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摘 要 

 

本論文提出了一套基於電腦視覺及泛晰控制理論的導航技術，可

讓自動車航行於室內環境中，並且具備避碰障礙物的能力。在實驗中

我們利用一可無線遙控且擷取影像的迷你自動車作為研究平台。我們

設計了一套人性化、有效而且沒有繁瑣規則與限制的學習方法，能自

動分析使用者學習時的操作行為，並自動建立導航路線地圖。在使用

此方法得到學習路線資料之後，我們也運用一套完整的導航策略來完

成學習路線之航行。此策略主要是建構在泛晰控制導航的技術之下，

並且可以搭配學習時記錄的資料，完整地走完所有的學習路線。我們

最後亦以成功的學習與導航實驗結果證明本系統的完整性與可行性。 
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ABSTRACT 

 

 

A vision-based fuzzy-guidance approach to autonomous vehicle navigation in 

indoor environments with a capability of avoiding obstacles appearing in planned 

paths is proposed. A small vehicle with wireless control and image grabbing 

capabilities is used as a test bed. A simple learning strategy is designed for flexible 

and effective non-visual learning of reachable spots in rooms without rules or 

restrictions. Through this simple learning strategy, a planned path is obtained by 

analyzing user-driving commands and odometer data. And following the learned path, 

the vehicle can accomplish specified navigation sessions by proposed 

collision-avoidance strategies based on the use of fuzzy-control guidance techniques 

and input images acquired by an onboard vision system. And some strategies for 

navigation accuracy maintenance are also proposed. Finally, experimental results 

showing flexibility of the proposed approach for navigations in indoor environments 

are also included. 
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Chapter 1  
Introduction 

1.1 Motivation 

Recently, vision-based autonomous vehicles or mobile robots have been used in 

more and more human environments, especially in security patrolling and home 

service applications. A difficulty encountered in such vehicle navigation applications 

is the complicated environment faced by an autonomous vehicle, resulting in a 

challenge of designing a general and flexible learning strategy for various navigation 

environments. Facing this challenge, we use a small vehicle with wireless control and 

image grabbing capabilities as a test bed for the development of indoor navigation in 

this study. 

Most former works focused on vision-based learning. Though this approach is 

useful for constructing visual environment data, which can be used for locating a 

vehicle in the navigation stage, yet certain restrictions are usually imposed on the 

learning process, resulting in inconvenience or difficulty in conducting the learning 

work. Furthermore, certain artificial landmarks or specific scene features are often 

forced to appear in the environment to be learned, in order to accomplish the work of 

locating the vehicle by landmark or feature matching in the navigation stage. This 

often makes the learning method inapplicable or less flexible in certain applications. 

Finally, landmark or feature matching often yields imprecise vehicle location results, 

leading possibly to unstable navigation performances. In this study, we propose a 
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non-visual approach to learning which solves all the above-mentioned problems 

encountered in the conventional vision-based learning approach. 

After the learning process is finished, the remaining task is to guide the vehicle 

to navigate along the learned path safely. That is, two goals must be achieved, one is 

that the vehicle should traverse along the learned path correctly, and the other is that it 

should avoid possible obstacles appearing in the path. Therefore, we propose to use 

fuzzy-control techniques to guide the vehicle and avoid possible collisions in the 

meanwhile. Navigation accuracy maintenance is also considered. With these 

capabilities, the vehicle can be used in many applications, such as security patrolling, 

inter-building transportation, cleaning service among rooms, intelligent toys, and so 

on. 

1.2 Survey of Related Studies 

In many applications for vehicle navigation in indoor environments, learning 

navigation paths is required before a navigation process can be started. Since scenes 

of indoor environments are often complicated and may consist of several kinds of 

rooms and corridors, such learning works are usually difficult and heuristic. Design of 

general learning algorithms for complicated indoor environments is still a difficult 

research topic. In Davison and Murray [1], some preset landmarks placed manually 

are used to train a mobile robot or vehicle to recognize its location. After a few times 

of training, the vehicle can detect the landmarks accurately and follow them to finish 

the learned path stably. In Hayet, Lerasle, and Devy [2], a vehicle was designed to 

identify obvious square blocks as landmarks and recorded its color and size as feature 
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sets in the learning stage. Then the vehicle can check the color and the size of each 

landmark to locate its position in the navigation stage. In Gaussier, Joulain, and 

Zrehen [3], a mobile robot can be controlled by visual information retrieved from 

particular goal landmarks. And their model does not need a precise map nor learn all 

the possible positions in the environment. 

Besides, many visual navigation methods have been developed in recent years. 

In Li and Tsai [4], a graph-based navigation method was proposed. The vehicle 

traverses among the nodes in a graph which is composed of learned paths. But certain 

complex learning rules were adopted to the learning process. In [5, 6], route areas in 

the navigation path are obtained and the vehicle keeps navigating on the central path 

of each route area. In Desouza and Kak [7], a survey of visual navigation techniques 

for mobile robots is given. Some techniques including optical flows, landmarks 

tracking, simultaneous localization and map-building, and visual feature matching for 

indoor or outdoor environments were introduced. Cho and Nam [8] proposed a 

method of vision-based navigation for mobile robots using fuzzy-logic control 

techniques. They used the wavelet transform to detect the edges of guidelines or 

obstacles as fuzzy input parameters and found fuzzy output parameters to guide the 

robot to move forward. And a collision avoidance algorithm was also proposed. 

Ayanna and Edward [9] proposed a technique using real-time terrain feature analysis 

for outdoor-environment navigation with a mobile robot. They used terrain features as 

fuzzy inputs to get crisp fuzzy outputs to move the robot to navigate within terrains 

safely. 

1.3 Overview of Proposed Approach 
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In this study, we try to design a vision-based vehicle navigation method which 

uses fuzzy-control guidance techniques in indoor environments. With this purpose, a 

simple and flexible learning method that processes user-driving parameters and 

odometer data automatically is proposed. Secondly, a fuzzy-control guidance 

technique with obstacle avoidance capability is also proposed. Finally, a person 

following application by tracking human feet positions is proposed. 

More specifically, in a system designed in this study using these proposed 

techniques, the following tasks are conducted: 

(1). Configure the setting of the parameters of a small vehicle as a test. 

(2). Design a fuzzy control system for the guidance purpose 

(3). Analyze images grabbed by the vision system of the vehicle to obtain visual 

parameters as fuzzy input. 

(4). Record user-driving parameters and odometer data during the learning process. 

(5). Process roughly recorded data and transform them into usable data for 

navigation. 

(6). Guide the vehicle to traverse along learned paths safely. 

(7). Detect human feet in corridors. 

(8). Track human feet to follow their movement. 

The proposed approach for vision-based vehicle navigation consists roughly of 

four stages. The first stage is Fuzzy-Control Guidance. Since the principle of fuzzy 

theory is intuitive and experiential, we utilize the characteristic of fuzzy theory to 

implement the guidance of navigation. We propose two fuzzy control systems for 

guiding the vehicle to move forward and avoid possible collisions. The second stage 

is path learning for navigation by user control. In this stage, the vehicle is controlled 

to move to desired places through a designed user interface. During the path learning 

process, a sequence of user-control actions, called user-driving parameters, and 
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odometer data are recorded, respectively. These two types of parameters will be 

recorded as a temporary list for the processing of the next stage. 

The third stage is creation of learned path map for navigation. In this stage, the 

parameters recorded in the previous stage will be automatically processed into a path 

map by the proposed path map creation process. The path map is in a form of graph, 

and is composed of a set of nodes connected with inter-node edges. The data of each 

node in the path map are recorded into a text file orderly. Then the data of this text file 

is a basis for autonomous navigation in the next stage. 

The fourth stage is vehicle navigation in indoor environments. In this stage, the 

vehicle traverses along the learned path node by node orderly in accordance with node 

data in the text file. Two navigation modes are also proposed for different purposes. 

One is the single path mode for one path navigation from a starting point to an ending 

point; the other is the area mode for navigation among rooms. And two strategies are 

proposed for a vehicle to navigate in indoor environments. The first is line following, 

which is useful for the vehicle to navigate in straight-line sections. And the second 

strategy is smooth curve following, which is used for turning the vehicle leftward of 

leftward in turning sections. Furthermore, a navigation accuracy maintenance strategy 

is also proposed. 

A possible application of the proposed approach is person following in corridors. 

In this application, an image processing technique is employed for detecting objects in 

corridors. And a human identification method by a position checking method is 

proposed. Since the positions of human feet are known, the person following action 

will be triggered for tracking the positions of human feet. 

In summary, an innovative learning strategy with simple and flexible capabilities 

without using a video camera is proposed. The vehicle can use a path map acquired by 

the simple learning process to navigate in desired environments. And the proposed 
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fuzzy-control guidance technique is utilized in autonomous navigation method. Using 

these hybrid techniques, the vehicle can navigate in any unknown indoor environment 

if the learning process was finished before. 

 

1.4 Contributions 

The main contributions of this study are summarized in the following. 

(1) A fuzzy guidance technique using 2D visual parameters is proposed 

(2) A simple and flexible learning strategy using user-driving parameters and 

odometer data is proposed. 

(3) A path map creation method which transforms rough learned data into a path 

map for navigation is designed. 

(4) A graph-based navigation method using node data in the path map is 

proposed. 

(5) A curve following method which can reduce accumulative errors for 

navigation is proposed. 

Figure 1.1 Flowchart of four stages of proposed system. 

Fuzzy guidance 
Technique 

Path Learning by 
User Control 

Creation of learned 
Path Map 

Vehicle Navigation in 
indoor environment 
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(6) Two kinds of navigation modes that can be applied in many applications are 

designed. 

(7) A person following method for tracking the positions of human feet is 

proposed. 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows. The system configuration of 

the vehicle used as a test bed and the principles of learning and navigation are 

described in Chapter 2. The proposed fuzzy-control techniques and the designed fuzzy 

control system are described in Chapter 3. In Chapter 4, the proposed innovative 

learning strategy with simple and flexible capabilities, and the proposed path map 

creation method are described. In Chapter 5, the proposed vehicle navigation method 

with obstacle avoidance capability, a smooth curve following process for turning 

sections, and some strategies for navigation accuracy maintenance are described. The 

application of person following in corridors by tracking the positions of human feet is 

described. Satisfactory experimental results are shown in Chapter 7. Finally, some 

conclusions and suggestions for future works are given in Chapter 8. 
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Chapter 2  
System Configuration and 
Navigation Principles 

2.1 Introduction 

Recently, the applications of indoor navigation of mobile robots or autonomous 

vehicles become more and more popular, especially in home services and security 

patrolling. Hence, the size of the vehicle was designed to be smaller and smaller in 

order to achieve the purpose of dexterous movement in indoor environments. With 

this goal, a small vehicle with wireless control and image grabbing capabilities is used 

as a test bed for our research and development in this study. Because of the dexterous 

property of this small vehicle, it can be used in many kinds of applications. 

In order to navigate in any unknown indoor environment, a learning process is 

essential for the vehicle. Therefore, a simple and flexible learning strategy which 

learns user-driving parameters and odometer data is developed in this study. Through 

the learning process, desired navigation paths can be learned by the vehicle and useful 

data are recorded at in the mean time. 

After navigation paths are known by the vehicle after the learning process, a 

fuzzy-control guidance technique and a vehicle navigation method, both deigned in 

this study, are applied for the vehicle to navigate along the learned paths to finish 

desired trips. 
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2.2 System Configuration 

In this study, we use the Amigo robot, a mini-vehicle made by ActivMedia 

Robotics Technologies Inc., as shown in Figure 2.1 as the test bed. There are eight 

ultrasonic sensors, an odometer, and a wireless 2.4G camera on this mobile vehicle. 

The ultrasonic sensors are disabled in this study because they are useless for our 

research work. The maximum advance speed and rotation speed of the vehicle are 75 

cm/sec and 300 degrees/sec, respectively, and the speed encoders encodes 39000 ticks 

per wheel revolution with 124 ticks per mm. The length, width, and height with the 

camera and the body of the Amigo vehicle are 33 cm, 28cm, and 21cm, respectively. 

 

 
Figure 2.1 The Amigo vehicle used in this study. 
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2.2.1 Hardware Configuration 

The proposed system is composed of five parts, as shown in Figure 2.2. The first 

part is the vehicle with an embedded control system. By a user’s commands , this 

system can control the two DC motors to move forward or backward or turn around, 

and return some status parameters of the vehicle to the user. The second part is a 

vision system which consists of a camera with a wireless transceiver, a wireless video 

signal receiver, and an imaging frame grabber. Because the signal obtained from the 

camera and sent to the video signal receiver is analog, a still digital image can be 

obtained by the imaging frame. The image grabbed in our experiments are of the 

resolution of 320×240 pixels for the reason of raising image processing efficiency. 

The third part is a power system which consists of two kinds of batteries. One is a 9V 

battery to supply the power of the wireless camera; and the other is a 12V battery to 

supply the power of the vehicle system. The fourth part is a remote control system in 

a desktop computer or a notebook PC. The kernel program can be executed on this 

remote control system to command the vehicle through a wireless transmission 

system, which is the fifth part of the proposed system, consisting of a wireless access 

point and a wireless signal receiver. The command of the remote control system is 

transmitted to the wireless signal receiver on the vehicle by an access point that meets 

the 802.11b standard. 

2.2.2 Software Configuration 

In order to transmit commands to the vehicle and to retrieve status data about the 

vehicle, we use the ARIA which is a C++ based open-source development 

environments and provides a robust interface to the vehicle. Lowest-level details or 
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information of the vehicle (e.g., odometer data) can be easily retrieved by means of 

the ARIA, and moving commands can be sent by means of the ARIA also. In other 

words, any developer can use the ARIA as an interface to communicate with the 

embedded system of the vehicle. And we use the Borland C++ builder as the 

development tool in our experiments. 

 

2.3 Proposed Learning Principle 
and Process 

Figure 2.2 Structure of proposed system. 
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To navigate in an unknown environment, learning is necessary. Then, it is desired 

to develop an efficient learning strategy that can learn the knowledge of desired 

navigation paths. Nevertheless, in most developed learning strategies, visual 

environment features are the most important data that are used as the basis for 

localization or other purposes in navigation. Even though the knowledge of visual 

environments data is very useful, the processes for obtaining and analyzing these 

visual data are usually complicated. Therefore, we want to design a learning strategy 

without using visual data. 

The proposed learning strategy consists of three processes: a user-control process, 

a data-collection process, and a data-transformation process. The user-control process 

is designed to control the vehicle to learn desired paths. Users can press the buttons on 

a graphic user interface designed in this study at will to accomplish the learning 

session. 

As soon as the user-control process is executed by the user, the data-collection 

process is activated. Two types of data are collected orderly in the process, one being 

user-driving parameter, and the other odometer data. The former is a set of parameters 

collected upon the user’ actions in controlling the vehicle. And the latter is the 

odometer data which include the global vehicle coordinates and azimuths of the 

vehicle. 

In addition, the path map creation process is activated after both of the 

user-control process and the data-collection process are finished. The collected data 

are then transformed into a simple graph with two types of rules, and this simple 

graph represents the learned path. The data of each node in the simple graph is 

recorded as an order list and saved into a text file for use in navigation sessions. An 

illustration of the learning process is shown in Figure 2.3. 
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2.4 Proposed Vehicle Guidance 
Principle and Process 

The scene in each kind of indoor environment is different and usually 

complicated, and furniture and decorations within rooms also have difference 

appearances. Therefore, it is hard to differentiate between obstacles and non-obstacles 

in guiding the vehicle to correct and safe paths. Hence, a fuzzy-control guidance 

technique is proposed in this study which guides the vehicle in a natural manner. In 

every navigation cycle, a suitable steering angle can be obtained by this fuzzy-control 

Figure 2.3 Illustration of the proposed learning process 

Manual learning 

Start learning

Data collection

User-driving parameters Odometer data 

Path map creation 

Saving data for 
retrieval in navigation End learning 
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guidance technique and the goal of obstacle avoidance can be achieved in the 

meanwhile. In other words, the proposed fuzzy-control guidance technique can 

nominally reduce the complexity of scenes in indoor environments for choosing a 

suitable path to navigate. 

Furthermore, a vehicle navigation process with two navigation modes for 

different purposes is proposed. One is the single path mode for navigating along a 

learned path with only a starting point and a destination. In the single path mode, the 

learned data are retrieved from a saved file first, and all the nodes within this 

navigation path are set in accordance with the nodes in the learned graph exactly. 

Then the navigation trip can be accomplished by traversing each node in the learned 

graph orderly. For this reason, two navigation strategies are proposed for the vehicle 

to navigate in two types of sections during the navigation process. The first strategy is 

used along each straight-line section between two nodes connected with a line 

approximately. And the second strategy is used for turning sections where the vehicle 

navigates around a corner. 

The other mode is the area mode for navigating among multiple nodes collected 

from several paths. In the area mode, a desired navigation path may not be learned 

before. First, the learned data are retrieved from a saved file, too. After that, the 

desired navigation path is determined by a given starting point and a given destination 

which are learned in the learning process. The nodes within this navigation path are 

found dynamically using Dijkstra shortest path searching algorithm. After the desired 

navigation path is determined, a similar navigation strategy is adopted for traversing 

along the nodes along the navigation path. An illustration of the vehicle navigation 

process is shown in Figure 2.4. 
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Figure 2.4 An illustration of vehicle navigation process 
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Chapter 3  
Proposed Fuzzy Guidance 
Techniques for Indoor Navigation 

3.1 Introduction 

In order to guide a small vehicle to navigate in indoor environments with 

complicated scenes, two fuzzy-control guidance techniques are proposed in this study 

for safe indoor navigation. Since the principle of fuzzy control is intuitive and 

experiential, we utilize fuzzy-guidance techniques for vehicle navigation. The essence 

of this approach is to keep equilibrium between navigation accuracy and fuzzy 

control. 

Generally speaking, fuzzy theory can be implemented in a wide variety of fields 

because of its multidisciplinary nature. A system based on a fuzzy will react to 

triggered events autonomously in an intuitive way. Due to this characteristic of fuzzy 

theory, many researchers use fuzzy theory in robot-control applications. A review of 

the fuzzy-control concept will be described in Section 3.2. And the reason of using 

fuzzy-control techniques for guidance of small vehicles in this study will be described 

in Section 3.3. 

Besides, some parameters for the proposed fuzzy model must be acquired 

through some image processing works. Since appearances of different kinds of indoor 

environments can be classified roughly into two types, namely, room and corridor, 

two processes of parameter acquirement for the two types of indoor environments are 
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proposed and will be described in Section 3.4. After necessary parameters are 

acquired, desired fuzzy outputs as meaningful commands for vehicle control can be 

obtained by a computation process based on the proposed fuzzy model. Similarly to 

the need of two parameter acquirement processes, two different fuzzy models are 

designed for vehicle guidance in the two types of indoor environments. The details of 

the fuzzy models will be described in Section 3.5. 

3.2 Review on Fuzzy Control 
Concepts 

The proposed fuzzy control system is derived from fuzzy inference techniques 

using fuzzy if-then rules and fuzzy reasoning. According to C.T. Sun [20], the basic 

structure of a fuzzy inference system consists of three conceptual components: a rule 

base, which contains the detailed fuzzy rules; a database, which defines the 

membership functions used in the fuzzy rules; and a reasoning mechanism, which 

performs the fuzzy reasoning process using the rules and certain given facts to obtain 

a reasonable output. 

In a fuzzy inference system, when fuzzy or crisp inputs are taken into the system, 

the outputs are fuzzy sets in most cases. But fuzzy-set outputs are not suitable for use 

in our vehicle control system. Therefore, a method of defuzzification is needed to 

extract a crisp value which best represents a fuzzy set. Besides, in the case with crisp 

inputs and outputs, the fuzzy inference system just implements a nonlinear mapping 

from its input space to its output space. And this mapping is accomplished by a 

number of fuzzy if-then rules, each of which describes the local behavior of the 
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mapping. The proposed fuzzy control techniques belong to this case. 

The procedure of a fuzzy inference system with a crisp output is shown in Figure 

3.1. The first part is an input process which takes some fuzzy or crisp values as inputs 

into this system. And the second part is a fuzzy reasoning process which processes the 

inputs with fuzzy rules to yield fuzzy-set outputs. The third part is a defuzzification 

process which transforms the output fuzzy sets into a single crisp value. The final 

crisp value will be used as the basis for generating commands to guide the vehicle in 

the proposed fuzzy guidance techniques. 
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Figure 3.1 Illustration of a fuzzy inference system. 
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3.3 Reasons of Using Fuzzy 
Guidance Techniques 

The reason for using fuzzy guidance techniques in this study is three-fold, as 

described in the following. 

1. To reduce the complexity of guidance in indoor environments. 

Since the scene structures of indoor environments are usually complicated, it is 

generally difficult to guide a vehicle to navigate in it. One way to solve this problem 

is to use fuzzy guidance techniques, which presumably are more proper for use to find 

vehicle navigation paths. That is, it expected that complicated scene structures will 

not influence vehicle guidance when fuzzy guidance techniques are employed. 

2. To create obstacle avoidance capability for the vehicle. 

When a vehicle is navigating in indoor environments using the proposed fuzzy 

guidance techniques, obstacles may appear in the navigation path. An example of 

images grabbed by the wireless camera in our vehicle system is shown in Figure 3.1. 

Obstacles are regarded in this study as furniture in indoor environments or simply as 

part of environments because of the use of fuzzy guidance techniques. Therefore, our 

method for finding safe navigation paths is simple with no necessity to differentiate 

between objects in navigation paths and furniture or walls in environments. In the 

situation shown in Figure 3.1, the vehicle is steered to the left side in our experiment 

to avoid possible collision by considering the paper box as part of the environments 

instead of as an obstacle. 

3. To create an adaptive capability for the proposed vehicle system to navigate in 

different indoor environments. 
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Some vehicle systems use visual environments features (e. g., baseline, corner, 

manual landmark, etc.) in the guidance process. Since these kinds of visual features 

can be found only in common indoor environments, these vehicle navigation systems 

are useless when navigating in certain environments with no such visual feature. This 

weakness will not be found in our navigation system using the proposed fuzzy 

guidance techniques because any kind of object will be regarded as part of the 

environment. Therefore, the proposed vehicle navigation system can be used in any 

kind of indoor environments without any restriction on the scene structures of the 

navigation environments. 

 

3.4 Parameters for Proposed Fuzzy 
Guidance System 

According to the review on fuzzy-control concepts in Section 3.2, in order to 

 
Figure 3.2 An image of an obstacle appearing in navigation path. 
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acquire a crisp output value, certain crisp values must be taken into consideration in 

the fuzzy guidance system first. And these crisp values are related to the designed 

fuzzy rules which are determined in the phase of fuzzy model development. In the 

proposed fuzzy guidance techniques, still images captured from the wireless camera 

will be processed to obtain appropriate features as crisp inputs for the fuzzy guidance 

system in every navigation cycle. And the proposed processes of parameter 

acquirement for use as inputs to the proposed fuzzy models will be detailed in the 

following. 

Because two different fuzzy guidance techniques are designed in this study, two 

different processes, as mentioned previously, which acquire the demanded parameters 

for the two fuzzy guidance techniques, are proposed. They are described in Sections 

3.4.1 and 3.4.2, respectively. 

3.4.1 Features for Vehicle Guidance in Rooms 

In every navigation cycle, an input image captured with the wireless camera is 

processed to obtain two kinds of features, namely, collision-free direction, and 

degrees of collisions of the left and the right route sides. The values of these features 

are taken as inputs into the proposed fuzzy guidance system, which yields an angle as 

the output for use to steer the vehicle in each navigation cycle. In the following, we 

describe how we extract the two kinds of features by image processing techniques in 

the captured images. 

A. Computing collision-free direction 

The feature of collision-free direction means the direction into which the vehicle 

may be driven with no collision with the objects along the path traversed by the 
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vehicle. Such a feature is computed in every navigation cycle in the following way. 

First, we divide an input image into 4×4 blocks and classify each image block into 

two classes, namely, route area and non-route one. As a preliminary step to achieve 

this goal, we utilize an algorithm presented in Li and Tsai [6] to locate image blocks 

of possible route areas. The essence of the algorithm is to use two pixel features, 

namely, a pixel’s grayscale value and its Sobel edge value, to identify candidate 

route-area pixels. A pixel in the input image with its grayscale value close to a 

pre-learned grayscale value of the room ground and with its Sobel edge value smaller 

than a pre-selected threshold is classified as a candidate route-area pixel. An example 

of such image pixel classification results is shown in Figs. 3.3(a) and 3.3(b). Because 

of color and uniformity similarities, some wall or furniture regions may be 

misclassified as route areas, as can be seen in the example shown in Fig. 3.3(b). 

Nevertheless, we propose an algorithm in this study to remove such erroneous areas in 

the following, which in addition computes the above-mentioned feature of 

collision-free direction from the remaining correct route areas in the input image. 

Algorithm 1. Computation of route areas and collision-free direction. 

Step 1. Perform region growing to find as the desired route area the largest bottom 

region in the candidate route-area pixels extracted from the input image 

using [6]. (The region growing result of the above example is shown in Fig. 

3.3(c).) 

Step 2. Put two parallel horizontal scanning lines in a fixed lower part of the route 

area. If any non-route area crosses either scanning line and cuts it into 

several line segments, pick out the longest segment and call it a 

non-obstacle segment; otherwise, select the original scanning line as the 

non-obstacle segment. (At the end of this step, two non-obstacle segments 
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will be obtained.) 

Step 3. Find the middle points of the two non-obstacle segments, connect them to 

form a line segment, and call it route segment. (The found middle points for 

the above example are A and B as shown in Fig. 3.3(c).) 

Step 4. Compute the middle point of the route segment, and call it route center. 

(The result of this step for the last example is point C in Fig. 3.3(c).) 

Step 5. Connect the route center to the middle point of the bottom line of the image 

to form a line segment, and call it guidance line (like the line labeled L in Fig. 

3.3(d).) 

Step 6. Find as the desired collision-free direction θg the angle of the guidance line 

with respect to the bottom line of the image. 

In the above algorithm, no complicated 3D computer vision technique is used in 

computing the collision-free direction, as contrasted with most conventional methods. 

Also, notice that by the above algorithm, the vehicle automatically has the capability 

of obstacle avoidance. Actually, obstacles in the path are treated as outside-path 

objects (like furniture) in this study. 

B. Computation of degrees of collisions 

The degrees of collisions of the left and the right route sides are defined and 

computed in this section. We first define a rectangular window in each captured image 

with two sub-windows separated by a centerline, as shown in Fig. 3.3(e). A region in 

each rectangular window of captured images represents an area which is two meters 

in front of the small vehicle. Then the proportion of the route area in the left 

sub-window is defined to be the degree of collision of the left route side, which will 

be denoted by PL. And that of the right route side can be defined similarly, and will be 

denoted by PR. 
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3.4.2 Features for Vehicle Guidance in Corridors 

The demanded features for the fuzzy guidance system for the corridor type of 

 
Figure 3.3 Illustration of image processing results (a) An input image. (b) 

Result of candidate route point classification. (c) Result of route 
area extraction. (d) Result of guidance line computation. (e) 
Another input image. (f) Result of guidance line computation of 
(e). 
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indoor environments are different from those used for the room type. Two kinds of 

features, namely, baseline angle at the right side or at the left side, and baseline 

height at the right side or at the left side, are computed by processing an input image 

captured with the wireless camera in every navigation cycle. These features are taken 

as inputs into the fuzzy guidance system, which yields an angle as the output for use 

to steer the vehicle in each navigation cycle. In the following, we describe how we 

extract the two kinds of features by image processing techniques in captured images 

for use in vehicle guidance. 

A. Computing baseline angle at right side or at left side 

The feature of baseline angle either at the left or the right side means the angle 

between the lower edge of the baseline and the left or right image boundary in the 

captured image in every navigation cycle. Since baselines are more common in 

building corridors, we utilize their visual characteristics in the field of view of the 

camera on the vehicle to adjust the vehicle’s moving direction in the navigation 

process. We propose an algorithm to compute the value of the baseline angle feature 

at either side in the input image in the following. 

Algorithm 2. Computation of baseline angle at either side. 

Step 1. Convert the input image into a binary image with a threshold Tb that is 

defined in advance. (The result of the above example is shown in Fig. 

3.4(b).) 

Step 2. Apply the Sobel operator to the processed binary image to find all edges in 

the input image. (The result of the above example is shown in Fig. 3.4(c).) 

Step 3. Find the point of the lower edge of the baseline intersecting the image 

boundary at either side, and find the other end point of the baseline in the 
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image using a connected component computation method [21]. 

Step 4. Calculate the line equations of the two edges (upper and lower), denoted as 

Lr and Ll, of the baseline at either side according to the two points found in 

the last step. Denote also the two vertical image boundaries as Vr and Vl . 

(The result of the above example is shown in Fig. 3.4(d) and (e).) 

Step 5. Calculate the angle between Lr and Vr, and that between Ll and Vl, and 

denote them as θr and θl, which are the desired features as inputs to the 

fuzzy guidance system. (The result of the above example is shown in Fig. 

3.4(d) and (e).) 

In the above algorithm, we use conventional image processing techniques to 

compute the two baseline angles. It is pointed out here that the two baselines are not 

both seen at every navigation cycle, because the direction of the vehicle may be 

directed to the left or right side. Therefore, a reasonable assumption is made in 

advance, that is, if no baseline angle can be found due to failure of finding the 

baseline, then the baseline angle is set to 90 degrees. 

B. Computing baseline height at right or left side 

The feature of baseline height means the y image coordinate value of the start 

point of each baseline in the input image, as shown in Figs. 3.4(d) and 3.4(e). This y 

coordinate value can be obtained easily by performing Steps 1 through 3 of Algorithm 

2. The baseline height at the right side will be denoted by Hr, while that at the left side 

by Hl. Generally speaking, the value of the baseline height is larger when the 

direction of the vehicle tends to the right or left wall, and on the contrary, the value is 

smaller when the direction of the vehicle tends to the midway of the corridor. 
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Figure 3.4  Illustration of image processing results (a) An input image. (b) Result 
of binarization process. (c) Result of applying Sobel operator to (b). 
(d) Result of finding connected components. (e) An another input 
image. (f) Result of applying binarization process and Sobel operator. 



 28

3.5 Proposed Fuzzy-Control 
Systems and Their Uses in 
Guidance 

After the demanded features described in Section 3.4 are acquired, the input 

process of the fuzzy control system is finished and the next process is started. In the 

following, the fuzzy reasoning process that consists of fuzzy rule design, fuzzy 

aggregation, and defuzzification will be discussed. Because of the difference between 

the previously-mentioned two indoor environments types, two different fuzzy 

reasoning processes and their respective defuzzification processes are designed in this 

study and will be detailed in Section 3.5.1 and Section 3.5.2, respectively. 

3.5.1 Proposed Fuzzy Control System for Room-Type 

Guidance 

In the proposed fuzzy control system, when an acquired feature is processed, a 

steering angle θs
i is computed for use in turning the vehicle in the ith navigation cycle. 

If θs
i is positive, it means that the vehicle should turn leftward for the angle of θs

i; if 

θs
i is negative, it means that the vehicle should turn rightward for θs

i. The proposed 

fuzzy control system is based on two fuzzy rules in terms of three linguistic variables 

LESS, LEFT, and RIGHT that describe the values of the input features. The rules are 

described as follows: 

Rule 1: if the collision-free direction θg trends to LEFT and the degree of collision 

of the right route side PR is LESS, then turn the vehicle rightward for the 
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angle of θs
i; 

Rule 2: if θg trends to RIGHT and PL is LESS, then turn the vehicle leftward for 

θs
i. 

To implement the above two rules, six membership functions ( )gLEFT θµ , ( )gRIGHT θµ , 

( )RRLESS P−µ , ( )LLLESS P−µ , ( )i
Sf θµ 1

, and ( )i
Sf θµ 2

 are defined as shown in Fig. 3.5, in 

which the units of θg, and PR and PL are degree and percentage, respectively. 

The fire strengths of Rules 1 and 2 can be calculated accordingly as follows: 

( ) ( )RRLESSgLEFT Pm −∧= µθµ1 ; 

( ) ( )LLLESSgRIGHT Pm −∧= µθµ2 , 

where ∧ denotes the AND operator which is defined as the minimum function. After 

the fuzzification stage, the conclusion of each rule can be derived according to fuzzy 

reasoning. Because the membership function of the conclusion of each rule is 

monotonic, the Tsukamoto defuzzification method [7] can be applied to the fuzzy 

reasoning process here. The crisp output θs
i, which is the desired steering angle, is 

calculated by the following equation: 
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θ
. The previous discussion results have been followed to design a fuzzy 

guidance algorithm in this study. The details are omitted. 
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3.5.2 Proposed Fuzzy Control System for 

Corridor-Type Guidance 

In contrast with the fuzzy control system for the room type described above, the 

fuzzy control system for the corridor type is different in fuzzy rules and input features. 

The steering angle θs
i is an output of the fuzzy control system in the ith navigation 

cycle, which is the same as the condition of room-type guidance. If θs
i is positive, it 

means that the vehicle should turn leftward for the angle of θs
i; if θs

i is negative, it 

means that the vehicle should turn rightward for θs
i. The proposed fuzzy control 

system is based on two fuzzy rules in terms of two linguistic variables, LARGE and 

SMALL, that describe the values of the input features. The rules are described as 

follows: 
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Rule 3: if the baseline angle θl is SMALL and the baseline height at the left side Hl 

is LARGE, then turn the vehicle rightward for the angle of θs
i; 

Rule 4: if θr is SMALL and Hr is LARGE, then turn the vehicle leftward for θs
i. 

To implement the above two rules, six membership functions ( )rRSMALL θµ −
, 

( )lLSMALL θµ −
, ( )rRLARGE H−µ , ( )lLLARGE H−µ , ( )i

Sf θµ 3
, and ( )i

Sf θµ 4
 are defined as shown in 

Fig. 3.6, in which the units of θr and θl, and Hr and Hl are degree and integer, 

respectively. 

The fire strengths of Rules 3 and 4 can be calculated accordingly as follows: 

( ) ( )lLLARGElLSMALL Hm −− ∧= µθµ3 ; 

( ) ( )rRLARGErRSMALL Hm −− ∧= µθµ4 , 

where ∧ denotes the AND operator defined again as the minimum function. After the 

fuzzification stage, the conclusion of each rule can be derived according to fuzzy 

reasoning. Because the membership function of the conclusion of each rule is 

monotonic, the Tsukamoto defuzzification method again can be applied to the fuzzy 

reasoning here. The crisp output θs
i, which is the desired steering angle, is calculated 

by the following equation: 
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guidance algorithm in this study. The details are omitted here. 
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Chapter 4  
Simple Learning Strategies for 
Indoor Navigation by User-Driving 
and Odometer Parameters 

4.1 Introduction 

In this chapter, we propose a non-visual approach to learning which solves all the 

problems encountered in the conventional vision-based learning approach. This 

non-visual learning process is just a sequence of free actions of vehicle driving 

without using a vision system. The vehicle is driven by the user from one room spot 

to another as wished. Only simple data consisting of the records of user-driving 

actions as well as the odometer values of each spot visited along traversed paths are 

collected. To achieve this goal of simple learning process, we design a convenient 

user-control interface and simple user-driving rules, and these will be described in 

Section 4.2. 

After the manual learning process is finished, an automatic transformation 

method is proposed for creating path maps with the learned data as input. The 

generated path map consists of a set of connected nodes, with each inter-node edge 

being a traversed trajectory in the learning process. Since the navigation process is 

classified into two modes, namely Single path mode and Area mode, we also propose 

two kinds of path creation processes for this purpose. In the path creation process for 
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each navigation mode, we propose an algorithm for identifying two types of path 

nodes, check node and turn node, in the path data collected in the manual learning 

process to create a path map of the visited room spots in the form of a graph with 

undirected edges specifying the navigated routes. The details of the automatic path 

map creation processes in the single path mode and the area mode are described in 

Section 4.3. 

4.2 Two Navigation Modes 

Two navigation modes are designed, which are aimed to fit the vehicle for 

different applications. One is the single path mode, the other the area mode. Since the 

characters and functions of each navigation mode are so different, the details of each 

navigation mode are also different, as described in the following. 

The single path mode means that only one navigation path is learned in the 

manual learning process, and the vehicle just complies with the processed data of the 

learned path to navigate along this path exactly. This navigation mode is applicable to 

applications where only one-way unceasing navigation is required. For instance, in 

certain kinds of “security patrolling” applications, an autonomous vehicle system is 

requested to navigate along a fixed path in a building. For this reason, the autonomous 

vehicle system can be controlled to learn a single path in advance, and then it can 

navigate along this learned path back-and-forth automatically, instead of hiring a 

security officer to guard the building. An important characteristic of the single path 

mode for the vehicle is that it can accomplish its navigation works autonomously 

without issuing any user command during the navigation process. 
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The area mode means that multiple navigation paths are learned in the manual 

learning process, and the vehicle can choose a shortest navigation path dynamically 

according to a pair of “start point” and “end point,” which is given by the user. This 

navigation mode is applicable to applications where “flexible point-to-point” 

navigation is required. For instance, in certain kinds of “home service” applications, 

an autonomous vehicle system might be requested to navigate among rooms to 

accomplish some service works (e. g., morning calls or article transportations). 

Nevertheless, to learn all the routes among these rooms sometimes is too much for a 

vehicle (e. g., there are total 60 routes among five rooms). Therefore, we design the 

area mode for navigation to solve this problem. In the proposed manual learning 

process for the area mode, the number of necessary learned paths is the same as the 

number of rooms that the user wants the vehicle to visit. And in the navigation stage, 

according to the proposed navigation strategy for the area mode with the 

corresponding learned data, the vehicle will choose a shortest path dynamically to 

navigate among any two rooms after a user-defined command is ordered. In short, the 

complexity of the manual learning process can be reduced significantly by using the 

area mode learning process for navigation. 

4.3 Manual Learning Algorithm 

Some schemes are proposed in this study to accomplish the manual learning 

process by a user. For a user to control the vehicle easily and correctly, a plain control 

interface and certain simple control rules are designed. Furthermore, when a user is 

controlling the vehicle to learn a desired navigation path, some employed features 
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consisting of the user-driving actions and the odometers data are collected by the 

proposed system and stored into three types for later processing. Besides, the vision 

system on the vehicle is disabled during the learning process, because the proposed 

learning algorithm is non-visual and uses no landmark or special features for vehicle 

location in the navigation environment. 

4.3.1 Proposed Control Interface for Manual 

Learning 

Since the main concept of the proposed learning strategy is simple, we hope the 

implementation of the proposed learning algorithm can be used for general users, 

even for those who do not know much about computer techniques. As a result, a plain 

control interface is designed for this purpose, as shown in Fig 4.1. Every user can 

drive the vehicle through this simple control interface to learn a desired navigation 

path. In the following, illustrations of this control interface will be described. 

Firstly, the user can press “move forward” or “move backward” to control the 

vehicle to move a straight line until the “stop” button is pressed. Either the user can 

adjust the “angle scroll bar” to a suitable position followed by pressing the “turn 

leftward” or “turn rightward” to turn the vehicle for a desired angle. In the single path 

mode, the user can utilize only the above-mentioned control actions to move the 

vehicle to learn the desired path easily. 

In addition, in the area mode two works should be done by the user. Firstly, 

before starting the learning process, the user must define a certain location as a start 

point and bring the vehicle to this start point. Secondly, when a one-way learning is 

finished at a room spot, the user must attach a certain description for this end place as 
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a label. This work can be done also on the simple control interface by entering a text 

description in a corresponding field and pressing the “attach” button. Followed by the 

label attaching action, the user must bring the vehicle back to the start point. After that, 

the user needs to press the “another trip” button to start another one-way learning, or 

press the “end” button to finish the learning session in the area mode. 

 

4.3.2 Proposed Simple User-Driving Rules for 

Learning 

Generally speaking, a learning interface is an important part of the learning 

 
 

Figure 4.1 An illustration of the proposed user control interface. 
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system because it will affect the pleasure of a user operating the system. Nevertheless, 

a set of effective learning rules without complicated restrictions is another important 

part of the learning system. Only the use of a combination of a simple user learning 

interface and a set of simple user learning rules can achieve the goal of simple 

learning. In the following, some simple user driving rules proposed in this study for 

learning will be described. 

(1) Control the vehicle to move on the ground in indoor environments, and 

keep at least 50 centimeters or more to the left- or to the right-side obstacle 

(e. g., a piece of furniture or anything else). 

(2) When the distance between the vehicle and its front object is approximately 

smaller than 1 meter, stop the vehicle and turn rightward or leftward. 

(3) When the user wants to turn rightward or leftward and the vehicle is still 

moving, stop the vehicle right away. 

(4) Issue only necessary commands and avoid changing actions all the time. 

4.3.3 Data Structures of Learned Data 

During the previously-mentioned manual driving step in the learning stage, the 

proposed system allows a user to control the vehicle to move freely in an unknown 

environment through the simple control interface. And certain data about the learning 

process are recorded for later processing. All the recorded data are call learned data, 

and it can be classified into three types of data structure, namely user-driving actions, 

odometer values, and user-defined data. The detail of these data structures will be 

described as follows. 

A user-driving action means an action that is requested by the user by pressing a 

corresponding button on the user control interface in a learning process, including the 



 39

“move forward”, “move backward”, “move leftward”, “move rightward”, “stop”, 

“attach”, “another trip”, and “end”. Each action taken by the user is recorded as a 

command together with its execution time with respect to the start time of the learning 

process. A list of the labels for data representing the user-driving actions is shown in 

Table 4.1. 

And the location of the vehicle, including its position and direction, is recorded 

every fixed time period (say, every second). The position data consists of the x-axis 

values and y-axis values for the global coordinate system (GCS), and the range of the 

direction data is about 360 degrees. These location data of the vehicle are called 

odometer values which are retrieved from the embedded system on the vehicle 

through the ARIA API. A list of the labels for data representing the odometer values is 

also shown in Table 4.1. 

The remaining data structure is user-defined data which represent information of 

corresponding room spots in area-mode learning. Each set of user-defined data is 

composed of one or two meaningful texts or several ones given by the user at will. 

But even if the number of meaningful texts is more than one, they will be regarded as 

a single set of user-defined data at each room spot. 

Furthermore, each recorded command is associated with three or four parameters. 

More specifically, either of the “turn leftward” or the “turn rightward” command is 

associated with the parameters of turn angle, position coordinates, direction angle, and 

action time; and each of the “move forward”, the “move backward”, and the “stop” 

command with the parameters of position coordinates, direction angle, and action 

time (without the turn angle). An illustrative example is shown in Figure 4.2. 
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TABLE 1 

USER-DRIVING COMMANDS AND PARAMETERS FOR LEARNED DATA 

DATA STRUCTURE TYPE COMMAND & PARAMETERS LABEL OR VALUE 

User-driving actions Command move forward f 

User-driving actions Command move backward b 

User-driving actions Command turn leftward l 

User-driving actions Command turn rightward r 

User-driving actions Command stop s 

User-driving actions Command attach c 

User-driving actions Command another trip z 

User-driving actions Command end q 

User-driving actions Parameter turn angle θt  

Odometer values Parameter position coordinates (x:y) 

Odometer values Parameter direction angle θd 

Odometer values Parameter action time t 

User-defined data Parameter meaningful description text 

 
Figure 4.2 An illustration of the learned data. 
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4.4 Automatic Path Map Creation 
Process of Learned data 

After the manual learning process is finished, the learned data are recorded as a 

list. Although this list of learned data collects all the features about user-driving 

information, it cannot be used for the navigation process directly. The reason is that 

these learned data are too high-level for the vehicle, it needs more detail data about 

the learned path (e.g. global coordinates data). Therefore, in this section, certain 

transformation algorithms are proposed and applied to perform the path map creation 

process automatically. This path map creation process transforms the high-level 

learned data into a simple graph which consists of a set of connected nodes, with each 

inter-node edge representing a traversed trajectory. Then, the vehicle can use this 

low-level processed data with user-commands to navigate in the learned environment. 

4.4.1 Learned Data Analysis 

In essence, the proposed automatic path map creation process uses certain rules 

to analyze the simple learned data that consist of user-driving actions, odometer data, 

and user-defined data, which are the only information about the learned path. And we 

want to use a simple graph to represent the final result of the path map creation 

process, because a elementary graph with certain inter-node information is clear for 

the vehicle can accomplish a given navigation task by traversing each inter-node in 

the graph. Therefore, a critical job of the path map creation process is to identify each 

inter-node edge with its attached data in the elementary graph. In the following, the 

principle of this job will be described. 
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We think of the user-driving actions as useful information in the learned data for 

determining the location of each inter-node edge. Each user-driving action has its 

corresponding action time, and since the location of the vehicle is recorded every 

fixed time period, then we can determine the location relatively where the 

user-driving action is commanded. By using this transformation concept, the majority 

of all inter-nodes can be determined automatically. Nevertheless, a problem is 

encountered followed by this concept that must be solved. In certain cases, a time 

period between two user-driving actions is too long, so the distance between these two 

determined inter-nodes may be too long, and this kind of case is not suitable for 

navigation. Therefore, a function need be designed for the path map creation process 

that can automatically determines more inter-nodes with suitable locations among any 

two inter-nodes with too-far distance. 

As the location of each inter-node edge is determined, the attached data of these 

inter-node edge can be also determined by other inputted learned data, odometer 

values and user-defined data. After that, a more integrated simple graph is created by 

the accomplishment of path map creation process. More details of the proposed 

algorithm will be described in the next two sections. 

4.4.2 Identification of Nodes for Single Path Mode 

With the difference between two proposed navigation modes, as mentioned 

previously, two kinds of path map creation processes are proposed to create its 

corresponding simple graph. Here, the proposed automatic path map creation process 

for the single path mode is described, which is designed to create a graph composed 

of two kinds of nodes, check node and turn node, from the learned data. The meaning 

of a check node is to check relevant information when the vehicle arrives at this node 
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during navigation. And the meaning of a turn node is to launch or end a turning 

session when the vehicle arrives at this node during navigation. An algorithm is 

proposed as follows for this purpose. 

Algorithm 1. Automatic path map creation process for single path mode. 

Step 1. Take the learned data as input, and identify check nodes and turn nodes by 

processing the commands sequentially in the input in the following way. Let 

the currently processed command be denoted as C0, the previously processed 

one as C−1, and the next processed one as C+1. 

Step 1.1. If C0 is ‘move forward’, then 

a. if C−1 is ‘turn leftward’ or ‘turn rightward,’ then create a turn node at the 

spot visited by the vehicle three seconds after the action time of C0 (i.e., 

three seconds after C0 was executed); 

b. if C+1 is executed at a spot farther than a meter from C0, then create check 

nodes at spots with distance intervals of one meter with C0 as the first 

created check node. 

Step 1.2. If C0 is ‘stop’, then  

if the C+1 is ‘turn leftward’ or ‘turn rightward’, then create a turn node 

at a spot visited by the vehicle three seconds before the action time of 

C0  (i.e., three seconds before C0 was executed); otherwise, create a 

check node at C0. 

Step 2. Repeat Step 1 until all commands in the input are processed. 

Step 3. Mark the first produced node as a start point with its corresponding location 

kept. 

Step 4. Mark the last produced node as an end point with its corresponding location 
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kept. 

In the above algorithm, the two threshold values of three seconds and one meter 

may be varied to meet other application needs. It can be seen from the algorithm that 

the resulting path map is a simple attributed directed graph, which we found sufficient 

for this study. An example to illustrate this graph is shown in Figure 4.3. 

 

 
Figure 4.3 An example to illustrate a created graph for single path mode. 
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4.4.3 Identification of Nodes for Area Mode 

Here, the proposed path map creation process for the area mode is described, 

which is designed to create a graph composed of four kinds of nodes, check node, turn 

node, room node, and initial node, from the learn data. The meanings of the check 

node in the two kinds of created graphs for two navigation modes are the same, but 

the property of the turn node is not the same exactly. The initial node is a node with a 

fixed location defined by the user in each manual learning process for the area mode. 

And the room node is a node with user-defined data and location that can be used to 

represent a special place for the use of navigation. Therefore, the proposed navigation 

strategy in the area mode is different to the proposed navigation strategy in the single 

path mode. In the following, an algorithm is proposed for identifying two kinds of 

nodes in the area mode. 

Algorithm 2. Automatic path map creation process for area mode. 

Step 1. Attach a counter value to the initial node, and set the initial value of this 

counter to be ‘1’. 

Step 2. Take the learned data as input, and identify check nodes and turn nodes by 

processing the commands sequentially in the following way. Let the currently 

processed command be denoted as C0, the previously processed one as C−1, 

and the next processed one as C+1. 

Step 2.1. If C0 is ‘move forward’, then 

if C+1 is executed at a spot farther than a meter from C0, then create 

check nodes at spots with distance intervals of one meter with C0 as the 

first created check node. 
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Step 2.2. If C0 is ‘stop’, then 

if the C+1 is ‘turn leftward’ or ‘turn rightward’, then create a turn node 

at a spot visited by the vehicle at the action time of C0; otherwise, 

create a check node at C0. 

Step 2.3. If C0 is ‘attach’, then 

create a room node at C0. 

Step 2.4. If C0 is ‘another trip’, then 

increment the value of the counter of the initial node by one. 

Step 3. Repeat Step 2 until all commands in the input are processed. 

In the above algorithm, the threshold value of one meter may be varied to meet 

other application needs. And the counter value of the initial node is used to represent 

the number of times of one-way learning during a learning session for the area mode. 

Besides, it can be seen from the algorithm that the resulting path map is a simple 

attributed undirected graph, in contrast to the created graph for the single path mode. 

An example to illustrate this graph is shown in Figure 4.4. 
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Figure 4.4 An example to illustrate created graph for area mode. 
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Chapter 5  
Vehicle Navigation in Indoor 
Environment 

5.1 Introduction 

In the navigation stage, the main task is to guide the vehicle to follow a selected 

path generated from a learned path map. The path consists of a set of connected nodes. 

In this chapter, two vision-based navigation strategies based on fuzzy guidance are 

proposed to traverse among these nodes in two types of navigation modes. 

Firstly, two navigation methods for the single path mode, namely line following 

and smooth curve following, are proposed for straight-line and turning-section 

navigations, respectively. The vehicle can use these navigation methods to traverse 

among the nodes within a created path map generated from the learning process for 

the single path mode. These topics will be described in Section 5.2. 

Secondly, in order to navigate in the area mode, certain methods are proposed. A 

transformation method is proposed to convert high-level user commands into a data 

list with useful information for navigation, according to the learned data generated 

from the learning process for the area mode. After that, a dynamic path planning 

method using the Dijkstra algorithm is proposed to generate a navigation path 

dynamically. Finally, a navigation method is proposed for the vehicle to traverse along 

the generated path. These topics will be described in Section 5.3. 
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In addition, a strategy for navigation accuracy maintenance is proposed in 

Section 5.4. Since the proposed collision-avoiding guidance strategy is based on a 

computer vision technique, the proposed navigation method regards objects appearing 

along navigation routes as obstacles, which should be avoided. Then certain path 

deviations may occur after the vehicle avoids some obstacles in navigation sessions. 

For this reason, a navigation accuracy maintenance method should be designed for 

correcting this kind of error, as is done in this study. More details about this method 

will be described later. 

5.2 Navigation in Single Path Mode 

After a single learned path is generated from a learning process, the remaining 

work is for the vehicle to navigate along the generated path by visiting each path node 

sequentially through the routes specified by the inter-node edges. Since a created path 

is composed of two kinds of nodes, check node and turn node, the vehicle will 

navigate along the path in four distinct cases, check node to check node, check node 

to turn node, turn node to check node, and turn node to turn node. Except the case of 

turn node to turn node, which is a turning section, the others are all straight-line 

sections. In the following, two navigation methods, line following and smooth curve 

following, are proposed for straight-line sections and turning sections, respectively. 

Finally, the detail procedure for accomplishing a navigation task in single path mode 

will be described. 
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5.2.1 Navigation Strategy for Straight-Line Sections 

The navigation strategy of line following is adopted when the vehicle passes a 

check node in its navigation path. The vehicle uses mainly the fuzzy guidance 

technique described in the Section 3 during the line following process. The details are 

described as an algorithm as follows. 

Algorithm 3. Line-following navigation process. 

Step 1. Turn the vehicle toward the check node Nc to be reached. 

Step 2. Calculate the distance from the current vehicle location Lv (recorded in the 

odometer) to the location of Nc (recorded in the learned data), and denote the 

distance by d1. 

Step 3. Move the vehicle forward. 

Step 4. Turn accordingly if the output steering angle of the fuzzy guidance 

algorithm is larger than zero. 

Step 5. Read the odometer to get the current vehicle location Lv’ and compute how 

far the vehicle has moved as d2 = |Lv’ − Lv|. 

Step 6. If the difference |d1 − d2| is smaller than 5 centimeters, then end this 

navigation session, and turn the vehicle to the original direction of Nc specified 

in the learned data; otherwise , repeat Step 3 through Step 5. 

By this line following algorithm, the vehicle can accomplish a navigation 

process in a straight-line section. But in certain situations, an unexpected obstacle 

might appear only just in front of the vehicle and its size might be too big, leading to 

the result that the vehicle cannot avoid collision with this obstacle by the proposed 
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fuzzy guidance technique. Then the vehicle will stop right away to terminate the 

navigation task and return an error message to the system. On the contrary, as long as 

a steering angle can be acquired from the proposed fuzzy guidance technique, the 

vehicle will correct its direction according to this steering angle to find a suitable way 

to avoid the obstacle. 

5.2.2 Navigation Strategy for Turning Sections 

The navigation strategy of curve following is adopted when the vehicle passes a 

turn node (called initial turn node) and moves toward another turn node (called end 

turn node) in its navigation path. The proposed curve following method uses the 

information of the global coordinates of the two turn nodes as well as their direction 

angles to make a smooth turn. An illustration of the proposed curve following 

technique is shown in Fig. 4. The main concept behind is to move the vehicle along a 

well-planned curve joining the two turn nodes by setting different speeds for the two 

wheels individually. An algorithm for the method is described as follows 

Algorithm 4. Smooth Curve following navigation process. 

Step 1. When the vehicle arrives at the initial turn node denoted as Nt
1, get the 

global coordinates ( )11,YX  and the direction angle θ1 from the odometer, and 

convert θ1 into a vector 1V
v

 using the following equation: 

1V
v

: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)cos(
)sin(

1

1

1

1

θ
θ

Y
X

. 

Step 2. Get the global coordinates ( )22 ,YX and the direction angle θ2 of the end turn 

node Nt
2 from the learned data, and convert θ2  into a vector 2V

v
 in a way 
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similar to that for computing 1V
v . Also, compute a vector ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

d
c

V 3

v
 which is 

perpendicular to 2V
v

. 

Step 3. Compute the middle point ( )CC YX ,  between ( )11,YX  and ( )22 ,YX . 

Step 4. According to geometry theory, compute a unique circle with center ( )OO YX ,  

using the two points ( )11,YX  and ( )22 ,YX  by the following equation: 
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Step 5. Compute a vector 4V
v  by the following equation: 
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Step 6. Convert 4V
v  into an angle θ3 by the following equation: 

if Y < 0 and X > 0, then set θ3= ⎟
⎠
⎞

⎜
⎝
⎛−− −

Y
X1tan180 ; 

if Y < 0 and X  < 0, then set θ3 = ⎟
⎠
⎞

⎜
⎝
⎛− −

Y
X1tan180 ; 

otherwise, set θ3 = ⎟
⎠
⎞

⎜
⎝
⎛− −

Y
X1tan . 

Step 7. Turn the vehicle leftward for the angle of θ3 if θ3 is larger than zero; 

otherwise, turn the vehicle rightward for the angle of θ3. 

Step 8. Set the speeds of the two wheels individually by the following equations: 

wRR
V
V

R
R

R

L =−= 12
2

1 ,  

where VL and VR are the speeds of the left wheel and the right one, 
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respectively; R2 and R1 are the distances from the center of the circle to the 

left wheel and the right one, respectively; and w is the width of the vehicle. 

(An illustration of the situation and the notations is shown in Fig. 5.1.) 

Step 9. Start the curve following action until the end turn node is reached. 

Step 10. Turn the vehicle to the original direction specified in the learned data, and 

finish the turning session. 

 

 
Figure 5.2 A figure illustrating curve following process. 

Fig. 5.1 : An illustration of computing two wheel speeds for the case of 
turning rightward in curve following. 

R2 

R1 w 
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Since the smooth curve following process uses no computer vision technique, the 

vehicle will lose the collision avoidance capability during a curve following process. 

Therefore, we use an additional method to improve this process before entering a 

turning section. 

An image will be captured before a curve following process is executed. We first 

define a rectangular window in a captured image, as shown in Fig. 5.2. Then the 

proportion of the route area in the window is defined to be an indicator, which is used 

to indicate whether the curve following process can be executed or not. If the value of 

the indicator is higher than 90％, it means that the curve following process can be 

executed; otherwise, cannot. 

 

Figure 5.3  A figure illustrating the check process before curve following process 
(a) A case that the curve following process can be executed (b) A case 
that the curve following process can not be executed 
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5.2.3 Process of Proposed Navigation in Single Path 

Mode 

With the methods proposed previously, including the line following method for 

straight-line sections and the smooth curve following method for turning sections, a 

navigation procedure for the single path mode can be designed for the purpose. 

Several steps of the process proposed in this study are described as follows, and its 

corresponding figure is shown in Figure 5.3. 

Algorithm 5. Proposed process of navigation in single path mode. 

Step 1. Scan the node list of a created path from the starting point sequentially and 

read its associated data. 

Step 2. If the currently processed node is a check node, then perform the line 

following process until the vehicle arrives at this node. And perform the 

corresponding navigation accuracy maintenance strategy to fix certain 

navigation errors. 

Step 3. If the currently processed node is a turn node, then take the following action. 

a. If the next processed node is a turn node also, perform the line following 

process until the vehicle arrives at this turn node. And perform the smooth 

curve following process until the vehicle arrives at the next turn point. 

b. Otherwise, perform the navigation accuracy maintenance strategy for the 

smooth curve following process to fix certain navigation errors. 

Step 4. If an ending point flag is found with the currently processed node, then end 
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this navigation trip. 

Note that the navigation accuracy maintenance strategy performed in Step 3 and 

4 will be described in Section 5.4. 

5.3 Navigation in Area Mode 
After a learning process for navigation in the area mode is completed, a 

generated path map is only composed of a set of connected nodes with undirected 

inter-node edges. Without a starting spot and an ending one, a navigation path cannot 

be generated for the vehicle to accomplish the navigation task. Therefore, a process is 

designed for this purpose, which generates essential data for later path planning, 

including a set of starting and ending spots and a set of weights of the inter-node 

edges. When these essentials data are acquired from the above transformation process, 

the Dijkstra algorithm is used to plan a shortest path for later navigation task. After 

that, the proposed navigation method can be employed to traverse the navigation path. 

5.3.1 Generation of essential data for path planning 

When users want to order the vehicle to carry out a navigation task in the area 

mode (e.g. from a bedroom to a living room), he/she only needs to press two buttons 

on the user interface designed in this study to choose a start room and an end room. 

Afterward, before a navigation path is planned using the Dijkstra algorithm, a 

generation process is designed for computing a weight for each inter-node edge and 

identifying the connectivity between each node pair. If the weight of an inter-node 

edge between two nodes is equal to ‘0’, that means the two nodes are disconnected, 
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otherwise, the two nodes are connected. An algorithm designed for this purpose is 

described as follows. 

 

 

Figure 5.4 A figure to illustrate a process of proposed navigation procedure in 
single path mode. 
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Algorithm 6. A process of essential data generation. 

Step 1. Take a learned path map as input, and identify the weight and connectivity 

of each inter-node edge by processing all nodes within the learned path map 

sequentially. Let the currently processed node be denoted as N0, the 

previously processed one as N−1, and the next processed one as N+1. 

Step 1.1. If N0 is a “check node”, then do the following. 

a. If N−1 is an “initial node” or a “check node”, calculate the distance between 

N−1 and N0 and mark this distance as a weight of the edge between the two 

nodes. Otherwise, set the weight of the edge between N-1 and N0 to be 0. 

b. If N1 is an “initial node” or a “check node”, calculate the distance between 

N1 and N0 and mark this distance as a weight of the edge between the two 

nodes. Otherwise, set the weight of edge between N1 and N0 to be 0. 

Step 1.2. If N0 is a “turn node”, then 

a. Calculate the distance between N-1 and N0, N1 and N0, and mark these two 

distances as the weights of the edges. 

b. Calculate each distance between N0 and the other nodes in the path map, 

and if certain distance is within a predefined range, mark this distance as 

the weight of the edge between N0 and the node. Otherwise, set the weight 

of the edge to be 0. 

Step 1.3. If N0 is a “room node”, then 

a. Calculate the distance between N-1 and N0 only, and mark this distance as 

the weight of the edge between N-1 and N0. 

Step 2. Repeat Step 1 until all input nodes are processed. 

After the above algorithm is performed, the data of the learned path map is more 
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complete, including a set of nodes and the weights of the inter-node edges. An 

example of the resulting graphs is shown as follows to illustrate the result of 

performing this algorithm. 

 

 

 
Figure 5.5 An example to illustrate result of performing the proposed algorithm. 
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5.3.2 Dynamic Path Planning using Dijkstra 

Algorithm 

After the weight of each inter-node edge in a learned path map is created, regard 

each weight as a cost value. Then we can think the path planning problem as a 

minimal-cost graph search problem. The demand in our work is to search a shortest 

path with the minimal cost if a start point and an end point are given. For this purpose, 

the Dijkstra algorithm, which can solves a single source shortest path problem, is 

employed in our work. The Dijkstra algorithm solves the single-source shortest paths 

problem on a weighted directed graph, with the weights of all the edges being 

non-negative. Giving a desired start node, the Dijkstra algorithm searches the graph 

using a way similar to both the breadth-first search and the Prim algorithm for 

computing a minimum spanning tree, and plans a shortest path from the source to 

each other node. 

A review of the principle of the Dijkstra algorithm is as follows. The Dijkstra 

algorithm maintains a set S of nodes, which have shortest paths from the source N to 

all the nodes which have already been found. Initially, the costs of a given start node, 

say N, to all the other nodes are set to infinity. At the beginning, S contains N only. 

Then, the node C, which is not in S yet and has the minimum cost, is added into S at 

each search iteration. And for the nodes not in S, the costs of those incident nodes 

from C, which means those with emitting directed links to C, are updated if the 

following condition is satisfied: 

Cost(N,C)+Cost(C,M)<Cost(N,M)               (5.1) 

where M is one of the nodes which is incident from C. and 
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Cost(N,C) = the cost of the path from N to C so far, 

Cost(C,M) = the cost of the directed link from C to M 

Cost(N,M) = the cost of the path from N to M so far. 

If the inequality (5.1) is satisfied, update the cost of the current shortest path to 

M with Cost(N,C)+Cost(C,M). Besides, add the node M to the node sequence of the 

current shortest path from N to C. End the search process when the desired goal is 

added into S. 

The desired shortest path is found in a form of a node sequence. More details 

about the Dijkstra algorithm can be found in Cormen [9]. 

5.3.3 Navigation Strategy among Room Nodes 

After a navigation demand from one room to another is given , a path is planned 

dynamically using the above-mentioned methods, and the remaining task is to guide 

the vehicle to navigate along the planned path. And this work can be accomplished 

using two navigation strategies proposed in this study, which are the same as those in 

the single path mode, namely, the strategies of line following and smooth curve 

following. 

But, a little bit difference still exists in the smooth curve following process 

between two kinds of navigation modes. In the previous section, it was mentioned that 

both directions of the initial turn node and the ending turn node are essential data for 

accomplishing the smooth curve following process. And these directions are recorded 

during a learning process in the single path mode. On the contrary, no direction data 

are retrieved from the odometer during the learning process in the area mode, and so 

no direction data are recorded with each node in the created path map consequently. 

As a result, if we want to use the smooth curve following process during a navigation 
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task in the area mode, the direction data of each path node must be created manually. 

A process of direction data creation is described as follows. 

Algorithm 7. Process of direction data creation 

Step 1. Scan each path node with its coordinate data orderly from a start node. Let 

the currently processed node be denoted as N0, the previously processed one 

as N−1, and the next processed one as N+1. 

Step 1.1. Set the direction value of the start node to zero. 

Step 1.2. If the difference in distance between the X coordinate value and the Y 

coordinate value of N0 and N-1 are both smaller than a predefined 

threshold value Thc, regard the direction of N0 to be equaled the 

direction to N-1. 

Step 1.3. If the difference in distance between the X coordinate value or the Y 

coordinate value of N0 and N-1 is larger than a predefined threshold 

value Thc, regard N0 and N-1 as two “turn nodes” and that the direction 

value of N0 and the direction of N-1 are perpendicular to each other. An 

illustrative example is shown in Figure 5.6. 

Step 2. Repeat Step 1 until all input nodes are processed. 

After the type of each path node and its associated direction data are created by 

the above algorithm, the navigation task in the area mode can use the same navigation 

methods as those used in the single path mode. 
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5.3.4 Process of Proposed Navigation in Area Mode 

With the previously-described methods, including a method for generating 

essential data for path planning a dynamic path planning method, and a navigation 

strategy, the proposed navigation process for the area mode now can be described as 

follows, and its corresponding figure is shown in Figure 5.7. 

Algorithm 8. Process of proposed navigation in area mode. 

Step 1. Analyze a request from users to get a start node and an end one of a given 

navigation task. 

Step 2. Generate essential data, including the weight of each inter-node edge in the 

learned path map for later path planning. 

 
Figure 5.6.  An illustrative example to show the direction creation of two turn 

nodes, where 1 represents node N-1 and 2 represents node N0 
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Step 3. Take as input the start node and the end one to generate a shortest 

navigation path by the Dijkstra algorithm. If the number of the user requests 

is larger than one at a time, then take as input the start nodes and the end 

nodes orderly to get multiple paths. 

Step 4. Perform the direction creation process to create the direction of each node 

in the navigation paths which are the output from Step 3. 

Step 5. Start to navigate along the created navigation paths using Algorithm 5. 

Step 6. Repeat Step 5 until all required rooms are visited. 

 

Input a navigation 
request 

Essential data 
generation 

Dynamic path 
planning 

Direction 
data creation 

Single path 
navigation 

End area mode 
navigation 

If no more room are 
required to navigate 

Still have room are 
required to navigate 

A set of start nodes and end 
nodes are given 

Figure 5.7 A figure to illustrate proposed navigation process in the area mode 
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5.4 Strategy for Fuzzy Navigation 
Accuracy Maintenance 

With the navigation strategies mentioned in Section 5.2 and Section 5.3, the 

vehicle can accomplish any navigation task in the single path mode and the area mode. 

But it does not mean that the vehicle will navigate correctly all the time; certain errors 

may occur during the navigation session. For instance, when the vehicle tries to avoid 

an unexpected collision, it may deviate from its original path. If no accuracy 

maintenance method is performed, the navigation error will accumulate continuously 

with possible failures in the navigation task . Therefore, four methods for fuzzy 

navigation accuracy maintenance are proposed in this study as described in the 

following. 

5.4.1 Comparison of Navigation Distances 

When the vehicle navigates in a straight section, which is from one check node C1 

to another C2, the condition of ending the section is that the navigation distance is 

equal or larger than the learned distance of this section, where the navigation distance 

Nd is obtained from the odometer and the learned distance Ld is calculated from the 

distance between C1 and C2. Therefore, a threshold thd is defined for the comparison 

of the navigation distance and the learned distance, and the comparison is performed 

according to the following inequality: 

ddd thLN <− . 

If the value of Nd satisfies this inequality, then the vehicle will stop going forward and 
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end this section. So we can maintain the location precision of the line-following 

navigation. Note that the threshold value thd is predefined and must be a suitable one, 

because larger thd is meaningless and may cause larger accumulative errors in each 

navigation section, and smaller thd may cause a problem that the vehicle may never 

stop to enter the next navigation session. 

5.4.2 Comparison of Directions 

Before entering the next navigation session, a check of navigation accuracy 

maintenance will be performed when a navigation section is accomplished. The 

direction data of each learned node can be used to fix the direction of the vehicle at 

the end of every navigation session. When the vehicle arrives at one node in the 

navigation, the directionθN of the vehicle at this time and the directionθL of the 

learned node can be obtained from the odometer and the learned data, respectively. 

And in order to fix the direction θN to be identical to the direction θL, we use the 

following equation: 

 

LNF θθθ −=  

where θF is the fixing angle to be turned. After fixing the direction of the vehicle, it 

will enter the next session. Without performing this check, the vehicle will deviate 

from its trajectory and get lost gradually. 

5.4.3 Smooth Curve Following Process 

Before entering a turning section, errors might be accumulated from the previous 
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navigation section, because a few errors may occur after accomplishing each straight 

line section. So when the vehicle arrives at the “initial turning point,” the location of 

the vehicle at this time may not be close to the location of the learned data at this node. 

But the proposed curve following process is still working at this time. Because the 

proposed curve following process is performed only with the requirement of correct 

global coordinates and the direction of the “end turning node,” it can be utilized to 

achieve the goal of navigation accuracy maintenance. An illustrative example is 

shown as Figure 5.5. 

 
 

 
Figure 5.8 An example to illustrate the usability of smooth curve following for 

navigation accuracy maintenance. 
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5.4.4 Adjustment of Beginning Position 

When a navigation task from one room to another is finished, the position of the 

vehicle may not be close to the destination of the last navigation task, because certain 

collision avoidance or wheel drifting may occur during the navigation process. If a 

navigation task is given another destination at this time, the position of the vehicle at 

this time will be regarded as a new beginning. And the new navigation task may fail 

due to a deviation of the position between the new beginning and the beginning of the 

newly planned path. Therefore, an adjustment method is designed to adjust the 

position of the beginning of the newly planned path with the result that can make the 

deviation to cause no influence on the next navigation task. The method is described 

as an algorithm in the following. 

Algorithm 9. Adjustment of beginning position. 

Step 1. Record the real position of the vehicle when a navigation task is just finished, 

and denote it as (Xreal,Yreal). 

Step 2. Read the position of the end node of the finished navigation task, and denote 

it as (Xold,Yold). 

Step 3. Calculate the X and Y differences between (Xreal,Yreal) and (Xold,Yold) in 

terms of the Euclidean distance, and denote them as (dx,dy). 

Step 4. Read the position of new beginning of the next navigation task, and denote it 

as (Xnew,Ynew). 

Step 5. Add (dx,dy) to (Xnew,Ynew) to get (Xnew+dx,Ynew+dy) as a beginning of the 

new navigation task. 
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Chapter 6  
Person Following in Corridors 

6.1 Introduction 

In the application of person following, the proposed fuzzy guidance technique is 

used to guide the vehicle to navigate in corridors. Besides, an unexpected object may 

appear in the corridor when the vehicle navigates along the corridor. And the 

unexpected object might be just a static obstacle or a moving object, like a human. 

The goal of this application is to detect the unexpected object appearing in the 

corridor and identifying it as a human or not, and then perform the person following 

process if a human is identified. 

The proposed person following process consists of three stages, image 

preprocessing, human identification, and human tracking. In the stage of image 

preprocessing, several image processing techniques are integrated to detect an 

important feature of the unexpected object appearing in the corridor. The feature is 

useful information to identify the object as a human or not. More detail about the 

stage will be described in Section 6.2. 

After the essential feature is obtained from the previous stage, a strategy is 

proposed to detect humans in every navigation cycle. Analyzing the feature of a 

human’s feet is the main idea of this strategy because the feet of a human are a 

common feature in general cases. The stage will be described in Section 6.3. 

After an unexpected human is detected, the proposed person following process is 

performed until the human disappears within the eyesight of the vehicle. Because the 
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person following process is combined with the proposed fuzzy guidance technique, 

consideration of simultaneous use of the two proposed techniques is necessary. 

Otherwise, certain tracking or guidance errors might be incurred. More details about 

the topic will be described in Section 6.4. 

6.2 Image Preprocessing for 
Unexpected Object Detection in 
Corridors 

Generally speaking, the scene of a corridor is composed of three parts, ground, 

wall, and baseline. An example of corridor images grabbed in our experimental 

environment is shown in Figure 6.1(a). Since the camera is onboard at a very low 

position, the ratio of the ground region in the captured image is larger than those 

captured at higher views. Moreover, an object is regarded as standing on the ground 

usually. Therefore, we focus on searching unusual objects appearing on the ground in 

corridors. Nevertheless, since the eyesight of the vehicle is not so far due to the 

performance of the wireless camera on the vehicle, an object looks like very small 

when the distance between it and the vehicle is too long. Hence, a valid search 

distance is also defined to increase the detection probability. 

In this section, an image analysis algorithm is designed for detecting an 

unexpected object appearing on corridor grounds. The goal of this algorithm is to 

detect the physical region of an unexpected object and analyze its lower part to extract 

a feature, called Object Foot. This feature can be employed to identify an unexpected 

object as a human or not, as described in Section 6.3. The algorithm is described as 
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follows. 

Algorithm 4. Detection of Object Foot. 

Step 1. Convert an input image into a binary one with a threshold Tb, which is 

defined in advance. An illustrative example is shown in Fig. 6.1(c). 

Step 2. Find the connected components in the binary image to search two 

approximation lines of the lower baseline at both sides and mark them as red 

lines in the image. An illustrative example is shown in Fig. 6.1(d). 

Step 3. Scan the binary image from left to right and from bottom to each of the two 

marked red lines vertically, respectively. Record the image coordinates of 

each point when the scan line encounters a white point. An illustrative 

example is shown in Fig. 6.1(e). 

Step 4. At each point recorded in the previously step, find the connect components 

to search white points. If the number of found connected points is larger than 

the predefined value in a search time period, then the set of connected points 

will be regarded as an Object Foot. An illustrative example is shown in Fig. 

6.1(f). 

Step 5. Perform Step 1 through Step 4 recursively until all Object Foots are found in 

the image. 
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Figure 6.1 Images of several image processing results (a) A corridor image. (b) An 

unexpected object is appeared. (c) Binary thresholding of (b). (d) Two 
approximation lines are found. (e) Scan the lines vertically from bottom 
to the approximation lines. (f) An Object Foot is found (yellow points). 
(g) Another example. (h) Two Object Foots are found. 
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6.3 Human Identification 

After the feature of an unexpected object, Object Foot, is obtained through the 

image analysis algorithm described in Section 6.2, the next job is to analyze the 

characteristic of the Object Foot feature for deciding the unexpected object as a 

human or not. Therefore, an identification algorithm is proposed for the purpose. 

The concept of this identification algorithm is to analyze the variation of Object 

Foot values in a predefined time period. And the idea is based on a common sense, 

“humans have feet surely.” The details of the identification algorithm are described as 

follows. 

Algorithm 5. Human identification process. 

Step 1. Define a time period (e.g., 3 seconds), and transform it into a number of 

cycle times, which will be denoted by C1~i. For example, if a cycle time is 

0.5 second, then a time period of 3 seconds is regarded as six cycles, denoted 

by C1~6. 

Step 2. Perform the above-mentioned image analysis algorithm to obtain the Object 

Foot feature in each cycle in the time period C1~i. Denote the Object Foot 

feature with its index at the corresponding cycle by Oi
j, where j denotes the 

index of Object Foot and i denotes the index of the cycle. For example, if the 

index of Object Foot at the third cycle is 2, then it will be denoted by O3
2. 

Step 3. If the total number of Oi
2 is larger than that of Oi

1 in the time period C1~i, 

then decide that the unexpected object is a human; otherwise, not a human. 
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According to our experimental results, the index i of the C4~i is suggested to be 

larger than 4. Then the probability of a successful human identification will become 

higher. 

6.4 Human Tracking by Feet 
Positions 

After an unexpected person is detected, a human tracking method is proposed for 

the vehicle to track the person until he/she disappears in the view of the vehicle. 

Moreover, besides the works of image analysis and human identification, human 

tracking is another important work which belongs to the proposed person following 

process. Hence, the detail of the human tracking method will be described in the 

following. 

The essence of the method is to track the feet positions of the unexpected person. 

Therefore, Object Foot, can be employed as a tracking target. Then, an angle between 

two lines, a forward direction of the vehicle and a direction line from the tracking 

target to the vehicle, is calculated for steering the vehicle to track the person. But the 

number of the detected Object foot of a human may be one or two in each navigation 

cycle sometimes. The tracked target might also be changed in two different types. In 

the proposed tracking process, the middle point of a connected line of two Object 

foots is regarded as a type of tracking target; otherwise, the middle point of only one 

Object Foot is regarded as another type of tracking target. An illustrative example of 

tracking targets of the two types is shown in Figure 6.2. The tracked target is 

projected to a vehicle coordinate system before calculating the angle in between, and a 
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distance between the tracked target and the vehicle is also calculated. 

After the steering angle is calculated, another problem is to define a suitable 

cycle time of navigation. As mentioned previously, the fuzzy guidance technique is 

proposed for vehicle navigation in corridors. Therefore, two processes, fuzzy 

guidance and human tracking, must be accomplished in a navigation cycle. To define 

a suitable cycle time is important for smoother navigation and keeping the direction of 

the vehicle stable. For this reason, the predefined cycle time in our system is set to 0.5 

second, and satisfactory experimental results could be obtained. 

 

6.5 Process of Person Following 

By integrating the methods described previously, a process of person following is 

designed to detect an unexpected object in corridors and identifying the object as a 

Figure 6.2 An example to illustrate the position of tracking target. 
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human or not. Furthermore, the human tracking process is performed after a human is 

detected. As illustrated in Figure 6.4, the algorithm of the person following process is 

described as follows. 

Algorithm 6. Person following process. 

Step 1. Perform the above-mentioned image analysis algorithm to each captured 

image, and compute the feature Object Foot in each navigation cycle. 

Step 2. Perform the above-mentioned human identification algorithm when a set of 

Object Foots is collected. 

Step 3. If an human is detected, then do the following steps. 

a. Announce a warning message to the system if this human appears for the 

first time. 

b. Calculate the steering angle θi according to the tracked target in each 

navigation cycle. If the angle is positive, turn the vehicle leftward for the 

angle; if the angle is negative, then turn the vehicle rightward for the angle. 

c. Calculate the distance di between the tracked target and the vehicle, and if 

the distance is smaller than a predefined threshold, end the person following 

process and announce a message to the system. 

d. Perform the fuzzy guidance process. 

e. Repeat Step 1 through Step 3, until the human disappears in the eyesight of 

the vehicle. 
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Figure 6.3 A process of person following 
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Chapter 7  
Experimental Results and 
Discussions 

7.1 Experimental Results 

In this section, we will show certain navigation results in a complicated room 

environment. All experiments of this study were conducted in a laboratory in a 

building in National Chiao Tung University. In Section 7.1.1, a navigation result in 

the single path mode is shown, and in Section 7.1.2, a navigation result in the area 

mode is shown. 

7.1.1 Navigation in Single Path Mode 

In the learning stage, we controlled the vehicle to learn a path from one spot to 

another in our laboratory. The learned path is marked as a yellow dotted line and an 

example is shown in Figure 7.1. After the manual learning process, the proposed path 

map creation process was performed to create a path map with a set of nodes and 

directed edges. The set of nodes for the previous example are also shown in Figure 

7.1, in which the directed edges (marked by blue or green arrows) are connected. 

In the navigation stage, the vehicle begins to navigate along the learned path 

autonomously. Two kinds of navigation strategies are performed in corresponding 

navigation sections. Line following was performed in straight-line sections, which are 

marked as blue lines in Figure 7.1. Curve following was performed in turning sections, 
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which are marked as green lines in Figure 7.1. And certain representative images are 

also shown in Figure 7.1 (numbered from one to sixteen), each of them showing the 

corresponding situation in the navigation session. 

Besides, collision avoidance is another important capability of the proposed 

vehicle system, and also can be seen in this experimental result. In images (6) and (11) 

in Figure 7.1, two obstacles were put on the ground and obstructed the learned path in 

advance before navigation. Several suitable steering angles were calculated by the 

proposed fuzzy guidance techniques to avoid the obstacles. 

The speed of the vehicle used in this navigation is set to be 10 cm/sec. Moreover, 

the computing time of each navigation cycle is about 0.5 seconds. 

7.1.2 Navigation in Area Mode 

At the learning stage, we first selected an initial node as a start point, and 

controlled the vehicle to move from the start point to two spots in our laboratory. 

These two spots are defined as room 1 and room 2, respectively. The positions of the 

room nodes, the initial node, and the two learned paths are shown in Figure 7.2. The 

path map creation process was performed to create a map with a set of nodes and 

undirected edges. 

At the navigation stage, a user command was given, which ordered the vehicle to 

move from room 1 to room 2 and back to room 1. At the beginning, the essential data 

generation process was performed to generate the weight of each edge in the learned 

path map, and the dynamic path planning process was also performed to plan a 

shortest path from room 1 to room 2. After these works were finished, the vehicle 

began to navigate along the path. When the vehicle arrived at room 2, the dynamic 

path planning process was performed to plan a shortest path from room 2 to room 1. 
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And certain representative images taken in the navigation are shown in Figure 7.3 

through Figure 7.7; each of them showing a corresponding situation during the two 

navigation trips. In Figure 7.3, some pictures of the system interface are shown in 

Figures 7.3 (1) through (3). The image at the lower left part of the system interface 

was grabbed with the wireless camera on the vehicle at each navigation cycle. In the 

meanwhile, the image at the lower right part of the system interface shows a result of 

fuzzy guidance processing. 

Besides, two situations of collision avoidance can be seen in Figures 7.3(8) 

through (10) and Figures 7.4(22) through (24). Especially in the latter situation, the 

vehicle was backing to room 1 and close to the destination. Since the position of the 

room node was very close to a piece of furniture (at about 40 cm aside), when the 

vehicle got close to the room node, it tried to turn its direction to avoid possible 

collisions. Therefore, the distance between room 1 and the final stop spot may be 

larger than expected. This kind of situation can be solved by adding a learning rule, 

which says that at least one meter between the position of a room node and its 

surrounding furniture should be maintained. 

The speed of the vehicle used in this navigation is set to be 10 cm/sec. Moreover, 

the computing time of each navigation cycle is about 0.5 seconds. 
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Figure 7.1 An experimental result of navigation in single path mode. 
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Figure 7.2. An experimental result in area mode (1). 
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Figure 7.3 An experimental result in area mode (2). 
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Figure 7.4 An experimental result in area mode (3). 
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7.2 Discussions 

We discover certain problems by analyzing the experimental results. And these 

problems are described as follows. 

(1) The floor of the indoor environment has to be as flat as possible. If certain little 

bulges or hollows appear on the floor that the vehicle has to pass, then the 

moving direction of the vehicle will diverge. And this kind of situation cannot 

be detected in the proposed system, so if this situation occurs too often, then the 

vehicle will get lost gradually. 

(2) Because of the small height of the camera on the vehicle, the eyesight of the 

vehicle is from about one to five meters. In other words, if an unexpected object 

appears suddenly in front of the vehicle and the distance between the object and 

the vehicle is smaller than one meter, then this object cannot be seen by the 

vehicle and the proposed fuzzy guidance technique cannot work to avoid the 

collision, either. 

(3) The color of the floor in a navigation environment must be different from those 

of other objects. If the color of a certain object (e. g., a piece of furniture) is too 

similar to the color of the floor, then this kind of object will be regarded as part 

of the route area. Therefore, the proposed fuzzy guidance technique may not 

lead the vehicle to avoid probable collisions correctly. 
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Chapter 8  
Conclusions and Suggestions for 
Future Works 

8.1 Conclusions 

Several techniques and strategies have been proposed in this study and integrated 

into an autonomous vehicle system with fuzzy guidance and simple learning 

capabilities. Satisfactory navigation results have been.  

At first, a simple nonvisual learning strategy with two modes has been proposed 

for different navigation needs. Less data are acquired in the proposed learning process 

without causing instable and imprecise navigation results. Next, fuzzy guidance 

techniques which are based on the fuzzy theory and computer vision techniques have 

been proposed for guiding a vehicle safely in indoor environments with complicated 

scenes. The navigation is based on a collision avoidance concept using fuzzy-control 

-rules and image analysis techniques. Two kinds of navigation strategies, namely, line 

following and curve following, have been proposed to guide smoothly a vehicle in 

two different types of navigation sessions. And the experimental results showed the 

feasibility of the proposed method. 

In addition, a person following process has been proposed to track the detected 

human appearing in navigation paths. A sequence of processes, namely, object 

detection, human identification, and human tracking, have been proposed to detect an 



 87

unexpected object and to identify it as a human or not. After an occurrence of a 

human is confirmed, a human tracking process is performed to track it continuously 

until the human disappears in the eyesight of the vehicle. 

8.2 Suggestions for Future Works 

The proposed strategies and methods, as mentioned previously, have been 

implemented on a small-vehicle system. Several related interesting issues are worth 

further investigation in the future. They are described as follows. 

(1) Finding a method to calibrate the odometer during the navigation process, 

using certain external devices like a compass. Besides, fixed cameras in the 

navigation environment can be used to locate the vehicle accurately. 

Therefore, odometer calibration can also be achieved using the location data 

given by the fixed cameras. 

(2) Adding the capability of starting navigation from arbitrary start points when 

users demand the vehicle to move to other room spots. 

(3) Adding the capability of voice control when users want to issue navigation 

orders to the vehicle. 

(4) Analyzing the gait of a human from his/her back view to identify him/her. 

(5) Adding the ability of detecting the situation that an unexpected human looks 

on the vehicle and trends to move closer to the vehicle. 

(6) Finding a wireless network camera to replace the wireless 2.4G camera, 

aiming at reducing electric wave interference. 

(7) Designing a camera system with a capability of panning, tilting, and 
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swinging. 
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