
基於規則庫切割的元知識建造方法

Meta-rule Construction based on Rule Base Partitioning

研 究 生：溫建豪 Student：Chien-Hao Wen

指導教授：曾憲雄 Advisor：Dr. Shian-Shyong Tseng

國 立 交 通 大 學

資 訊 科 學 系

碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

 i i

基於規則庫切割的元知識建造方法基於規則庫切割的元知識建造方法基於規則庫切割的元知識建造方法基於規則庫切割的元知識建造方法

研究生研究生研究生研究生: : : : 溫建豪溫建豪溫建豪溫建豪 指導教授指導教授指導教授指導教授: : : : 曾憲雄博士曾憲雄博士曾憲雄博士曾憲雄博士

國立交通大學電機資訊學院國立交通大學電機資訊學院國立交通大學電機資訊學院國立交通大學電機資訊學院

資訊科學系資訊科學系資訊科學系資訊科學系

摘要摘要摘要摘要

在資訊科學的範疇中，專家系統（Expert System）的應用越來越為廣泛，儼

然成為下一代資訊系統的重要特色；而在專家系統的建置技術方面，規則庫（Rule

Base）是一種廣為採用的方式，在規則庫中的知識，被設計為人類容易瞭解的邏

輯式規則，更使得規則庫無論在設計上、應用上，都能夠符合知識工程的需求。

然而，由於資訊系統的進步以及電腦硬體能力的增強，使得規則庫的規模有越來

越為龐大的趨勢，因而造成規則庫的規模增加，從此產生了許多管理上的議題。

在本論文中，藉著結合規則庫切割（Rule Base Partitioning）和元知識

（Meta-knowledge）建造機制，RP-MES 被提出來解決規則庫管理議題，其中透

過對於規則庫結構與語意的分析，協助建置更有效率且更容易維護的規則庫。此

外，我們也設計及實做一基於 RP-MES 的入侵偵測雛型系統，以及關於系統效

能的數個實驗。實驗結果顯示，透過 RP-MES 可以將規則庫分割為合適大小的

規則群，並維持知識的正確性，同時顯示最終的執行效能相較於原本不經過分割

的規則庫之效能有著明顯的提昇。

 ii ii

Meta-rule Construction based on Rule Base

Partitioning

Student : Chien-hao Wen Advisor : Dr. Shian-Shyong Tseng

Institute of Computer and Information Science

National Chiao Tung University

Abstract

Expert system technology becomes more and more important in computer science

domain for next generation computer systems. For constructing an expert system, rule

base is a widely used approach, where knowledge and expertise are represented as

production rules. However, due to the growth of rule base usage, the scale of rule base

is increasing and hence many management related issues arise. By designing a new

approach combining both rule base partitioning mechanism and meta-rule

construction mechanism, RP-MES is proposed to solve these issues in this thesis. An

Intrusion Detection System (IDS) prototype is also designed and implemented based

on RP-MES, and some experiments have been done to evaluate the system

performance. The experimental results show that RP-MES can produce reasonable

number of rule clusters and the accuracy of the inference result remains, and that the

performance of RP-MES is better than that of original rule base without partitioning.

 iii iii

致謝致謝致謝致謝

 能順利完成本篇論文，最重要的必須感謝我的指導教授，曾憲雄博士，曾教

授在我碩士班兩年期間相當耐心得指導我論文研究；從他身上我也學習許多領導

處事的技巧，這些寶貴的經驗讓我獲益匪淺，感激不盡。同時也感謝我的口試委

員，李允中教授、何正信教授、和洪宗貝教授，他們給予了我相當多的寶貴意見，

讓本篇論文更有價值。

 第二位要感謝的人是林耀聰學長，兩年期間讓我學會許多理論知識及實務技

巧，也給予了我許多對於此篇論文的寶貴意見，接受我的詢問和討論，和協助我

論文修改工作，深表感激。

 此外我必須感謝實驗室學長平日的諸多協助，特別是王慶堯、林順傑、曲衍

旭。同時也感謝實驗室同窗夥伴，曾于彰、鄭佩琪、陳家瑜、王威、蘇培綺等人

在生活上和課業上互相幫忙的情誼；以及學弟李育松、黃柏智在論文實驗上的支

援，深表感激。

 最後我要感謝我的家人對於我的支持與鼓勵，讓我在面對挫折的時候能夠繼

續向前，也讓我能夠有相當的自信完成本篇論文，深表感激。

 iv iv

Table of Content

ABSTRACT (IN CHINESE).. I

ABSTRACT ...II

ACKNOWLEDGEMENT .. III

TABLE OF CONTENT... IV

LIST OF FIGURES...V

LIST OF TABLES ... VI

CHAPTER 1. INTRODUCTION..1

CHAPTER 2. RELATED WORK...5

2.1 RULE BASE MAINTENANCE...5

2.2 RULE BASE PARTITIONING ..7

2.3 META-KNOWLEDGE...10

CHAPTER 3. RULE BASE PARTITIONING AND META-RULE EXTRACTION SYSTEM

(RP-MES)..12

3.1 THE MECHANISMS OF RP-MES ..12

3.2 SYSTEM ARCHITECTURE ...13

CHAPTER 4. AUTOMATIC META-RULES CONSTRUCTION...18

4.1 OVERVIEW ..18

4.2 RULE BASE PARTITIONING PROCESS ...18

4.3 META-RULE CONSTRUCTION PROCESS..32

CHAPTER 5. EXPERIMENT...40

5.1 EXPERIMENT ENVIRONMENT ..40

5.2 EXPERIMENTAL RESULTS ..41

CHAPTER 6. CONCLUSION...46

REFERENCE ...47

 v v

List of Figures

FIGURE 1. TRADITIONAL RULE-BASED SYSTEM VS. META-RULE ADDED RULE-BASED SYSTEM.11

FIGURE 2. THE SYSTEM ARCHITECTURE OF RP-MES...14

FIGURE 3. AUTOMATIC META-RULE CONSTRUCTION PROCESSES. ...18

FIGURE 4. COMPONENTS OF RULE BASE PARTITIONER. ...19

FIGURE 5. ILLUSTRATION OF THREE CASES OF ATTRIBUTE REFERENCE. ..23

FIGURE 6. PART OF THE ONTOLOGY IN THE NETWORK MANAGEMENT DOMAIN. ..27

FIGURE 7. COMPONENTS OF META-RULE EXTRACTOR...33

FIGURE 8. AN IDS BASED ON RP-MES..40

FIGURE 9. PARTITIONING RESULTS BY DIFFERENT SIMILARITY THRESHOLD SETTINGS.43

FIGURE 10. COMPARISON OF NUMBER OF CLUSTERS UNDER THE SAME ACCURACY..................................44

 vi vi

List of Tables

TABLE 1. ENCODINGS OF EXPRESSIONS IN RB. ...36

TABLE 2. THE SUPPORT COUNT OF EACH CANDIDATE IN C11. ..37

TABLE 3. SUPPORT COUNT OF EACH CANDIDATE IN C12. ...37

TABLE 4. SUPPORT COUNT OF CANDIDATE IN C13. ..37

TABLE 5. PARTITIONING RESULTS BY DIFFERENT SIMILARITY THRESHOLD SETTINGS.42

TABLE 6. ACCURACY COMPARISONS OF PARTITIONED RULE BASE. ...43

TABLE 7. COMPARISON OF NUMBER OF CLUSTERS UNDER THE SAME ACCURACY.44

 1 1

Chapter 1. Introduction

In recent years, expert system, the system to model expert’s decision making

process and help build up knowledge systems, becomes more and more important in

computer science domain for next generation computer systems. For constructing an

expert system, rule base is a widely used approach, where knowledge and expertise

are represented as production rules, a well-known logical knowledge representation. It

is easy to construct knowledge system using rule base since the representation of

knowledge, the storage of knowledge, and the processing of knowledge are well

designed in rule base system.

Several kinds of knowledge discovery approaches, such as knowledge acquisition

[18], data mining algorithms [1], knowledge fusion [21], are used to extract rules.

Designing and maintaining such rule base is a very difficult task, and many researches

have been proposed to construct rule base [10][13]. However, due to the growth of

rule base usage, the scale of rule base is increasing and hence many management

related issues arise about constructing the rule base [5][12][16][30]. Three issues,

including complex relationships between rules, structural errors, and performance

degradation, are summarized from previous researches [4][7][16][27] about rule base

construction. For the first issue, the relationships between rules in a huge rule base can

be too complicated for both human to manage and computer to process, and they may

cause the difficulty of tracing and explaining the rule base results. Also, the structural

errors contained in the rule base which can not be easily detected without well-defined

structure of the knowledge can make the rule base inference result incorrect or useless.

Moreover, the performance can be dramatically decreased and hence cause the

 2 2

inference engine of the rule base consuming too many resources when the number of

rules in the rule base increases.

Among previous researches proposed to resolve these rule base management issues,

rule base partitioning is one of the most popular approaches whose basic idea is

grouping rules according to a given criterion, and the grouping process is called

modularization [4]. The motivation of modularization is to improve system

performance and remain the maintainability of a rule base. That is, rule base

partitioning groups rules into smaller rule clusters, which are easier for computer to

process and easier for human being to understand and maintain. However, traditional

rule base partitioning deals with only the structural relatedness between rules;

moreover, rule base partitioning provide few information about partitioned rule

partitions and hence causes some problems about management and usage of the rule

base. There are some other researches [3][7] of meta-rules aim to solve the issue about

selecting the appropriate rule partition, in which the meta-rule is used to store the

knowledge about each rule partition.

In this thesis, an RP-MES is proposed to solve these issues by designing a new

approach combining both rule base partitioning mechanism and meta-rule

construction mechanism. For rule base partitioning, RP-MES not only takes care of

the structural relatedness between rules, but also consider the semantic relatedness of

rules by calculating the semantic relationship between rules in the rule base. On the

other hand, RP-MES extracts the meta-rules from the rule cluster partitioned by the

rule base partitioning mechanism, and uses the meta-rules for selecting rule cluster

when using the rule base.

 3 3

There are several components in RP-MES, including Automatic Meta-rule

Constructor, Verificator, Application and Management User Interfaces, and Inference

Engine. Automatic Meta-rule Constructor is used to partition rules from structureless

rule set into different rule clusters according to the rule similarity; Verificator will

verify and validate the rules inside each rule cluster, and eliminate the confliction,

redundancy, contradiction, circularity, and incompleteness, in the rule cluster. The

Automatic Meta-rule Constructor is also used to generate the meta-rules of the rule

base using the rule clusters generated, and the meta-rules will be used for rule

selection in the usage of the rule base. The Inference Engine is used to process the

meta-rules, and according to the result of meta-rule reasoning, the appropriate rule

cluster(s) should be selected and inferred. Application and Management User

Interfaces provide the GUI for user to manage this system, including rule editing, rule

clusters navigation and all the basic functions for user to access the system.

Automatic Meta-rule Constructor, the major component in PR-MES, is to process

the rule base into meaningful structure and also extract the meta-information from rule

base for better management and usage. Automatic Meta-rule Constructor, which

consists of two major components, Rule Base Partitioner and Meta-rule Extractor.

Rule Base Partitioner divides set of rules into several rule clusters according to rule

similarity, which is calculated based on both structural relatedness and semantic

relatedness. For calculating the structural relatedness, the inter-relationship between

the rules will be analyzed, including the relations of share-in, share-out, in-out, and

not-shared. And for calculating the semantic relatedness, an ontology of the domain

knowledge will be used, and also the operators and values used in the rules will be

 4 4

used as part of our calculation. Moreover, Meta-rule Extractor generates meta-rules

from each rule cluster by extracting the embedded information between the rules

inside the rule cluster. Using the Meta-Apriori algorithm proposed, the frequent

expressions of each rule cluster will be discovered and translated into meta-rules, and

also the confidence of each meta-rule will be re-calculated.

In order to evaluate the performance of RP-MES, an Intrusion Detection System

(IDS) prototype is designed based on RP-MES, and also some experiments are used to

test the system. In the experiments, the accuracy of the meta-rules and rule clusters

generated will be analyzed, and also the performance of generating rule base will be

evaluated.

The organization of this thesis is as follow: Chapter 2 introduces the related work

about rule base maintenance, rule base partitioning and meta-knowledge. RP-MES is

introduced in Chapter 3. Chapter 4 detailedly describes the mechanism of Automatic

Meta-rule Construction. The implementation of the IDS prototype system based on

RP-MES and corresponding experimental results are given in Chapter 5. At the end,

concluding remarks are given in Chapter 6.

 5 5

Chapter 2. Related Work

In this chapter, related work about rule base maintenance and related researches

will be introduced first, and also the issues to be solved in rule base maintenance will

also be mentioned. Rule base partitioning, one of the approaches to solve these issues,

is then described. Besides, the definition of meta-knowledge, which is often used to

provide information about partitioned rule base, and some related researches are

mentioned, which can help us to understand the usage of meta-knowledge in

knowledge base maintenance issues.

2.1 Rule Base Maintenance

Knowledge-based programming has been widely used in many application fields

[13]. With knowledge-based system, the application developers can easily enhance

their program ability by modifying the knowledge contained in a knowledge base. In

another word, knowledge-based programming provides lots of flexibility for system

developers. But for administrators of these knowledge-based systems, the

maintenance of the system can be a critical task if they do not familiar with the

domain of knowledge base used. The knowledge contained in knowledge base can be

represented as several forms: production rules, semantic networks, schemata, frames,

and logic [13]. Since production rules are widely used in many real systems, we thus

focus on rule base maintenance in this work.

From the previous researches, there are three issues about rule base maintenance,

 6 6

including complex relationships between rules [16], structural errors [27], and

performance degradation [4][7], which are summarized from previous researches, will

be described as follows.

(1) Complex relationships between rules

Wrong relationships including duplication, subsumption, overlap, and adjacency

[16] between rules in a rule-based knowledge system are some of the major reasons to

make rule base maintenance difficult. In [16], the author proposed an approach to

detect and resolve such relationships. Unlike procedural code, traditional rule base has

no explicit structures, such like modules, to help administrators understand it. For this

reason, some researchers tried to decompose rule base into pieces of modules or

groups. Harandi et al. [14] grouped rules with the same atomic topic as a rule group

and then generated a semantic network to help understand relationships of groups.

Kuo et al. [21] directed to the same objective except that the final result is ontology.

(2) Structural errors

For successful deployment of rule based systems, it is important that they be

error-free. Nazareth [27] provided taxonomy of errors that rule base design may

encounter, called structural errors, which consist of redundancy, contradiction or

conflict, circularity, and incompleteness. Verification and validation processes are

usually used to detect those structural errors. There are many kinds of verification

processes are proposed, such like directed graph [28], Petri net [41][15], hypergraph

[39], and directed hypergraph [32]. However, those approaches are not appropriate for

large rule bases with thousands of rules due to requiring huge amount of storage and

computation resource. Sakar and Ramaswamy suggested decomposing the rule base

that allowed verification to be performed in a modular fashion [34].

 7 7

(3) Performance degradation

Most rule-based systems would perform inefficiently when the number of rules in

them is huge. For each problem task, the system chooses the appropriate set of rules to

apply. However, the number of rules in the set is large when dealing with large rule

base which often consists of thousands of rules. Without properly reducing the size of

rule set, the system performs poorly. To avoid such situation, some researchers

proposed lots of rule selection mechanisms, including neural network learning [1],

meta-rule [7], etc. Therefore, for each task, rule-based system applies rule selection

mechanism to choose the proper rules, and the experimental result reveals the speedup

of inference process. Note that increase of performance does not come free since there

is an overhead involved in evaluating the selection mechanism. However, in most

cases, the sum reduction in complexity of rule matching process compensates for the

increase in the overhead cost.

To solve those issues, rule base partitioning is one of the approaches to achieve it.

Therefore, existing rule base partitioning approaches will be reviewed in the next

section.

2.2 Rule Base Partitioning

The basic idea of rule base partitioning is grouping rules according to a given

criterion, and the grouping process is called modularization [4]. The motivation of

modularization is to improve system performance and also to remain the

 8 8

maintainability of a rule base. That is, rule base partitioning groups rules into smaller

rule clusters, which is easier for computer to process and easier for human being to

understand and maintain. Like most software engineering, the system capability can

be enhanced by replacing original rule cluster with new one. In this section, several

rule base partitioning techniques are introduced, including the approaches based on

probability [26], graph [19][26][21], clustering [19][20][37], information-theoretic

[19][20], and genetic algorithm [8][11][17].

There are some researches perform rule base partitioning using clustering analysis

approaches, but usually the definitions of distance or relatedness between rules are

different in various approaches. In [20], relatedness between rules is measured by the

number of facts that are shared in both rules. Lee et al. [22] defined “static distance”

between rules. Here “static” refers to the idea that the distance is fixed in terms of the

syntactic structure of the rule base. Stanfel et al. adopted shortest path between two

components as the weighted connection [37]. Except the definitions of distance can be

different, clustering algorithms applied in rule base partitioning can be also different.

Raz and Botten mathematically formulated the rule base partitioning problem; that is,

the problem of allocation of rules or rule groups among partitions of limited size

while minimizing the sum of inter-partition connections, as a 0-1 integer

programming problem with a quadratic objective function. Since this type of problems

is NP-complete, a clustering algorithm based on the nearest neighbor heuristic is

proposed [33].

In [19][20], Jacob et al. proposed a hybrid approach which combining cluster

analysis, information-theoretic and graph theory to solve rule base partitioning

 9 9

problem. In this work, they have proposed a two-phase algorithm; the first phase

partitions the rule base graph into a set of trees of rules, where the root of each tree

was a fact. That is, divide the rules into groups such that each group of rules produces

only one fact that is used by other groups. The group relatedness is defined thereafter.

The second phase partitions the original rule base by combining groups produced in

the first phase according to the group relatedness measurement. The result revealed

that these two algorithms performed better when combined.

Based on the formulation proposed by Raz and Botten, several researches applied

evolutionary algorithms to find near optimal solutions for allocation of rules. The

representation of a solution is crucial for the performance of a genetic algorithm. Dev

et al. [8] designed a genetic algorithm with an integer string representation for the rule

base partitioning problem. Dutta [11] used the same string representation and

designed an evolutionary heuristic to find valid string (result) as fast as possible. In

the works of Ho et al. [17], they proposed an intelligent genetic algorithm which is

based on the orthogonal arrays. The experimental results of those evolutionary

approaches show that they all perform efficiently than Raz’s heuristic clustering

algorithm.

Cluster analysis is one of the most frequently used approaches to solve the rule base

partitioning problem. The concept of cluster analysis is intuitive and the result can be

interpreted by human being. However, many researchers focused on syntactic structure

of the rule base, and less concentrated on logical meaning between rules. Also, those

techniques discussed above provide less information about the result partitions for

further usage. For example, generating meta-knowledge to describe the clusters

 10 10

generated. Meta-knowledge is used in some researches [14][21] to represent the

information of rule cluster, which is proved to be useful in rule base management and

processing.

2.3 Meta-knowledge

Knowledge about a particular task domain is called object-level knowledge, and

information about object-level knowledge is meta-level knowledge (or

meta-knowledge) [7]. For rule base partitioning issue, the rule cluster generated is the

object-level knowledge and meta-knowledge can be used to represent the information

about rule cluster. Several representations of meta-knowledge are defined in previous

researches, such as meta-rule [1][7], semantic network [14], ontology [21], and

constraints to restrict the hypothesis space in ILP (inductive logic programming)

systems [24]. Meta-knowledge has been used to control the reasoning process of

inference engine in many research works [3][7]. In these applications, three

functionalities of meta-knowledge are grouping, rules selection, and rules ordering.

Meta-knowledge for grouping is used to group related rules in the knowledge base.

Meta-knowledge of rule selection and rule ordering can help select and prioritize the

rules to be processed when solving a given problem. However, additional mechanism

may be needed to process meta-knowledge. Davis recommended encoding

meta-knowledge as production rules, called meta-rules; thus, the inference engine

could be used to deal with meta-rules.

 11 11

Rule

Base

Inference

Engine

Meta-rule

Base

Inference

Engine

(a) (b)

Rule

Clusters

Figure 1. Traditional rule-based system vs. meta-rule added rule-based system.

In the rule base without meta-knowledge, depicted as Figure 1 (a), the rule base is

difficult to understand due to lacking of explicit structure. While dealing with the

given task, the number of rules needed to evaluate is large since there is no

information to guide inference engine. Meta-rules in the rule base system can be used

to solve these issues. In the rule base with meta-rules, depicted as Figure 1 (b), each

rule cluster is the set of rules and can be described by one or more meta-rules to help

human being understand structure of rule base. Besides, meta-rule base is used by

inference engine to choose the appropriate rule clusters that are used to solve the

given problem task. Such mechanism can greatly reduce the number of rules needed to

evaluate.

 12 12

Chapter 3. Rule Base Partitioning and Meta-rule Extraction

System (RP-MES)

To solve the issues mentioned previously, the system called Rule base Partitioning

and Meta-rule Extraction System (RP-MES) is proposed in this chapter. In the

following sections, the mechanisms of RP-MES are described first, and then system

architecture of RP-MES is also introduced.

3.1 The Mechanisms of RP-MES

As discussed in Chapter 2, there are three issues about rule base maintenance,

including complex relationships between rules, structural errors, and performance

degradation. In order to avoid these three issues, RP-MES has following mechanisms.

(1) Rule base partitioning

For a rule base containing sophisticated expert knowledge, the amount of rules may

be huge, and the relationships between rules may be quite complicated. Modification

of such a rule base may cause the rule base to be inconsistent. Unlike procedural

programming, rule base does not have explicit structure, and the relationships between

rules may be not aware when users try to manage the rule base. For this reason, it is

intuitive to group related rules in the same partition (similar to the concept of module

in procedural programming) according to atomic topic, subject area, or other criteria;

because that the relationships in a smaller rule partition are easier to manage and

understand. Hence, rule base with good modularity is the rule base in which rules are

 13 13

well-partitioned and managed.

(2) Rules verification and validation

A rule base is reliable only in case there are no structural errors inside the rule base

and the result of the rule base is always consistent. However, as mentioned before, a

rule base may be huge and there may be many structural errors, which cause errors

when using the rule base. According to previous researches, these errors can be

detected and corrected by some verification and validation processes. However,

verification and validation in a large rule base can be very inefficient due to the

complication of rule relationships and huge amount of computation resource. An

efficient mechanism to verify and validate a rule base is helpful to build up a reliable

rule based system.

(3) Rule selection

The processing of rule base may take quite amount of time to match the rules;

however, performance is a key index for modern computer systems; a rule selection

mechanism to avoid matching all rules during the inference can be very helpful to

improve the performance.

3.2 System Architecture

According to the mechanisms defined in Section 3.1, the system architecture of

RP-MES is proposed as shown in Figure 2.

 14 14

Figure 2. The system architecture of RP-MES.

In RP-MES, Automatic Meta-rule Constructor is used to partition rules from

structureless rule set into different rule clusters according to the rule similarity;

Verificator will verify and validate the rules inside each rule cluster, and eliminate the

confliction, redundancy, contradiction, circularity, and incompleteness, in the rule

cluster. The Automatic Meta-rule Constructor is also used to generate the meta-rules

of the rule base using the rule clusters generated, and the meta-rules will be used for

rule selection in the usage of the rule base. The Inference Engine is used to process

the meta-rules, and according to the result of meta-rule reasoning, the appropriate rule

cluster(s) should be selected and inferred. Application and Management User

Interfaces provide the GUI for users to manage this system, including rule editing,

rule clusters navigation and all the basic functions for users to access the system. In

the following paragraphs, these components will be detailedly introduced.

3.2.1 Application and Management User Interfaces

 15 15

Like most knowledge-based systems, the proposed system architecture provides

application user interface for users to execute queries and get results. Management

user interface allows users to add, delete, or modify rules with user friendly interface

to prevent user from accessing detailed rule base structure and configuration.

Management user interface also displays meta-rules of each rule cluster to help user

understand the rule base structure.

3.2.2 Verificator

The Verificator of RP-MES is used to verify and validate the rules of the rule base

by different rule clusters. Since the domain knowledge may be different due to the

growth of domain researches and discovery, the rule base may be also modified to be

adapted to new knowledge. However, the modification of rule base may cause some

errors and rule based system may obtain unreasonable results, e.g., contradiction or

conflict, incompleteness, etc. Also, errors of rule base will cause Automatic Meta-rule

Constructor generates incorrect rule clusters and meta-rules. Therefore, it is important

to make sure that rule base is consistent and complete. Hence, the Verificator of

RP-MES is proposed to verify rule base in order to eliminate the structural errors

when rule base is modified. The Verification is used to verify each rule cluster instead

of entire rule base in RP-MES, in order to reduce the complexity of verification and

validation process and increase the performance.

3.2.3 Inference engine

In order to support the rule selection function by inferring the meta-rules of rule

 16 16

base, the inference engine used in RP-MES should have the ability to process

meta-rules, and also select the rule cluster according to the inference result of

meta-rules. In NORM [23], a new knowledge model, proposed to process knowledge

modularization and knowledge relations, is used to represent the meta-rule and rule

cluster in RP-MES. There are four knowledge relations defined in NORM, including

reference, extension, acquire, and trigger, in which acquire relation can be used to

dynamically link a rule cluster according to given criteria, and the criteria can be the

meta-rule in RP-MES. Hence, we use NORM and corresponding inference engine in

RP-MES to process the rule inference and rule selection functionality.

3.2.4 Automatic meta-rule constructor

Meta-rules provide some information about each rule cluster. With meta-rules, the

structure of the rule base can be easily understood, and in inference process,

meta-rules can be used to select appropriate rule clusters which increase the

performance of the usage of rule base. However, meta-rules are not easily to obtain. In

previous applications about meta-rules [1], the set of meta-rules are usually provided

by domain experts; acquiring meta-rules can be time consuming and the expertise may

be not available. Therefore, a systematic mechanism is desirable to generate

meta-rules. Accordingly, RP-MES incorporates Automatic Meta-rule Constructor,

which consists of two major components, Rule Base Partitioner and Meta-rule

Extractor. Rule Base Partitioner divides set of rules into several rule clusters

according to rule similarity, and Meta-rule Extractor generates meta-rules from each

rule cluster by extracting the embedded information between the rules inside the rule

cluster. The detail of Automatic Meta-rule Constructor and corresponding components

 17 17

will be introduced in Chapter 4.

 18 18

Chapter 4. Automatic Meta-rules Construction

4.1 Overview

The Automatic Meta-rule Constructor consists of two processes as illustrated in

Figure 3. The first is Rule Base Partitioning Process; it considers syntactic and

semantic structures of given rule base, and then partitions rule base into several rule

clusters. The second is Meta-rule Construction Process; meta-rules will be extracted

from the rule clusters obtained in previous phase. These two phases will be described

in detail in the rest of this chapter.

Rule Base Rule Clusters

Meta-rule

Extractor

Meta-rule Base

Structural

Similarity

Semantic

Similarity

Rule Base Partitioner

Rule Base Partitioning Process Meta-rule Construction Process

Ontology

Figure 3. Automatic Meta-rule Construction Processes.

4.2 Rule Base Partitioning Process

In this process, Rule Base Partitioner is used to group rules into rule clusters from a

plain rule base without any structure. Figure 4 illustrates the detailed process of Rule

 19 19

Base Partitioner.

Rule Base Temporary Rule Clusters
Cluster Similarity

Matrix

Rule Clusters

Semantic

similarity

Structural

similarity

Cluster Combination

Cluster Similarity Calculator

(1) (2) (3)

(4)(5)

(6)

Ontology

Figure 4. Components of Rule Base Partitioner.

At beginning, each rule of the original rule base is allocated into a single rule

cluster. Cluster Similarity Calculator calculates cluster similarity of all pairs of two

distinct rule clusters and builds a Cluster Similarity Matrix (CSM). And the rule

clusters will be merged according to the information in Cluster Similarity Matrix. The

merge process works iteratively until all similar rule clusters are merged. And the rule

clusters generated will be the result of this process.

However, the similarity calculation can seriously affect the result of this process,

and the merge process of rule cluster is also an important task. In the following

paragraphs of this section, similarity calculation will be introduced first. After that,

rule base partitioning algorithm will be detailedly described in the forthcoming

section.

4.2.1 Rule Similarity

 20 20

Rule similarity is a key factor to the clustering result. Well defined rule similarity

definition is important for a meaningful rule base partitioning result. Several kinds of

rule similarity definitions considering structural relatedness only [20][22], or with

semantic relatedness (hybrid approach) [21][38] are defined in previous work. In

RP-MES, Rule Base Partitioner incorporates hybrid approach to deal with rule

similarity calculation.

Before discussing the rule similarity calculation, some notations will be given to be

used in following discussions.

Definition 4.1 Expressions, conditions, actions, rules, and rule base.

� A = {attribute1, attribute2, …, attributeN}: the set of all attributes in the rule base.

� O = {=, ≠, >, <, >=, <=}: the set of all operators used in the expressions

�
mattributeV : is the set of possible values of attributem, where attributem is the

corresponding attribute of expression em.

� em = (attributem operatorm valuem) is an expression, where Aattributem ∈ ,

Ooperatorm ∈ , and
mattributem Vvalue ∈ .

� CONDITIONSi : a set of expressions of rule ri, and expressions in the set are

connected with conjunction operator (AND).

� ACTIONSi : a set of expressions of rule ri, and expressions in the set are

connected with conjunction operator (AND), where the operator of the

expressions must be “=”.

� ri : a rule of two-tuple (CONDITIONSi, ACTIONSi) which can be represented as

“IF CONDITIONSi THEN ACTIONSi”.

 21 21

� RB : the set of rules in the rule base.

Example 4.1 Five rules used to detect different network anomalies are showed and

form a rule base RB, that is, RB = {r1, r2, r3, r4, r5}.

� r1 : IF {(protocol = TCP), (protected_network_direction = A), (source_port >

8080), (string = NetBus)} THEN {(name = NETBUS)};

� r2 : IF {(protocol = TCP), (protected_network_direction = A), (source_port >

1023, (string = NetBus2)} THEN {(name = NETBUS2)};

� r3 : IF {(protocol = UDP), (protected_network_direction = A), (destination_port

> 1023), (string = /ce/63/d1/d2/16/e7/13/cf/3c/a5/a5/86)} THEN {(name =

DIR)};

� r4 : IF {(protocol = UDP), (protected_network_direction = A), (destination_port

> 1023), (string = /ce/63/d1/d2/16/e7/13/cf/39/a5/a5/86)} THEN {(name =

INFO)};

� r5 : IF {(protocol = TCP), (protected_network_direction = A), (destination_port =

53), (string = /00/00/ff)} THEN {(name = ANY-TCP)}.■

As we have mentioned before, we use hybrid approach to calculate rule similarity.

Hence in RP-MES, rule similarity calculation contains two parts, structural

relatedness and semantic relatedness, and each will be described as following.

(1) Structural relatedness

The structural relatedness considers the reference of attributes between rules, that is,

evaluating the same attributes or asserting new values to the same attributes. When

considering the reference of attributes, only the name of attribute is considered instead

 22 22

of attribute value. In the definition of structural relatedness, two rules are related if

there is any attribute used by both rules (either on left- or right-hand sides); otherwise

they are independent. The structural relatedness between two rules is thus measured

by the number of attributes that are mentioned in both rules. There are four situations

of rule dependency, including in-out, share-in, share-out, and not-shared, and four

corresponding functions, inout(), sharein(), shareout(), and notshared(), are given in

Definition 4.2.

Definition 4.2. inout(), sharein(), shareout(), and notshared() Functions.

Given two rules ri = (CONDITIONSi, ACTIONSi), and rj = (CONDITIONSj,

ACTIONSj), their definitions are defined as below:

� inout(ri, rj) : the set of attributes that are used in CONDITIONSi and ACTIONSj,

or ACTIONSi and CONDITIONSj.

� sharein(ri, rj) : the set of attribute names that are common to both the

CONDITIONSi and CONDITIONSj.

� shareout(ri, rj) : the set of attribute names that are common to both the

ACTIONSi and ACTIONSj.

� notshared(ri, rj) : the set of all attributes used in ri or rj but not in inout(ri, rj),

sharein(ri, rj), and shareout(ri, rj).

Figure 5 illustrates those three relations mentioned in the Definition 4.2 The counts

of attributes of the four sets, generated by inout(), sharein(), shareout(), and

notshared() functions, are used to calculate the structural relatedness. And the weight

of each counts is given as a variable in our rule similarity calculation, for example

{1.0, 0.5, 0.75, -0.25}.

 23 23

r1: IF {...} THEN {(protocol = TCP)}

r2: IF {(protocol = UDP)} THEN {...}

(a) inout(r1, r2)

r1: IF {(protocol = TCP)} THEN {...}

r2: IF {(protocol = UDP)} THEN {...}

(b) sharein(r1, r2)

r1: IF {...} THEN {(protocol = TCP)}

r2: IF {...} THEN {(protocol = UDP)}

(c) shareout(r1, r2)

Figure 5. Illustration of three cases of attribute reference.

Example 4.2 Given the rules r1 and r2 listed in Example 4.1, the set of common

attribute names in both conditions is sharein(r1, r2) = {protocol,

protected_network_direction, source_port, string}, and the set of common attribute

names in both actions is shareout(r1, r2) = {name}; while the inout(r1, r2) = { }φ , and

notshared(r1, r2) = { }φ . However, for rules r1 and r3, sharein(r1, r3) = {protocol,

protected_network_direction}, shareout(r1, r3) = {name}, inout(r1, r3) = { }φ , and

notshared(r1, r3) = {source_port, destination_port}.■

According to the number of attributes used in both two rules and given weights, the

structural relatedness between two rules can be formulated in Definition 4.3.

Definition 4.3 Structural relatedness between two rules.

Given two rules ri = (CONDITIONSi, ACTIONSi), and rj = (CONDITIONSj,

ACTIONSj), the structural relatedness between them is measured by L(ri, rj) and

defined as below:

 24 24

()
() () () ()

sharednotjioutsharejiinsharejioutinji

ji

wrrnotsharedwrrshareoutwrrshareinwrrinout

rrL

−−−− ⋅+⋅+⋅+⋅

=

,,,,

,

Example 4.3 According to the definition and the corresponding weights, win-out,

wshare-in, wshare-out, and wnot-shared, are 1.0, 0.5, 0.75, and -0.25, respectively; the

structural relatedness between r1 and r2 listed in Example 4.1 is

() 75.2025.075.015.040.10, 21 =⋅−⋅+⋅+⋅=rrL .

Also, the structural relatedness between r1 and r3 is

() 25.125.0275.015.020.10, 31 =⋅−⋅+⋅+⋅=rrL . ■

(2) Semantic Relatedness

In some cases, rules are very similar in syntactic structure, but they may be used to

deal with different problems. Considering only structural relatedness between rules

cannot effectively distinguish from them and further group related rules in the clusters.

As for the rules, r3, r4, and r5, listed in Example 4.1, structural relatedness between

every pair of rules is the same, that is, 2.75. Even though the rules are used to detect

different network attacks, but with only structural relatedness, no additional

information can help separate those rules. Therefore for calculating rule similarity,

semantic relatedness is defined and used to complement structural relatedness.

When considering structural relatedness between rules, only the names of attributes

are taken in to consideration instead of the values or the operators of attributes. In

order to capture the semantic meaning between two rules based on the similarity of

expressions of rules, attribute values and operators of the expressions are also

considered. The expressions of rules can be divided into two categories, categorical

 25 25

and numerical expressions, according to the data type of values. For a given

expression, if its value is categorical data, it belongs to categorical expression, e.g.,

(protocol = TCP); otherwise, if its value is numerical data, it belongs to numerical

expression, e.g., (destination_port > 1023). The semantic relatedness calculations of

these two types of expressions are different in our definition.

Ontologies of knowledge-based system are often used for content explication or as

common dictionary [1][40]. For two categorical expressions, the semantic relatedness

can be measured by the conceptual similarity between their values. That is, for two

categorical values, x and y, the semantic similarity of two categorical values can be

measured by conceptual similarity function s(x,y) [6]; the conceptual similarity

function depends on both the distance between them in the ontology and their

generality. However, some factual information or symbols may not be defined in the

ontology; therefore the conceptual similarity function for this case is reduced to the

Kronecker delta function by only determining whether the categorical values are the

same or not. The definition of conceptual similarity function is given in Definition

4.4.

Definition 4.4 Conceptual Similarity Function.

Given two categorical values, x and y, which can be found on the ontology, the

conceptual similarity between x and y is,

()
() () ()()yDxDyxd

c
yxs

+++
=

1log,
,

2

,

where d(x, y) is the number of “hops” between x and y, D(x) is the number of all its

descendants, and c is the boundary constant. If x and y are not located on the ontology,

their conceptual similarity is

 26 26

() ()




≠

=
==

yx

yx
yxyxs

0

1
,, δ ,

where ()yx,δ is Kronecker delta function.

However, different operators used may influence the evaluations of semantic

relatedness between two expressions. For categorical expressions, both “=” and “≠”

operators can be used, which means we can not just consider values when calculating

the semantic relatedness of categorical expressions. There are two cases of operator

combinations for two categorical expressions. Hence, the semantic relatedness

between two categorical expressions is formulated as α() which is defined in

Definition 4.5.

Definition 4.5 Semantic relatedness between two categorical expressions.

Given two expressions in rule action or condition, em = (attributem operatorm valuem)

and en = (attributen operatorn valuen), which the attribute names are the same, i.e.,

attributem = attributen; the semantic relatedness α() between the expressions is

formulated as below:

()
()

()



−

≠
=

otherwise ,,1

 if ,,
,

nm

nmnm

nm
valuevalues

operatoroperatorvaluevalues
eeα .

Example 4.4 Given the ontology which is illustrated in Figure 6. Suppose the

constant c of conceptual similarity function is set to 0.9, the semantic relatedness

between two expressions e1 = (name = NETBUS) and e2 = (name = NETBUS2) is

() ()

() () ()()

()
25.0

105log1

9.0

1NETBUS2NETBUSlogNETBUS2,NETBUS

NETBUS2,NETBUS,

2

2

21

=
+++

=

+++
=

=

DDd

c

seeα

.■

 27 27

Figure 6. Part of the ontology in the network management domain.

On the other hand, the semantic relatedness calculation between two numerical

expressions is different from that of categorical expressions. Before evaluating

semantic relatedness between two numerical expressions, both numerical expressions

must be transformed into mathematical intervals. For instance, expression c1 = (port >

1023) is transformed to (1023, max], where max is the maximum value of Vport, which

is the value range of “port”. The semantic relatedness between two numerical

expressions is based on the overlapping of two mathematical intervals. The definition

is given in Definition 4.6.

Definition 4.6 Semantic relatedness between two numerical expressions.

Given two expressions, em = (attributem operatorm valuem) and en = (attributen

operatorn valuen), with the same attribute name, em, and en will be transformed to two

intervals im and in, where
mattributem Vi ∈ and

nattributen Vi ∈ . The semantic relatedness

between the expressions is measured by β(em, en) which is defined as:

()
nm

nm

nm
ii

ii
ee

∪

∩
=,β .

 28 28

Example 4.5 Given two numerical expressions e1 = (port > 1023) and e2 = (port >

8080), and the corresponding intervals are i1 = (1023, 65535] and i2 = (8080, 65535]

respectively. The semantic relatedness between these two expressions is

() 89.0
64512

57455

]65535,8080(]65535,1023(

]65535,8080(]65535,1023(
, 21 ==

∪

∩
=eeβ .■

Based on the definition of the relatedness for numerical and categorical expressions,

therefore, the semantic relatedness between any two expressions can be formally

defined and given in Definition 4.7.

Definition 4.7 Semantic relatedness between two expressions.

Given two expressions, em = (attributem operatorm valuem) and en = (attributen

operatorn valuen), the semantic relatedness between em and en is

()
()
()









≠

=

nm

nmnm

nmnm

nm

attributeattribute

eeee

eeee

eeS

 if ,0

sexpression numerical are and both ,,

sexpression lcategorica are and both ,,

, β

α

.

Based on the semantic and structural relatedness defined for expressions of rules,

the definition of the similarity of two rules, ri and rj, is given in Definition 4.8.

Definition 4.8 Rule similarity between two rules.

Given two rules, ri = (CONDITIONSi, ACTIONSi), rj = (CONDITIONSj, ACTIONSj),

the rule similarity between ri and rj is

 29 29

() ()
()

()
()

()
()

()
()

() sharednotnmoutshare

rrshareoutattributeattributeACTIONSeACTIONSe

nm

inshare

rrshareinattributeattributeCONDITIONSeCONDITIONSe

nm

outin

rrinoutattributeattributeCONDITIONSeACTIONSe

nm

outin

rrinoutattributeattributeACTIONSeCONDITIONSe

nmji

weenotsharedweeS

weeS

weeS

weeSrrR

jinmjnim

jinmjnim

jinmjnim

jinmjnim

−−

∈∈∈

−

∈∈∈

−

∈∈∈

−

∈∈∈

⋅+⋅+

⋅+

⋅+

⋅=

∑

∑

∑

∑

,,

,

,

,,

,,,,

,,,,

,,,,

,,,,

.

Example 4.6 Given two rules, r1 and r2, listed in Example 4.1. Reviewing Example

4.2, sharein(r1,r2) = {protocol, protected_network_direction, source_port, string},

shareout(r1,r2) = {name}; inout(r1,r2) = { }φ , and notshared(r1,r2) = { }φ . The rule

similarity between r1 and r2 is

() () 6325.125.0075.025.05.0089.0110.10, 21 =⋅−⋅+⋅++++⋅=rrR .■

4.2.2 Cluster Similarity

As mentioned before, Rule Base Partitioner iteratively merges the most similar rule

clusters to construct the resulting rule clusters. Hence we need to define the similarity

between two rule clusters. Besides, in order to avoid too small or too large rule

clusters generated, the quantity of rules in rule cluster is also considered when

calculating the clusters. The function of rule cluster similarity is given in Definition

4.9.

Definition 4.9 Rule cluster and cluster similarity function.

A rule cluster is a set of rules. Therefore, similarity between two rule clusters, gs and

gt, is defined as:

() ()()
tsgrgr

jits
gg

rrRsqrtggCS

tjsi
+

+= ∑
∈∈

2
,,

,

.

 30 30

Given the set of rule clusters, the similarity between each pair of rule clusters can

be calculated in advance and stored in the matrix, called Cluster Similarity Matrix.

Definition 4.10 Cluster Similarity Matrix.

The Cluster Similarity Matrix (CSM) is an m-by-m square matrix, where m is the

number of rule clusters. Each entry nst is the cluster similarity between rule clusters, gs

and gt, that is, CS(gs,gt). Since the definition of rule similarity is symmetric, the cluster

similarity definition is also symmetric. Therefore, CSM is an upper triangular matrix.

Example 4.7 Suppose that there are three rule clusters g1 = {r1, r2}, g2 = {r3, r4}, and

g3 = {r5}, where r1, r2, r3, r4, and r5 are listed in Example 4.1. The cluster similarity

between g1 and g2 is

() ()() ()() ()() ()() 83.0
22

2
,,,,, 4232413121 =

+
++++= rrRsqrtrrRsqrtrrRsqrtrrRsqrtggCS ;

while CS(g1,g3) = 0.86 and CS(g2,g3) = 1.08. Therefore, the Cluster Similarity Matrix

is

















=

008.186.0

08.1083.0

86.083.00

CSM .■

4.2.3 Rule Base Partitioning Algorithm

Once the similarity for rule clusters can be calculated, the Rule Base Partitioner can

use Rule Base Partitioning Algorithm to partition a rule base into rule clusters. The

algorithm incorporated is a bottom-up approach, which derives a high-level structure

for the rule base based on the information of rule similarity. Similar to most clustering

algorithm, the algorithm runs iteratively to group rule clusters until the stopping

 31 31

criterion is met. In this partitioning algorithm, the stopping criterion is to stop when

the cluster similarities between all pairs of rule clusters are no longer larger than a

similarity threshold (st) which is set by users.

The rule base partitioning algorithm is presented more formally below:

Algorithm: Rule Base Partitioning Algorithm

Input: A set of rules, similarity threshold st

Output: A set of rule clusters

Step 1. Group each rule as a single rule cluster.

Step 2. Calculate cluster similarity between each pair of rule clusters and generate

corresponding Cluster Similarity Matrix.

Step 3. Choose the entry nij with the largest value (most similar) from the Cluster

Similarity Matrix.

Step 4. Terminate and output the remaining rule clusters, if nij is less than or equal

to st.

Step 5. Combine gi and gj into a single rule cluster by merging the rules inside the

rule clusters.

Step 6. Go to Step 2.

Example 4.8 In this example, those rules listed in Example 4.1 are partitioned

according to the Rule Base Partitioning Algorithm. The similarity threshold st is set to

2.

1. At first, each rule is assigned to a single rule cluster, i.e., g1 = {r1}, g2 = {r2}, g3

= {r3}, g4 = {r4}, and g5 = {r5}. The Cluster Similarity Matrix for this

 32 32

configuration is























=

008.208.292.18.1

08.2031.289.177.1

08.231.2089.177.1

92.189.189.1009.2

8.177.177.109.20

1CSM .

2. By reviewing CSM1, n34 has the largest value of the matrix. Since n34 is larger

than st, g3 and g4 are combined to form a new rule cluster. The remaining rule

clusters are g1 = {r1}, g2 = {r2}, g3 = {r3, r4}, and g4 = {r5}. The Cluster

Similarity Matrix in this iteration is



















=

008.192.180.1

08.1089.077.0

92.189.0009.2

80.177.009.20

2CSM .

3. The largest value within the CSM2, n12, can be discovered. Two rule clusters g1

and g2 are thus combined since n12 is larger than 2. After grouping g1 and g2, the

Cluster Similarity Matrix can be generated again, i.e.,

















=

008.186.0

08.1083.0

86.083.00

3CSM .

4. No more grouping is needed because that all entries of CSM3 are less than

similarity threshold st. The process is terminated and output the result, set of the

rule clusters, {{r1, r2}, {r3, r4}, {r5}}.■

4.3 Meta-rule Construction Process

The second process of Automatic Meta-rule Constructor is meta-rule construction

which is used to extract meta-rules from the partitioned rule clusters by Meta-rule

 33 33

Extractor. Meta-rule Extractor consists of two subcomponents, Meta Apriori

Algorithm and Confidence Calculator. The Meta Apriori algorithm is modified from

Apriori algorithm which is used widely to generate frequent large itemsets in data

mining algorithms [1]. The Meta Apriori algorithm is used to generate the meta-rules,

and Confidence Calculator calculates the confidence value of each meta-rule. The

meta-rule generated by Meta-rule Extractor is then stored in the Meta-rule base for

further usage. The whole process is illustrated in Figure 7.

Rule Clusters

Meta Apriori

Algorithm

Meta-rule Base

Confidence

Calculator

Meta-rule Extractor

Figure 7. Components of Meta-rule Extractor.

In the following paragraphs, Meta Apriori algorithm is introduced first, and then the

process of meta-rule generation will be examined.

4.3.1 Meta Apriori Algorithm

The Meta Apriori algorithm tries to discover the most frequent combinations of

expressions to describe the rule cluster. The basic idea is that those most frequent

combinations of expressions are used in many rules of the rule clusters, and once the

combination is met, those rules may be related to the result. Different from Apriori

algorithm, the transactions and itemsets defined in Meta Apriori algorithm are rule

conditions and expressions. The notations used in Meta Apriori algorithm is given in

Definition 4.11.

 34 34

Definition 4.11 Transaction and itemset used in Meta-Apriori.

Given a rule cluster gi = {ri1, ri2, …, riN}, where N is the number of rules in the rule

cluster gi, the transaction and itemset are defined below:

� tij = CONDITIONSij, where []NjrCONDITIONS ijij K1, ∈∈ , is a set of

expressions to be used as one transaction.

� d: the itemset of Meta Apriori algorithm is a set of expressions

Example 4.9 From Example 4.8, two rules, r1 and r2, are grouped into the same rule

cluster g1, i.e. g1 = {r1, r2}. The corresponding transactions are

� t11 = {(protocol = TCP), (protected_network_direction = A), (source_port >

8080), (string = NetBus)}

� t12 = {(protocol = TCP), (protected_network_direction = A), (source_port >

1023), (string = NetBus2)} ■

In Meta Apriori algorithm, the support count of the itemset is defined as the number

of transactions that the itemset subsumes. That is, the set of expressions of the itemset

subsume those of the transactions. Therefore, expression subsumption must be

defined. For two expressions, em and en, em subsumes en if sub(em ,en) = 1, where sub()

is called expression subsume function, which is defined in Definition 4.12.

Definition 4.12 Expression subsumption function.

Given two expressions em = (attributem operatorm valuem) and en = (attributen

operatorn valuen),

 35 35

()


 ∈∈∃

=
otherwise ,0

,,1
, mn attributeattribute

nm

VvVv
eesub .

Moreover, an itemset subsumes the transaction if each expression of itemset

subsumes at least one expression of transaction. The itemset subsumption is defined

in Definition 4.13.

Definition 4.13 Itemset subsumption function.

Given an itemset d and a transaction t, the itemset subsumption function is defined as

()
()

otherwise ,0

1,|,1
,

=∈∃∈∀
=

nmnm eesubtede
tdsubsume .

After discussing the notations and subsumption issue, it is appropriate to give the

complete Meta Apriori algorithm.

Algorithm: Meta Apriori Algorithm

Input: A set of transactions, T; minimum support threshold, min_sup.

Output: A set of frequent itemset, D

Step 1. Generate the set of frequent 1-itemsets, D1, by scanning T.

Step 2. Set initial value of k to 2.

Step 3. Generate candidate k-itemsets Cik from Di(k-1).

Step 4. For each k-itemset ikk Cd ∈ , compute the support count, that is, dk.support

= ()∑
=

N

l

ilk tdsubsume
1

, .

Step 5. Remove those k-itemsets that their support counts are less than

Nmin_sup ⋅ from Cik. The remaining itemsets are stored in Dik.

Step 6. If { }φ≠ikD , increase k by 1 and repeat step 2.

 36 36

Step 7. Output Dik.

Example 4.10 In the Example 4.8, rule base RB = {r1, r2, r3, r4, r5} is partitioned into

three rule clusters, g1 = {r1, r2}, g2 = {r3, r4}, and g3 = {r5}. The following steps

illustrate how to apply Meta Apriori algorithm on g1 to generate frequent itemsets.

The minimum support threshold, min_sup, is set to 0.9. For the sake of simplicity,

every expression occurred in the RB is encoded in Table 1.

encoding expression

e1 (protocol = TCP)

e2 (protected_network_direction = A)

e3 (source_port > 8080)

e4 (source_port > 1023)

e5 (string = NetBus)

e6 (string = NetBus2)

Table 1. Encodings of expressions in RB.

1. Since there are two rules in g1, T1 consists of two transactions, t11 and t12. Those

are listed below:

� t11 = {e1, e2, e3, e5};

� t12 = {e1, e2, e4, e6}.

2. In the first iteration, each expression in the transaction is a member of the set of

candidate 1-itemsets, C11. The algorithm scans all of the transactions in order to

count the number of transactions that each itemset subsumes and summaries the

result in Table 2.

 37 37

itemset count

{e1} 2

{e2} 2

{e3} 1

{e4} 2

{e5} 1

{e6} 1

Table 2. The support count of each candidate in C11.

3. The minimum support count required is 2 (8.19.02supmin_1 =⋅=⋅T). The

frequent 1-itemsets, D11, can then be determined. Each itemset in D11 must satisfy

minimum support count; the content of D11 is thus {e1, e2, e4}.

4. The candidate 2-itemsets C12 can be generated from D11. To discover frequent

2-itemsets, D12, the transactions in T1 are scanned and the support count of each

candidate is accumulated, as shown in the Table 3. Since support of each

candidate is larger than or equal to minimum support count, the set of large

2-itemsets, D12, is {{e1, e2}, {e1, e4}, {e2, e4}}.

itemset count

(e1, e2) 2

(e1, e4) 2

(e2, e4) 2

Table 3. Support count of each candidate in C12.

5. The candidate 3-itemsets, C13, can be generated in the same way, which is listed

in Table 4. Since 113 =D , no more candidate itemsets of C14 can be generated,

and the process is thus terminated.

itemset count

{e1, e2, e4} 2

Table 4. Support count of candidate in C13.

6. Therefore, the final output is D13 = {{e1, e2, e4}}. According to Table 1, the

frequent combination of expressions is {(protocol = TCP),

 38 38

(protected_network_direction = A), (source_port > 1023)}. ■

4.3.2 Meta-rule Generation

The meta-rule generation is based on the concept of constraint-based association

mining [29][31]. That is, the format of meta-rule is specified in advance. The

definition of meta-rule is given by Definition 4.14. The meaning of the meta-rule, mrj

= (CONDITIONSj, (RULE_CLUSTER = gi), conf), is that if all expressions of

CONDITIONSj are satisfied, the rule cluster gi will be selected with confidence value,

conf.

Definition 4.14 Meta-rule representation.

For a given rule cluster gi, each meta-rule, mrj, generated from gi has the form:

� mrj = (CONDITIONSj, (RULE_CLUSTER = gi), conf), where CONDITIONSj is

a set of expressions in the condition part of mrj, and conf is the confidence value

of the meta-rule.

The frequent sets of expressions generated from one rule cluster may be the same

with those generated from the other rule clusters. Therefore, once the frequent

itemsets of all rule clusters are generated by Meta Apriori algorithm, the next step is

to determine the confidence value of each corresponding meta-rule. Within the

Meta-rule Extractor, Confidence Calculator is used to calculate the confidence value

of each meta-rule generated from frequent itemsets by applying Confidence

Calculation Algorithm as below.

 39 39

Algorithm: Confidence Calculation Algorithm

Input: a set of meta-rules, MRB, in which meta-rules have no confidence values

defined

Output: a set of meta-rules, MRB’, in which confidence values fro meta-rules

specified

Step 1. At first, MRB’ is an empty set.

Step 2. Choose the meta-rules from MRB which have the same set of expressions in

their condition parts with the first meta-rule of MRB. The first meta-rule of

MRB is included in selection result.

Step 3. Accumulate the total support count of all selected meta-rules.

Step 4. Set the confidence value of each selected meta-rule via dividing its support

count by total support count.

Step 5. Remove those selected meta-rules from MRB to MRB’.

Step 6. If MRB is empty, terminate and output MRB’.

Step 7. Go to step 2.

 40 40

Chapter 5. Experiment

In this chapter, an Intrusion Detection System (IDS) prototype based on RP-MES is

proposed, and the partitioning result as well as performance analysis of the prototype

system are also introduced.

5.1 Experiment Environment

Figure 8. An IDS based on RP-MES.

Figure 8 illustrates the system architecture of the IDS prototype based on RP-MES.

There are two major components in the prototype systems, including the DRAMA

 41 41

System and Automatic Meta-rule Constructor. DRAMA is developed by Knowledge

and Data Engineering Laboratory (KDE Lab.) of National Chiao Tung University,

Taiwan. DRAMA is implemented using JAVA. In the prototype system, DRAMA is

used to store, represent, process the knowledge of the IDS. Moreover, the NORM

knowledge model used in DRAMA provides the ability of inferring meta-rules and

rule selection by the ACQUIRE knowledge relation, which is a dynamic knowledge

relation to include rule cluster only when meta-rule is matched. DRAMA Rule

Verifier is used to verify rules within the knowledge classes. DRAMA Rule Editor

provides a user friendly GUI interface for editing knowledge classes and rules.

Automatic Meta-rule Constructor is also implemented in JAVA. The knowledge

can be the rule base of any other IDS, e.g., Snort [36], Dragon Sensor [9], etc.

Automatic Meta-rule Constructor can partition the rule base into rule clusters, which

are represented as knowledge classes in DRAMA, and generate meta-rules from those

knowledge classes. Those generated knowledge classes can be processed by DRAMA

Server for detecting network intrusions.

Packet Preprocessor is implemented in C, which collects the packets from network

and translates into the facts for DRAMA to infer. Administration Panel of the

prototype system provides a user interface for administrator to monitor the situation of

network environment.

5.2 Experimental Results

The rule base of Dragon Sensor consists of 646 rules, which is used as our

 42 42

experimental knowledge source. In the first experiment, various numbers of rules are

partitioned by Automatic Meta-rule Constructor according to different similarity

threshold (st) settings, which are used as the criteria to stop clustering process. The

partitioning result is shown in Table 5, and Figure 9. It can be observed that similarity

threshold = 1.2 produces more reasonable number of rule clusters since the average

size of rule clusters is satisfied with Miller’s magic number [25]. The Miller’s magic

number says that human beings have a meaningful chunking size up to 27 ± .

rules st 1.0 1.1 1.2 1.3 1.4 1.5

100 2 3 20 29 41 50

200 3 5 28 48 87 100

300 3 5 32 82 136 150

400 3 7 52 112 181 200

500 3 5 57 139 225 246

600 4 7 56 172 272 296

646 3 6 59 188 296 324

Table 5. The number of clusters for different similarity threshold settings and number of rules.

According to the partitioning results obtained from the first experiment, the second

experiment is conducted to analyze the accuracy. For each partitioning result in first

experiment, Automatic Meta-rule Constructor also generates corresponding

meta-rules and stores those meta-rules in a knowledge class. Those knowledge classes

are loaded into the IDS prototype system for accuracy experiment. The accuracy is

obtained by comparing the result of original rule base (Dragon Sensor) and partitioned

rule base, which is calculated in following formula:

DS

p

F

F
accuracy = ,

where Fp is the set of rules fired in partitioned rule base, and FDS is the set of rules

 43 43

fired in original rule base. The result is shown in Table 6.

Figure 9. Partitioning results by different similarity threshold settings.

rules st 1.0 1.1 1.2 1.3 1.4 1.5

100 95% 97% 100% 100% 100% 100%

200 98% 99% 100% 100% 100% 100%

300 98.33% 100% 100% 100% 100% 100%

400 96.25% 96.75% 98.75% 99.25% 99.25% 99.25%

500 94.20% 94.20% 97% 97.60% 97.60% 97.60%

600 95.33% 95.67% 97.33% 98.00% 98.00% 98.00%

646 95.51% 95.82% 97.37% 98.14% 98.14% 98.14%

Table 6. Accuracy comparisons of partitioned rule base.

We also use the traditional rule base partitioning approach, which only considers

structural relatedness of rule, to partition the same rule base used in previous

 44 44

experiments. The result is listed in Table 7 and illustrated in Figure 10. Table 7 shows

the number of rule clusters partitioned for both approaches to meet the same accuracy

(the accuracy for RP-MES approach with st = 1.2).

rules 100 200 300 400 500 600 646

RP-MES 20 28 32 52 57 56 59

TRADITIONAL 30 51 85 113 139 170 188

Table 7. Comparison of number of clusters under the same accuracy.

Figure 10. Comparison of number of clusters under the same accuracy.

The final experiment is to evaluate the performance between the rule base not

partitioned and the rule base partitioned by RP-MES. The result of the experiment is

shown in Figure 11. When the number of rules is small, the performance difference is

not obvious. But if the number of rules becomes large, the execution time of original

 45 45

rule base increases greatly. However, the execution time of RP-MES increases more

smoothly than that of original rule base.

Figure 11. The performance of original rule base and RP-MES.

 46 46

Chapter 6. Conclusion

Due to the growth of rule base usage, the scale of rule base is increasing and hence

many management related issues arise about constructing the rule base. Three are

issues about rule base maintenance, including complex relationships between rules,

structural errors, and performance degradation. In this thesis, RP-MES is proposed to

solve these issues by designing a new approach combining both rule base partitioning

mechanism and meta-rule construction mechanism. As for rule base partitioning,

RP-MES not only takes care of the structural relatedness between rules, but also

considers the semantic relatedness of rules by calculating the semantic relationship

between rules in the rule base. On the other hand, RP-MES extracts the meta-rules

from the rule clusters partitioned by the rule base partitioning mechanism, and uses

the obtained meta-rules for selecting rule cluster when using the rule base.

In order to evaluate the performance of RP-MES, an Intrusion Detection System

(IDS) prototype is also designed and implemented based on RP-MES, and some

experiments have been done to test the system performance. The experimental results

show that RP-MES can produce reasonable number of rule clusters and the accuracy

of the inference result remains, and that the performance of RP-MES is better than

that of original rule base without partitioning.

 47 47

Reference

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in

Proceedings of International Conference on Very Large Data Bases (VLDB’94),

pp. 487-499, 1994.

[2] C. Baral, S. Kraus, and J. Minker, “Combining multiple knowledge bases,” IEEE

Transaction on Knowledge and Data Engineering, vol. 3, pp. 208-220, 1991.

[3] R. Bogacz and C. Giraud-Carrier, “Learning meta-rules of selection in expert

systems,” in: Proceedings of the Fourth World Congress on Expert Systems, pp.

576-581, 1998.

[4] N. Botten, A. Kusiak and T. Raz, "Knowledge bases: Integration, verification,

and partitioning," European Journal of Operational Research, vol. 42, pp.

111-128, 25 September. 1989.

[5] C.L. Chang, J.B. Combs, and R.A. Stachowitz, “A report on the expert systems

validation associate (EVA),” Expert Systems with Applications, vol. 1, pp.

217-230, 1990.

[6] W.W. Chu, Z. Liu, and W. Mao, “Textual document indexing and retrieval via

knowledge sources and data mining,” Communication of the Institute of

Information and Computing Machinery, vol. 5, 2002.

[7] R. Davis, “Meta-rules: Reasoning about control,” Artificial Intelligence, vol. 15,

pp. 179-222, 1980.

[8] K. Dev and C. S. R. Murthy, “A genetic algorithm for the knowledge base

partitioning problem,” Pattern Recognition Letters, vol. 16, pp. 873-879, Aug.

 48 48

1995.

[9] Dragon Sensor, Enterasys Networks, Inc. http://www.enterasys.com.

[10] J. Durkin, “Expert systems: Design and development,” Macmillan Publishing

Company, pp. 600-684, 1994.

[11] P. Dutta, "Evolutionary heuristic for knowledge base partitioning problem," in

Proceedings of the IEEE International Conference on Evolutionary Computation,

ICEC'97, 1997.

[12] J.R. Geissaman, “Verification and validation for expert systems: A practical

methodology,” in Proceedings of the 4
th

 Annual Artificial Intelligence and

Advanced Computer Technology Conference, 1998.

[13] J. Giarratano, Expert Systems: Principles and Programming, Brooks Cole, 1998.

[14] M.T. Harandi, “Rule base management using meta knowledge,” in Proceedings

of the 1986 ACM SIGMOD international conference on Management of data, pp.

261-267, 1986.

[15] X. He, W.C. Chu, H. Yang, and S.J.H. Yang, “A new approach to verify

rule-based systems using petri nets,” Information and Software Technology, vol.

45, pp. 663-669, 2003.

[16] K. Higa, “An approach to improving the maintainability of existing rule bases,”

Decision Support Systems, vol. 18, pp. 23-31, 1996.

[17] S.Y. Ho, H.M. Chen, and L.S. Shu, “Solving large knowledge base partitioning

problems using an intelligent genetic algorithm,” in Proceedings of GECCO-99:

the Genetic and Evolutionary Computation Conference, pp. 1567-1672, 1999.

[18] G. J. Hwang and S. S. Tseng, “EMCUD: A knowledge acquisition method which

 49 49

captures embedded meanings under uncertainty,” International Journal of

Human-Computer Studies, vol. 33, pp. 431-451, 1990.

[19] R.J.K. Jacob and J.N. Froscher, "Software engineering for rule-based systems,"

in Proceedings of 1986 fall joint computer conference on Fall joint computer

conference, pp. 185-189, 1986.

[20] R.J.K. Jacob and J.N. Froscher, "A software engineering methodology for

rule-based systems," IEEE Transactions on Knowledge and Data Engineering,

vol. 2, pp. 173-189, 1990.

[21] T.T. Kuo, S.S. Tseng, and Y.T. Lin, “Ontology-based knowledge fusion

framework using graph partitioning,” IEA/AIE, pp. 11-20, 2003.

[22] O. Lee and P. Gray, "Knowledge base clustering for KBS maintenance," Journal

of Software Maintenance: Research and Practice, vol. 10, pp. 395-414, 1998.

[23] Y.T. Lin, S.S. Tseng, and C.F. Tsai, “Design and implementation of new

object-oriented rule base management system,” Expert Systems with Applications,

vol. 25, pp. 369-385, 2003.

[24] E. McCreath, “Extraction of meta-knowledge to restrict the hypothesis space for

ILP systems,” Eight Australian Joint Conference on Artificial Intelligence, pp.

75-82, 1995.

[25] G. Miller, “The magical number seven, plus or minus two: some limits on our

capacity for processing information,” The Psychological Review, vol. 63, pp.

81-97, 1956.

[26] G. Myers, Reliable Software Through Composite Design, Petrocelli/Charter, New

York, 1975.

 50 50

[27] D.L. Nazareth, “Issues in the verification of knowledge in rule-based systems,”

International Journal of Man-Machine Studies, vol. 30, pp. 255-271, 1989.

[28] D.L. Nazareth and M.H. Kennedy, “Verification of rule-based knowledge using

directed graphs,” Knowledge Acquisit, vol. 3, pp. 339-360, 1991.

[29] R. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang, “Exploratory mining and

pruning optimizations of constrained associations rules,” in Proceedings of

International Conference on Management of Data (SIGMOD’98), pp. 13-24,

1998.

[30] T.A. Nguyen, W.A. Perkins, T.J. Laffey, and D. Pecora, “Knowledge base

verification,” AI Magazine, 1987.

[31] J. Pei and J. Han, “Can we push more constraints into frequent pattern mining?”

in Proceedings of International Conference on Knowledge Discovery and Data

Mining (KDD’00), 2000.

[32] M. Ramaswamy, S. Sarkar, Y.S. Chen, “Using directed hypergraphs to verify

rule-based expert systems,” IEEE Transaction on Knowledge Data Engineering,

vol 9, pp. 221-237, 1997.

[33] T. Raz and N. Botten, “The knowledge base partitioning problem: Mathematical

formulation and heuristic clustering,” Data & Knowledge Engineering, vol. 8, pp.

329-337, 1998.

[34] S. Sarkar and M. Ramaswamy, “Knowledge base decomposition to facilitate

verification,” Information Systems Research, vol. 11, No. 3, pp. 260-283, Sep.

2000.

[35] U.J. Schild and S. Herzog, “The use of meta-rules in rule based legal computer

systems,” in Proceedings of the fourth international conference on Artificial

 51 51

intelligence and law, pp. 100-109, 1993.

[36] Snort, http://www.snort.org.

[37] L.E. Stanfel, “Applications of clustering to information system design,”

Information Processing & Management, vol. 19, pp. 37-50, 1983.

[38] S. Tsumoto and S. Hirano, “Visualization of rule’s similarity using

multidimensional scaling,” in Proceedings of the Third IEEE International

Conference on Data Mining (ICDM’03), 2003.

[39] G. Valiente, “Verification of knowledge base redundancy and subsumption using

graph transformations,” International Journal of Expert Systems: Research and

Applications, vol. 6, pp. 341-355, 1993.

[40] H. Wache, T. Vgele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and

S. Hbner, “Ontology-based integration of information – a survey of existing

approaches,” in Proceedings of the Workshop Ontologies and Information

Sharing (IJCAI’01), pp. 108-117, 2001.

[41] S.J.H. Yang, A.S. Lee, W.C. Chu, and H. Yang, “Rule base verification using

Petri nets,” in Proc. 22-nd Annual Int. Computer Software and Applications Conf.

(COMPSAC-98), 1998.

