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Abstract

The diagnosability is an important property on'the high-performance signal processing
systems. We need to find faulty processors quickly and correctly to make sure the reliability
of system. There are many achievements related to diagnosability in recent researchs. Under
the comparison model, the diagnosability of n-dimensional cube family is ». But we find that
these cubes are almost (n + 1)-diagnosable except that all the neighbors of some vertex are
faulty simultaneously. In this thesis, we introduce a new concept, called a strongly
t-diagnosable system under the comparison model. The goal of this thesis is the following. Gz,
G2 are two ¢-regular graph with the same number of vertices N, N = ¢+1, fort = 3.
orderci(v) = t for every node v in Giand the connectivity x(Gi)=¢ for i = 1, 2. We prove that
the MCN constructed from Giand Gz is strongly (¢ + 1)-diagnosable system. Applying this
result, the Hypercube Qn, the Crossed cube CQn, the Twisted cube TQn, and the Mobius cube
MQn are all strongly n-diagnosable for n =4.

Keywords : Comparison Model, diagnosability, t-diagnosable, strongly t-diagnosable,

MCN.
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Chapter 1

Introduction

The diagnosability is an important property on the high-performance signal processing
systems. It is necessary to find faulty processors quickly and correctly to make sure the
reliability of system. A self-diagnosable system is that each processor test and be tested
by connected processors. The fault diagnosis topic is widely discussed in many literatures
3,4,9, 11, 15, 16, 17, 18, 19, 215 22|. Different models are presented[3, 16, 17, 19]. Well-

known model includes the PMC model, the Comparison model and the BGM model.

A multiprocessor system is made up of a collection of processors and a collection of
communication links. A multiprocessor system can be represented by an undirected graph
G = (V, E), where each node represents a processor and each undirected edge represents

a communication link.

We now introduce the Matching Composition Networks (MCN)[14]. The MCN is
constructed from two graph G; and G5 with the same number of vertices, by adding a

perfect matching M between the vertices of G; and G5. The MCN family includes many



well-known interconnection networks as special cases, such as the Hypercube @), the

Crossed cube C'Q),,, the Twisted cube T'Q),,, and the Mobius cube M@),,.

A well-known model is so-called PMC model[19] presented by Preparata, Metze, and
chien in the self-diagnosable system. Under the PMC model, the status of fault or
fault-free of a processor is determined by one processor testing the other processor. The

researchers investigated the diagnosability of many well-known interconnection networks

under PMC model[2, 9, 10].

The comparison model, which is proposed by Maeng and Malek [16, 17], is another self-
diagnosis model. The faulty or fault-free status of a processor is determined by comparing
its response to system tasks with the response to the same tasks produced by other
processors in the system. A disagreementsbetween: the two responses is an indication of
the existence of a fault. There are ‘many studies of diagnosability under the comparison
model. For example, Wang[22] ‘performed-that the diagnosability of an n-dimensional
Hypercube @Q),, is n if n > 5, and the diagnosability of the enhanced Hypercube is n 4+ 1
if n > 6. Fan[l11] showed that the diagnosability of an n-dimensional crossed cube is n
if n > 4. Araki[l] proved that the k-ary r-dimensional butterfly network BF(k,r) is 2k-
diagnosable for k£ > 2 and r > 5. Suppose that the number of nodes in each component
is at least ¢ 4+ 2, the order(which will be defined subsequently) of each node in Gj is t,
and the connectivity of G; is also ¢t ,i = 1,2. Then Lai and Tan [14] et al. proved that
the diagnosability of the MCN constructed from G; and G, is t 4+ 1 under the comparison

model for ¢ > 2.



The diagnosability of n-dimensional cube family is n[14]. We find that these cubes
are almost (n + 1)-diagnosable except the case that all the neighbors of some vertex
are faulty simultaneously. In this thesis, we introduce a new concept, called strongly t-
diagnosable, under the comparison model. The goal of this thesis is the following. G, G5
are two t-regular graph with the same number of vertices N, N > 2t + 1, for t > 3 and
orderg,(v) > t for every node v in G; and the connectivity x(G;) >t for i = 1,2. We

prove that the MCN constructed from G and Gy is strongly(t + 1)-diagnosable.

The organization of this thesis as follows: Chapter 2 includes three sections. The first
section gives the basic graph definition and notation, the second section is an introduction
of the comparison model, and these preliminaries used in this thesis are presented in
section 3. Chapter 3 discusses the concept of &, strongly t-diagnosable system. Some
necessary and sufficient conditions for a strongly t-diagnosable system and our main result

are shown in Chapter 3. Finallyssome Genelusions are discussed in Section 4.



Chapter 2

Terminology and Preliminaries

2.1 Graph definition and notation

In this thesis, We give the basic of graph definition and notation [5]. G = (V, E) is a
graph if V' is a finite set and F iss& subset of {(u,v)|(u,v) is an unordered pair of V'}.
V(G) or Vi represents vertex set and E(G) ot Ee represents edge set. An element v in
Ve is called vertex or node. Anielement=(uzv)rin E¢ is called edge. |G| represents the
number of vertices in the graph G. Thewdegree of vertex v in a graph G is the number
of edges incident to v. For a vertex v of G, degg(v) or deg(v) denotes its degree in G.
The maximum degree in G is denoted by A(G). The minimum degree in G is denoted by
d(G). When A(G) = §(G), we call that G is regular graph. A graph G is k-regular if the

degree of any vertex in G is k.

Definition 1 /23] The components of a graph G are its mazimal connected subgraphs. A

component is trivial if it has no edges; otherwise it is nontrivial.



Let G = (V, E). For aset S C Vg, the notation G— S represents the graph obtained by
removing the vertices in S from G and deleting those edges with at least one end vertex in
S simultaneously. The neighbor of v, written Ng(v) or N(v), is the set of vertices adjacent
to v. The neighborhood set of V; in V,, denoted by N (V5, V1), is defined as {x € V3| there
exists a node y € V] such that (z,y) € E(G)}. In graph G, the connectivity x(G) is the
minimum number of a set S of G such that G—S is disconnected or trivial. A graph G is k-
connected if its connectivity is not larger than k. Let G = (V, E) be a k-regular graph with
connectivity k. G is maximum connected if kK = k. G is super-connected if it is a complete
graph, or it is maximum connected and every minimum vertex cut is {(v, z)}|(v,z) € E}

for some vertex v € V. The symmetric difference Fy A Fy, = (Fy — Fy) | J(Fa — F).

The Hypercube[20] is a well-knewn interconnection structure. The Crossed cube[8],
the Twisted cube[13], and the Mébius cube[7]-aré.some variations of the Hypercube. We
call these cube family. For each n-dimensional-eube of cube family has (i) 2" vertices, (ii)
n-regular, (iii) connectivity n ,(iv) be/gonstructed from two copies of (n — 1)-dimensional
subcubes by adding a perfect matching between the two subcubes. The difference of these
cubes is different perfect matching method between its subcubes. In the following, we

briefly define this cubes.

Definition 2 Let n > 1 be an integer. The Hypercube Q),, of dimension n has 2™ nodes.
Q1 1s a complete graph with two nodes labeled by O and 1, respectively. For n > 2,
an n-dimensional Hypercube Q,, is obtained by taking two copies of (n — 1)-dimensional

subcubes Q,_1, denoted by Q° | and QL. _,. For each v € V(Q,), insert a 0 to the front

8



of (n — 1)-bit binary string for v in Q°_; and a 1 to the front of (n — 1)-bit binary string

forv in QL _,. There are 2" edge between Q°_, and QL _, as follows:

Let V(Q°_ 1) = {Oup oy _3..u0 : u; =0 or 1} and V(QL_;) = {1v,_2v,_3..v9 : v; = 0
or 1}, where 0 < i < n—2. A node u = Ou,_su, _3...uy of V(Q°_,) is joined to a node

v =1v, v, 3..v0 of V(QL ) if and only if u; = v; for 0 <i<mn —2.

Definition 3 /8] The Crossed cube CQy is a complete graph with two nodes labeled by 0O
and 1, respectively. Forn > 2, an n-dimensional Crossed cube CQ,, consists of two (n—1)-
dimensional sub-Crossed cubes, CQ°_, and CQ} and a perfect matching between the

n—1

nodes of CQ°_, and CQ. _, according to the following rule:
Let V(CQ°_,) = {0uy_ouy_3..a10 : w; = 0 ord} and V(CQL ) = {0v,_ov,_3...09 :

v; =0 or1}. The node u = Ou,_sUz=gtty € V(CQ" =) and the node v = 0v,_9v,_3...v9 €

V(CQL ) are adjacent in CQ,, if and only-f

1. Up_9 = v, 9 if n s even, and

2. (ugip1tag, Vai1v2;) € {(00,00), (10,10), (01,11), (11,01)}, for 0 <i < |21 ]

Definition 4 [13] The Twisted cube T'Q)y is a complete graph with two nodes, 0 and 1.
Let n be an odd integer and n > 3. The nodes of an n-dimensional Twisted cube T'Q,, are
decomposed into four sets S0 SO SL0 and S, The sets S™ consists of those nodes u =
Up—1Up—2...Uy With u,—1 =1 and u,—o = j, where (i,j) € {(0,0),(0,1),(1,0),(1,1)}. The
induced subgraph of S* in TQ,, is isomorphic to TQ,_s. Edges which connect these four

9



(n — 2)-dimensional subtwisted cubes can be described as follows: Any node w,_1u,_2..ug
with P,_3(u) = 0 is connected to Uy_1U,—2...ug and Uy, _1U,_o...Uy; and 10 U,_1U,_2...Uy

and U1 Uy _o... Uy, if P_s(u) = 1.

Definition 5 [7/0— M@ and 1 — M Q) are both the complete graph on two nodes whose
labels are 0 and 1. For n > 2, both 0 — MQ,, and 1 — M@, contain one 0 — type sub-
Mbébius cube MQ° | and one 1 — type sub-Mobius cube MQL . The first bit of every
node of MQ°_, is 0, and the first bit of every node of MQL _, is 1. For two nodes

= 0up_oUp_3...ug € V(MQ°_,) and v = 1v,_9v,_3..v0 € V(MQ. _,),

1. u connects to v in 0 — MQ,, if and only if u; = v;, for every i, 0 <17 <n —2

2. u connects to v in 1 — MQy if and only if w; =v;, for every i, 0 <i<n—2

Now We formally introduce the MCN. The MCN is constructed from two graph G
and G5 with the same number of vertices, by ‘adding a perfect matching M between the
vertices of GG; and G5. We shall call these two graphs G; and G5 as the M-components
of the MCN. We use the notation G = G1 @ Go to denote a MCN, which has vertex
set V(G1 @y Go) = V(G1) UV (Gy) and E(Gy @) G2) = E(Gy) U E(Gy) U M. The
MCN includes many well-known interconnection networks as special cases, such as the
Hypercube @),,, the Crossed cube C'Q),, the Twisted cube T'Q),, and the Mobius cube

MQ,.

10



2.2 Comparison Model

The comparison model, the status of fault or fault-free of a processor is determined by
sending the same testing task and comparing the response on one processor and the
response on another, is proposed by Maeng and Malek [17, 16]. Because of the names,
the comparison model is also called MM-model. Under the comparison model, a processor
,which is called comparator, sent the same input to two of adjacent processor and compare
the responses. Maybe different comparator k test the same pair of processors i,j. We
define (i,7)x is that i,7 is be compared by compartor processor k. A disagreement of
the response is defined r((4,j)x) = 1, whereas an agreement of the comparison result is

defined (i, j)x) = 0.

A comparator k not always i§ fault-free.. 7((4, 7)&) = O represents that if processor k
is fault-free, then i, j are fault-free. Inlother hand, #{(i, j)r) = 1 represents that at least

one of 7, j, k is faulty. We list all of pessible comparison result in Table 2.1.

Other nodel Test Resultl
Faulty freel] At. least onel|l
comparatorl 1s faultyﬂ
Fault fred OD 1[]
Faultl 0 or 10 0 or 10

Table 2.1: The possible result in Comparison

To gain as much information as possible about the faulty status of the system, it

11



was assumed that a comparison is performed by each processor for each pair of distinct
neighbors with which it can communicate directly. This special case of MM-model is

henceforth to as the MM*-model. In this thesis, our discussion is under MM *-model.

We can use the multigraph M = (V, C') to represent the comparison Model. The set of
V in M is the same set of V in G. An edge (i, j)x in C represents the fact that 3i, 5,k € V
,i, j are being compared by a comparator k. That is a example in Fig 2.1. It is easy to
observe that the same pair of processors i,j can be compared by different comparator k.

So the comparison Model is multigraph.

10 20

30 4

(a) G=(V,E)l

Figure 2.1: (a)A system with four units. (b)all of the testing of (a)

The set of all of the comparison result is called syndrome. The faulty set in a graph
G, written as F, is the set of faulty vertices in a graph GG. For example, assume node 1 of
Fig 2.1(a) is faulty. node 2,3,4 are faulty-free.(faulty set F' = {1}) We show the possible

syndrome in Table 2.2.

Hence the same faulty set can make different syndrome. A self-diagnosable system

12



1 4 2 1
1 4 3 1
2 3 1 1
2 3 4 0
or
i g k(@ )k
1 4 2 1
1 4 3 1
2 3 1 0
2 3 4 0

Table 2.2: The possible syndrome of Fig 2.1(faulty set={1})

which is called t-diagnosable system is any syndrome only mapping one faulty set, when

the number of faults does not exceed t.

For example, we list all of possible syndromie of Fig 2.1 in table 2.3. We can not tell
which node is faulty when seeing syndnome 1 because syndrome 1 and syndrome 7 are the

same. So this graph can not diagnesis even if only*one node is faulty.

— G

gk fault set={1} | fault set={2} | fault set={3} | fault set={4}
1 4 2|1 1 0 1 0 0 1 1

1 4 3|1 1 0 0 0 1 1 1

2 3 110 1 1 1 1 1 0 0

2 3 410 0 1 1 1 1 0 1
syndrome | 1 2 3 4 5 6 7 8

Table 2.3: All of possible syndrome of Fig 2.1

Under the comparison Model, there assumptions are made:

13



1. all faults are permanent;

2. a faulty processor produces incorrect outputs for each of its given tasks;

3. the outcome of a comparison performed by a faulty processor is unreliable;

4. two faulty processors, when given the same inputs and task, do not produce the

same output; and,
5. there is an upper bound, t, on the number of faulty processors in the system.
We use o(F') to represent the set of all syndromes which F' is the faulty set. Two
distinct sets Fy, Fy are called to be indistinguishable if and only if o(Fy) No(Fy) # O.

We also say that (F, F») is an indistéhguishable, pair. Otherwise Fy, F» are called to be

distinguishable or (F1, Fy) is a distinguishable pair if-and only if o(Fy) No(Fy) = 0.

14



2.3 Preliminaries

Assume U C V(G). G[U] denote the subgraph of G induced by the node subset U of G
and U = V(G) — U. A set of vertices in G that covers every edge of G is called a vertex
cover. A wvertex cover of minimum cardinality is called minimum vertex cover. Given a
graph G, let M be the comparison graph of G. For a node v € V(G), we define X, to be
the set of nodes{u|(v,u) € F(G)}U{u|(v,u), € E(M) for some w} and Y, to be the set of
edges {(u, w)|u,w € X, and (v,u),, € E(M)}.In [21], the order graph of node v is defined
as G, = (X,,Y,) and the order of the node v, denote by order(v), is defined to be the
cardinality of a minimum vertex cover of G,. Let U C V(G), we use T(G,U) to denote
the set {v|(u,v), € E(M) and w,u € U, v,€ U}. We observe that T(G,U) = N(U,U) if

G/[U] is connected and |U| > 1. This observation can be extended to the following lemma.

Lemma 1 [14/Let U be a subset.of V(G)land G|U;|, 1 < i < k, be the connected com-
ponents of the subgraph G[U] such that @=L, U;. Then T(G,U) = Ui {N(U,U,)|

We need to use several important way to verify a system whether it is t-diagnosable

or not. We list several theorems given by Sengupta and Dahbura[21].

Theorem 1 [21] For any Fi,Fs where Fy,Fy C V and Fy # F,, (F1, Fy) is a distin-
guishable pair if and only if at least one of the following conditions is satisfied:(See Fig.

2.2)

15



1. Ell,k? eV — F1 - F2 and 3] S (Fl - FQ) U (FQ - Fl) such that (Z,])k € C,
2. 3i,j € Fy — Fy and 3k € V — Fy — Fy such that (i,7), € C, or

3. di,j € Fy— Fy and 3k € V — Fy — F5 such that (i, ) € C

ki

orl
Fl} Fl
2.0 3.0
IN
orl

Figure 2.2: Illustratigns‘of a distinguishable pair(F}, F5)

Theorem 1 gives a necessary and sufficient condition to ensure distinguishability of a

pair of set of vertices (Fi, F3).The following theorem is necessary and sufficient conditions

for ensuring distinguishability.

Theorem 2 [21] A system is t-diagnosable if and only if each node has order at least t

and for each distinct pair of sets Fy,Fy C V, such |F\| = |F3| = t at least one of the

conditions of theorem 1 is satisfied.

The next theorem is a sufficient condition for verifying a system to be t-diagnosable.

16



Theorem 3 [21] A system with n nodes is t-diagnosable if

1. n>2t+1

2. each node has order at least t

3. |T(G,U)| > p for each U C V(G) such that |U| =N —2t+p and 0 <p<t—1

Let G = (V, E), there is a component C, C' C G. we define that V5(C;3) = {i €

Cldega(i) = 3}.

For any Fi, F, where Fy, Iy, C Vi and Fy # F,. The following lemma gives a sufficient
condition to determine whether (Fy, F3) is a distinguishable pair. This result is useful for

our discussion later.

Lemma 2 Let G = (V, E) be the graph-of a system. For two distinct subsets Fy, Fy C
V(G) with |F;| <t,i=1,2. Let SS&= 0 Fy S| =p, 0 <p <t—1. If there exists a
component C' of G — S such that Vo N (F1 A Fy) # O and |Va_s(C;3)| > 2(t — p) + 1.

Then (Fy, Fy) is a distinguishable pair.

Proof. Let U = G— FyUF;. Since a component C of G — S such that Vo N (Fy A Fy) # O
and |Vg_s(C;3)| > 2(t — p) + 1. Hence, there exists a vertex a in V(C) NV (U) such that
dega-s(a) > 3. If Ng_g(a) N Fy A F, = . Since component C' is connected. Hence,

we can find the case such that the condition 1 of Theorem 1 is satisfied. Otherwise,

Ng_s(a) N Fy A Fy # . Hence, there exists (a,b) € E(G —S),a € U and b € F} A Fy,

17



degg-s(a) = 3. Assume Ng_g(a) N U # . Hence, the condition 1 of Theorem 1 is
satisfied. Otherwise Ng_g(a) NU = O and dege—s(a) = 3. It means that the condition 2

or 3 of Theorem 1 is satisfied. This completes the proof of the lemma.

By Lemma 2, the following theorem gives a sufficient condition to determine whether

a system G is t-diagnosable.

Theorem 4 Let G = (V, E) be the graph of a system. G is t-diagnosable if for each vertex
set S C V with |S| =p, 0 < p <t—1, every component C of G — S, |Va_s(C;3)| >

2(t—p) + 1.

Proof.

For any two distinct subsets Fi, ' Fo: V(G |Fi| <t,i=1,2. Wecanlet S = FNFE,
with |S| = p, 0 < p < t—1. Since every component C of G— 5, |[Vg_s(C;3)| > 2(t—p)+1.
By Lemma 2, (F}, F5) is a distinguishable pair. Hence, G is t-diagnosable. This completes

the proof of the theorem.

The following Theorem is that the diagnosability of the MCN constructed from G,

and G4 is t 4+ 1 under the comparison model.

18



Theorem 5 [1/] Fort > 2, let G1 and Go be two graphs with the same number of nodes
N, where N > t+2. Suppose that order(v) >t for every node v in G; and the connectivity

k(G;) > t, where i = 1,2. Then the MCN G = G1 @y Gy is (t + 1)-diagnosable.

Lemma 3 [6] Assume that t is a positive integer. Let Gy and Gy be two k-regular maz-
imum connected graphs with t vertices, and the MCN G is G = G| &y Go. Then, G s

(k + 1)-regular super-connected if and only if (1)t > k+1 or (2)t = k+1 with k =0,1,2.

19



Chapter 3

strongly t-diagnosable

In this chapter, we illustrate the concept of strongly t-diagnosable and some necessary and
sufficient conditions. Finally, We prove that the cube family with n-dimensional are all

strongly n-diagnosable for n > 4.

The Hypercube @, the Crossed cube!€'@,, ‘are famous n-diagnosable but not (n+1)-
diagnosable. For each of these cubes;we-observe that for any two distinct sets of vertex
Fy and Fy, |Fi| < n+ 1, |F3| < n 4 1;.F,, Fyare indistinguishable because there exists

some vertex v such that N(v) C F} and N(v) C Fy. In other word, N(v) C Fy N Fy.

First, we take ()4 as an example. We know that Q4 is 4-diagnosable[14] but not 5-
diagnosable. The following Lemma show that ), is almost 5-diagnosable except that all

the neighbors of some vertex are faulty simultaneously.

A fault-set F' C V is called a conditional fault-set if N(v) € F for every vertex v € V.
Let Fi,Fy C V and F} # F,. We say (F}, Fy) is a distinguishable conditional pair(an

indistinguishable conditional pair respectively) if F} and F; are conditional fault sets and

20



are distinguishable(indistinguishable respectively).

Lemma 4 Let Fi, F5 C Q4, (F1, F2) be a conditional pair with |F;| <5, i =1,2. Then

(F1, Fy) is a distinguishable pair under the comparison model.

Proof. Let S = Fy N F, with |S| = p, 0 < p < 4. Since (F, F,) be a conditional pair.
Hence, for each vertex v € V(Q4), N(v) € S. By Lemma 3, Q4 — S is connected. That
is, the only component of (4 — S is itself. Let C' = Q4 — S. By theorem 4, we want to
prove that the only component C, |[Vg_s(C;3)] > 2(5 —p)+1, 0 < p < 4. We divide
this into the following main cases. By Lemma 2, we show that F, F5 in each case is a

distinguishable pair.
Case 1: p=10

It is trivial for this case. dega.s(v)is4; v € G —5. |Vo_s(C;3)] =24 >2(5—-0) + 1.

By Lemma 2, Fy, F5 is a distinguishable pair.
Case 2: p=1

Assume x € @, is faulty. degg_s(v) is4—12> 3, v € N(z). degg_s(v) is still 4 > 3,
veEV —N()—{z}. [Vos(C;3)]=2"—-1>2(5-1)+1. By Lemma 2, F;, F, is a

distinguishable pair.
Case 3: p=2

The number of nodes which is deg(v) < 3 is at most one. |Vg_5(C;3)| > 21 -2 -1 >
2(5—2)+ 1. By Lemma 2, Fy, Fy is a distinguishable pair.
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Case 4: p=3

Q4 is composed of Q% and Q3 by adding a perfect matching. Let Sy = SNQY, |So| = po,
S =8SNQL, |S1| = pi. We divide the case into two subcases: (4.a) either py = 0 and

p1 =3, or, pp = 3 and p; = 0. For subcase(4.b) either py = 1 and p; = 2, or, py = 2 and
pr=1
Subcase 4.a: either py = 0 and p; = 3, or, pg = 3 and p; = 0.

Without loss of generality, assume py = 0 and p; = 3. So each vertex in QY is faulty

free. For each vertex v in QY, deg(v) > 3, |Q% = 8. |Vo_s(C;3)] >8> 2(5—3) + 1. By

Lemma 2, Fy, F; is a distinguishable pair.
Subcase 4.b: either py = 1 and p1,=2, or, pg=2 and p; =1

Without loss of generality, assuiiie pg = ¥ and'p;= 2. Assume z; € QY is faulty. For
each v in Q% — N(z1) — {71}, deglv) = 37 JQF='N(z,) — {x1}| = 4. Since p; = 2, assume
79, 23 € Q3 are faulty, |(N(z2) UN (23))MQY="2. Hence, there exists a vertex y in N (1)
such that z is faulty free, 2 € N(y) N Qi. So dega_s(y) = 3. |Vas(C;3)] > 4+1 >

2(5 —3) + 1. By Lemma 2, F}, F; is a distinguishable pair.
Case 5: p=14

Let U=G—F —Fy, [FAR| <25-p)=2(5-4) =2, |[U| = [V(G)| - |F,nF| >
16 —(2x5—p) =6+p=06+4=10. Since G — S is connected, there exists (a,b)

in F(G) such that a € F1 A Fy, b € U. U;, 1 < i < k, be the connected components
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of subgraph U such that U = U ,U;. We assume |U;| > 1. We can find the case
such that the condition 1 of Theorem 1 is satisfied. Hence, (Fy, F3) is a distinguishable
pair. Otherwise |U;|] = 1, for all 1 < i < k. Hence, Ng_s(v) C F1 A Fy, v € U.
Yoevldega—s(v)| < Yperamldega_s()|. Tievldega-s(v)| > (10 x 4) — 4 x 4 = 24,
Yermarldega_s(v)| < 2 x4 = 8. Y,ev|dege_s(v)| > Yperar|dege_s(v)]. This is a

contradiction.

Definition 6 A system G is strongly t-diagnosable if the following two conditions holds:

1. G 1is t-diagnosable, and

2. for any two distinct subsets Ky, Fy C VAG) with |F;| <t+1,i=1,2,

either (a) (F1, Fy) is a distinguishable pair;

or (b) (F1, Fy) is an indistinguishable pair and there exists a vertex v € V.

such that N(v) C Fy and N(v) C F;.

By Theorem 3 and Definition 6, we propose a sufficient condition for checking if a

system G is strongly t-diagnosable as follows.

Lemma 5 A system G = (V, E) with |V| = n is strongly t-diagnosable if
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1. n>2t+1

2. each node has order at least t

3. |T(G,U)| > p for each U C V(G) such that |U| =N —2t+p and 0 <p<t—1

4. for any two distinct subsets Fy, Fo C V(G) with |F;| <t+1,1=1,2,

either (a) (F1, Fy) is a distinguishable pair;

or (b) (F1, Fy) is an indistinguishable pair and there exists a vertex v € V

such that N(v) C Fy and N(v) C F;.

Proof. With conditions 1, 2 and 3} by Theorem 3;.G is t-diagnosable. Condition 4 is the

same as condition 2 of Definition 6. So we complete the proof.

Theorem 6 A system G=(V,E) is strongly t-diagnosable if for each vertex set S C V

with cardinality |S| = p, 0 < p < t, the following two conditions are satisfied

1. for 0 <p<t—1, every component C' of G — S |Vg_s(C;3)| >2((t+1) —p)+1

2. for p = t, either every component C of G — S satisfies |Va_s(C;3)| > 3 or else
G — S satisfies at least one trivial component.(Remark: 2((t +1) —p) + 1 =3 as
p=t)
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Proof. Assume S C V, |S| =p, 0 < S <t —1, By condition 1, every component C'
of G — S satisfies |[V_s(C;3)| > 2((t+1) —p) +1 > 2(t —p) + 1. By Theorem 4, G is

t-diagnosable.

In order to prove that G is strongly t-diagnosable, we need to show that condition 2
of Definition 6 holds. Assume (F}, F5) be an indistinguishable pair, Fy # Fy, |Fi| < t+1,
|Fo| <t+4+1. Let S = Fi1 N Fy,|S| =p, 0 < p <t Since Fy and F, are indistinguishable.
By Theorem 4, exists component C'in G — S is |Vz_s(C;3)| < 2(t — p). By condition 1,
p cannot be in the range from 0 to ¢ — 1. So p = t. Because component C' |Vg_g(C;3)| <
2((t+1)—p) =2((t+1) —t) = 2. By condition 2, G — S contains at least one trivial
component {v}. So N(v) C S. It is equal to v C F} and v C F,. Therefore, G is strongly

t-diagnosable.

Theorem 7 Fort > 3, let Gy = (V1, Ey), Gy = (Va, Es) be two t-regular graph with the
same number of vertices N, N > 2t + 1. orderg,(v) > t for every node v in G; and the
connectivity k(G;) >t fori=1,2. Then the MCN G = (V,E) = G1 @,, G2 is strongly

(t 4+ 1)-diagnosable.

Proof. By definition 6, we want to prove the following two conditions: (i)G is (¢ + 1)-
diagnosable (ii) for each indistinguishable pair (Fy, Fy), F; C V, 1= 1,2, with |F;| < t+2,

it implies that there exists a vertex v € V' such that N(v) C F; and N(v) C F.
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First, by Theorem 5, G is (t + 1)-diagnosable. The condition (i) holds. So we only
need to prove condition (ii). Let (F}, F») is an indistinguishable pair, F; C V, i = 1,2,
with |F}| <t+2. Let S=FiNF,, |S|=p, 0<p<t+1. If there exists a vertex v € V,
N(v) C S. We finish the proof. Otherwise, N(v) € S for each vertex v € V. We want to
show that this is a contradiction. By Lemma 3, G — S is connected. The only component
C of G— S is G — S itself. We divide this case into following two main cases: (1)0 < p <3

and(2)4 <p <t+1.
Case 1: 0 <p<3

We show that (Fy, Fy) in each case is a distinguishable pair.
Subcase 1.1: p =10

It is trivial for this case. degg. s(v) i8St +1>3fort >3, v G—S. |Vg_s(C;3)| >

22t +1) > 2((t+2) — 0) + 1 for t > 3-By Lemma 2, Fy, F, is a distinguishable pair.
Subcase 1.2: p=1

Assume z € V is faulty. degg_s(v)is (t+1)—1>3fort > 3,v € N(z). degg—s(v) is
still (t41) > 3fort > 3, v € V—N(z)—{x}. |Vo_s(C;3)| > 2(2t+1)—1 > 2((t+2)—1)+1

for t > 3. By Lemma 2, F}, I3 is a distinguishable pair.
Subcase 1.3: p =2
The number of nodes which is deg(v) < 3 is at most one. |Vg_g(C;3)| >2*—2—-1 >

2(b—2)+ 1. By Lemma 2, Fy, F» is a distinguishable pair.
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Subcase 1.4: p =3

G is composed of Gy and G5 by adding a perfect matching. Let Sy = SNG1, |So| = po,
S1 =SNGy, and |Sh] = p1. We divide the case into two subcase: (1.4.1) either py = 0
and p; = 3, or, pp = 3 and p; = 0. and (1.4.2) either po = 1 and p; = 2, or, py = 2 and

pr=1
Subcase 1.4.1: either py = 0 and p; = 3, or, pp = 3 and p; = 0.

Without loss of generality, assume py = 0 and p; = 3. So each node in V(Gy)
is faulty free. For each vertex v in V(G,), degg_g(v) > 3 for t > 3. |V(Gy)| > 2t + 1.
|Vo_s(C33)| > 2t+1 > 2((t+2)—3)+1 for t > 3. By Lemma 2, F, I} is a distinguishable

pair.
Subcase 1.4.2: either py = 1 and p; = 2; 01, pg =2.and p; =1

Without loss of generality, assume pp = Lland p; = 2. Let x; € V(Gy) is faulty. For
cach vin V(Gy)—N(z1) —{z1}, degg_s(v) =t+1 > 3fort > 3, |V(Gy)—N(x1)—{z1}| >
2t +1—t —1 =t. The number of degree greater than ¢ in G; — N(z7) — x; is t. For
each v in N(x1) NV(Gy). If N(v) NV(Gy) is faulty, then degg-s(v) =t+1—-1—-1 < t.
There exists at most two vertices degg_s(v) =t+1—1—1 <t because of p; = 2. The
minimum number of degree greater than ¢ in N(z1) N V(Gy) is t — 2. Go is a t-regular
graph with two faulty vertices x5 and x3. Then there exists at most 2t vertices such that
the degree of these vertices is t — 1. The minimum number of degree greater than ¢ in G5

is 2t +1—2t=1. |[Va_g(C;3)| > t+(t—2)+1=2t—1>2((t+2) —3) + 1. By Lemma
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2, F1, Fy is a distinguishable pair.
Case 2: 4<p<t+1

Let U=G—Fy— Fy, |[Fi AF| <2(t+2—p), U =|V(G)|— |[Fi1NFy| >2(2t+1) —
(2(t +2) —p) = 2t — 2+ p. Since G — S is connected, there exists (a,b) in E(G) such
that a € Fi A Fy, be U. U;, 1 <i <k, be the connected components of subgraph U such
that U = U¥_,U;. We assume |U;| > 1. We can find the case such that the condition 1 of
Theorem 1 is satisfied. Hence, (F}, F») is a distinguishable pair. Otherwise |U;| = 1, for all
1 <i < k. Hence, No_g(v) C Fi A F>, v € U. Epevldega-s(v)| < Everamldega_s(v)].
Yoeuldege-s(v)] = ((2t =2+ p) x 1) —pxt = (2t —2) X t. Yierar|dege-s(v)] <

2(t+2 —p) x t. Lyevldege—s()| > Epepam|dega—s(v)|, p > 4. This is a contradiction.

Applying Theorem 7, we list the following cerellary.

Corollary 1 The Hypercube Q,,, the Crossed cube C'Q,,, the Twisted cube T'Q),,, and the

Mobius cube MQ,, are all strongly n-diagnosable for n > 4.

In the following, we show that Q3 is not strongly 3-diagnosable. Let F} = {010, 100,111},
F, = {001,100,111}, |Fi| = |F»| = 3, S = Fi N F,. Since N(v) € S,v € V(Q3) and

(F1, F») is a distinguishable pair. Hence, Q3 is not strongly 3-diagnosable.
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Figure 3.1: An example of non-strongly 3-diagnosable system
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Chapter 4

Conclusions

We observe that cube family are almost (n + 1)-diagnosable except the case that all the
neighbors of some vertex are faulty simultaneously. In this thesis, We introduce a new
concept, called a strongly t-diagnosablersystem under the comparison model. G, G,
are two t-regular graph with the same/mumber, of vertices N, N > 2t + 1, for ¢t > 3.
orderg,(v) > t for every node vin G; and the conmectivity x(G;) >t for i = 1,2. We
prove that the MCN constructed from G and Gyds:Strongly(t+1)-diagnosable. According
to the result, we know that cube family with n-dimensional are all strongly n-diagnosable

for n > 4.

In the future work, we can try to solve the problem how large the maximum value of
t such that cube family remains t-diagnosable under the condition that every fault-set F'
satisfies N(v) € F for each vertex v € V. For example, {v1,vs,v3, 04} is a subset Q5 of
Qn- Let Fy = {vg,v4} UN(v1) UN(v2) UN (v3) —{v1,v3}, Fo = {v3, 04} UN(v1) UN(vg) U

N(vs) — {v1,v2} (See Fig 4.1). |Fi| = 3(n —2) + 2, |F3| = 3(n — 2) + 2. Every vertex
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has at most one good neighbor either F} or F; is faulty set. Because none of condition of
Theorem 1 holds, (F7, Fy) is an indistinguishable pair. There is an example to show that

the conditional diagnosability of the Hypercube @, is no greater than 3(n — 2) + 2.

Vi

Figure 4.1: (Fy, F3) is an indistinguishable pair of @, under every vertex has one good
neighbor condition.
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