
»ñø;�.

é���.�é�@~X

}ÿ¡Z

�þnç­�Ù¿¬'�t·;�@~

On the Study of Design Optimization for
Network-on-Chip Platform

@~ß : rW¼
¼0>0 : øÿò

�ºÓ»Üè0O0`

�þnç­�Ù¿¬'�t·;�@~

On the Study of Design Optimization for
Network-on-Chip Platform

@~ß : rW¼ Student : Cheng-Yeh Wang
¼0>0 : øÿò Advisor : Jing-Yang Jou

»ñø;�.

é^.o é���.� é�@~X

}ÿ¡Z

A Dissertation
Submitted to Department of Electronics Engineering

and Institute of Electronics
College of Electrical and Computer Engineering

National Chiao-Tung University
in partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

in
Electronics Engineering

June 2007
Hsin-Chu, Taiwan, Republic of China

�ºÓ»Üè0O0`

�þnç­�Ù¿¬'�t·;�@~

.ß : rW¼ ¼0>0 : øÿò

»ñø;�.

é^.o é���.� é�@~X

`�

�½�Ùþn¹�ÝW��'��Ó�¦��ª±'�`�Î×Í¥�Ý�

Þ�.h&Æè��þnç­®ß �">mñf»ð®ß �|C¶°®ß

¼ª±'�Xm` �¯�Ù'�ï�|">Ýÿáé­Ý©P�¯é­'�ï

�|ÿÕ×Í�?Ý'��

3Í@~��&Æè�{[��þnç­�Ù�qAÌaé­øð�¸àÝò

Ý;¼�ø�2àf¥5g�ÑaVø4�&Æ�|¾Õ|ìÝ©P� (1)1J

�´ (2);6B7�¸à (3)�º®ßi��h²&Æ�è�;G0'Ý��¼�

�Õ°�h�Õ°¸àß�,�Ý�¯�¯�ÙÀ�§�æt�;�.h@®Ý

` ÞãÝç­ÿa ày5�ç­ø��;G­ÊÝ£G�|�5��¬v/

i

�Õt·;ø��3t·;Ýø���.` �è Ý;G­Ê×R�Ê�¯�

ÙÝ;G­ÊªÕt±�h²ãy�´�æbÍÁ§��´mOø�Á§`�J

Í�Ùº�ÍÁ§X§×��.h�´ÝmOº��ÊÕ�3h�Õ°���Ê

Õ;G�|C;G­ÊÝÏµ�8´y^b�ÊÝÏµì��Ù[�è� 20%�

h²�jEÑaP">mñf»; ÝC-��t·;è��)PÝ]°�h

]°¸à">Ù�5�|CÞãÿa5�¼¾Õ�>t·;Ýø��s"�Ù�

îÝ�!C-��Ýý0ÿlàyht·;ø��h²�{�8nÝÿl�hã

�¼�Õ�®�£�|¾Õ¸àïÝ�£�O�3t·;ÝÄ���qA¸àï

Ý§×�´�0�t·���ÝP���bt·�Ý�P�|b[Ýª±t·�

Ýè �h�)P]°8´yöÜÝÿa5��|b[Ý3KXmÝ£` �8

´yöÜÝÙ�5����ÿ?�Þ@Ý���

t¡�×Íb[£Ý)W�Õ°�è�ày¶° Ý��®ß �h)W�Õ

°3&!JÝWÏ)W®Þî�ÊÕ�ìà;ô|C�a;ô�qA)WWÝÕ

¾` |CTÕ` Ý�O��|¿ÉßWWÝ­5;ô�¸à±�ÝWÏßW

�Õ°��ÊÕN×f­5Ý;ô�X�xÝ)W �|®ß{>�|C�«�

Ý¶° �

ii

On the Study of Design Optimization for
Network-on-Chip Platform

Student : Cheng-Yeh Wang Advisor : Jing-Yang Jou

Department of Electronics Engineering

and Institute of Electronics

National Chiao-Tung University

Abstract

As System-on-Chip (SoC) designs progressively grow, reducing the development time

becomes a crucial challenge. Therefore, the Network-on-Chip (NoC) generator, the FFT

generator, and the multiplier generator are developed for reducing the design time.

In this work, a high-performance Network-on-Chip platform is presented. To achieve

(1) bandwidth guarantee (2) economical memory usage, and (3) deadlock free, the virtual-

circuit switching with dedicated connection path, virtual channel flow control with weighted

iii

round-robin scheduling, and the pipelined bus are used. To perform the task binding,

a communication-driven task binding algorithm is proposed. This algorithm employs

profile-driven strategy to bind tasks onto the NoC such that the overall system throughput

can be maximized. To analyze the network traffic, a cycle-accurate network simulator is

hence implemented. The traffic contention information is analyzed, and then fed back to

the proposed optimization flow. The effects of communication amount, traffic contention,

and bandwidth requirement are considered to perform the task binding. The overall sys-

tem throughput is improved up to 20% for 100 test cases as compared with the task binding

without considering the communication and contention effects.

This thesis also describes a novel hybrid method for the wordlength optimization of

pipelined FFT processors which is the arithmetic kernel of OFDM-based systems. This

methodology utilizes the rapid computation of statistical analysis, and the accurate evalu-

ation of simulation-based analysis to investigate a speedy optimization flow. A statistical

error model for varying wordlengths of PE stages of an FFT processor is developed to

support this optimization flow. A technology-dependent model is extracted to support the

FFT’s operating frequency constraint. The wordlength boundary is found by constraints,

and the optimal form is introduced to reduce computation time. Experimental results show

that the wordlength optimization employing the speedy flow reduces the percentage of the

total area of the FFT processor that increases with an increasing FFT length. The proposed

hybrid method requires shorter prediction time than the absolute simulation-based method

iv

does and achieves more accurate outcomes than a statistical calculation does.

Finally, an effective multiplier synthesis algorithm for cell-based multipliers is pre-

sented. The synthesis algorithm considers gate delay and wire delay for non-regular tree

synthesis. Based on arrival time and required time of the tree constraints, the generated

compressed tree can achieve balanced path delay. By using a novel tree generation algo-

rithm with timing consideration for each vertical compressor slice (VCS), the developed

synthesizer can automatically generate high-speed multipliers in small area.

v

vi

Acknowledgements

First and foremost, I would like to express my greatest appreciation to my advisor, Pro-

fessor Jing-Yang Jou (øÿò>0) for his suggestions and guidances. He not only

encourages the freedom thinking but also is our ideal. I would like to very much thank

to Professor Lan-Da Van (oÕ¾>0) and Professor Juinn-Dar Huang (?6¾>0),

who give me valuable suggestions. Also, I would like to thank the involved members

in the projects, Ya-Chi Yang (Ä-\), Tson-Yee Lin (�D
), Chih-Bin Kuo (J�

ü), Pao-Jui Huang (?1�), Chih-Chieh Chou (ø��), and Guan-Hao Chen (WC

8). Without the seamless cooperation, the projects would not be so successful. Thanks

to Shang-Wei Tu ()$º), Geeng-Wei Lee (A	î), and Liang-Yu Lin(�)E) for

several useful discussions. Special thanks to all EDA members for the wonderful time we

share together.

I would like express my sincere appreciation to Miss Zwei-Mei Lee (A�d), my

girlfriend, for her patient encouragement and the discussion of writing this thesis. I would

appreciate my family for their patient wait and my father education philosophy ”no won-

vii

der sometimes incompetent people win out in imperial examinations, but does this mean

that the erudite ones will be neglected?(�b5��ó�Õ�9��ò) ”.

CHENG-YEH WANG

National Chiao-Tung University

2007, June

viii

Contents

�Z`� i

English Abstract iii

Acknowledgements vii

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Organization . 6

2 Network on Chip 9

2.1 Overview of Network Switching . 12

2.1.1 Circuit Switching . 12

ix

2.1.2 Connectionless Packet Switching 14

2.1.3 Virtual-circuit Switching . 15

2.2 Architecture Models and Platform Design 16

2.2.1 Network Switching . 18

2.2.2 Switch Design . 19

2.2.3 Quality of Service Modeling and Property 23

2.3 Task Binding Methodology . 26

2.3.1 NoC platform Modeling . 27

2.3.2 Task Binding Problem . 28

2.3.3 Task Mapping . 33

2.3.4 Connection Path Assignment . 34

2.4 Experimental Results and Discussion . 36

2.5 Summary . 46

3 FFT Processor 49

3.1 Overview of FFT . 52

3.2 Error Analysis . 54

3.2.1 Statistical Analysis . 54

3.2.2 Simulation-Based Method . 62

3.2.3 Demonstration of Statistical and Simulation-Based Analysis . . . 63

x

3.3 Wordlength Optimization . 67

3.3.1 Evaluation of Upper Bound Wordlength 69

3.3.2 Evaluation of Lower Bound Wordlength 70

3.3.3 Optimized Wordlength Search 73

3.4 Experimental Results . 79

3.4.1 Variant FFT Lengths . 81

3.4.2 Output SQNR Requirement . 83

3.4.3 Loose SQNR Error Requirement 86

3.4.4 Comparisons of Three Methods 86

3.5 Summary . 88

4 Multiplier Generator 89

4.1 Overview of Multiplier . 89

4.1.1 Non-Booth Encoding . 92

4.1.2 Wallace Tree Method . 92

4.2 Layout-Driven Multiplier Generation . 94

4.2.1 Delay Estimation . 97

4.2.2 Feasibility Checking Algorithm 102

4.2.3 Vertical Compressor Slice (VCS) Generation 106

4.3 Experimental Results and Summary . 109

xi

5 Conclusions and Future Works 111

5.1 Conclusions . 111

5.2 Future Works . 112

Bibliography 115

xii

List of Tables

3.1 Example of Random Verification . 64

3.2 Common Specifications of FFT for OFDM 79

3.3 Constraints for Optimization . 81

3.4 Area Reduction of R2SDF with Different FFT Lengths Using Hybrid

Method . 82

3.5 Area Reduction of R22SDF with Different FFT Lengths Using Hybrid

Method . 83

3.6 Area Reduction of R2SDF with Different FFT Lengths Using Statistical

Analysis . 85

4.1 Selection of partial product . 91

4.2 Experimental Results . 109

xiii

xiv

List of Figures

1.1 OFDM transmitter data flow graph [1] 2

1.2 OFDM receiver data flow graph [1] . 2

1.3 OFDM channel estimation [1] . 2

1.4 System modeling graph[2] . 4

1.5 Overview of NoC platform . 6

2.1 A point-to-point network. 9

2.2 A bus-based network. 10

2.3 A switch-based network. 10

2.4 Circuit switched network. 13

2.5 Packet switched network. 14

2.6 Virtual-circuit switched network. 16

2.7 Mesh-based interconnection architecture of the NoC platform. 17

2.8 Transformation from relay station to switch. 18

xv

2.9 An example of virtual channel scheme. 19

2.10 Bandwidth allocation of a physical channel using a weighted round-robin

scheduler. 20

2.11 Interface transactions between two switches. 21

2.12 Real-time QoS modeling. 23

2.13 NoC platform model. 26

2.14 The task graph of MPEG-4 encoder. 27

2.15 Illustration of binding methodology. 29

2.16 Contention in time domain. 31

2.17 Proposed task binding methodology. 32

2.18 Pseudo code of the path assignment. 35

2.19 Histograms of normalized latency under different injection rate. 38

2.20 Histograms of normalized latency under different buffer size of virtual

channel. 39

2.21 Fail rate under different communication factors. 41

2.22 Fail rate under different buffer size. 42

2.23 Latency under different communication factors. 43

2.24 Latency under different buffer size. 44

2.25 Throughput ratio under different communication factor. 45

xvi

3.1 Conventional R2SDF and R22SDF DIF implementations. 53

3.2 Error model of a PE stage. 56

3.3 Propagation of quantization and scaling errors. 57

3.4 Propagation of multiplication errors. 59

3.5 Propagation of noiseless multiplications. 60

3.6 Block diagram of simulation analysis. 62

3.7 Histogram of SQNR difference with randomly generated wordlengths. . . 65

3.8 Histogram of SQNR difference with partial exhaustive verification. 66

3.9 Wordlength optimization flow of a PE stage. 68

3.10 Evaluation of the upper bound wordlength. 69

3.11 Evaluation of the lower bound wordlength. 71

3.12 Area increment of each PE stage as the wordlength increases 1 bit 72

3.13 The procedure to determine the optimized wordlength set candidates. . . . 74

3.14 Optimized wordlength selection. 76

3.15 An example of hybrid wordlength optimization. 78

3.16 An example of pure statistical analysis. 78

3.17 Area reduction rate versus SQNR constraints. 84

3.18 Comparisons of results using different analytical methods. 87

4.1 Multiplication steps. 90

xvii

4.2 Non-Booth encoding for 8 × 8 multiplication. 91

4.3 Partial product selection using a row of AND gates. 91

4.4 Illustration of Wallace tree for reducing 18 partial products. 93

4.5 Overview of multiplier generation. 94

4.6 Conceptual profile of input arrival time of final adder. 95

4.7 Overview of vertical compressor slice. 96

4.8 Evaluation of output arrival time . 97

4.9 Cell-based delay model of a 3-to-2 compressor 98

4.10 π-model of the i-th wire (wi) . 98

4.11 L-shaped approximation between two cells. 99

4.12 An example of wire delay estimation using L-shaped approximation. . . . 100

4.13 Full Decomposition (FD) procedure. 101

4.14 Feasibility Checking (FC) algorithm. 103

4.15 The first step of feasibility checking: decomposition. 105

4.16 The second step of feasibility checking: further decomposition. 105

4.17 The third step of feasibility checking: check the derived arrival time. . . . 106

4.18 VCS generation algorithm. 107

4.19 Experimental flow. 108

xviii

Chapter 1

Introduction

1.1 Motivation

In SoC era, available gate count grows year by year. Effectively utilizing silicon area is

a significant challenge. Merging chips into a single chip becomes the mainstream to im-

prove the silicon utilization. This trend is especially obvious in computer industry. CPU

companies have developed multi-core processors by implementing more than one cores

into a processor [3]. Chipset companies intend to integrate more peripherals in a single

chip. In addition to the mentioned above, embedded system designs are also conducted to

integrate processors, accelerators, and peripherals into a single chip to implement hand-

held devices [4].

In application domain, Software-defined Radio (SDR) systems [5] are used to imple-

1

2 CHAPTER 1. INTRODUCTION

P/S

P/S

Insertion
Interval
Guard

Insertion
Interval
Guard

D/A
LPF

D/A
LPF

Up

Converter

Up

Converter

IDFT

IDFT

Time

Space

Coded

Signal

Mapper

Pilot Signal I

Pilot Signal II

S/P

Figure 1.1: OFDM transmitter data flow graph [1]

Down
Converter

A/D
LPF

Guard
Interval

Removal
S/P DFT

Fine
Signal

Detection

Signal
Demapper

P/S

Channel
Estimation

Figure 1.2: OFDM receiver data flow graph [1]

Coarse
Signal Detection

Data Interference
Cancellation Match

Pilot
IDFT

Selection
Path

DFT

Figure 1.3: OFDM channel estimation [1]

1.1. MOTIVATION 3

ment multi-standard communications. These SDR systems produce a new radio by run-

ning new software. If the target standards use Orthogonal Frequency Division Multiplex

(OFDM) to get high spectral efficiency, the computational complexity will be huge in-

creasing. For example, the OFDM system as shown in Fig. 1.1, Fig. 1.2, and Fig. 1.3 was

used to achieve high spectral efficiency [1]. This communication software was evaluated,

and the design required multiple processors computing power to meet real-time constraint

[6]. A programmable multi-core processor with accelerators is suitable for implementing

such systems.

The integrated chip has more complex traffic than traditional single-core solution.

Hence, on-chip communication is critical in the system implementation [7]. The complex

communication scenario could cause the system performance out of control, and result in

a failed system. Three major communication networks, the point-to-point connection, the

bus-based communication, and the switching network, have been developed to process

these complex traffic [8]. In this work, a virtual circuit switching network for SoC is

proposed, and it can achieves performance guarantee and high utilization.

To optimize an SoC system, the tradeoff among hardware cost, system performance,

and power dissipation can be performed at system level, register transfer level (RTL),

and circuit level. When the tradeoff is assessed at system level, it has more flexibility to

improve the system than that is done at other levels. Traditionally, system designers came

to a compromise according to experience or manual estimation. However, systems are

4 CHAPTER 1. INTRODUCTION

C

A B

D F

E

Approximate
Timed

Cycle
Timed

E: Cycle­accurate computation model

B: Component−assembly model
C: Bus−arbitration model

D: Bus−functional model

F: Implementation model

A: Specification model

Cycle

Timed

Approximate

Timed

 Untimed

Communication

Computation

 Untimed

Figure 1.4: System modeling graph[2]

more and more complex along with the progressive technology. This tradeoff cannot just

be manually handled, and thus Computer Aided Design (CAD) becomes more and more

important in system designs [9].

There are several model proposed at system level as shown in Fig. 1.4 [2]. Researchers

proposed a top-down refinement flow from untimed functional model to cycle accurate

model. Architecture designers create the model and the systematic analysis is applied to

optimize the architecture.

Design space exploration (DSE) can identify a suitable architecture for specific ap-

plication, and then the architecture candidate is detailly evaluated. The DSE is time-

consuming if it is performed at low abstraction levels, e.g. RTL. Since reducing design

time is crucial for designers in SoC era, the DSE is preferred to be performed at electronic

1.1. MOTIVATION 5

system level (ESL). At ESL, system’s function and timing information are modeled for

evaluating the system. The timing information of a building block can easily be modified

for different implementation. For example, the single data rate (SDR) DRAM and double

data rate (DDR) DRAM are both modeled as memory storage, but with different timing

information. If system evaluation indicates that memory bandwidth is insufficient, and

SDR DRAM is going to be replaced by DDR DRAM, designers only need to change the

timing model of this building block to introduce a new component.

After obtaining the architecture candidate at ESL, the DSE of this candidate is then

performed at RTL for refinement. Since the design space of each functional block needs

to be explored, it is definitely time-consuming for a complex system. Therefore, it can

significantly reduce the development time, if RTL functional blocks can be generated

automatically.

In this thesis, a Network-on-Chip (NoC) platform are proposed for software-defined

OFDM wireless communication. A NoC generator, a fast fourier transform (FFT) gen-

erator, and a multiplier are developed for speeding up the DSE of a system as shown in

Fig. 1.5. These generators produce the optimized prototypes based on the given speci-

fications. The produced prototypes have accurate function and timing information. The

information is used to replace those of the corresponding functional blocks of a system at

ESL for the DSE. Therefore, the DSE can be more accurate. When design flow advances

to RTL, these blocks can just be replaced by the prototyping RTL designs produced by the

6 CHAPTER 1. INTRODUCTION

SW

PE

SW

PE

SW

PE

SW

PE

SW

PE

SW

PE

SW

PE

SW

PE

SW

PE

FIFO

CPR CPR CPR

CPR

FIFO

FFT Generator

Multiplier Generator

Figure 1.5: Overview of NoC platform

generators for system evaluation. Furthermore, when the flow advances to physical level,

the layout of these blocks are replaced by the prototyping layout. The total development

time is therefore reduced.

1.2 Thesis Organization

This thesis is organized into five chapters. Chapter 1 gives the introduction of the the-

sis from the motivation of automatic generators. Chapter 2 describes the development of

NoC generator, and the methodology for optimizing NoC networks. The experimental

results of the NoC generator are given in the rest of this chapter. Chapter 3 briefly re-

views pipelined FFT processors, and then presents the FFT generator and the wordlength

1.2. THESIS ORGANIZATION 7

optimization algorithm, following by the experimental results. Chapter 4 discusses the

multiplier generator based on the gate delay and wire delay optimization. Finally, conclu-

sions and future works are drawn in chapter 5.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Network on Chip

Three types of networks were developed for on-chip communications [8]. A point-to-

point communication network is shown in Fig. 2.1 which is constructed using a dedicated

channel between the source and the destination. Without sharing channel with other com-

munication traffic, this network has minimum run-time uncertainty, but it requires large

silicon area due to the large amount of communication paths. These communication paths

1
PE

2
PE

3
PE

4
PE

Figure 2.1: A point-to-point network.

9

10 CHAPTER 2. NETWORK ON CHIP

PE
1

PE
3

PE
6

Bus

PE
4

Bus

PE
2

PE
5

Figure 2.2: A bus-based network.

PE
1

PE
4

PE
3

PE
6

PE
2

PE
5

Switched Network

Figure 2.3: A switch-based network.

11

also need to be recognized at design time. Hence, this communication network is often

employed in application-specific designs. Fig. 2.2 shows a bus-based communication net-

work which is often used in IP-reused designs. It is a centralized network, and needs an

arbitration mechanism to decide which processing element (PE) can use the bus. Such a

centralized network will become a communication bottleneck as the number of PEs in-

creases. Since on-chip communication is more and more complex, and traffic is heavier in

a SoC design, the switch-based network is hence developed. A conceptual sketch of the

switch-based network is shown in Fig. 2.3. This network is decentralized and concurrent,

and hence its energy does not waste on meaningless signal transitions.

Circuit switching and packet switching are mostly used for network communications.

The connectionless approach and connection-oriented approach are usually employed

in packet switched networks. The store-and-forward switching, the virtual cut-through

switching, and the wormhole switching are the connectionless approaches. The worm-

hole switching is suitable for on-chip communications due to good average latency and

low memory usage, but it has unpredictable latency under heavy traffic. The connection-

oriented approach employs the circuit switched concept in the packet switched network,

and it is hence called as virtual-circuit switching.

For Network-on-Chip (NoC), circuit switching and wormhole switching are widely

used for on-chip communications [10]. To achieve high resource utilization and perfor-

mance guarantee, the hybrid method combining circuit switching and wormhole switching

12 CHAPTER 2. NETWORK ON CHIP

were proposed [11]. However, some applications need both high resource utilization and

performance guarantee in each path. In this work, an NoC generator is developed based on

the virtual-circuit switching typically used in computer networks to achieve high resource

utilization and performance guarantee.

The rest of this chapter is organized as follows. Section 2.1 introduces the network

switching. Section 2.2 introduces the developed switch architecture, and the NoC plat-

form design. In Section 2.3, the communication-aware task binding methodology is de-

scribed. Then, experimental results and discussions are given in Section 2.4. Finally, a

summary is remarked.

2.1 Overview of Network Switching

In this section, circuit switching, connectionless packet switching, and virtual-circuit

switching are briefly reviewed.

2.1.1 Circuit Switching

Circuit switching uses the dedicated resources to meet the real-time requirement. How-

ever, the dedicated resources will be wasted if traffic is not continuous. Since on-chip

traffic is usually a burst transaction, the circuit switching is therefore not adequate to such

applications. On the other hand, it is satisfactory in real-time applications.

2.1. OVERVIEW OF NETWORK SWITCHING 13

BFBF

T1

T3

T2

T4

T1

T3

T4

T2

BF BF

T1

T3

T2

T4

T1

T3

T2

T4

SW2 SW1

SW3 SW4

Figure 2.4: Circuit switched network.

Time-division multiplexing (TDM) is employed in circuit switching for transmitting

data through dedicated channels. As connection paths are established, the required time

slots and buffers will be reserved for data transactions. Hence, the contention will not

happen and the performance can be guaranteed.

Fig. 2.4 shows the conceptual plot of a circuit switching network, where T1 to T4

are time slots in a round. The highlighted time slots and buffers are reserved for the path

indicated using the solid arrows as shown in Fig. 2.4. If the time slots are well-arranged,

the latency can be reduced, but the throughput will not be improved.

14 CHAPTER 2. NETWORK ON CHIP

BF2BF1

BF1BF2

BF2BF1

BF1BF2

T1

SW1

SW4

T4

T2

SW2

SW3

T3

Figure 2.5: Packet switched network.

2.1.2 Connectionless Packet Switching

Connectionless packet switching is widely used in data communications. This switching

approach employs the shared resources to achieve high resource utilization, but it has

unpredictable latency. If there is heavy traffic, the resources will be occupied, and the

packet switching network cannot work well.

In connectionless packet switching, buffers are shared by all transactions. Buffers

may overflow and will drop packets if the network has no handshaking schemes. If there

exists handshaking scheme, a transaction will stall until the buffers of the destination are

released. The conceptual sketch of a packet switched network is shown in Fig. 2.5. BF1

and BF2 Buffers in a switch are shared by all packets regardless of the source and the

destination. When the switch receives a packet, it reserves a buffer for this packet, and

2.1. OVERVIEW OF NETWORK SWITCHING 15

then releases this buffer when the packet passes through to the destination. Hence, the

buffers in the packet switched network can achieve high utilization.

For store-and-forward switched networks, a switch receives a complete packet, and

then forwards to the destination. Hence, the switch requires to reserve sufficient buffers

for this packet. For virtual cut-through switched networks, a switch needs to reserve

enough buffers for a complete packet, but it can forward this packet to the destination

directly without completely receiving this packet. For the wormhole switched networks,

a switch can directly forward the received packet to the destination without reserving any

buffers.

2.1.3 Virtual-circuit Switching

Virtual-circuit switching requires setting up a virtual connection from the source to the

destination before sending packets. Fig. 2.6 shows the conceptual sketch of a virtual-

circuit switched network, where virtual-circuit identifier (VCI) is introduced to specify

which virtual-circuit access the physical wires. The VCI is not a global identifier; it has

link local scope and is carried inside the header of the packet. As shown in Fig. 2.6, the

virtual-circuit table of a switch is initially established based on routing paths, and is used

to indicate the VCI (Out VCI) of the delivered packet according to this packet’s original

VCI (In VCI). The packet delivered from the SW1 switch to the SW4 switch will change

the VCI of the packet header from In VCI to Out VCI according to each virtual circuit

16 CHAPTER 2. NETWORK ON CHIP

BFBF

BF BF

1

3

2

4

2

1

3

4

Out VCIIn VCI

1

3

2

4

1

4

3

2

Out VCIIn VCI

1

3

2

4

1

3

2

4

Out VCIIn VCI

1

3

2

4

2

1

3

4

Out VCIIn VCI

SW2 SW1

SW3 SW4

Figure 2.6: Virtual-circuit switched network.

table in the path. If enough buffers and bandwidth are reserved for this path, the quality

of service (QoS) can be provided.

2.2 Architecture Models and Platform Design

There are many different interconnection architectures of NoC platform. P.P. Pande et

al. [12] compare the performance and characteristics of a variety of NoC architectures

and also obtain comparative results for a number of common NoC topologies. In this

work, several assumptions are made in the following. First, we assume that our intercon-

nection architecture of the NoC platform is a mesh-based topology where the platform

2.2. ARCHITECTURE MODELS AND PLATFORM DESIGN 17

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

NI

B
P

M

N

P S

EW SW

DECISION

N SWE

N

S

E

WDECISION

N
S

W
E D
E

C
IS

IO
N

N SWE

DECISION

N
S

W
ED
E

C
IS

IO
N

SW = Switch
NI = Network Interface
P = Processor Core
B = Buffer
M = Memory

NI

B
P

M

SW

P

W E

N

S

Figure 2.7: Mesh-based interconnection architecture of the NoC platform.

is illustrated in Fig. 2.7. Second, the platform that consists of two kinds of components:

identical processors and switches. Third, each processor contains local memory and is

connected to the local switch. Fourth, each switch connects to the neighboring switches

and the local processor.

Three reasons are considered for choosing the 2-D mesh topology. First, the simple

connection and easy routing are preferred in parallel computing platforms [13]. Next,

the uniform interconnection among the nodes makes balanced propagation delay between

switches and ensures the overall scalability of the network. Finally, this topology meets

the plane manufacturing topology of IC technology.

18 CHAPTER 2. NETWORK ON CHIP

PE PE

PE PE PE PE

PEPE

RS

RSRS

RS

RS

SWSW SW

(b) Switch−based

Physical Channel

Virtual Channel

(a) Relay Station−based

RS

Figure 2.8: Transformation from relay station to switch.

2.2.1 Network Switching

We propose a switch architecture based on the latency-insensitive concepts [14] [15]

and utilizes the virtual-circuit switching technique to achieve high bandwidth utilization,

bandwidth guarantee and predictable latency under heavy traffic condition. Relay sta-

tion(RS) is used for pipeline the long interconnect in latency-insensitive design. The

topology of relay station connection is shown in the Fig. 2.8 [15]. In order to improve

the low utilization of the dedicated peer-to-peer connections, the RSs are replaced by our

switches and the virtual channels are substituted for the connections between RSs.

2.2. ARCHITECTURE MODELS AND PLATFORM DESIGN 19

Physical
Channel

BF2

BF1
BF3

BF4

SW1 SW2

Path A

Path B

Figure 2.9: An example of virtual channel scheme.

2.2.2 Switch Design

The proposed switch architecture using the hybrid of virtual channel scheme, the weighted

round-robin scheduling, and SRAM-based configuration is capable of providing high-

throughput, bandwidth guarantee, economical memory usage, and deadlock free. We

summarize the switch capabilities as follows:

First, each switch based on virtual-circuit switching owns the advantages of pre-

dictable behavior and the real-time response. The switches use the virtual channel flow

control to enhance the overall latency and the throughput of a network. For example, in

Fig. 2.9, there are two messages crossing the physical channel between switches SW1 and

SW2. Without using the virtual channel technique, the message data will be buffered at

the input or output of the physical channel. Moreover, the transfer in this channel will

20 CHAPTER 2. NETWORK ON CHIP

Buffer C

Buffer B

Buffer A
Buffer A

Buffer B

Buffer C

TIME

A2 B3A5C2B2B1 A4 C1A3A1

MUX

Figure 2.10: Bandwidth allocation of a physical channel using a weighted round-robin
scheduler.

be blocked until the buffers are released. In this work, the messages can be delivered

rather than blocked by dividing the physical channel into several virtual channels. The

waiting time of the message transfer is reduced, and the average latency of this channel

is decreased. Thus, the physical channel gets higher utilization and the network obtains a

larger throughput.

Second, concerning the bandwidth sharing of a physical channel among all the virtual

channels, we exploit the weighted round-robin scheduling scheme to grant the use of the

physical channel to each virtual channel. Instead of using the time-division method, the

weighted round-robin scheduler as shown in Fig. 2.10 allocates different bandwidth for

each virtual channel by assigning different amount of the time slots. The higher weight of

2.2. ARCHITECTURE MODELS AND PLATFORM DESIGN 21

M
U
X

Controller

E1,sw1 E2,sw1 E4,sw1E3,sw1

1 0 1 0

STATUS

E2,sw1

E3,sw1

E4,sw1

E1,sw1

STATUS Table :
1 = there is data in the buffer;
 require to access the channel

S1,sw2 S2,sw2

E1,sw2

E2,sw2

LENGTH−Full Table :
1 = buffer is full;
 no more data in

1 0 0 0

E1,sw2 E2,sw2 S1,sw2 S2,sw2

LENGTH−Full

SW2

E1,sw1

E2,sw1

E3,sw1

E4,sw1

E2,sw2

S1,sw2

S2,sw2

E1,sw2

Mapping Table
Address

SW2SW1

SW1

Address

Data

Ack

Figure 2.11: Interface transactions between two switches.

a channel means that more communication bandwidth is available.

Third, the data exchange protocol between two switches or between the switch and

the network interface of the local processor is executed within four clock cycles. Fig. 2.11

shows that the interface transaction between two adjacent switches, SW1 and SW2. The

address mapping table records the destination address to which the messages are trans-

ferred. At the first cycle, if the buffer, E1,sw1, of SW1 has data inside, the system controller

grants the channel priority to this data. At cycle 2, this E1,sw1 buffer sends the address of

E1,sw2 through the Address-line to indicate that this transaction tries to deliver data to the

buffer E1,sw2 of SW2. At the third clock cycle, the buffer E1,sw2 sends the acknowledge

22 CHAPTER 2. NETWORK ON CHIP

signal, true or false, back to SW1 through the Ack-line according to its buffer status, full

or available. Meanwhile, the buffer E1,sw1 sends the data through the Data-line, and the

buffer E1,sw2 stores this data if it has spare space. However, this data may be discarded if

E1,sw2 is already full. During the fourth cycle, the buffer E1,sw1 keeps this data until the

transaction is successfully completed.

Fourth, our switch provides different memory configurations to improve the local

memory utilization. The first reason is that not all buffers of the switches are reserved

when the number of the connection paths is smaller than the number of the designed

buffers. The second reason, the memory is a critical component for buffering data in a

network. Therefore, in memory implementation, we use two-port SRAM instead of regis-

ters when the number of virtual channel is large in the physical channel. In the switch, the

memory is divided into several different sizes of buffers to optimize the utilization. The

memory in a switch port can be partitioned into 8 8-words blocks, 16 4-words blocks or

32 2-words blocks.

Finally, in order to support the real-time application, our switches is able to estab-

lish the dedicated connection paths in advance by reserving the corresponding virtual

channels since the behavior of the communication and the number of the nodes can be

predetermined in early stage of system design.

Although both the traditional circuit-switching and the proposed switching configu-

ration have latency guarantee, the proposed one has smaller average latency and higher

2.2. ARCHITECTURE MODELS AND PLATFORM DESIGN 23

MUX MUXMUX
Buffer

Buffer

SW 2

Buffer 2

Buffer

Buffer

SW K

Buffer K

Communication Path

Buffer 1

Buffer

Buffer

SW 1

Scheduler 1 Scheduler 2 Scheduler K

Figure 2.12: Real-time QoS modeling.

hardware utilization. The proposed one has the worst case guarantee as compared to the

worm-hole packet switching while both switches have small buffer size and high hardware

utilization.

2.2.3 Quality of Service Modeling and Property

In the real-time system, the latency guarantee is the essential requirement of the quality

of service (QoS) while the scheduling algorithm enables the appropriate task scheduling

to satisfy the real-time requirement in the worst case condition. On the other hand, the

QoS also plays a critical role even in a non-real time system. Generally, when using

the communication fabric without performance guarantee, designers have to expend more

design efforts to estimate the communication latency to make sure that the communication

24 CHAPTER 2. NETWORK ON CHIP

loading is not underestimated for the given on-chip network communication architecture.

As a consequence, the communication system infrastructure is usually over-designed to

avoid the communication congestion. In this work, we use the weighted round-robin

scheduling for our QoS model as shown in Fig. 2.12, where the weighted round-robin

scheduling is a minimal resources scheduling scheme. Each master has a weight number

Ni in the controlled scheduler. The scheduler grants the master if the master proposes

the request. The master can transmit at most Ni-word data in a round. After that, the

scheduler grants the next master until the round is complete.

Our switches support to establish a predictable communication quality of NoC plat-

form and also provide a simple communication model for reducing the design complexity.

As shown in Fig. 2.12, the communication path from Buffer 1 to Buffer K is established.

The transactions from Buffer i is granted by the weighted round-robin Scheduler i. Before

analyzing the properties of QoS model as exposed in Fig. 2.12, the useful definitions are

revealed in the following:

1) wi,j is the weight of the Buffer i in the weighted round-robin Scheduler j.

2) Wj is the sum of weight of the buffers controlled by the Scheduler j.

3) Dmax denotes the maximum delay of a 1-word transmission.

4) R denotes the provided throughput rate of a buffer.

2.2. ARCHITECTURE MODELS AND PLATFORM DESIGN 25

5) Lmax denotes the maximum communication path latency of a 1-word transmission.

6) Rpath denotes the throughput rate of a path.

7) Lburst denotes the maximum burst data latency.

Using the above definitions, the proposed network switch design has six properties to

guarantee QoS, where the six QoS properties are described as follows:

• Property 1: If Buffer i is empty, the maximum delay from the data arrival to the

transfer is the time period of a round in the round-robin scheduler, i.e., Dmax = Wj.

• Property 2: If there are data in Buffer i, the Dmax between the transactions is Wj.

• Property 3: If the buffer size is the double of the buffer’s weight or more, the pro-

vided lower-bound throughput rate is the ratio of the weight and the sum of the

weights in the round-robin scheduler, i.e., R ≥ wi,j

Wj
.

• Property 4: The maximum path latency of 1-word transmission is the sum of maxi-

mum node latency of 1-word transmission, i.e., Lmax =
∑k

j=1 Wj.

• Property 5: Rpath is dominated by the minimum throughput of the buffers in the

path, i.e., Rpath = min
{

wi,j

Wj

}

, where j = 1, 2, 3, · · · , k.

• Property 6: Using Property 4 and Property 5, the burst data delay can be obtained

as Lburst = Lmax + N
Rpath

, where N is data size.

26 CHAPTER 2. NETWORK ON CHIP

SW

PE

SW

PE

SW

PE

SW

PE

SW

PE

SW

PE

SW

PE

SW

PE

SW

PE

Processor

Memory
Buffer

NI

Figure 2.13: NoC platform model.

The Property 6 means that our switch has an upper bound of the burst data delay such that

system designers can design target systems to meet real-time constraints.

2.3 Task Binding Methodology

In this section, we present the communication-aware methodology to solve the task bind-

ing problem based on the NoC platform which is constructed by the proposed switch as

mention before.

2.3. TASK BINDING METHODOLOGY 27

A
MEC

B
MEF

C
MVMVD

D
HVLC

H
SP

G
TVLC

F
DCTQ

E
MC

Current
Frame

Stream

C6 C7

C8

C4

C3

C2

C5

C1

Figure 2.14: The task graph of MPEG-4 encoder.

2.3.1 NoC platform Modeling

Without loss of generality, the proposed NoC platform using an efficient switch architec-

ture can be modeled in Fig. 2.13. The behavior of the NoC platform model are described

in the following:

1) The platform composed of the processing element (PE) and switch (SW) is the

mesh-based communication architecture. Each PE contains one processor, memory,

and network interface (NI).

2) All processors in this platform are identical.

3) The processors have limited buffer to store input and output data.

4) Each PE has local memory to store the execution code and the data.

5) The local memory of a PE is adequate for a task.

28 CHAPTER 2. NETWORK ON CHIP

We employ the task graph to model applications and assume that applications are able

to be partitioned into many communicated tasks due to the parallelism. Fig. 2.14 shows a

task graph of an MPEG-4 encoder [16]. A vertex represents a task and the functionality

labeled in the vertex. For example, task C denoted as MVMVD performs the motion

vector to motion vector difference calculation. The edge represents a data transmission

and the corresponding communication amount. After task B is finished, task B transmits

C2 unit data to task C and transmits C5 unit data to task E. An edge also indicates the data

dependency. A task cannot be executed until it receives the data from the predecessor. For

example, task H cannot be executed until it receives C4 unit data from task D and C8 unit

data from task G.

2.3.2 Task Binding Problem

The task binding problem is formulated in the following descriptions:

• Given:

1) The application is modeled as a task graph G(V,E), where V is a task and

the weight denote the computation amount and E is the dependence and the

communication amount between the tasks.

2) The NoC platform (PE,S), where PE and S contain the position information

of processors and the communication architecture information, respectively.

2.3. TASK BINDING METHODOLOGY 29

Y
SW

SW

SW

W

Z

X Z

C A B Wrapper

W

SW

Wrapper

Z

SW
B

SW

Wrapper

X

SW

A C

Wrapper

Y

SW

SW

Figure 2.15: Illustration of binding methodology.

• Goal:

To bind each V to PE and to assign the routing path between tasks such that the

overall system throughput is maximum.

An example of binding result is shown in Fig. 2.15 that tasks bind to PEs and the

communication paths are established. The path A and path B are overlapped and will

contend in temporal domain.

In this work, according to Fig. 2.15, we propose a more accurate communication cost

calculation scheme that will be exploited by the task mapping and the routing path assign-

ment processes. The more complete communication cost function ξ is described in the

following.

ξ =
∑

X∈each path

∑

each channel in X

(

1 +
Camount,X + ρX
Camount,MAX

+ Bpenalty

)

(2.1)

30 CHAPTER 2. NETWORK ON CHIP

where Camount, ρX , and Bpenalty denote the communication amount, contention factor which

models the total effect of communication contention on a physical channel, and bandwidth

penalty respectively. The detailed expression of ρX , and Bpenalty are revealed in the fol-

lowing:

ρX =
∑

Y ∈other paths in the channel

Camount,Y × ΓY→X (2.2)

and

Bpenalty =















α × Bdemanded−Bprovided

Bprovided
, if Bdemanded > Bprovided

0 , if Bdemanded < Bprovided

(2.3)

where Γ , α, Bdemanded, and Bprovided denotes the contention density, the penalty weight, the

demanded bandwidth used by communication paths in a physical channel, and the pro-

vided bandwidth of a physical channel respectively. The contention density is formulated

as

Γb→a =
t(a,b)overlap

tcommun.time,a
(2.4)

The density of each pair of the communication paths can be derived from the commu-

nication profile in the time domain as shown in Fig. 2.16.

The communication cost proposed in (2.1) means that the efficiency of a communica-

tion path is affected by the distance of the path, the number of paths to share the channel

and the bandwidth usage.

Therefore, we propose a design methodology as shown in Fig. 2.17 to solve the task

binding problem. The first block, Task Graph, contains the computation and communi-

2.3. TASK BINDING METHODOLOGY 31

t1 t2 t3 t4 t5 t6 t7

Time Line

Path B

Path A

Contention occurres

Figure 2.16: Contention in time domain.

cation information for all tasks to support the requirements of the task mapping. The

mapping approach employs the placement techniques used in FPGA to map tasks onto

PE [17]. The main idea is that if the traffic loading of any two tasks is heavy, these

two tasks are allocated as next to each other. After the task mapping, the shortest path

technique is applied to configure all the connection paths for these tasks. Then, the sim-

ulation is performed to obtain the profile of the communication in time domain and the

contention parameters mentioned above are calculated. Finally, the profile feeds back to

the task mapping process and the path assignment proceeds this profile to achieve the bet-

ter assignment. The profile referred to as profile-driven optimization provides the more

accuracy contention information than the system simulation without routing information.

This design flow can be proceeded iteratively to enhance the system performance.

32 CHAPTER 2. NETWORK ON CHIP

Application

Task Graph

Task Mapping

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

NoC Platform

Good ?

Routing

Performance Analysis

Finish

Yes

No

Figure 2.17: Proposed task binding methodology.

2.3. TASK BINDING METHODOLOGY 33

2.3.3 Task Mapping

The task mapping of the proposed task binding method utilizes the simulated annealing

technique since this technique is simple and suitable for diverse architectures developed

in the on-chip networks. This mapping technique can be easily adapted to different cost

requirements for the optimization. In this work, the goal of the task mapping is to mini-

mize the overall communication resource usage. In the task mapping stage, because the

routing is not applied, the path information in the physical channel cannot be obtained so

that the simplified cost function as listed in (2.5) is derived by neglecting the contention

factor ρX and the bandwidth penalty Bpenalty in (2.1).

ξ =
∑

Path of pair of processors

distance ×
(

1 +
Camount,X

Camount,MAX

)

(2.5)

It is worthy of noting that we can consider (2.5) as the simplified version of (2.1).

On the other hand, the distance in (2.5) is the Manhattan distance between the source

node and the destination. The first term, (distance × 1), of the cost function describes

the resource usage of the virtual channels. This term is also the conventional cost in

the FPGA placement algorithm. In our mapping algorithm, not only the distance, but

also the communication amounts between the tasks affect the system performance. The

second term, (distance × Camount,x

Camount,MAX
), expressed as the normalized result represents the

communication effect of the physical channel.

34 CHAPTER 2. NETWORK ON CHIP

2.3.4 Connection Path Assignment

After finishing the task mapping, a router is used to assign the connection paths between

any pair of interconnected processors. The algorithm proposed in [18] is applied to solve

the routing problem. This router is essentially a variant of the maze router [19], where

Dijkstra’s algorithm [20] is applied to find the lowest cost path between the transmitting

and the receiving processors. The Pathfinder algorithm [17] then performs multiple rout-

ing iterations to rip up some or all nets and reroute them by different paths if there exists a

competition for routing resources that makes the illegal routing. Please note that ripping

up and rerouting these nets only affect the net ordering. These nets are all routed by the

same maze routing algorithm.

The cost function of the path assignment is to use the equation (2.1). There are two

differences between cost functions (2.1) and (2.5). One is that the distance of the path

assignment is the real routing length rather than the Manhattan distance used in the task

mapping. The other difference is that the contention density and bandwidth penalty are

included in the path assignment cost to describe the contention effect and total bandwidth

introduced by other paths.

Fig. 2.18 shows the procedure of the path assignment algorithm. At the first, the all-

shortest-path algorithm is applied to this path assignment. In Step 2, the overused virtual

channels can be solved so that all the nets of the paths are routed. However, the overused

2.3. TASK BINDING METHODOLOGY 35

3. Sort paths by cost function

5. re−route the paths in orderly

6. if (no improvement in this iteration)

7. exit

1. The all shortest path algorithm

4. while (1)

2. Fix virtual channel overuse

Algorithm:

Output: Route all communication paths such that the
 communication cost is minimized.

Input: Given an NoC architecture with the locations
 of transmitter and receiver. Number of virtual
 channel in a physical channel is assigned.

Path Assignment

Figure 2.18: Pseudo code of the path assignment.

36 CHAPTER 2. NETWORK ON CHIP

bandwidth of some physical channels is not overcome in this step. From Step 3 to Step 7,

these communication paths are redistributed into the physical channels to avoid overuse.

The redistributed method is to find the path which has the maximum cost and then reroute

this path to reduce its cost. The cost of this critical path may not be improved due to the

possible heavy contention with other paths, so other paths need to be rerouted alternately

depending on the measurement cost.

2.4 Experimental Results and Discussion

In this work, a 2D-mesh configuration is used to establish the network infrastructure for

the experiments. The functionality and performance of the proposed platform with 4-by-4

nodes are evaluated. The traffic on this platform is generated by a random traffic generat-

ing function. The major performance evaluated in this experiment is the communication

information of the platform. Then, the proposed task binding method is applied to the

platform with the randomly generated task graph. Finally, the performance of our task

binding algorithm will be evaluated based on this platform.

The proposed switch architecture is modeled in both cycle-accurate C++ and Verilog

HDL. The C++ model is used for system design and the platform evaluation. The Verilog

model is used for hardware design. After the synthesis with 0.25um standard CMOS

technology, this switch can operate at 185 MHz in the typical-case corner.

2.4. EXPERIMENTAL RESULTS AND DISCUSSION 37

In order to evaluate the traffic performance of the switch-based network platform, the

C++ model of the switch is combined into the overall model of the network, and each

original processing element (PE) is replaced by a random traffic pattern generator. This

pattern generator generates random size packets which move from the arbitrary chosen

source to the random destination.

The latency in this study means the elapsed time required for the data packet trans-

mitted from the source node to the destination node [21]. Maximum latency is defined as

the predicted worst case latency and the maximum latency can be obtained by Property 6.

Normalized latency is defined as the latency divided by the maximum latency and normal-

ized latency indicates the average performance. Injection rate is defined as the required

bandwidth of the generated traffic divided by the guarantee bandwidth of a communica-

tion path. By changing the value of the injection rate, the different communication loads

are available to evaluate the platform.

Fig. 2.19 shows the experimental histograms of the normalized latency versus different

injection rates while each virtual channel of the platform only has a 2-word buffer. The

network latency guarantee (normalized latency ≤ 1) is achieved even at the high injection

rate (injection rate = 1). This means that the proposed NoC platform has the property

of the minimum bandwidth guarantee for each transmission. The normalized latency

approaches to zero when the injection rate decreases. This indicates that the average

latency reduces as the injection rate decreases. With the property of the latency guarantee,

38 CHAPTER 2. NETWORK ON CHIP

Figure 2.19: Histograms of normalized latency under different injection rate.

2.4. EXPERIMENTAL RESULTS AND DISCUSSION 39

Figure 2.20: Histograms of normalized latency under different buffer size of virtual chan-
nel.

the predictability of the proposed platform can be obtained and the real-time systems can

be realized.

Fig. 2.20 shows the normalized latency under the different buffer sizes of the virtual

channels. The normalized latency reduces when the buffer size is increased. In general,

the bigger buffer size of the virtual channels in the switches, the better communication

performance can be achieved for the system in various applications.

In this switch-based network infrastructure, assume that the processor can begin to

operate only when all input data are available and its output buffer size is enough for the

data generated by itself.

40 CHAPTER 2. NETWORK ON CHIP

The Task Graph For Free (TGFF) [22], a user-controllable, general-purpose, pseudo-

random task graph generator, is employed to generate the task graphs used in the experi-

ments. 100 task graphs are used, each task graph has at least 60 to 100 tasks, and the max-

imum inputs/outputs of each task are 7 to 10. The task graph is generated by TGFF and

the communication amount is modified by multiplying the communication factor. Higher

communication factor means the higher ratio of the communication and computation. On

the other hand, the communication factor also indicates the provided physical bandwidth.

The larger communication factor, the smaller physical bandwidth. In this experiment, the

communication factor is set to 0.25, 0.5, 1, 2, and 4. The task graph with the lower com-

munication factor implies that the application is computation intensive. Therefore, the

higher factor means the application is communication intensive. Fail rate is defined as the

number of fail transactions over the number of total transactions. Higher fail rate means

that more power consumption is used for useless (meaningless) transaction and thus total

power increases.

Fig. 2.21 shows the relationship between the fail rate and the communication factor

by using traditional approach and the proposed one. The traditional approach is build

without considering communication information. In Fig. 2.21, the fail rate increases along

with the communication factor and saturates about 16%. This means that even under

communication intensive, the fail rate is under-controlled. In Fig. 2.21, as compared with

the traditional method, our proposed approach can improve the fail rate by 12.3% and

2.4. EXPERIMENTAL RESULTS AND DISCUSSION 41

Figure 2.21: Fail rate under different communication factors.

42 CHAPTER 2. NETWORK ON CHIP

Figure 2.22: Fail rate under different buffer size.

5.6% with respect to the communication factor 1 and 4 respectively.

In order to reduce fail rate, the buffer size is increased. The result shows that the fail

rate decreases along with the increasing buffer size and is shown in Fig. 2.22. The transac-

tion is failed when the buffers of the destination are full. This means that larger buffer size

gets lower fail probability. Compared with the traditional method, 50.8% improvement of

fail rate versus 16 buffers can be obtained via the new approach.

Fig. 2.23 shows the communication latency versus the communication factor. The la-

tency grows linearly with the increasing communication factor. In Fig. 2.23, as compared

with the traditional method, our proposed approach can improve the latency by 9.8% with

2.4. EXPERIMENTAL RESULTS AND DISCUSSION 43

Figure 2.23: Latency under different communication factors.

44 CHAPTER 2. NETWORK ON CHIP

Figure 2.24: Latency under different buffer size.

respect to the communication factor 4.

Increasing the buffer size can also reduce the latency. As shown in Fig. 2.24, the

latency decreases when the buffer size increases. This also means that lower fail rate gets

smaller latency. Compared with the traditional method, 14.8% improvement of latency

versus 16 buffers can be obtained via the new approach.

Fig. 2.25 shows the comparison of the throughput ratio versus the communication fac-

tor between the proposed algorithms. The throughput ratio is defined as the throughput

resulted from the proposed algorithm divided by this one obtained from the traditional

approach. The first curve shows the result by applying (2.5). Then, add contention factor

2.4. EXPERIMENTAL RESULTS AND DISCUSSION 45

Figure 2.25: Throughput ratio under different communication factor.

46 CHAPTER 2. NETWORK ON CHIP

in the connection path assignment in the second curve. Finally, add bandwidth penalty

in the connection path assignment to improve the performance under heavy load. In the

computation-intensive task graph, the corresponding throughputs are almost equal under

different algorithms and this implies that the communication effect can be neglected. On

the other hand, in the communication-intensive task graph, the bandwidth penalty be-

comes dominating because the required bandwidth is more than the provided bandwidth.

To balance the bandwidth becomes the most important issue. As shown in Fig. 2.25, the

proposed algorithm improve throughput 20% under normal communication (communica-

tion factor = 1).

From the above simulation results obtained from the new model of switch-based ar-

chitecture and communication-aware methodology, the proposed approach outperforms

the traditional method and provides high QoS quality including high-throughput, latency-

insensitive, bandwidth guarantee, and high memory utilization.

2.5 Summary

This work proposes a switch-based network platform design that adopts the hybrid of the

latency-insensitive concept, virtual-circuit switching, weighted round-robin scheduling,

and pipeline bus. The platform has the latency guarantee and the low average latency.

The proposed task binding algorithm employs the iterative profile-driven optimization

2.5. SUMMARY 47

technique to reduce the effect of the communication amount and the communication con-

tentions, so that the high system throughput is achieved. The experimental results indicate

that the task binding approach increases the system utilization and effectively improves

the network throughput up to 20% on average.

48 CHAPTER 2. NETWORK ON CHIP

Chapter 3

FFT Processor

The FFT is one of the most widely used algorithms for calculating the Discrete Fourier

Transform (DFT) owing to its efficiency in reducing computation time [23]. Recently, the

FFT requiring real-time processing has played a significant role in many communication

systems based on Orthogonal Frequency Division Multiplexing (OFDM) technology such

as HDTV, xDSL modems and wideband mobile terminals.

Pipelined FFT implementations are highly appropriate for real-time applications since

pipelined FFT can be easily merged with the sequential nature of sampling. Several FFT

architectures were developed, such as Radix-2 Multi-path Delay Commutator (R2MDC)

[24], Radix-2 Single-path Delay Feedback (R2SDF) [25], Radix-22 Single-path Delay

Feedback (R22SDF) [26][27], Radix-4 Single-path Delay Feedback (R4SDF) and Radix-

4 Multi-path Delay Commutator (R4MDC) [24]. Among these architectures, delay feed-

49

50 CHAPTER 3. FFT PROCESSOR

back approaches are always more efficient than the corresponding delay commutator ap-

proaches in terms of required memory size [26] [28]. The R4SDF requires fewer multi-

pliers than those required by R2SDF; however, the R2SDF architecture is simple and reg-

ular. The R22SDF architecture is a compromise endowed with the R2SDF structure and

the multiplicative complexity of the R4SDF. This study focuses on R2SDF and R22SDF

architectures.

Since the pipeline FFT architecture is memory-consuming, reducing its memory re-

quirement will save a significant amount of chip area. Several studies have employed

regular module implementations and have attempted to reduce the area-consuming ele-

ments in the FFT design. The design of [29] reduces the amount of memory used to store

the twiddle factors by employing canonic signed digit (CSD) constant multipliers. A new

FFT architecture, the radix-2 single deep delay feedback (R2SD2SF) presented in [30],

has smaller complex multipliers and adders than other FFT designs. Both the designs

of [29] and [30] have fixed wordlength for data and coefficients for each pipeline stage.

The possibility to use varying wordlengths for these stages is frequently ignored when

achieving modularized solutions. However, the increasing use of intellectual property

(IP) makes the non-module implementation viable, allowing for the further exploitation

of pipelined architectures.

In general, an FFT cannot be implemented exactly. Each multiplier and adder in the

pipelined FFT architecture can introduce errors due to rounding or truncation of arith-

51

metic results. Errors typically accumulate successively over FFT stages. That is, errors

from early stages can affect performance in latter stages. The wordlengths of data and co-

efficients chiefly affect precision, quantization errors, and hardware complexity. Increased

wordlengths increase the precision and reduce quantization error at the cost of area and

power. Conversely, to maintain a lower hardware cost, a shorter wordlength can be chosen

at the sacrifice of precision. Therefore, identifying an optimized solution of wordlength

is necessary.

Two conventional methods for FFT error analysis of signal to quantization noise ratio

(SQNR) and wordlengths are statistical error analysis and simulation-based analysis. Al-

though the SQNR can be calculated efficiently by employing statistical models [31] [32]

[33], the accuracy of the calculated result heavily depends on the model used. A more

precise model yields more accurate results. The simulation-based method evaluates the

FFT by comparing simulation results of the fixed-point computations with those obtained

using the floating-point arithmetic [34]. Although simulation increases the accuracy of

the evaluation results, it is time-consuming.

According to error analysis, optimizing wordlengths of pipeline stages in FFT pro-

cessors for given specifications is feasible. Optimization of an 8192-point FFT processor

using the simulation method has shown that progressive wordlengths and scaling in the

early stages can achieve a good compromise between SQNR and hardware cost [35].

However, this approach requires a long time to run the simulation.

52 CHAPTER 3. FFT PROCESSOR

This work presents a statistical model for error analysis at the stage level with varying

wordlengths in the pipeline FFT processor. Furthermore, a hybrid method for reducing

the required simulation time is introduced. The optimized wordlength parameters at each

stage are generated automatically according to design specifications of FFT processors,

such as the length of FFT, SQNR and the real-time processing requirements. Finally, the

optimization flow using the proposed error model and the hybrid method is demonstrated.

The rest of this chapter is organized as follows. Section 3.1 gives a brief review

of the FFT. Section 3.2 then introduces statistical and simulation-based error analyses

and demonstrates the effectiveness of these methods. Section 3.3 describes the proposed

method for wordlength optimization step-by-step, while Section 3.4 summarizes the ex-

perimental results. Conclusions are finally drawn in Section 3.5.

3.1 Overview of FFT

An FFT based on structuring the DFT computation by forming increasingly smaller sub-

sequences of the input sequence x[n] is called a decimation-in-time (DIT) FFT. Alterna-

tively, an FFT can also be decomposed using a first-half/second-half approach that divides

the output sequence X(r) into increasingly smaller subsequences; this procedure is called

a decimation-in-frequency (DIF) FFT [36]. Since both of these schemes are similar in

nature, their performance cannot be exactly compared without a given architecture [33].

3.1. OVERVIEW OF FFT 53

N/2 FIFO 1 FIFO

Butterfly Butterfly Butterfly Butterfly

clock Controller

(a) R2SDF architecture.

bP−1bP−1

bP−1

bP

bP
bP

bPb1
b1

b1 1b

b2b2

2bb2

b1 b2 bP−1

bP−1

W
p

W
p

W
p

N/2 FIFO 1 FIFO

Butterfly Butterfly Butterfly Butterfly

b1
b1

b1 b1 b2 b2 bP−1

bP−1bP−1

bP−1 bP

bP bP

bP

b2b2

clock Controller

(b) R2 SDF architecture.
2

W
p

b2

2 FIFO

x[n] X(n)

N/4 FIFO

2 FIFO

x[n] X(n)

N/4 FIFO

−j −j

Radix−2 Radix−2 Radix−2 Radix−2

Radix−2 Radix−2 Radix−2 Radix−2

Figure 3.1: Conventional R2SDF and R22SDF DIF implementations.

In this work, the DIF algorithm is used to illustrate the architectural implementations.

This work examines the architectures of R2SDF and R22SDF for the fixed-point DIF

pipeline FFT processor to demonstrate the effectiveness of the proposed optimization

method. Their block diagrams are shown in Fig. 3.1, where N is FFT length, bk is the

wordlength of stage k, k ∈ {1, 2, · · · , P}, and P = log2 N . Due to spatial regularity,

both controllers in these architectures can be implemented by using simple P -bit counters

[25] [27]. Since the valid output range of the +/- operation of the FFT butterfly is double

that of the valid input range, a scaling by 1/2 is applied to eliminate the overflow. With-

54 CHAPTER 3. FFT PROCESSOR

out scaling by 1/2, the overflow will cause excessive error. Therefore, scaling by 1/2 is

employed for each stage in this work.

Although the area and power consumption in these pipeline architectures are dom-

inated by memory (FIFOs) and multipliers, to progressively adjust the wordlength of

pipeline stages can reduce the area of memory and multipliers and hence the overall power

consumption. To adjust wordlengths based on maintaining the SQNR requirement, error

analysis is required.

3.2 Error Analysis

3.2.1 Statistical Analysis

This section introduces the statistical error model for varying wordlengths of pipeline

stages. The precision of the FFT processor is then discussed according to the SQNR

derivation. This derivation has two major steps. The first step involves finding error

sources based on the architectures adopted and the fixed-point arithmetic schemes, e.g.,

truncation, and scaling by 1/2 or not. The next step entails searching the paths of error

propagation and combining all of these errors along paths to evaluate the variance of the

errors propagating to the output. Moreover, the SQNR of the FFT output is given.

In the following analyses, two architectures, R2SDF and R22SDF, are illustrated for

deriving the statistical error models. Assume a fixed-point arithmetic with (bk + 1) bit

3.2. ERROR ANALYSIS 55

wordlengths and a signed fraction, where k is the stage number of PE stage. The input

to an N-point FFT, denoted by x[n], where n = 0, 1, 2, · · · ,N − 1, is a sequence of

finite valued complex numbers. Numbers consist of 2N real random variables that are

uncorrelated and are uniformly distributed in
(

−1/
√

2, 1/
√

2
)

. One db is added ti the

SQNR constraint (iSQNR) to allow for the SQNR error in the statistical model. The effect

of inaccuracy in the twiddle factor, W p, is not addressed here. The truncation operations

are modeled as uncorrelated.

Error Sources

Four major error sources must be addressed in an FFT processor. The first error source

is the quantization error of the wordlength difference between PE stages whose variance

is σ2
q,k. The second error occurs during scaling, and its variance is represented by σ2

s,k.

Another error results from the complex multiplication of the twiddle factor, and σ2
m,k is

used to denote its variance. The last error, the insufficient output wordlength error σ2
q,o, is

only considered for the last stage of the FFT processor.

Fig. 3.2 shows the error model of a PE stage with stage-by-stage scaling of 1/2. σ2
q,k

occurs when the wordlength, bk−1, of the stage k − 1 is longer than that of the stage k.

σ2
q,k is the variance of the truncated bits from bk−1 to bk. Scaling error is produced when

bk < bk−1 + 1. Scaling by a factor of 1/2 involves one bit right shift and truncation of the

last significant bit (LSB). σ2
s,k is defined as the variance of this truncated bit. Both σ2

q,k

56 CHAPTER 3. FFT PROCESSOR

1
2

1
2

WN
n

σm,k
2

σs,k
2
’

σs,k
2
’

Q

Q

Figure 3.2: Error model of a PE stage.

and σ2
s,k can be combined as an error of directly scaling the output data of stage k − 1 and

truncating the scaled result to bk bits. Since complex scaling can be achieved by separately

scaling the real and imaginary parts of the data, the combined error σ′2
s,k (Fig. 3.2) can be

expressed as

σ′2
s,k =















0 ; bk−1 + 1 ≤ bk

2 ×
(

1
M

· 2−2(bk−1+1) ·
∑M−1

v=0 v2
)

; bk−1 + 1 > bk

(3.1)

where M = 2(bk−1+1)−bk .

If a complex multiplication is implemented by using four real multiplications and the

results of real multiplications are truncated individually. σ2
m,k is defined as the variance of

truncated bits of the result after finishing a complex multiplication. This variance can be

represented by wordlengths, bk−1 and bk, and is obtained as

σ2
m,k =















4 ×
(

1
M

· 2−2(bk−1+1+bk) ·
∑M−1

v=0 v2
)

,M = 2(bk−1+1+bk)−bk ; bk−1 + 1 ≤ bk

4 ×
(

1
M

· 2−2·2bk ·
∑M−1

v=0 v2
)

,M = 22bk−bk ; bk−1 + 1 > bk

(3.2)

3.2. ERROR ANALYSIS 57

Qi

Qi

Qi

Qi

Qi

Qi

Qi

Qi

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2
Qo

Qo

Qo

Qo

Qo

Qo

Qo

Qo X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

W
p

W
p

W
p

W
p−1

−1

−1

−1

W
p

W
p

W
p

W
p

−1

−1

−1

−1

4 σs,2
’
2

σs,1
’
2

W
p

W
p

W
p

W
p−1

−1

−1

−1

Stage 3Stage 2Stage 1

2 σs,3
’
2

8

Figure 3.3: Propagation of quantization and scaling errors.

If the required output wordlength, bo of the FFT processor, is too short, the output

of the last PE stage must be truncated. The quantization error is then generated and its

variance, σ2
q,o, can be described by bo and wordlength of the last stage, bP ; the formula is

expressed as

σ2
q,o =















0 ; bP ≤ bo

2 ×
(

1
M

· 2−2bP ·
∑M−1

v=0 v2
)

; bP > bo

(3.3)

where M = 2bP−bo .

58 CHAPTER 3. FFT PROCESSOR

Output Signal-to-Quantization Noise Ratio (SQNR)

Since all error sources are assumed uncorrelated, the variance of the errors at the FFT

output can be obtained by summing all contributions from the individual error sources

that propagate to the output. For an N-point FFT processor employing either the Radix-2

algorithm or Radix-22 algorithm, the scaling error σ′2
s,k propagating to any output node can

be given by

σ2
S ≈ N

(

1
4

)P−1

× σ′2
s,1 +

N

2

(

1
4

)P−2

× σ′2
s,2 + · · · +

N

2P−1

(

1
4

)0

× σ′2
s,P

=
P
∑

k=1

N

2k−1
·
(

1
4

)P−k

× σ′2
s,k (3.4)

where (1/4)P−k is the effect of scaling on the error propagating at stage k. The σ′2
s,k

propagation can be illustrated using an 8-point DIF Radix-2 algorithm signal flow graph

(SFG) (Fig. 3.3). The number of scaling errors σ′2
s,k propagating to any output node, e.g.,

X(0), from the first, second, and third stages are 8, 4, and 2 respectively. Thus, the error

variance of X(0) can be obtained from (3.4), and is given by σ2
S|X(0) = (1/2)σ′2

s,1 + σ′2
s,2 +

2σ′2
s,3.

To derive the variance of the FFT output due to multiplication errors, all multiplica-

tions are assumed noisy. Fig. 3.4 shows an 8-point DIF Radix-2 algorithm SFG. There are

4, i.e., half of 8, σ2
m,ks in each stage, and each σ2

m,k of the first (k = 1), second (k = 2), and

last (k = 3) stage will propagate to 4, 2, and 1 output nodes, respectively. On the other

hand, for a general case with N-point FFT, there are half of the N σ2
m,ks error sources in

3.2. ERROR ANALYSIS 59

Qi

Qi

Qi

Qi

Qi

Qi

Qi

Qi

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

W
p

W
p

W
p

W
p

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

W
p

W
p

W
p

W
p Qo

W
p Qo

Qo

Qo

QoW
p

Qo

QoW
p

Qo X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

W
p

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Stage 3Stage 2

−1

−1

−1

−1

−1

−1

−1

−1

Stage 1

−1

−1

−1

−1

m,1
2σ σm,2

2 σm,3
2

Figure 3.4: Propagation of multiplication errors.

each stage and each σ2
m,k from the first stage to the last, P -th, stage propagates to N

2 , N
4 ,

· · · , N
2P output data, respectively. Hence, one can easily derive the output variance caused

by multiplication errors, σ2
M , with the Radix-2 algorithm; the expression of σ2

M is given

by

σ2
M ≈

1
N

·
N

2

[

N

2

(

1
4

)P−1

· σ2
m,1 +

N

22

(

1
4

)P−2

· σ2
m,2 + · · · +

N

2P

(

1
4

)0

· σ2
m,P

]

=
1
2
×

P
∑

k=1

N

2k
·
(

1
4

)P−k

× σ2
m,k (3.5)

60 CHAPTER 3. FFT PROCESSOR

Qi

Qi

Qi

Qi

Qi

Qi

Qi

Qi

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

W
p

W
p

W
p

W
p

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

W
p

W
p

W
p

W
p Qo

W
p Qo

Qo

Qo

QoW
p

Qo

QoW
p

Qo X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

W
p

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

Q
1

2

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Stage 3Stage 2

−1

−1

−1

−1

−1

−1

−1

−1

Stage 1

−1

−1

−1

−1

1

1

1

−j

−j

−j

1

1

1

1

Figure 3.5: Propagation of noiseless multiplications.

For the Radix-22 algorithm, the corresponding expression of σ2
M is modified as

σ2
M ≈

1
N

·
3N
4

[

N

4

(

1
4

)P−2

σ2
m,2 +

N

42

(

1
4

)P−4

σ2
m,4 + · · · +

N

4P/2

(

1
4

)0

σ2
m,P

]

=
3
4
×

P/2
∑

k=1

N

4k
·
(

1
4

)P−2k

× σ2
m,2k (3.6)

(3.5) and (3.6) are derived by assuming that all the multiplications are noisy. However,

the multiplications associated with twiddle factors W p = ±1 or W p = ±j introduce no

errors. Fig. 3.5 shows the position of noiseless multiplications in an 8-point Radix-2

algorithm SFG. The variances of these noiseless multiplications denoted as σ2
C in the

Radix-2 algorithm SFG and the Radix-22 algorithm SFG, are individually re-derived and

3.2. ERROR ANALYSIS 61

can be given by (3.7) and (3.8).

σ2
C ≈

1
N

×

[

2 ·
N

2

(

1
4

)P−1

· σ2
m,1 + 22 ·

N

22

(

1
4

)P−2

· σ2
m,2 + · · ·

+2P−1 ·
N

2P−1

(

1
4

)

· σ2
m,P−1

]

+
1
N

×
[

N

2
×

N

2P
· σ2

m,P

]

=

[

P−1
∑

k=1

(

1
4

)P−k

· σ2
m,k

]

+
1
2
×

N

2P
· σ2

m,P (3.7)

σ2
C ≈

1
N

·
3N
4

×

[

N

4
·
(

1
2P−2

)

·
(

1
4

)P−2

σ2
m,2

+
N

42
·
(

1
2P−4

)

·
(

1
4

)P−4

σ2
m,4 + · · · +

N

4P/2
· σ2

m,P

]

=
3
4
×

P/2
∑

k=1

N

4k
·
(

1
2P−2k

)

×
(

1
4

)P−2k

· σ2
m,2k (3.8)

According to the assumption of no correlations in these error sources, the total output

error variance can be obtained by summing the variance of each error propagating to the

output; this summation is expressed as

σ2
T = σ2

S +
(

σ2
M − σ2

C

)

+ σ2
qo (3.9)

Furthermore, the variance of output data in an N-point FFT processor is given in (3.10)

[36].

σ2
X =

1
3N

(3.10)

Hence, the output SQNR is obtained by

SQNR1 = 10 log10

(

σ2
X

σ2
T

)

(3.11)

62 CHAPTER 3. FFT PROCESSOR

Q

Floating Point FFT

Calculate
SQNR

Fixed Point FFT

x[n]

Xq (r)

Xq (r)

’

SQNRxq [n]

Figure 3.6: Block diagram of simulation analysis.

This SQNR1 model is used as the performance index, whereas statistical error analysis

is employed in the FFT processor.

3.2.2 Simulation-Based Method

Fig. 3.6 presents a conceptual block diagram of the simulation-based analysis. To perform

this simulation, floating-point and fixed-point C models with a given FFT algorithm were

developed. According to system constraints, e.g., wordlength of each stage, rounding or

truncation of stages, number of scaling stages, input/output wordlength, the C models

obtain the proper fixed-point results. Then, SQNR can be evaluated by comparing the

fixed-point output with the floating-point output; the formula of the calculation is given

by

SQNR2 = 10 log10

∑N−1
r=0

[

Xq(r)
]2

∑N−1
r=0

[

Xq(r) −X ′
q(r)
]2

(3.12)

During simulation, random patterns are generated as inputs, and then the resulting

SQNR2’s are averaged as an estimated average of the SQNR distribution. During sim-

3.2. ERROR ANALYSIS 63

ulating analysis, there is a trade-off between the accuracy of the SQNR2 and the re-

quired number of simulation times. The required simulation times are investigated as

follows. First, the random variable S̄ is used as an estimate of SQNR2. Then, accord-

ing to the central limit theorem, the sampling distribution of S̄ is approximately normally

distributed. Therefore, we can be (1 − α)100% confident that the SQNR error will not

exceed a specified amount, e, when the number of SQNR2’s equals

(zα/2 · σ
e

)2
(3.13)

where σ is the standard deviation of the distribution of SQNR2, and zα/2 satisfies the

probability equation, Prob(zα/2 < Z) = α/2, when Z is a random variable with a standard

normal distribution [37]. In this work, e is the constraint of SQNR error (SQNR Error).

3.2.3 Demonstration of Statistical and Simulation-Based Analysis

The proposed error model was verified using the simulation-based error analysis and the

result was compared with that obtained by statistical error analysis. In this analysis, the

SQNR is calculated using statistical method and is also evaluated using simulation for 8-,

16-, · · · , 8192-point DIF Radix-2 FFT and for 16-, 64-, · · · , 4096-point DIF Radix-22

FFT with the freely chosen wordlength from 8 − 32 bits for each stage.

Table 3.1 shows a summary of the comparison between the two methods with 20 ran-

domly generated wordlength sets in a 1024-point DIF Radix-2 FFT, where input wordlength

64 CHAPTER 3. FFT PROCESSOR

Table 3.1: Example of Random Verification
Wordlength Wordlength of PE Stage SQNR (dB)

Set no. 1 2 3 4 5 6 7 8 9 10 Simulation Statistical Difference
1 29 32 22 32 30 21 10 10 20 18 21.57151 21.225869 -0.345643
2 17 26 21 32 23 12 31 21 26 23 40.64704 40.568971 -0.078069
3 8 28 14 16 13 32 29 32 10 11 20.73324 20.836938 0.103696
4 9 12 11 11 12 12 16 16 10 22 20.55134 20.906414 0.355071
5 19 30 27 15 22 19 16 21 31 18 58.45886 59.02069 0.561833
6 29 15 23 25 13 32 17 14 11 8 5.981925 5.987078 0.005153
7 17 22 16 26 30 23 15 31 18 30 55.56245 55.547552 -0.014897
8 29 23 23 30 10 22 16 31 18 29 31.52884 31.443187 -0.085655
9 23 16 15 31 28 28 24 8 20 25 11.22512 11.082254 -0.142871

10 29 20 21 23 32 17 14 8 21 20 11.20543 11.081993 -0.123438
11 11 21 22 22 12 15 25 16 13 21 36.91202 37.570486 0.658464
12 28 13 13 24 12 27 12 10 30 14 22.67044 22.880391 0.209947
13 20 17 14 22 15 8 11 15 11 21 16.35159 16.105621 -0.24597
14 20 21 21 16 12 11 29 32 17 32 33.87208 34.053531 0.181455
15 27 20 21 10 19 13 29 25 18 9 12.01716 12.014605 -0.002551
16 32 15 25 24 8 8 9 8 21 11 9.187271 9.280194 0.092923
17 26 23 12 11 22 29 13 30 26 12 29.20325 29.517037 0.313784
18 20 29 16 28 31 13 25 20 22 14 40.35284 40.808381 0.455539
19 22 18 9 17 23 20 30 25 8 16 8.961997 9.005713 0.043716
20 11 25 27 19 24 14 8 29 31 9 9.633909 9.774141 0.140233

3.2. ERROR ANALYSIS 65

Figure 3.7: Histogram of SQNR difference with randomly generated wordlengths.

is set to be equal to that of the first stage, and output wordlength is set to be the same as

that of the last stage. The SQNR difference is obtained by subtracting the SQNR of sim-

ulation analysis from that of statistical analysis.

Fig. 3.7 shows the histogram of SQNR difference with 104 randomly generated wordlength

sets for the 1024-point FFT of Radix-2 and Radix-22 algorithm. The difference in com-

parison is within ±1.0 dB in Radix-2 FFT and within ±1.1 dB for the Radix-22 FFT.

Exhaustively comparing all wordlength sets of 8 − 32 bits is impractical because the

simulation time is unendurable. Therefore, partial exhaustive verification for wordlengths

66 CHAPTER 3. FFT PROCESSOR

Figure 3.8: Histogram of SQNR difference with partial exhaustive verification.

3.3. WORDLENGTH OPTIMIZATION 67

of 11 − 18 bits was employed in the comparison of 64-point Radix-2 and Radix-22 FFT.

This comparison required 130 hours. Fig. 3.8 shows the results of the comparison; the

SQNR difference is within ±1.1 dB.

Both Fig. 3.7 and Fig. 3.8 present a bias shift in SQNR difference. This shift is pro-

duced because the noise model of multipliers in statistical analysis is an approximation

of the actual noise distribution of multipliers. However, this is not an important issue as

the shift is much smaller than the maximum SQNR difference. On the other hand, a pa-

rameter ∆ is introduced to indicate the maximum SQNR difference for the optimization

process. The amount of SQNR difference is not analytically expressed, and is obtained

by an experiment. Thus, according to experimental results, the value of ∆ is suggested

1 dB for the R2SDF architecture and 1.1 dB for the R22SDF architecture when statistical

analysis is mixed with simulation-based analysis.

3.3 Wordlength Optimization

Fig. 3.9 presents the flow of the proposed automatic wordlength optimization in the

pipelined FFT processor. There are four major steps in the process. First, the upper bound

wordlength (UBW) for each PE stage is evaluated based on the operating frequency re-

quirement and the SQNR constraint (iSQNR) of the processor. Next, the UBWs of stages

are fed into the lower bound wordlength (LBW) evaluation as an additional constraint for

68 CHAPTER 3. FFT PROCESSOR

Constraints
Input

Optimized
Wordlength
Candidate
Searching

Upper Bound
Wordlength
Evaluation

Lower Bound
Wordlength
Evaluation

PE Stage
Wordlength

Mean of SQNR
Variance Table

PE Stage Table

Hardware
Library

Optimized
Wordlength
Evaluation

Library and Tables

Figure 3.9: Wordlength optimization flow of a PE stage.

determining the LBWs. Both UBW and LBW evaluations employ the statistical analysis.

Then, use the statistical analysis to determine optimized wordlength candidates (OWCs)

based on iSQNR-∆. Finally, the optimized wordlength (OW) evaluation is performed

based on the two primary procedures: (a) If the SQNR Error is ≤ 1 dB, a simulation

analysis is used to select a solution with the smallest area. As the candidates are arranged

in ascending order in area, the algorithm terminates after finding the first solution. (b) If

the SQNR Error is > 1 dB, a benefit function is introduced and the best benefit function

is selected.

A hardware library, and two tables, a PE stage table and a mean of SQNR variance

table, are prepared prior to activating the optimizing process. To optimize the hardware

cost, one hardware library such as the TSMC 0.25µm cell library, is chosen to determine

the area size and critical timing delay of a PE stage in the FFT processor by synthesizing

versus different wordlengths. The obtained data are recorded in the PE stage table to

3.3. WORDLENGTH OPTIMIZATION 69

?Get bU,k

BU

No

No

Yes

Yes

Yes

No

Find the MAX. Operating Frequency

k=k+1

Last Stage?

iSQNR, N, Operating Frequency, Input Wordlength, Output Wordlength, PE Stage Table

Stage no. k=1

Maximum Operating Frequency Maximum SQNR

Find the MAX. SQNR

SQNR Analysis for BU

Meet iSQNR− ?∆

Figure 3.10: Evaluation of the upper bound wordlength.

speed up automation. The mean of the SQNR variance table is used to derive lengths of

simulation at different simulated confidences according to (3.13). This table is established

by calculating the mean of 100 simulated SQNR variances of a PE stage with wordlengths

of 8-32 bits versus distinct FFT lengths (N).

3.3.1 Evaluation of Upper Bound Wordlength

The UBW of the k-th PE stage, named as bU,k, is defined as the maximum possible

wordlength, such that the critical path satisfies the timing constraint, which is the inverse

of the operating frequency of the FFT processor. Since the upper bound is obtained based

70 CHAPTER 3. FFT PROCESSOR

on the operating frequency and throughput, the lower throughput constraint and faster

hardware library exactly increase the UBW. Conversely, the increased wordlength will

require increased time for the operation of the PE stage. That is, increasing wordlength

reduces the allowed operating frequency, and thus, the operating frequency requirement

can be violated. Additionally, short wordlength results in a poor SQNR.

Fig. 3.10 shows the process of UBW evaluation. First, the UBW corresponding to

the operating frequency requirement is evaluated stage by stage. When the operating

frequency requirement is achieved for each stage, {bU,k}s are obtained. Otherwise, the

maximum allowable operating frequency is reported. When all {bU,k}s are given, they

are used to analyze the SQNR of the FFT processor. If the evaluated SQNR meets the

SQNR constraint, the UBW set denoted by BU comprising these {bU,k}s is output, or the

maximum achievable SQNR is reported.

3.3.2 Evaluation of Lower Bound Wordlength

When the UBW set is obtained, it is used to support the evaluation of the lower bound

wordlength (LBW). The LBW set, BL, is derived from BU , such that the optimized solu-

tion must be above BL. That is, if the solution is not above BL, the solution will not meet

the SQNR constraint.

Fig. 3.11 shows the flow of LBW evaluation. First, the UBW set, BU , is assigned as

the initial set B′
U . The evaluation is then conducted stage by stage. For the k-th stage, the

3.3. WORDLENGTH OPTIMIZATION 71

U

=b’U,k b’U,k − 1

=bL,k b’U,k

BL

BU

B’U

B’U

k=k+1

=BU

Yes

B=

k=1

UB’

Yes

Last Stage?
No

iSQNR, N, Input Wordlength, Output Wordlength,

No

SQNR > iSQNR− ∆

Figure 3.11: Evaluation of the lower bound wordlength.

72 CHAPTER 3. FFT PROCESSOR

Figure 3.12: Area increment of each PE stage as the wordlength increases 1 bit

element of B′
U , b′U,k, progressively decreases until the SQNR of its corresponding set is

smaller than the SQNR constraint; this b′U,k is now stored and assigned as bL,k. Notably,

at the beginning of the evaluation of each stage, B′
U is reset as BU . When the evaluation

of the last stage is complete, the final LBW set, BL, consisting of {bL,k}s, is reported, and

this LBW evaluation is terminated.

3.3. WORDLENGTH OPTIMIZATION 73

3.3.3 Optimized Wordlength Search

There are two chief considerations when searching the candidates of optimized wordlength.

First, since the DIF FFT processor requires large amount of memory, especially in the

early stages, it is better to keep the wordlength of these stages short for area optimization.

This is demonstrated in Fig. 3.12, which shows that the area increment of each PE stage

in an 8192-point FFT of Radix-2 when wordlength with 20 bits of each stage is added 1

bit.

The second issue is the output SQNR. The output SQNR of a pipelined FFT processor

can be obtained by replacing these variances in (3.11) with corresponding values obtained

from (3.1) to (3.10) and rearranged. The final expression is obtained as

SQNR ≈ 10 log10
c

(

a12−2b1+1 + a22−2b2+2 + · · · + aP2−2bP+P
)

(3.14)

where c is a constant, ak is a constant for each PE stage, and k ∈ {1, 2, · · · , P}. If

there exists the m-th PE stage such that am2−2bm+m >> ak2−2bk+k, for all k and k 6=

m, this stage will be a bottleneck degrading the output SQNR. That is, the value of

(

a12−2b1+1 + a22−2b2+2 + · · · + aP2−2bP+P
)

is dominated by the term am2−2bm+m. Thus, it

is efficient to choose the sizes of the wordlength to be close, so that each stage has an

approximate quantity of errors.

In addition to the consideration already mentioned, there are two major properties

of the R2SDF and R22SDF architectures that must be considered when determining the

74 CHAPTER 3. FFT PROCESSOR

BL BU

BU BL

No

Yes

No

OWC Vector

Yes

Scan and Store Optimal Format

to OWC Vector

Select One by One of Which Optimal
Format Wordlength Set Just Been Saved

Statistical Error Analysis

Select Next Optimal
Format Wordlength Set

Sorting
OWC Vector by AreaCurrent Set = BU

Save Current Set BOWC

Wordlength Sets from to

iSQNR, N, Input Wordlength, Output Wordlength, ,

SQNR Result > iSQNR− ∆

Figure 3.13: The procedure to determine the optimized wordlength set candidates.

3.3. WORDLENGTH OPTIMIZATION 75

format of the optimized wordlength. The required FIFO memories decrease stage by stage

(Fig. 3.1), and the errors degrading SQNR increase due to the amount of ak · 2k in each

product term of (3.14) increasing along as k increases. According to these properties and

considerations, the optimization format is in ascending order. This optimization format is

true only for the architectures with the characteristics that the required memories decrease

stage by stage. For other implementations, the optimization format needs to be modified,

and then the flow for optimization described in the following can be employed.

An optimized wordlength set candidate (OWC), BOWC , of a pipelined FFT processor

has three properties: (a) BL ≤ BOWC ≤ BU ; (b) BOWC is in ascending order; and (c)

the SQNR of the FFT processor with this wordlength set meets the SQNR constraint.

To find the OWC vector, all wordlength sets from the LBW set, BL, to the UBW set,

BU , are scanned, and those sets that are in ascending order survive. These sets are then

evaluated using the statistical analysis. If the evaluated SQNR meets the constraint, its

corresponding set is chosen as an OWC and is stored in the OWC vector sorted by area.

This process is iteratively performed until the wordlength set reaches BU and its evaluation

is completed. Fig. 3.13 shows this search flow. The final output of the flow is the OWC

vector consisting of BOWC sets sorted by area size.

Fig. 3.14 presents the flow to determine the optimized wordlength (OW) set, BOW .

First, choosing which method to employ is according to the constraint of SQNR error.

When simulation-based analysis is used, the BOWC’s in the OWC vector are simulated

76 CHAPTER 3. FFT PROCESSOR

iSQNR, N, Input Wordlength, Output Wordlength, SQNR_Error, OWC Vector

No

in the OWC Vector
(Start from the smallest area size)

Yes

SQNR_Error > 1 dB

SQNR Result > iSQNR

Select one BOWC

BOW

Simulation−Based Error Analysis

YesNo

best benefit in OWC Vector
Find the which has theBOWC

Figure 3.14: Optimized wordlength selection.

3.3. WORDLENGTH OPTIMIZATION 77

starting with the BOWC with the smallest area until the SQNR of the simulated BOWC

meets the SQNR constraint, iSQNR. The entire process of optimization is named a hybrid

method, whereas the analysis employed is the statistical method before finding the BOW .

When the SQNR Error is > 1 dB, the whole optimized process using the statistical

technique is called the pure statistical method. In this method, BOW is determined based

on the benefit function that is defined as

Benefit =
∆SQNR

∆Area

(3.15)

where ∆SQNR is the difference in SQNR between the BL and the analyzed BOWC , and

∆Area is their area difference. The BOWC with the best benefit is the optimized wordlength,

BOW .

As the statistical analyzer is less accurate due to the error in the analytical model,

Benefit is therefore introduced to fine tune the solution to get an enhanced SQNR with

little area overhead. In the trade-off between SQNR and area, Benefit is a better cost

function than the area cost function.

Fig. 3.15 shows an example of the steps in the wordlength optimization by using the

hybrid method when the SQNR error constraint is under 1 dB. The system constraints

are the same as those in Table 3.3. The sim SQNR means the result of simulation, and

iSQNR is the SQNR constraint. After sorting the OWC vector with ascending area size,

the BOW selection is performed one-by-one until the sim SQNR is > iSQNR and then the

78 CHAPTER 3. FFT PROCESSOR

Constraints:

Input_Wordlength=Output Wordlength=18, SQNR_Error=0.1
iSQNR=45, N=1024, Operating Frequency=50MHz

UBW Evaluation:
32 32 32 32 32 32 32 32 32 32

LBW Evaluation:
10 10 11 11 12 12 13 13 13 14

OW :
11 12 13 14 14 14 15 15 16 17

OWC Searching:

11 12 13 13 14 14 15 15 16 17 3528869
11 12 12 13 14 14 15 16 17 17 3542160
11 12 12 13 14 14 15 16 17 18 3543520
11 12 13 13 13 14 15 16 17 18 3545897
11 12 13 14 14 14 15 15 16 16 3554301
11 12 13 14 14 14 15 15 16 17 3555154

OWC Vector (sorted by area size) Area

11 12 13 13 14 14 15 15 16 17 44.491372 < iSQNR
11 12 12 13 14 14 15 16 17 17 44.206882 < iSQNR
11 12 12 13 14 14 15 16 17 18 44.375074 < iSQNR
11 12 13 13 13 14 15 16 17 18 44.390437 < iSQNR
11 12 13 14 14 14 15 15 16 16 44.497997 < iSQNR
11 12 13 14 14 14 15 15 16 17 45.030854 > iSQNR

OW Selection:
OWC Vector (sorted by area size) sim_SQNR

Figure 3.15: An example of hybrid wordlength optimization.

UBW Evaluation:
32 32 32 32 32 32 32 32 32 32

LBW Evaluation:
10 10 11 11 12 12 13 13 13 14

OW :
11 12 13 14 14 14 15 15 16 17

Constraints:

Input_Wordlength=Output Wordlength=18, SQNR_Error=1.1
iSQNR=45, N=1024, Operating Frequency=50MHz

OWC Vector Area Benefit
11 12 13 14 14 14 15 15 16 17 3555154 0.00002514
11 12 13 13 14 15 15 15 16 17 3558734 0.00002492
11 12 13 13 14 14 15 16 17 18 3569846 0.00002475
11 12 13 13 14 14 15 16 16 17 3558591 0.00002472
11 12 13 13 14 14 15 16 17 17 3568486 0.00002435
11 12 13 14 14 15 15 15 16 17 3585019 0.00002425

OW Selection: Re−sorting the OWC Vector by benefit

OWC Searching:

11 12 13 13 14 14 15 15 16 17 3528869
11 12 12 13 14 14 15 16 17 17 3542160
11 12 12 13 14 14 15 16 17 18 3543520
11 12 13 13 13 14 15 16 17 18 3545897
11 12 13 14 14 14 15 15 16 16 3554301
11 12 13 14 14 14 15 15 16 17 3555154

OWC Vector (sorted by area size) Area

Figure 3.16: An example of pure statistical analysis.

3.4. EXPERIMENTAL RESULTS 79

Table 3.2: Common Specifications of FFT for OFDM
OperatingFFT Length
Frequency

I/O Format

Short Length 16∼256 points 50 MHz Complex, Word-Sequential
Long Length 256∼8192 points 20 MHz Complex, Word-Sequential

outcome of BOW is obtained.

Fig. 3.16 shows the example of optimization employing the pure statistical method.

Table 3.3 the system constraints, except for SQNR Error = 1.1 dB. Because the constraint

of SQNR error is > 1 dB, the pure statistical method is employed to identify BOW . The

BOWC’s in the OWC vector are re-sorted based on the benefit that is calculated according

to (3.15). The BOWC with the best benefit is BOW .

To determine the OWC vector, it requires full scan of the sets with the ascending

order, and it therefore has the complexity of O(2P+max{bU,k}). To perform the optimized

wordlength evaluation, a greedy algorithm is used if the SQNR Error is ≤ 1 dB. If the

SQNR Error is > 1 dB, the evaluation requires to calculate the benefit function of the

OWC vector. Hence, it has the same complexity as the determination of the OWC vector.

3.4 Experimental Results

In this work, FFT architectures DIF R2SDF and DIF R22SDF were implemented by using

C++ language with SystemC [38] [39] library to demonstrate the proposed flow for op-

80 CHAPTER 3. FFT PROCESSOR

timization. The FFT length, N, can be adjusted from 8-8192, and the wordlength of each

stage can be altered from 8-32 bits. Since the SQNR range is 40-60 dB and the specifi-

cations (Table 3.2) are typically used in most OFDM-based systems [40], the SQNR of

45 dB and operating frequency of 50 MHz were adopted as constraints in these experi-

ments.

Synthesis was conducted without any constraints using Synopsys Design Analyzer

[41]. The models of the hardware functional blocks including adders, multipliers, and

multiplexers, employ Synopsys DesignWare [42] and TSMC 0.25µm cell library, as well

as the memory models, including the shift registers and ROMs [43] [44]. The fast carry

look-ahead synthesis model for adders, booth-encoded Wallace tree synthesis model for

multipliers, and the universal multiplexer synthesis model for multiplexers are adopted.

The area and timing reports of Synopsys Design Analyzer are used for these models.

To verify the proposed optimization flow of the FFT processor, the C++ language

with SystemC library is used to build the fixed-point model of the FFT hardware. In this

experiment, the quantization mode is always truncation, which is SC TRN in the SystemC

library, and the overflow mode is saturation, which is SC SAT in the library.

Finally, the platform is built in a PC with an Intel 2.4GHz CPU and 768MB RAM

memory. The operating system (OS) is Microsoft Windows 2000.

3.4. EXPERIMENTAL RESULTS 81

Table 3.3: Constraints for Optimization
SQNR SimulationSQNR SQNR Error Operating Frequency I/O Wordlength
Confidence Level

45 dB 0.1 dB 50 MHz 18 bits 95%

3.4.1 Variant FFT Lengths

Table 3.4 and Table 3.5 present experimental results for area optimization versus FFT

lengths of 8-8192 points. Table 3.4 shows the experimental results for R2DSF and Ta-

ble 3.5 shows the experimental results for R22SDF. Table 3.3 presents the optimization

constraints, in which the SQNR Error is the value of e in (3.13) and the SQNR simulation

confidence level is the amount of (1 − α)100%. Since the constraint of SQNR error is

smaller than 1 dB, the hybrid method is employed. In both tables, the first column lists

the FFT length. The second column indicates whether the choice of wordlength is opti-

mized; w/o indicates that wordlength choice is based on using the same wordlength for

each stage, which is the minimum length such that all the constraints are met, and w/ is

the wordlength is decided using the proposed optimization method. The column “Area

Reduction” presents the reduction rate of area calculated by

Area{w/o optimization} − Area{w/ optimization}

Area{w/o optimization}
× 100% (3.16)

The last column, “Time”, is the required time of the used computer for performing opti-

mization. The maximum and minimum area reduction rates are 24% and 9% for R2SDF,

and 23% and 6% for R22SDF. In summary, these tables show that as N increased, the area

82 CHAPTER 3. FFT PROCESSOR

Table 3.4: Area Reduction of R2SDF with Different FFT Lengths Using Hybrid Method

I/O Wordlength = 18 bits
FFT Length w/ or w/o Wordlength of PE Stage Area Area Time

(N) Optimization 1 2 3 4 5 6 7 8 9 10 11 12 13 (µm2) Reduction (sec)
w/o 12 12 12 2588318
w/ 11 11 12 216184

16% 8

w/o 12 12 12 12 40269316
w/ 11 11 12 13 359378

11% 11

w/o 13 13 13 13 13 73343432
w/ 11 12 12 13 13 664339

9% 18

w/o 14 14 14 14 14 14 115250664
w/ 11 12 13 13 13 14 993360

14% 20

w/o 14 14 14 14 14 14 14 1550048128
w/ 11 12 13 13 14 14 15 1388215

10% 41

w/o 15 15 15 15 15 15 15 15 2249617256
w/ 11 12 13 13 14 14 15 15 1882859

16% 46

w/o 15 15 15 15 15 15 15 15 15 2988883512
w/ 11 12 13 13 14 15 15 15 16 2569228

14% 67

w/o 16 16 16 16 16 16 16 16 16 16 44744451024
w/ 11 12 13 13 14 14 15 16 17 17 3568487

20% 139

w/o 16 16 16 16 16 16 16 16 16 16 16 63965812048
w/ 11 12 13 14 14 15 15 15 16 17 18 5184678

19% 310

w/o 17 17 17 17 17 17 17 17 17 17 17 17 102554234096
w/ 11 12 13 13 14 15 15 16 17 17 17 18 7858489

23% 616

w/o 17 17 17 17 17 17 17 17 17 17 17 17 17 166682248192
w/ 11 12 13 13 14 15 15 16 17 17 18 18 19 12676846

24% 971

3.4. EXPERIMENTAL RESULTS 83

Table 3.5: Area Reduction of R22SDF with Different FFT Lengths Using Hybrid Method

I/O Wordlength = 18 bits
FFT Length w/ or w/o Wordlength of PE Stage Area Area Time

(N) Optimization 1 2 3 4 5 6 7 8 9 10 11 12 (µm2) Reduction (sec)
w/o 12 12 12 12 21415616
w/ 11 11 12 13 189706

11% 10

w/o 13 13 13 13 13 13 76003364
w/ 11 12 12 13 13 14 717914

6% 20

w/o 15 15 15 15 15 15 15 15 1732185256
w/ 11 12 12 13 13 14 15 16 1461204

16% 31

w/o 16 16 16 16 16 16 16 16 16 16 36952091024
w/ 11 12 13 13 14 14 15 15 16 17 2973710

20% 65

w/o 17 17 17 17 17 17 17 17 17 17 17 17 92712124096
w/ 11 12 12 13 14 14 15 16 17 18 18 18 7120428

23% 317

reduction rate increases.

3.4.2 Output SQNR Requirement

Fig. 3.17 shows the achieved area reduction rate versus different SQNR constraints for

R2SDF and R22SDF. In the conventional designs with the same wordlength for all pipeline

stages, the SQNR increases about 6 dB when wordlength increase by 1 bit. In Fig. 3.17, a

similar phenomenon can be observed when 6 dB is a cycle area reduction rate for different

SQNR requirements. The reduction rate varied from 12%-20%.

84 CHAPTER 3. FFT PROCESSOR

Figure 3.17: Area reduction rate versus SQNR constraints.

3.4. EXPERIMENTAL RESULTS 85

Table 3.6: Area Reduction of R2SDF with Different FFT Lengths Using Statistical Anal-
ysis

I/O Wordlength = 18 bits Post
FFT Length w/ or w/o Wordlength of PE Stage Area Area Time SQNR

(N) Optimization 1 2 3 4 5 6 7 8 9 10 11 12 13 (µm2) Reduction (sec) (dB)
w/o 12 12 12 2588318
w/ 11 11 12 216184

16% 1 46.43

w/o 12 12 12 12 40269316
w/ 11 11 12 13 359378

11% 1 45.44

w/o 13 13 13 13 13 73343432
w/ 11 12 12 13 13 664339

9% 1 45.27

w/o 14 14 14 14 14 14 115250664
w/ 11 12 13 13 13 14 993360

14% 1 45.58

w/o 14 14 14 14 14 14 14 1550048128
w/ 11 12 12 13 14 14 15 1370066

12% 1 44.94

w/o 15 15 15 15 15 15 15 15 2249617256
w/ 11 12 13 13 14 14 15 16 1884288

16% 1 45.64

w/o 15 15 15 15 15 15 15 15 15 2988883512
w/ 11 12 13 13 14 14 15 15 16 2546349

15% 1 44.62

w/o 16 16 16 16 16 16 16 16 16 16 44744451024
w/ 11 12 13 14 14 14 15 15 16 17 3555154

21% 1 45.00

w/o 16 16 16 16 16 16 16 16 16 16 16 63965812048
w/ 11 12 13 13 14 15 15 15 16 17 18 5153721

19% 1 44.84

w/o 17 17 17 17 17 17 17 17 17 17 17 17 102554234096
w/ 11 12 13 13 14 15 15 16 17 17 18 19 7875389

23% 2 45.30

w/o 17 17 17 17 17 17 17 17 17 17 17 17 17 166682248192
w/ 11 12 13 13 14 15 15 16 17 17 18 18 19 12676846

24% 2 45.04

86 CHAPTER 3. FFT PROCESSOR

3.4.3 Loose SQNR Error Requirement

Table 3.6 shows the wordlength optimization results based on the constraints presented

in Table 3.3, except SQNR error=1.1 dB. Since the constraint of SQNR error equals

1.1 dB, the statistical analysis method is employed for optimization. The achieved area

reduction rate versus the FFT lengths drifts toward the same direction as the results shown

in Table 3.4. The SQNR corresponding to the optimized wordlengths is evaluated by

simulation to verify its accuracy. Table 3.6 lists these evaluated results in the last column.

The obtained SQNRs of FFT lengths, 128-point, 512-point, and 2048-point violate the

SQNR constraint.

3.4.4 Comparisons of Three Methods

Fig. 3.18 shows the comparisons of the experimental results by employing the pure sta-

tistical method, pure simulation-based method, and the hybrid method for the R2SDF

optimization. The pure simulation-based method is the proposed optimization without

statistical error analysis and applies greedy algorithm to find the local optimum. One db

is added to the SQNR constraint (iSQNR) to allow for the SQNR error in the statisti-

cal model. This is done for overdesign to cover the SQNR error of the statistical model.

These experimental results suggest that overdesign with extra 1 dB has larger hardware

costs than other two methods. This difference is reflected by comparisons of the area re-

3.4. EXPERIMENTAL RESULTS 87

Figure 3.18: Comparisons of results using different analytical methods.

88 CHAPTER 3. FFT PROCESSOR

duction rate versus FFT lengths shown in the top frame. The bottom frame presents that

the required time for performing optimization can be dramatically reduced by using the

hybrid methods compared with that when using the pure simulation-based analysis with

approximately the same optimized area. In summary, employing the hybrid method for

the wordlength optimization is faster than the pure simulation-based method and provides

a more accurate determination of wordlengths than the pure statistical method.

3.5 Summary

This work presented a modified statistical error model for varying wordlengths of individ-

ual stages of a pipelined FFT processor with Radix-2 and Radix-22 algorithms. The error

model is used to investigate the hybrid method for wordlength optimization at the stage

level. The proposed hybrid method combined with statistical and simulation-based error

analyses performs the wordlength optimization based on minimizing the area size cost. A

generator of pipelined FFT processors was developed for experiments to validate the pro-

posed method and error model. The generator gives the suggested value of the maximum

available SQNR or operating frequency at the UBW evaluation when constraints cannot

be met. Experiments indicate that the hybrid method can obtain optimized results faster

than the conventional simulation-based method, thereby reducing design time for the FFT

processor. Furthermore, the area size of the processor is also minimized.

Chapter 4

Multiplier Generator

Multiplication is a basic arithmetic operation for digital signal processing. The speed of

a multiplier is a critical issue in determining the performance of digital signal processors

(DSPs). Therefore, high speed multipliers are required for high performance DSPs. In

this work, a high performance multiplier generator was developed. The generator try to

optimize the gate delay and the wire delay to get optimized solution in deep-submicron

design.

4.1 Overview of Multiplier

Multiplication is a three-step process, and its conceptual sketch is shown in Fig. 4.1,

where CPA is the abbreviation of carry propagate adder [45]. The first step is generation

89

90 CHAPTER 4. MULTIPLIER GENERATOR

Multiplicand
Multiplier

Partial
Products

Sum
Carry

Steps

(1)

(2)

(3)
Product

Final Result

Round

CPA

Reduction

Generation

Figure 4.1: Multiplication steps.

of partial products. Then, the step advances on reduction of partial products to produce

”Sum” and ”Carry” rows. Finally, the result of multiplication is obtained by adding ”Sum”

and ”Carry” rows using a CPA. This result is then rounded into a valid representation

according to the system’s specification. In this work, the generation of partial products

uses non-Booth encoding, and the reduction of partial products employs Wallace-tree

method [46].

4.1. OVERVIEW OF MULTIPLIER 91

y1
y2
y3
y4
y5
y6
y7
y8

Product

Partia
l P

roducts

M
u

ltip
lier

Figure 4.2: Non-Booth encoding for 8 × 8 multiplication.

Table 4.1: Selection of partial product

Multiplier Bit (yi) M-bit Partial Product
0 0
1 X

x8

Partial Product

yi
x1x2x3x4x5x6x7

Figure 4.3: Partial product selection using a row of AND gates.

92 CHAPTER 4. MULTIPLIER GENERATOR

4.1.1 Non-Booth Encoding

The non-Booth encoding is the simplest method for producing partial products. Fig. 4.2

shows the illustration of non-Booth encoding for 8 × 8 multiplication. Each row of dots

represents a partial product. Each dot stands for a bit in the partial product. For (M-bit

X) × (N-bit Y), this non-Booth algorithm selects the partial products from the set {0, X}

according to each bit of Y . That is each partial product is either M-bit 0 or shifted X,

as shown in Table 4.1. The non-Booth encoder is typically implemented using a logical

AND gate for each bit of partial products as shown in Fig. 4.3.

4.1.2 Wallace Tree Method

The Wallace-tree method [46] is widely used for constructing high speed multipliers.

Fig. 4.4 shows an illustration of Wallace tree with 3-to-2 compressors which are typically

implemented using full adders (FA’s) for reducing 18 partial products. This method re-

duces the partial products by connecting n-to-m compressors in parallel in what is known

as tree structure. Wallace tree-structure multipliers are higher speed than array-structure

multipliers, since its delay time is proportional to the logarithm of the number of bits of

a multiplier. However, Wallace tree is irregular, and hence, the complex interconnection

makes its physical design crucial.

To build the reduction tree, the n-to-m compressors are designed with the assistance

4.1. OVERVIEW OF MULTIPLIER 93

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

SumCarry

Partial Product

Figure 4.4: Illustration of Wallace tree for reducing 18 partial products.

94 CHAPTER 4. MULTIPLIER GENERATOR

Procedure: Multiplier_Generation

 for (each VCS in increasing−weight order)

02 placement for partial products;
03 VCS generation;
04 timing driven placement;
05 final adder adjustment;

begin

end

01 partial product generation;

Figure 4.5: Overview of multiplier generation.

of software that balances the different connecting paths [45] [47] [48]. This is a global ap-

proach to minimize the total delay for all possible paths, and is examined in the following

sections.

4.2 Layout-Driven Multiplier Generation

To optimize multiplier design addressed in hardware size and speed, the generation flow is

developed incorporating synthesis and placement. Fig. 4.5 shows an overview of the flow

of multiplier generation. The flow is performed starting from the LSB vertical compressor

slice (VCS), and ending at the MSB VCS. The first step is to generate partial products.

Next, the logic of partial product terms are placed as compact as possible, and at the

same time, the placement of half adders and the insertion of buffers are implemented.

To compress the partial products, the VCS’s are then produced based on balancing path

4.2. LAYOUT-DRIVEN MULTIPLIER GENERATION 95

100
0

20 30 40 50

5

20

15

10

Minimizing "Carry" Minimizing "Sum"

A
rr

iv
al

 T
im

e

Column No.

Figure 4.6: Conceptual profile of input arrival time of final adder.

delays according to gate delays. Advancing on the next step, the compressors of VCS are

placed based on balancing path delays according to wire delays. Finally, the high-speed

final adder is added, and the adder is typically implemented employing a carry lookahead

adder (CLA).

After compression, the input arrival time of the final adder has a typical profile as

shown in Fig. 4.6. In the compressing process, the optimization is performed to minimize

the delays of ”Carry” of those VCS’s before that one with maximum delay, and minimize

the delays of ”Sum” and then minimize the delays of ”Carry” of other VCS’s.

96 CHAPTER 4. MULTIPLIER GENERATOR

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

3−to−2
Compressor

Compressed Terms

(Root)

Carry Sum Carry Sum Carry Sum

Carry Sum

Carry out
from the
last VCS

PP PP7 PP6 PP5 PP4 PP3 PP PP12PP9 8

MSB

LSB

Figure 4.7: Overview of vertical compressor slice.

4.2. LAYOUT-DRIVEN MULTIPLIER GENERATION 97

1Gate

2Gate
4Gate

w2

3Gate

w3
w4

w1
in

out

Figure 4.8: Evaluation of output arrival time

4.2.1 Delay Estimation

To build a VCS, the root is defined as the compressor that produces the final ”Carry” and

”Sum”, and the leaf nodes are all compressed terms including the propagated carries from

the previous VCS. The conceptual sketch using a 9×9 multiplier with 3-to-2 compressors

as an example is shown in Fig. 4.7, where PPi, for all i, are the partial products.

Fig. 4.8 shows an example of the evaluation of output arrival time when signal propa-

gates from node I to node O. As shown in this figure, the output data arrival time is given

by

tout = tin +
4
∑

i=1

twd,i +
4
∑

j=1

tgd,j (4.1)

where tin is the input data arrival time, twd,i is the wire delay of wi, for all i, and tgd,j is

the gate delay of Gatej, for all j. For the developed method, the output arrival time is

modified by extending (4.1), and is given by

tout = tin +
Kw
∑

i=1

twd,i +
Kg
∑

j=1

tgd,j (4.2)

98 CHAPTER 4. MULTIPLIER GENERATOR

3t 5t 2t 4t 1t6t

in3 in2 in1

carry sum

Figure 4.9: Cell-based delay model of a 3-to-2 compressor

ir

iC
2

iC
2

Figure 4.10: π-model of the i-th wire (wi)

where Kw is the total number of wires, and Kg is the total number of gates. The VCS is

generated based on balancing the output arrival time of VCS that is evaluated by roughly

estimating the wire delay according to the number of compressors of a path.

In this work, the cell-based model rather than the conventional XOR-based model is

used as the timing model, such that the timing analysis can be more accurate. For a 3-to-2

compressor, six path delays are modeled as shown in Fig. 4.9. These six paths are data

from the inputs, in1, in2, and in3, to the output, carry and sum. The arrival time of carry

and sum is calculated by summing the corresponding wire delays, gate delays, and input

arrival time as expressed in (4.2).

4.2. LAYOUT-DRIVEN MULTIPLIER GENERATION 99

Cell1

Cell2

w2w1

1R

1C
2

1C
2

Cell1

A

(a) Interconnection between two cells.

B

(b) Delay model of connecting wire.

1r 2R

2C
2

2C
2

Cell2

Figure 4.11: L-shaped approximation between two cells.

100 CHAPTER 4. MULTIPLIER GENERATOR

L1

L2

L4

L3

d

Primary Output

A

B

d’

�
�
�

�
�
�

�
�
�

�
�
�

Figure 4.12: An example of wire delay estimation using L-shaped approximation.

Fig. 4.10 shows the π-model used as the wire delay model. Each wi wire is modeled

by a ri resistor and two capacitors with the capacitance value of Ci/2. For two cells, the

L-shape model shown in Fig. 4.11(a) is used for evaluate the delay. Use teh Elmore delay

model [49] shown in Fig. 4.11(b) for calculating the delay given by

td,A→B = r1Cl +
∑

RkCk (4.3)

where r1 is the output resistance of Cell1, Cl is the summed capacitance from r1 to the

node B, Rk is the resistance of the wk wire between nodes A and B, Ck is the summed

capacitance from Rk to the node B. Hence, the td,A→B is calculated as

td,A→B = r1 ×
(

C1

2
+

C1

2
+

C2

2
+

C2

2
+ CB

)

+R1 ×
(

+
C1

2
+

C2

2
+

C2

2
+ CB

)

+ R2 ×
(

C2

2
+ CB

)

(4.4)

Fig. 4.12 shows an example of wire delay estimation using L-shaped approximation.

4.2. LAYOUT-DRIVEN MULTIPLIER GENERATION 101

Bi

Procedure: Full Decomposition

Output: {C} set
Input: {A, B} sets

begin
01 max <−− max(A); // max: largest value of all elements in A
02 temp = ;
03 for i = 1 to |B|

05 C <−− (A \ { max}) U temp;
end

φ

04 temp <−− temp U { max − };

Figure 4.13: Full Decomposition (FD) procedure.

To estimate the wire delay from A and B to the primary output, the L1 + L2 and L3 + L4

wire lengths are used to calculate the delays respectively, when d ≈ L1 + L2 and d′ ≈

L3 + L4 according to the L-shaped approximation.

By using 3-greedy algorithm [50] with π-model and L-shaped approximation, the

upper bound of the arrival time for the final ”Sum” of a VCS can be estimated before the

VCS generation. To esure the feasibility of the arrival time estimation during its reduction

iteration in the VCS generation, the Feasibility Checking (FC) algorithm is developed,

and is described in the following section.

102 CHAPTER 4. MULTIPLIER GENERATOR

4.2.2 Feasibility Checking Algorithm

To perform the FC algorithm, the Full Decomposition (FD) procedure is proposed to

support VCS generation. The steps of the FD procedure are shown in Fig. 4.13. Firstly,

the maximum element of set A is assigned to the max variable. Then, each element of set

B is subtracted from max, and then all the resultant elements are collected into the temp

set, which initially is an empty set. Finally, all elements of temp and those of A set except

max are merged together to be C set.

Moreover, to examine the FC algorithm, the terminology ”cover” is firstly defined as

the following.

Definition 1 Given two sets A and B with |A| = |B|, we say that A covers B, denoted as

A ⊇ B, if there exists an one-to-one mapping between the element Ap and Bq such that

Ap ≥ Bq.

After describing the FD procedure, and defining the ”cover” (⊇), the feasibility is

verified employing the FC algorithm shown in Fig. 4.14. As shown in Fig. 4.14, the

feasibility checking is performed to check whether D set can be ”decomposed” by F set

through FD procedure such that the decomposed set, D′, satisfies D′ ⊇ E. If it is true, the

FC returns ”TRUE”; else it returns ”FALSE”. As long as the number of elements in set

D is less than that in set E, the FC algorithm continue to decompose set D using the FD

procedure. If set D cannot be decomposed any more, find an element of set D to match

4.2. LAYOUT-DRIVEN MULTIPLIER GENERATION 103

Algorithm: Feasibility Checking

Input: { D, E, F } sets

Output: TRUE or FALSE

begin

01 while (|D| < |E|)

02 if (max(D) − min(F) >= max(E))

03 D = Full Decomposition(D, F);

04 else

08 return TRUE;

09 else

10 return FALSE;

end

07 if (D E)

05 find d D and d >= max(E) such that

 |max(E) − d| is minimum;

06 D <−− D \ {d}, E <−− E \ { max(E) };

Figure 4.14: Feasibility Checking (FC) algorithm.

104 CHAPTER 4. MULTIPLIER GENERATOR

the maximum element of set E. Finally, the number of set D equals that of set E. Then,

the FC algorithm returns ”TRUE” or ”FALSE” depending on whether D ⊇ E or not.

Illustration of Feasibility Checking

Before constructing the VCS, we have to ensure the arrival time of the final ”Sum” is

shorter than its required time. A following example is illustrated to verify the FC algo-

rithm.

• Given 3 sets, D, E and F , where D is the set of initial required time for the final

”Sum” of a VCS, E contains the arrival time of the compressed terms in this VCS,

and F contains the path delays of a compressor. Assume that D = {6}, E =

{1, 2, 2, 3, 4} and F = {1, 2, 3}.

1) Fig. 4.15 shows the first step of the feasibility checking. Since |D| < |E|, and

max(D) = 6, min(F) = 1, max(E) = 4, we have max(D) − min(F) = 5 ≥

max(E), which means the derived arrival time for the compressed term from

the required time of the final ”Sum” is larger than that of the compressed term

which requires the maximum arrival time. Therefore, the timing violation will

not happen, and max(D) can be decomposed to three elements.

2) Fig. 4.16 shows the second step of the feasibility checking. Since |D| < |E|,

max(D) = 5, min(F) = 1, max(E) = 4, we have max(D) − min(F) = 4 ≥

4.2. LAYOUT-DRIVEN MULTIPLIER GENERATION 105

D’2 = max(D) − F2 = 6 − 2 = 4
D’3 = max(D) − F3 = 6 − 3 = 3
D = {5, 4, 3}

D’1 = max(D) − F1 = 6 − 1 = 5
F1

F2
F3

3 4 5

6

Figure 4.15: The first step of feasibility checking: decomposition.

D’2 = max(D) − F2 = 5 − 2 = 3
D’3 = max(D) − F3 = 5 − 3 = 2
D = {4, 3, 2, 4, 3}

D’1 = max(D) − F1 = 5 − 1 = 4

2 3 4

F1
F2

F3

3 4 5

F1
F2

F3

6

Figure 4.16: The second step of feasibility checking: further decomposition.

max(E). Hence, max(D), can be further decomposed to three elements.

3) Fig. 4.17 shows the third step of the feasibility checking. Since |D| = |E|, D

is not decomposed any more. Through the first and the second steps, the set

D contains the required time of the compressed terms of the VCS. For each

Di element of D, there exists an Ej element of E, such that Di ≥ Ej after

the decomposition. If it is not true, the timing violation happens because the

required time is smaller than the arrival time for some compressed terms.

106 CHAPTER 4. MULTIPLIER GENERATOR

D = { 4 3 2 4 3 }

 E = { 1 2 2 3 4 }

Figure 4.17: The third step of feasibility checking: check the derived arrival time.

4.2.3 Vertical Compressor Slice (VCS) Generation

In this work, minimizing ”Sum” in a VCS as shown in Fig. 4.6 needs to perform the

minimization of the Sum’s arrival time, as well as the minimization of the Carry’s arrival

time. Therefore, only the ”Sum” minimization is addressed here. For the given arrival

time of compressed terms, and the path delays of compressors, the VCS with minimum

arrival time of the final ”Sum” and ”Carry” is obtained by employing the minimization.

Hence, to compare the performance between two VCS’s, the arrival time of ”Sum” is

firstly compared, and then the arrival time of ”Carry” in non-increasing order.

Fig. 4.18 shows the VCS generation algorithm, where req carry out is the required

time of carry out, and all inserted compressors (CPR’s) are initially set to be uncommitted.

To examine the VCS generation algorithm, the terminology ”commit” is firstly defined in

the following.

Definition 2 The CPR is committed when its arrival times of sum and carry are mini-

mized.

4.2. LAYOUT-DRIVEN MULTIPLIER GENERATION 107

CPR0CPR0

CPR1

CPRi

CPRi
CPRi

CPRi

CPR1

CPR0

Algorithm: VCS Generation

 and the path delays of compressors respectively

begin
01 ini_sum <−− the arrival time of the final sum calculated by
 3−greedy algorithm;
02 while (Feasibility Checking(ini_sum, A, P) == TRUE)

04 ini_sum = ini_sum + 1;
03 ini_sum = ini_sum − 1;

 /* ini_sum is treated as the required time of sum of the final adder */
05 insert ; /* is the root of VCS */

07 while (there are uncommitted CPRs)
08 do
09 max_carry = max(req_carry_out of all uncommitted CPRs);
10 max_carry−−;

Input: sets { A, P } are the arrival time of compressed terms

Output: a VCS

 /* L is the set of uncommitted leaves */

12 max_carry++;

11 if (Feasibility Checking (L, A, P) == FALSE)

end

 ;

20 undo the decomposition ;

15 if (|L| < |A|)
16 try decomposition ;
17 if (Feasibility Check (L, A, P) == FALSE)

19 if (Carry of < max_carry)
18 undo the decomposition

14 for i = each(L)

13 set to be committed;
 /* is the CPR with max_carry */

06 L <−− the required time of 3 inputs of ;

Figure 4.18: VCS generation algorithm.

108 CHAPTER 4. MULTIPLIER GENERATOR

DesignWare
(Wallace Tree)

Multiplier
Developed

Generator

DesignWare
(CSA Tree)

Synthesis &
Placement &

Routing

Verification
Function

Router

Static Timing
Analyzer

Cell
Library

Figure 4.19: Experimental flow.

In the VCS Generation algorithm as shown in Fig. 4.18, line 1 applies the 3-greedy algo-

rithm to evaluate the initial arrival time of the final ”Sum”, and then an upper bound of

required time is obtained. Lines 2-4 are the calculation for the optimized required time of

the final ”Sum” using the FC algorithm. As long as there still exist uncommitted CPRs,

VCS generation is performed iteratively. Lines 9-10 minimize the maximum required

time of ”Carry”. If the required time of ”Carry” is minimized, line 13 will set the CPR

committed. If the number of uncommitted leaves is less than the number of compressed

terms, lines 14-20 will attempt to insert CPRs. As long as a new CPR is inserted, the FC

algorithm is used to make sure the inserted CPR is allowed.

4.3. EXPERIMENTAL RESULTS AND SUMMARY 109

Table 4.2: Experimental Results

This Work CSA Wallace Tree

8 × 8
delay (ns) 3.369 3.888 3.298

area (um2) 94343.34 146600.16 178478.16

12 × 12
delay (ns) 4.086 5.275 3.925

area (um2) 156251.53 222530.84 258966.96

16 × 16
delay (ns) 4.660 6.943 4.405

area (um2) 235366.42 324727.06 372566.54

24 × 24
delay (ns) 5.782 9.967 5.373

area (um2) 424949.84 601216.0 716139.10

32 × 32
delay (ns) 6.235 12.775 5.523

area (um2) 703340.65 930469.75 1105947.92

4.3 Experimental Results and Summary

Fig. 4.19 shows the overall experimental flow of the developed layout-driven multiplier

generator. This generator can produce the hardware description language (HDL) Verilog

code, and the placed layout of a multiplier. Then, the Verilog code is used to verify

the function of the multiplier. The placed layout is generated using the cell library with

0.35 µm, 1P4M CMOS technology. This layout is then routed by the Synopsys’s Apollo

CAD tool. Finally, the static timing analysis is performed using Synopsys’s Pathmill CAD

tool.

Table 4.2 shows the comparisons of the critical delay and area of three schemes for

variant sizes of multipliers. The layout-driven generated multiplier has smaller critical

delay than the multiplier with CSA structure produced by commercial tools. Although

110 CHAPTER 4. MULTIPLIER GENERATOR

the delay of the developed multiplier is little longer than the multiplier in Wallace-tree

structure produced by commercial tools, the area in the developed multiplier is much

smaller than that of the Wallace-tree multiplier. Therefore, the layout-driven multiplier

has better trade-off between performance and area than other two multipliers.

Chapter 5

Conclusions and Future Works

5.1 Conclusions

To handle the complexity of SoC designs, the system level design methodology, becomes

an emerging issue. Design space exploration at system level is a critical step for trade-off

between constraints. In this work, a NoC generator, an FFT generator, and a multiplier

generator are developed to automatically produce the corresponding prototypes. These

prototypes are used at system level, RTL and circuit level in the top-down design to reduce

design time.

These generators rapidly generate optimized IPs according to the design constraints.

The NoC generator is developed based on latency-insensitive concepts and employing

the virtual-circuit switching to achieve high utilization, bandwidth guarantee, and the pre-

111

112 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

dictable latency under heavy traffic load. This NoC generator also employs the communication-

aware task binding algorithm with the profile-driven optimization technique to reduce

communication amount and contentions. The FFT generator uses the hybrid method com-

bining the statistical analysis and simulation-based analysis to optimize wordlengths of an

FFT processor. Hence, it can achieve high accuracy in the analysis, and also reduce the

design exploration time. The Multiplier generator can produce a high-speed multiplier

with small area based on gate delay optimization with considering wire delay.

5.2 Future Works

NoC is a trend for on-chip communication. Its contention effect is required to be analyzed,

and hence, the ESL design methodology is used to construct NoC’s modeling and simula-

tion. If system designers can get the information at ESL, the architecture exploration will

be possible. Hence, design, modeling, and verification at ESL are future study.

Wordlength optimization is important for system designs. This thesis studied wordlength

in FFT module, but the crucial challenge is the wordlength optimization of a system. For

communication systems, designers can model a system as a process network. For process

networks, data can be exchanged using fixed-point representation in system optimization.

Hence, to decide the fixed-point representation becomes an issue for system designs. This

is difficult if the system is not a linear time-invariant (LTI) system. The system’s charac-

5.2. FUTURE WORKS 113

teristics is not predictable if the system is not LTI. However, communication systems are

usually not LTI systems. Therefore, to reduce the design time for system optimization is

a research topic.

Multipliers are mostly often used for VLSI design. However, for deep sub-micron de-

signs, local wire delay can affect the design performance, and hence, the wire delay must

be tightly merged to gate delay, and the optimization of multipliers becomes complex.

Simulation-annealing, and genetic algorithm are hence suitable for solving this problem.

114 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

Bibliography

[1] M.-L. Ku and C.-C. Huang, “A complementary codes pilot-based transmitter diver-

sity technique for OFDM systems,” IEEE Transactions on Wireless Communica-

tions, vol. 5, pp. 504–508, March 2006.

[2] L. Cai and D. Gajski, “Transaction level modeling: An overview,” IEEE/ACM/IFIP

International Conference on Hardware/Software and System Synthesis, pp. 19–24,

October 2003.

[3] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza,

S. Meyers, E. Frang, and R. Kumar, “An integrated quad-core Opteron proces-

sor,” IEEE International Solid-State Circuits Conference Digest of Technical Papers,

pp. 102–103, 2007.

[4] J. Song, T. Shepherd, M. Chau, A. Huq, I. Syed, S. Roy, A. Thippana, K. Shi, and

U. Ko, “A low power open multimedia application platform for 3G wireless,” IEEE

International Conference on Systems-on-Chip, pp. 377–380, 2003.

115

116 BIBLIOGRAPHY

[5] M. Dillinger, K. Madani, and N. Alonistioti, “Software defined radio : architectures,

systems, and functions,” John Wiley & Sons Ltd, 2003.

[6] G.-H. Chen, “Design methodology at electronic system level: A case study of

OFDM system,” Master Dissertation, National Chiao Tung University, Taiwan, Au-

gust 2006.

[7] L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,” IEEE

Computer Magazine, vol. 35, pp. 70–78, January 2002.

[8] A. Jantsch and H. Tenhunen, “Networks on chip,” Kluwer Academic Publishers,

2003.

[9] D. Densmore, A. Sangiovanni-Vincentelli, and R. Passerone, “A platform-based tax-

onomy for ESL design,” IEEE Design & Test of Computers, vol. 23, pp. 359–374,

September–October 2006.

[10] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for regular NoC

architecture,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 24, pp. 551–562, April 2005.

[11] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen,

P. Wielage, and E. Waterlander, “Trade-offs in the design of a router with both guar-

BIBLIOGRAPHY 117

anteed and best-effort services for networks on chip,” Proceedings of ACM/IEEE

Design Automation and Test in Europe, pp. 350–355, 2003.

[12] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh, and G. D. Micheli, “Design, synthesis,

and test of networks on chips,” IEEE Design & Test of Computers, vol. 22, pp. 404–

413, September–October 2005.

[13] W. J. Dally, “Performance analysis of a k-ary n-cube interconnect networks,” IEEE

Transactions on Computers, vol. 39, pp. 775–785, June 1990.

[14] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli, “A

methodology for correct-by-construction latency insensitive design,” Proceedings

of IEEE/ACM International Conference on Computer-Aided Design, pp. 309–315,

1999.

[15] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Coping with latency in soc design,”

IEEE Micro, vol. 22, pp. 24–35, October 2002.

[16] J. Y. Chang, W. J. Kim, Y. H. Bae, J. H. Han, H. J. Cho, and H. B. Jung, “Perfor-

mance analysis for MPEG-4 video codec based on on-chip network,” ETRI Journal,

vol. 27, pp. 497–503, 2005.

[17] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for FPGAs,” ACM

Symposium on FPGAs, pp. 203–213, 2000.

118 BIBLIOGRAPHY

[18] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns, “Placement and routing

tools for the Triptych FPGA,” IEEE Transactions on Very Large Scale Integration

Systems, vol. 3, pp. 473–482, December 1995.

[19] C. Y. Lee, “An algorithm for path connections and its applications,” IRE Transac-

tions Electron Computing, vol. 10, pp. 346–365, 1961.

[20] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerical Math,

vol. 1, pp. 269–271, 1959.

[21] J. Duato, S. Yalamanchili, and L. Ni, “Interconnection networks: An engineering

approach,” Morgan Kaufmann, 2003.

[22] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,” Proceedings of

the 6th IEEE International Workshop on Hardware/Software Codesign, pp. 97–101,

1998.

[23] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex

fourier series,” Mathematics Computation, vol. 19, pp. 297–301, 1965.

[24] L. R. Rabiner and G. Gold, “Theory and application of digital signal processing,”

Prentice-Hall, Inc., 1975.

[25] E. H. Wold and A. M. Despain, “Pipelined and parallel-pipeline FFT processors for

BIBLIOGRAPHY 119

VLSI implementation,” IEEE Transactions on Computers, vol. C–33(5), pp. 414–

426, May 1984.

[26] S.-S. He and M. Torkelson, “A new approach to pipeline FFT processor,” Proceed-

ings of the 10th IEEE International Parallel and Distributed Processing Symposium,

pp. 766–770, 1996.

[27] S.-S. He and M. Torkelson, “Designing pipeline FFT processors for OFDM

(de)modulation,” Proceedings of 1998 URSI International Symposium on Signals,

Systems, and Electronics, pp. 257–262, October 1998.

[28] J.-C. Choi, W.-C. Choi, S.-G. Hwang, M. M.-O. Lee, and K.-R. Cho, “Design of a

new IFFT/FFT for IEEE 802.11a WLAN based on the statistics distribution of the

input data,” IEEE Proceedings on High-Speed Networks and Multimedia Communi-

cations, vol. 3079, pp. 589–597, June 2004.

[29] J. yeol Oh and M. seob Lim, “Area and power efficient pipeline FFT algorithm,”

IEEE Workshop on Signal Processing Systems Design and Implementation, pp. 520–

525, November 2005.

[30] L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, “An efficient locally pipelined

FFT processor,” IEEE Transactions on Circuits and Systems II: Express Briefs,

vol. 53, pp. 585–589, July 2006.

120 BIBLIOGRAPHY

[31] P. D. Welch, “A fixed-point fast fourier transform error analysis,” IEEE Transactions

on Audio and Electroacoustics, vol. AU-17, pp. 151–157, June 1969.

[32] A. V. Oppenheim and C. J. Wenstein, “Effects of finite register length in digital

filtering and the fast fourier transform,” IEEE Proceedings, vol. 60, pp. 957–976,

August 1972.

[33] R. Meyer, “Error analysis and comparison of FFT implementation structures,”

IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2,

pp. 888–891, May 1989.

[34] A. Pomerleau, H. L. Buijs, and M. Fournier, “A two-pass fixed point fast fourier

transform error analysis,” IEEE Transactions on Acoustics, Speech and Signal Pro-

cessing, vol. 25, pp. 582–585, December 1977.

[35] S. Johansson, S. He, and P. Nilsson, “Wordlength optimization of a pipelined FFT

processor,” Proceedings of IEEE International Midwest Symposium on Circuits and

Systems, vol. 1, pp. 501–503, 1999.

[36] A. V. Oppenheim and R. W. Schafer, “Discrete-time signal processing,” Second Edi-

tion, Prentice Hall, 1999.

[37] R. E. Walpole, R. H. Myers, and S. L. Myers, “Probability and statistics for engineers

and scientists,” Sixth Edition, Prentice Hall, 1998.

BIBLIOGRAPHY 121

[38] “SystemC Version 2.0 User’s Guide,” http://www.systemc.org, 2002.

[39] J. Bhasker, “A SystemC Primer,” Star Galaxy, 2002.

[40] W. C. Yeh, “Arithmetic module design and its application to FFT,” PhD. Disserta-

tion, National Chiao Tung University, Taiwan, July 2001.

[41] “Synopsys Design Analyzer,” http://www.synopsys.com, 2000.

[42] “Synopsys Design Ware,” http://www.synopsys.com, 2000.

[43] “Artisan TSMC 0.25µm process high-density dual-port SRAM (HD-SRAM-DP)

generator user manual, release 1.0,” http://www.artisan.com, June 2000.

[44] “Artisan TSMC 0.25µm process high-speed single-port SRAM (HS-SRAM-SP)

generator user manual, release 3.0,” http://www.artisan.com, June 2000.

[45] H. A. Al-Twaijry, “Area and performance optimized CMOS multipliers,” PhD The-

sis, Stanford University, August 1997.

[46] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Computers,

vol. 13, pp. 14–17, February 1964.

[47] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for speed optimized partial

product reduction and generation of fast parallel multipliers using an algorithmic

approach,” IEEE Transactions on Computers, vol. 45, pp. 294–306, March 1996.

122 BIBLIOGRAPHY

[48] P. F. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Optimal circuits for

parallel multipliers,” IEEE Transactions on Computers, vol. 47, pp. 273–285, March

1998.

[49] W. C. Elmore, “The transient response of damped linear networks with particular

regard to wide-band amplifiers,” Journal of Applied Physics, vol. 19, pp. 55–63,

January 1948.

[50] S. F. Oberman and M. J. Flynn, “Design issues in division and other floating-point

operations,” IEEE Transactions on Computers, vol. 46, pp. 154–161, February 1997.

