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Abstract—An ��� �� permutation array (PA) is a subset of ��
with the property that the distance (under some metric) between
any two permutations in the array is at least �. They became pop-
ular recently for communication over power lines. Motivated by an
application to flash memories, in this paper, the metric used is the
Chebyshev metric. A number of different constructions are given,
as well as bounds on the size of such PA.

Index Terms—Bounds, Chebyshev distance, code constructions,
flash memory, permutation arrays.

I. INTRODUCTION

L ET denote the set of all permutations of length .
A permutation array of length is a subset of . Re-

cently, Jiang et al. [5], [6] showed an interesting new appli-
cation of permutation arrays for flash memories, where they
used different distance metrics to investigate efficient rewriting
schemes. Under the multilevel flash memory model, we find the
metric induced by the norm very appropriate for studying the
recharging and error correcting issues. This metric is known as
the Chebyshev metric. We consider a noisy channel where pulse
amplitude modulation (PAM) is used with different amplitude
levels for each permutation symbol. The noise in the channel is
an independent Gaussian distribution with zero mean for each
position. The received sequence is the original permutation dis-
torted by Gaussian noise, and its ranking can be seen as a per-
mutation, which can be different from the original one.

To study the correlations between ranks, several metrics on
permutations were introduced, such as the Hamming distance,
the minimum number of transpositions taking one permutation
to another, etc. [3], [7]. For instance, Stoll and Kurz [14]
investigated a detection scheme of permutation arrays using
Spearman’s rank correlation. Chadwick and Kurz [2] studied
the permutation arrays based on Kendall’s tau.

Under the model of additive white Gaussian noise (AWGN)
[4], there is a probability for any amplitude level to deviate from
the original one, which may yield a large Hamming distance but
with a rather small Chebyshev distance. Meanwhile, the original
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rank may still be in good shape even after some perturbation.
Observe that two permutations with a large Hamming distance
can actually have a small Chebyshev distance and vice versa.
They appear to complement each other in some sense. This in-
spired us to use the Chebyshev distance. Technically, with
norm, we find it is much easier to encode, decode and esti-
mate the sphere size of permutation arrays than with the other

norms.
In this paper, we give a number of constructions of PAs. For

some we give efficient decoding algorithms. We also consider
encoding from vectors into permutations.

II. NOTATIONS

We use to denote the set . denotes the set of
all permutations of . For any set , denotes the set of all

-tuples with elements from .
Let denote the identity permutation in . The Chebyshev

distance between two permutations is

An permutation array (PA) is a subset of with the
property that the Chebyshev distance between any two distinct
permutations in the array is at least . We sometimes refer to the
elements of a PA as code words.

The maximal size of an PA is denoted by .
Let denote the number of permutations in within
Chebyshev distance of the identity permutation. Since

, the number of permutations in
within Chebyshev distance of any permutation

will also be . Bounds on and will be
considered in Section IV.

III. CONSTRUCTIONS

In this section, we give a number of constructions of PAs, one
explicit and some recursive.

A. Explicit Construction

Let and be given. Define

for all

Theorem 1: If , where , then is an
PA and

Proof: Let and . For ,
we see that is a permutation
of the set . This set contains

elements if and so there are possible
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choices for and all can used.
Similarly, there are choices if . Hence, the total number
of permutations in is .

In particular, we get the following bound.

Theorem 2: If , where , then

Example 1: For , we get

We note that if , then and and so
. If , then , , and we have
as well. However, if , then . Especially,

when is small relative to , is much larger than . For
example, for , , .

This construction has a very simple error correcting algo-
rithm. For , we can correct error up to size in any
coordinate. For coordinate , the codeword has value

. Suppose that this coordinate is changed into
, where . Then is the integer congruent to

which is closest to . Therefore, decoding of position is done
by first computing

where . Then , and so we
decode into .

B. First Recursive Construction

Let be an PA of size , and let be an integer.
We define an PA, , of size as follows: for each
multiset of code words from

let

and include as a codeword in . It is clear
that under this construction the distance between any two
distinct , is at least . It is also easy to check that

. Hence, In particular, we
get the following bound.

Theorem 3: If and , then

Proof: Let be an PA of size . Then the con-
struction above gives an PA of . Hence,

.

C. Second Recursive Construction

For a permutation and an integer
, define

by

if

Let be an PA, and let

be integers. Define

Theorem 4: If is an PA of size and

then is an PA of size .

Theorem 5: If is an PA of size and , then
is an PA of size .
Proof: If , then

Next, consider . If , , then w.l.o.g, there
exist an such that . Hence

if
otherwise.

This proves Theorem 4. To complete the proof of Theorem 5,
we note that

and

Hence, , and so

The constructions imply bounds on .

Theorem 6: If , then

Proof: Let . Then . If
is an PA of size , then Theorem 4 implies that
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is an PA of size
. Hence, .

Example 2: In Example 1, we showed that the explicit con-
struction implied that . Combining Theorem
6 and search, we can improve this bound. We have found that

, see the table at the end of Section IV. From re-
peated use of Theorem 6, we get

Theorem 5 implies the following bound.

Theorem 7: If , then

Proof: Let be an PA of size . By Theorem
5, is an PA of size . Hence

Theorem 7 shows in particular that for a fixed

for (1)

We will show that is bounded. We show the fol-
lowing theorem.

Theorem 8: For fixed , there exist constants and such
that for . Moreover

(2)

and

(3)

Remark: The main point of Theorem 8 is the existence of
and . The actual bounds given are probably quite weak in

general. For example, Theorem 8 gives the bounds and
. In Theorem 9 below, we will show that and
. Theorem 8 gives and , whereas

numerical computation indicate that and .
We split the proof of Theorem 8 into three lemma.

Lemma 1: If , then .
Proof: Suppose that there exists an PA of size

. We call the integers

and

potent, the first smaller potent, the last larger potent. Two
potent integers are called equipotent if both are smaller potent or
both are larger potent. If the distance between two permutations

, is at least , then there exists
some position such that, w.l.o.g, , Then is a larger
potent element and is smaller potent. Each permutation in

contains potent elements and we call the set of positions

of these the potency support of the permutation, that is, the
potency support of is

The potency support of is the union of the potency support of
the permutations in , that is

for some

for some

Let . For each , , we have
. Hence, there exists some such that is potent.

Therefore, the set

and

contains at least elements. Hence, there is
an such that

is potent

Since

is potent is smaller potent

is larger potent

there exists a subset such that

and the elements in position are equipotent.
We can now repeat the procedure. Let . There must

exist an such that

is potent

Hence, we get subset such that

and the elements in position are equipotent (and the elements
in position are equipotent).

Repeated use of the same argument will produce for each ,
a set such that

and for positions , the elements in those positions
are all equipotent. In particular, , all permutations
in have the same potency support , and
for each of these positions, all the elements in that position
are equipotent. This is a contradiction since the distance be-
tween two such permutations must be less than . Hence, the
assumption that a PA of size larger than exists leads to
a contradiction.

Lemma 1 combined with (1) proves the existence of and
and gives the bound (2).
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Lemma 2: If is a PA of size where

then there exists a PA of size . In particular,
if , then

Proof: Replace all elements in range
in the permutations of by a star which will denote ”un-
specified”. The permutations in is transformed into vectors
containing the potent elements and stars. Note that if we
replace the unspecified elements in each vector by the integers

in some order, we get a permutation, and the
distance between two such permutations will be at least since
we have not changed the potent elements.

Since the length of is larger than , there exists
a position where all the vectors contains a star. Remove this po-
sition from each vector and reduce all the larger potent elements
by one. This given a set of vectors of length and such
that the distance between any two is at least . Replacing
the stars in each vector by in
some order, we get a PA of size .

If , then we get

Since by (1), the lemma
follows.

Lemma 3: If is a PA of size and , then

Proof: Each permutation has potency support of size .
The potency support of any two permutations in must overlap
since their distance is at least . Hence, each permutation after
the first will contribute at most new elements to the total
potency support. Therefore

Remark: By a more involved analysis, we can improve this
bound somewhat. For example, we see that two new permuta-
tions can contribute at most to the total support.

We can now complete the proof of Theorem 8. Let be a
code of size . By Lemma 3, .

If , then . Hence,
by Lemma 2, . Therefore,

, that is, (3) is satisfied. This completes
the proof of Theorem 8.

Theorem 9: We have for .
Proof: We use the same notation as in the proof of Lemma

2. Let be an PA. The only potent elements are 1
and . W.lo.g. we may assume the first permutation in is

where denotes some unspecified integer in the

Fig. 1. Algorithm mapping � to � .

range . W.l.o.g, a second permutation has one of three
forms

We see that if the second permutation is of the first form, there
cannot be more permutations. If the second permutation is of
the form , then there is only one possible form
for a third permutation, namely . Hence, we see
that and that for .

To determine along the same lines for
seems to be difficult because of the many cases that have to be
considered. Even to determine will involve a large
number of cases. For example, for the second permutation there
are 138 essentially different possibilities for the four positions
in the potency support of the first permutation. For each of these
there are many possible third permutations, etc.

D. Encoding/Decoding of Some PA Constructed by the Second
Recursive Construction

Suppose we start with the PA

For let

Then is an PA of size . For some applications, we
may want to map a set of binary vectors to a permutation array.
One algorithm for mapping a binary vector
into would be to use the recursive construction of by
mapping into a permutation in . Re-
cursively, we can then map to and

to .
However, there is an alternative algorithm which requires less

work. Retracing the steps of the construction, we see that given
some initial part of length less than of a permutation
in , there are exactly two possibilities for the next element,
one ”larger” and one ”smaller”. More precisely, induction shows
that if the initial part of length contains exactly ”smaller”
elements, then element number is either (the ”smaller”)
or (the ”larger”). This is the basis for a simple
mapping from to . We give this algorithm in Fig. 1.

We see that the difference between the larger and the smaller
element in position is . Hence, we can recover
from any error of size less than by choosing the closest



KLØVE et al.: PERMUTATION ARRAYS UNDER THE CHEBYSHEV DISTANCE 2615

Fig. 2. Decoding algorithm recovering the binary preimage from a corrupted
permutation in � .

of the two possible values, and the corresponding binary value.
We give the decoding algorithm in Fig. 2.

Without going into all details, we see that we can get a similar
mapping from -ary vectors. Now we start with the PA

For let for
and . Let

Then is an PA of size . Encoding and de-
coding correcting errors of size at most , based on the
recursion, is again relatively simple.

IV. FURTHER BOUNDS ON

A. General Bounds

Since for any two distinct permutations in
, we have . Therefore, we only consider .
Since the spheres of radius in all have size , we

can get a Gilbert type lower bound on .

Theorem 10: For we have

Proof: It is clear that the following greedy algorithm pro-
duces a permutation array with cardinality at least

.
1) Start with any permutation in .
2) Choose a permutation whose distance is at least to all

previous chosen permutations.
3) Repeat step 2 as long as such a permutation exists.
Let be the permutation array produced by the above greedy

algorithm. Once the algorithm stops, will be covered by the
spheres of radius centered at the code words in .

Thus, which implies our claim.

Similarly, we get a Hamming type upper bound in the usual
way.

Theorem 11: If , then

Proof: Let be an PA of size . The spheres
of radius around the permutations in are pairwise
disjoint. The union of these spheres is a subset of . Hence

and the bound follows.

If and is even, we can combine the bound in The-
orem 11 with Theorem 7 to get the following bound which is
stronger than the ordinary Hamming bound, at least in the cases
we have tested.

Theorem 12: If is even and , then

Proof:

Example 3: For and , Theorem 11 gives

whereas Theorem 12 gives

Remark: Remark. We can of course use Theorem 7 repeat-
edly times and then Theorem 11 to get

for all . However, it appears we get the best bounds for
when is even and when is odd.

In general, no simple expression of is known. A
survey of known results as well as a number of new results on

were given by Kløve [8]. See also Kløve [9] and [10].
Here, we briefly give some main results.

As observed by Lehmer [11], can be expressed as a
permanent. The permanent of an matrix is defined by

In particular, if is a -matrix, then

for all

Let be the matrix with if

and otherwise.

Lemma 4: .
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TABLE I
� AND ITS UPPER BOUND

Proof:

for all

for all

For fixed , satisfies a linear recurrence in . A proof
is given in [13] (Proposition 4.7.8 on page 246). For ,
these recurrences were determined explicitly by Lehmer [11],
and for by Kløve [8]. In particular, this implies that

where is the largest root of the minimal polynomial corre-
sponding to the linear recurrence of . Lehmer [11] de-
termined approximately for and Kløve [8] for

.
For an -matrix it is known (see [16, Theorem

11.5]) that

where is the number of ones in row .
For , we clearly have for all . Hence

for all (4)

and

In Table I we give and this upper bound.
We note that for large , .
Combining Theorem 10 and (4), we get:

Corollary 1: For , we have

Combining (33) and (34) in Kløve [8], we get the following
lower bound on :

(5)

TABLE II
BOUNDS ON � ��� ��

For odd, (5) gives

Combining this with Theorem 11 we get the following explicit
upper bound on .

Corollary 2: For odd and , we have

Similarly, for even, combining Theorem 11 and Theorem 12
with (5), we get the following.

Corollary 3: For even and , we have

The bounds on , both the upper and the lower, are
in most cases quite weak and so the bounds on also
become quite weak.

B. Table of Bounds on

We have used the following greedy algorithm to find an
PA : Let the identity permutation in be the first permutation
in . For any set of permutations chosen, choose as the next
permutation in the lexicographically next permutation in
with distance at least to the chosen permutations in if such
a permutation exists. The size of the resulting PA is of course a
lower bound on .

The lower bounds in Table II were in most cases found by this
greedy algorithm. For , , the greedy algorithm gave
a PA of size 26. However

by Theorem 7. Similarly

Some other of the lower bounds are also determined using The-
orem 7. They are marked by . The upper bound is the Hamming
type bound in Theorem 11 or it’s modified bound in Theorem
12. Since for all , this is not included in the table.
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V. CONCLUSION

We give a number of constructions of permutations arrays
under the Chebyshev distance, some with efficient error correc-
tion algorithms. We also consider an explicit mapping of vec-
tors to permutations with efficient encoding/decoding. Finally,
we give some bounds on the size of PAs under the Chebyshev
distance.

Tamo and Schwartz [15] independently considered this
problem and gave, among other results, a construction equiva-
lent to our first construction as well as some other constructions.
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