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Chapter 1

Introduction

Network topology is a crucial factor for an interconnection network since it determines

the performance of the network. Many interconnection network topologies have been

proposed in the literature for the purpose of connecting a large number of processing

elements. Network topology is always represented by a graph where the nodes represent

processors and the edges represent the links between processors. One of the most popular

architectures is mesh connected computers [4]. Each processor is placed into a square or

rectangular grid and connected by a communication link to its neighbors in up to four

directions.

It is well known that there are three possible tessellations of a plane with regular

polygons of the same kind: square, triangular, and hexagonal, corresponding to dividing

a plane into regular squares, triangles, and hexagons, respectively. Some computer and

communication networks have been built based on this observation. The square tessella-

tion is the basis for mesh-connected computers. The triangle tessellation is the basis for
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defining hexagonal meshed multiprocessors [3, 9]. The hexagonal tessellation is the basis

for defining honeycomb meshes [2, 8].

Stojmenovic [8] introduced three different honeycomb meshes - the honeycomb rect-

angular mesh, honeycomb rhombic mesh, and honeycomb hexagonal mesh. Most of these

meshes are not regular. Moreover, such meshes are not hamiltonian unless it is small in

size [5]. To remedy these drawbacks, the honeycomb rectangular torus, honeycomb rhom-

bic torus and honeycomb hexagonal torus are proposed [8]. Any such torus is 3-regular.

Moreover, all honeycomb tori are not planar. In this thesis, we propose a variation of

honeycomb meshes, called honeycomb rectangular disk. A honeycomb rectangular disk

HReD(m, n) is obtained from the honeycomb rectangular mesh HReM(m, n) by adding

a boundary cycle. Any HReD(m, n) is a planar 3-regular hamiltonian graph. Moreover,

HReD(m, n) − f remains hamiltonian for any f ∈ V (HReD(m, n)) ∪ E(HReD(m, n)) if

n ≥ 6. These hamiltonian properties are optimal. Thus, the honeycomb retangular disk

network has superior basic characteristics compared with commercial mesh connected

computers, which belong to the same family of planar bounded degree networks.

In the following chapter, we give some graph terms that are used in this paper and

a formal definition of honeycomb rectangular disk. Obviously, such HReD(m, n) is a

super graph of the honeycomb rectangular mesh HReM(m, n). Assume that m and n are

positive even integers with m ≥ 4 and n ≥ 6. In chapter 3, we present four basic recursive

algorithms to obtain hamiltonian cycle for such HReD(m, n) − f . In chapter 4, we prove
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that such HReD(m, n) − e remains hamiltonian for any e ∈ E. In chapter 5, we prove

that such HReD(m, n) − v remains hamiltonian for any v ∈ V . In the final chapter, we

cover the general HReD(m, n) and present our conclusion.
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Chapter 2

Honeycomb Rectangular Disks

Usually, computer networks are represented by graphs where nodes represent processors

and edges represent links between processors. In this thesis, a network is represented as

an undirected graph. For the graph definition and notation, we follow [1]. G = (V, E)

is a graph if V is a finite set and E is a subset of {(a, b) | (a, b) is an unordered pair of

V }. We say that V is the node set and E is the edge set of G. Two nodes a and b are

adjacent if (a, b) ∈ E. A path is a sequence of nodes such that two consecutive nodes

are adjacent. A path is delimited by 〈x0, x1, x2, ..., xn〉. We use P−1 to denote the path

〈xn, xn−1, ..., x1, x0〉 if P is the path 〈x0, x1, x2, ..., xn〉. A cycle is a path of at least three

nodes such that the first node is the same as the last node.

A hamiltonian path is a path such that its nodes are distinct and span V . A hamiltonian

cycle is a cycle such that its nodes are distinct except for the first node and the last node

and span V . A hamiltonian graph is a graph with a hamiltonian cycle. A graph G = (V, E)

is 1-edge hamiltonian if G− e is hamiltonian for any e ∈ E, and a graph G = (V, E) is 1-
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Figure 2.1: The Honeycomb rectangular mesh HReM(8, 6).

node hamiltonian if G−v is hamiltonian for any v ∈ V . Obviously, any 1-edge hamiltonian

graph is hamiltonian. A graph G = (V, E) is 1-hamiltonian if G − f is hamiltonian for

any f ∈ E ∪ V .

The honeycomb rectangular mesh HReM(m, n) is the graph with

V (HReM(m, n)) = {(i, j) | 0 ≤ i < m, 0 ≤ j < n}, and

E(HReM(m, n)) = {((i, j), (k, l)) | i = k and j = l ± 1}

∪ {((i, j), (k, l)) | j = l and k = i + 1 with i + j is odd}.

For example, the honeycomb rectangular mesh HReM(8, 6) is shown in Figure 2.1.

For easy presentation, we first assume that m and n are positive even integers with

m ≥ 4 and n ≥ 6. A honeycomb rectangular disk HReD(m, n) is the graph obtained from
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HReM(m, n) by adding a boundary cycle. More precisely,

V (HReD(m, n)) = ({(i, j) | 0 ≤ i < m,−1 ≤ j ≤ n} − {(0,−1), (m − 1,−1)})

∪ {(i, j) | i ∈ {−1, m}, 0 < j < n, j is even}, and

E(HReD(m, n)) = {((i, j), (k, l)) | i = k and j = l ± 1}

∪ {((i, j), (k, l)) | j = l and k = i + 1 with i + j is odd}

∪ {(i, j), (k, l)) | i = k ∈ {−1, m} and j = l ± 2}

∪ {((0, 0), (−1, 2)), ((−1, n− 2), (0, n)), ((m− 1, n), (m, n − 2))}

∪ {((m, 2), (m− 1, 0)), ((m− 1, 0), (m− 2,−1)), ((1,−1), (0, 0))}.

For example, the honeycomb rectangular disk HReD(8, 6) is shown in Figure 2.2. Ob-

viously, HReM(m, n) is a subgraph of HReD(m, n). Moreover, any honeycomb rectangular

disk is a planar 3-regular graph. With Figure 2.2, we can easily observe that that any

HReD(m, n) is left-right symmetric; i.e., symmetric with respect to x = m−2
2

.

8



(0,0)

(1,-1)

(0,6)

(7,0)

(7,6)

(8,2)(-1,2)

Figure 2.2: The Honeycomb rectangular disk HReD(8, 6).
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Chapter 3

Four Basic Algorithms

The honeycomb rectangular disk has a good symmetric property which we shall take

advantage of it to construct a hamiltonian cycle. In the following, we shall first establish

four basic algorithms. Let F be a subset of V (HReD(m, n))
⋃

E(HReD(m, n)). The

purpose of these basic algorithms are to extend a hamiltonian cycle of HReD(m, n) − F

to a hamiltonian cycle of HReD(m + 2, n)− F . For 1 ≤ i ≤ m− 2, we say a hamiltonian

cycle HC of HReD(m, n)−F is i-regular if either ((i, n), (i+1, n)) or ((i,−1), (i+1,−1)) is

incident with HC. We call a hamiltonian cycle HC of HReD(m, n)−F is 0-regular if either

((0, n), (1, n)) or ((0, 0), (1,−1)) is incident with HC. Assume that 0 ≤ i < m − 1. We

define a function fi from V (HReD(m, n)) into V (HReD(m + 2, n)) by assigning fi(k, l) =

(k, l) if k ≤ i and fi(k, l) = (k + 2, l) if otherwise. Then we define

fi(F ) = {fi(k, l) | (k, l) ∈ V (HReD(m, n)) ∩ F}

∪ {(fi(k, l), fi(k
′, l′)) | ((k, l), (k′, l′)) ∈ E(HReD(m, n)) ∩ F ; {k, k′} �= {i, i + 1}}

∪ {((i, l), (i + 1, l′)) | ((i, l), (i + 1, l′)) ∈ E(HReD(m, n)) ∩ F}.
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We will present four basic algorithms to obtain a hamiltonian cycle of HReD(m +

2, n) − fi(F ) from a hamiltonian cycle of HReD(m, n) − F for some F .

For −1 ≤ i ≤ m, −1 ≤ j, and k ≤ n, let Hi(j, k) denote the path 〈(i, j), (i, j +

1), (i, j + 2), ..., (i, k − 2), (i, k − 1), (i, k)〉.

Algorithm 1. Suppose that HC is a hamiltonian cycle of HReD(m, n) − F containing

the edge ((i,−1), (i + 1,−1)) with 1 ≤ i < m − 2. We construct g1
i (HC) as follows:

Let −1 ≤ k0 < k1 < ... < k(t−1) ≤ n be the indices such that ((i, kj), (i + 1, kj)) ∈

E(HC). We set kt = n. Let HCi be the image of HC−{((i, kj), (i+1, kj)) | −1 ≤ kj ≤ n}

under g1
i . We define Pj as

〈(i, kj), (i+1, kj)
Hi+1(kj ,kj+1−1)−→ (i+1, kj−1), (i+2, kj−1)

H−1
i+2(kj ,kj+1−1)−→ (i+2, kj), (i+3, kj)〉.

It is easy to see that edges of HCi together with edges of Pj, with 0 ≤ j < t form

a hamiltonian cycle of HReD(m + 2, n) − fi(F ). We denote this cycle as g1
i (HC). For

example, a hamiltonian cycle HC of HReD(4, 6) − (1, 3) is shown in Figure 3.1(a). The

corresponding g1
1(HC) is shown in Figure 3.1(b).

Algorithm 2. Suppose that HC is a hamiltonian cycle of HReD(m, n) − F containing

the edge ((i, n), (i + 1, n)) with 1 ≤ i < m − 2. We construct g2
i (HC) as follows:

Let −1 ≤ k0 < k1 < ... < k(t−1) ≤ n be the indices such that ((i, kj), (i + 1, kj)) ∈
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(a) (b)

Figure 3.1: Illustration for Algorithm 1.

E(HC). We set k−1 = −2. Let HCi be the image of HC − {((i, kj), (i + 1, kj)) | −1 ≤

kj ≤ n} under g2
i . We define Qj as

〈(i, kj), (i + 1, kj)
H−1

i+1(kj−1+1,kj)−→ (i + 1, kj−1 + 1),

(i + 2, kj−1 + 1)
Hi+2(kj ,kj−1+1)−→ (i + 2, kj), (i + 3, kj)〉.

It is easy to see that edges of HCi together with edges of Qj , with 0 ≤ j < t form

a hamiltonian cycle of HReD(m + 2, n) − fi(F ). We denote this cycle as g2
i (HC). For

example, a hamiltonian cycle HC of HReD(4, 6) − (0, 4) is shown in Figure 3.2(a). The

corresponding g2
1(HC) is shown in Figure 3.2(b).

Suppose that HC is i-regular. We can apply Algorithm 1 to obtain a hamiltonian

cycle g1
i (HC) of HReD(m + 2, n)− fi(F ) if ((i,−1), (i + 1,−1)) is incident with HC, and

apply Algorithm 2 to obtain a hamiltonian cycle g2
i (HC) of HReD(m + 2, n) − fi(F ) if
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(a) (b)

Figure 3.2: Illustration for Algorithm 2.

otherwise. It is easy to see that the resultant hamiltonian cycle is i-regular, (i+1)-regular,

and (i + 2)-regular. So we can further extend a hamiltonian cycle in HReD(m + 4) − F ′

for some F ′ ⊆ E(HReD(m + 4))∪E(HReD(m + 4)). However, the above discussion only

works for column i with 1 ≤ i ≤ m − 2. We use the following two algorithms to obtain

similar results for column 0.

Algorithm 3. Suppose that HC is a hamiltonian cycle of HReD(m, n) − F containing

the edge ((0, 0), (1,−1)). Now, we construct g3(HC) as follows:

Let 1 ≤ k1 < k2 < ... < kt ≤ n be the indices such that ((0, kj), (1, kj)) ∈ E(HC).

We set kt+1 = n. Let HC be the image of HC − {((0, kj), (1, kj)) | 1 ≤ kj ≤ n} ∪

{((0, 0), (1,−1))} under g3. We define R0 as

〈(0, 0), (1,−1)
H1(−1,k1−1)−→ (1, k1 − 1), (2, k1 − 1)

H−1
2 (−1,k1−1)−→ (2,−1), (3,−1)〉.

13



For 1 ≤ j ≤ t, we define Rj as

〈(0, kj), (1, kj)
H1(kj ,kj+1−1)−→ (1, kj − 1), (2, kj − 1)

H−1
2 (kj ,kj+1−1)−→ (2, kj), (3, kj)〉.

It is easy to see that edges of HC together with edges of Rj, with 0 ≤ j ≤ t form a

hamiltonian cycle of HReD(m + 2, n) − fi(F ). We denote this cycle as g3(HC).

Algorithm 4. Suppose that HC is a hamiltonian cycle of HReD(m, n) − F containing

the edge ((0, n), (1, n)). We construct g4(HC) as follows:

Let 1 ≤ k0 < k1 < ... < k(t−1) ≤ n be the indices such that ((0, kj), (1, kj)) is an edge

of HC. We set k−1 = −2. Let HC be the image of HC − {((0, kj), (1, kj)) | 1 ≤ kj ≤

n} ∪ {((0, 0), (1,−1))} under g4. We define S0 as

〈(0, k0), (1, k0)
H−1

1 (−1,k0)−→ (1,−1), (2,−1)
H2(−1,k0)−→ (2, k0), (3, k0)〉.

For 1 ≤ j < t, we define Sj as

〈(0, kj), (1, kj)
H−1

1 (kj−1+1,kj)−→ (1, kj−1 + 1), (2, kj−1 + 1)
H2(kj ,kj−1+1)−→ (2, kj), (3, kj)〉.

It is easy to see that edges of HC together with edges of Sj , with 0 ≤ j < t form a

hamiltonian cycle of HReD(m + 2, n) − fi(F ). We denote this cycle as g4(HC).

Suppose that HC is 0-regular. We can apply Algorithm 3 to obtain a hamiltonian

cycle g3(HC) of HReD(m + 2, n) − f0(F ) if ((0, 0), (1,−1)) is incident with HC, and

apply Algorithm 4 to obtain a hamiltonian cycle g4(HC) of HReD(m + 2, n) − f0(F ) if

otherwise. It is easy to see that the resultant hamiltonian cycle is 0-regular, 1-regular,
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and 2-regular. So we can further extend a hamiltonian cycle in HReD(m + 4) − F ′ for

some F ′ ⊆ E(HReD(m + 4)) ∪ E(HReD(m + 4)).
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Chapter 4

1-Edge Hamiltonian Properties of
HReD(m,n)

In this chapter, we shall show that if m, n are even integers with m ≥ 4 and n ≥ 6,

then HReD(m, n) is 1-edge hamiltonian. We say an edge e of HReD(m, n) is regular if

there exists a hamiltonian cycle C of HReD(m, n)− e such that C is (m
2
− 1)-regular and

0-regular.

Lemma 1. Any edge e of HReD(4,n) that is incident with at least one vertex in {(i, j) |

−1 ≤ i ≤ 2} is regular.

Proof: Assume that e is any edge of HReD(4, n) that is incident with at least one vertex

in {(i, j) | −1 ≤ i ≤ 2}. Obviously, e is in one of the following 6 sets: namely,

A = {((i, j), (i + 1, j)) | −1 ≤ i ≤ 1,−1 ≤ j ≤ n}

−{((1, 0), (2, 0)), ((1, n), (2, n)), ((0, 1), (1, 1))},

B = {((−1, n − 2), (0, n)), ((0, 0), (1,−1))}
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(a) (b) (c) (d) (e) (f)

Figure 4.1: Illustration for Lemma 4.1.

∪{((i, j), (i + 1, j)) | −1 ≤ i ≤ 1,−1 ≤ j ≤ n}

−{((1,−1), (2,−1)), ((0, n− 3), (1, n − 3)), ((0, n), (1, n))}

−{((−1, n − 2), (0, n − 2)), ((1, n − 2), (2, n − 2))},

C = {((i, j), (i, j + 1)) | 0 ≤ i ≤ 1, j is odd, 1 ≤ j ≤ n − 1}

∪{((−1, j + 1), (−1, j + 3)) | j is odd, 1 ≤ j ≤ n − 1},

D = {((i, j), (i, j + 1)) | 0 ≤ i ≤ 1, j is even, j ≥ 4},

E = {((i, j), (i, j + 1)) | 0 ≤ i ≤ 1, j = 0, 2}, and

F = {((−1, 2), (0, 0)), ((1,−1), (1, 0))}.

Suppose that e ∈ A. Then

〈(1, 0), (1,−1), (0, 0), (−1, 2)
H−1(2,n−2)−→ (−1, n − 2), (0, n)

H−1
0 (1,n)−→ (0, 1),

(1, 1)
H1(1,n)−→ (1, n), (2, n)

H−1
2 (1,n)−→ (2, 1), (3, 1)

H3(1,n)−→ (3, n),

(4, n − 2)
H−1

4 (2,n−2)−→ (4, 2), (3, 0), (2,−1), (2, 0), (1, 0)〉

is the desired hamiltonian cycle. See Figure 4.1(a) for illustration.

Suppose that e ∈ B. Then
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〈(0, 0), (−1, 2)
H−1(2,n−2)−→ (−1, n − 2), (0, n − 2), (0, n − 1), (0, n), (1, n), (1, n− 1),

(1, n − 2), (2, n − 2), (2, n − 1), (2, n), (3, n), (3, n− 1), (3, n − 2),

(4, n − 2)
H−1

4 (2,n−2)−→ (4, 2), (3, 0)
H3(0,n−3)−→ (3, n − 3), (2, n − 3)

H−1
2 (−1,n−3)−→ (2,−1),

(1,−1)
H1(−1,n−3)−→ (1, n − 3), (0, n − 3)

H−1
0 (0,n−3)−→ (0, 0)〉

is the desired hamiltonian cycle. See Figure 4.1(b) for illustration.

Suppose that e ∈ C. Assume that e = ((i, j), (i, j + 1)) for some 0 ≤ i ≤ 1. We set

x = j if 1 ≤ j ≤ n−5 and x = n−5 if otherwise. Assume that e = ((−1, j+1), (−1, j+3)).

We set x = j. Then

〈(0, 0), (−1, 2)
H−1(2,x+1)−→ (−1, x + 1), (0, x + 1), (0, x + 2), (1, x + 2),

(1, x + 1), (2, x + 1), (2, x + 2), (2, x + 3), (1, x + 3)
H1(x+3,n−1)−→ (1, n − 1),

(0, n − 1)
H−1

0 (x+3,n−1)−→ (0, x + 3), (−1, x + 3)
H−1(x+3,n−2)−→ (−1, n − 2),

(0, n), (1, n), (2, n)
H−1

2 (x+4,n)−→ (2, x + 4), (3, x + 4)
H3(x+4,n)−→ (3, n),

(4, n − 2)
H−1

4 (x+3,n−2)−→ (3, x + 3), (3, x + 2), (3, x + 1), (4, x + 1)
H−1

4 (2,x+1)−→ (4, 2),

(3, 0)
H3(0,x)−→ (3, x), (2, x)

H−1
2 (−1,x)−→ (2,−1), (1,−1)

H1(−1,x)−→ (1, x), (0, x)
H−1

0 (0,x)−→ (0, 0)〉.

is the desired hamiltonian cycle. See Figure 4.1(c) for illustration.

Suppose that e ∈ D. Assume that e = ((i, j), (i, j + 1)). We set x = j if j ≥ 6 and

x = 6 if otherwise. Then

〈(0, 0), (−1, 2)
H−1(2,x−2)−→ (−1, x − 2), (0, x− 2)

H−1
0 (1,x−2)−→ (0, 1), (1, 1)

H1(1,x−2)−→ (1, x − 2),
(2, x − 2), (2, x− 1), (2, x), (1, x), (1, x− 1), (0, x− 1), (0, x),

(−1, x)
H−1(x,n−2)−→ (−1, n − 2), (0, n)

H−1
0 (x+1,n)−→ (0, x + 1), (1, x + 1)

H1(x+1,n)−→ (1, n),

(2, n)
H−1

2 (x+1,n)−→ (2, x + 1), (3, x + 1)
H3(x+1,n)−→ (3, n), (4, n − 2)

H−1
4 (x,n−2)−→ (4, x), (3, x),

(3, x − 1), (3, x− 2), (4, x− 2)
H−1

4 (2,x−2)−→ (4, 2), (3, 2)
H3(2,x−3)−→ (3, x − 3),

(2, x − 3)
H−1

2 (1,x−3)−→ (2, 1), (3, 1), (3, 0), (2,−1), (2, 0), (1, 0), (1,−1), (0, 0)〉.
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is the desired hamiltonian cycle. See Figure 4.1(d) for illustration.

Suppose that e ∈ E. Assume that e = ((i, j), (i + 1, j)). Then

〈(0, 0)
H0(0,j)−→ (0, j), (−1, 2)

H−1(2,n−2)−→ (−1, n − 2), (0, n)
H−1

0 (j+1,n)−→ (0, j + 1),

(1, j + 1)
H1(j+1,n)−→ (1, n), (2, n)

H−1
2 (j+1,n)−→ (2, j + 1), (3, j + 1)

H3(j+1,n)−→ (3, n),

(4, n − 2)
H−1

4 (2,n−2)−→ (4, 2), (3, j)
H−1

3 (0,j)−→ (3, 0), (2,−1)
H2(−1,j)−→ (2, j),

(1, j)
H−1

1 (−1,j)−→ (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 4.1(e) for illustration.

Suppose that e ∈ F . Then

〈(0, 0), (1,−1), (2,−1), (3, 0), (3, 1), (2, 1), (2, 0), (1, 0), (1, 1), (1, 2),

(2, 2)
H2(2,n−1)−→ (2, n − 1), (3, n − 1)

H−1
3 (2,n−1)−→ (3, 2), (4, 2)

H4(2,n−2)−→ (4, n − 2), (3, n), (2, n),

(1, n)
H−1

1 (3,n)−→ (1, 3), (0, 3)
H0(3,n)−→ (0, n), (−1, n − 2)

H−1
−1 (2,n−2)−→ (−1, 2), (0, 2), (0, 1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 4.1(f) for illustration.

The lemma is proved.

With the left-right symmetric property of HReD(4, n), we have the following corollary.

Corollary 1. Every HReD(4,n) is 1-edge hamiltonian for any even integer n with n ≥ 6.

Theorem 1. Assume that m, n are even integers with m ≥ 4 and n ≥ 6. Any edge e of

HReD(m, n) that is incident with any vertex of {(i, j) | 0 ≤ i ≤ m
2
} is regular. Hence,

HReD(m, n) is 1-edge hamiltonian.
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Proof: We prove this theorem by induction. The inductive basis m = 4 is proved in

Lemma 1. Let e = ((i, j), (i′, j′)) be any edge of HReD(m+2, n) that is incident with any

vertex of {(i, j) | 0 ≤ i ≤ m
2
}.

Suppose that e = ((m
2
, j), (m

2
+ 1, j)) for some j. By induction, there exists a regular

hamiltonian cycle C of HReD(m, n) − ((m
2
− 2, j), (m

2
− 1, j)). Then g0(C) is a regular

hamiltonian cycle of HReD(m+2, n)−e. Moreover, g0(C) is both 0-regular and m
2
-regular.

Hence, e is regular.

Suppose that e /∈ {((m
2
, j), (m

2
+ 1, j)) | 0 ≤ j ≤ n}. By induction, there exists a

regular hamiltonian cycle C of HReD(m, n) − ((i, j), (i′, j′)). Then gm
2
−1(C) is a regular

hamiltonian cycle of HReD(m + 2, n) − e. Moreover, gm
2
−1(C) is both 0-regular and

m
2
-regular. Hence, e is regular.

By the left-right symmetric property, HReD(m + 2, n) is 1-edge hamiltonian. The

theorem is proved.
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Chapter 5

1-Node Hamiltonian Properties of
HReD(m,n)

In this chapter, we shall show that if m, n are even integers with m ≥ 4 and n ≥ 6, then

HReD(m, n) is 1-node hamiltonian. We say a vertex v = (i, j) of HReD(m, n) is regular

if there exists a hamiltonian cycle C of HReD(m, n) − v such that C is (m
2
− 1)-regular

and 0-regular.

Lemma 2. Any vertex v = (i, j) of HReD(4,n) with i ∈ {−1, 0, 1} is regular.

Proof: Suppose that (i, j) is not in {(0, 0), (0, 1), (0, n−1), (0, n), (1,−1), (1, 0), (1, 1), (1, n−

1), (1, n), (−1, 2), (−1, n− 2)}. Then v is in one of the following 7 sets: namely,

A = {(0, j) | j = 0 (mod 2), j <
n

2
},

B = {(0, j) | j = 0 (mod 2), j ≥ n

2
},

C = {(0, j) | j = 1 (mod 2), j �= 1, n − 1},

D = {(1, j) | j = 0 (mod 2), 0 < j <
n

2
},
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E = {(1, j) | j = 0 (mod 2), j ≥ n

2
},

F = {(1, j) | j = 1 (mod 2), j /∈ {−1, 1, n − 1}}, and

G = {(−1, j) | j = 0 (mod 2), j �= 2, n − 2}.

Suppose that v ∈ A. Let v = (0, j). Then

〈(0, 0), (−1, 2)
H−1(2,n−2)−→ (−1, n − 2), (0, n), (1, n), (2, n), (3, n),

(4, n − 2)
H−1

4 (j+2,n−2)−→ (4, j + 2), (3, j + 2)
H3(j+2,n−1)−→ (3, n − 1),

(2, n − 1)
H−1

2 (j+2,n−1)−→ (2, j + 2), (1, j + 2)
H1(j+2,n−1)−→ (1, n − 1),

(0, n − 1)
H−1

0 (j+1,n−1)−→ (0, j + 1), (1, j + 1), (1, j), (2, j), (2, j + 1), (3, j + 1), (3, j),

(4, j)
H−1

4 (2,j)−→ (4, 2), (3, 0)
H3(0,j−1)−→ (3, j − 1), (2, j − 1)

H−1
2 (−1,j−1)−→ (2,−1),

(1,−1)
H1(−1,j−1)−→ (1, j − 1), (0, j − 1)

H−1
0 (0,j−1)−→ (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(a) for illustration.

Suppose that v ∈ B. Let v = (0, j). Then

〈(0, 0), (−1, 2)
H−1(2,n−2)−→ (−1, n − 2), (0, n)

H−1
0 (j+1,n)−→ (0, j + 1),

(1, j + 1)
H1(j+1,n)−→ (1, n), (2, n)

H−1
2 (j+1,n)−→ (2, j + 1), (3, j + 1)

H3(j+1,n)−→ (3, n),

(4, n − 2)
H−1

4 (j,n−2)−→ (4, j), (3, j), (3, j − 1), (2, j − 1), (2, j), (1, j), (1, j − 1),

(0, j − 1)
H−1

0 (1,j−1)−→ (0, 1), (1, 1)
H1(1,j−2)−→ (1, j − 2), (2, j − 2)

H−1
2 (1,j−2)−→ (2, 1),

(3, 1)
H3(1,j−2)−→ (3, j − 2), (4, j − 2)

H−1
4 (2,j−2)−→ (4, 2), (3, 0), (2,−1), (2, 0), (1, 0),

(1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(b) for illustration.

Suppose that v ∈ C. Let v = (0, j). Then
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(a) (b) (c)

(h) (i) (j)

(d) (e) (f)

(g) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 5.1: Illustration for Lemma 5.1.
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〈(0, 0), (−1, 2)
H−1(2,j−1)−→ (−1, j − 1), (0, j − 1)

H−1
0 (1,j−1)−→ (0, 1), (1, 1), (1, 0), (2, 0), (2, 1),

(3, 1)
H3(1,n−1)−→ (3, n − 1), (2, n − 1)

H−1
2 (2,n−1)−→ (2, 2), (1, 2)

H1(2,n−1)−→ (1, n − 1),

(0, n − 1)
H−1

0 (j+1,n−1)−→ (0, j + 1), (−1, j + 1)
H−1(j+1,n−2)−→ (−1, n − 2), (0, n), (1, n),

(2, n), (3, n), (4, n − 2),
H−1

4 (2,n−2)−→ (4, 2), (3, 0), (2− 1), (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(c) for illustration.

Suppose that v ∈ D. Let v = (1, j). Then

〈(0, 0), (−1, 2)
H−1(2,j)−→ (−1, j), (0, j), (0, j + 1), (1, j + 1)

H1(j+1,n−1)−→ (1, n − 1),

(0, n − 1)
H−1

0 (j+2,n−1)−→ (0, j + 2), (−1, j + 2)
H−1(j+2,n−2)−→ (−1, n − 2), (0, n), (1, n), (2, n),

(3, n), (4, n − 2)
H−1

4 (2,n−2)−→ (4, 2), (3, 0)
H3(0,n−1)−→ (3, n − 1), (2, n − 1)

H−1
2 (−1,n−1)−→ (2,−1),

(1,−1)
H1(−1,j−1)−→ (1, j − 1), (0, j − 1)

H−1
0 (0,j−1)−→ (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(d) for illustration.

Suppose that v ∈ E. Let v = (1, j). Then

〈(0, 0), (−1, 2),
H−1(2,j−2)−→ (−1, j − 2), (0, j − 2),

H−1
0 (1,j−2)−→ (0, 1), (1, 1)

H1(1,j−1)−→ (1, j − 1),

(0, j − 1), (0, j), (−1, j)
H−1(j,n−2)−→ (−1, n − 2), (0, n)

H−1
0 (j+1,n)−→ (0, j + 1),

(1, j + 1)
H1(j+1,n)−→ (1, n), (2, n)

H−1
2 (1,n)−→ (2, 1), (3, 1)

H3(1,n)−→ (3, n),

(4, n − 2)
H−1

4 (2,n−2)−→ (4, 2), (3, 0), (2,−1), (2, 0), (1, 0), (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(e) for illustration.

Suppose that v ∈ F . Let v = (1, j). Then
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〈(0, 0), (−1, 2)
H−1(2,n−2)−→ (−1, n − 2), (0, n), (1, n), (2, n)

H−1
2 (j+2,n)−→ (2, j + 2),

(3, j + 2)
H3(j+2,n)−→ (3, n), (4, n − 2)

H−1
4 (j+1,n−2)−→ (4, j + 1), (3, j + 1), (3, j), (3, j − 1),

(4, j − 1)
H−1

4 (2,j−1)−→ (4, 2), (3, 0)
H3(0,j−2)−→ (3, j − 2), (2, j − 2)

H−1
2 (−1,j−2)−→ (2,−1),

(1,−1)
H1(−1,j−1)−→ (1, j − 1), (2, j − 1), (2, j), (2, j + 1), (1, j + 1)

H1(j+1,n−1)−→ (1, n − 1),

(0, n − 1)
H−1

0 (0,n−1)−→ (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(f) for illustration.

Suppose that v ∈ G. Let v = (−1, j). Then

〈(0, 0), (−1, 2)
H−1(2,j−2)−→ (−1, j − 2), (0, j − 2)

H−1
0 (1,j−2)−→ (0, 1), (1, 1), (1, 0), (2, 0),

(2, 1), (3, 1)
H3(1,j−1)−→ (3, j − 1), (2, j − 1)

H−1
2 (2,j−1)−→ (2, 2), (1, 2)

H1(2,j−1)−→ (1, j − 1),

(0, j − 1)
H0(j−1,j+2)−→ (0, j + 2), (−1, j + 2)

H−1(j+2,n−2)−→ (−1, n − 2),

(0, n)
H−1

0 (j+3,n)−→ (0, j + 3), (1, j + 3)
H1(j+3,n)−→ (1, n), (2, n), (3, n),

(4, n − 2)
H−1

4 (j+2,n−2)−→ (4, j + 2), (3, j + 2)
H3(j+2,n−1)−→ (3, n − 1),

(2, n − 1)
H−1

2 (j+2,n−1)−→ (2, j + 2), (1, j + 2), (1, j + 1), (1, j), (2, j), (2, j + 1),

(3, j + 1), (3, j), (4, j)
H−1

4 (2,j)−→ (4, 2), (3, 0), (2,−1), (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(g) for illustration.

Suppose that v = (0, 0). Then

〈(−1, 2)
H−1(2,n−2)−→ (−1, n − 2), (0, n), (1, n), (2, n), (3, n), (4, n− 2)

H−1
4 (4,n−2)−→ (4, 4),

(3, 4)
H3(4,n−1)−→ (3, n − 1), (2, n − 1)

H−1
2 (4,n−1)−→ (2, 4), (1, 4)

H1(4,n−1)−→ (1, n − 1),

(0, n − 1)
H−1

0 (3,n−1)−→ (0, 3), (1, 3), (1, 2), (2, 2), (2, 3), (3, 3), (3, 2), (4, 2), (3, 0), (3, 1),
(2, 1), (2, 0), (2,−1), (1,−1), (1, 0), (1, 1), (0, 1), (0, 2), (−1, 2)〉.

is the desired hamiltonian cycle. See Figure 5.1(h) for illustration.

Suppose that v = (0, 1). Then
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〈(0, 0), (−1, 2), (0, 2), (0, 3), (0, 4), (−1, 4)
H−1(4,n−2)−→ (−1, n − 2), (0, n)

H−1
0 (5,n)−→ (0, 5),

(1, 5)
H1(5,n)−→ (1, n), (2, n),

H−1
2 (5,n)−→ (2, 5), (3, 5)

H3(5,n)−→ (3, n), (4, n − 2)
H−1

4 (4,n−2)−→ (4, 4),

(3, 4), (3, 3), (3, 2), (4, 2), (3, 0), (3, 1), (2, 1)
H2(1,4)−→ (2, 4), (1, 4)

H−1
1 (0,4)−→ (1, 0), (2, 0),

(2,−1), (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(i) for illustration.

Suppose that v = (0, n − 1). Then

〈(0, 0), (−1, 2)
H−1(2,n−4)−→ (−1, n − 4), (0, n − 4)

H−1
0 (1,n−4)−→ (0, 1), (1, 1), (1, 0), (2, 0),

(2, 1), (3, 1)
H3(1,n−3)−→ (3, n − 3), (2, n − 3)

H−1
2 (2,n−3)−→ (2, 2), (1, 2)

H1(2,n−3)−→ (1, n − 3),
(0, n − 3), (0, n − 2), (−1, n − 2), (0, n), (1, n), (1, n− 1), (1, n − 2), (2, n − 2),

(2, n − 1), (2, n), (3, n), (3, n− 1), (3, n − 2), (4, n − 2)
H−1

4 (2,n−2)−→ (4, 2), (3, 0),
(2,−1), (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(j) for illustration.

Suppose that v = (0, n). Then

〈(0, 0), (−1, 2)
H−1(2,n−2)−→ (−1, n − 2), (0, n − 2), (0, n − 1), (1, n − 1), (1, n), (2, n),

(2, n − 1), (2, n − 2), (1, n − 2), (1, n − 3), (0, n − 3)
H−1

0 (1,n−3)−→ (0, 1),

(1, 1)
H1(1,n−4)−→ (1, n − 4), (2, n − 4), (2, n − 3), (3, n − 3), (3, n − 2), (3, n − 1),

(3, n), (4, n − 2), (4, n − 4), (3, n − 4), (3, n − 5), (2, n − 5)
H−1

2 (1,n−5)−→ (2, 1),

(3, 1)
H3(1,n−6)−→ (3, n − 6), (4, n − 6)

H−1
4 (2,n−6)−→ (4, 2), (3, 0), (2,−1),

(2, 0), (1, 0), (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(k) for illustration.

Suppose that v = (1,−1). Then
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〈(0, 0), (−1, 2), (0, 2), (0, 3), (0, 4), (−1, 4)
H−1(4,n−2)−→ (−1, n − 2),

(0, n − 2)
H−1

0 (5,n−2)−→ (0, 5), (1, 5)
H1(5,n−1)−→ (1, n − 1), (0, n − 1), (0, n), (1, n),

(2, n)
H−1

2 (5,n)−→ (2, 5), (3, 5)
H3(5,n)−→ (3, n), (4, n − 2)

H−1
4 (4,n−2)−→ (4, 4),

(3, 4), (3, 3), (2, 3), (2, 4), (1, 4), (1, 3), (1, 2), (2, 2)(2, 1), (3, 1), (3, 2), (4, 2), (3, 0),
(2,−1), (2, 0), (1, 0), (1, 1), (0, 1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(l) for illustration.

Suppose that v = (1, 0). Then

〈(0, 0), (0, 1), (1, 1)
H1(1,n−1)−→ (1, n − 1), (0, n − 1)

H−1
0 (2,n−1)−→ (0, 2),

(−1, 2)
H−1(2,n−2)−→ (−1, n − 2), (0, n), (1, n), (2, n), (3, n), (4, n− 2)

H−1
4 (2,n−2)−→ (4, 2),

(3, 0)
H3(0,n−1)−→ (3, n − 1), (2, n − 1)

H−1
2 (−1,n−1)−→ (2,−1), (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(m) for illustration.

Suppose that v = (1, 1). Then

〈(0, 0), (−1, 2)
H−1(2,n−2)−→ (−1, n − 2), (0, n), (1, n), (2, n)

H−1
2 (3,n)−→ (2, 3),

(3, 3)
H3(3,n)−→ (3, n), (4, n − 2)

H−1
4 (2,n−2)−→ (4, 2), (3, 2), (3, 1), (3, 0), (2,−1), (1,−1),

(1, 0), (2, 0), (2, 1), (2, 2), (1, 2)
H1(2,n−1)−→ (1, n − 1), (0, n − 1)

H−1
0 (0,n−1)−→ (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(n) for illustration.

Suppose that v = (1, n − 1). Then

〈(0, 0), (−1, 2)
H−1(2,n−2)−→ (−1, n − 2), (0, n − 2), (0, n − 1), (0, n), (1, n), (2, n),

(2, n − 1), (3, n − 1), (3, n), (4, n − 2), (3, n − 2), (3, n − 3), (2, n − 3), (2, n − 2),

(1, n − 2), (1, n − 3), (0, n − 3)
H−1

0 (1,n−3)−→ (0, 1), (1, 1)
H1(1,n−4)−→ (1, n − 4),

(2, n − 4)
H−1

2 (1,n−4)−→ (2, 1), (3, 1)
H3(1,n−4)−→ (3, n − 4), (4, n − 4)

H−1
4 (2,n−4)−→ (4, 2),

(3, 0), (2,−1), (2, 0), (1, 0), (1,−1), (0, 0)〉.
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is the desired hamiltonian cycle. See Figure 5.1(o) for illustration.

Suppose that v = (1, n). Then

〈(0, 0), (0, 1), (0, 2), (−1, 2)
H−1(2,n−4)−→ (−1, n − 4), (0, n − 4), (0, n − 3), (0, n − 2),

(−1, n − 2), (0, n), (0, n − 1), (1, n − 1)
H−1

1 (n−4,n−1)−→ (1, n − 4),

(2, n − 4)
H−1

2 (4,n−4)−→ (2, 4), (1, 4)
H1(4,n−5)−→ (1, n − 5), (0, n − 5)

H−1
0 (3,n−5)−→ (0, 3), (1, 3),

(1, 2), (1, 1), (1, 0), (2, 0), (2, 1), (2, 2), (2, 3), (3, 3)
H3(3,n−3)−→ (3, n − 3), (2, n − 3),

(2, n − 2), (2, n − 1), (2, n), (3, n), (3, n − 1), (3, n − 2), (4, n − 2)
H−1

4 (2,n−2)−→ (4, 2), (3, 2),
(3, 1), (3, 0), (2,−1), (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(p) for illustration.

Suppose that v = (−1, 2). Then

〈(0, 0)
H0(0,3)−→ (0, 3), (1, 3)

H−1
1 (0,3)−→ (1, 0), (2, 0)

H2(0,3)−→ (2, 3), (3, 3)
H3(3,n−1)−→ (3, n − 1),

(2, n − 1)
H−1

2 (4,n−1)−→ (2, 4), (1, 4)
H1(4,n−1)−→ (1, n − 1), (0, n − 1)

H−1
0 (4,n−1)−→ (0, 4),

(−1, 4)
H−1(4,n−2)−→ (−1, n − 2), (0, n), (1, n), (2, n), (3, n), (4, n− 2)

H−1
4 (2,n−2)−→ (4, 2),

(3, 2), (3, 1), (3, 0), (2,−1), (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(q) for illustration.

Suppose that v = (−1, n − 2). Then

〈(0, 0), (−1, 2)
H−1(2,n−4)−→ (−1, n − 4), (0, n − 4)

H−1
0 (1,n−4)−→ (0, 1), (1, 1), (1, 0), (2, 0), (2, 1),

(3, 1)
H3(1,n−3)−→ (3, n − 3), (2, n − 3)

H−1
2 (2,n−3)−→ (2, 2), (1, 2)

H1(2,n−3)−→ (1, n − 3), (0, n − 3),
(0, n − 2), (0, n − 1), (0, n), (1, n), (1, n− 1), (1, n − 2), (2, n − 2), (2, n − 1), (2, n), (3, n),

(3, n − 1), (3, n − 2), (4, n − 2)
H−1

4 (2,n−2)−→ (4, 2), (3, 0), (2,−1), (1,−1), (0, 0)〉.

is the desired hamiltonian cycle. See Figure 5.1(r) for illustration.
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The lemma is proved.

With the left-right symmetric property of HReD(4, n), we have the following corollary.

Corollary 2. HReD(4,n) is 1-node hamiltonian if n ≥ 6 and n is even.

Theorem 2. Assume that m, n are even integers with m ≥ 4 and n ≥ 6. Any vertex

v = (i, j) of HReD(m, n) with i ≤ m
2

is regular. Hence, HReD(m, n) is 1-node hamiltonian.

Proof: We prove this theorem by induction. The inductive basis m = 4 is proved in

Lemma 2. Let v = (i, j) be any node of HReD(m + 2, n).

Assume that i ∈ {m
2
, m

2
+ 1}. By induction, there exists a hamiltonian cycle C of

HReD(m, n)−(i−2, j) which is 0-regular. Then g0(C) is a hamiltonian cycle of HReD(m+

2, n) − v. Moreover, g0(C) is both 0-regular and m
2
-regular. Hence, (i, j) is regular.

Assume that i /∈ {m
2
, m

2
+ 1}. By induction, there exists a hamiltonian cycle C of

HReD(m, n) − (i − 2, j) which is m−2
2

-regular. Then gm
2
−1(C) is a hamiltonian cycle of

HReD(m + 2, n)− v. Moreover, gm
2
−1(C) is both 0-regular and m

2
-regular. Hence, (i, j) is

regular.

By the left-right symmetric property, HReD(m + 2, n) is 1-node hamiltonian. The

theorem is proved.

Combining Theorems 1 and 2, we have the following theorem.
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Figure 5.2: The Honeycomb rectangular disk HReD(6,4).

Theorem 3. HReD(m,n) is 1-hamiltonian for any even integer m, n with m ≥ 4 and

n ≥ 6.
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Chapter 6

Conclusion

We have seen the hamiltonian properties of honeycomb rectangular disk HReD(m, n)

for any positive even m and n integers with m ≥ 4 and n ≥ 6. The honeycomb

rectangular disk HReD(m, n) is obtained by adding a boundary cycle to the honey-

comb rectangular mesh HReM(m, n). Any such HReD(m, n) is a 3-regular hamilto-

nian planar graph. Moreover, HReD(m, n) − F remains hamiltonian for any fault F ∈

V (HReD(m, n)) ∪ E(HReD(m, n)) with |F | = 1. Suppose that two faults occur to the

neighbor of some vertex x. Then degHReD(m,n)−F (x) = 1. Obviously, HReD(m, n) − F is

not hamiltonian. Hence, such hamiltonian property is optimal.

We may also define HReD(m, n) for m ≥ 4 and n = 4 by adding a boundary cycle

to HReM(m, n). For example, the HReD(6, 4) is shown in Figure 5.2. By brute force,

we can check that such honeycomb rectangular disk is 1-edge hamiltonian but not 1-node

hamiltonian.
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HReD(5,6)
HReD(5,7) HReD(6,7)

Figure 6.1: The Honeycomb rectangular disk HReD(5,6), HReD(5,7), and HReD(6,7).

We may use similar concept to define other cases of HReD(m, n). For example, the

HReD(5, 6), HReD(5, 7), and HReD(6, 7) are shown in Figure 6.1. With similar discussion

as above, we can prove that any HReD(m, n) for odd integer m and even integer n with

n ≥ 4 is 1-edge hamiltonian. Moreover, it is 1-node hamiltonian if and only if n ≥ 6.
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