
基於規則庫切割的元知識建造方法 

Meta-rule Construction based on Rule Base Partitioning 

 

 

 

 

研 究 生：溫建豪          Student：Chien-Hao Wen 

指導教授：曾憲雄          Advisor：Dr. Shian-Shyong Tseng 

 

 

 

國 立 交 通 大 學 

資 訊 科 學 系 

碩 士 論 文 

 

 
A Thesis 

Submitted to Institute of Computer and Information Science 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer and Information Science 

 

June 2004 

 

Hsinchu, Taiwan, Republic of China 

 

 

中華民國九十三年六月 



 i i 

基於規則庫切割的元知識建造方法基於規則庫切割的元知識建造方法基於規則庫切割的元知識建造方法基於規則庫切割的元知識建造方法    

 

 

 

研究生研究生研究生研究生: : : : 溫建豪溫建豪溫建豪溫建豪                                                                                                    指導教授指導教授指導教授指導教授: : : : 曾憲雄博士曾憲雄博士曾憲雄博士曾憲雄博士    

 

 

 

國立交通大學電機資訊學院國立交通大學電機資訊學院國立交通大學電機資訊學院國立交通大學電機資訊學院    

資訊科學系資訊科學系資訊科學系資訊科學系    

 

 

 

摘要摘要摘要摘要 

 

在資訊科學的範疇中，專家系統（Expert System）的應用越來越為廣泛，儼

然成為下一代資訊系統的重要特色；而在專家系統的建置技術方面，規則庫（Rule 

Base）是一種廣為採用的方式，在規則庫中的知識，被設計為人類容易瞭解的邏

輯式規則，更使得規則庫無論在設計上、應用上，都能夠符合知識工程的需求。

然而，由於資訊系統的進步以及電腦硬體能力的增強，使得規則庫的規模有越來

越為龐大的趨勢，因而造成規則庫的規模增加，從此產生了許多管理上的議題。

在本論文中，藉著結合規則庫切割（Rule Base Partitioning）和元知識

（Meta-knowledge）建造機制，RP-MES 被提出來解決規則庫管理議題，其中透

過對於規則庫結構與語意的分析，協助建置更有效率且更容易維護的規則庫。此

外，我們也設計及實做一基於 RP-MES 的入侵偵測雛型系統，以及關於系統效

能的數個實驗。實驗結果顯示，透過 RP-MES 可以將規則庫分割為合適大小的

規則群，並維持知識的正確性，同時顯示最終的執行效能相較於原本不經過分割

的規則庫之效能有著明顯的提昇。 
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Abstract 
 

Expert system technology becomes more and more important in computer science 

domain for next generation computer systems. For constructing an expert system, rule 

base is a widely used approach, where knowledge and expertise are represented as 

production rules. However, due to the growth of rule base usage, the scale of rule base 

is increasing and hence many management related issues arise. By designing a new 

approach combining both rule base partitioning mechanism and meta-rule 

construction mechanism, RP-MES is proposed to solve these issues in this thesis. An 

Intrusion Detection System (IDS) prototype is also designed and implemented based 

on RP-MES, and some experiments have been done to evaluate the system 

performance. The experimental results show that RP-MES can produce reasonable 

number of rule clusters and the accuracy of the inference result remains, and that the 

performance of RP-MES is better than that of original rule base without partitioning. 
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Chapter 1. Introduction 

 

In recent years, expert system, the system to model expert’s decision making 

process and help build up knowledge systems, becomes more and more important in 

computer science domain for next generation computer systems. For constructing an 

expert system, rule base is a widely used approach, where knowledge and expertise 

are represented as production rules, a well-known logical knowledge representation. It 

is easy to construct knowledge system using rule base since the representation of 

knowledge, the storage of knowledge, and the processing of knowledge are well 

designed in rule base system. 

 

Several kinds of knowledge discovery approaches, such as knowledge acquisition 

[18], data mining algorithms [1], knowledge fusion [21], are used to extract rules. 

Designing and maintaining such rule base is a very difficult task, and many researches 

have been proposed to construct rule base [10][13]. However, due to the growth of 

rule base usage, the scale of rule base is increasing and hence many management 

related issues arise about constructing the rule base [5][12][16][30]. Three issues, 

including complex relationships between rules, structural errors, and performance 

degradation, are summarized from previous researches [4][7][16][27] about rule base 

construction. For the first issue, the relationships between rules in a huge rule base can 

be too complicated for both human to manage and computer to process, and they may 

cause the difficulty of tracing and explaining the rule base results. Also, the structural 

errors contained in the rule base which can not be easily detected without well-defined 

structure of the knowledge can make the rule base inference result incorrect or useless. 

Moreover, the performance can be dramatically decreased and hence cause the 
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inference engine of the rule base consuming too many resources when the number of 

rules in the rule base increases. 

 

Among previous researches proposed to resolve these rule base management issues, 

rule base partitioning is one of the most popular approaches whose basic idea is 

grouping rules according to a given criterion, and the grouping process is called 

modularization [4]. The motivation of modularization is to improve system 

performance and remain the maintainability of a rule base. That is, rule base 

partitioning groups rules into smaller rule clusters, which are easier for computer to 

process and easier for human being to understand and maintain. However, traditional 

rule base partitioning deals with only the structural relatedness between rules; 

moreover, rule base partitioning provide few information about partitioned rule 

partitions and hence causes some problems about management and usage of the rule 

base. There are some other researches [3][7] of meta-rules aim to solve the issue about 

selecting the appropriate rule partition, in which the meta-rule is used to store the 

knowledge about each rule partition. 

 

In this thesis, an RP-MES is proposed to solve these issues by designing a new 

approach combining both rule base partitioning mechanism and meta-rule 

construction mechanism. For rule base partitioning, RP-MES not only takes care of 

the structural relatedness between rules, but also consider the semantic relatedness of 

rules by calculating the semantic relationship between rules in the rule base. On the 

other hand, RP-MES extracts the meta-rules from the rule cluster partitioned by the 

rule base partitioning mechanism, and uses the meta-rules for selecting rule cluster 

when using the rule base. 
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There are several components in RP-MES, including Automatic Meta-rule 

Constructor, Verificator, Application and Management User Interfaces, and Inference 

Engine. Automatic Meta-rule Constructor is used to partition rules from structureless 

rule set into different rule clusters according to the rule similarity; Verificator will 

verify and validate the rules inside each rule cluster, and eliminate the confliction, 

redundancy, contradiction, circularity, and incompleteness, in the rule cluster. The 

Automatic Meta-rule Constructor is also used to generate the meta-rules of the rule 

base using the rule clusters generated, and the meta-rules will be used for rule 

selection in the usage of the rule base. The Inference Engine is used to process the 

meta-rules, and according to the result of meta-rule reasoning, the appropriate rule 

cluster(s) should be selected and inferred. Application and Management User 

Interfaces provide the GUI for user to manage this system, including rule editing, rule 

clusters navigation and all the basic functions for user to access the system. 

 

Automatic Meta-rule Constructor, the major component in PR-MES, is to process 

the rule base into meaningful structure and also extract the meta-information from rule 

base for better management and usage. Automatic Meta-rule Constructor, which 

consists of two major components, Rule Base Partitioner and Meta-rule Extractor. 

Rule Base Partitioner divides set of rules into several rule clusters according to rule 

similarity, which is calculated based on both structural relatedness and semantic 

relatedness. For calculating the structural relatedness, the inter-relationship between 

the rules will be analyzed, including the relations of share-in, share-out, in-out, and 

not-shared. And for calculating the semantic relatedness, an ontology of the domain 

knowledge will be used, and also the operators and values used in the rules will be 
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used as part of our calculation. Moreover, Meta-rule Extractor generates meta-rules 

from each rule cluster by extracting the embedded information between the rules 

inside the rule cluster. Using the Meta-Apriori algorithm proposed, the frequent 

expressions of each rule cluster will be discovered and translated into meta-rules, and 

also the confidence of each meta-rule will be re-calculated. 

 

In order to evaluate the performance of RP-MES, an Intrusion Detection System 

(IDS) prototype is designed based on RP-MES, and also some experiments are used to 

test the system. In the experiments, the accuracy of the meta-rules and rule clusters 

generated will be analyzed, and also the performance of generating rule base will be 

evaluated.  

 

The organization of this thesis is as follow: Chapter 2 introduces the related work 

about rule base maintenance, rule base partitioning and meta-knowledge. RP-MES is 

introduced in Chapter 3. Chapter 4 detailedly describes the mechanism of Automatic 

Meta-rule Construction. The implementation of the IDS prototype system based on 

RP-MES and corresponding experimental results are given in Chapter 5. At the end, 

concluding remarks are given in Chapter 6. 
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Chapter 2. Related Work 

 

In this chapter, related work about rule base maintenance and related researches 

will be introduced first, and also the issues to be solved in rule base maintenance will 

also be mentioned. Rule base partitioning, one of the approaches to solve these issues, 

is then described. Besides, the definition of meta-knowledge, which is often used to 

provide information about partitioned rule base, and some related researches are 

mentioned, which can help us to understand the usage of meta-knowledge in 

knowledge base maintenance issues. 

 

2.1 Rule Base Maintenance 

 

Knowledge-based programming has been widely used in many application fields 

[13]. With knowledge-based system, the application developers can easily enhance 

their program ability by modifying the knowledge contained in a knowledge base. In 

another word, knowledge-based programming provides lots of flexibility for system 

developers. But for administrators of these knowledge-based systems, the 

maintenance of the system can be a critical task if they do not familiar with the 

domain of knowledge base used. The knowledge contained in knowledge base can be 

represented as several forms: production rules, semantic networks, schemata, frames, 

and logic [13]. Since production rules are widely used in many real systems, we thus 

focus on rule base maintenance in this work.  

 

From the previous researches, there are three issues about rule base maintenance, 
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including complex relationships between rules [16], structural errors [27], and 

performance degradation [4][7], which are summarized from previous researches, will 

be described as follows. 

 

(1) Complex relationships between rules 

Wrong relationships including duplication, subsumption, overlap, and adjacency 

[16] between rules in a rule-based knowledge system are some of the major reasons to 

make rule base maintenance difficult. In [16], the author proposed an approach to 

detect and resolve such relationships. Unlike procedural code, traditional rule base has 

no explicit structures, such like modules, to help administrators understand it. For this 

reason, some researchers tried to decompose rule base into pieces of modules or 

groups. Harandi et al. [14] grouped rules with the same atomic topic as a rule group 

and then generated a semantic network to help understand relationships of groups. 

Kuo et al. [21] directed to the same objective except that the final result is ontology. 

 

(2) Structural errors 

For successful deployment of rule based systems, it is important that they be 

error-free. Nazareth [27] provided taxonomy of errors that rule base design may 

encounter, called structural errors, which consist of redundancy, contradiction or 

conflict, circularity, and incompleteness. Verification and validation processes are 

usually used to detect those structural errors. There are many kinds of verification 

processes are proposed, such like directed graph [28], Petri net [41][15], hypergraph 

[39], and directed hypergraph [32]. However, those approaches are not appropriate for 

large rule bases with thousands of rules due to requiring huge amount of storage and 

computation resource. Sakar and Ramaswamy suggested decomposing the rule base 

that allowed verification to be performed in a modular fashion [34]. 
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(3) Performance degradation 

Most rule-based systems would perform inefficiently when the number of rules in 

them is huge. For each problem task, the system chooses the appropriate set of rules to 

apply. However, the number of rules in the set is large when dealing with large rule 

base which often consists of thousands of rules. Without properly reducing the size of 

rule set, the system performs poorly. To avoid such situation, some researchers 

proposed lots of rule selection mechanisms, including neural network learning [1], 

meta-rule [7], etc. Therefore, for each task, rule-based system applies rule selection 

mechanism to choose the proper rules, and the experimental result reveals the speedup 

of inference process. Note that increase of performance does not come free since there 

is an overhead involved in evaluating the selection mechanism. However, in most 

cases, the sum reduction in complexity of rule matching process compensates for the 

increase in the overhead cost. 

 

To solve those issues, rule base partitioning is one of the approaches to achieve it. 

Therefore, existing rule base partitioning approaches will be reviewed in the next 

section. 

 

2.2 Rule Base Partitioning 

 

The basic idea of rule base partitioning is grouping rules according to a given 

criterion, and the grouping process is called modularization [4]. The motivation of 

modularization is to improve system performance and also to remain the 
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maintainability of a rule base. That is, rule base partitioning groups rules into smaller 

rule clusters, which is easier for computer to process and easier for human being to 

understand and maintain. Like most software engineering, the system capability can 

be enhanced by replacing original rule cluster with new one. In this section, several 

rule base partitioning techniques are introduced, including the approaches based on 

probability [26], graph [19][26][21], clustering [19][20][37], information-theoretic 

[19][20], and genetic algorithm [8][11][17]. 

 

There are some researches perform rule base partitioning using clustering analysis 

approaches, but usually the definitions of distance or relatedness between rules are 

different in various approaches. In [20], relatedness between rules is measured by the 

number of facts that are shared in both rules. Lee et al. [22] defined “static distance” 

between rules. Here “static” refers to the idea that the distance is fixed in terms of the 

syntactic structure of the rule base. Stanfel et al. adopted shortest path between two 

components as the weighted connection [37]. Except the definitions of distance can be 

different, clustering algorithms applied in rule base partitioning can be also different. 

Raz and Botten mathematically formulated the rule base partitioning problem; that is, 

the problem of allocation of rules or rule groups among partitions of limited size 

while minimizing the sum of inter-partition connections, as a 0-1 integer 

programming problem with a quadratic objective function. Since this type of problems 

is NP-complete, a clustering algorithm based on the nearest neighbor heuristic is 

proposed [33]. 

 

In [19][20], Jacob et al. proposed a hybrid approach which combining cluster 

analysis, information-theoretic and graph theory to solve rule base partitioning 
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problem. In this work, they have proposed a two-phase algorithm; the first phase 

partitions the rule base graph into a set of trees of rules, where the root of each tree 

was a fact. That is, divide the rules into groups such that each group of rules produces 

only one fact that is used by other groups. The group relatedness is defined thereafter. 

The second phase partitions the original rule base by combining groups produced in 

the first phase according to the group relatedness measurement. The result revealed 

that these two algorithms performed better when combined. 

 

Based on the formulation proposed by Raz and Botten, several researches applied 

evolutionary algorithms to find near optimal solutions for allocation of rules. The 

representation of a solution is crucial for the performance of a genetic algorithm. Dev 

et al. [8] designed a genetic algorithm with an integer string representation for the rule 

base partitioning problem. Dutta [11] used the same string representation and 

designed an evolutionary heuristic to find valid string (result) as fast as possible. In 

the works of Ho et al. [17], they proposed an intelligent genetic algorithm which is 

based on the orthogonal arrays. The experimental results of those evolutionary 

approaches show that they all perform efficiently than Raz’s heuristic clustering 

algorithm. 

 

Cluster analysis is one of the most frequently used approaches to solve the rule base 

partitioning problem. The concept of cluster analysis is intuitive and the result can be 

interpreted by human being. However, many researchers focused on syntactic structure 

of the rule base, and less concentrated on logical meaning between rules. Also, those 

techniques discussed above provide less information about the result partitions for 

further usage. For example, generating meta-knowledge to describe the clusters 
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generated. Meta-knowledge is used in some researches [14][21] to represent the 

information of rule cluster, which is proved to be useful in rule base management and 

processing. 

 

2.3 Meta-knowledge 

 

Knowledge about a particular task domain is called object-level knowledge, and 

information about object-level knowledge is meta-level knowledge (or 

meta-knowledge) [7]. For rule base partitioning issue, the rule cluster generated is the 

object-level knowledge and meta-knowledge can be used to represent the information 

about rule cluster. Several representations of meta-knowledge are defined in previous 

researches, such as meta-rule [1][7], semantic network [14], ontology [21], and 

constraints to restrict the hypothesis space in ILP (inductive logic programming) 

systems [24]. Meta-knowledge has been used to control the reasoning process of 

inference engine in many research works [3][7]. In these applications, three 

functionalities of meta-knowledge are grouping, rules selection, and rules ordering. 

Meta-knowledge for grouping is used to group related rules in the knowledge base. 

Meta-knowledge of rule selection and rule ordering can help select and prioritize the 

rules to be processed when solving a given problem. However, additional mechanism 

may be needed to process meta-knowledge. Davis recommended encoding 

meta-knowledge as production rules, called meta-rules; thus, the inference engine 

could be used to deal with meta-rules. 
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Rule 
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Figure 1. Traditional rule-based system vs. meta-rule added rule-based system. 

 

In the rule base without meta-knowledge, depicted as Figure 1 (a), the rule base is 

difficult to understand due to lacking of explicit structure. While dealing with the 

given task, the number of rules needed to evaluate is large since there is no 

information to guide inference engine. Meta-rules in the rule base system can be used 

to solve these issues. In the rule base with meta-rules, depicted as Figure 1 (b), each 

rule cluster is the set of rules and can be described by one or more meta-rules to help 

human being understand structure of rule base. Besides, meta-rule base is used by 

inference engine to choose the appropriate rule clusters that are used to solve the 

given problem task. Such mechanism can greatly reduce the number of rules needed to 

evaluate. 
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Chapter 3. Rule Base Partitioning and Meta-rule Extraction 

System (RP-MES) 

 

To solve the issues mentioned previously, the system called Rule base Partitioning 

and Meta-rule Extraction System (RP-MES) is proposed in this chapter. In the 

following sections, the mechanisms of RP-MES are described first, and then system 

architecture of RP-MES is also introduced. 

 

3.1 The Mechanisms of RP-MES 

 

As discussed in Chapter 2, there are three issues about rule base maintenance, 

including complex relationships between rules, structural errors, and performance 

degradation. In order to avoid these three issues, RP-MES has following mechanisms. 

 

(1) Rule base partitioning 

For a rule base containing sophisticated expert knowledge, the amount of rules may 

be huge, and the relationships between rules may be quite complicated. Modification 

of such a rule base may cause the rule base to be inconsistent. Unlike procedural 

programming, rule base does not have explicit structure, and the relationships between 

rules may be not aware when users try to manage the rule base. For this reason, it is 

intuitive to group related rules in the same partition (similar to the concept of module 

in procedural programming) according to atomic topic, subject area, or other criteria; 

because that the relationships in a smaller rule partition are easier to manage and 

understand. Hence, rule base with good modularity is the rule base in which rules are 
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well-partitioned and managed. 

 

(2) Rules verification and validation 

A rule base is reliable only in case there are no structural errors inside the rule base 

and the result of the rule base is always consistent. However, as mentioned before, a 

rule base may be huge and there may be many structural errors, which cause errors 

when using the rule base. According to previous researches, these errors can be 

detected and corrected by some verification and validation processes. However, 

verification and validation in a large rule base can be very inefficient due to the 

complication of rule relationships and huge amount of computation resource. An 

efficient mechanism to verify and validate a rule base is helpful to build up a reliable 

rule based system. 

 

(3) Rule selection 

The processing of rule base may take quite amount of time to match the rules; 

however, performance is a key index for modern computer systems; a rule selection 

mechanism to avoid matching all rules during the inference can be very helpful to 

improve the performance. 

 

3.2 System Architecture 

 

According to the mechanisms defined in Section 3.1, the system architecture of 

RP-MES is proposed as shown in Figure 2. 
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Figure 2. The system architecture of RP-MES. 

 

In RP-MES, Automatic Meta-rule Constructor is used to partition rules from 

structureless rule set into different rule clusters according to the rule similarity; 

Verificator will verify and validate the rules inside each rule cluster, and eliminate the 

confliction, redundancy, contradiction, circularity, and incompleteness, in the rule 

cluster. The Automatic Meta-rule Constructor is also used to generate the meta-rules 

of the rule base using the rule clusters generated, and the meta-rules will be used for 

rule selection in the usage of the rule base. The Inference Engine is used to process 

the meta-rules, and according to the result of meta-rule reasoning, the appropriate rule 

cluster(s) should be selected and inferred. Application and Management User 

Interfaces provide the GUI for users to manage this system, including rule editing, 

rule clusters navigation and all the basic functions for users to access the system. In 

the following paragraphs, these components will be detailedly introduced. 

 

3.2.1 Application and Management User Interfaces 
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Like most knowledge-based systems, the proposed system architecture provides 

application user interface for users to execute queries and get results. Management 

user interface allows users to add, delete, or modify rules with user friendly interface 

to prevent user from accessing detailed rule base structure and configuration. 

Management user interface also displays meta-rules of each rule cluster to help user 

understand the rule base structure. 

 

3.2.2 Verificator 

 

The Verificator of RP-MES is used to verify and validate the rules of the rule base 

by different rule clusters. Since the domain knowledge may be different due to the 

growth of domain researches and discovery, the rule base may be also modified to be 

adapted to new knowledge. However, the modification of rule base may cause some 

errors and rule based system may obtain unreasonable results, e.g., contradiction or 

conflict, incompleteness, etc. Also, errors of rule base will cause Automatic Meta-rule 

Constructor generates incorrect rule clusters and meta-rules. Therefore, it is important 

to make sure that rule base is consistent and complete. Hence, the Verificator of 

RP-MES is proposed to verify rule base in order to eliminate the structural errors 

when rule base is modified. The Verification is used to verify each rule cluster instead 

of entire rule base in RP-MES, in order to reduce the complexity of verification and 

validation process and increase the performance. 

 

3.2.3 Inference engine 

 

In order to support the rule selection function by inferring the meta-rules of rule 
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base, the inference engine used in RP-MES should have the ability to process 

meta-rules, and also select the rule cluster according to the inference result of 

meta-rules. In NORM [23], a new knowledge model, proposed to process knowledge 

modularization and knowledge relations, is used to represent the meta-rule and rule 

cluster in RP-MES. There are four knowledge relations defined in NORM, including 

reference, extension, acquire, and trigger, in which acquire relation can be used to 

dynamically link a rule cluster according to given criteria, and the criteria can be the 

meta-rule in RP-MES. Hence, we use NORM and corresponding inference engine in 

RP-MES to process the rule inference and rule selection functionality. 

 

3.2.4 Automatic meta-rule constructor 

 

Meta-rules provide some information about each rule cluster. With meta-rules, the 

structure of the rule base can be easily understood, and in inference process, 

meta-rules can be used to select appropriate rule clusters which increase the 

performance of the usage of rule base. However, meta-rules are not easily to obtain. In 

previous applications about meta-rules [1], the set of meta-rules are usually provided 

by domain experts; acquiring meta-rules can be time consuming and the expertise may 

be not available. Therefore, a systematic mechanism is desirable to generate 

meta-rules. Accordingly, RP-MES incorporates Automatic Meta-rule Constructor, 

which consists of two major components, Rule Base Partitioner and Meta-rule 

Extractor. Rule Base Partitioner divides set of rules into several rule clusters 

according to rule similarity, and Meta-rule Extractor generates meta-rules from each 

rule cluster by extracting the embedded information between the rules inside the rule 

cluster. The detail of Automatic Meta-rule Constructor and corresponding components 
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will be introduced in Chapter 4. 
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Chapter 4. Automatic Meta-rules Construction 

 

4.1 Overview 

 

The Automatic Meta-rule Constructor consists of two processes as illustrated in 

Figure 3. The first is Rule Base Partitioning Process; it considers syntactic and 

semantic structures of given rule base, and then partitions rule base into several rule 

clusters. The second is Meta-rule Construction Process; meta-rules will be extracted 

from the rule clusters obtained in previous phase. These two phases will be described 

in detail in the rest of this chapter. 

 

Rule Base Rule Clusters

Meta-rule 

Extractor

Meta-rule Base

Structural 

Similarity

Semantic 

Similarity

Rule Base Partitioner

Rule Base Partitioning Process Meta-rule Construction Process

Ontology

 

Figure 3. Automatic Meta-rule Construction Processes. 

 

4.2 Rule Base Partitioning Process 

 

In this process, Rule Base Partitioner is used to group rules into rule clusters from a 

plain rule base without any structure. Figure 4 illustrates the detailed process of Rule 
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Base Partitioner. 

 

Rule Base Temporary Rule Clusters
Cluster Similarity 

Matrix

Rule Clusters

Semantic 

similarity

Structural 

similarity

Cluster Combination

Cluster Similarity Calculator

(1) (2) (3)

(4)(5)

(6)

Ontology

 

Figure 4. Components of Rule Base Partitioner. 

 

At beginning, each rule of the original rule base is allocated into a single rule 

cluster. Cluster Similarity Calculator calculates cluster similarity of all pairs of two 

distinct rule clusters and builds a Cluster Similarity Matrix (CSM). And the rule 

clusters will be merged according to the information in Cluster Similarity Matrix. The 

merge process works iteratively until all similar rule clusters are merged. And the rule 

clusters generated will be the result of this process. 

 

However, the similarity calculation can seriously affect the result of this process, 

and the merge process of rule cluster is also an important task. In the following 

paragraphs of this section, similarity calculation will be introduced first. After that, 

rule base partitioning algorithm will be detailedly described in the forthcoming 

section. 

 

4.2.1 Rule Similarity 
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Rule similarity is a key factor to the clustering result. Well defined rule similarity 

definition is important for a meaningful rule base partitioning result. Several kinds of 

rule similarity definitions considering structural relatedness only [20][22], or with 

semantic relatedness (hybrid approach) [21][38] are defined in previous work. In 

RP-MES, Rule Base Partitioner incorporates hybrid approach to deal with rule 

similarity calculation. 

 

Before discussing the rule similarity calculation, some notations will be given to be 

used in following discussions.  

 

Definition 4.1 Expressions, conditions, actions, rules, and rule base. 

� A = {attribute1, attribute2, …, attributeN}: the set of all attributes in the rule base. 

� O = {=, ≠, >, <, >=, <=}: the set of all operators used in the expressions 

� 
mattributeV : is the set of possible values of attributem, where attributem is the 

corresponding attribute of expression em. 

� em = (attributem operatorm valuem) is an expression, where Aattributem ∈ , 

Ooperatorm ∈ , and 
mattributem Vvalue ∈ . 

� CONDITIONSi : a set of expressions of rule ri, and expressions in the set are 

connected with conjunction operator (AND). 

� ACTIONSi : a set of expressions of rule ri, and expressions in the set are 

connected with conjunction operator (AND), where the operator of the 

expressions must be “=”. 

� ri : a rule of two-tuple (CONDITIONSi, ACTIONSi) which can be represented as 

“IF CONDITIONSi THEN ACTIONSi”. 
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� RB : the set of rules in the rule base. 

 

Example 4.1 Five rules used to detect different network anomalies are showed and 

form a rule base RB, that is, RB = {r1, r2, r3, r4, r5}. 

� r1 : IF {(protocol = TCP), (protected_network_direction = A), (source_port > 

8080), (string = NetBus)} THEN {(name = NETBUS)}; 

� r2 : IF {(protocol = TCP), (protected_network_direction = A), (source_port > 

1023, (string = NetBus2)} THEN {(name = NETBUS2)}; 

� r3 : IF {(protocol = UDP), (protected_network_direction = A), (destination_port 

> 1023), (string = /ce/63/d1/d2/16/e7/13/cf/3c/a5/a5/86)} THEN {(name = 

DIR)}; 

� r4 : IF {(protocol = UDP), (protected_network_direction = A), (destination_port 

> 1023), (string = /ce/63/d1/d2/16/e7/13/cf/39/a5/a5/86)} THEN {(name = 

INFO)}; 

� r5 : IF {(protocol = TCP), (protected_network_direction = A), (destination_port = 

53), (string = /00/00/ff)} THEN {(name = ANY-TCP)}.■ 

 

As we have mentioned before, we use hybrid approach to calculate rule similarity. 

Hence in RP-MES, rule similarity calculation contains two parts, structural 

relatedness and semantic relatedness, and each will be described as following. 

 

(1) Structural relatedness 

The structural relatedness considers the reference of attributes between rules, that is, 

evaluating the same attributes or asserting new values to the same attributes. When 

considering the reference of attributes, only the name of attribute is considered instead 
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of attribute value. In the definition of structural relatedness, two rules are related if 

there is any attribute used by both rules (either on left- or right-hand sides); otherwise 

they are independent. The structural relatedness between two rules is thus measured 

by the number of attributes that are mentioned in both rules. There are four situations 

of rule dependency, including in-out, share-in, share-out, and not-shared, and four 

corresponding functions, inout(), sharein(), shareout(), and notshared(), are given in 

Definition 4.2. 

 

Definition 4.2. inout(), sharein(), shareout(), and notshared() Functions. 

Given two rules ri = (CONDITIONSi, ACTIONSi), and rj = (CONDITIONSj, 

ACTIONSj), their definitions are defined as below: 

� inout(ri, rj) : the set of attributes that are used in CONDITIONSi and ACTIONSj, 

or ACTIONSi and CONDITIONSj. 

� sharein(ri, rj) : the set of attribute names that are common to both the 

CONDITIONSi and CONDITIONSj. 

� shareout(ri, rj) : the set of attribute names that are common to both the 

ACTIONSi and ACTIONSj. 

� notshared(ri, rj) : the set of all attributes used in ri or rj but not in inout(ri, rj), 

sharein(ri, rj), and shareout(ri, rj). 

 

Figure 5 illustrates those three relations mentioned in the Definition 4.2 The counts 

of attributes of the four sets, generated by inout(), sharein(), shareout(), and 

notshared() functions, are used to calculate the structural relatedness. And the weight 

of each counts is given as a variable in our rule similarity calculation, for example 

{1.0, 0.5, 0.75, -0.25}. 
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r1: IF {...} THEN {( protocol = TCP )}

r2: IF {( protocol = UDP )} THEN {...}

(a) inout(r1, r2)

r1: IF {( protocol = TCP )} THEN {...}

r2: IF {( protocol = UDP)} THEN {...}

(b) sharein(r1, r2)

r1: IF {...} THEN {( protocol = TCP )}

r2: IF {...} THEN {( protocol = UDP )}

(c) shareout(r1, r2)  

Figure 5. Illustration of three cases of attribute reference. 

 

Example 4.2 Given the rules r1 and r2 listed in Example 4.1, the set of common 

attribute names in both conditions is sharein(r1, r2) = {protocol, 

protected_network_direction, source_port, string}, and the set of common attribute 

names in both actions is shareout(r1, r2) = {name}; while the inout(r1, r2) = { }φ , and 

notshared(r1, r2) = { }φ . However, for rules r1 and r3, sharein(r1, r3) = {protocol, 

protected_network_direction}, shareout(r1, r3) = {name}, inout(r1, r3) = { }φ , and 

notshared(r1, r3) = {source_port, destination_port}.■ 

 

According to the number of attributes used in both two rules and given weights, the 

structural relatedness between two rules can be formulated in Definition 4.3. 

 

Definition 4.3 Structural relatedness between two rules. 

Given two rules ri = (CONDITIONSi, ACTIONSi), and rj = (CONDITIONSj, 

ACTIONSj), the structural relatedness between them is measured by L(ri, rj) and 

defined as below: 
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Example 4.3 According to the definition and the corresponding weights, win-out, 

wshare-in, wshare-out, and wnot-shared, are 1.0, 0.5, 0.75, and -0.25, respectively; the 

structural relatedness between r1 and r2 listed in Example 4.1 is 

( ) 75.2025.075.015.040.10, 21 =⋅−⋅+⋅+⋅=rrL . 

Also, the structural relatedness between r1 and r3 is 

( ) 25.125.0275.015.020.10, 31 =⋅−⋅+⋅+⋅=rrL . ■ 

 

(2) Semantic Relatedness 

In some cases, rules are very similar in syntactic structure, but they may be used to 

deal with different problems. Considering only structural relatedness between rules 

cannot effectively distinguish from them and further group related rules in the clusters. 

As for the rules, r3, r4, and r5, listed in Example 4.1, structural relatedness between 

every pair of rules is the same, that is, 2.75. Even though the rules are used to detect 

different network attacks, but with only structural relatedness, no additional 

information can help separate those rules. Therefore for calculating rule similarity, 

semantic relatedness is defined and used to complement structural relatedness. 

 

When considering structural relatedness between rules, only the names of attributes 

are taken in to consideration instead of the values or the operators of attributes. In 

order to capture the semantic meaning between two rules based on the similarity of 

expressions of rules, attribute values and operators of the expressions are also 

considered. The expressions of rules can be divided into two categories, categorical 
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and numerical expressions, according to the data type of values. For a given 

expression, if its value is categorical data, it belongs to categorical expression, e.g., 

(protocol = TCP); otherwise, if its value is numerical data, it belongs to numerical 

expression, e.g., (destination_port > 1023). The semantic relatedness calculations of 

these two types of expressions are different in our definition. 

 

Ontologies of knowledge-based system are often used for content explication or as 

common dictionary [1][40]. For two categorical expressions, the semantic relatedness 

can be measured by the conceptual similarity between their values. That is, for two 

categorical values, x and y, the semantic similarity of two categorical values can be 

measured by conceptual similarity function s(x,y) [6]; the conceptual similarity 

function depends on both the distance between them in the ontology and their 

generality. However, some factual information or symbols may not be defined in the 

ontology; therefore the conceptual similarity function for this case is reduced to the 

Kronecker delta function by only determining whether the categorical values are the 

same or not. The definition of conceptual similarity function is given in Definition 

4.4. 

 

Definition 4.4 Conceptual Similarity Function. 

Given two categorical values, x and y, which can be found on the ontology, the 

conceptual similarity between x and y is, 

( )
( ) ( ) ( )( )yDxDyxd

c
yxs

+++
=

1log,
,

2

, 

where d(x, y) is the number of “hops” between x and y, D(x) is the number of all its 

descendants, and c is the boundary constant. If x and y are not located on the ontology, 

their conceptual similarity is 
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where ( )yx,δ  is Kronecker delta function. 

 

However, different operators used may influence the evaluations of semantic 

relatedness between two expressions. For categorical expressions, both “=” and “≠” 

operators can be used, which means we can not just consider values when calculating 

the semantic relatedness of categorical expressions. There are two cases of operator 

combinations for two categorical expressions. Hence, the semantic relatedness 

between two categorical expressions is formulated as α() which is defined in 

Definition 4.5. 

 

Definition 4.5 Semantic relatedness between two categorical expressions. 

Given two expressions in rule action or condition, em = (attributem operatorm valuem) 

and en = (attributen operatorn valuen), which the attribute names are the same, i.e., 

attributem = attributen; the semantic relatedness α() between the expressions is 

formulated as below: 

( )
( )
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Example 4.4 Given the ontology which is illustrated in Figure 6. Suppose the 

constant c of conceptual similarity function is set to 0.9, the semantic relatedness 

between two expressions e1 = (name = NETBUS) and e2 = (name = NETBUS2) is 

( ) ( )

( ) ( ) ( )( )

( )
25.0
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2
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Figure 6. Part of the ontology in the network management domain. 

 

On the other hand, the semantic relatedness calculation between two numerical 

expressions is different from that of categorical expressions. Before evaluating 

semantic relatedness between two numerical expressions, both numerical expressions 

must be transformed into mathematical intervals. For instance, expression c1 = (port > 

1023) is transformed to (1023, max], where max is the maximum value of Vport, which 

is the value range of “port”. The semantic relatedness between two numerical 

expressions is based on the overlapping of two mathematical intervals. The definition 

is given in Definition 4.6. 

 

Definition 4.6 Semantic relatedness between two numerical expressions.  

Given two expressions, em = (attributem operatorm valuem) and en = (attributen 

operatorn valuen), with the same attribute name, em, and en will be transformed to two 

intervals im and in, where 
mattributem Vi ∈  and 

nattributen Vi ∈ . The semantic relatedness 

between the expressions is measured by β(em, en) which is defined as: 

( )
nm

nm

nm
ii

ii
ee

∪

∩
=,β . 
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Example 4.5 Given two numerical expressions e1 = (port > 1023) and e2 = (port > 

8080), and the corresponding intervals are i1 = (1023, 65535] and i2 = (8080, 65535] 

respectively. The semantic relatedness between these two expressions is 

( ) 89.0
64512

57455

]65535,8080(]65535,1023(

]65535,8080(]65535,1023(
, 21 ==

∪

∩
=eeβ .■ 

 

Based on the definition of the relatedness for numerical and categorical expressions, 

therefore, the semantic relatedness between any two expressions can be formally 

defined and given in Definition 4.7. 

 

Definition 4.7 Semantic relatedness between two expressions.  

Given two expressions, em = (attributem operatorm valuem) and en = (attributen 

operatorn valuen), the semantic relatedness between em and en is 
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Based on the semantic and structural relatedness defined for expressions of rules, 

the definition of the similarity of two rules, ri and rj, is given in Definition 4.8. 

 

Definition 4.8 Rule similarity between two rules.  

Given two rules, ri = (CONDITIONSi, ACTIONSi), rj = (CONDITIONSj, ACTIONSj), 

the rule similarity between ri and rj is 
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Example 4.6 Given two rules, r1 and r2, listed in Example 4.1. Reviewing Example 

4.2, sharein(r1,r2) = {protocol, protected_network_direction, source_port, string}, 

shareout(r1,r2) = {name}; inout(r1,r2) = { }φ , and notshared(r1,r2) = { }φ . The rule 

similarity between r1 and r2 is 

( ) ( ) 6325.125.0075.025.05.0089.0110.10, 21 =⋅−⋅+⋅++++⋅=rrR .■ 

 

4.2.2 Cluster Similarity 

 

As mentioned before, Rule Base Partitioner iteratively merges the most similar rule 

clusters to construct the resulting rule clusters. Hence we need to define the similarity 

between two rule clusters. Besides, in order to avoid too small or too large rule 

clusters generated, the quantity of rules in rule cluster is also considered when 

calculating the clusters. The function of rule cluster similarity is given in Definition 

4.9. 

 

Definition 4.9 Rule cluster and cluster similarity function.  

A rule cluster is a set of rules. Therefore, similarity between two rule clusters, gs and 

gt, is defined as: 
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Given the set of rule clusters, the similarity between each pair of rule clusters can 

be calculated in advance and stored in the matrix, called Cluster Similarity Matrix. 

 

Definition 4.10 Cluster Similarity Matrix. 

The Cluster Similarity Matrix (CSM) is an m-by-m square matrix, where m is the 

number of rule clusters. Each entry nst is the cluster similarity between rule clusters, gs 

and gt, that is, CS(gs,gt). Since the definition of rule similarity is symmetric, the cluster 

similarity definition is also symmetric. Therefore, CSM is an upper triangular matrix. 

 

Example 4.7 Suppose that there are three rule clusters g1 = {r1, r2}, g2 = {r3, r4}, and 

g3 = {r5}, where r1, r2, r3, r4, and r5 are listed in Example 4.1. The cluster similarity 

between g1 and g2 is 

( ) ( )( ) ( )( ) ( )( ) ( )( ) 83.0
22

2
,,,,, 4232413121 =

+
++++= rrRsqrtrrRsqrtrrRsqrtrrRsqrtggCS ; 

while CS(g1,g3) = 0.86 and CS(g2,g3) = 1.08. Therefore, the Cluster Similarity Matrix 

is 

















=

008.186.0

08.1083.0

86.083.00

CSM .■ 

 

4.2.3 Rule Base Partitioning Algorithm 

 

Once the similarity for rule clusters can be calculated, the Rule Base Partitioner can 

use Rule Base Partitioning Algorithm to partition a rule base into rule clusters. The 

algorithm incorporated is a bottom-up approach, which derives a high-level structure 

for the rule base based on the information of rule similarity. Similar to most clustering 

algorithm, the algorithm runs iteratively to group rule clusters until the stopping 
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criterion is met. In this partitioning algorithm, the stopping criterion is to stop when 

the cluster similarities between all pairs of rule clusters are no longer larger than a 

similarity threshold (st) which is set by users. 

 

The rule base partitioning algorithm is presented more formally below: 

Algorithm: Rule Base Partitioning Algorithm 

Input: A set of rules, similarity threshold st 

Output: A set of rule clusters 

Step 1. Group each rule as a single rule cluster. 

Step 2. Calculate cluster similarity between each pair of rule clusters and generate 

corresponding Cluster Similarity Matrix. 

Step 3. Choose the entry nij with the largest value (most similar) from the Cluster 

Similarity Matrix. 

Step 4. Terminate and output the remaining rule clusters, if nij is less than or equal 

to st. 

Step 5. Combine gi and gj into a single rule cluster by merging the rules inside the 

rule clusters. 

Step 6. Go to Step 2. 

 

Example 4.8 In this example, those rules listed in Example 4.1 are partitioned 

according to the Rule Base Partitioning Algorithm. The similarity threshold st is set to 

2. 

 

1. At first, each rule is assigned to a single rule cluster, i.e., g1 = {r1}, g2 = {r2}, g3 

= {r3}, g4 = {r4}, and g5 = {r5}. The Cluster Similarity Matrix for this 
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configuration is  























=

008.208.292.18.1

08.2031.289.177.1

08.231.2089.177.1

92.189.189.1009.2

8.177.177.109.20

1CSM . 

2. By reviewing CSM1, n34 has the largest value of the matrix. Since n34 is larger 

than st, g3 and g4 are combined to form a new rule cluster. The remaining rule 

clusters are g1 = {r1}, g2 = {r2}, g3 = {r3, r4}, and g4 = {r5}. The Cluster 

Similarity Matrix in this iteration is 



















=

008.192.180.1

08.1089.077.0

92.189.0009.2

80.177.009.20

2CSM . 

3. The largest value within the CSM2, n12, can be discovered. Two rule clusters g1 

and g2 are thus combined since n12 is larger than 2. After grouping g1 and g2, the 

Cluster Similarity Matrix can be generated again, i.e., 

















=

008.186.0

08.1083.0

86.083.00

3CSM . 

4. No more grouping is needed because that all entries of CSM3 are less than 

similarity threshold st. The process is terminated and output the result, set of the 

rule clusters, {{r1, r2}, {r3, r4}, {r5}}.■ 

 

4.3 Meta-rule Construction Process 

 

The second process of Automatic Meta-rule Constructor is meta-rule construction 

which is used to extract meta-rules from the partitioned rule clusters by Meta-rule 
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Extractor. Meta-rule Extractor consists of two subcomponents, Meta Apriori 

Algorithm and Confidence Calculator. The Meta Apriori algorithm is modified from 

Apriori algorithm which is used widely to generate frequent large itemsets in data 

mining algorithms [1]. The Meta Apriori algorithm is used to generate the meta-rules, 

and Confidence Calculator calculates the confidence value of each meta-rule. The 

meta-rule generated by Meta-rule Extractor is then stored in the Meta-rule base for 

further usage. The whole process is illustrated in Figure 7. 

 

Rule Clusters

Meta Apriori 

Algorithm

Meta-rule Base

Confidence 

Calculator

Meta-rule Extractor
 

Figure 7. Components of Meta-rule Extractor. 

 

In the following paragraphs, Meta Apriori algorithm is introduced first, and then the 

process of meta-rule generation will be examined. 

 

4.3.1 Meta Apriori Algorithm 

 

The Meta Apriori algorithm tries to discover the most frequent combinations of 

expressions to describe the rule cluster. The basic idea is that those most frequent 

combinations of expressions are used in many rules of the rule clusters, and once the 

combination is met, those rules may be related to the result. Different from Apriori 

algorithm, the transactions and itemsets defined in Meta Apriori algorithm are rule 

conditions and expressions. The notations used in Meta Apriori algorithm is given in 

Definition 4.11. 
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Definition 4.11 Transaction and itemset used in Meta-Apriori. 

Given a rule cluster gi = {ri1, ri2, …, riN}, where N is the number of rules in the rule 

cluster gi, the transaction and itemset are defined below: 

� tij = CONDITIONSij, where [ ]NjrCONDITIONS ijij K1, ∈∈ , is a set of 

expressions to be used as one transaction. 

� d:  the itemset of Meta Apriori algorithm is a set of expressions 

 

Example 4.9 From Example 4.8, two rules, r1 and r2, are grouped into the same rule 

cluster g1, i.e. g1 = {r1, r2}. The corresponding transactions are 

� t11 = {(protocol = TCP), (protected_network_direction = A), (source_port > 

8080), (string = NetBus)} 

� t12 = {(protocol = TCP), (protected_network_direction = A), (source_port > 

1023), (string = NetBus2)} ■ 

 

In Meta Apriori algorithm, the support count of the itemset is defined as the number 

of transactions that the itemset subsumes. That is, the set of expressions of the itemset 

subsume those of the transactions. Therefore, expression subsumption must be 

defined. For two expressions, em and en, em subsumes en if sub(em ,en) = 1, where sub() 

is called expression subsume function, which is defined in Definition 4.12. 

 

Definition 4.12 Expression subsumption function. 

Given two expressions em = (attributem operatorm valuem) and en = (attributen 

operatorn valuen), 
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Moreover, an itemset subsumes the transaction if each expression of itemset 

subsumes at least one expression of transaction. The itemset subsumption is defined 

in Definition 4.13. 

 

Definition 4.13 Itemset subsumption function. 

Given an itemset d and a transaction t, the itemset subsumption function is defined as 

( )
( )

otherwise ,0

1,|,1
,

=∈∃∈∀
=

nmnm eesubtede
tdsubsume . 

 

After discussing the notations and subsumption issue, it is appropriate to give the 

complete Meta Apriori algorithm. 

 

Algorithm: Meta Apriori Algorithm 

Input: A set of transactions, T; minimum support threshold, min_sup. 

Output: A set of frequent itemset, D 

Step 1. Generate the set of frequent 1-itemsets, D1, by scanning T. 

Step 2. Set initial value of k to 2. 

Step 3. Generate candidate k-itemsets Cik from Di(k-1). 

Step 4. For each k-itemset ikk Cd ∈ , compute the support count, that is, dk.support 

= ( )∑
=

N

l

ilk tdsubsume
1

, . 

Step 5. Remove those k-itemsets that their support counts are less than 

Nmin_sup ⋅  from Cik. The remaining itemsets are stored in Dik. 

Step 6. If { }φ≠ikD , increase k by 1 and repeat step 2. 
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Step 7. Output Dik. 

 

Example 4.10 In the Example 4.8, rule base RB = {r1, r2, r3, r4, r5} is partitioned into 

three rule clusters, g1 = {r1, r2}, g2 = {r3, r4}, and g3 = {r5}. The following steps 

illustrate how to apply Meta Apriori algorithm on g1 to generate frequent itemsets. 

The minimum support threshold, min_sup, is set to 0.9. For the sake of simplicity, 

every expression occurred in the RB is encoded in Table 1. 

 

encoding expression 

e1 (protocol = TCP) 

e2 (protected_network_direction = A) 

e3 (source_port > 8080) 

e4 (source_port > 1023) 

e5 (string = NetBus) 

e6 (string = NetBus2) 

Table 1. Encodings of expressions in RB. 

 

1. Since there are two rules in g1, T1 consists of two transactions, t11 and t12. Those 

are listed below: 

� t11 = {e1, e2, e3, e5}; 

� t12 = {e1, e2, e4, e6}. 

 

2. In the first iteration, each expression in the transaction is a member of the set of 

candidate 1-itemsets, C11. The algorithm scans all of the transactions in order to 

count the number of transactions that each itemset subsumes and summaries the 

result in Table 2. 
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itemset count 

{e1} 2 

{e2} 2 

{e3} 1 

{e4} 2 

{e5} 1 

{e6} 1 

Table 2. The support count of each candidate in C11. 

3. The minimum support count required is 2 ( 8.19.02supmin_1 =⋅=⋅T ). The 

frequent 1-itemsets, D11, can then be determined. Each itemset in D11 must satisfy 

minimum support count; the content of D11 is thus {e1, e2, e4}. 

4. The candidate 2-itemsets C12 can be generated from D11. To discover frequent 

2-itemsets, D12, the transactions in T1 are scanned and the support count of each 

candidate is accumulated, as shown in the Table 3. Since support of each 

candidate is larger than or equal to minimum support count, the set of large 

2-itemsets, D12, is {{e1, e2}, {e1, e4}, {e2, e4}}. 

itemset count 

(e1, e2) 2 

(e1, e4) 2 

(e2, e4) 2 

Table 3. Support count of each candidate in C12. 

5. The candidate 3-itemsets, C13, can be generated in the same way, which is listed 

in Table 4. Since 113 =D , no more candidate itemsets of C14 can be generated, 

and the process is thus terminated. 

itemset count 

{e1, e2, e4} 2 

Table 4. Support count of candidate in C13. 

6. Therefore, the final output is D13 = {{e1, e2, e4}}. According to Table 1, the 

frequent combination of expressions is {(protocol = TCP), 
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(protected_network_direction = A), (source_port > 1023)}. ■ 

 

4.3.2 Meta-rule Generation 

 

The meta-rule generation is based on the concept of constraint-based association 

mining [29][31]. That is, the format of meta-rule is specified in advance. The 

definition of meta-rule is given by Definition 4.14. The meaning of the meta-rule, mrj 

= (CONDITIONSj, (RULE_CLUSTER = gi), conf), is that if all expressions of 

CONDITIONSj are satisfied, the rule cluster gi will be selected with confidence value, 

conf. 

 

Definition 4.14 Meta-rule representation. 

For a given rule cluster gi, each meta-rule, mrj, generated from gi has the form: 

� mrj = (CONDITIONSj, (RULE_CLUSTER = gi), conf), where CONDITIONSj is 

a set of expressions in the condition part of mrj, and conf is the confidence value 

of the meta-rule. 

 

The frequent sets of expressions generated from one rule cluster may be the same 

with those generated from the other rule clusters. Therefore, once the frequent 

itemsets of all rule clusters are generated by Meta Apriori algorithm, the next step is 

to determine the confidence value of each corresponding meta-rule. Within the 

Meta-rule Extractor, Confidence Calculator is used to calculate the confidence value 

of each meta-rule generated from frequent itemsets by applying Confidence 

Calculation Algorithm as below. 
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Algorithm: Confidence Calculation Algorithm 

Input: a set of meta-rules, MRB, in which meta-rules have no confidence values 

defined 

Output: a set of meta-rules, MRB’, in which confidence values fro meta-rules 

specified 

Step 1. At first, MRB’ is an empty set. 

Step 2. Choose the meta-rules from MRB which have the same set of expressions in 

their condition parts with the first meta-rule of MRB. The first meta-rule of 

MRB is included in selection result. 

Step 3. Accumulate the total support count of all selected meta-rules. 

Step 4. Set the confidence value of each selected meta-rule via dividing its support 

count by total support count. 

Step 5. Remove those selected meta-rules from MRB to MRB’. 

Step 6. If MRB is empty, terminate and output MRB’. 

Step 7. Go to step 2. 
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Chapter 5. Experiment 

 

In this chapter, an Intrusion Detection System (IDS) prototype based on RP-MES is 

proposed, and the partitioning result as well as performance analysis of the prototype 

system are also introduced. 

 

5.1 Experiment Environment 

 

 

Figure 8. An IDS based on RP-MES. 

 

Figure 8 illustrates the system architecture of the IDS prototype based on RP-MES. 

There are two major components in the prototype systems, including the DRAMA 
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System and Automatic Meta-rule Constructor. DRAMA is developed by Knowledge 

and Data Engineering Laboratory (KDE Lab.) of National Chiao Tung University, 

Taiwan. DRAMA is implemented using JAVA. In the prototype system, DRAMA is 

used to store, represent, process the knowledge of the IDS. Moreover, the NORM 

knowledge model used in DRAMA provides the ability of inferring meta-rules and 

rule selection by the ACQUIRE knowledge relation, which is a dynamic knowledge 

relation to include rule cluster only when meta-rule is matched. DRAMA Rule 

Verifier is used to verify rules within the knowledge classes. DRAMA Rule Editor 

provides a user friendly GUI interface for editing knowledge classes and rules. 

 

Automatic Meta-rule Constructor is also implemented in JAVA. The knowledge 

can be the rule base of any other IDS, e.g., Snort [36], Dragon Sensor [9], etc. 

Automatic Meta-rule Constructor can partition the rule base into rule clusters, which 

are represented as knowledge classes in DRAMA, and generate meta-rules from those 

knowledge classes. Those generated knowledge classes can be processed by DRAMA 

Server for detecting network intrusions. 

 

Packet Preprocessor is implemented in C, which collects the packets from network 

and translates into the facts for DRAMA to infer. Administration Panel of the 

prototype system provides a user interface for administrator to monitor the situation of 

network environment. 

5.2 Experimental Results 

 

The rule base of Dragon Sensor consists of 646 rules, which is used as our 
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experimental knowledge source. In the first experiment, various numbers of rules are 

partitioned by Automatic Meta-rule Constructor according to different similarity 

threshold (st) settings, which are used as the criteria to stop clustering process. The 

partitioning result is shown in Table 5, and Figure 9. It can be observed that similarity 

threshold = 1.2 produces more reasonable number of rule clusters since the average 

size of rule clusters is satisfied with Miller’s magic number [25]. The Miller’s magic 

number says that human beings have a meaningful chunking size up to 27 ± . 

 

rules  st 1.0 1.1 1.2 1.3 1.4 1.5 

100 2 3 20 29 41 50 

200 3 5 28 48 87 100 

300 3 5 32 82 136 150 

400 3 7 52 112 181 200 

500 3 5 57 139 225 246 

600 4 7 56 172 272 296 

646 3 6 59 188 296 324 

Table 5. The number of clusters for different similarity threshold settings and number of rules. 

 

According to the partitioning results obtained from the first experiment, the second 

experiment is conducted to analyze the accuracy. For each partitioning result in first 

experiment, Automatic Meta-rule Constructor also generates corresponding 

meta-rules and stores those meta-rules in a knowledge class. Those knowledge classes 

are loaded into the IDS prototype system for accuracy experiment. The accuracy is 

obtained by comparing the result of original rule base (Dragon Sensor) and partitioned 

rule base, which is calculated in following formula: 

DS

p

F

F
accuracy = , 

where Fp is the set of rules fired in partitioned rule base, and FDS is the set of rules 
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fired in original rule base. The result is shown in Table 6. 

 

Figure 9. Partitioning results by different similarity threshold settings. 

 

 

rules   st 1.0 1.1 1.2 1.3 1.4 1.5 

100 95% 97% 100% 100% 100% 100% 

200 98% 99% 100% 100% 100% 100% 

300 98.33% 100% 100% 100% 100% 100% 

400 96.25% 96.75% 98.75% 99.25% 99.25% 99.25% 

500 94.20% 94.20% 97% 97.60% 97.60% 97.60% 

600 95.33% 95.67% 97.33% 98.00% 98.00% 98.00% 

646 95.51% 95.82% 97.37% 98.14% 98.14% 98.14% 

Table 6. Accuracy comparisons of partitioned rule base. 

 

We also use the traditional rule base partitioning approach, which only considers 

structural relatedness of rule, to partition the same rule base used in previous 
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experiments. The result is listed in Table 7 and illustrated in Figure 10. Table 7 shows 

the number of rule clusters partitioned for both approaches to meet the same accuracy 

(the accuracy for RP-MES approach with st = 1.2). 

 

rules 100 200 300 400 500 600 646 

RP-MES 20 28 32 52 57 56 59 

TRADITIONAL 30 51 85 113 139 170 188 

Table 7. Comparison of number of clusters under the same accuracy. 

 

 

Figure 10. Comparison of number of clusters under the same accuracy. 

 

The final experiment is to evaluate the performance between the rule base not 

partitioned and the rule base partitioned by RP-MES. The result of the experiment is 

shown in Figure 11. When the number of rules is small, the performance difference is 

not obvious. But if the number of rules becomes large, the execution time of original 
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rule base increases greatly. However, the execution time of RP-MES increases more 

smoothly than that of original rule base. 

 

 

Figure 11. The performance of original rule base and RP-MES. 
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Chapter 6. Conclusion 

 

Due to the growth of rule base usage, the scale of rule base is increasing and hence 

many management related issues arise about constructing the rule base. Three are 

issues about rule base maintenance, including complex relationships between rules, 

structural errors, and performance degradation. In this thesis, RP-MES is proposed to 

solve these issues by designing a new approach combining both rule base partitioning 

mechanism and meta-rule construction mechanism. As for rule base partitioning, 

RP-MES not only takes care of the structural relatedness between rules, but also 

considers the semantic relatedness of rules by calculating the semantic relationship 

between rules in the rule base. On the other hand, RP-MES extracts the meta-rules 

from the rule clusters partitioned by the rule base partitioning mechanism, and uses 

the obtained meta-rules for selecting rule cluster when using the rule base. 

 

In order to evaluate the performance of RP-MES, an Intrusion Detection System 

(IDS) prototype is also designed and implemented based on RP-MES, and some 

experiments have been done to test the system performance. The experimental results 

show that RP-MES can produce reasonable number of rule clusters and the accuracy 

of the inference result remains, and that the performance of RP-MES is better than 

that of original rule base without partitioning. 
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