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Design and Analysis of a CMOS Ratio-Memory
Cellular Nonlinear Network (RMCNN)

Requiring No Elapsed Time
Chung-Yu Wu, Fellow, IEEE, Sheng-Hao Chen, and Yu Wu

Abstract—A CMOS ratio-memory cellular nonlinear network
(RMCNN) requiring no elapsed time is proposed. The correlations
between any two neighboring cells are stored in the memories. The
ratio weights of each cell are generated through a comparison of
the four correlations around one cell with the mean value of these
four correlations. With this method, the elapsed time required by
the previously existing RMCNN algorithm is no longer required
and, therefore, the ratio weights can be generated individually.
Moreover, the use of multi-dividers can be avoided to make the cir-
cuit simple. Based on the proposed algorithm, a CMOS RMCNN
chip requiring no elapsed time has been designed and fabricated
using TSMC 0.35- m 2P4M mixed-signal technology. In the fab-
ricated chip, three test patterns can be learned and recognized.

Index Terms—Cellular nonlinear networks (CNN), CMOS,
elapsed time, ratio memory cellular nonlinear networks
(RMCNN).

I. INTRODUCTION

T HE cellular nonlinear (neural) network (CNN) which was
proposed by Chua and Yang in 1988 [1]–[3] involves a

large-scale nonlinear analogic architecture for real-time signal
processing. Similar in composition to the cellular automata [4],
[5], it is comprised of a massive aggregation of regularly spaced
circuit clones, called cells, which communicate with each other
directly and locally. With local connectivity, CNN is quite suit-
able for very large-scale integration (VLSI) implementation.
The associated real-time and parallel-operating properties also
make it popular in image processing. To date, many CNN VLSI
chips have demonstrated their capabilities in realizing real-time
signal and parallel processing functions [6]–[9]. In these chips,
the templates, which can control the communications between
cells, are programmable and the regular and local functions can
be designed and applied on the entire CNN array. However, be-
cause the local characteristics are usually different in the learned
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patterns, the space-variant templates are more suitable than the
space-invariant templates. To address this limitation, some al-
gorithms that collect global image characteristics are proposed
[10]–[12] to learn the images and some researches on pattern
recognition are realized by classification [13].

To realize an on-line learning CNN with local-computing
advantage, a learning algorithm called ratio-memory CNN
(RMCNN) is proposed [14]–[16]. The ratio memory of the
Grossberg outstar structure [17]–[19] has been used in both
feedforward and feedback neural network ICs for image pro-
cessing. With the proposed RMCNN, no host computer is
needed to perform the off-line learning task. It can also evaluate
the correlations between cells and store these correlations on the
capacitors. As a result, it achieves a long template-weight storage
time or equivalent pattern recognition time which is one of the
advantages of RM. The charge stored on the capacitors leaks
out due to the junctions from the source and drain of CMOS to
the substrate. The RMCNN utilizes this leakage effect and takes
the ratio of the stored values to enhance the common character-
istics of the learned patterns and to raise the recognition rate.
Therefore, a very long period of elapsed time is required after
the learning period to make the weights of small correlations
smaller or to approach zero by the leakage in order to enhance
large correlations [16]. As shown in Fig. 1, the required elapsed
time is dependent on learned patterns. It shows that 1500 seconds
of elapsed time are required when 5 patterns are learned where
700 seconds are required when three patterns are learned. The
learned correlations in different local positions of the learned
patterns are distinct and the learned values have significant dif-
ferences. Hence, if the elapsed time is too long, the most learned
correlations will be destroyed and the recognition rate decreases.
Oppositely, if the elapsed time is too short, the characteristics
of large correlations cannot be enhanced and the recognition
rate cannot be improved significantly. Furthermore, when the
RMCNN is utilized to learn and recognize the image patterns,
the stored values keep on leaking during the recognition time
and this may, with time, alter the ratio weights of the RMCNN.
Finally, as the weights of cells are generated by ratio memories,
a precise multi-divider is required.

In this work, RMCNN architecture without elapsed time
[20] is proposed and analyzed to prevent the leakage effect and
to simplify the circuitry. With the new algorithm, the feature
enhanced ratio weights can be generated immediately after
the learning period without the requirement of elapsed time
and, therefore, the circuit to generate ratio weights could be
very simple and remove the need for multi-dividers in each
ratio memory. An RMCNN chip not requiring elapsed time
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Fig. 1. Recognition rates with different elapsed time where two sets of patterns
are learned and the patterns with Gaussian noise of standard deviation 0.2 are
recognized.

has been designed and fabricated using TSMC 0.35- m 2P4M
mixed-signal technology. Patterns are learned and recognized
with the proposed architecture and the results are analyzed
and discussed. The total chip area is 4560 m 3900 m and
the area of a single cell is 400 m 250 m. The total power
consumption is 87 mW in operation with a supply voltage of
3 V.

In Section II, the models and architecture of the RN-CNN not
requiring elapsed time are described. In Section III, the CMOS
circuits of each block are illustrated and the HSPICE simula-
tion results are presented to verify the functions of the blocks.
In Section IV, the measurements obtained are presented and dis-
cussed. Finally, a conclusions are provided in Section V.

II. MODELS AND ARCHITECTURE

A. Model of the RMCNN Requiring No Elapsed Time

The definition of the RMCNN with elapsed time is described
in [16]. The template of a RMCNN can be written as

(1)
where is the template coefficient of the cell to
stimulate the cell and is a ratio weight generated by using

(2)

In (2), and are the inputs of the pixels in the learned th
pattern when patterns are learned in the learning period and

is the intrinsic leakage of the weight ,
which is different for different cells. The four ratio weights are
stored in the four ratio memories around a cell. With a suit-
able elapsed time, the insignificant weights are decreased to

zero and the pattern recognition and recovery can be performed
successfully. The intrinsic leakage is utilized for characteristic
enhancement.

However, the elapsed time control is difficult. With a long
elapsed time, the remnants in the four ratio memories around
one cell may leak out, completely. However, with a short elapsed
time, the small stable ratio weights cannot be obtained and the
recognition cannot be well performed. To solve the problem, a
new template generating method is proposed. First, the mean

of the learned absolute correlated weights is generated as

(3)

where is the number of learned patterns, is the learning
time of one pattern, and and are the inputs of
and , respectively, in the learned th pattern. The ratio
weight is regenerated as following:

if

if

(4)

where means the number of the absolute correlated
weights which is larger than . As shown in (4), the template
coefficient is generated by comparing the absolute correlated
weights and the mean . By counting , the template
value is set to when its absolute correlated weight is
larger than the mean. This retains the overall summation of
absolute template coefficients of template at 1 to avoid
any divergence in recognition.

To demonstrate why the coefficient which is larger than the
mean is retained, a simple model of the absolute ratio weight
can be constructed as following:

(5)

where , , , and represent the four absolute correlated
weights generated in the learning period, and represents the
average leakage in the elapsed period. After an elapsed period,
the absolute ratio weight is enlarged when the coefficient is re-
tained as following:

(6)

where is the mean of , , , and . When is larger
than , the absolute ratio weight is enlarged after a period of
elapsed time. Oppositely, when is smaller than , the abso-
lute ratio weight would degrade to 0 after a period of elapsed
time. To simplify the calculation, the coefficient is decided by
comparing it with the mean value directly. Hence, if one of the
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Fig. 2. General architecture of the RMCNN which contains cells and RMs.

correlated weights is smaller than the mean , the correlation is
assumed to leak out and the weight is set to zero. When the cor-
related weights are larger than the mean , they are assumed
to have the same weighting. In the proposed algorithm, when
is larger (smaller) than or equal to , the absolute ratio weight
is chosen to be where PN is the number of the ab-
solute correlated weights which is larger than . This makes
the sum of the absolute ratio weights equal to 1 around one cell.
Hence, RMCNN requiring no elapsed time is to predict the re-
sultant ratio weight of RMCNN after elapsed time.

B. The Architecture of a RMCNN Not Requiring Elapsed Time

The general architecture of RMCNN is shown in Fig. 2. There
are four RMs: up, down, right, and left sides around one cell and
there are two neighboring cells around one RM. The structure
of the kernel unit of the RMCNN not requiring elapsed time is
separated into three parts in Fig. 3(a)–3(c). In Fig. 3(a), block
Neuron is a neuron composed of a resistor and a capacitor and
block VTI1 is a voltage-to-current converter to convert the input
voltage into current. Block is a voltage-to-absolute-cur-
rent converter. In Fig. 3(b), block W is the synaptic gain block
to multiply the absolute input current from VTI2 with a chosen
weight of 1/4, 1/3, 1/2, or 1 and the output sign is controlled by a
sign controller. The weight is controlled by block Counter_L in
Fig. 3(c). The output current is injected to neuron of neighboring
cells or the capacitor Cw to store the correlations in different op-
erational periods. VTI3 converts the voltage on Cw into absolute
current and the output is sent to block COMP. Block COMP is a
comparator that can compare four absolute currents from VTI3
with the average of these four currents. Block Counter_L counts
the number of currents which are larger than the average current.
Block Counter_L can generate the signals to control the weights
of blocks W by the comparing and counting results.

In the learning period, only switches and
in Fig. 3(b) are open. As shown in Fig. 4(a) when th pattern is
learned, binary input of is sent into block VTI1 and
the output current is sent to block Neuron to generate the state
voltage of . The positive or negative state of is
detected and the absolute current is extracted by block .

Fig. 3. Architecture of the kernel unit in RMCNN requiring no elapsed time
which contains (a) Input stage and neuron, (b) RM, and (c) Comparator and
counter.

The absolute current of is sent to block W. In the
learning period, the weight of block is set to 1/4. If the states
of and its neighboring cells are the same (different), it
is decided to charge (discharge) capacitor with the absolute
current multiplied by 1/4. The learning time of one pattern can
also be adjusted slightly to prevent the voltage saturation of the
capacitor.

After all the patterns are learned, the weight generating period
starts. As shown in Fig. 4(b), block converts the voltage
stored on capacitor into two absolute currents for the nearest
two comparators. At the same time, the signs of the correlations
are also been detected. There are four absolute currents from the
neighboring RMs in one cell. The comparator generates a mean
current of the four absolute currents and compares the four cur-
rents with the mean current. The results of the comparisons are
counted by block Counter_L to decide the ratio weights of block

. When the currents in neighboring RMs are larger
(smaller) than the mean current, the weights of blocks are set
to where could be 1, 2, 3, or 4. The ratio weights are
set at 1/4 for each block only if the four currents are equal.

In the recognition period, the switches and
in Fig. 3(b) are closed as shown in Fig. 4(c). The gray

level input in Fig. 3(a) of the noisy pattern is sent into block
Neuron and the operation of recognition starts.
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Fig. 4. Flow diagram of the operation during: (a) learning period; (b) weight
generating period; and (c) recognition period.

III. CIRCUIT IMPLEMENTATION WITH SIMULATION RESULTS

A. Circuit Implementation With Simulation Results

Blocks VTI1 and Neuron are shown in Fig. 5(a). Block VTI1
is constructed by using a simple differential amplifier. M5-M6
are used to degenerate the transconductance of the amplifier and
to enlarge the linear operating range. is set to 1.5 V and

at 2.5 V. is controlled by a current mirror of 5.5 A.
Block Neuron is simply composed of a resistance and a capac-
itor. The resistance is constructed using and , and
the capacitor is realized by the parasitic capacitance at node .
The transfer characteristic of is shown in Fig. 5(b). The
transfer curve is linear as the input voltage is between 0.9
and 2.1 V where the linearity is 94.6% and THD of the output
current is 5.9% with the first harmonic of 1 kHz.

Fig. 6(a) depicts blocks and . The circuit rep-
resented in broken lines belongs to the next stage, block or
block COMP. Block is similar to block except

Fig. 5. (a) Circuits of blocks VTI1 and Neuron and (b) transfer characteristic
of block VTI1 with a linearity of 94.6% in the range between 0.9 V and 2.1 V.

Fig. 6. (a) Circuit of blocks � ��� (with ME) and � ��� (without ME) and
(b) transfer characteristic of block � ��� (ME is turned off) and � ���.
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Fig. 7. Circuit of block W where the gain is decided by the ratio of M8 in Fig. 6
and M2, M3, M4, and M1, and controlled by switches Swa-Swf and the sign of
output is controlled by signal Sign_Con.

Fig. 8. Block diagram of the sign controller where the detector is composed of
two cascaded inverters and the output signal Sing_Con is decided by the inputs
of � ���� � ��� and � ��� in different operational steps.

the device ME. contains ME and is set to low,
when the patterns are learned and during the recognition pe-
riod, in order to turn on the function of block . is
biased by a current mirror of 5.5 A and is set to 2.5 V.

and are each set to 1.5 V. The combination of
with and with can stop the static current. The
differential amplifiers of and are the same with

and the properties of the differential amplifiers are sim-
ilar. and each contain a differential amplifier and
an absolute current converter. The differential amplifier gener-
ates positive and negative currents based on as shown in
Fig. 6(b). The positive (negative) current sent to the absolute
current converter turns on the device when is
larger (smaller) than 1.5 V. The positive current is inverted twice
with two current mirrors, and . The nega-
tive current is inverted once with the current mirror .
Hence, the output current is the absolute current of .

Fig. 7 shows the circuit of block W. Switches Swa-Swf are
controlled by block Counter_L to multiply the current with a
gain of 1/4, 1/3, 1/2, or 1. Based on the signs of the patterns and
learned correlated weights in different periods, signal Sign_Con
is set to a proper digital code to decide the sign of block W, as
shown in Fig. 8. The detector is constructed using two cascaded
inverters and amplifies the input signals to achieve a digital
level. During the learning period, only switch Swd1 is closed.
Signal Sign_Con is determined by input voltage in block

of and input voltage of the nearest neigh-
boring through an exclusive gate. During the recog-
nition period, only switch is closed. Signal Sign_Con is
decided by input voltage in block of and
input voltage of block , which is the correlation stored on
the capacitor in Fig. 3(b).

The circuit of block COMP is shown in Fig. 9. The up, down,
left, and right currents from blocks are gathered and aver-

Fig. 9. Circuit of one comparator in block COMP where the output is amplified
by two cascaded inverters and the result is sent to block Counter_L.

Fig. 10. Circuit of block COMP where the four absolute currents from VTI3
are compared with their mean current, and the results are amplified and sent to
block Counter_L.

aged by the current mirror as in Fig. 10.The mean current is mul-
tiplied with a weight of 0.95 to prevent incorrect decision due to
the variation of the current mirror. When the absolute current is
0.05 A less than the mean current, the decision is low after two
cascaded inverters. The four directional currents from blocks

are compared with the averaged current and the com-
paring results are converted into digital signals using two cas-
caded inverters. The four digital signals are counted by block
Counter_L, which is composed of two cascaded D-flip-flops.

B. Operational Steps

The operation is separated into three periods: the learning,
weight generating, and recognition periods. In the learning
period, blocks VTI1, Neuron, VTI2, and W are active. Input
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Fig. 11. Input patterns which are learned in the learning period.

Fig. 12. Recognition rates by direct amplification and using proposed RMCNN
with different tolerance of gray level inaccuracy.

voltage of the learned pattern is transferred into the
current signal and the current signal is applied on block Neuron
to produce an output state voltage . With state voltage

, block VTI2 generates the absolute current and this is
multiplied by 1/4 through controlling the switches Swa-Swf.
The polarity of the output current of block W is controlled
by signal Sign_Con which is generated by the sign controller
in Fig. 6 where only switch Swd1 is closed. With the output
current of block W, capacitor Cw is charged or discharged in
an interval . After all the patterns are learned, the weight
generating period starts.

In the weight generating period, the switches in Fig. 3(b) are
all open. The voltage on Cw is applied to to generate two
absolute currents while the sign is also detected, simultaneously.
With four absolute RM currents in four directions, mean current

is generated and compared with the four absolute currents as
shown in Fig. 10. The four comparators outputs are counted by
block Counter_L, which sends the control signal to four blocks
W to generate corresponding weights. As a result, the RMCNN
is ready for recognition. In the third period, the noisy patterns
are sent into the RMCNN. Switches and in
Fig. 3(b) are closed and so is in Fig. 8. At the same time,
device ME in Fig. 6(a) is turned off to commence the opera-
tion of recognition. A set of patterns in Fig. 11 are learned with
Matlab by the proposed algorithm of a 9 9 RMCNN. The re-
sultant recognition rate is shown in Fig. 12 which is compared
by directly amplifying the noisy patterns with an inverter. As
can be seen from Fig. 12, when the tolerance level is 50%, the
recognition rate is better than that of direct amplification. How-
ever, when the tolerance is sterner, the recognition rate is re-
duced. Due to the fact that template is a non-self-feedback

TABLE I
COMPARISONS OF TEMPLATES A IN CELL(4, 5), CELL(5, 3), CELL(8, 5), AND

CELL(7, 5) BETWEEN RMCNN WITH AND WITHOUT ELAPSED TIME

Fig. 13. Recognition rates of RMCNN with elapsed time of 800 and 1500 s,
and RMCNN requiring no elapsed time.

template, the recognized output patterns can not be pulled to a
saturated state and, hence, the recognition rate is degraded. The
template values of cell(4, 5), cell(5, 3), cell(8, 5), and cell(7,
5) are listed in Table I and are compared with RMCNN [16]
with an elapsed time of 800 sec. As can be seen in Table I, the
templates are almost the same except for some negligible co-
efficients. The comparison of recognition rates are also shown
in Fig. 13. It shows that RMCNN has similar recognition rates
after 800 seconds and 1500 seconds while the recognition rate
of RMCNN requiring no elapsed time is better than RMCNN
with elapsed time.

The recognition rate is shown in Fig. 14 where the self-feed-
back RMCNN without elapsed time is simulated and the result is
compared with that of direct amplification. Since the closed loop
in the self-feedback RMCNN saturates the output, the recogni-
tion rate can be raised and is better than that without self-feed-
back and that of direct amplification. In this paper, only the test
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Fig. 14. Recognition rates by direct amplification, using the proposed RMCNN
with self-feedback, and using the proposed RMCNN without self-feedback of
50% tolerance.

Fig. 15. Recognition rates of common time constant and time constant varying
with Gaussian probability density of standard deviation 0.1 where the common
time constant is normalized to 1.

chip of the non-self-feedback RMCNN without elapsed time is
designed and measured to verify the proposed RMCNN algo-
rithm not requiring elapsed time. A self-feedback RMCNN not
requiring elapsed time can be designed similarly.

Furthermore, the capacitance of neural RC model is imple-
mented by the parasitic capacitance and it may cause large vari-
ation of time constant. However, CNNs essentially have great
tolerance to variations. Fig. 15 shows the recognition rates of
common time constant and time constant varying with Gaussian
probability density of standard deviation 0.1 where the common
time constant is normalized to 1. It is found that, even with 10%
standard deviation, the recognition rate is almost the same.

With the proposed structure, the patterns of characters “X”,
“Y”, and “Z” and characters “X”, “Y”, and “M”, which contains
oblique lines, are also learned and recognized. The recognition
rates are shown in Fig. 16 and it shows that the recognition rates
degrade and are dependent on learned patterns. To learn patterns
with oblique lines correctly, more RMs can be inserted between
diagonal cells.

Fig. 16. Recognition rates where the patterns in Fig. 11, characters X, Y, and
Z, and characters X, Y, and M are learned and recognized where the patterns of
the characters contain many oblique lines.

Fig. 17. Architecture of 9� 9 RMCNN not requiring elapsed time where con-
tains 9�9 shift registers for image storage, decoder and output stage for readout,
and 9�9 RMCNN requiring elapsed time for operation.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the concept of RMCNN requiring no elapsed time,
a simple experimental chip is designed and fabricated. The ex-
perimental RMCNN chip has only RMs located in any two hor-
izontal or vertical cells. It is of the architecture of 9 9 type as
shown in Fig. 17. The input patterns for learning and recogni-
tion are sent serially into 9 9 shift registers. The decoder can
select the cells in the proposed RMCNN not requiring elapsed
time to be read out in series. The controlling signals are listed in
Table II with a controlling timing diagram shown in Fig. 18. The
learning and recognition periods are controlled by signals clk1
and clk2, respectively. Signal Reset is used to reset the charge
on the capacitor Cw. Signal newp enables the shift registers and
then, signal DFF can trigger the D-flip-flops in the shift regis-
ters to transfer the pixels of the input pattern in series. Signal pin
generates the patterns which are sent into the neural network.
Signals Con_L and Con_G trigger the local and global coun-
ters. The local counter counts the number of the currents which
are larger than the mean current in the cell. The global counter
generates the signals to control which comparative results in the
cell should be counted by the local counter. Signal noi can in-
troduce the noise into the input patterns. With such architecture,
an RMCNN chip not requiring elapsed time has been designed
and fabricated using TSMC 0.35- m 2P4M mixed-signal tech-
nology. Fig. 19 shows the photograph of the fabricated chip of
an RMCNN not requiring elapsed time.
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Fig. 18. Timing diagram of the control signals where the explanation of each
signal is list in Table II.

TABLE II
DESCRIPTIONS OF EACH CONTROL SIGNAL

Fig. 19. Photograph of the proposed RMCNN not requiring elapsed time chip.

Fig. 20. Noise patterns for measurement with an equal noise level of 0.5.

Fig. 21. Experimental results of the recognized patterns in the recognition pe-
riod after the recognition of a set of patterns with equal noise level 0.25 are
recognized.

Fig. 22. Experimental output waveform of the third recognized pattern where
��� is the trigger signal, ��� is the LSB of decoder, and ��� is the output
signals of the third patterns in Fig. 21.

During the learning period, three Chinese characters in
Fig. 11 are learned. With 9 9 RMCNN structure, the max-
imum number of patterns that can be learned is 3 by using
Matlab simulation. However, 18 18 RMCNN is also simu-
lated and the maximum number of learnable patterns can be
raised to 5. After the ratio weights are generated, these Chinese
characters are sent again and combined with a controllable
equal noise from 0 to 0.5 as shown in Fig. 20 where the noise
level is set to 0.5. The noise pattern cannot be programmed
individually on each pixel because the number of pads is
limited. Hence, the pattern with equal noise is used in the
experimental work. For the first two Chinese characters, the
correct patterns could be recognized. However, the last Chinese
character is recognized unsuccessfully as shown in Fig. 21
where the equal noise level is 0.25, and the output waveform is
shown in Fig. 22. is a trigger signal and there is no signal
during the readout period. is LSB of the decoder to choose
which cell is read out and is the output signals of cells. In
Fig. 22, the output waveform of is the recognized result
of third pattern in Fig. 20. However, some outputs of
in the intervals of and cannot reach a saturated
point. There are four stable pixels at the gray level as the third
pattern in Fig. 20 is recognized. To discuss the reason for this,
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TABLE III
THE COMPARISON OF THE ABSOLUTE WEIGHTS A44 WITH MATLAB AND

HSPICE IN DIFFERENT CONDITIONS

Fig. 23. Modified circuit of block W where switch Stra and Mdummy are added
to prevent charging Cw when RMCNN is loading the learned patterns.

the absolute weights of the post simulation at , which
is recognized unsuccessfully in the third pattern, are listed
in Table III where the simulation with Matlab and two post
simulations with HSPICE in different conditions are compared.
RMCNN requiring no elapsed time is designed with HSPICE
in the TT condition. As can be seen, the ratio weights with
Matlab and HSPICE (TT) are the same and the noisy patterns
can be recognized correctly. However, with HSPICE (FS), an
incorrect ratio weight is generated and leads to an unsuccessful
result. When three patterns are learned, block charges or
discharges the capacitor Cw according to the input pixel of two
neighboring cells. During this time, the device ME in Fig. 6(a)
of block is turned off. However, when a new pattern is
sent into the chip after the former one is learned, device ME is
turned on and the output current should be 0. However, there
is still a small output current due to the asymmetric structure
and the mismatch. Meanwhile, the input of the sign detector is
connected to because device ME is turned on and this
makes it impossible to predict signal Sign_Con. As a result, the
capacitor is charged or discharged unpredictably by the
small current when the learned patterns are transmitted to the
9 9 shift registers. Hence, the ideal absolute weights cannot
be achieved.

To overcome the small output current from block , a
new path can be inserted into block , as shown in Fig. 23.
Only one of switches and is turned on and the other

TABLE IV
THE COMPARISON BETWEEN RMCNN[16] AND

RMCNN REQUIRING NO ELAPSED TIME

is turned off. As the learned patterns are transmitted to the shift
register, switch is turned on. Hence, capacitor would
not be charged or discharged by the small current from block
VTI2. Switch is turned on when the pattern in the shift
register is sent to the neuron and can be learned or recognized
correctly. Dummy load is the same with M5. This can
cause the current source M1-M4 to have a similar load and retain
the current stable during switching.

The comparison between RMCNN [16] and RMCNN re-
quiring no elapsed time is listed in Table IV. The overall
chip area of RMCNN requiring no elapsed time is slightly
larger than RMCNN with elapsed time. However, the power
consumption is smaller because the multi-divider is replaced
by a simple comparator and counter. Furthermore, the required
weight generating time of 850 seconds is reduced to 1.7 .

V. CONCLUSION

In this paper, a new algorithm of a RNCNN not requiring
elapsed time has been proposed. In the proposed RMCNN, a
new ratio weight generating method is also proposed. The use
of this method avoids long elapsed time about 800 seconds
while retaining the correlation of each cell. An experimental
chip of 9 9 RMCNN not requiring elapsed time has been im-
plemented and fabricated using TSMC 0.35- m CMOS 2P4M
technology. With the proposed RMCNN chip not requiring
elapsed time, the patterns can be learned and recognized.
Further applications of the proposed RMCNN not requiring
elapsed time will be developed in the future.
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