to thermal coupling.

The coupled IC−VBE equations for the three identical fingers when self heated are
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[2]

IC1 = IO exp

{
q

kTA

[VBE + φ(T1 − TA)−RE13IC1 ]

}

IC2 = IO exp

{
q

kTA

[VBE + φ(T2 − TA)−RE2IC2 ]

}

IC3 = IO exp

{
q

kTA

[VBE + φ(T3 − TA)−RE13IC3 ]

}
(4.1)

where IC1 and IC3 are the current flowing through the two side fingers and IC2 is the

current of the center finger, T1 and T3 are the temperature of the two side fingers and T2

is the temperature of the center finger, VBE is the applied base-emitter voltage, φ is the

emitter junction build-in potential change per unit temperature rise, TA is the ambient

temperature or the heat plate temperature that is 300 K in our simulation. This is a

three fingers case of (3.32) as had been discussed in Section 3.2. RE13 and RE2 are the

emitter resistances of the side fingers and the center finger, respectively. Here we have

assumed a symmetric structure that RE is the same for the two side fingers. Notice that

the ideality factor in the IC−VBE equations is set to unity for simplicity. The junction

temperature rises for the three fingers are related to the power consumption of each

finger by

T1 = TA + VC(Rth1IC1 + Rth2IC2 + Rth3IC3)

T2 = TA + VC(Rth2IC1 + Rth1IC2 + Rth2IC3)

T3 = TA + VC(Rth3IC1 + Rth2IC2 + Rth1IC3)

(4.2)

as a three fingers case of (3.26) in Section 3.2. Here, for a symmetric structure device,

Rth1 is the thermal resistance of each finger, and Rth2 is the coupling thermal resistances

between two adjacent fingers, and Rth3 is the coupling thermal resistances between two

fingers separated by one finger. VC is the collector voltage.

Because the current of all fingers must be the same under the stable operation condi-

tion, we can obtain a relation between RE13 and RE2 from (4.1) and (4.2) by setting the

currents of all fingers identical, i.e. IC1 = IC2 = IC3 = I , and dividing the first equation
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of (4.1) by the second equation of (4.1) after substituting (4.2) into (4.1). That is

RE2,ideal
= RE13 + R∗

th2
−R∗

th3

= RE13 + ∆RE2,ideal

(4.3)

where we define the effective thermal resistance Rthi
as

R∗
thi

= φVCRthi
(4.4)

for conciseness. This relation gives the ideal emitter ballasting resistance distribution

of a three-identical-finger transistor. In order to get the stable operation condition, the

difference between the emitter resistances of the center finger and the side fingers should

be ∆REideal
= R∗

th2
− R∗

th3
. This is the necessary condition for achieving identical

currents in all three fingers. Otherwise, the current of each finger is decided by the

total effect of the positive feedback term of ∆T ’s and the negative feedback term of

RE’s, and the currents of the fingers will never be the same. The basic idea of ideal

distribution is to design a proper RE2 to compensate the additional thermal coupling

resistance between the center finger and the side fingers.

Now, we show the simulation result of a three-finger transistor with each finger

having the following parameters: IO = 6×10−25 A, Rth1 = 800 ◦C/W, (1+1/β)RE0+

RB/β = 0.9 Ω, φ = 1 mV/◦C. Those numbers are experimentally determined from a

3 × 40 InGaP/GaAs HBT by fitting the measured IC−VBE of a single-finger transistor

with (4.1). The current gain β is assumed to be independent of temperature, which is

a valid assumption for InGaP/GaAs transistors. With those numbers, we then solved

the steady state heat flow equation [19], [20] with proper boundary conditions as had

mentioned in Section 2.2.1 to obtain the coupling thermal resistance. The finger size

used is 3 µm× 40 µm and the spacing between fingers is 40 µm. The chip dimension

used in simulation is 1000 µm× 1000 µm and the substrate thickness is 100 µm. The

calculated coupling thermal resistances are Rth2 = 66.9 ◦C/W, Rth3 = 23.5 ◦C/W,
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4.1 Ideal Emitter Ballasting Resistance Distribution:
Nonuniform Ballasting Resistors

Rth4 = 10.2 ◦C/W, and Rth5 = 4.7 ◦C/W with the effective thermal conductivity

kth,eff = 0.4124 W/cm-◦C, which is computed from the theoretical result of Rth1 =

733 ◦C/W calculated by kth = 0.45 W/cm-◦C as shown in Fig. 2.6 and the fitting result

Rth1 = 800 ◦C/W. And the collector voltage VC is taken to be 6 V in the simulation.

We will call this three finger transistor used for simulation as a 3f 3x40 s40 HBT for

short where 3f means three-finger, and 3x40 means the finger size is 3 µm× 40 µm,

s40 means the finger separation is 40 µm.

Let’s first consider a case that each finger has a total RE of 3 Ω, or a ballasting

resistance of 2.1 Ω for this device. Fig. 4.1(a) and (b) show the calculated IC−VBE

curves and the temperature of each finger as a function of the total current. There are

totally four sets of solutions for (4.1). Three sets of solutions are shown in the figure.

The solution with IC3 > IC2 > IC1 is not shown because the behavior is identical to

the case with IC1 > IC2 > IC3 due to the layout symmetry. The first set shows that the

currents in the fingers are nearly the same before they reach the unstable point which

we define as the highest current of the side fingers, i.e. about 11.1 mA in the case. At

the unstable point, the currents in the side fingers drops while that of the center finger

continue to increase. The temperatures also start to deviate from each other after the

unstable point. The other sets of solutions, however, show that one or both of the side

finger current is always much larger than the center finger current in all the voltage

range, and the curves are separated from those of the first set of solutions. In other

words, it is almost impossible to go into these situations if the transistor is powered up

from zero bias.

Now we increase the emitter resistance of the center finger to the ideal value of

RE2,ideal
= 3.26 Ω or ∆RE2,ideal

= 0.26 Ω, calculated by (4.3), but keep that of the

side fingers at 3 Ω. In other words, the ballasting resistance for the center finger is

2.36 Ω while that for the side fingers is 2.1 Ω. The IC−VBE curves and the temperature

distribution become those shown in Fig. 4.2(a) and (b). We can see that there is a set

of solution that has IC1 = IC2 = IC3 in all voltage range. However other solutions
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Fig. 4.1. The simulation results of a 3f 3x40 s40 HBT with RE13 = RE2 = 3 Ω. (a) IC−VBE curves

and (b) the finger temperature as a function of the total current. The arrows mark the direction of current

sweep of the side fingers as the current of the center finger increasing from low to high for the three sets

of solutions. f2 is the center finger. f1 and f3 are the side fingers.
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Fig. 4.2. The simulation results of a 3f 3x40 s40 HBT with RE13 = 3 Ω and RE2 = RE2,ideal
= 3.26 Ω.

(a) IC−VBE curves and (b) the finger temperature as a function of the total current. P0 marks the bend-

over point, P1 marks the first unstable point, and P2 marks the second unstable point. f2 is the center

finger. f1 and f3 are the side fingers.

60



4.1 Ideal Emitter Ballasting Resistance Distribution:
Nonuniform Ballasting Resistors

1.25 1.26 1.27 1.28 1.29 1.30 1.31
0.00

0.01

0.02

0.03

0.04

0.05

 

 
C

ur
re

nt
 (A

)

Base-Emitter Voltage Vbe (V)

 f1
 f2
 f3

(a)

0.00 0.05 0.10 0.15 0.20
300

400

500

600

700

800

 

 

Te
m

pe
ra

tu
re

 (K
)

Total Current (A)

 f1
 f2
 f3

(b)

Fig. 4.3. The simulation results of a 3f 3x40 s40 HBT with RE13 = RE2 = 3.4 Ω. (a) IC−VBE curves

and (b) the finger temperature as a function of the total current. f2 is the center finger. f1 and f3 are the

side fingers.
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Fig. 4.4. The simulation results of a 3f 3x40 s40 HBT with RE13 = 4 Ω and RE2 = RE2,ideal
= 4.26 Ω.

(a) IC−VBE curves and (b) the finger temperature as a function of the total current. f2 is the center finger.

f1 and f3 are the side fingers.
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give unstable results after the current exceeds certain value. There are two intersection

points corresponding to the onsets of two different unstable modes. The first one, P1 in

Fig. 4.2(a) which occurs at about 15.6 mA, is the onset point when the currents in all

fingers start to differ. The second point, P2 in Fig. 4.2(a) which is at about 22.7 mA,

corresponds to that when IC2 starts to differ from IC1 and IC3 but IC1 = IC3 . Although

a stable solution with IC1 = IC2 = IC3 exists, it is almost impossible for a transistor

to pass through the first intersection point and remains stable because that in practical

situations, any small deviation from ideal will cause the device to fall into instability.

Fig. 4.3(a) and (b) shows the calculated IC−VBE curves and the temperatures of the

fingers of a transistor with uniform ballasting at RE = 3.4 Ω. It is worthwhile to point

out that although this value is higher than the combination of RE13/RE2,ideal
= 3/3.26 Ω,

the thermal stability, the highest current of the side fingers which is at about 14.4 mA,

is worse than that shown in Fig. 4.2(a). This is different from the traditional belief that a

higher emitter resistance always provides better thermal stability. The distribution of the

ballasting resistance is also important. The reason that the thermal stability is improved

by a proper combination of RE13/RE2 is very simple. The positive feedback values of

each fingers are all different because that the coupling thermal resistances seen by each

finger are all different. If we can make them very close to one another by adjusting the

ballasting resistance according to the different positive feedback values for each finger,

the thermal stability will be improved.

The current levels of the intersection points are affected by the value of RE13 . If we

increase RE13 from 3 Ω to 4 Ω but keep RE2 − RE13 = ∆RE2,ideal
= 0.26 Ω, the curves

become those shown in Fig. 4.4(a) and (b). The first unstable point, at about 39.2 mA,

moves up and the second point is out of the simulation range. The device can go to

a higher current before it becomes unstable. This is understandable that because the

increased negative feedback provided by the higher emitter resistance compensates the

positive feedback caused by the temperature rise, the transistor becomes more stable.

We can conclude that a larger RE13 will result in a more stable device. However, if we
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over design the ballasting resistance, the performance of the device will suffer. For this

reason, an optimal design of RE13 is very important. We need to know a minimal value

of RE13 to just make the device stable.

4.2 The Optimum Emitter Ballasting Resistance for Ab-

solutely Thermal Stable Operation

From the simulation results presented above, we found that as RE13 increases, the

unstable points will move up. Obviously, there exists an optimum value of RE13 that

the unstable points move to just at the infinite current level. We will call this value as

the optimum emitter ballasting resistance for absolutely thermal stable operation. In

this section, we will derive an analytical formula for this optimum value. We start from

taking the derivative of (4.1) and (4.2) with respect to VBE and using the ideal emitter

resistance distribution (4.3). Then, we obtain

I ′C1
= I

q

kTA

(1 + φT ′
1 −RE13I

′
C1

)

I ′C2
= I

q

kTA

(1 + φT ′
2 −RE2,ideal

I ′C2
)

I ′C3
= I

q

kTA

(1 + φT ′
3 −RE13I

′
C3

)

(4.5)

and
T ′

1 = VC(Rth1I
′
C1

+ Rth2I
′
C2

+ Rth3I
′
C3

)

T ′
2 = VC(Rth2I

′
C1

+ Rth1I
′
C2

+ Rth2I
′
C3

)

T ′
3 = VC(Rth3I

′
C1

+ Rth2I
′
C2

+ Rth1I
′
C3

).

(4.6)

We first substitute I ′C1
= I ′C2

= I ′C3
= I ′ into (4.5) and (4.6), and combine them to

obtain

I ′ = I
q

kTA

[
1 + (R∗

th1
+ R∗

th2
+ R∗

th3
−RE13)I

′] . (4.7)
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This equation can be used to calculate the bend-over current, Ibend, which is the point

that the IC−VBE curve starts to bend-over. This point, which is traditionally considered

as the onset point for the device to become unstable [32], can be easily found from (4.7)

by requiring I ′ = dI/dVBE = ∞. After this manipulation, the current at the bend-over

point is

Ibend =
kTA/q

R∗
th1

+ R∗
th2

+ R∗
th3
−RE13

. (4.8)

This equation simply gives us the maximum current a device can operate at constant

base-emitter voltage operation. If the voltage drive exceeds the voltage Vbend corre-

sponding to Ibend, the device will be burned out because that there is no solution for the

voltage exceeding Vbend. This kind of failure is also called second breakdown. It is the

reason why the bend-over point is traditionally considered as the unstable point. But if

we use a base current drive instead of a base voltage drive, this bend-over point can be

passed and is not an unstable point anymore. The unstable point is actually the point

that all finger currents diverge.

Next step, we will derive the relations of the unstable point current and use them to

find out the optimum value of the emitter ballasting resistance. By combining (4.5) and

(4.6), we get the following equation in matrix notation as




R∗
th1
−RE13 − λ R∗

th2
R∗

th3

R∗
th2

R∗
th1
−RE2,ideal

− λ R∗
th2

R∗
th3

R∗
th2

R∗
th1
−RE13 − λ







I ′C1

I ′C2

I ′C3




=




−1

−1

−1




(4.9)

where

λ =
kTA

q

1

I
.

As shown in Fig. 4.2(a), the unstable points can be viewed as the intercept point of

two IC−VBE curves which are both the solutions of (4.1). The slopes of the IC−VBE

curves at the unstable points are not unique because that they are both the solutions of
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two curves with different slopes at these points. We can use this requirement in (4.9) to

solve for λ. The requirement demands

∣∣∣∣∣∣∣∣∣∣∣∣

R∗
th1
−RE13 − λ R∗

th2
R∗

th3

R∗
th2

R∗
th1
−RE2,ideal

− λ R∗
th2

R∗
th3

R∗
th2

R∗
th1
−RE13 − λ

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (4.10)

This is an eigenvalue problem and the solutions give conditions for the unstable points.

The eigenvalues and the eigenvectors are

eigenvalue : λ1 = R∗
th1

+ R∗
th2

+ R∗
th3
−RE13

eigenvector : I ′C1
= I ′C2

= I ′C3

⇒ ICλ1
=

kTA/q

R∗
th1

+ R∗
th2

+ R∗
th3
−RE13

(4.11)

eigenvalue : λ2 = R∗
th1
−R∗

th3
−RE13

eigenvector : I ′C1
= −IC3 , I ′C2

= 0

⇒ ICλ2
=

kTA/q

R∗
th1
−R∗

th3
−RE13

(4.12)

eigenvalue : λ3 = R∗
th1
−R∗

th2
−RE2,ideal

eigenvector : I ′C1
= I ′C3

, I ′C2
= −2I ′C1

⇒ ICλ3
=

kTA/q

R∗
th1
−R∗

th2
−RE2,ideal

. (4.13)

One should note that the lowest unstable current solution is ICλ1
= Ibend and the corre-

sponding eigenvector is I ′C1
= I ′C2

= I ′C3
. Since the slopes are the same, the currents

of all fingers will keep the same after this point. This is simply the bend-over point, not

really an unstable point. The other two solutions give the real unstable points where the

slopes of the IC−VBE curves of different fingers are different and the currents of the fin-

gers start to deviate from one another. One can find that the three solutions given above
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have the sequence ICλ1
< ICλ2

< ICλ3
. At the first real unstable point, which happens at

ICλ2
, the IC−VBE curves of the side fingers have opposite slopes and the center finger

has zero slope. It means that the currents of the two side fingers start to deviate from

each other at this point and the current of the center finger reaches its maximum value

if the unstable operation occurs. The currents of the three fingers are all different after

this point. One of the side fingers, not the center one, will become the hottest and the

other will become the coldest one. At the second unstable point, which occurs at ICλ3
,

the IC−VBE curves of the side fingers have the same slopes while the center finger has

opposite slope to those of the side fingers. In other words, at this point the current of the

center finger starts to deviate from that of the side fingers, which have the same current.

At this point, there can be two unstable modes. In one mode, the center finger becomes

hot and the side fingers become cold, and in the other mode, the center finger becomes

cold and the side fingers become hot.

We would like to point out that the lowest unstable current, ICλ2
, is actually higher

than the bend-over current of the IC−VBE curves. Therefore, even the IC−VBE curve of

the transistor bends over into the negative resistance region, the device stays stable until

ICλ2
is reached. Before this point, the currents of all the fingers are the same and there

is no solution allowed for different IC1 , IC2 and IC3 . Substituting the parameters used

in Fig. 4.2 into (4.11)-(4.13), we obtain ICλ1
= 11.0 mA, ICλ2

= 15.6 mA, and ICλ3
=

22.7 mA corresponding to P0, P1, and P2 marked in Fig. 4.2(a). And substituting

the parameters used in Fig. 4.4 into (4.11)-(4.13), we obtain ICλ1
= 19.3 mA, ICλ2

=

39.2 mA, and ICλ3
= 186.5 mA. We will call ICλi

as the eigen-current. It can be found

that as RE13 increasing the current levels of the unstable points ICλ
s increase very fast.

We can expect that there is a finite value of RE13 that can push the unstable current levels

to infinity.

Examining (4.11)-(4.13), we can see that if the denominators go to zero, there are
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three relationships giving conditions for ICλ1
, ICλ2

and ICλ3
to go to infinity. They are

RE13,no-bend
= R∗

th1
+ R∗

th2
+ R∗

th3
(4.14)

RE13,opt = R∗
th1
−R∗

th3
(4.15)

RE13,opt2 = R∗
th1
−R∗

th2
−∆RE2,ideal

= R∗
th1
− 2R∗

th2
+ R∗

th3
. (4.16)

Equation (4.14) is the conventional absolutely stable condition. At this condition, the

bend-over point goes to infinity and the IC−VBE curve never bends over. But as men-

tioned above, it is more appropriate to consider (4.15) as the absolutely stable condition

if the ideal emitter ballasting resistance distribution of (4.3) is satisfied. At this condi-

tion the currents of all the fingers are identical in the whole operation voltage and current

range. In other words, the device will never become unstable even though the bend-over

happens. The condition of (4.16) only lets the second unstable point to go to infinity and

is not enough to stabilize the device.

For this 3f 3x40 s40 HBT considered above, the absolutely stable condition of the

emitter resistance is RE13,opt = 4.66 Ω and RE2,ideal
= 4.92 Ω. The no bend-over condi-

tion, however, has RE2,no-bend
= 5.34 Ω and RE2,ideal

= 5.60 Ω. Fig. 4.5(a) and (b) shows

the IC−VBE curve and the temperature of each finger in the absolutely stable condi-

tion and the no bend-over condition. The center finger has a slightly higher temperature

than the side fingers but the currents of all fingers never differ. As a result of identical

currents, the temperature curves of the absolutely stable and no bend-over conditions

overlap. In fact, the no bend-over condition should have higher finger temperature. It

is because that the dissipated power of this condition is higher due to the higher base-

emitter voltage. But the power contribution of the base-emitter voltage is minor and

can be neglected as had discussed in Section 3.2. Therefore, the resultant temperature

difference is not important. Although all the IC−VBE curves have negative resistance

as long as RE13,opt is smaller than RE2,no-bend
, the equations do not allow solutions with
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Fig. 4.5. The simulation results of a 3f 3x40 s40 HBT with the absolutely stable condition, RE13 =

RE13,opt = 4.66 Ω and RE2 = RE2,ideal
= 4.92 Ω, and with the no bend-over condition, RE13 =

RE13,no-bend
= 5.34 Ω and RE2 = RE2,ideal

= 5.60 Ω. (a) IC−VBE curves and (b) the finger temperature

as a function of the total current. The temperature curves of these two conditions are identical. f2 is the

center finger. f1 and f3 are the side fingers.
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Fig. 4.6. The simulation results of the total current versus VBE curves collected from Fig. 4.1-Fig. 4.5

for the 3f 3x40 s40 HBT. A1-A6 correspond to the curves of the simulation conditions of RE = 3 Ω,

RE13/RE2,ideal
= 3/3.26 Ω, RE = 3.4 Ω, RE13/RE2 = 4/4.26 Ω, RE13,opt

/RE2,ideal
= 4.66/4.92 Ω,

and RE13,no-bend
/RE2,ideal

= 5.34/5.60 Ω respectively.

different current in the fingers. Consequently, even the IC−VBE curve turns over, the

transistor is stable because the currents in all the fingers are identical.

Fig. 4.6 shows the simulated total current versus base-emitter voltage curves col-

lected from Fig. 4.1-Fig. 4.5. It can be found that when the unstable point is reached,

the total current with the ideal emitter resistance distribution (4.3) will have a sharp

transition to the collapse solution that all finger currents diverged. On the contrary, the

total current with the uniform emitter resistance distribution has a smooth shape in the

full measurement range. Although we had concluded in Section 4.1 that the stability

with RE13/RE2,ideal
= 3/3.26 Ω as in Fig. 4.2 is better than RE = 3.4 Ω as in Fig. 4.3,

the total current with RE = 3.4 Ω is higher than RE13/RE2,ideal
= 3/3.26 Ω. It is due

to the center finger current of the RE = 3.4 Ω case is higher than the RE13/RE2,ideal
=

3/3.26 Ω case. However, the uniformity of the RE = 3.4 Ω case is much worse than the

RE13/RE2,ideal
= 3/3.26 Ω case because that both case have similar side finger current
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levels. The non-uniformity will cause the temperature of the center finger to increase

more faster and be burned easily. This is unwanted for thermally stable consideration.

4.3 N-Finger Transistors: The General Case

Similarly, we can extend the above discussion of the three-finger case to the N-finger

case. First, we label these fingers from left to right as shown in Fig. 2.1 which is a 3-

finger example. And then, we can rewrite the N current variables and the N temperature

rising variables of all fingers as one current vector I and one temperature vector T,

respectively, as

I =
(

IC1 IC2 IC3 · · · IN

)T (4.17)

T =
(

T1 T2 T3 · · · TN

)T
. (4.18)

The emitter resistances of the finger are written as a diagonal matrix RE, which is

RE = diag
(
RE1 RE2 RE3 · · · REN

)

=




RE1 0 0 · · · · · · 0

0 RE2 0
...

0 0 RE3

...

... . . . ...

... REN−1
0

0 · · · · · · · · · 0 REN




(4.19)

where diag(v) means a diagonal matrix with vector v as its diagonal elements. We can
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also define the thermal resistance matrix Rth as

Rth =




Rth11 Rth12 Rth13 · · · Rth1N

Rth21 Rth22 Rth23 · · · Rth2N

Rth31 Rth32 Rth33 · · · Rth3N

...
...

... . . . ...

RthN1
RthN2

RthN3
· · · RthNN




. (4.20)

Here, Rthnn is the thermal resistance of the n-th finger and Rthnm is the coupling thermal

resistance between the n-th and the m-th fingers. Then, the coupled IC−VBE equations

for an N-identical-finger transistor with self-heating become

I = IO exp

{
q

kTA

[
VBE + φ (T− TA)−REI

]}
(4.21)

T = TA + VCRthI. (4.22)

Following the same procedure as the three-finger case, the ideal emitter ballasting resis-

tance distribution of N-fingers can be obtained as

REideal
=

(
RE1 RE2 RE3 · · · REN

)T

= RE1 +
N∑

n=1

[




R∗
th1n

R∗
th2n

R∗
th3n

...

R∗
thNn




−R∗
th1n

]

= RE1 + ∆REideal
.

(4.23)
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Here, R∗
thmn

is the effective thermal resistance defined as R∗
thmn

= φVCRthmn , REideal

is the ideal emitter ballasting resistance distribution vector and ∆REideal
is the emitter

resistance difference vector. After taking the derivative of (4.21) and (4.22) with respect

to VBE and utilizing the relation of the ideal emitter resistance distribution (4.23), the

bend-over current can be obtained by requiring dI/dVBE = ∞ as

Ibend =
kTA/q

N∑
n=1

R∗
th1n

−RE1

. (4.24)

It can be found that the no bend-over condition, Ibend = ∞, is satisfied by using an

emitter resistance to just cancel the total effective thermal resistance. This requirement

is an over design of the thermal stability. As we will see, a smaller emitter resistance is

sufficient to stabilize the device.

Similar to the three-finger case equation (4.10), by differentiating (4.21) and (4.22)

with respect to VBE and combining these two sets of derivative equations, the eigenvalue

equation for the N-finger case is

det [R∗
th − diag (REideal

)− λII] = 0 (4.25)

where λ has the same meaning as that defined in (4.9), II is the identity matrix, R∗
th is the

effective thermal resistance defined as R∗
th = φVCRth, and det(A) is the determinant

of matrix A. From (4.25), we can obtain N solutions for λ. One is the bend-over

solution and the other N − 1 solutions are the unstable points. Because only the real

positive solutions have physical meanings, the number of the unstable points is less than

or equal to N − 1. Using a five-identical-finger transistor as an example and assuming

the same chip dimension, finger size and finger spacing as before, we can see that the

IC−VBE curves and the temperature distribution curves shown in Fig. 4.7(a) and (b)

have four unstable points as marked by P1 to P4 under the ideal emitter ballasting

resistance distribution RE2/3/4
= REideal

= 3.37/3.45/3.37 Ω and RE15 = 3 Ω despite

73



4.3 N-Finger Transistors: The General Case

1.26 1.27 1.28 1.29 1.30
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P0

 f1
 f2
 f3
 f4
 f5

P1

P2
P3

C
ur
re
nt

 (A
)

Base-Emitter Voltage Vbe (V)

P4

(a)

0.00 0.05 0.10 0.15 0.20 0.25
300

400

500

600

700

800

Te
m

pe
ra

tu
re

 (K
)

Total current (A)

 f1
 f2
 f3
 f4
 f5

(b)

Fig. 4.7. The simulation results of a 5f 3x40 s40 HBT with RE15 = 3 Ω and RE2/3/4 = REideal
=

3.37/3.45/3.37 Ω. (a) IC−VBE curves and (b) the finger temperature as a function of the total current.

P1-P4 mark the four unstable points. f3 is the center finger, f1 and f5 are the outer fingers, and f2 and f4

are the side fingers beside the center finger.
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of the complex structure of the solutions. It is consistent with the theoretical prediction

that there are 5 − 1 = 4 unstable points. The corresponding eigen-currents are marked

from P0 to P4 in the figure as ICλ1
= 10.6 mA, ICλ2

= 13.3 mA, ICλ3
= 17.7 mA,

ICλ4
= 23.3 mA, and ICλ5

= 30.3 mA.

If we substitute (4.23) into (4.25) and express the resultant equation by the emitter

resistance difference vector ∆REideal
, then by requiring λ = 0, equivalent to I → ∞,

as the unstable points go to infinity, (4.25) becomes

det [R∗
th − diag (∆REideal

)−RE1II] = 0. (4.26)

This is the equation of the absolutely stable condition. The value of the optimum emitter

ballasting resistance can be obtained by solving the eigenvalue equation of (4.26). There

are N solutions of RE1 . The largest real positive solution corresponds to the no-bend-

over condition, RE1,no-bend
, and the second largest one, RE1,opt , is the absolutely stable

condition, at which the first unstable point goes to infinity. For the five-finger case as

shown in Fig. 4.7(a) and (b), the no-bend-over requirement is RE1,no-bend
= 5.43 Ω and

the absolutely stable requirement is RE1,opt = 4.95 Ω. From now on, we have established

a design procedure to determine the ideal values of the emitter ballasting resistance for

N-finger transistors. The procedure is summarized as follows:

1) Once the thermal resistance matrix Rth in (4.20) is determined by measurement

using test structures or by a three-dimensional simulation, the ideal emitter ballast-

ing resistance distribution can be obtained by (4.23). Only when this distribution

is satisfied, the currents of all fingers will be exactly identical.
2) Then, by solving the eigenvalue equation of (4.26), the optimum value of the

emitter ballasting resistance RE1,opt for absolutely stable condition is determined

by choosing the second largest real positive solution. This value is the smallest

resistance needed for the absolute stable operation. There is no need for the tran-

sistor to have a higher RE1 . The over design will degrade the device performance.
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However, if RE1 is insufficient, the first unstable point will not go to infinity, un-

stable operation may occur.

4.4 The Effect of Finger Separation

The finger separation used in the previous example, a large value of 40 µm, is

specially chosen to demonstrate all of the unstable points inside a readable simula-

tion range. But this large separation is not commonly used in real device. A reason-

able value of finger separation is about 15 µm which includes, for example, 3 µm

contact width for one emitter and one collector, 1.5 µm base contact width for two

bases, 1 µm emitter ledge width for two sides of the emitter, and 2 µm base-collector

contact spacing of two sides of the base pedestal. The corresponds coupling ther-

mal resistances are Rth1 = 800 ◦C/W, Rth2 = 185.8 ◦C/W, Rth3 = 94.4 ◦C/W,

Rth4 = 57.3 ◦C/W, and Rth5 = 38.0 ◦C/W computed by the effective thermal conduc-

tivity kth,eff = 0.4124 W/cm-◦C as discussed in Section 4.1. Other parameters use the

same value as the previous sections.

We firstly use these parameters to simulate the case of RE = 3 Ω as shown in

Fig. 4.8(a) and (b). It can be found that the highest current of the side fingers is about

15.0 mA which is higher than the 40 µm separation case. It means that the thermal

stability is better as the finger separation becomes smaller. The temperature distribution

curves can also reveal this feature. The temperature of the center finger for the 15 µm

separation case is only higher before unstable point. After unstable point, the temper-

ature increases slower than the 40 µm separation case that results in a more uniform

temperature distribution. This thermal stability enhancement feature is more obvious in

the next example.

In Fig. 4.8(a) and (b), we use the ideal emitter ballasting resistance RE2,ideal
= 3.55 Ω

or ∆RE2,ideal
= 0.55 Ω to calculate the IC−VBE curves. The eigen-currents are ICλ1

=

7.4 mA, ICλ2
= 21.0 mA, and ICλ3

= 188.3 mA. It can be found that the first unstable
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Fig. 4.8. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE2 = 3 Ω compared with the

results of the 3f 3x40 s40 HBT in Fig. 4.1. (a) IC−VBE curves and (b) the finger temperature as a

function of the total current. f2 is the center finger. f1 and f3 are the side fingers. The letter a indicates

the results of a 3f 3x40 s40 HBT. The letter b indicates the results of a 3f 3x40 s15 HBT.
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Fig. 4.9. The simulation results of a 3f 3x40 s15 HBT with RE13 = 3 Ω and RE2 = RE2,ideal
= 3.55 Ω

compared with the results of the 3f 3x40 s40 HBT in Fig. 4.2. (a) IC−VBE curves and (b) the finger

temperature as a function of the total current. P0 marks the bend-over point, P1 marks the first unstable

point, and P2 marks the second unstable point. f2 is the center finger. f1 and f3 are the side fingers. The

letter a indicates the results of a 3f 3x40 s40 HBT. The letter b indicates the results of a 3f 3x40 s15 HBT.
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Fig. 4.10. The simulation results of a 3f 3x40 s15 HBT with the absolutely stable condition, RE13 =

RE13,opt = 4.23 Ω and RE2 = RE2,ideal
= 4.78 Ω, and with the no bend-over condition, RE13 =

RE13,no-bend
= 6.48 Ω and RE2 = RE2,ideal

= 7.03 Ω compared with the results of Fig. 4.5. (a)

IC−VBE curves and (b) the finger temperature as a function of the total current. The temperature curves

of these two conditions are identical. f2 is the center finger. f1 and f3 are the side fingers. The letter a and

c indicates the results of a 3f 3x40 s40 HBT. The letter b and d indicate the results of a 3f 3x40 s15 HBT.
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point is higher than the 40 µm separation case although the bend-over point is lower.

The reason can be explained by (4.11) and (4.12). Since the bend-over current level is

inverse proportional to the summation of all effective thermal resistance, smaller finger

separation implies larger coupling thermal resistance and results in larger summation of

the effective thermal resistance and smaller bend-over current. But the unstable point is

determined by the inverse of the difference of R∗
th1

and R∗
th3

. Larger coupling thermal

resistance will result in smaller difference and larger unstable current level. Shrinking

finger separation actually improves the thermal stability. The small penalty we must pay

is the higher finger temperature resulted from the higher total thermal resistance.

Fig. 4.10(a) and (b) show the absolutely stable condition, RE13,opt = 4.23 Ω and

RE2,ideal
= 4.78 Ω, and the no-bend-over condition, RE13,no-bend

= 6.48 Ω and RE2,ideal
=

7.03 Ω. As one can expect, the value of the emitter ballasting resistance used in the

15 µm separation case for the absolutely stable condition is smaller than the 40 µm

separation case as a result of better thermal stability. On the contrary, the no-bend-

over condition uses larger resistance in the 15 µm separation case. Besides, for the

absolutely stable condition, smaller separation will result in more serious bend-over

IC−VBE curves with smaller base-emitter voltage at the bend-over point. It is a result

of higher finger temperature, as shown in Fig. 4.10(b). The higher the finger temperature

is, the more bending the curves will have. For the no-bend-over condition, the IC−VBE

curves are overlapped in both 15 µm and 40 µm separation cases. The temperature

curves for both the absolutely stable and no-bend-over conditions are also overlapped

that is the same situation as Fig. 4.5.

Fig. 4.11 is the collection of the simulated total currents in Fig. 4.1 for RE = 3 Ω and

in Fig. 4.2 for RE13/RE2,ideal
= 3/3.26 Ω conditions for the 40 µm separation case, and

in Fig. 4.8 for RE = 3 Ω and in Fig. 4.9 for RE13/RE2,ideal
= 3/3.55 Ω conditions for

the 15 µm separation case. It shows that smaller finger separation will result in smaller

bend-over voltage and higher unstable current. Fig. 4.12(a) and (b) shows the IC−VBE

curves and the temperature distribution curves for a five-finger device with RE15 = 3 Ω
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Fig. 4.11. The simulation results of the total current versus VBE curves collected from Fig. 4.1-Fig. 4.2

for the 3f 3x40 s40 HBT and Fig. 4.8-Fig. 4.9 for the 3f 3x40 s15 HBT. A1 correspond to RE = 3 Ω for a

3f 3x40 s40 HBT. A2 correspond to RE13/RE2,ideal
= 3/3.26 Ω for a 3f 3x40 s40 HBT. B1 correspond

to RE = 3 Ω for a 3f 3x40 s15 HBT. B2 correspond to RE13/RE2,ideal
= 3/3.55 Ω for a 3f 3x40 s15

HBT.

and RE2/3/4
= REideal

= 3.37/3.45/3.37 Ω. In opposition to the complexity of Fig. 4.7,

most unphysical solutions of the 15 µm separation case are lifted up outside of the real

plane. The eigen-currents are ICλ1
= 6.4 mA, ICλ2

= 13.3 mA, ICλ3
= 35.7 mA,

ICλ4
= −44.6 mA, and ICλ5

= −1.037 A. The negative eigen-currents mean that the

corresponding unstable points do not exist physically. This device has only two unstable

points, now, as shown in Fig. 4.12. The no-bend-over requirement is RE1,no-bend
= 7.05 Ω

and the absolutely stable requirement is RE1,opt = 4.94 Ω. The same as the three-finger

device, the thermal stability is also improved although the first unstable point does not

change much.
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4.4 The Effect of Finger Separation
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Fig. 4.12. The simulation results of a 5f 3x40 s15 HBT with RE15 = 3 Ω and RE2/3/4 = REideal
=

3.37/3.45/3.37 Ω. (a) IC−VBE curves and (b) the finger temperature as a function of the total current.

P1-P4 mark the four unstable points. f3 is the center finger, f1 and f5 are the outer fingers, and f2 and f4

are the side fingers beside the center finger.
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4.5 Summary

4.5 Summary

Multiple-finger transistors with nonuniform distribution of ballasting resistance have

been analyzed by using the simple model. Analytical formulas for the best ballasting re-

sistance distribution for optimum thermal stability operation were derived. Comparing

with the conventional method of using uniform ballasting resistance, the new schemes

with optimized design could result in a significant increase in the device current un-

der stable operation. With the ideal ballasting resistance distribution, it is possible to

achieve absolutely stable operation, where the device never becomes unstable, by using

the optimum ballasting resistance. This optimum value could be obtained by solving

an eigenvalue equation. The second largest real positive eigenvalue of this eigenvalue

equation was the optimum ballasting resistance. A design procedure for the thermally

stable optimum design was developed. The effect of the finger separation is also dis-

cussed. For a three-finger device, reducing finger separation will improve the thermal

stability.
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Chapter 5

Thermally Stable Optimum Design of

Multifinger HBTs in Accurate Model

W e had developed a design procedure to determine the values of the emit-

ter ballasting resistance needed for thermal stable operation from a set of

thermal-electrical feedback equations in simple model. The simple model gives us the

basic concept of the thermally stable design by using the cancelation of positive and

negative feedback. Based on this model, two ideas, the ideal ballasting resistance distri-

bution and the absolutely stable condition, are derived and discussed. In this chapter, we

extend our model to the accurate model and take the temperature dependence of thermal

conductivity into account. A more physical model will give us a more practical result.

By this manipulation, although the behavior of the IC−VBE curves are quit different

from the simple model, the basic concept of the ideal ballasting resistance distribution

and the absolutely stable condition are still similar and only need small modification.

We could use the same derivation procedure to derive the ballasting resistance equations

for the accurate model. Two practical design procedures based on uniform current and

uniform temperature consideration were obtained and described [8]. The results with

the temperature dependent and constant thermal conductivity were also compared.

In the calculation presented below, we use the same 3 × 40 InGaP/GaAs HBT on a
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5.1 The Accurate Model

substrate with dimension 1000 µm× 1000 µm and 100 µm thickness as mentioned in

Chapter 4 to illustrate the design procedure. The parameters used in Chapter 4 com-

bining with the parameters of the accurate model described in Chapter 3 and the tem-

perature dependent thermal conductivity described in Chapter 2 will be used in this

chapter. We relist these parameters here for convenience. They are IO = 6 × 10−25 A,

E∗
g0 = 1.483 eV, α∗ = 4.88 × 10−4 eV/K, γ = 4.21, kth,eff = 0.4124 W/cm-◦C, and

b = 1.25, VC = 6 V. The calculated coupling thermal resistances are Rth1 = 800 ◦C/W,

Rth2 = 66.9 ◦C/W, and Rth3 = 23.5 ◦C/W for the 40 µm finger separation device, and

Rth1 = 800 ◦C/W, Rth2 = 185.8 ◦C/W, and Rth3 = 94.4 ◦C/W for the 15 µm finger

separation device.

5.1 The Accurate Model

The difference between the simple model and the accurate model is that we use

the general SPICE model current equation (3.9) instead of the linearized model current

equation (3.15). The accurate coupled thermal-electrical feedback equation (3.36) had

been discussed in Section 3.2. Using a three-identical-finger transistor as an example,

the accurate coupled current-voltage equations with self-heating are

VBE = E∗
g0 − φ∗1T1 + RE13IC1

VBE = E∗
g0 − φ∗2T2 + RE2IC2

VBE = E∗
g0 − φ∗3T3 + RE13IC3

(5.1)

where

φ∗1 = φ1 − k

q
γ = −k

q

(
ln

IC1

IS0

− γ ln
T1

300

)
+ α∗

φ∗2 = φ2 − k

q
γ = −k

q

(
ln

IC2

IS0

− γ ln
T2

300

)
+ α∗

φ∗3 = φ3 − k

q
γ = −k

q

(
ln

IC3

IS0

− γ ln
T3

300

)
+ α∗

(5.2)
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5.1 The Accurate Model

and the parameters had been defined previously. The ideality factor is set to unity for

simplicity as before. IS0 is obtained from (3.16) as

IS0 = IO

(
TA

300

)−γ

exp

[
q

kTA

(E∗
g0 − α∗TA)

]
. (5.3)

For our device with IO = 6 × 10−25 A, IS0 = 0.494 A. From (5.1), a relation between

RE13 and RE2 can be obtained as

RE2 =
IC1

IC2

RE13 +
φ∗2T2 − φ∗1T1

IC2

=
IC1

IC2

(RE13 + ∆R∗
E2

)

(5.4)

where ∆R∗
E2

is the effective emitter resistance distribution difference and the real emitter

resistance distribution difference ∆RE2 defines as

∆RE2 = RE2 −RE13 . (5.5)

This distribution is no longer a constant but is a function of the current and the tem-

perature of all fingers because that the thermal-electrical feedback coefficient is not a

constant now. Therefore, the procedure we developed in Chapter 4 is not suitable for the

accurate model. However, from (5.4), we found that there are two degrees of freedom to

design our thermally stable transistors under some conditions. They are the uniform cur-

rent design and the uniform temperature design that will be discussed in the following

sections.

The effect of temperature dependent thermal conductivity will affect the thermal sta-

bility significantly. When the thermal conductivity is a function of temperature, the tem-

perature of fingers will become a very nonlinear function of the dissipated power. This

problem can be solved by using the Kirchoff transform through defining a linearized

temperature U(x, y, z) as had mentioned in Section 2.2.1. The solutions of U(x, y, z)
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5.1 The Accurate Model

are linear functions of currents. For the three-finger case,

U1 = TA + VC(Rth1IC1 + Rth2IC2 + Rth3IC3)

U2 = TA + VC(Rth2IC1 + Rth1IC2 + Rth2IC3)

U3 = TA + VC(Rth3IC1 + Rth2IC2 + Rth1IC3).

(5.6)

Once the temperature dependence of the thermal conductivity is known, we can solve

for the actual junction temperature T (x, y, z) using (2.11) and (5.6). Here, we use the

temperature dependence expression of (2.1) and parameter values of Table 2.1. By using

this relation, the actual junction temperature T (x, y, z) can be obtained as (3.28). For

the three-finger case,

T1 = TA

[
1− b− 1

TA

VC(Rth1IC1 + Rth2IC2 + Rth3IC3)

] −1
b−1

T2 = TA

[
1− b− 1

TA

VC(Rth2IC1 + Rth1IC2 + Rth2IC3)

] −1
b−1

T3 = TA

[
1− b− 1

TA

VC(Rth3IC1 + Rth2IC2 + Rth1IC3)

] −1
b−1

.

(5.7)

From now on, we have a very nonlinear relation between temperature and current. This

relation will seriously affect the behavior of the thermal-electrical feedback equation, as

we will see. Similar results of the constant thermal conductivity case can be obtained

by simply setting b = 0 to the results of the temperature dependent thermal conductivity

case. In this chapter, we will discuss both the constant thermal conductivity case and

the temperature dependent thermal conductivity case.

It is interesting to point out that in the temperature dependent thermal conductivity

case, the linearized temperature U has an upper limit. It is because that the junction

temperature T increase faster than U and will go to infinity as U increases to a certain

value. It happens when the second term in the bracket of (5.7) is equal to unity. And

as a result, the currents of the fingers also have a theoretical upper limit and the hottest
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5.1 The Accurate Model

finger, the center finger under normal operation, decides the limit. By setting all currents

the same, i.e. IC1 = IC2 = IC3 = IC , the maximum current level ICmax is

ICmax =
TA

(b− 1) VC (Rth1 + 2Rth2)
(5.8)

Substituting the parameters, we have ICmax = 171 mA for the 3f 3x40 s15 HBT and

ICmax = 214 mA for the 3f 3x40 s40 HBT. For the N-finger case, the upper limit be-

comes

ICmax =
TA

(b− 1) VC

[
max

i∈{1,2,3,···N}

(
N∑

j=1

Rthij

)] (5.9)

where Rthij
is the thermal resistance matrix element. Because of the existence of this

upper limit, setting the current to infinity when deriving the absolutely stable condition

in Section 4.2 is not valid. Even so, the basic idea of these equations is still correct. All

the change we need to do, instead of setting the current to infinity, is setting the current

to a specific current level as we will do in Section 5.2.

Following the similar steps in Section 4.2, we derive the eigenvalue equations of the

ballasting resistance for the accurate model. Firstly, from (5.2), the derivatives of (5.2)

with respect to VBE are

φ∗1
′ = −k

q

(
I ′C1

IC1

− γ
T ′

1

T1

)

φ∗2
′ = −k

q

(
I ′C2

IC2

− γ
T ′

2

T2

)

φ∗3
′ = −k

q

(
I ′C3

IC3

− γ
T ′

3

T3

)
.

(5.10)

Then, the derivatives of (5.1) with respect to VBE are obtained as

1 = −φ1T
′
1 +

(
k

q

T1

IC1

+ RE13

)
I ′C1

1 = −φ2T
′
2 +

(
k

q

T2

IC2

+ RE2

)
I ′C2

1 = −φ3T
′
3 +

(
k

q

T3

IC3

+ RE13

)
I ′C3

.

(5.11)
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5.1 The Accurate Model

where φi is defined in (3.21) and (3.23). We consider the temperature dependent thermal

conductivity case here. The results of the constant thermal conductivity case can be

easily obtained from the temperature dependent thermal conductivity case. Because of

the temperature dependence of the thermal conductivity, the derivatives of the finger

temperatures with respect to the base-emitter voltage become

T ′
1 = VC

(
Rth1I

′
C1

+ Rth2I
′
C2

+ Rth3I
′
C3

) (
T1

TA

)b

T ′
2 = VC

(
Rth2I

′
C1

+ Rth1I
′
C2

+ Rth2I
′
C3

) (
T2

TA

)b

T ′
3 = VC

(
Rth3I

′
C1

+ Rth2I
′
C2

+ Rth1I
′
C3

) (
T3

TA

)b

.

(5.12)

Combining (5.11) with (5.12) and using the relation of the emitter resistance (5.4) and

the definition of the effective thermal resistance (4.4), R∗
thi

= φVCRthi
, the derivatives

of the current-voltage equations with respect to VBE (5.1) become




Λ1 −RE13 θ1R
∗
th2

θ1R
∗
th3

θ2R
∗
th2

Λ2 − 1

r
(RE13 + ∆R∗

E2
) θ2R

∗
th2

θ3R
∗
th3

θ3R
∗
th2

Λ3 −RE13







I ′C1

I ′C2

I ′C3




=




−1

−1

−1




(5.13)

where

θ1 =
φ1

φ

(
T1

TA

)b

θ2 =
φ2

φ

(
T2

TA

)b

θ3 =
φ3

φ

(
T3

TA

)b

λ1 =
kT1

q

1

IC1

λ2 =
kT2

q

1

IC2

λ3 =
kT3

q

1

IC3

Λ1 = θ1R
∗
th1
− λ1

Λ2 = θ2R
∗
th1
− λ2

Λ3 = θ3R
∗
th1
− λ3

and

r =
IC2

IC1

.

φ is an arbitrary constant that we choose to be equal to 1 mV/◦C as before. We can

multiply the second equation of (5.13) by r to eliminate the prefatory term of RE13 in
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5.2 The Uniform Current Design

the equation. And then the resultant equation is




Λ1 −RE13 θ1R
∗
th2

θ1R
∗
th3

rθ2R
∗
th2

rΛ2 −RE13 −∆R∗
E2

rθ2R
∗
th2

θ3R
∗
th3

θ3R
∗
th2

Λ3 −RE13







I ′C1

I ′C2

I ′C3




=




−1

−r

−1




. (5.14)

We found that the eigenvalue equation can be derived by the requirement of un-unique

slopes of the IC−VBE curves at the unstable points as

∣∣∣∣∣∣∣∣∣∣∣∣

θ1R
∗
th1
− λ1 −RE13 θ1R

∗
th2

θ1R
∗
th3

rθ2R
∗
th2

rθ2R
∗
th1
− rλ2 −RE13 −∆R∗

E2
rθ2R

∗
th2

θ3R
∗
th3

θ3R
∗
th2

θ3R
∗
th1
− λ3 −RE13

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(5.15)

Once a specified current or a specified temperature is given, consequently the emitter

ballasting resistance distribution RE2 = RE13 + ∆RE2 is known. Then, the value of

RE13 needed for thermal stable operation in the specified current or temperature range

can be calculated by (5.15). The eigenvalue equation (5.15) is a general equation that

can be used to calculate the value of RE13 needed.

5.2 The Uniform Current Design

It is because that the ballasting resistance distribution (5.4) is a function of the cur-

rent and the temperature of all fingers, unlike Chapter 4 the ideal ballasting resistance

distribution and the absolutely stable optimum ballasting resistance do not exist. To

search for the solutions of all finger currents identical is impossible. Of course, a larger

ballasting resistance will result in a more stable device. But larger ballasting resistance

will degrade the device performance, such as gain and cutoff frequency, seriously. A

minimum value of ballasting resistance is more preferred. To compromise the device
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5.2 The Uniform Current Design

stability and the device performance, we still want to know an optimum ballasting re-

sistance to suffice our requirement. One way we can do is to imitate the procedure of

Chapter 4 to solve the ballasting resistance needed for stable operation under a specific

current level, ICSI
, by setting IC1 = IC2 = IC3 = ICSI

. This modification is so-called

the uniform current design since we assume that the currents of all fingers are identical.

The reason we can do this is based on the assumption that although the finger currents

will not be the same in the whole current range, we still can find an optimum value of

ballasting resistance to make the current-voltage curves intercept at the specified current

level and make sure that this specified current level is the first unstable point. Increasing

the ballasting resistance can push up the current level of this first unstable point.. We

will develop a procedure to find a combination of RE2 and RE13 to guarantee the first

unstable point is at the specified current level.

Once ICSI
is given, we can determine the junction temperature T1SI

, T2SI
, and T3SI

for each finger from (5.7) as

T1SI
= TA

[
1− b− 1

TA

VC(Rth1 + Rth2 + Rth3)ICSI

] −1
b−1

T2SI
= TA

[
1− b− 1

TA

VC(Rth2 + Rth1 + Rth2)ICSI

] −1
b−1

T3SI
= TA

[
1− b− 1

TA

VC(Rth3 + Rth2 + Rth1)ICSI

] −1
b−1

(5.16)

and φ1SI
, φ2SI

, and φ3SI
are obtained by substituting ICSI

and (5.16) into (5.2) as

φ1SI
= −k

q

(
ln

ICSI

IS0

− γ ln
T1SI

300
− γ

)
+ α∗

φ2SI
= −k

q

(
ln

ICSI

IS0

− γ ln
T2SI

300
− γ

)
+ α∗

φ3SI
= −k

q

(
ln

ICSI

IS0

− γ ln
T3SI

300
− γ

)
+ α∗.

(5.17)

Fig. 5.1 and Fig. 5.2 show the curves of T2SI
and φ2SI

for our devices. A reasonable ICSI

is determined by the highest junction temperature that is T2SI
in the three finger case.
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Fig. 5.1. The simulation result of T2SI
as a function of ICSI

for a 3f 3x40 s40 and a 3f 3x40 s15 HBT

with temperature dependent and constant thermal conductivity. s40 means the 3f 3x40 s40 device. s15

means the 3f 3x40 s15 device. The letter c indicates the results with constant thermal conductivity.
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Fig. 5.2. The simulation result of φ2SI
as a function of ICSI

for a 3f 3x40 s40 and a 3f 3x40 s15 HBT

with temperature dependent and constant thermal conductivity. s40 means the 3f 3x40 s40 device. s15

means the 3f 3x40 s15 device. The letter c indicates the results with constant thermal conductivity.
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We can see that the current level cannot exceed 20.5 mA for the 3f 3x40 s15 HBT and

25.7 mA for the 3f 3x40 s40 HBT with temperature dependent thermal conductivity and

28.5 mA for the 3f 3x40 s15 HBT and 35.7 mA for the 3f 3x40 s40 HBT with constant

thermal conductivity if the junction temperatures need to be kept below 500 K. The tem-

perature curves of the temperature dependent thermal conductivity case increase much

faster than the linear curves of the constant thermal conductivity case. And smaller

finger separation will result in both higher temperature and thermal-electrical feedback

coefficient despite the thermal conductivity model. The thermal-electrical feedback co-

efficient of the constant thermal conductivity case for the current level larger than 2 mA

is quit constant and close to 1 mV/◦C as we used in Chapter 4.

The emitter ballasting resistance distribution RE2,SI
and the distribution difference

∆RE2,SI
for the specified current level can be determined from (5.4) as

RE2,SI
= RE13 +

φ∗2SI
T2SI

− φ∗1SI
T1SI

ICSI

= RE13 + ∆RE2,SI

(5.18)

This distribution is no longer a constant but is a function of the current of fingers. Fig. 5.3

shows the simulated results of ∆RE2,SI
versus the current per finger. Despite the low

current region, as the specified current increases we need a higher ∆RE2,SI
to guarantee

identical currents in all fingers for the temperature dependent thermal conductivity case.

For the constant thermal conductivity case, the increase of ∆RE2,SI
is not so apparent.

It is quit constant in the current range larger than 2 mA. For the temperature dependent

thermal conductivity case, the increase of ∆RE2,SI
for the small finger separation case

is faster than the large separation because of the nonlinear behavior of the finger tem-

perature. Besides, since it is analogous to (4.3) that the difference between the coupling

thermal resistance Rth2 and Rth3 becomes larger, smaller finger separation will result in

larger ∆RE2,SI
.

After the finger temperatures T1SI
−T3SI

, the thermal-electrical feedback coefficients
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Fig. 5.3. The simulation result of ∆RE2,SI
as a function of ICSI

for a 3f 3x40 s40 and a 3f 3x40 s15

HBT with temperature dependent and constant thermal conductivity. s40 means the 3f 3x40 s40 device.

s15 means the 3f 3x40 s15 device. The letter c indicates the results with constant thermal conductivity.

φ1SI
−φ3SI

, and the emitter ballasting resistance distribution ∆RE2,SI
under the specified

current level are known, the eigenvalue equation for the uniform current design can be

obtained by substituting (5.16)-(5.18) into (5.15) as

∣∣∣∣∣∣∣∣∣∣∣∣

θ1SI
R∗

th1
− λ1SI

−RE13 θ1SI
R∗

th2
θ1SI

R∗
th3

θ2SI
R∗

th2
θ2SI

R∗
th1
− λ2SI

−RE13 θ2SI
R∗

th2

θ3SI
R∗

th3
θ3SI

R∗
th2

θ3SI
R∗

th1
− λ3SI

−RE13

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(5.19)

where

θ1SI
=

φ1SI

φ

(
T1SI

TA

)b

θ2SI
=

φ2SI

φ

(
T2SI

TA

)b

θ3SI
=

φ3SI

φ

(
T3SI

TA

)b

λ1SI
=

kT1SI

q

1

ICSI

λ2SI
=

kT2SI

q

1

ICSI

+ ∆RE2,SI

λ3SI
=

kT3SI

q

1

ICSI

.
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Fig. 5.4. The simulation result of RE13,SI
as a function of ICSI

for a 3f 3x40 s40 and a 3f 3x40 s15

HBT with temperature dependent and constant thermal conductivity. s40 means the 3f 3x40 s40 device.

s15 means the 3f 3x40 s15 device. The letter c indicates the results with constant thermal conductivity.

There are three solutions for RE13 the same as the discussion of Section 4.2. The largest

solution is the no-bend-over condition and the second is the solution for the uniform

current design. The calculated second largest solution of RE13 , namely RE13,SI
, as a

function of the specified finger current is shown in Fig. 5.4. We can find that RE13,SI
is

negative if ICSI
is below 6.0 mA for the 3f 3x40 s15 HBT and 5.5 mA for the 3f 3x40 s40

HBT with temperature dependent thermal conductivity, and 7.2 mA for the 3f 3x40 s15

HBT and 6.3 mA for the 3f 3x40 s40 HBT with constant thermal conductivity. The

negative RE13,SI
means that the transistor is unconditional stable below these specified

current levels correspondingly. Similar to Fig. 5.3, RE13,SI
is quit constant in the current

range larger than 10 mA for the constant thermal conductivity case. For the tempera-

ture dependent thermal conductivity case, RE13,SI
increases fast as the specified current

increases and the increase is faster for the smaller finger separation case because of the

temperature nonlinearity. But smaller finger separation will result in smaller RE13,SI
for

95



5.2 The Uniform Current Design

the constant thermal conductivity case and low current region of the temperature depen-

dent thermal conductivity case. It can be explained by the analogous equation of the

simple model (4.15) that the smaller RE13,SI
is due to the shrinkage of the difference be-

tween Rth1 and Rth3 as the finger separation decreasing. However, for the temperature

dependent thermal conductivity case, as the current becomes large enough, RE13,SI
with

smaller separation will surpass larger separation one due to the faster increase speed.

5.2.1 With Temperature Dependent Thermal Conductivity

We first use the same condition as Fig. 4.1 and Fig. 4.8 to set RE = 3 Ω for all

fingers. The simulated IC−VBE and finger temperature curves are shown in Fig. 5.5(a)

and (b). Because of the nonlinearity of the coupled IC−VBE equations, there are many

possible solutions existed mathematically in the IC−VBE plane. However, only four

sets of them are physically reasonable. There are also only three sets of solutions shown

in Fig. 5.5 including IC2 > IC1 = IC3 , IC1 > IC2 > IC3 , and IC1 = IC3 > IC2 similar to

Fig. 4.1. The highest current of the side fingers when the device is powered up from zero

bias, represented by the solution IC2 > IC1 = IC3 , is about 8.3 mA. This value is lower

than that shown in Fig. 4.8(a) for the same device. It is mainly due to the nonlinearity of

the temperature function. The temperature dependent thermal conductivity will result in

a more serious thermal unstable effect and lower unstable point current level.

If we set ICSI
= 24 mA, which corresponds to the collector current density of

20 kA/cm2, we can use (5.18) to determine ∆RE2,SI
= 1.17 Ω. By keeping RE13 = 3 Ω

and RE2 = RE13 + ∆RE2,SI
= 4.17 Ω, the IC−VBE and the finger temperature curves

are shown in Fig. 5.6(a) and (b). We found that the currents of all fingers are not the

same in the entire simulation range. It is very different from the simple model example

shown in Fig. 4.2(a). The unstable point current level is at about 12 mA for the side

fingers. It is lower than we expect because that RE13 is not optimized. Since ∆RE2,SI
is

computed from ICSI
= 24 mA, RE2 is too large for the unstable current 12 mA. And as

a result, the current and temperature of the center finger are lower than the side fingers
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5.2 The Uniform Current Design

and the temperature distribution of all fingers is more uniform.

And then, we increase RE13 to 5 Ω and keep ∆RE2 = ∆RE2,SI
= 1.17 Ω, i.e.

RE2 = 6.17 Ω. The IC−VBE and the finger temperature curves are shown in Fig. 5.7(a)

and (b) compared with the curves of Fig. 5.6. The unstable point current level is at about

19 mA for the side fingers, hither than the RE13 = 3 Ω case. Although the current of the

center finger is still lower than the side fingers, its temperature is higher, now. It means

that the over-compensation of ∆RE2 is improved since the difference between RE13 and

RE13,SI
becomes smaller. From the fact that the unstable point current is increased by

increasing RE13 , we can expect that there is an optimal value of RE13 which can push up

the unstable point to our specified current level as we had derived.

Now, we can obtain RE13,SI
= 6.79 Ω by substituting ICSI

= 24 mA into (5.19).

The IC−VBE and the finger temperature curves are shown in Fig. 5.8(a) and (b) with

RE13,SI
= 6.79 Ω and RE2,SI

= 7.96 Ω. Before the unstable point is reached, the cur-

rents of all fingers are roughly equal but not exactly the same in contrast to Fig. 4.2(a). It

is mainly because of the current and temperature dependent nature of (5.17) and (5.18).

Therefore, the ballasting resistance difference of the center finger cannot cancel com-

pletely the excess thermal coupling resistance between the side fingers and the center

finger in all current range. We can find that the unstable point, marked by an arrow in

Fig. 5.8(a), is just at 24 mA for all fingers as we specified. At this current level, the

highest finger temperature is near but below 550 K that is still in a reasonable range.

When the unstable point is reached, there are two unstable modes. One is that the center

finger starts to dominate most of the finger current. The other is that one of the side

fingers dominates. It seems like the two unstable points shown in Fig. 4.2(a) by using

the simple model merge together. In other words, every finger has the opportunity to

become the hottest finger. This is quit different from the traditional brief that the center

finger is always the hottest finger.

For comparison, Fig. 5.9(a) and (b) show the IC−VBE and finger temperature curves

with RE13,SI
= 12.02 Ω and ∆RE2,SI

= 1.90 Ω as ICSI
= 36 mA, which corresponds
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Fig. 5.5. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE2 = 3 Ω in the accurate model

with temperature dependent thermal conductivity. (a) IC−VBE curves and (b) the finger temperature as

a function of the total current. f2 is the center finger. f1 and f3 are the side fingers.

98



5.2 The Uniform Current Design

1.18 1.20 1.22 1.24 1.26 1.28 1.30
0.00

0.01

0.02

0.03

0.04

0.05
C

ur
re

nt
 (A

)

Base-Emitter Voltage Vbe (V)

 f1
 f2
 f3

(a)

0.00 0.03 0.06 0.09 0.12
300

400

500

600

700

800

Te
m

pe
ra

tu
re

 (K
)

Total current (A)

 f1
 f2
 f3

(b)

Fig. 5.6. The simulation results of a 3f 3x40 s15 HBT with RE13 = 3 Ω and RE2 = RE13 +∆RE2,SI
=

4.17 Ω as ICSI
= 24 mA in the accurate model with temperature dependent thermal conductivity. (a)

IC−VBE curves and (b) the finger temperature as a function of the total current. f2 is the center finger.

f1 and f3 are the side fingers.
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Fig. 5.7. The simulation results of a 3f 3x40 s15 HBT with RE13 = 5 Ω and RE2 = RE13 +∆RE2,SI =

6.17 Ω as ICSI
= 24 mA in the accurate model with temperature dependent thermal conductivity com-

pared with the results of RE13 = 3 Ω and RE2 = 4.17 Ω in Fig. 5.6. (a) IC−VBE curves and (b) the

finger temperature as a function of the total current. f2 is the center finger. f1 and f3 are the side fingers.

The letter R indicates the results of RE13 = 5 Ω case. The letter r indicates the results of RE13 = 3 Ω

case.
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Fig. 5.8. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE13,SI
= 6.79 Ω and RE2 =

RE2,SI
= 7.96 Ω as ICSI

= 24 mA in the accurate model with temperature dependent thermal conduc-

tivity. (a) IC−VBE curves and (b) the finger temperature as a function of the total current. The arrow

marks the unstable point. f2 is the center finger. f1 and f3 are the side fingers.
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Fig. 5.9. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE13,SI
= 12.02 Ω and

RE2 = RE2,SI
= 13.92 Ω as ICSI

= 36 mA in the accurate model with temperature dependent thermal

conductivity. (a) IC−VBE curves and (b) the finger temperature as a function of the total current. The

arrow marks the unstable point. f2 is the center finger. f1 and f3 are the side fingers.
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Fig. 5.10. The simulation results of a 3f 3x40 s40 HBT with RE13 = RE13,SI = 6.38 Ω and

RE2 = RE2,SI
= 6.84 Ω as ICSI

= 24 mA in the accurate model with temperature dependent ther-

mal conductivity compared with the results of the 3f 3x40 s15 HBT in Fig. 5.8. (a) IC−VBE curves and

(b) the finger temperature as a function of the total current. f2 is the center finger. f1 and f3 are the side

fingers. The letter a indicates the results of a 3f 3x40 s40 HBT. The letter b indicates the results of a

3f 3x40 s15 HBT.
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to the collector current density of 30 kA/cm2. It can be found that the unstable point,

marked by an arrow in Fig. 5.9(a), is just at the specified 36 mA for all fingers similar

to the 24 mA case. Although the current can be stable before 36 mA is reached, the

temperature of the hottest finger exceeds 770 K at this high current level. It is not rea-

sonable to operate a device at such a high temperature because of the device operation or

reliability considerations. Therefore, a reasonable stable current level must be specified

under an acceptable finger temperature when we use the uniform current design.

Last, Fig. 5.10(a) and (b) show the IC−VBE and finger temperature curves with

RE13,SI
= 6.38 Ω and ∆RE2,SI

= 0.46 Ω as ICSI
= 24 mA for the 40 µm finger

separation device. The curves of Fig. 5.8 for the 15 µm finger separation device are

also shown for reference. Because of the smaller coupling effect, the IC−VBE curves of

the smaller separation device are more concentrated. The temperatures of all fingers are

also smaller and more uniform. The highest finger temperature exceeds 480 K. All of

the above features are similar to the simple model case discussed in Section 4.4.

5.2.2 With Constant Thermal Conductivity

Without the temperature dependence, a constant thermal conductivity will result in

a less nonlinear behavior of devices. We first use the same condition as Fig. 5.5 to set

RE = 3 Ω for all fingers. The simulated IC−VBE and finger temperature curves are

shown in Fig. 5.11(a) and (b). And the curves of Fig. 5.5 are also shown for reference.

There are also three sets of solutions but out of the range displayed in the figures. Only

parts of the second set of the solutions are shown in Fig. 5.11(b). The highest current of

the side fingers is about 28.0 mA. This value is about 3.5 times larger than that shown

in Fig. 5.5(a) for the same device. It is a good evidence for the fact that the device

nonlinearity is mainly due to the temperature dependence of the thermal conductivity.

By substituting ICSI
= 24 mA corresponding to the collector current density of

20 kA/cm2 into (5.18), we obtain ∆RE2,SI
= 0.54 Ω. The IC−VBE and the finger

temperature curves are shown in Fig. 5.12(a) and (b) with RE13 = 3 Ω and RE2 =
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Fig. 5.11. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE2 = 3 Ω in the accurate model

with constant thermal conductivity. (a) IC−VBE curves and (b) the finger temperature as a function of

the total current. f2 is the center finger. f1 and f3 are the side fingers.
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Fig. 5.12. The simulation results of a 3f 3x40 s15 HBT with RE13 = 3 Ω and RE2 = RE13+∆RE2,SI
=

3.54 Ω as ICSI
= 24 mA in the accurate model with constant thermal conductivity. (a) IC−VBE curves

and (b) the finger temperature as a function of the total current. f2 is the center finger. f1 and f3 are the

side fingers.
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RE13 + ∆RE2,SI
= 3.54 Ω. The curves of Fig. 5.6 are also shown for reference. We

found that the currents of all fingers are nearly below the unstable current level. It is

different from the curves shown in Fig. 5.6(a) but similar to Fig. 4.2(a). The unstable

point current level is at about 39 mA for the center finger. It is higher than the value we

wanted because that RE13 is too large for the unstable current 24 mA. If we still want to

obtain the original current level, RE13 must be reduced.

If we set ICSI
= 24 mA and use (5.18) and (5.19) to determine RE2,SI

and RE13,SI
,

the IC−VBE and the finger temperature curves are shown in Fig. 5.13(a) and (b) with

RE13,SI
= 2.48 Ω and RE2,SI

= 3.02 Ω. Before the unstable point is reached, the

currents of all fingers are almost equal with small deviation. It is different from the

curves shown in Fig. 5.8(a) because of the smaller temperature nonlinearity. But it is

still not the same as Fig. 4.2(a) because of the current and temperature dependent nature

of (5.17) and (5.18). We can find that the unstable point, as marked by an arrow in

Fig. 5.13(a), is just at 24 mA as we specified. At this current level, the temperature is

near but below 470 K. When the unstable point is reached, there are two unstable modes

as in Fig. 5.8. The other features of Fig. 5.13 are nearly the same as Fig. 5.8 and had

been discussed in Section 5.2.1 except the less nonlinear coupling effect for the constant

thermal conductivity case.

Fig. 5.14(a) and (b) show the IC−VBE and finger temperature curves for ICSI
=

36 mA, which corresponds to the collector current density of 30 kA/cm2. With this

current level, RE13,SI
= 2.94 Ω and ∆RE2,SI

= 0.55 Ω. The unstable point, marked

by an arrow in Fig. 5.9(a), is just at the specified 36 mA as before. The highest finger

temperature is about 550 K at the unstable current level. It is much lower than the results

of Fig. 5.9. It is also a result of the difference between these two temperature models of

the thermal conductivity.

Then, Fig. 5.15(a) and (b) show the IC−VBE and finger temperature curves with

RE13,SI
= 2.89 Ω and ∆RE2,SI

= 0.25 Ω as ICSI
= 24 mA for the 40 µm finger

separation device. The curves of Fig. 5.13 for the 15 µm finger separation device are
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Fig. 5.13. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE13,SI
= 2.48 Ω and RE2 =

RE2,SI
= 3.02 Ω as ICSI

= 24 mA in the accurate model with constant thermal conductivity. (a)

IC−VBE curves and (b) the finger temperature as a function of the total current. The arrow marks the

unstable point. f2 is the center finger. f1 and f3 are the side fingers.
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Fig. 5.14. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE13,SI
= 2.94 Ω and RE2 =

RE2,SI
= 3.49 Ω as ICSI

= 36 mA in the accurate model with constant thermal conductivity. (a)

IC−VBE curves and (b) the finger temperature as a function of the total current. The arrow marks the

unstable point. f2 is the center finger. f1 and f3 are the side fingers.
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Fig. 5.15. The simulation results of a 3f 3x40 s40 HBT with RE13 = RE13,SI
= 2.89 Ω and RE2 =

RE2,SI
= 3.14 Ω as ICSI

= 24 mA in the accurate model with constant thermal conductivity compared

with the results of the 3f 3x40 s15 HBT in Fig. 5.13. (a) IC−VBE curves and (b) the finger temperature as

a function of the total current. f2 is the center finger. f1 and f3 are the side fingers. The letter a indicates

the results of a 3f 3x40 s40 HBT. The letter b indicates the results of a 3f 3x40 s15 HBT.
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also shown for reference. Because of the smaller coupling effect as discussed in Sec-

tion 5.2.1, the IC−VBE curves are more concentrated and the finger temperature are also

smaller and more uniform.

5.3 The Uniform Temperature Design

Besides uniform current distribution, we can also require the temperature of all fin-

gers identical. As shown in Fig. 5.8(b) and Fig. 5.9(b), the center finger will be hotter

than the side fingers when approaching to the unstable point under the uniform current

requirement at this point. If we increase the value of the ballasting resistance of the

center finger, the current and temperature of this finger will decrease. There will be a

certain value for the ballasting resistance of the center finger that will result in identical

temperature of all fingers. Because the temperature difference is small, the increment of

the ballasting resistance is minor. We can expect that the behavior of the curves will not

change too much under the uniform temperature design. But we still need a procedure

to decide the distribution of the ballasting resistance under temperature consideration.

We will call this procedure as the uniform temperature design. Similar to Section 5.2,

we will solve the ballasting resistance needed for stable operation under a specific finger

temperature, T
ST

, by setting T1 = T2 = T3 = T
ST

.

First, we rewrite (5.6) as

IC1 = At1(U1 − TA) + Ac1(U2 − TA) + Ac2(U3 − TA)

IC2 = Ac1(U1 − TA) + At2(U2 − TA) + Ac1(U3 − TA)

IC3 = Ac2(U1 − TA) + Ac1(U2 − TA) + At1(U3 − TA)

(5.20)
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where




At1

At2

Ac1

Ac2




=
1

VC (Rth1 −Rth3)
(
R2

th1
+ Rth1Rth3 − 2R2

th2

)




R2
th1
−R2

th2

R2
th1
−R2

th3

Rth2Rth3 −Rth1Rth2

R2
th2
−Rth1Rth3




According to (5.7), it will also result in U1 = U2 = U3 = U
ST

by setting the temperature

of all fingers identical, i.e. T1 = T2 = T3 = T
ST

. We can get the following relation of

U
ST

and T
ST

from (5.7) and (5.6) as

U
ST
− TA =

TA

b− 1

[
1−

(
T

ST

TA

)−(b−1)
]

. (5.21)

Then, (5.20) becomes

IC1,ST
= (At1 + Ac1 + Ac2)

TA

b− 1

[
1−

(
T

ST

TA

)−(b−1)
]

IC2,ST
= (Ac1 + At2 + Ac1)

TA

b− 1

[
1−

(
T

ST

TA

)−(b−1)
]

IC3,ST
= (Ac2 + Ac1 + At1)

TA

b− 1

[
1−

(
T

ST

TA

)−(b−1)
]

.

(5.22)

and φ1ST
, φ2ST

, and φ3ST
are obtained by substituting T

ST
and (5.22) into (5.2) as

φ1ST
= −k

q

(
ln

IC1,ST

IS0

− γ ln
T

ST

300
− γ

)
+ α∗

φ2ST
= −k

q

(
ln

IC2,ST

IS0

− γ ln
T

ST

300
− γ

)
+ α∗

φ3ST
= −k

q

(
ln

IC3,ST

IS0

− γ ln
T

ST

300
− γ

)
+ α∗.

(5.23)

The specification of the upper temperature limit of fingers by the uniform temperature

112



5.3 The Uniform Temperature Design

design is more directly in the physical sense than the uniform current design. It is not

like the uniform current design that need to compute the reasonable T2SI
from ICSI

. The

finger current level is also constrained by the upper limit of the finger temperature. In the

uniform current design, we have the possibility to specify the current level too high and

kill the device. In uniform temperature design, it will not happen. Fig. 5.16 and Fig. 5.17

show the curves of I2ST
and φ2ST

for our devices. We can see that the current level

cannot exceed 19.4 mA for the 3f 3x40 s15 HBT and 25.5 mA for the 3f 3x40 s40 HBT

with temperature dependent thermal conductivity and 27.0 mA for the 3f 3x40 s15 HBT

and 35.4 mA for the 3f 3x40 s40 HBT with constant thermal conductivity if the junction

temperatures need to be kept below 500 K. The other properties of the temperature

curves and the thermal-electrical feedback coefficient are similar to the uniform current

design and had been discussed in Section 5.2.

By substituting (5.22) and (5.23) into (5.4), the emitter ballasting resistance distri-

bution RE2,ST
and the effective distribution difference ∆R∗

E2,ST
for the specified current

level can be determined as

RE2,ST
=

IC1,ST

IC2,ST

[
RE13 +

(φ2ST
− φ1ST

)T
ST

IC1,ST

]

=
IC1,ST

IC2,ST

(RE13 + ∆R∗
E2,ST

)

=
At1 + Ac1 + Ac2

At2 + 2Ac1

RE13 +
(φ2ST

− φ1ST
)T

ST

(At2 + 2Ac1)(UST
− TA)

(5.24)

and the real emitter resistance distribution difference is

∆RE2,ST
= RE2,ST

−RE13 .

Similar to (5.18), this distribution is temperature and current dependent. But different

from (5.18), the distribution difference is a function of RE13 . It is the reason that we need

to define the effective distribution difference ∆R∗
E2,ST

to obtain a RE13 independent dis-

tribution difference. The independence of the distribution difference is necessary when
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Fig. 5.16. The simulation results of IC2,ST
as a function of T

ST
for a 3f 3x40 s40 and a 3f 3x40 s15

HBT with temperature dependent and constant thermal conductivity. s40 means the 3f 3x40 s40 device.

s15 means the 3f 3x40 s15 device. The letter c indicates the results with constant thermal conductivity.
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Fig. 5.17. The simulation results of φ2ST
as a function of T

ST
for a 3f 3x40 s40 and a 3f 3x40 s15 HBT

with temperature dependent and constant thermal conductivity. s40 means the 3f 3x40 s40 device. s15

means the 3f 3x40 s15 device. The letter c indicates the results with constant thermal conductivity.
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Fig. 5.18. The simulation results of ∆RE2,ST
as a function of T

ST
for a 3f 3x40 s40 and a 3f 3x40 s15

HBT with temperature dependent and constant thermal conductivity. s40 means the 3f 3x40 s40 device.

s15 means the 3f 3x40 s15 device. The letter c indicates the results with constant thermal conductivity.

we derive the eigenvalue equation of RE13 of the uniform temperature design. Fig. 5.18

shows the simulated results of ∆RE2,ST
versus the specified finger temperature. It is

the real ballasting resistance used in device unlike ∆R∗
E2,ST

. For this reason, we do not

concern the value of ∆R∗
E2,ST

which is only used temporarily for solving RE13 . Despite

the temperature close to ambient temperature, as the specified temperature increases

we need a higher ∆RE2,ST
to guarantee identical temperature in all fingers for the tem-

perature dependent thermal conductivity case. For constant thermal conductivity case,

the increase of ∆RE2,ST
is not so apparent. It is quit constant in the temperature range

larger than 320 K. For temperature dependent thermal conductivity case, the increase of

∆RE2,ST
for the small finger separation case is faster than the large separation because

of the nonlinear behavior of the finger temperature. Besides, since it is analogous to

(4.3) that the difference between the coupling thermal resistance Rth2 and Rth3 becomes

larger, smaller finger separation will result in larger ∆RE2,ST
.

After the finger currents IC1,ST
-IC2,ST

, the thermal-electrical feedback coefficients
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5.3 The Uniform Temperature Design

φ1ST
-φ3ST

, and the emitter ballasting resistance distribution difference ∆R∗
E2,ST

under

the specified finger temperature are known, the eigenvalue equation for the uniform

temperature design can be obtained by substituting (5.22)-(5.24) into (5.15) as

∣∣∣∣∣∣∣∣∣∣∣∣

θ1ST
R∗

th1
− λ1ST

−RE13 θ1ST
R∗

th2
θ1ST

R∗
th3

r
ST

θ2ST
R∗

th2
r

ST
θ2ST

R∗
th1
− λ2ST

−RE13 r
ST

θ2ST
R∗

th2

θ3ST
R∗

th3
θ3ST

R∗
th2

θ3ST
R∗

th1
− λ3ST

−RE13

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(5.25)

where

θ1ST
=

φ1ST

φ

(
T

ST

TA

)b

θ2ST
=

φ2ST

φ

(
T

ST

TA

)b

θ3ST
=

φ3ST

φ

(
T

ST

TA

)b

λ1ST
=

kTST

q

1

IC1,ST

λ2ST
=

kTST

q

1

IC2,ST

r
ST

+ ∆R∗
E2,ST

λ3ST
=

kTST

q

1

IC3,ST

and

r
ST

=
IC2,ST

IC1,ST

.

There are also three solutions for RE13 the same as the discussion of Section 5.2. The

largest solution is the no-bend-over condition and the second is the solution for the

uniform temperature design. The calculated second largest solution of RE13 , namely

RE13,ST
, as a function of the specified finger temperature is shown in Fig. 5.19. We can

find that RE13,ST
is negative if ICST

is below 340 K for the 3f 3x40 s15 HBT and 330 K

for the 3f 3x40 s40 HBT with temperature dependent thermal conductivity and 345 K

for the 3f 3x40 s15 HBT and 335 K for the 3f 3x40 s40 HBT with constant thermal con-

ductivity. The negative RE13,ST
means that the transistor is unconditional stable below

these finger temperatures correspondingly. RE13,ST
is quit constant for the constant ther-

mal conductivity case and increases almost linearly as the specified finger temperature

increases for the temperature dependent thermal conductivity case in the temperature
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Fig. 5.19. The simulation results of RE13,ST
as a function of T

ST
for a 3f 3x40 s40 and a 3f 3x40 s15

HBT with temperature dependent and constant thermal conductivity. s40 means the 3f 3x40 s40 device.

s15 means the 3f 3x40 s15 device. The letter c indicates the results with constant thermal conductivity.

range larger than 400 K.

5.3.1 With Temperature Dependent Thermal Conductivity

If we set T
ST

= 470 K, we can compute that RE13,ST
= 5.41 Ω and ∆RE2,ST

=

1.32 Ω for a 3f 3x40 s15 HBT. The IC−VBE and finger temperature curves are shown

in Fig. 5.20(a) and (b). Below the specified temperature, the temperatures of all fingers

are almost the same. We can find that the unstable point, as marked by an arrow in

Fig. 5.20(b), is just at 470 K as we specified. At this specified temperature, the total

current of the unstable point is 58 mA. Before the unstable point is reached, the current

of the center finger is always smaller than the side finger. Small current will result in

small self-heating. It is the reason that uniform finger temperature can be obtained.

Fig. 5.21(a) and (b) show the results under T
ST

= 550 K with RE13,ST
= 7.55 Ω

and ∆RE2,ST
= 1.65 Ω for comparison. The simulated curves under these two specified
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Fig. 5.20. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE13,ST
= 5.41 Ω and

RE2 = RE2,ST
= 6.73 Ω as T

ST
= 470 K in the accurate model with temperature dependent ther-

mal conductivity. (a) IC−VBE curves and (b) the finger temperature as a function of the total current.

The arrow marks the unstable point. f2 is the center finger. f1 and f3 are the side fingers.
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Fig. 5.21. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE13,ST
= 7.55 Ω and

RE2 = RE2,ST
= 9.20 Ω as T

ST
= 550 K in the accurate model with temperature dependent ther-

mal conductivity. (a) IC−VBE curves and (b) the finger temperature as a function of the total current.

The arrow marks the unstable point. f2 is the center finger. f1 and f3 are the side fingers.
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Fig. 5.22. The simulation results of a 3f 3x40 s40 HBT with RE13 = RE13,ST
= 6.35 Ω and RE2 =

RE2,ST
= 6.86 Ω as T

ST
= 470 K in the accurate model with temperature dependent thermal conductivity

compared with the results of the 3f 3x40 s15 HBT in Fig. 5.20. (a) IC−VBE curves and (b) the finger

temperature as a function of the total current. f1 and f3 are the side fingers. The letter a indicates the

results of a 3f 3x40 s40 HBT. The letter b indicates the results of a 3f 3x40 s15 HBT.
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temperatures are similar. The total current of the unstable point under T
ST

= 550 K is

76 mA as marked by an arrow in Fig. 5.21(b). By comparing to 72 mA of ICSI
= 24 mA

for the uniform current case in Fig. 5.8 whose maximum finger temperature is also

550 K, the total current under uniform temperature consideration is larger than that un-

der uniform current consideration. Although the total current is about 6 % larger, the

total ballasting resistance is about 13 % larger for the uniform temperature design, i.e.

24.3 Ω versus 21.5 Ω. It seems that the uniform current design is better in the consid-

eration of efficient ballasting resistance usage. However, since the uniform temperature

method have the advantage of identical finger temperature, we think these two designs

are both useful.

Fig. 5.25(a) and (b) show the IC−VBE and finger temperature curves for a 3f 3x40 s40

HBT under T
ST

= 470 K with RE13,ST
= 6.35 Ω and ∆RE2,ST

= 0.51 Ω. The curves

of Fig. 5.20 for the 3f 3x40 s15 HBT under the same specified temperature are also

shown for comparison. As the finger separation increases, the total current of the un-

stable point increases from 58 mA to 71 mA and the bend-over current increases from

32 mA to 59 mA under the same T
ST

= 470 K. It is a result of smaller coupling thermal

resistance. Because of the smaller coupling effect, the IC−VBE curves of the smaller

separation device are more concentrated and the unstable point moves to higher current

level.

5.3.2 With Constant Thermal Conductivity

If we set T
ST

= 470 K, we can compute that RE13,ST
= 2.62 Ω and ∆RE2,ST

=

0.74 Ω for a 3f 3x40 s15 HBT. The IC−VBE and finger temperature curves are shown in

Fig. 5.23(a) and (b). Below the specified temperature, the temperatures of all fingers are

almost the same. We can find that the unstable point, marked by an arrow in Fig. 5.23(a),

is just at 470 K as we specified. At this specified temperature, the total current of the

unstable point is 77 mA comparing to 72 mA of ICSI
= 24 mA for the uniform current

case in Fig. 5.13 whose maximum finger temperature is also 470 K. Although the total
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Fig. 5.23. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE13,ST
= 2.62 Ω and RE2 =

RE2,ST
= 3.36 Ω as T

ST
= 470 K in the accurate model with constant thermal conductivity. (a) IC−VBE

curves and (b) the finger temperature as a function of the total current. The arrow marks the unstable point.

f2 is the center finger. f1 and f3 are the side fingers.
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Fig. 5.24. The simulation results of a 3f 3x40 s15 HBT with RE13 = RE13,ST
= 3.03 Ω and RE2 =

RE2,ST
= 3.78 Ω as T

ST
= 550 K in the accurate model with constant thermal conductivity. (a) IC−VBE

curves and (b) the finger temperature as a function of the total current. The arrow marks the unstable point.

f2 is the center finger. f1 and f3 are the side fingers.
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Fig. 5.25. The simulation results of a 3f 3x40 s40 HBT with RE13 = RE13,ST
= 3.20 Ω and RE2 =

RE2,ST
= 3.49 Ω as T

ST
= 470 K in the accurate model with constant thermal conductivity compared

with the results of the 3f 3x40 s15 HBT in Fig. 5.23. (a) IC−VBE curves and (b) the finger temperature

as a function of the total current. f1 and f3 are the side fingers. The letter a indicates the results of a

3f 3x40 s40 HBT. The letter b indicates the results of a 3f 3x40 s15 HBT.
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5.4 The General N-Finger Case

current is about 7 % larger, the total ballasting resistance is about 8 % larger for the uni-

form temperature design, i.e. 8.6 Ω versus 8.0 Ω. Contrary to the temperature dependent

thermal conductivity case, the percentages of the increase of these two parameters are

very close. It is a result of lower finger temperature and less temperature nonlinearity.

In this constant thermal conductivity case, these two designs are both useful and have

their own advantages.

Fig. 5.24(a) and (b) show the results under T
ST

= 550 K with RE13,ST
= 3.03 Ω

and ∆RE2,ST
= 0.76 Ω for comparison. The simulated curves under these two specified

temperatures are similar. The total current of the unstable point under T
ST

= 550 K is

113 mA as marked by an arrow. As one can expect, the linear temperature model will

result in a higher unstable current level under the same specified temperature.

Fig. 5.25(a) and (b) show the IC−VBE and finger temperature curves for a 3f 3x40 s40

HBT under T
ST

= 470 K with RE13,ST
= 3.20 Ω and ∆RE2,ST

= 0.28 Ω. The curves in

Fig. 5.23 for the 3f 3x40 s15 HBT under the same specified temperature are also shown

for reference. As the finger separation increases, the current level of the unstable point

increases from 77 mA to 94 mA and the bend-over current increases from 25 mA to

56 mA under the same T
ST

= 470 K.

5.4 The General N-Finger Case

Base on the discussions of Section 5.2 and Section 5.3, we extend the 3-finger re-

sults to the N-finger case. Unlike Section 4.3 having only one procedure, there are two

designs procedures, the uniform current design and the uniform temperature design, for

the accurate model. The design procedures of these two designs will be given separately

in this section. A 10-finger transistor with each finger area fixed at 100 µm2 will be

analyzed as an example to illustrate the dependence of the ballasting resistance upon the

finger width and the finger separation for these two designs respectively. Because that
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5.4 The General N-Finger Case

the finger area is fixed, the finger length is determined by the finger width. The ballast-

ing resistance will be calculated under the specified current or the specified temperature

as the previous sections.

5.4.1 The Uniform Current Design

We list the formulas of the general N-finger case as follows. All variables will use

the index SI to indicate that they are obtained under the specified finger current. Once

ICSI
is given, we know that

T
SI

= TA

[
1− b− 1

TA

VCRthICSI

] −1
b−1

(5.26)

and

Φ
SI

= −k

q

(
ln

ICSI

IS0

− γ ln
T

SI

300
− γ

)
+ α∗ (5.27)

Φ∗
SI

= −k

q

(
ln

ICSI

IS0

− γ ln
T

SI

300

)
+ α∗ (5.28)

where ICSI
is the current vector that satisfies IC1 = IC2 = IC3 = · · · = IN = ICSI

,

TSI is the junction temperature vector, Φ
SI

is the thermal-electrical feedback coefficient

vector, and Φ∗
SI

is the effective thermal-electrical feedback coefficient vector. All vari-

ables use the index SI to indicate that they are obtained under the specified current level.

Rth is the thermal resistance matrix as before. The ideal emitter ballasting resistance

distribution, (5.18), becomes

RESI
= RE1 +

Φ∗
SI
·T

SI
− φ∗1SI

T1

ICSI

= RE1 + ∆RESI

(5.29)

where RESI
is the ideal emitter ballasting resistance distribution vector and ∆RESI

is

the emitter resistance difference vector under ICSI
. Then, the eigenvalue equation (5.19)
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becomes

det [diag(Θ
SI

)R∗
th − diag(Λ

SI
)−RE1II] = 0 (5.30)

where

Θ
SI

=
Φ

SI

φ
·
(

T
SI

TA

)b

Λ
SI

=
kT

SI

q

1

ICSI

+ ∆RESI

det(A) is the determinant of matrix A, diag(v) means a diagonal matrix with vector v

as its diagonal elements, and II is the identity matrix. Now, we have a modified version

for the design procedure of the ballasting resistance for an N-finger transistor when the

temperature dependent thermal conductivity is considered. We conclude as follows.

1) The thermal resistance matrix Rth is determined by measurement using test struc-

tures or by a three-dimensional simulation.

2) We specify the highest current level ICSI
from device operation or reliability con-

siderations and solve for the corresponding specific junction temperature T
ST

from (5.26). The junction temperature T
ST

must keep below a reasonable value.

3) The thermal-electrical feedback coefficient vector Φ
ST

and Φ∗
ST

can be obtained

from (5.27) and (5.28) correspondingly.

4) The ideal emitter ballasting resistance distribution under ICSI
can be obtained by

(5.29). Even when this distribution is satisfied, the currents of all fingers will not

be exactly identical because of the temperature dependence nature of the ideal

distribution in (5.29).

5) Then, by solving the eigenvalue equation of (5.30), the second largest real positive

solution is the optimum value of the emitter ballasting resistance RE1,SI
for stable

operation up until ICSI
is reached. This value is the smallest resistance needed for

the stable operation.

We use the above procedure to analyze a 10-finger transistor with the finger area

fixed at 100 µm2. The fingers are assumed to be identical and equal spaced. The pa-

rameters needed are assumed to be the same as used in Section 5.2 and Section 5.3

except IO which is scaled by the finger area from IO = 6 × 10−25 A for a 3 × 40 HBT
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Fig. 5.26. The contour plot of the optimum ballasting resistance RE1,SI

of a 10-finger device varied

with the finger width w and the finger separation s for the specified current ICSI
= 20 mA and the finger

area fixed at 100 µm2. The black straight line is the function of s = w. The black dash line is the function

of s = 3w.

to IO = 5 × 10−25 A for a 100 µm2 device. Fig. 5.26 shows the optimum ballasting

resistance RE1,SI
as a function of the finger width w and the finger separation s for the

specified current ICSI
= 20 mA. The coupling thermal resistance matrix is calculated

by using (2.21) for every (s, w) points. The specified current ICSI
is selected as the

current density equal to 20 kA/cm2. There are two black straight lines, the solid line

and the dash line. The data on the left side of the solid line are un-physical because

s < w means the fingers are overlapped. The dash line s = 3w corresponds to the

minimum separation needed in most case. The ratio of three times the finger width is

a roughly estimated value. Actually, devices with smaller finger width will have larger

ratio. It can be found that RE1,SI
is mainly determined by the shape of finger or the

self-thermal resistance if the finger separation is larger than the dash line. Fig. 5.27(a)

and (b) show the ballasting resistance distribution difference of finger 2, ∆RE2,SI
, and
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Fig. 5.27. The contour plot of the optimum resistance distribution difference of finger 2, ∆RE2,SI
, and

finger 5, ∆RE5,SI
, of a 10-finger device varied with the finger width w and the finger separation s for the

specified current ICSI
= 20 mA and the finger area fixed at 100 µm2. (a) ∆RE2,SI

and (b) ∆RE5,SI
.

The black straight line is the function of s = w. The black dash line is the function of s = 3w.
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finger 5, ∆RE5,SI
. Contrary to RE1,SI

, ∆RE2,SI
and ∆RE5,SI

are mainly determined by

the finger separation. The fact that the difference of finger 5, the center finger, is larger

than finger 2, the side finger results in the contours of Fig. 5.27(b) look like the contours

of Fig. 5.27(a) with a right shift.

5.4.2 The Uniform Temperature Design

Finally, we derive the formulas of the general N-finger case as follows. All variables

will use the index ST to indicate that they are obtained under the specified finger tem-

perature. The definitions of the used variables are analogical to Section 5.4.1. Once T
ST

is given, the specified current vector ICST
is obtained from (5.22) as

ICST
= A

TA

b− 1

[
1−

(
T

ST

TA

)−(b−1)
]

(5.31)

where

A = (VCRth)−1 .

From (3.13), the thermal-electrical feedback coefficient vector and its effective version

are

Φ
ST

= −k

q

(
ln

ICST

IS0

− γ ln
T

ST

300
− γ

)
+ α∗ (5.32)

Φ∗
ST

= −k

q

(
ln

ICST

IS0

− γ ln
T

ST

300

)
+ α∗. (5.33)

Then, the ideal emitter ballasting resistance distribution (5.24) becomes

REST
=

1

r
ST

[
RE1 +

(Φ∗
ST
− φ∗1,ST )T

ST

IC1,ST

]

=
1

r
ST

(RE1 + ∆REST
)

(5.34)
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where

r
ST

=
ICST

IC1,ST

1

r
ST

= [diag(r
ST

)]−1.

Following the procedure as before, we obtained the eigenvalue equation (5.25) as

det [diag(r
ST
·Θ

ST
)R∗

th − diag(Λ
ST

)−RE1II] = 0 (5.35)

where

Θ
ST

=
Φ

ST

φ
·
(

T
ST

TA

)b

Λ
ST

=
kT

ST

q

r
ST

ICST

+ ∆REST

and
r
ST

ICST

= diag(r
ST

)[diag(ICST
)]−1.

The optimum value of the emitter ballasting resistance RE1,ST
for stable operation up

to T
ST

can be solved by (5.35). The design procedure of the ballasting resistance for

an N-finger transistor with temperature dependent thermal conductivity under uniform

temperature consideration is similar to that of Section 5.2. We list it as follows:

1) The thermal resistance matrix Rth is determined by measurement using test struc-

tures or by a three-dimensional simulation.

2) We specify the highest junction temperature T
ST

from device operation or relia-

bility consideration and solve the corresponding specific current level ICST
from

(5.31).

3) The thermal-electrical feedback coefficient vector Φ
ST

and Φ∗
ST

can be obtained

from (5.32) and (5.33) correspondingly.

4) The ideal emitter ballasting resistance distribution under T
ST

can be obtained from

(5.34).

5) Then, by solving the eigenvalue equation of (5.35), the second largest real positive

solution is the optimum value of the emitter ballasting resistance RE1,ST
for stable

operation up until T
ST

is reached. This value is the smallest resistance needed for

the stable operation.
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Fig. 5.28. The contour plot of the optimum ballasting resistance RE1,ST

of a 10-finger device varied

with the finger width w and the finger separation s for the specified current T
ST

= 550 K and the finger

area fixed at 100 µm2. The black straight line is the function of s = w. The black dash line is the function

of s = 3w.

Analogous to Section 5.4.1, we use the above procedure to analyze a 10-finger tran-

sistor with the finger area fixed at 100 µm2. The fingers are assumed to be identical and

equal spaced. The parameters needed are discussed in Section 5.4.1. Fig. 5.28 shows

the optimum ballasting resistance RE1,ST
as a function of the finger width w and the

finger separation s for the specified temperature T
ST

= 550 K. The coupling thermal

resistance matrix is calculated by the same method as Section 5.4.1. The specified tem-

perature T
ST

is selected from the value used in Section 5.3. The meanings of the solid

line and the dash line are discussed in Section 5.4.1. It is different from Fig. 5.26 that al-

though RE1,ST
is mainly determined by the shape of finger or the self-thermal resistance,

it is more seriously affected by the finger separation. The curves at large separation are

not so flat as Fig. 5.26. It is because the finger separation will affect the uniformity of
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Fig. 5.29. The contour plot of the optimum resistance distribution difference of finger 2, ∆RE2,ST
, and

finger 5, ∆RE5,ST
, of a 10-finger device varied with the finger width w and the finger separation s for the

specified current T
ST

= 550 K and the finger area fixed at 100 µm2. (a) ∆RE2,ST
and (b) ∆RE5,ST

. The

black straight line is the function of s = w. The black dash line is the function of s = 3w.
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5.5 Summary

the temperature distribution. Fig. 5.29(a) and (b) show the ballasting resistance distri-

bution difference of finger 2, ∆RE2,ST
, and finger 5, ∆RE5,ST

. Contrary to Fig. 5.27,

∆RE2,ST
and ∆RE5,ST

have flat portions at small finger width region. In this region, the

resistance distribution does not change much and the most change is on RE1,ST
. The

contours of Fig. 5.29(b) also look like the contours of Fig. 5.29(a) with a right shift

similar to Fig. 5.27.

5.5 Summary

We extended our works on the multiple-finger transistor thermal stability from the

simple thermal-electrical feedback equations to the accurate model equations and taking

the temperature dependence of the thermal conductivity into account. Transistors with

3-fingers have been analyzed. Two design flows, uniform current design and uniform

temperature design, of the best ballasting resistance distribution of a N-finger transistor

for optimum thermal stability operation were developed. Using these design flows, we

can design the best ballasting resistance needed for thermally stable operation under the

specified current level or junction temperature. A 10-finger device with 100 µm2 finger

area for each finger was analyzed. The best ballasting resistance distribution of this

device was evaluated as a function of finger width and finger separation.
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Chapter 6

Conclusion

T he primary goal of this work was to develop an optimum design procedure of

multi-finger transistors for thermally stable operation. This procedure was used

to find two ballasting resistance values, the ideal resistance distribution difference and

the optimum resistance. The practical value of the ballasting resistance was the sum of

these two values. The ideal resistance distribution difference was used to ensure that

the currents or the temperatures of all fingers were identical. The optimum resistance

was used to push the unstable current or temperature to the desired value. Comparing

to conventional method of using uniform ballasting resistance, the new schemes with

optimized design could result in a significant increase in the device current under stable

operation.

6.1 Summary

The values of the thermal conductivity and its temperature dependence of GaAs and

InGaP in literature had been reviewed. The effect of temperature dependent thermal

conductivity on the heat flow equation and the thermal resistance was also explained.

Theoretical calculation of the thermal resistance was shown and the properties of the

thermal resistance dependent on device geometry were discussed. A small, long and
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6.1 Summary

narrow finger is better for the sake of reducing thermal resistance. Thinning the substrate

is not an effective way to reduce thermal resistance. Tow methods of DC measurement

were investigated and the conclusion is that Bovolon’s method is preferred.

The coupled current-voltage equations were derived and discussed. A linearized

temperature dependent band-gap energy expression is used to simplify the definition

of the thermal-electrical feedback coefficient and the coupled IC−VBE equations. The

goal function is defined and used to solve the thermal coupling problems. There are

three models that need to be solved, including the simple model, the accurate model

with constant thermal conductivity, and the accurate model with temperature dependent

thermal conductivity. The procedure utilized to solve the coupled IC−VBE equations by

using the Newton-Raphson method was developed.

Multiple-finger transistors with nonuniform distribution of ballasting resistance have

been analyzed by using the simple model. Analytical formulas for the best ballasting

resistance distribution for optimum thermal stability operation were derived. With the

ideal ballasting resistance distribution, it is possible to achieve absolutely stable opera-

tion by using the optimum ballasting resistance. This optimum value could be obtained

by solving an eigenvalue equation. The second largest real positive eigenvalue of this

eigenvalue equation was the optimum ballasting resistance. A design procedure for the

thermally stable optimum design was developed.

We extended our works on the multiple-finger transistor thermal stability from the

simple thermal-electrical feedback equations to the accurate model equations and taking

the temperature dependence of the thermal conductivity into account. Two design flows,

uniform current design and uniform temperature design, of the best ballasting resistance

distribution of a N-finger transistor for optimum thermal stability operation were devel-

oped. Using these design flows, we could design the best ballasting resistance needed

for thermally stable operation under the specified current level or junction temperature.
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6.2 Future Work

6.2 Future Work

Three future works are suggested. First, the implementation of the procedure of the

thermally stable optimum design to the real devices is the most important future work to

be done. The power amplifier modules with the thermally optimum designed ballasting

resistors are very useful for the application of the output stage of wireless systems.

Second, in addition to the thermal stability, the effects of the nonuniform ballasting

resistors on the RF performance and linearity of devices still need to be investigated. The

performance of thermal optimum designed devices should be better than the traditional

design because of the uniformity of the currents and temperatures of fingers. Last,

besides emitter ballasting, base ballasting is another method to stabilize the transistors.

The use of base ballasting needs to incorporate the more complex model of the current

gain. The analysis of the thermal stability by using the full SPICE model equations is

worth doing for base ballasting.
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Appendix A

Program Code for Solving The

Coupled IC−VBE Equations

T he MATLABr [6] program code used in this work with the procedure mentioned

in Section 3.3 is listed in this appendix. This program is a three-finger example

as the most case simulated in this work. One can easily expand to the N-finger example

by changing fin, Io, Re, and Rth. Io and Re are N-dimension vectors and Rth is a

N× N matrix. The simulation of a device with an arbitrary layout can be achieved by

using a proper Io and Rth. The problem of how to find the corresponding Io and Rth

is out of the scope of this program. One is required to provide Io and Rth in advance

when using this program.

The model flag sel is used to select the model applied in simulation. “sel = 1”

selects the simple model, “sel = 2” selects the accurate model with the uniform cur-

rent design, and “sel = 3” selects the accurate model with the uniform temperature

design. Isi is the specified current level for the uniform current design and Tst is

the specified finger temperature for the uniform temperature design. One should change

these parameters to conform to different problems. If a constant thermal conductivity

model is needed, one can set the parameter “bb = 0” to meet this requirement.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% MATLAB Program File for Solving The Coupled Current-Volatge Equations

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Copyright 2005 by Chih-Hao Liao (liawch.ee88g@nctu.edu.tw)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

warning off;

clear;

k = 1.3806505e-23; % Boltzmann constant [J/K].

q = 1.60217653e-19; % Elementary charge [C].

TA = 300; % Ambient temperature [K].

bb = 1.25; % Temperature parameter of the thermal conductivity [].

Vbe = 0; % Base-emitter voltage [V].

phi = 0.001; % The thermal-electrical feedback coefficient [V/K].

Vc = 6; % Collector-emitter voltage [V].

Eg0 = 1.483; % Energy band gap at 0 K [eV] fit from 250K to 700K.

alpha = 4.88e-4; % Bandgap shrinkage per unit temperature rise [eV/K].

r = 4.21; % Temperature parameter of the saturation current [].

Io1 = 6e-25;

Io2 = 6e-25;

Io3 = 6e-25;

Io = [Io1; Io2; Io3]; % Saturation current [A]

%sel = 1; % Model flag, the simple model.

sel = 2; % Model flag, the uniform current design.

%sel = 3; % Model flag, the uniform temperature design.

fin = 3; % The finger number.

dim = fin - 1;

cen = fix(fin / 2);

Vt = k * TA / q;

Iso = Io * (TA/300)ˆ(-r) * exp((Eg0 - alpha * TA) / Vt);
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ckq = k / q;

cbb1TA = (bb - 1) / TA;

c1bb1 = - 1 / (bb - 1);

% The thermal resistance matrix.

%a = 1000; % The chip dimension [um].

%c = 100; % The chip thickness [um].

%w = 3; % The finger width [um].

%l = 40; % The finger length [um].

%s = 15; % The finger separation [um].

Rth1 = 7.330925044176360e+002;

Rth2 = 1.702258367445874e+002;

Rth3 = 8.650771092852000e+001;

Rth = [ Rth1 Rth2 Rth3;

Rth2 Rth1 Rth2;

Rth3 Rth2 Rth1; ];

Rth = Rth * 800 / Rth1; % Normalize to the experimental data.

dIr = 0.25e-3; % The step of reference current sweep.

Nipt = 800; % The number of the sweep points.

Im = Nipt * dIr; % The highest reference current.

Ii =1e-20; % The lowest reference current.

itmax = 5000; % The maximum number of iteration.

n0 = 0;

If0 = zeros(fin, 1);

if sel == 1, % For the simple model.

A = phi * Rth * Vc; % The effective thermal resistance.

else % For the accurate model.

A = Rth * Vc;

end; for i = 1:fin,

RE(i,1) = sum(A(i,:));

end;
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% Emitter ballasting resistnace.

if sel == 1, % For the simple model.

Re1 =3;

%Re2 = Re1;

Re2 = Re1 + RE(2) - RE(1);

Re3 = Re1;

Re = [Re1; Re2; Re3];

end;

if sel == 2, % For the uniform current design.

Isi = 0.024; % The specified current level.

Tsi = TA * (1 - cbb1TA * RE * Isi) .ˆ c1bb1;

PsiS = -ckq * ( log(Isi / Iso(1)) - r * log(Tsi / 300) ) + alpha;

Psi = PsiS + ckq * r;

dRe = (PsiS .* Tsi - PsiS(1) * Tsi(1)) / Isi;

B = diag(Psi .* (Tsi / TA) .ˆ bb) * A - diag(ckq * Tsi / Isi + dRe);

Re1opt = sort(eig(B)); % The optimum ballasting resistance.

Re1 = Re1opt(2);

Re2 = Re1;

Re3 = Re1;

Re = [Re1; Re2; Re3];

Re = Re + dRe;

end;

if sel == 3, % For the uniform temperature design.

Tst = 500; % The specified temperature.

D = inv(A);

du = (1 - (Tst / 300) ˆ (1 / c1bb1)) / cbb1TA;

Ist = D * du * ones(fin, 1);

rs = Ist / Ist(1);

PstS = -ckq * ( log(Ist / Iso(1)) - r * log(Tst / 300) ) + alpha;

Pst = PstS + ckq * r;

dRe = (PstS - PstS(1)) * Tst / Ist(1);

B = diag(rs) * ( diag(Pst * (Tst / TA) ˆ bb) * A;

B = B - diag(ckq * Tst ./ Ist) ) - diag(dRe);
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Re1opt = sort(eig(B)); % The optimum ballasting resistance.

Re1 = Re1opt(2);

Re2 = Re1;

Re3 = Re1;

Re = [Re1; Re2; Re3];

Re = (Re1 + dRe) ./ rs;

end;

for i = 0:(2ˆfin - 1), % Build up the initial guesses.

inistr(i + 1,:) = dec2bin(i, fin);

end;

Iini = zeros(dim, 1); % Build up the current variable.

for f = 1:(cen + 1), % Select the reference finger.

ref = f;

for ini = 1:size(inistr, 1), % Sweep all initial guesses.

strini = inistr(ini,:);

if str2num(strini(ref)) == 0,

% If the initial guess of the reference finger is low,

% the reference current sweeps from low to high.

strini(ref) = [];

for i = 1:dim,

Iini(i, 1) = (Im - Ii) * str2num(strini(i)) + Ii;

end;

start = 0;

step = 1;

stop = Nipt;

else

% If the initial guess of the reference finger is high,

% the reference current sweeps from high to low.

strini(ref) = [];

for i = 1:dim,
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Iini(i, 1) = (Im - Ii) * str2num(strini(i)) + Ii;

end;

start = Nipt;

step = -1;

stop = 0;

end;

% Build up the vectors and matrices which we need to use.

if sel == 1, % For the simple model.

M0 = A - diag(Re);

M = M0;

for i = 1:fin,

M(:, i) = M0(:, i) - M0(ref, i);

end;

M(ref,:) = [];

R = M;

R(:,ref) = [];

else % For the accurate model.

M = A;

M(:,ref) = [];

R = M;

R(ref,:) = [];

Isi = Iso;

Isi(ref) = [];

Rei = Re;

Rei(ref) = [];

end;

I = Iini;

I0 = Iini;

Irini = Ii;

nbad = 0;

for ni = start:step:stop, % Sweep the reference current.

Ir = Irini + ni * dIr;
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if sel == 1,% For the simple model.

logI1 = Vt * log(Ir);

Ia = M(:,ref) * Ir;

else % For the accurate model.

Ia = A(:,ref) * Ir;

Ib = Ia(ref);

Ia(ref) = [];

v1 = Re(ref) * Ir;

end;

% The main solving loop.

solved = -1; checkdIg = zeros(dim, dim); for times = 1:itmax,

if sel == 1, % For the simple model.

% The goal function and the derivative matrix.

Ig = Vt * log(I) - logI1 - R * I - Ia;

dIg = diag(Vt ./ I) - R;

else % For the accurate model.

% The finger temperature.

Tr = TA * (1 - cbb1TA * (Ib + M(ref,:) * I)) ˆ c1bb1;

if ˜isreal(Tr), % Check real number.

solved = 0;

break;

end;

Ti = TA * (1 - cbb1TA * (Ia + R * I)) .ˆ c1bb1;

if ˜isreal(Ti), % Check real number.

solved = 0;

break;

end;

% The thermal-electrical feedback coefficient.

PrS = -ckq * ( log(Ir / Iso(ref)) - r * log(Tr/300) ) + alpha;

PiS = -ckq * ( log(I / Iso(ref)) - r * log(Ti/300) ) + alpha;

Pr = PrS + ckq * r;

Pi = PiS + ckq * r;
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% The goal function and the derivative matrix.

Ig = -(PiS .* Ti - PrS * Tr) + (Rei .* I - v1);

dIg = diag(ckq * Ti ./ I + Rei) - diag(Pi .* ((Ti / TA) .ˆ bb)) * R;

dIg = dIg + ones(dim) * diag(Pr * ((Tr / TA) ˆ bb) * M(ref,:));

end;

dI = -inv(dIg) * Ig; % The step.

I = I + dI; % The new guess.

if ˜isreal(dI), % Check real number.

solved = 0;

break;

end;

% Convergence criteria.

if max(abs(dI ./ (I + 1e-30))) < 1e-6,

% Compute the final current solutions.

If(ref,1) = Ir;

If(1:(ref - 1),1) = I(1:(ref - 1));

If((ref + 1):fin, 1) = I(ref:end);

if sel == 1,% For the simple model.

Vbe = Vt * log(Ir / Io(ref)) - M0(ref,:) * If;

else % For the accurate model.

Tr = TA * (1 - cbb1TA * (Ib + M(ref,:) * I)) ˆ c1bb1;

PrS = -ckq * ( log(Ir / Iso(ref)) - r * log(Tr/300) ) + alpha;

Vbe = Eg0 - PrS * Tr + Re(ref) * Ir;

end;

I0 = I; % Remember the last good solution.

% Eliminate unreasonable solutions.

if min(If) < 0,

solved = 0;

break;

end;

% Eliminate symmetric solutions.

check = ones(cen, 1);
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Icheck = If;

Icheck(cen + 1) = [];

for i = 1:cen,

if (max(Icheck) - If(i)) > 1e-4,

check(i) = 0;

end;

end;

if check == 0,

solved = 0;

break;

end;

if Vbe > 0.0, % Save the solutions we need.

dImax = max(abs(If - If0));

if dImax > 2e-3 & ni > 0,

% Insert blank line to eliminate the solution discontinuity.

n0 = n0 + 1;

sol(:, n0) = [0; zeros(fin, 1); 0; zeros(fin, 1)];

end;

If0 = If;

n0 = n0 + 1;

% Compute the final temperature solutions.

It = sum(If);

if sel == 1, % For the simple model.

T = A * If / phi + 300;

else % For the accurate model.

T(ref,1) = Tr;

T(1:(ref - 1),1) = Ti(1:(ref - 1));

T((ref + 1):fin, 1) = Ti(ref:end);

end;

sol(:, n0) = [Vbe; If; It; T];

end;

solved = 1;

break;
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end;

% Avoid slope change sign but allow exceed slightly.

check = diag(dIg .* checkdIg);

check1 = min(check);

if check1(1) < -0.1,

I = Iini;

solved = 0;

break;

end;

checkdIg = dIg;

end;%times

if times == itmax,

’error: times exceed’

I = Iini;

break;

end;

if solved == 1,

nbad = 0;

end;

if solved == 0,

if nbad == 0,

% Insert blank line to separate differnt solution sets.

n0 = n0 + 1;

sol(:, n0) = [0; zeros(fin, 1); 0; zeros(fin, 1)];

end;

nbad = nbad + 1;

I = I0;

continue;

end;

end;%ni

[f ini n0 (ni-start) str2num(inistr(ini,:)) solved]

% Insert blank line to separate differnt solution sets.
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n0 = n0 + 1;

sol(:, n0) = [0; zeros(fin, 1); 0; zeros(fin, 1)];

end;%ini

end;%f

sol = sol’;

save -ascii fig1.txt sol

153



Appendix B

Elementary Constants

I n this work, some elementary constants are used, such as the Boltzmann constant

and the elementary charge. The values used are listed in Table B.1. Some other

important elementary constants are also listed in Table B.1. All values in Table B.1 are

referred to the website listed below. Almost all physical constants can be found in this

website.

http://physics.nist.gov/cuu/Constants/index.html

Quantity Symbol Value Unit

Boltzmann constant k 1.380 6505(24)e-23 [J/K]

electric constant ε0 8.854 187 817e-14 [F/cm]

electron mass m0 9.109 3826(16)e-31 [kg]

elementary charge q 1.602 176 53(14)e-19 [C]

Planck constant h 6.626 0693(11)e-34 [J-s]

Table B.1. The important elementary constants.
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