AR RN B4 B 8 T kol 8 Ty Uk

Meta-rule Construction based on Rule Base Partitioning

MOR A RER Student : Chien-Hao Wen
BEHIR G E® Advisor : Dr. Shian-Shyong Tseng

A Thesis
Submitted to Institute of Computer.and Information Science
College of Electrical Engineering-and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

FRERBE AT ZENA

ERRRNBE B G s T &

MELE: BEER HEHK: Y EERL
BIXBALERTNER
HHAE A

&

F B RAE RS T 0 R & 4 (Expert System) #) & A AR RARS B2 0 R
RRAT—RERASKNERHE MAERE R B 00E E B @ AR E(Rule
Base) & — & A A &7 X > £RRAEF @ %o AT AANBE Hr ey &
AR FHEEAAUANEEBAX L -EA L HEHFS BRI EZHER -
AR BB A SRS AR T RARREAE) 6938 58 > AT A R g A A AR
ARARAGAEY > M mRRA BRI o HLE A TH S E 1L LogRA4 -
A ARBXP 0 FE AR EE (Rule Base Partitioning) #fv 7T 4o 3%

(Meta-knowledge) £ ##] » RP-MES #&42 i R AR R T IE[A > H¥E
BHARANBERAZEOH W EETARFLER HHEGHRANE - 1L
Ih o HBAf R R B M — A RP-MES 89 AZRRISER A 4 0 AR A 3k
BB BT - TRERBET 0 £18 RP-MES TUUEHR A E B ASBA N
LA > 3 4Edr Ao Bk e EAE M > B B BN R AW PAT L AE A B R AR i85
BRA R Z e R F AR A -

Meta-rule Construction based on Rule Base

Partitioning

Student : Chien-hao Wen Adyvisor : Dr. Shian-Shyong Tseng

Institute of Computer and Information Science
National Chiao Tung University

Abstract

Expert system technology bécomes more-and mote important in computer science
domain for next generation computer systems;-For constructing an expert system, rule
base is a widely used approach, where knowledge and expertise are represented as
production rules. However, due to the growth of rule base usage, the scale of rule base
is increasing and hence many management related issues arise. By designing a new
approach combining both rule base partitioning mechanism and meta-rule
construction mechanism, RP-MES is proposed to solve these issues in this thesis. An
Intrusion Detection System (IDS) prototype is also designed and implemented based
on RP-MES, and some experiments have been done to evaluate the system
performance. The experimental results show that RP-MES can produce reasonable
number of rule clusters and the accuracy of the inference result remains, and that the

performance of RP-MES is better than that of original rule base without partitioning.

ii

L&)

R R AAAB R X REZLARM RO EHI Y ESEL YK
BAEBATHRNFIMAAERCITHEERAIAR M LRELEH LSS
REFOHT BLEFTENEREBELER > RAFE - AFCRH A 0 RXE
B ZAVHIR MEGHR - MEFRH LML T TREESHTEEA
ERABERWXEAEME -

FoMBRHOARMEIAE R HFEPRERRE F S ERPBATH R
oSBT TRASZHNMLERIXNT TER BXANAR w0 i &

WS B TAR 0 RARRGHK

SbOh R LR RGH BB E R B 89 S By LA IR TR S MR S AT
16 - B LRHE BRE R GRS TR SME - IREH - TR RIBEFEA
AT LRRELIRTEOFE I ARELEFTN sAFERXETRLY X

#E o ORERREK -

AR R R RGH RO TN R X I REE) SRR @I R RS
FaA o LERAENAMETH B TRAR WX RAREK

iii

Table of Content

ABSTRACT (IN CHINESE) I
ABSTRACT 11
ACKNOWLEDGEMENT III
TABLE OF CONTENT 1V
LIST OF FIGURES \Y%
LIST OF TABLES VI
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. RELATED WORK 5

2.1 RULE BASE MAINTENANCEcottttttiiiieieeeieeeeeeeeeeeeeeeeeeeeeeeee e e e e eeeeeeeeeeeeeesesesesesesesesesssesesssssesssssesesens 5

2.2 RULE BASE PARTITIONINGcoooeeeeeeeit i e i et 7

2.3 META-KNOWLEDGE............uuvveeeee fiianssisissiciinmntnnnssanatseeisansfeereeeeesisssseseeesessossssseeseessossssssesesessensinnees 10

CHAPTER 3. RULE BASE PARTITIONING AND META-RULE EXTRACTION SYSTEM

(RP-MES) 12
3.1 THE MECHANISMS OF RP-MES ... i i ueeeieieeeesiiiansteneeessesusseenrseeeea.. 12
3.2 SYSTEM ARCHITECTUREuuuuuuuuuuuuuuussessusnsesssesssusses.... 13

CHAPTER 4. AUTOMATIC META-RULES CONSTRUCTION 18
o O 24 25 274 1 1R 18
4.2 RULE BASE PARTITIONING PROGCESSooitiiiiiiiiiiiiiiieee e 18
4.3 META-RULE CONSTRUCTION PROGCESS......ccotttiiiiiiiiiiiiiee s 32

CHAPTER 5. EXPERIMENT 40
5.1 EXPERIMENT ENVIRONMENTcoooiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e eeeeeeeeeesesesesesesesesesssssesesssessnnnnss 40
5.2 EXPERIMENTAL RESULTSooiiiiiiiiiiieeeeee ettt ettt et e e et e e e e e e e e e ee e e e e sesesesesssesssssnsnseseeas 41

CHAPTER 6. CONCLUSION 46

REFERENCE 47

v

List of Figures

FIGURE 1. TRADITIONAL RULE-BASED SYSTEM VS. META-RULE ADDED RULE-BASED SYSTEM. 11
FIGURE 2. THE SYSTEM ARCHITECTURE OF RP-MES.ccoiiiiiiiiiiiiie ettt 14
FIGURE 3. AUTOMATIC META-RULE CONSTRUCTION PROCESSES.cc.utteiieriieniieniienieenieesieesieesnieeeane 18
FIGURE 4. COMPONENTS OF RULE BASE PARTITIONER.cccceerttttriteriienieeniieesieeniieesveesseessseesreesnseesane 19
FIGURE 5. ILLUSTRATION OF THREE CASES OF ATTRIBUTE REFERENCE.ccccuvtieiiieeenereeesereeeeereeesnnns 23
FIGURE 6. PART OF THE ONTOLOGY IN THE NETWORK MANAGEMENT DOMAIN.c.ccoveeveenreireenneereennenns 27
FIGURE 7. COMPONENTS OF META-RULE EXTRACTOR..........vttiiiiiieeiiiieeeirieeseireeeesereeeesseseeessesseesssssessnnnns 33
FIGURE 8. AN IDS BASED ON RP-MES ..ottt sttt sttt 40
FIGURE 9. PARTITIONING RESULTS BY DIFFERENT SIMILARITY THRESHOLD SETTINGS.ccoveeveeereereennenns 43
FIGURE 10. COMPARISON OF NUMBER OF CLUSTERS UNDER THE SAME ACCURACY.......ccccvvteerrreeerreeennnnns 44

List of Tables

TABLE 1. ENCODINGS OF EXPRESSIONS IN RB.c.utttriiteiiienieeiieesieesittesteesiteesieesbeesseesabeesseesaseesseesane 36
TABLE 2. THE SUPPORT COUNT OF EACH CANDIDATE IN C /. cuvvviiiiiiiiiiireiieeeeeeeiiieeeeeeeeeeitrneeeeeeeeeeennneeneees 37
TABLE 3. SUPPORT COUNT OF EACH CANDIDATE IN C 2. ..coeiiiutiiiieeeeeeeiieeieeeeeeeeireeeeeeeeeeeinreeeeeeeeeennneeeeees 37
TABLE 4. SUPPORT COUNT OF CANDIDATE IN C 3. uuuvvviiieieeiiiiieieeeeeeeiitreeeeeeeeesiiareeeeeeeeeeeesssseeeeeessenssseeeeeas 37
TABLE 5. PARTITIONING RESULTS BY DIFFERENT SIMILARITY THRESHOLD SETTINGS.cc0cevveereeereereennenns 42
TABLE 6. ACCURACY COMPARISONS OF PARTITIONED RULE BASE.cceeeouiieeiiieeeiiieeeeereeesnreeesnessessnnns 43
TABLE 7. COMPARISON OF NUMBER OF CLUSTERS UNDER THE SAME ACCURACY.cceevveeueeereeereereennenns 44

Vi

Chapter 1. Introduction

In recent years, expert system, the system to model expert’s decision making
process and help build up knowledge systems, becomes more and more important in
computer science domain for next generation computer systems. For constructing an
expert system, rule base is a widely used approach, where knowledge and expertise
are represented as production rules, a well-known logical knowledge representation. It
is easy to construct knowledge system using rule base since the representation of
knowledge, the storage of knowledge, and the processing of knowledge are well

designed in rule base system.

Several kinds of knowledge discoveryrapproaches, such as knowledge acquisition
[18], data mining algorithms [1], knowledge fusion-[21], are used to extract rules.
Designing and maintaining such'rulebase'is‘a very difficult task, and many researches
have been proposed to construct rule base [10][13]. However, due to the growth of
rule base usage, the scale of rule base is increasing and hence many management
related issues arise about constructing the rule base [5][12][16][30]. Three issues,
including complex relationships between rules, structural errors, and performance
degradation, are summarized from previous researches [4][7][16][27] about rule base
construction. For the first issue, the relationships between rules in a huge rule base can
be too complicated for both human to manage and computer to process, and they may
cause the difficulty of tracing and explaining the rule base results. Also, the structural
errors contained in the rule base which can not be easily detected without well-defined
structure of the knowledge can make the rule base inference result incorrect or useless.

Moreover, the performance can be dramatically decreased and hence cause the

inference engine of the rule base consuming too many resources when the number of

rules in the rule base increases.

Among previous researches proposed to resolve these rule base management issues,
rule base partitioning is one of the most popular approaches whose basic idea is
grouping rules according to a given criterion, and the grouping process is called
modularization [4]. The motivation of modularization is to improve system
performance and remain the maintainability of a rule base. That is, rule base
partitioning groups rules into smaller rule clusters, which are easier for computer to
process and easier for human being to understand and maintain. However, traditional
rule base partitioning deals with only the structural relatedness between rules;
moreover, rule base partitioning:‘provide few information about partitioned rule
partitions and hence causes some problems about.management and usage of the rule
base. There are some other researches [3][-7]-of-meta-rules aim to solve the issue about
selecting the appropriate rule partition,.in which the meta-rule is used to store the

knowledge about each rule partition.

In this thesis, an RP-MES is proposed to solve these issues by designing a new
approach combining both rule base partitioning mechanism and meta-rule
construction mechanism. For rule base partitioning, RP-MES not only takes care of
the structural relatedness between rules, but also consider the semantic relatedness of
rules by calculating the semantic relationship between rules in the rule base. On the
other hand, RP-MES extracts the meta-rules from the rule cluster partitioned by the
rule base partitioning mechanism, and uses the meta-rules for selecting rule cluster

when using the rule base.

There are several components in RP-MES, including Automatic Meta-rule
Constructor, Verificator, Application and Management User Interfaces, and Inference
Engine. Automatic Meta-rule Constructor is used to partition rules from structureless
rule set into different rule clusters according to the rule similarity; Verificator will
verify and validate the rules inside each rule cluster, and eliminate the confliction,
redundancy, contradiction, circularity, and incompleteness, in the rule cluster. The
Automatic Meta-rule Constructor is also used to generate the meta-rules of the rule
base using the rule clusters generated, and the meta-rules will be used for rule
selection in the usage of the rule base. The Inference Engine is used to process the
meta-rules, and according to the result of meta-rule reasoning, the appropriate rule
cluster(s) should be selected amd inferred. “Application and Management User
Interfaces provide the GUI for user.to manage-this. system, including rule editing, rule

clusters navigation and all the basic functions-for user to access the system.

Automatic Meta-rule Constructor, the major component in PR-MES, is to process
the rule base into meaningful structure and also extract the meta-information from rule
base for better management and usage. Automatic Meta-rule Constructor, which
consists of two major components, Rule Base Partitioner and Meta-rule Extractor.
Rule Base Partitioner divides set of rules into several rule clusters according to rule
similarity, which is calculated based on both structural relatedness and semantic
relatedness. For calculating the structural relatedness, the inter-relationship between
the rules will be analyzed, including the relations of share-in, share-out, in-out, and
not-shared. And for calculating the semantic relatedness, an ontology of the domain

knowledge will be used, and also the operators and values used in the rules will be

used as part of our calculation. Moreover, Meta-rule Extractor generates meta-rules
from each rule cluster by extracting the embedded information between the rules
inside the rule cluster. Using the Meta-Apriori algorithm proposed, the frequent
expressions of each rule cluster will be discovered and translated into meta-rules, and

also the confidence of each meta-rule will be re-calculated.

In order to evaluate the performance of RP-MES, an Intrusion Detection System
(IDS) prototype is designed based on RP-MES, and also some experiments are used to
test the system. In the experiments, the accuracy of the meta-rules and rule clusters
generated will be analyzed, and also the performance of generating rule base will be

evaluated.

The organization of this thesis is.as follow: Chapter 2 introduces the related work
about rule base maintenance, rulé base pattitioning and meta-knowledge. RP-MES is
introduced in Chapter 3. Chapter 4 ‘detailedly-describes the mechanism of Automatic
Meta-rule Construction. The implementation of the IDS prototype system based on
RP-MES and corresponding experimental results are given in Chapter 5. At the end,

concluding remarks are given in Chapter 6.

Chapter 2. Related Work

In this chapter, related work about rule base maintenance and related researches
will be introduced first, and also the issues to be solved in rule base maintenance will
also be mentioned. Rule base partitioning, one of the approaches to solve these issues,
is then described. Besides, the definition of meta-knowledge, which is often used to
provide information about partitioned rule base, and some related researches are
mentioned, which can help us to understand the usage of meta-knowledge in

knowledge base maintenance issues.

2.1 Rule Base Maintenance

Knowledge-based programming. has. been-widely used in many application fields
[13]. With knowledge-based system,”the application developers can easily enhance
their program ability by modifying the knowledge contained in a knowledge base. In
another word, knowledge-based programming provides lots of flexibility for system
developers. But for administrators of these knowledge-based systems, the
maintenance of the system can be a critical task if they do not familiar with the
domain of knowledge base used. The knowledge contained in knowledge base can be
represented as several forms: production rules, semantic networks, schemata, frames,
and logic [13]. Since production rules are widely used in many real systems, we thus

focus on rule base maintenance in this work.

From the previous researches, there are three issues about rule base maintenance,

including complex relationships between rules [16], structural errors [27], and
performance degradation [4][7], which are summarized from previous researches, will

be described as follows.

(1) Complex relationships between rules

Wrong relationships including duplication, subsumption, overlap, and adjacency
[16] between rules in a rule-based knowledge system are some of the major reasons to
make rule base maintenance difficult. In [16], the author proposed an approach to
detect and resolve such relationships. Unlike procedural code, traditional rule base has
no explicit structures, such like modules, to help administrators understand it. For this
reason, some researchers tried to decompose rule base into pieces of modules or
groups. Harandi et al. [14] grouped’rules withthe same atomic topic as a rule group
and then generated a semantic: network to-help understand relationships of groups.

Kuo et al. [21] directed to the same objective except that the final result is ontology.

(2) Structural errors

For successful deployment of rule based systems, it is important that they be
error-free. Nazareth [27] provided taxonomy of errors that rule base design may
encounter, called structural errors, which consist of redundancy, contradiction or
conflict, circularity, and incompleteness. Verification and validation processes are
usually used to detect those structural errors. There are many kinds of verification
processes are proposed, such like directed graph [28], Petri net [41][15], hypergraph
[39], and directed hypergraph [32]. However, those approaches are not appropriate for
large rule bases with thousands of rules due to requiring huge amount of storage and
computation resource. Sakar and Ramaswamy suggested decomposing the rule base

that allowed verification to be performed in a modular fashion [34].

(3) Performance degradation

Most rule-based systems would perform inefficiently when the number of rules in
them is huge. For each problem task, the system chooses the appropriate set of rules to
apply. However, the number of rules in the set is large when dealing with large rule
base which often consists of thousands of rules. Without properly reducing the size of
rule set, the system performs poorly. To avoid such situation, some researchers
proposed lots of rule selection mechanisms, including neural network learning [1],
meta-rule [7], etc. Therefore, for each task, rule-based system applies rule selection
mechanism to choose the proper rules, and the experimental result reveals the speedup
of inference process. Note that increase of performance does not come free since there
is an overhead involved in evaluating the sele¢tion mechanism. However, in most
cases, the sum reduction in complexity of rule matching process compensates for the

increase in the overhead cost.

To solve those issues, rule base partitioning is one of the approaches to achieve it.
Therefore, existing rule base partitioning approaches will be reviewed in the next

section.

2.2 Rule Base Partitioning

The basic idea of rule base partitioning is grouping rules according to a given
criterion, and the grouping process is called modularization [4]. The motivation of

modularization is to improve system performance and also to remain the

maintainability of a rule base. That is, rule base partitioning groups rules into smaller
rule clusters, which is easier for computer to process and easier for human being to
understand and maintain. Like most software engineering, the system capability can
be enhanced by replacing original rule cluster with new one. In this section, several
rule base partitioning techniques are introduced, including the approaches based on
probability [26], graph [19][26][21], clustering [19][20][37], information-theoretic

[19][20], and genetic algorithm [8][11][17].

There are some researches perform rule base partitioning using clustering analysis
approaches, but usually the definitions of distance or relatedness between rules are
different in various approaches. In [20], relatedness between rules is measured by the
number of facts that are shared in.both rules. Lee et al. [22] defined “static distance”
between rules. Here “static” refers, to the 1dea.that.the distance is fixed in terms of the
syntactic structure of the rule base. Stanfel-et-al. adopted shortest path between two
components as the weighted connection [37]. Except the definitions of distance can be
different, clustering algorithms applied in rule base partitioning can be also different.
Raz and Botten mathematically formulated the rule base partitioning problem; that is,
the problem of allocation of rules or rule groups among partitions of limited size
while minimizing the sum of inter-partition connections, as a 0-1 integer
programming problem with a quadratic objective function. Since this type of problems
is NP-complete, a clustering algorithm based on the nearest neighbor heuristic is

proposed [33].

In [19][20], Jacob et al. proposed a hybrid approach which combining cluster

analysis, information-theoretic and graph theory to solve rule base partitioning

problem. In this work, they have proposed a two-phase algorithm; the first phase
partitions the rule base graph into a set of trees of rules, where the root of each tree
was a fact. That is, divide the rules into groups such that each group of rules produces
only one fact that is used by other groups. The group relatedness is defined thereafter.
The second phase partitions the original rule base by combining groups produced in
the first phase according to the group relatedness measurement. The result revealed

that these two algorithms performed better when combined.

Based on the formulation proposed by Raz and Botten, several researches applied
evolutionary algorithms to find near optimal solutions for allocation of rules. The
representation of a solution is crucial for the performance of a genetic algorithm. Dev
et al. [8] designed a genetic algorithm with an integer string representation for the rule
base partitioning problem. Dutta. [11] used the same string representation and
designed an evolutionary heuristic to.find-valid string (result) as fast as possible. In
the works of Ho et al. [17], they propesed. an intelligent genetic algorithm which is
based on the orthogonal arrays. The experimental results of those evolutionary
approaches show that they all perform efficiently than Raz’s heuristic clustering

algorithm.

Cluster analysis is one of the most frequently used approaches to solve the rule base
partitioning problem. The concept of cluster analysis is intuitive and the result can be
interpreted by human being. However, many researchers focused on syntactic structure
of the rule base, and less concentrated on logical meaning between rules. Also, those
techniques discussed above provide less information about the result partitions for

further usage. For example, generating meta-knowledge to describe the clusters

generated. Meta-knowledge is used in some researches [14][21] to represent the
information of rule cluster, which is proved to be useful in rule base management and

processing.

2.3 Meta-knowledge

Knowledge about a particular task domain is called object-level knowledge, and
information about object-level knowledge is meta-level knowledge (or
meta-knowledge) [7]. For rule base partitioning issue, the rule cluster generated is the
object-level knowledge and meta-knowledge can be used to represent the information
about rule cluster. Several representations of meta-knowledge are defined in previous
researches, such as meta-rule=[1][7], semantic network [14], ontology [21], and
constraints to restrict the hypothesisSpace-in, ILP- (inductive logic programming)
systems [24]. Meta-knowledge has been used to control the reasoning process of
inference engine in many research works [3][7]. In these applications, three
functionalities of meta-knowledge are grouping, rules selection, and rules ordering.
Meta-knowledge for grouping is used to group related rules in the knowledge base.
Meta-knowledge of rule selection and rule ordering can help select and prioritize the
rules to be processed when solving a given problem. However, additional mechanism
may be needed to process meta-knowledge. Davis recommended encoding
meta-knowledge as production rules, called meta-rules; thus, the inference engine

could be used to deal with meta-rules.

10

Inference
Engine

(b)

Inference
Engine

Meta-rule
Base

ule
Clusters

Figure 1. Traditional rule-based system vs. meta-rule added rule-based system.

In the rule base without meta-knowledge, depicted as Figure 1 (a), the rule base is
difficult to understand due to lacking of explicit structure. While dealing with the
given task, the number of rules needed to evaluate is large since there is no
information to guide inference engine: Meta-rules in the rule base system can be used
to solve these issues. In the rule¢ base with meta-rules, depicted as Figure 1 (b), each
rule cluster is the set of rules and can be described by one or more meta-rules to help
human being understand structufe of rule base. Besides, meta-rule base is used by
inference engine to choose the appropriate rule clusters that are used to solve the

given problem task. Such mechanism can greatly reduce the number of rules needed to

evaluate.

11

Chapter 3. Rule Base Partitioning and Meta-rule Extraction

System (RP-MES)

To solve the issues mentioned previously, the system called Rule base Partitioning
and Meta-rule Extraction System (RP-MES) is proposed in this chapter. In the
following sections, the mechanisms of RP-MES are described first, and then system

architecture of RP-MES is also introduced.

3.1 The Mechanisms of RP-MES

As discussed in Chapter 2, there are-three issues about rule base maintenance,
including complex relationships between rules, strictural errors, and performance

degradation. In order to avoid thesSe three issues, RP-MES has following mechanisms.

(1) Rule base partitioning

For a rule base containing sophisticated expert knowledge, the amount of rules may
be huge, and the relationships between rules may be quite complicated. Modification
of such a rule base may cause the rule base to be inconsistent. Unlike procedural
programming, rule base does not have explicit structure, and the relationships between
rules may be not aware when users try to manage the rule base. For this reason, it is
intuitive to group related rules in the same partition (similar to the concept of module
in procedural programming) according to atomic topic, subject area, or other criteria;
because that the relationships in a smaller rule partition are easier to manage and

understand. Hence, rule base with good modularity is the rule base in which rules are

12

well-partitioned and managed.

(2) Rules verification and validation

A rule base is reliable only in case there are no structural errors inside the rule base
and the result of the rule base is always consistent. However, as mentioned before, a
rule base may be huge and there may be many structural errors, which cause errors
when using the rule base. According to previous researches, these errors can be
detected and corrected by some verification and validation processes. However,
verification and validation in a large rule base can be very inefficient due to the
complication of rule relationships and huge amount of computation resource. An
efficient mechanism to verify and validate a rule base is helpful to build up a reliable

rule based system.

(3) Rule selection

The processing of rule base may take quite-amount of time to match the rules;
however, performance is a key index for modern computer systems; a rule selection
mechanism to avoid matching all rules during the inference can be very helpful to

improve the performance.

3.2 System Architecture

According to the mechanisms defined in Section 3.1, the system architecture of

RP-MES is proposed as shown in Figure 2.

13

Quer Add / delete /
y modify rule

) |

Application Management .
User Interface | User Interface Verificator
Wrapper Rule Set
A |
f
h 4 v
Inference | Rule Base
Engine b <™ Partitioner
A
Rule Clusters Ontology
Y
——————————————— Meta- rule
Extractor

Automatic Meta-rule Constructor

Meta-rule Base

Figure 2. The system architecture of RP-MES.

In RP-MES, Automatic Meta-rule Constructor“is used to partition rules from
structureless rule set into different rule clusters according to the rule similarity;
Verificator will verify and validate the rules inside€ach rule cluster, and eliminate the
confliction, redundancy, contradiction, circularity, and incompleteness, in the rule
cluster. The Automatic Meta-rule Constructor is also used to generate the meta-rules
of the rule base using the rule clusters generated, and the meta-rules will be used for
rule selection in the usage of the rule base. The Inference Engine is used to process
the meta-rules, and according to the result of meta-rule reasoning, the appropriate rule
cluster(s) should be selected and inferred. Application and Management User
Interfaces provide the GUI for users to manage this system, including rule editing,
rule clusters navigation and all the basic functions for users to access the system. In

the following paragraphs, these components will be detailedly introduced.

3.2.1 Application and Management User Interfaces

14

Like most knowledge-based systems, the proposed system architecture provides
application user interface for users to execute queries and get results. Management
user interface allows users to add, delete, or modify rules with user friendly interface
to prevent user from accessing detailed rule base structure and configuration.
Management user interface also displays meta-rules of each rule cluster to help user

understand the rule base structure.

3.2.2 Verificator

The Verificator of RP-MES is used to verify and validate the rules of the rule base
by different rule clusters. Since thé:domain knowledge may be different due to the
growth of domain researches and discovery, the tule-base may be also modified to be
adapted to new knowledge. However, the modification of rule base may cause some
errors and rule based system may-obtain unreasonable results, e.g., contradiction or
conflict, incompleteness, etc. Also, errors of rule base will cause Automatic Meta-rule
Constructor generates incorrect rule clusters and meta-rules. Therefore, it is important
to make sure that rule base is consistent and complete. Hence, the Verificator of
RP-MES is proposed to verify rule base in order to eliminate the structural errors
when rule base is modified. The Verification is used to verify each rule cluster instead
of entire rule base in RP-MES, in order to reduce the complexity of verification and

validation process and increase the performance.

3.2.3 Inference engine

In order to support the rule selection function by inferring the meta-rules of rule

15

base, the inference engine used in RP-MES should have the ability to process
meta-rules, and also select the rule cluster according to the inference result of
meta-rules. In NORM [23], a new knowledge model, proposed to process knowledge
modularization and knowledge relations, is used to represent the meta-rule and rule
cluster in RP-MES. There are four knowledge relations defined in NORM, including
reference, extension, acquire, and trigger, in which acquire relation can be used to
dynamically link a rule cluster according to given criteria, and the criteria can be the
meta-rule in RP-MES. Hence, we use NORM and corresponding inference engine in

RP-MES to process the rule inference and rule selection functionality.

3.2.4 Automatic meta-rule constructor

Meta-rules provide some information about each rule cluster. With meta-rules, the
structure of the rule base can be. easily understood, and in inference process,
meta-rules can be used to select appropriate ‘rule clusters which increase the
performance of the usage of rule base. However, meta-rules are not easily to obtain. In
previous applications about meta-rules [1], the set of meta-rules are usually provided
by domain experts; acquiring meta-rules can be time consuming and the expertise may
be not available. Therefore, a systematic mechanism is desirable to generate
meta-rules. Accordingly, RP-MES incorporates Automatic Meta-rule Constructor,
which consists of two major components, Rule Base Partitioner and Meta-rule
Extractor. Rule Base Partitioner divides set of rules into several rule clusters
according to rule similarity, and Meta-rule Extractor generates meta-rules from each
rule cluster by extracting the embedded information between the rules inside the rule

cluster. The detail of Automatic Meta-rule Constructor and corresponding components

16

will be introduced in Chapter 4.

17

Chapter 4. Automatic Meta-rules Construction

4.1 Overview

The Automatic Meta-rule Constructor consists of two processes as illustrated in
Figure 3. The first is Rule Base Partitioning Process; it considers syntactic and
semantic structures of given rule base, and then partitions rule base into several rule
clusters. The second is Meta-rule Construction Process; meta-rules will be extracted
from the rule clusters obtained in previous phase. These two phases will be described

in detail in the rest of this chapter.

Ontology
Semantic
Similarity Meta-rule
Structural Extractor
Similarity
Rule Base Rule Base Partitioner Rule Clusters Meta-rule Base

}_> Rule Base Partitioning Process Meta-rule Construction Process 4%

Figure 3. Automatic Meta-rule Construction Processes.

4.2 Rule Base Partitioning Process

In this process, Rule Base Partitioner is used to group rules into rule clusters from a

plain rule base without any structure. Figure 4 illustrates the detailed process of Rule

18

Base Partitioner.

Rule Clusters

Ontology
‘ ; (6

Semantic
similarity

@ @) _I 3
Structural J
similarity

T Rule Clust

Rule Base emporary Bufe Lusters —— Cluster Similarity
Cluster Similarity Calculator Matrix

Cluster Combination |-

5 “®

Figure 4. Components of Rule Base Partitioner.

At beginning, each rule of the original.rule.base is allocated into a single rule

cluster. Cluster Similarity Calculator calculates cluster similarity of all pairs of two

distinct rule clusters and builds*a Cluster Similarity Matrix (CSM). And the rule

clusters will be merged according to the information in Cluster Similarity Matrix. The

merge process works iteratively until all similar rule clusters are merged. And the rule

clusters generated will be the result of this process.

However, the similarity calculation can seriously affect the result of this process,

and the merge process of rule cluster is also an important task. In the following

paragraphs of this section, similarity calculation will be introduced first. After that,

rule base partitioning algorithm will be detailedly described in the forthcoming

section.

4.2.1 Rule Similarity

19

Rule similarity is a key factor to the clustering result. Well defined rule similarity
definition is important for a meaningful rule base partitioning result. Several kinds of
rule similarity definitions considering structural relatedness only [20][22], or with
semantic relatedness (hybrid approach) [21][38] are defined in previous work. In
RP-MES, Rule Base Partitioner incorporates hybrid approach to deal with rule

similarity calculation.

Before discussing the rule similarity calculation, some notations will be given to be

used in following discussions.

Definition 4.1 Expressions, conditions, actions, rules, and rule base.
= A ={attribute,, attribute,, =.. yattributey}: the set of all attributes in the rule base.

= O={= 4> <, >= <=}: the setiof all.operators used in the expressions

= \% : is the set of possible wvalues of attribute,, where attribute,, is the

attribute,, *

corresponding attribute of expression e,,.

= en = (attribute,, operator, value,) is an expression, where attribute, € A,

operator, € O , and value, €V

m attribute,, *

= CONDITIONS; : a set of expressions of rule r;, and expressions in the set are
connected with conjunction operator (AND).

= ACTIONS; : a set of expressions of rule r;, and expressions in the set are
connected with conjunction operator (AND), where the operator of the
expressions must be “=".

= r; . a rule of two-tuple (CONDITIONS;, ACTIONS;) which can be represented as

“IF CONDITIONS; THEN ACTIONS;”.

20

= RB: the set of rules in the rule base.

Example 4.1 Five rules used to detect different network anomalies are showed and

form a rule base RB, that is, RB = {ry, 2, 3, 14, I's}.

= r;: IF {(protocol = TCP), (protected_network_direction = A), (source_port >
8080), (string = NetBus)} THEN {(name = NETBUS)};

= ry: IF {(protocol = TCP), (protected_network_direction = A), (source_port >
1023, (string = NetBus2)} THEN {(name = NETBUS2)};

= r3: IF {(protocol = UDP), (protected_network_direction = A), (destination_port
> 1023), (string = /ce/63/d1/d2/16/e7/13/cf/3c/a5/a5/86)} THEN {(name =
DIR)};

= ry: IF {(protocol = UDP), (protected_netwotk_direction = A), (destination_port
> 1023), (string = /ce/63/d1/d2/16/e7/13/cf/39/a5/a5/86)} THEN {(name =
INFO)};

= rs5:IF {(protocol = TCP), (protected_network_direction = A), (destination_port =

53), (string = /00/00/ff)} THEN {(name = ANY-TCP)}.m

As we have mentioned before, we use hybrid approach to calculate rule similarity.
Hence in RP-MES, rule similarity calculation contains two parts, structural

relatedness and semantic relatedness, and each will be described as following.

(1) Structural relatedness
The structural relatedness considers the reference of attributes between rules, that is,
evaluating the same attributes or asserting new values to the same attributes. When

considering the reference of attributes, only the name of attribute is considered instead

21

of attribute value. In the definition of structural relatedness, two rules are related if
there is any attribute used by both rules (either on left- or right-hand sides); otherwise
they are independent. The structural relatedness between two rules is thus measured
by the number of attributes that are mentioned in both rules. There are four situations
of rule dependency, including in-out, share-in, share-out, and not-shared, and four
corresponding functions, inout(), sharein(), shareout(), and notshared(), are given in

Definition 4.2.

Definition 4.2. inout(), sharein(), shareout(), and notshared() Functions.

Given two rules r; = (CONDITIONS;, ACTIONS;), and r; = (CONDITIONS;,

ACTIONS)), their definitions are defined as below:

= inout(r;, rj) : the set of attributes that are used in CONDITIONS; and ACTIONS;,
or ACTIONS; and CONDIHONS;.

* sharein(r;, rj)) : the set of attribute-names ‘that are common to both the
CONDITIONS; and CONDITIONS;.

. shareout(r;, rj) : the set of attribute names that are common to both the
ACTIONS; and ACTIONS,;.

* notshared(r;, r;) : the set of all attributes used in r; or r; but not in inout(r;, rj),

sharein(r;, rj), and shareout(r;, r;).

Figure 5 illustrates those three relations mentioned in the Definition 4.2 The counts
of attributes of the four sets, generated by inout(), sharein(), shareout(), and
notshared() functions, are used to calculate the structural relatedness. And the weight

of each counts is given as a variable in our rule similarity calculation, for example

{1.0,0.5, 0.75, -0.25}.

22

,,,,,,,,,,,,,,,

ri: IF {...} THEN {(protocol = TCP)} r;: IF {(Iprotocol = TCP)} THEN {...}

r2: IF {(protocol = UDP)} THEN {...} r» IF {(protocol = UDP)} THEN {...}

(a) inout(r,, 1p) (b) sharein(ry, 1)

ri2 IF {...} THEN {(protocol = TCP)}

ry: IF {...} THEN {(protocol = UDP)}

(c) shareout(ry, 12)

Figure 5. Illustration of three cases of attribute reference.

Example 4.2 Given the rules r; and r> listed:in Example 4.1, the set of common
attribute names in both *conditions: “is. “sharein(r;, r;) = {protocol,
protected_network_direction, source_port, string}, and the set of common attribute
names in both actions is shareout(ry, r>) = {name}; while the inout(r;, r;) = {¢}, and
notshared(r;, r;) = {¢} However, for rules r; and r3, sharein(r;, r3) = {protocol,
protected_network_direction}, shareout(r;, r;) = {name}, inout(r;, r3) = {¢}, and

notshared(r;, r3) = {source_port, destination_port}.m

According to the number of attributes used in both two rules and given weights, the

structural relatedness between two rules can be formulated in Definition 4.3.

Definition 4.3 Structural relatedness between two rules.
Given two rules r; = (CONDITIONS;, ACTIONS,), and r; = (CONDITIONS;,
ACTIONS)), the structural relatedness between them is measured by L(r;, r;) and

defined as below:

23

L(rA r.)=

7]

in—out share—in

+ ‘shareout(r. r,X W ore—ow T |ROtShared (r. r,j Wi shared

‘lnout(rl.,rj]'w +‘sharem(rl.,rj1-w il i T

Example 4.3 According to the definition and the corresponding weights, Wi, ou,

Wihare-ins Wshare-outs and Whorsnarea, are 1.0, 0.5, 0.75, and -0.25, respectively; the

structural relatedness between r; and r; listed in Example 4.1 is
L(r,,7,)=0-1.0+4-0.5+1-0.75-0.25-0=2.75..

Also, the structural relatedness between r; and r; is

L(r,7,)=0-1.0+2-05+1-0.75-2-0.25=125. =

(2) Semantic Relatedness

In some cases, rules are very similar in syntactic structure, but they may be used to
deal with different problems. Considering only structural relatedness between rules
cannot effectively distinguish from them-and-futther group related rules in the clusters.
As for the rules, r3, r4, and rs, listed in Example 4.1, structural relatedness between
every pair of rules is the same, that is, 2.75. Even though the rules are used to detect
different network attacks, but with only structural relatedness, no additional
information can help separate those rules. Therefore for calculating rule similarity,

semantic relatedness is defined and used to complement structural relatedness.

When considering structural relatedness between rules, only the names of attributes
are taken in to consideration instead of the values or the operators of attributes. In
order to capture the semantic meaning between two rules based on the similarity of
expressions of rules, attribute values and operators of the expressions are also

considered. The expressions of rules can be divided into two categories, categorical

24

and numerical expressions, according to the data type of values. For a given
expression, if its value is categorical data, it belongs to categorical expression, e.g.,
(protocol = TCP); otherwise, if its value is numerical data, it belongs to numerical
expression, e.g., (destination_port > 1023). The semantic relatedness calculations of

these two types of expressions are different in our definition.

Ontologies of knowledge-based system are often used for content explication or as
common dictionary [1][40]. For two categorical expressions, the semantic relatedness
can be measured by the conceptual similarity between their values. That is, for two
categorical values, x and y, the semantic similarity of two categorical values can be
measured by conceptual similarity function s(x,y) [6]; the conceptual similarity
function depends on both the distance between them in the ontology and their
generality. However, some factual.information or.symbols may not be defined in the
ontology; therefore the conceptual similarity-function for this case is reduced to the
Kronecker delta function by only determining whether the categorical values are the

same or not. The definition of conceptual similarity function is given in Definition

4.4.

Definition 4.4 Conceptual Similarity Function.
Given two categorical values, x and y, which can be found on the ontology, the

conceptual similarity between x and y is,

d(x,y)+log,(1+ D(x)+ D(y))’

where d(x, y) is the number of “hops” between x and y, D(x) is the number of all its

sl y)=

descendants, and c is the boundary constant. If x and y are not located on the ontology,

their conceptual similarity is

25

I x=y
st)=atey)=fy 177

where &(x,y) is Kronecker delta function.

However, different operators used may influence the evaluations of semantic
relatedness between two expressions. For categorical expressions, both “=" and “#”
operators can be used, which means we can not just consider values when calculating
the semantic relatedness of categorical expressions. There are two cases of operator
combinations for two categorical expressions. Hence, the semantic relatedness
between two categorical expressions is formulated as a() which is defined in

Definition 4.5.

Definition 4.5 Semantic relatednéss between'two categorical expressions.

Given two expressions in rule action or condition, e, = (attribute,, operator,, value,,)
and e, = (attribute, operator, vValuey),-which-the ‘attribute names are the same, i.e.,
attribute,, = attribute,; the semantic’ relatedness a() between the expressions is

formulated as below:

ale e

m?~n

) { s(valuem,valuen) ,if operatorm # operatorn

1- s(valuem ,value,) , otherwise

Example 4.4 Given the ontology which is illustrated in Figure 6. Suppose the
constant ¢ of conceptual similarity function is set to 0.9, the semantic relatedness

between two expressions e; = (name = NETBUS) and e, = (name = NETBUS?2) is
ale,,e,)= s(NETBUS,NETBUS2)

C
~ d(NETBUS,NETBUS2)+ log, (D(NETBUS)+ D(NETBUS2) +1) -
= 0.9 =0.25
1+1og,(5+0+1)

26

NETWORK
MANAGEMENT

PROTOCOL

ATTACK

Figure 6. Part of the ontology in the network management domain.

(PRO2) (NETSPHERE

On the other hand, the semantic relatedness calculation between two numerical
expressions is different from that of categorical expressions. Before evaluating
semantic relatedness between two numerical €Xxpressions, both numerical expressions
must be transformed into mathematical intervals: For. instance, expression ¢; = (port >
1023) is transformed to (1023, max], where'max is the maximum value of V),,,,, which
is the value range of “porr’. The semantic relatedness between two numerical
expressions is based on the overlapping of two mathematical intervals. The definition

is given in Definition 4.6.

Definition 4.6 Semantic relatedness between two numerical expressions.
Given two expressions, e, = (attribute, operator,, value,) and e, = (attribute,

operator, value,), with the same attribute name, e,,, and e, will be transformed to two

intervals i,, and i,, where i €V . The semantic relatedness

attribute,,

and i €V

attribute,,

between the expressions is measured by S(e,, e,) which is defined as:

i i,

Ble,.e,)

i, Ui,

27

Example 4.5 Given two numerical expressions e; = (port > 1023) and e, = (port >
8080), and the corresponding intervals are i; = (1023, 65535] and i, = (8080, 65535]

respectively. The semantic relatedness between these two expressions is

~ |(1023,65535] " (8080,65535] 57455

= = =0.89.m
|(1023,65535] L (8080,65535] 64512

15(31’62)

Based on the definition of the relatedness for numerical and categorical expressions,
therefore, the semantic relatedness between any two expressions can be formally

defined and given in Definition 4.7.

Definition 4.7 Semantic relatedness between two expressions.
Given two expressions, e, ==(attribute,, operator, value,) and e, = (attribute,

operator, value,), the semantic relatedness.between'e;, and ¢, is

a(em ,e,) , bothremand erare categorical expressions

S(e e,)=1p (em .e,), both em and ex are numerical expressions .

m?

0 ,if attributen # attributen

Based on the semantic and structural relatedness defined for expressions of rules,

the definition of the similarity of two rules, r; and rj, is given in Definition 4.8.
Definition 4.8 Rule similarity between two rules.

Given two rules, r; = (CONDITIONS;, ACTIONS)), rj = (CONDITIONS;, ACTIONS)),

the rule similarity between r; and r; is

28

R(rt ° rj) = z S(em 4 en) ’ win—out

¢,,€ CONDITIONS; ,e,€ ACTIONS ; ,attribute,,, ,attribute, € inout (ri T

+ Z S(em ’ en) ’ Win—om

¢,,€ ACTIONS; ,e,€ CONDITIONS ; ,attribute,,, ,attributeneinout(ri T

+ z S(em ’ en) ’ wshare—in

¢,,€ CONDITIONS, ,e,,e CONDITIONS ; ,attribute,, ,attribute, & xharein(ri T

m

+ Z S (em ,e,) W pre—on T NOtShared (em ,e,) w
e,,€ ACTIONS, ,e

i*“n

not—shared
€ ACTIONS ; ,attribute,,, ,attribute, € shareour(ri T

Example 4.6 Given two rules, r; and r», listed in Example 4.1. Reviewing Example
4.2, sharein(r;,r;) = {protocol, protected_network_direction, source_port, string},
shareout(r;,r;) = {name}; inout(r;,r;) = {¢} and notshared(r;,r;) = {¢} The rule

similarity between r; and r; is

R(r,,7,)=0-1.0+(1+1+0.89+0)-0.5+0.25-0.75-0-0.25=1.6325.m

4.2.2 Cluster Similarity

As mentioned before, Rule Base Partitioner iteratively merges the most similar rule
clusters to construct the resulting rule clusters. Hence we need to define the similarity
between two rule clusters. Besides, in order to avoid too small or too large rule
clusters generated, the quantity of rules in rule cluster is also considered when
calculating the clusters. The function of rule cluster similarity is given in Definition

4.9.

Definition 4.9 Rule cluster and cluster similarity function.
A rule cluster is a set of rules. Therefore, similarity between two rule clusters, g; and

g1, 1s defined as:

CS(g,.8,)= qurt(R(n,r;))+ﬁ-

€8 TIEE, |gs

29

Given the set of rule clusters, the similarity between each pair of rule clusters can

be calculated in advance and stored in the matrix, called Cluster Similarity Matrix.

Definition 4.10 Cluster Similarity Matrix.

The Cluster Similarity Matrix (CSM) is an m-by-m square matrix, where m is the
number of rule clusters. Each entry ny, is the cluster similarity between rule clusters, g
and g, that is, CS(g,,g;). Since the definition of rule similarity is symmetric, the cluster

similarity definition is also symmetric. Therefore, CSM is an upper triangular matrix.

Example 4.7 Suppose that there are three rule clusters g; = {ry, 2}, g2 = {r3, r4}, and
g3 = {r5}, where ry, 1, r3, r4, and rs are'listed in,Example 4.1. The cluster similarity

between g; and g; is

2
CS(glagz): sqrt(R(”l’rs))+Sqrt(R(rl”l))"'sqrt(R(rz”%))"'Sqrt(R(r2ar4))+m:0-83;

while CS(g;,g3) = 0.86 and CS(g2,83):=1.08. Therefore, the Cluster Similarity Matrix

1S

0 0.83 0.86
CSM =1083 0 1.08|.m
086 1.08 0

4.2.3 Rule Base Partitioning Algorithm

Once the similarity for rule clusters can be calculated, the Rule Base Partitioner can
use Rule Base Partitioning Algorithm to partition a rule base into rule clusters. The
algorithm incorporated is a bottom-up approach, which derives a high-level structure
for the rule base based on the information of rule similarity. Similar to most clustering

algorithm, the algorithm runs iteratively to group rule clusters until the stopping

30

criterion is met. In this partitioning algorithm, the stopping criterion is to stop when
the cluster similarities between all pairs of rule clusters are no longer larger than a

similarity threshold (st) which is set by users.

The rule base partitioning algorithm is presented more formally below:

Algorithm: Rule Base Partitioning Algorithm

Input: A set of rules, similarity threshold st

Output: A set of rule clusters

Step 1. Group each rule as a single rule cluster.

Step 2. Calculate cluster similarity between each pair of rule clusters and generate
corresponding Cluster Similarity Matrix.

Step 3. Choose the entry n;; with the largest value (most similar) from the Cluster
Similarity Matrix.

Step 4. Terminate and output-the remaining-rule clusters, if n;; is less than or equal
to st.

Step 5. Combine g; and g; into a single rule cluster by merging the rules inside the
rule clusters.

Step 6. Go to Step 2.

Example 4.8 In this example, those rules listed in Example 4.1 are partitioned
according to the Rule Base Partitioning Algorithm. The similarity threshold st is set to

2.

1. At first, each rule is assigned to a single rule cluster, i.e., g; = {r;}, g2 = {r2}, g3

= {r3}, g4 = {r4}, and gs = {rs}. The Cluster Similarity Matrix for this

31

configuration is

0 209 177 1.77 18]
209 0 1.89 1.89 1.92
CSM,=[1.77 189 0 231 2.08].
1.77 189 231 0 2.08
1.8 192 208 208 0

By reviewing CSM;, nz4 has the largest value of the matrix. Since n34 is larger
than st, g; and g4 are combined to form a new rule cluster. The remaining rule
clusters are g; = {r;}, g2 = {r2}, g3 = {r3 r4}, and g4 = {rs}. The Cluster

Similarity Matrix in this iteration is

0 209 0.77 1.80
209 0 089 1.92
077 0.89 0 1.08|
1.80 192 1.08 0

CSM, =

The largest value within the CSM;, n;,, can'be discovered. Two rule clusters g;
and g, are thus combined since nj; is larger tham 2. After grouping g; and g», the

Cluster Similarity Matrix can be:génerated.again, i.e.,

07083 0.86
CSM,=1083 0 1.08].
086 1.08 0

No more grouping is needed because that all entries of CSM; are less than
similarity threshold st. The process is terminated and output the result, set of the

rule clusters, {{r;, r2}, {rs, r4}, {rs}}.m

4.3 Meta-rule Construction Process

The second process of Automatic Meta-rule Constructor is meta-rule construction

which is used to extract meta-rules from the partitioned rule clusters by Meta-rule

32

Extractor. Meta-rule Extractor consists of two subcomponents, Meta Apriori
Algorithm and Confidence Calculator. The Meta Apriori algorithm is modified from
Apriori algorithm which is used widely to generate frequent large itemsets in data
mining algorithms [1]. The Meta Apriori algorithm is used to generate the meta-rules,
and Confidence Calculator calculates the confidence value of each meta-rule. The
meta-rule generated by Meta-rule Extractor is then stored in the Meta-rule base for

further usage. The whole process is illustrated in Figure 7.

g . | Meta Apriori | Confidence
S Algorithm Calculator
Rule Clusters Meta-rule Extractor Meta-rule Base

Figure 7. Components, of Meta-fule Extractor.

In the following paragraphs, Meta Apriosi-algorithm is introduced first, and then the

process of meta-rule generation will‘be-examined:

4.3.1 Meta Apriori Algorithm

The Meta Apriori algorithm tries to discover the most frequent combinations of
expressions to describe the rule cluster. The basic idea is that those most frequent
combinations of expressions are used in many rules of the rule clusters, and once the
combination is met, those rules may be related to the result. Different from Apriori
algorithm, the transactions and itemsets defined in Meta Apriori algorithm are rule
conditions and expressions. The notations used in Meta Apriori algorithm is given in

Definition 4.11.

33

Definition 4.11 Transaction and itemset used in Meta-Apriori.
Given a rule cluster g; = {r;, ri2, ..., rin}, where N is the number of rules in the rule

cluster g;, the transaction and itemset are defined below:

= t; = CONDITIONS;, where CONDITIONS,€r,,je[l...N], is a set of

expressions to be used as one transaction.

= d: theitemset of Meta Apriori algorithm is a set of expressions

Example 4.9 From Example 4.8, two rules, r; and r,, are grouped into the same rule

cluster g;, i.e. g; = {ry, r2}. The corresponding transactions are

. t;; = {(protocol = TCP), (protected.network_direction = A), (source_port >
8080), (string = NetBus)}

= t12 = {(protocol = TCP), (protected. network direction = A), (source_port >

1023), (string = NetBus2)} 'm

In Meta Apriori algorithm, the support count of the itemset is defined as the number
of transactions that the itemset subsumes. That is, the set of expressions of the itemset
subsume those of the transactions. Therefore, expression subsumption must be
defined. For two expressions, e, and e,, e, subsumes e, if sub(e,, ,e,) = 1, where sub()

is called expression subsume function, which is defined in Definition 4.12.
Definition 4.12 Expression subsumption function.

Given two expressions e, = (attribute,, operator, value,) and e, = (attribute,

operator, value,),

34

1 eV

attribute,,

0 , otherwise

,veV

attribute,,

suble, .0)= {

Moreover, an itemset subsumes the transaction if each expression of itemset
subsumes at least one expression of transaction. The itemset subsumption is defined

in Definition 4.13.

Definition 4.13 Itemset subsumption function.

Given an itemset d and a transaction ¢, the itemset subsumption function is defined as

1 Ve, edle, ctlsuble, e)=1

, otherwise

m?

subsume(d,t) =

After discussing the notations and:subsumption issue, it is appropriate to give the

complete Meta Apriori algorithm.

Algorithm: Meta Apriori Algofithm

Input: A set of transactions, T; minimum support threshold, min_sup.
Output: A set of frequent itemset, D

Step 1. Generate the set of frequent 1-itemsets, D;, by scanning 7.
Step 2. Set initial value of k to 2.

Step 3. Generate candidate k-itemsets Cjx from Dj.1).

Step 4. For each k-itemset d, € C, , compute the support count, that is, di.support
N
= ZSLtbsume(dk,ti,).
=1

Step 5. Remove those k-itemsets that their support counts are less than
min_sup - N from Cjy. The remaining itemsets are stored in Dj.

Step 6. 1If D, # {#}, increase k by 1 and repeat step 2.

35

Step 7. Output Dy.

Example 4.10 In the Example 4.8, rule base RB = {ry, r2, r3, 4, s} is partitioned into
three rule clusters, g; = {r;, 2}, g2 = {r3, r4}, and g3 = {rs}. The following steps
illustrate how to apply Meta Apriori algorithm on g; to generate frequent itemsets.
The minimum support threshold, min_sup, is set to 0.9. For the sake of simplicity,

every expression occurred in the RB is encoded in Table 1.

encoding expression
e; (protocol = TCP)
e (protected_network_direction = A)
ez (source_port > 8080)
ey (source_port>1023)
es (string = NetBus)
e (string = NetBus2)

Table & Encodingsof expressions in RB.

1. Since there are two rules in g;, 7; consists of two transactions, #;; and ¢;,. Those
are listed below:
- tir={ey, ez e3, es};

= = {ey, ez ey €6}

2. In the first iteration, each expression in the transaction is a member of the set of
candidate 1-itemsets, C;;. The algorithm scans all of the transactions in order to
count the number of transactions that each itemset subsumes and summaries the

result in Table 2.

36

itemset count
{es) 2
{e2} 2
{es} 1
{e4} 2
{es} 1
{es) 1

Table 2. The support count of each candidate in C;;.

The minimum support count required is 2 (|T1|-min_sup =2-09=1.8). The

frequent 1-itemsets, D;;, can then be determined. Each itemset in D;; must satisfy
minimum support count; the content of Dy; is thus {e;, e, e4}.

The candidate 2-itemsets C;, can be generated from D;;. To discover frequent
2-itemsets, D, the transactions in 7; are scanned and the support count of each
candidate is accumulated, as shown in the Table 3. Since support of each
candidate is larger than or equal to minimum:support count, the set of large

2-itemsets, Dy, is {{e;, e2}; {e1hed)steases) }.

itemset count
(e1, €2) 2
(e1, €q) 2
(e2, e4) 2

Table 3. Support count of each candidate in Cj,.

The candidate 3-itemsets, C;3, can be generated in the same way, which is listed

in Table 4. Since |D13| =1, no more candidate itemsets of C;4 can be generated,

and the process is thus terminated.

itemset count

{e;, €2 e4) 2

Table 4. Support count of candidate in Cj;.

Therefore, the final output is D;; = {{e;, ez, e4}}. According to Table 1, the

frequent combination of expressions is {(protocol = TCP),

37

(protected_network_direction = A), (source_port > 1023)}. m

4.3.2 Meta-rule Generation

The meta-rule generation is based on the concept of constraint-based association
mining [29][31]. That is, the format of meta-rule is specified in advance. The
definition of meta-rule is given by Definition 4.14. The meaning of the meta-rule, mr;
= (CONDITIONS;, (RULE_CLUSTER = g)), conf), is that if all expressions of
CONDITIONS; are satisfied, the rule cluster g; will be selected with confidence value,

conf.

Definition 4.14 Meta-rule representation.

For a given rule cluster g;, each meta-rule; nir;, generated from g; has the form:

* mrj = (CONDITIONS;, (RULE_CEUSTER = g;), conf), where CONDITIONS; is
a set of expressions in the condition part of mirj, and conf is the confidence value

of the meta-rule.

The frequent sets of expressions generated from one rule cluster may be the same
with those generated from the other rule clusters. Therefore, once the frequent
itemsets of all rule clusters are generated by Meta Apriori algorithm, the next step is
to determine the confidence value of each corresponding meta-rule. Within the
Meta-rule Extractor, Confidence Calculator is used to calculate the confidence value
of each meta-rule generated from frequent itemsets by applying Confidence

Calculation Algorithm as below.

38

Algorithm: Confidence Calculation Algorithm
Input: a set of meta-rules, MRB, in which meta-rules have no confidence values
defined
Output. a set of meta-rules, MRB’, in which confidence values fro meta-rules
specified
Step 1. At first, MRB’ is an empty set.
Step 2. Choose the meta-rules from MRB which have the same set of expressions in
their condition parts with the first meta-rule of MRB. The first meta-rule of
MRB is included in selection result.
Step 3. Accumulate the total support count of all selected meta-rules.
Step 4. Set the confidence value of each selected meta-rule via dividing its support
count by total support count:
Step 5. Remove those selected meta-rules from MRB to MRB’.
Step 6. If MRB is empty, terminate:and-output: MRB’.

Step 7. Go to step 2.

39

Chapter 5. Experiment

In this chapter, an Intrusion Detection System (IDS) prototype based on RP-MES is
proposed, and the partitioning result as well as performance analysis of the prototype

system are also introduced.

5.1 Experiment Environment

e R 7

Administration Pane DRAMA Rule Editor

Meta-rule
Knowledge
Class

B

DRAMA *Ie Verifier

Meta-rule
Extractor

Inference Engine

1 Rule Bas
' DRAMA Server Automatic Meta-rule

Constructor

DragonSensor RB

< Packet Acquisition & Preprocessing)

(0

Packet Generator

Figure 8. An IDS based on RP-MES.

Figure 8 illustrates the system architecture of the IDS prototype based on RP-MES.

There are two major components in the prototype systems, including the DRAMA

40

System and Automatic Meta-rule Constructor. DRAMA is developed by Knowledge
and Data Engineering Laboratory (KDE Lab.) of National Chiao Tung University,
Taiwan. DRAMA is implemented using JAVA. In the prototype system, DRAMA is
used to store, represent, process the knowledge of the IDS. Moreover, the NORM
knowledge model used in DRAMA provides the ability of inferring meta-rules and
rule selection by the ACQUIRE knowledge relation, which is a dynamic knowledge
relation to include rule cluster only when meta-rule is matched. DRAMA Rule
Verifier is used to verify rules within the knowledge classes. DRAMA Rule Editor

provides a user friendly GUI interface for editing knowledge classes and rules.

Automatic Meta-rule Constructor is also implemented in JAVA. The knowledge
can be the rule base of any other IDS, e.g.,"Snort [36], Dragon Sensor [9], etc.
Automatic Meta-rule Constructer can partition the rule base into rule clusters, which
are represented as knowledge classesiin DRAMA, and generate meta-rules from those
knowledge classes. Those generated knowledge classes can be processed by DRAMA

Server for detecting network intrusions.

Packet Preprocessor is implemented in C, which collects the packets from network
and translates into the facts for DRAMA to infer. Administration Panel of the
prototype system provides a user interface for administrator to monitor the situation of

network environment.

5.2 Experimental Results

The rule base of Dragon Sensor consists of 646 rules, which is used as our

41

experimental knowledge source. In the first experiment, various numbers of rules are
partitioned by Automatic Meta-rule Constructor according to different similarity
threshold (st) settings, which are used as the criteria to stop clustering process. The
partitioning result is shown in Table 5, and Figure 9. It can be observed that similarity
threshold = 1.2 produces more reasonable number of rule clusters since the average
size of rule clusters is satisfied with Miller’s magic number [25]. The Miller’s magic

number says that human beings have a meaningful chunking size up to7 £ 2.

rules 1.0 1.1 1.2 1.3 14 1.5
100 2 3 20 29 41 50
200 3 5 28 48 87 100
300 3 5 32 82 136 150
400 3 7 52 112 181 200
500 3 5 = 139 225 246
600 4 7 56 172 272 296
646 3 6 59 188 296 324

Table 5. The number of clusters for«different similarity:threshold settings and number of rules.

According to the partitioning results obtained from the first experiment, the second
experiment is conducted to analyze the accuracy. For each partitioning result in first
experiment, Automatic Meta-rule Constructor also generates corresponding
meta-rules and stores those meta-rules in a knowledge class. Those knowledge classes
are loaded into the IDS prototype system for accuracy experiment. The accuracy is
obtained by comparing the result of original rule base (Dragon Sensor) and partitioned

rule base, which is calculated in following formula:

|
accuracy = |F_ ,
DS

where F), is the set of rules fired in partitioned rule base, and Fps is the set of rules

42

fired in original rule base. The result is shown in Table 6.

350 T T T
—t+— 100 rules
—&— 200 rules 7
—— 300 rules
300 H —— 400 rules a
—&— 500 rules v
—&— 600 rules &
—=— 646 rules v
250 -
5
B 200
O 4
k] Vi
Fy
€ 150 L
5 &
100
50 5 i
e — . ! 1]
1.1 1.2 1.3 1.4 1.5
Similarity Threshold (st)
Figure 9. Partitioning'results by different similarity threshold settings.
rules 1.0 1.1 1.2 1.3 14 1.5
100 95% 97% 100% 100% 100% 100%
200 98% 99% 100% 100% 100% 100%
300 98.33% 100% 100% 100% 100% 100%
400 96.25% 96.75% 98.75% 99.25% 99.25% 99.25%
500 94.20% 94.20% 97% 97.60% 97.60% 97.60%
600 95.33% 95.67% 97.33% 98.00% 98.00% 98.00%
646 95.51% 95.82% 97.37% 98.14% 98.14% 98.14%

Table 6. Accuracy comparisons of partitioned rule base.

We also use the traditional rule base partitioning approach, which only considers

structural relatedness of rule, to partition the same rule base used in previous

43

experiments. The result is listed in Table 7 and illustrated in Figure 10. Table 7 shows

the number of rule clusters partitioned for both approaches to meet the same accuracy

(the accuracy for RP-MES approach with st = 1.2).

100 200 300 400 500 600 646
RP-MES 20 28 32 52 57 56 59
TRADITIONAL 30 51 85 113 139 170 188

180

Table 7. Comparison of number of clusters under the same accuracy.

160

140+

120+

Number of Clusters

—=— hybrid
—&— traditional

[o=]
o
T

0
100

|
300
Number of Rules

I
400

!
500

Figure 10. Comparison of number of clusters under the same accuracy.

The final experiment is to evaluate the performance between the rule base not

partitioned and the rule base partitioned by RP-MES. The result of the experiment is

shown in Figure 11. When the number of rules is small, the performance difference is

not obvious. But if the number of rules becomes large, the execution time of original

44

rule base increases greatly. However, the execution time of RP-MES increases more

smoothly than that of original rule base.

7000

T
—&— original
—-&— RP-MES

5000

4000 - b

3000 i

Execution Time (sec)

2000 i

0 | | | I | | |
100 150 200 250 300 350 400 450 500
Number of Rules

Figure 11. The performance of original rule base and RP-MES.

45

Chapter 6. Conclusion

Due to the growth of rule base usage, the scale of rule base is increasing and hence
many management related issues arise about constructing the rule base. Three are
issues about rule base maintenance, including complex relationships between rules,
structural errors, and performance degradation. In this thesis, RP-MES is proposed to
solve these issues by designing a new approach combining both rule base partitioning
mechanism and meta-rule construction mechanism. As for rule base partitioning,
RP-MES not only takes care of the structural relatedness between rules, but also
considers the semantic relatedness of rules by calculating the semantic relationship
between rules in the rule base. On the .other hand, RP-MES extracts the meta-rules
from the rule clusters partitioned:by therrule-base partitioning mechanism, and uses

the obtained meta-rules for selecting rule cluster when using the rule base.

In order to evaluate the performance of RP-MES, an Intrusion Detection System
(IDS) prototype is also designed and implemented based on RP-MES, and some
experiments have been done to test the system performance. The experimental results
show that RP-MES can produce reasonable number of rule clusters and the accuracy
of the inference result remains, and that the performance of RP-MES is better than

that of original rule base without partitioning.

46

Reference

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in
Proceedings of International Conference on Very Large Data Bases (VLDB’94),

pp. 487-499, 1994.

C. Baral, S. Kraus, and J. Minker, “Combining multiple knowledge bases,” IEEE

Transaction on Knowledge and Data Engineering, vol. 3, pp. 208-220, 1991.

R. Bogacz and C. Giraud-Carrier, “Learning meta-rules of selection in expert

systems,” in: Proceedings of the Fourth World Congress on Expert Systems, pp.

576-581, 1998.

N. Botten, A. Kusiak and T.'Raz, "Knowledge bases: Integration, verification,
and partitioning," European.Journal of Operational Research, vol. 42, pp.

111-128, 25 September. 1989.

C.L. Chang, J.B. Combs, and R-A:"Stachowitz, “A report on the expert systems
validation associate (EVA),” Expert Systems with Applications, vol. 1, pp.

217-230, 1990.

W.W. Chu, Z. Liu, and W. Mao, “Textual document indexing and retrieval via
knowledge sources and data mining,” Communication of the Institute of

Information and Computing Machinery, vol. 5, 2002.

R. Davis, “Meta-rules: Reasoning about control,” Artificial Intelligence, vol. 15,

pp. 179-222, 1980.

K. Dev and C. S. R. Murthy, “A genetic algorithm for the knowledge base

partitioning problem,” Pattern Recognition Letters, vol. 16, pp. 873-879, Aug.

47

1995.

[9] Dragon Sensor, Enterasys Networks, Inc. http://www.enterasys.com.

[10] J. Durkin, “Expert systems: Design and development,” Macmillan Publishing

Company, pp. 600-684, 1994.

[11] P. Dutta, "Evolutionary heuristic for knowledge base partitioning problem," in
Proceedings of the IEEE International Conference on Evolutionary Computation,

ICEC'97, 1997.

[12] J.R. Geissaman, “Verification and validation for expert systems: A practical
methodology,” in Proceedings of the 4™ Annual Artificial Intelligence and

Advanced Computer Technology Conference, 1998.
[13] J. Giarratano, Expert Systems: Principles and Programming, Brooks Cole, 1998.

[14] M.T. Harandi, “Rule base-management using meta knowledge,” in Proceedings
of the 1986 ACM SIGMOD international-conference on Management of data, pp.

261-267, 1986.

[15] X. He, W.C. Chu, H. Yang, and S.J.H. Yang, “A new approach to verify
rule-based systems using petri nets,” Information and Software Technology, vol.

45, pp. 663-669, 2003.

[16] K. Higa, “An approach to improving the maintainability of existing rule bases,”

Decision Support Systems, vol. 18, pp. 23-31, 1996.

[17] S.Y. Ho, H.M. Chen, and L.S. Shu, “Solving large knowledge base partitioning
problems using an intelligent genetic algorithm,” in Proceedings of GECCO-99:

the Genetic and Evolutionary Computation Conference, pp. 1567-1672, 1999.

[18] G. J. Hwang and S. S. Tseng, “EMCUD: A knowledge acquisition method which

48

captures embedded meanings under uncertainty,” International Journal of

Human-Computer Studies, vol. 33, pp. 431-451, 1990.

[19] R.J.K. Jacob and J.N. Froscher, "Software engineering for rule-based systems,"
in Proceedings of 1986 fall joint computer conference on Fall joint computer

conference, pp. 185-189, 1986.

[20] RJ.K. Jacob and J.N. Froscher, "A software engineering methodology for
rule-based systems," IEEE Transactions on Knowledge and Data Engineering,

vol. 2, pp. 173-189, 1990.

[21] TT. Kuo, S.S. Tseng, and Y.T. Lin, “Ontology-based knowledge fusion

framework using graph partitioning,” IEA/AIE, pp. 11-20, 2003.

[22] O. Lee and P. Gray, "Knowledge base clustéring for KBS maintenance," Journal

of Software Maintenance: Research and Practice, vol. 10, pp. 395-414, 1998.

[23] Y.T. Lin, S.S. Tseng, and C.E - Tsai;7“Design and implementation of new
object-oriented rule base managementsystem,” Expert Systems with Applications,

vol. 25, pp. 369-385, 2003.

[24] E. McCreath, “Extraction of meta-knowledge to restrict the hypothesis space for
ILP systems,” Eight Australian Joint Conference on Artificial Intelligence, pp.

75-82, 1995.

[25] G. Miller, “The magical number seven, plus or minus two: some limits on our
capacity for processing information,” The Psychological Review, vol. 63, pp.

81-97, 1956.

[26] G. Myers, Reliable Software Through Composite Design, Petrocelli/Charter, New

York, 1975.

49

[27] D.L. Nazareth, “Issues in the verification of knowledge in rule-based systems,”

International Journal of Man-Machine Studies, vol. 30, pp. 255-271, 1989.

[28] D.L. Nazareth and M.H. Kennedy, “Verification of rule-based knowledge using

directed graphs,” Knowledge Acquisit, vol. 3, pp. 339-360, 1991.

[29] R. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang, “Exploratory mining and
pruning optimizations of constrained associations rules,” in Proceedings of
International Conference on Management of Data (SIGMOD’98), pp. 13-24,

1998.

[30] T.A. Nguyen, W.A. Perkins, T.J. Laffey, and D. Pecora, “Knowledge base

verification,” Al Magazine, 1987.

[31] J. Pei and J. Han, “Can we push more constraints into frequent pattern mining?”

in Proceedings of International Cotiference-on-Knowledge Discovery and Data

Mining (KDD’00), 2000.

[32] M. Ramaswamy, S. Sarkar, Y.S.: Chen; “Using directed hypergraphs to verify
rule-based expert systems,” IEEE Transaction on Knowledge Data Engineering,

vol 9, pp. 221-237, 1997.

[33] T. Raz and N. Botten, “The knowledge base partitioning problem: Mathematical
formulation and heuristic clustering,” Data & Knowledge Engineering, vol. 8, pp.

329-337, 1998.

[34] S. Sarkar and M. Ramaswamy, “Knowledge base decomposition to facilitate
verification,” Information Systems Research, vol. 11, No. 3, pp. 260-283, Sep.

2000.

[35] U.J. Schild and S. Herzog, “The use of meta-rules in rule based legal computer

systems,” in Proceedings of the fourth international conference on Artificial

50

intelligence and law, pp. 100-109, 1993.
[36] Snort, http://www.snort.org.

[37] L.E. Stanfel, “Applications of clustering to information system design,”

Information Processing & Management, vol. 19, pp. 37-50, 1983.

[38] S. Tsumoto and S. Hirano, “Visualization of rule’s similarity using
multidimensional scaling,” in Proceedings of the Third IEEE International

Conference on Data Mining (ICDM’03), 2003.

[39] G. Valiente, “Verification of knowledge base redundancy and subsumption using
graph transformations,” International Journal of Expert Systems: Research and

Applications, vol. 6, pp. 341-355, 1993.

[40] H. Wache, T. Vgele, U. Visset; H. Stuckenschmidt, G. Schuster, H. Neumann, and
S. Hbner, “Ontology-based integration-of information — a survey of existing

approaches,” in Proceedings of-thetWorkshop Ontologies and Information

Sharing 1IJCAT'01), pp. 108-117,2001:

[41] S.J.H. Yang, A.S. Lee, W.C. Chu, and H. Yang, “Rule base verification using
Petri nets,” in Proc. 22-nd Annual Int. Computer Software and Applications Conf.

(COMPSAC-98), 1998.

51

