
 I

國 立 交 通 大 學

資訊科學系

碩 士 論 文

W e b S e r v i c e s 環 境 中 之 交 易 架 構

Transaction Architecture in Web Services Environment

研 究 生：洪崇凱

指導教授：袁賢銘 教授

中 華 民 國 九 十 三 年 六 月

 II

Web Services環境中之交易架構

研究生：洪崇凱 指導教授：袁賢銘 教授

國立交通大學資訊科學研究所

摘要

Web Services 技術為企業環境整合提供了一項新的技術，以標準的 WSDL

服務介面以及 XML SOAP 訊息傳輸技術使企業應用程式整合更為容易。Web

Services可以讓不同的企業針對內部的流程，提供特定種類的服務與內容。

但是，現今的Web Services技術尚未完全解決企業間流程整合的問題。它沒

有處理企業間交易行為的機制，只能針對服務分別處理，不能將數個服務視為單

一服務，確保這些服務要不就全都成功否則全部回復到交易開始前的狀態。雖然

目前已經有許多分散式交易的機制存在，但Web Services上的交易方式因為與這

些交易的模式不盡相同，所以無法完全地整合在一起；這限制了 Web Services的

應用範圍。Web Services環境中需要介於應用程式間的協調機制來達成傳統交易

所達成的整體系統環境狀態，而且需要更有彈性的方式來進行，不遵守嚴格的

ACID屬性。

目前在Web Services企業流程的交易機制尚未有完整的標準及架構，僅存在

眾多不同版本的規格，如 OASIS BTP 、WS-C/AT/BA OASIS WS-CAF 等。分散

式交易系統需要長時間、非同步並且牽涉到許多屬於不同範圍及組織的應用程

式，這些是與傳統交易系統截然不同之處；Web Services的訊息交換即可提供前

者所描述的機制。本篇論文將提出一個Web Services環境中的交易架構，並介紹

實作之系統，同時討論相關之規格研究及比較。

III

Transaction Architecture in Web Services

Environment

Student: Chung-Kai Hong Advisor: Dr. Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

Web Services provides a neo-technology for the integration of enterprise

application environment. Enterprise application integration has become easier by

using Web Services Description Language (WSDL) and XML Simple Object Access

Protocol (SOAP) messaging technology. Web Services enables various enterprises

provide specific types of service and content according to their inner business process

flow.

However, Web Services hasn’t resolved the problems deriving from business

process integration. Web Services doesn’t handle the transaction behaviors among

different organizations and make each service function separately; it can’t make

multiple services seem to be a single service and ensure the all-or-nothing logic

among them. Currently, there have been a lot of distributed transaction

systems/mechanisms, but none of them can cooperate with Web Services transaction

well because of the different transaction models. These constrain the applicability of

IV

Web Services. A coordination mechanism for Web Services among federated

applications is needed to achieve maintained environment state in the traditional

transactions. Moreover, such transactions need to proceed in a more flexible way and

accommodate the relaxation of ACID properties.

Up to the present, however, the specifications and architectures for the Web

Services transaction mechanisms are incomplete under Web Services business

processes. There are multiple specifications proposed by various vendors, such as

OASIS BTP, WS-C/AT/BA, and OASIS WS-CAF. Distributed transactions systems

need long-period of time, asynchronous messaging and involve multiple applications

belong to different organizations and enterprises. These are entirely different from the

traditional transaction systems; Web Services messaging can provide the mechanism

here. In this thesis, we propose transaction architecture in Web Services environment

and design an implementation system. Furthermore, we’ll discuss about the related

specifications and comparisons.

V

ACKNOWLEDGEMENTS

I would like to give my sincere gratitudes to my advisor, Dr Shyan-Ming Yuan,
for his suggestion and correction about my research in the past two years. I also thank
my seniors, Mr. Ruey-Shyang Wu, who helped me devotedly to find out the solutions
on the thesis, and Tzu-Han Kao, who gave me many suggestions in my research.
Finally, I appreciate all supports of the members of DCS laboratory.

Besides, I would thank my family and my girl friend, Chiu-Yi Wu. They give me
the greatest strength and supports, especially when I felt depressed.

I dedicate this thesis to my parents, all DCS laboratory members and everyone
who concerns about me.

VI

TABLE OF CONTENTS

Web Services環境中之交易架構.. I

Transaction Architecture in Web Services Environment.........................III

ACKNOWLEDGEMENTS...V

TABLE OF CONTENTS...VI

LIST OF FIGURES ...VIII

CHAPTER 1 INTRODUCTION ...1

1.1 Motivation..1

1.2 Objectives ..2

1.3 Thesis Organization ...4

CHAPTER 2 BACKGROUNDS ..5

2.1 Backgrounds ..5

2.1.1 Web Services and Transactions Overview ..5

2.1.2 XML SOAP and WSDL..6

2.1.3 Atomic Transaction and Business Activity ...8

2.1.4 ACID and Transaction Models..9

2.2 Related Industry Specifications ... 11

2.2.1 Business Transaction Protocol (BTP) ... 11

2.2.2 WS-Coordination, WS-AtomicTransaction, WS-BusinessActivity....12

2.2.3 WS-Composite Application Framework (WS-CAF)12

CHAPTER 3 TRANSACTION ARCHITECTURE14

3.1 Web Services Transaction Environment Overview..15

3.2 System Architecture ...15

3.3 Transaction-Aware Web Services...16

VII

3.3.1 Atomic Transaction Application ...18

3.3.2 Business Activity Application...18

3.4 Context Management Framework..19

3.5 Activity State Management..20

CHAPTER 4 IMPLEMENTATION ISSUES ...23

4.1 Implementation Overview ...23

4.2 Context Management ...25

4.3 Participant Lists Management..29

4.4 Run-Time Scenario ..30

4.5 Transaction Application Development Model ...33

CHAPTER 5 DISCUSSION AND RELATED WORKS35

CHAPTER 6 CONCLUSION AND FUTURE WORK37

6.1 Conclusion ...37

6.2 Future Work ...38

6.2.1 Web Services Composability ..38

6.2.2 Web Services Interoperability ...38

6.2.3 Services Assurance and Reliable Messaging38

CHAPTER 7 REFERENCE ...40

VIII

LIST OF FIGURES

Figure 2-1 General Web Services Transaction Architecture ..6

Figure 2-2 Basic Web Services Architecture ...7

Figure 2-3 State-transition diagram for a Flat transaction as seen by the application .10

Figure 3-1 Transaction Work Flow ..14

Figure 3-2 System Architecture ...16

Figure 3-3 Class diagram of Transaction-Aware Web Services...................................17

Figure 3-4 Context management framework of Transaction-Aware Web Services.....19

Figure 3-5 Transaction flow control ..21

Figure 4-1 Sequence Diagram of Transaction Coordination Protocols24

Figure 4-2 Protocol Message of Atomic Transaction from a Coordinator...................25

Figure 4-3 Server Message Path of AXIS Engine ...26

Figure 4-4 Server-side Transaction Context Management Framework27

Figure 4-5 Client Message Path of AXIS Engine ..27

Figure 4-6 Client-side Transaction Context Management Framework........................28

Figure 4-7 Protocol Participants Lists of Transaction Coordinators............................29

Figure 4-8 Creation and Delegation of a Transaction Activity30

Figure 4-9 Two Phase Commit Protocol..31

Figure 4-10 Business Agreement With Coordinator Completion Protocol33

Figure 5-1 Comparisons between Our Transaction Architecture and Related Works .35

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

With the maturity of World Wide Web [1] environment, the transactions

proceed through the WWW among enterprises and organizations more frequently.

However, different enterprises in different industry have different business culture,

different technology, and construct different business process and technology

environment. These all complicate the integration of enterprise applications.

The birth of Web Services is a great step in the distributed technologies. Web

Services [3] provides a standard interface WSDL (Web Services Description

Language) [4] and XML SOAP (Simple Object Access Protocol) [5] messaging for

the integration of enterprise application environment. Web Services enables various

enterprises provide specific types of service and content according to their inner

business process flow.

However, fundamental Web Services hasn’t resolved the so-called transaction

problems deriving from business process integration. Many Web Services

transaction systems are built based on the classic web technologies, such as using

HTTP sessions/cookies, writing supported functions inside the application …etc.,

which are very inflexible.

Currently, there have been a lot of distributed transaction systems/mechanisms,

such as OMG Activity Service [24], but none of them can be integrated well with

Web Services transaction and thus constrain the applicability of Web Services. Most

transaction managers (TMs) [2] are implemented using Flat Transaction model [2],

2

such as TMs based on JTA/JTS [25], running within a enterprise or single trusted

domain, and with resources all controlled by a single TM. Nevertheless, it has

become an essential condition to enable multiple different participants to run in

different security domains and within different business applications. A coordination

framework for Web Services among federated applications is needed to achieve

maintained environment state of the traditional transactions. Moreover, such

transactions need to proceed in a more flexible way and accommodate the relaxation

of ACID (Atomicity, Consistency, Durability, Isolation) [2] properties. The

transaction of Web Services also has the responsibility to integrate multiple Web

Services into a single reliable application. The execution of Web Services

application is treated as a series of activities running in different Web Services.

1.2 Objectives

In this thesis, we propose Transaction Architecture in Web Services

environment.

We have known that Web Services currently is still lack of the standard of

transaction. But why the Web Services transaction is needed? Web Services

transaction is different from the traditional distributed transaction processing with

the following three conditions. First, participants who are in the execution of Web

Services transactions may come from different trusted domain and use

heterogeneous application logics, flows, and platforms. Second, the sub-transaction

of each participant may execute for various periods of time. Some of them are likely

to be very long-lived. And third, the next state of the transaction may be decided

while the previous step is finished, but sometimes we can’t just undo or roll back the

whole transaction. For these reasons, the transaction architecture we proposed

3

should support the following functionalities:

1) Make transactions loosely-coupled

Because of the first reason described above, this can make applications

need not to be designed for certain participant or transaction system.

2) Use SOAP for asynchronous, firewall-free and reliable messaging

Because of the first reason described above, participants may be inside a

firewall

3) Allow relaxation of ACID properties and design with Nested Transactions

model

Because of the second reason described above, ACID are too critical for

business activities, and resources cannot be locked for long duration of time

and across enterprises. Nested Transactions model allows relaxation of

ACID properties, especially those of atomicity and isolation.

4) Build Compensating Transactions with dynamic invocation

Because of the third reason described above, compensations are built

specific to certain application and involves application logic.

5) Coordinate transactions under applications

Because of the first reason described above, we divide transaction

coordination from the application design and reduce the complexity.

In this thesis, we provide a methodology to fill the gap between design and

implementation for Web Services transactions. We bring transaction concepts into

the system design phase and reduce the time to write programs of Web Services

transaction. Besides, we provide an Application Program Interface for design and

implementation Web Services transaction systems. By our efforts, we make it easier

4

to integrate Web Services applications as well.

1.3 Thesis Organization

The thesis is organized as follows. In Chapter2, we introduce our survey on

Web Services-related and transaction-related theories and technologies. We also

compare other Web Services transaction systems in the sub chapter of related work.

In Chapter3, we illustrate the design of system architecture and each component.

Chapter4 illustrates the design of transaction flows and transaction model in the

system. In Chapter5, it illustrates implementation of system. Finally, Chapter6

present a conclusion and some future works.

5

CHAPTER 2

BACKGROUNDS

2.1 Backgrounds

In point of distributed systems, the main trends are “leveraging new

technologies to solve existing problems” and “enhance the applicability of new

technologies.” The issues of Web Services transactions have both properties of

above. We introduce theses issues in this chapter and discuss about related works

and current progress in industry vendors.

2.1.1 Web Services and Transactions Overview

Traditional transaction processing system are ready to process transactions with

ACID model, including those distributed transaction systems using two phase

commit protocols. Even so, ACID model is only suitable for the tightly-coupled

distributed transaction system, but not workable for long-duration, loosely-coupled,

asynchronous transaction systems. Such transaction architecture may need several

hours or days to run, but the resources of participants are not allowed to be locked

for such long period; when transaction errors occur or cancellations proceed,

traditional rollback is not feasible. Therefore, long-lived, loosely-coupled,

asynchronous transaction need to coordinate and conclude the transaction agreement

at run time and isolation level must be relaxed.

Because Web Services can be accessed by any language, using any component

model, and running on any platform, the Web Services transactions faces the

problem of long-lived, loosely-coupled, asynchronous transactions. Web Services

6

essentially is a loosely-coupled infrastructure with asynchronous and reliable

messaging and dynamic invocation at run-time functionalities. Consequently, we can

resolve the transaction problems described above by Web Services technology and at

the same make up for the Web Services transactions.

Figure 2.1 shows the general Web Services Transaction architecture.

Coordinator Coordination Service
Framework

Coordinator CoordinatorCoordination Service
Framework

[transaction context]

Application Messages

Request

Response
SOAP SOAP

[transaction context]

Application Messages

Request

Response
SOAP SOAP

[transaction context]

Application Messages

Request

Response
SOAP SOAP

Service
Requestor

Service
Provider

Third-party
Vendor

App
Service

App
Service

App
Service

Web Services Environment

SOAP SOAP
Transaction

protocol
Messages

SOAP SOAP
Transaction

protocol
Messages

Act
Srvc

Reg
Srvc

Prtcl
Srvc

Part
Lists

Act
Srvc

Reg
Srvc

Prtcl
Srvc

Part
Lists

Act
Srvc

Reg
Srvc

Prtcl
Srvc

Part
Lists

Figure 2-1 General Web Services Transaction Architecture

 2.1.2 XML SOAP and WSDL

XML (Extensible Markup language) is a meta-language. It is also a

high-structured and verifiable language. XML is as similar as HTML using tag and

attribute. The most different between HTML and XML is that the tag and attribute of

7

XML can be customized by developers. All XML files follow the specification XML

1.0 defined in W3C Recommendation Feb’98. Web Services defines SOAP and

WSDL by leveraging the architecture of XML.

Figure 2-2 Basic Web Services Architecture

SOAP is a light-weight protocol applied on non-decentralized distributed

systems. SOAP itself doesn’t define any information about applications; in the

contrast, SOAP defines the framework of message exchanging for different

application or module to communicate with each other. This protocol is based on

XML, including three parts: 1. Envelope: define a framework to describe what parts

should be contained and how to process these data. 2. Encoding rules: describe what

are the data types used by applications. 3. Convention: present RPC (Remote

Procedure Call) and response types. SOAP can be bind to most of transport

protocols, and HTTP is now in widespread use. The most important benefit of HTTP

protocol here is that it can transmit through firewalls without any obstruction.

WSDL leverages XML to describe the operation methods of a Web Service.

WSDL defines some components to describe a service: 1. Type: defines a needed

8

data type. 2. Message: define an abstract data type for transmission. 3. Operation:

defines an action that can be achieved by a service. 4. PortType: defines the

operations supported by a service. 5. Binding: defines the transport protocol and data

types while using this service. 6. Port: defines the combination of the transport

protocol and its network address. 7. Service: defines a collection of Web Services.

WSDL can describe all related information about a service including how to use this

service and what functionality this service provides. WSDL use the standards of

HTTP and SOAP. By using WSDL, the operations of services can be known at any

time when getting the location of WSDL file, and dynamic invocation at runtime

thus can be achieved. Therefore, this becomes the greatest advantage of leveraging

WSDL in Transaction Architecture design.

 2.1.3 Atomic Transaction and Business Activity

Traditional two-phase atomic transaction is only with respect to the services

involved. Atomic transaction simplifies application programming by hiding

applications from system-generated exceptions, such as hardware failures or

database deadlocks. Systems offering services may announce two-phase commit, but

use some other intra-enterprise model like compensation. This freedom makes a

simple two-phase commit (2PC) model more useful for long-running Internet

computations and this part of application logic could be automated with transaction

management.

 A business activity uses multiple atomic transactions to move the long-running

transaction from one consistent state to next one. Business activities leverage atomic

transactions to handle system-generated exceptions while business activities handle

application-generated exceptions themselves. Business activities implement

long-running, compensation-based transactions and involve application business

9

logics, while atomic transactions provide a way to easily return to consistent state.

Therefore, ACID properties for long-lived business activities need to be relaxed.

2.1.4 ACID and Transaction Models

Compensation is based on the idea that a transaction is always allowed to

commit, but its effect and actions can be cancelled after it has committed.

Cancellation is an example of a compensating transaction. In compensating

transaction, each real transaction has an associated compensating action, which

describes a way to revert changes done by the real transaction and return to a

previous consistent state. If any transaction aborts, the caller executes the

corresponding compensating transaction for all the transactions that have previously

committed.

As described in previous sub-chapter, a business activity in its nature is a

long-running transaction and may have many problems with ACID properties,

especially when compensating. In a long-running transaction, some activities may

success and some may fail, though, transaction is still completed; we can’t just abort

the whole transaction because of some failures, therefore the atomicity need to be

relaxed. Consistency must be guaranteed at any time. A business activity typically

span several minutes or even days and weeks, so we need to save the state between

each steps in order to handle application-generated exceptions. Besides, we should

avoid locking resources to maintain durability, but this need to lower the isolation

level for releasing resources between steps. In conclusion, A and I need to be

relaxed, and C, D are modified to be achieved.

At first, transactions came into use in DBMS (Database Management Systems)

for the applicability and consistency of the data. As a result, several transaction

models are developed for solving transaction problems, like Flat Transaction, Nested

10

Transaction and Distributed Transaction models, etc.

Figure 2-3 shows a transition diagram of Flat Transaction in the view of

application.

active

committed aborted

ROLLBACK
WORK

COMMIT

WORKterminate

terminate

NULL
BEGIN WORK

Figure 2-3 State-transition diagram for a Flat transaction as seen by the application

In a Flat Transaction, if we issue a rollback action, which is caused by a single

failure. However, we have to gives up much more of the previous work than is

necessary and explicitly cancel all the actions that are no longer useful. This is the

most troubling thing. Furthermore, explicit cancellation might not be so easy,

because some may cost a high cancellation fee. Next comes Chained Transaction,

which is a workflow structure enhanced of Flat Transaction.

 Nested Transaction is developed afterward. A nested transaction is a tree of

transactions, the sub-trees of which are either nested or flat transactions. A

sub-transaction’s commit will take effect only when the parent transaction commits.

The rollback of a transaction in the tree causes all its sub-transaction to roll back.

This is the reason why sub-transactions have only ACI, but not D.

As a result of using single systems, like DBMS, ACID properties are

11

guaranteed in traditional transactions. However, we need to consider much more in

Distributed transactions. A distributed transaction is a flat transaction running in a

distributed environment and guarantees ACID. There are much more uncertainties in

the network environment, transaction in distributed environment would be more

difficult to process. In order to make transactions in distributed environment more

applicable, we apply the nested transaction model to distributed transactions; each

transaction in a different node of the distributed environment is a sub-transaction of

the nested transaction. This is what we are going to apply in our transaction

architecture.

2.2 Related Industry Specifications

In order to build up a demonstration environment, we leverage several existing

vendor specifications that are proposed related to transactions in Web Services

environment. Before presenting the designed system, introducing these

specifications and discuss about other related ones are necessary.

 2.2.1 Business Transaction Protocol (BTP)

OASIS (Organization for the Advancement of Structured Information

Standards) BTP is proposed by HP (Hewlett-Packard Development Company),

Oracle (Oracle Corp.) and BEA (BEA Systems, Inc) for B2B transactions in the

loosely-coupled domain, such as Web Services. BTP is not designed specifically for

Web Services transactions; at first, its goal is to apply to heterogeneous

environments and make the transaction protocol with general XML messaging.

After a while, WS-C/AT/BA is designed specifically for Web Services and

constructed the foundation of Web Services basic definition. In contrast with

12

WS-C/AT/BA, BTP is less suitable than WS-C/AT/BA for the Web Services

tractions.

2.2.2 WS-Coordination, WS-AtomicTransaction,

WS-BusinessActivity

IBM, Microsoft and BEA propose these specifications and devide the

coordination framework from the transaction management. WS-Coordination

describes how to create, register and coordinate all the transaction activities among

multiple Web Services; meanwhile, it provides coordination protocols services,

which belongs to different coordination rules, while creating and registering

transaction activities. WS-AtomicTrasaction and WS-BusinessActivites is based on

foundation of traditional transaction, including functionalities of business logic and

non-functional transactions inside applications. In addition, WS-BA defines how to

manage the relations of business activities in different scopes and also allow nested

scopes.

 The Web Service architecture provides a set of modular protocol building

blocks that can be composed in varying ways to create protocols to particular

applications. The protocols present in WS-Coordination, WS-AtomicTransaction,

and WS-BusinessActivity are mechanisms to create activities, join into them, and

reach common agreement on the outcome of joint operations. These specifications

provide a basis on which to build interoperable, distributed applications that desire

to coordinate joint work.

 2.2.3 WS-Composite Application Framework (WS-CAF)

WS-CAF is jointly proposed by Arjuna (Arjuna Technologies), Fujitsu (Fujitsu

Limited), IONA (IONA Technologies), Oracle and Sun (Sun Microsystems) to the

OASIS consortium. WS-CAF mainly defines the lack parts of the previous two

13

specifications, and is called the superset of WS-C/AT/BA. It enhances the Context

Services by dividing it from the Coordination Framework and provides transaction

protocols and model different from those in BTP and WS-C/AT/BA. The design of

Context Services here is a very useful framework and will become a reference of our

architecture.

14

CHAPTER 3

TRANSACTION ARCHITECTURE

In terms of architecture design, our goal is to design a transaction architecture

based on Web Services, providing basic transaction functionalities; meanwhile,

we will provide an implementation design reference for the developers. Moreover,

we design a complete system with reference to the existing specifications and

supplement those are not strong enough or deficient. According to the comparison

of the three main specifications, WS-C/AT/BA are still short in some areas, such

as the flow of compensation transactions. WS-C/AT/BA are the main

specifications we are going to support in our system, and others specifications are

references for the system design as well.

Figure 3.1 shows the transaction work flow.

Prepare
reserve

reserved

reserved

reserved

reserve

reserve

reserved

reserve

reserved
reserve

Unavailable

Travel
Agency

Airline A Airline B

Hotel A

Rental Car

Room

Dinner

client

Prepare
reserve

reserved

reserved

reserved

reserve

reserve

reserved

reserve

reserved
reserve

Unavailable

Travel
Agency

Airline A Airline B

Hotel A

Rental Car

Room

Dinner

client

Figure 3-1 Transaction Work Flow

15

3.1 Web Services Transaction Environment Overview

In the environment of Web Services transaction, user access services through

Web Services systems. When a user issues one request, corresponding Web Services

begin to create and register a transaction in its coordinator, and pass its transaction

context to the associated Web Services for transaction coordination. Because these

Web Services are constructed on the basis of our transaction architecture, we call

them Transaction-Aware Web Services. We will discuss this later.

The coordinator which creates the coordination context first is called the root

coordinator; the other coordinators which join the same transaction are called

subordinate coordinators. A coordinator may be a root and a subordinate at the same

time. Moreover, transaction themselves may involves in multiple transactions. The

transaction at the root is called top-level transaction, the others are called

sub-transactions. A transaction's predecessor is called parent; a sub-transaction at the

next lower level is also called a child. Such transaction is so-called nested

transaction.

On top of the Web Services transaction architecture is the environment we build

for transaction coordination, coordinators mainly provides activation service,

registration service, and coordination services.

3.2 System Architecture

In point of system architecture, we design a stack as follows. The bottom layer

is a Web Application Server built within a XML SOAP Engine, providing an

execution environment for Web Services applications. Based on this, we develop

some transaction coordinators port types as ActivationService, RegistrationService,

16

RegistrationRequester and all coordinaton services for WS-AT and WS-BA

transaction protocols.

Application Server (Tomcat 4.1)
SOAP Engine (Apache Axis 1.2b)

Transaction Coordinator

Activation
Service

Registration
Service Coordination Services

Volatile2PCCompletion Durable2PC BAWPC BAWCC

Transaction-aware
Web Services applications

Client Service A

Service C

Service B

Service D

Application Server (Tomcat 4.1)
SOAP Engine (Apache Axis 1.2b)

Transaction Coordinator

Activation
Service

Registration
Service Coordination Services

Volatile2PCCompletion Durable2PC BAWPC BAWCC

Transaction-aware
Web Services applications

Client Service A

Service C

Service B

Service D

Figure 3-2 System Architecture

On the basis of the Web Services transaction architecture, the functionalities of

coordinators are maintaining transaction connections, protocol participants

management, protocol subordinators management, protocol services management,

transaction state negotiation and protocol messages management.

3.3 Transaction-Aware Web Services

We have mentioned above about Transaction-Aware Web Services, which are

Web Services applications defined to run on top of our transaction architecture and

provide the functions of atomic transaction or business activity or both.

Transaction-Aware Web Services are able to process transaction protocol related

messages, and provide ActivationRequester, RegistrationRequester, and WS-AT and

17

WS-BA protocol participant services port types.

In the environment of Web Services transaction architecture, we divide

Transaction-Aware Web Services into two types, while one is atomic transaction

applications and the other is business activity applications.

GenericCoordinator

ATCoordinator BACoordinator

ATApplication BAApplication

GenericCoordinator

ATCoordinator BACoordinator

ATApplication BAApplication

Figure 3-3 Class diagram of Transaction-Aware Web Services

From the Figure 3-3, we can see the class relations of transaction-aware Web

Services. We design a base class named GenericCoordinator, which covers all the

basic functions that a coordinator should provide, such as creation coordination

context and registration services. Both the coordinators of atomic transaction and

business activity inherit the GenericCoordinator, and therefore have all the basic

functions of generic coordination, called ATCoordinator and BACoordinator

respecitvely. Moreover, applications of atomic transaction and business activity as

well inherit the ATCoordinator and BACoordinator respectively, and therefore they

have built-in coordinator. We will introduce the coordinators and the applications of

atomic transaction and business activity in the following two subsections.

18

3.3.1 Atomic Transaction Application

ATCoordinator is a coordinator which provides generic coordination functions

and deals with atomic transaction coordination. Atomic transaction coordinator

provides atomic transaction protocols services, such as Completion protocol service,

Volatile2PC protocol service and Duable2PC protocol service. By providing these

three protocol services, ATCoordinator can be inherited by atomic transaction

applications. Atomic transaction application then can provide atomic transaction

specific services, such as AT applications designed as a resource manager for a

transaction processing monitor or a transaction system.

3.3.2 Business Activity Application

BACoordinator is a coordinator which provides generic coordination functions

and deals with business activity coordination and sometimes atomic transaction

coordination as well. Business activity coordinator provides business activity

protocols services, such as BusinessAgreementWithCoordinatorCompletion protocol

service and BusinessAgreementWithParticipantCompletion protocol service.

BACoordinator is derived from the GenericCoordinator, but it can be derived from

ATCoordinator too to have the atomic transaction coordination functions. By

providing these two protocol services, BACoordinator can be inherited by business

activity applications. BA application then can provide business activity specific

services, such as BA applications designed as a transaction processing monitor, a

transaction system or any other Web Services providing transaction services.

19

3.4 Context Management Framework

In this section, we illustrate about the context management mechanisms

designed in our transaction architecture. The term “context” is not well defined in

general technical specifications. In brief, context is a way to achieve correlation

between different programs, applications or platforms. For example, the cookies

used in Web browsers, single session sign-on systems, and transaction systems are

examples of sharing common persistent data mechanism. For these reasons and

techniques, common documents or temporarily working data can be shared between

application programs.

Coordination Context
Request Handler

Axis
Server Engine

Axis
Server Engine

TransportRequestorRequestor

TransportRequestorRequestor

Transaction-Aware
Web Services

Transaction-Aware
Web Services

Web Service Transaction specific

Activation/Registration
Requester

Activation/Registration
Requester

Complete InitiatorComplete Initiator

2PC/BAWPC/BAWCC
Participant

2PC/BAWPC/BAWCC
Participant

Axis
Client Engine

Axis
Client Engine

Coordination Context
Response Handler

Transport

Context

propagation

Coordination Context
Request Handler

Coordination Context
Request Handler

Axis
Server Engine

Axis
Server Engine

TransportRequestorRequestor

TransportRequestorRequestor

Transaction-Aware
Web Services

Transaction-Aware
Web Services

Web Service Transaction specific

Activation/Registration
Requester

Activation/Registration
Requester

Complete InitiatorComplete Initiator

2PC/BAWPC/BAWCC
Participant

2PC/BAWPC/BAWCC
Participant

Transaction-Aware
Web Services

Transaction-Aware
Web Services

Web Service Transaction specific

Activation/Registration
Requester

Activation/Registration
Requester

Complete InitiatorComplete Initiator

2PC/BAWPC/BAWCC
Participant

2PC/BAWPC/BAWCC
Participant

Activation/Registration
Requester

Activation/Registration
Requester

Complete InitiatorComplete Initiator

2PC/BAWPC/BAWCC
Participant

2PC/BAWPC/BAWCC
Participant

Axis
Client Engine

Axis
Client Engine

Coordination Context
Response Handler

Coordination Context
Response Handler

Transport

Context

propagation

Figure 3-4 Context management framework of Transaction-Aware Web Services

Although WS-C mentions the use of Context in the transaction coordination, it

doesn’t describe the usage scenario and where to use very clearly, and neither

20

describes the management and maintenance of context of different activities. In the

system we design, we use the message handler chain in SOAP Engine to manage

and maintain contexts. As the figure 3-4 shows, we could see that the context

management framework is designed to be embedded in the AXIS SOAP Engine. We

leverage the SOAP processing mechanism, when the server engine is processing

request messages in the request message processing chain,

CoordinationContextHandler retrieves the context message shown in the request

SOAP headers and store temporarily in the Server Engine; If Transaction-Aware

Web Services need to know the context messages, they can get context messages

from the Server Engine. Once when Transaction-Aware Web Services need to issue

application requests to other Transaction-Aware Web Services, they can put the

coordination context into the SOAP Client Engine, CoordinationContextHandler in

the request message processing chain of Client Engine will retrieve the context

messages which stored in it previously by Transaction-Aware Web Services, and add

the context message to the request SOAP header by request message processing

chain, and then transmit the request SOAP messages. By this framework we design,

context sharing and management are easy and won’t take more efforts for

Transaction-Aware Web Services.

3.5 Activity State Management

Business activity is a series of business state transition, achieved by designed

business functionalities, and sometimes are called business processes. A business

process is usually composed by multiple business transactions; the business

transactions in the Web Services environment, to be more precisely, are transaction

21

and interaction processes of different organizations for negotiating certain common

agreement deals. The outcome of a transaction will be affected consistently by all of

the changes of one business state. We must ensure that all of the state transitions

history, including applications states and transaction coordination contexts, would be

recorded reliably within the processing coordinator and between involving

coordinators. Furthermore, the nested message management we used in the

transaction architecture makes all messages in different scopes managed by their

own root coordinators of the scopes, and decides the correct state and messages of

next transition.

BA 1

Sub BA 2
Hotel

Sub BA 1

Airline A

Sub BA 3
Car Rental

Book Flight

Travel
Agency

Book Car

Book HotelBook Trip

coordinator

process

coordinator

process

BA 1

Sub BA 2
Hotel

Sub BA 1
Airline A

Sub BA 3
Car Rental

Book Flight

Travel
Agency

Book Car

Book Hotel

Book Trip

Sub BA 4
Airline B
Book Flight

Sub BA 4
Airline B
Book Flight

beginbegin

beginbegin

faultedfaulted

beginbegin

Figure 3-5 Transaction flow control

To give an example, we can see from the figure 3-5, when we are issuing a

transaction request over a travel agency Web Services system, the travel agency Web

Services then communicates with the other three involving Web Services, airline,

22

hotel and car rent services, by exchanging transaction messages. As described in the

paragraph above, all business transaction states are maintained by their own

transaction coordinators, and the entire business activity states are maintained by the

coordinator of travel agency. When any errors occur in the process of

sub-transaction 1, the airline A turns out one failure and then notifies coordinator A

an exception. The coordinator A receives this exception and tells the coordinator of

travel agency to make him decide the next state of transaction. Later, the root

coordinator notifies A to cancel the original sub-transaction 1 and begin to enter

compensation state. Afterward, the root coordinator continues to process new

compensate sub-transaction of airline reservation and transmit the new protocol

message to the airline B. Since then, we can understand a scenario of compensation

and error recovery in the activity state management of our transaction architecture.

23

CHAPTER 4

IMPLEMENTATION ISSUES

In this chapter, we will discuss how transaction architectures are implemented

based on Web Services architecture and WS-Transaction specifications. The

implementation provides the modularity of system components and a development

environment which reduces development time and requires minimum efforts for

Transaction-Aware Web Services applications. At the beginning of the system

implementation phase, we spend a lot of time on the understanding and familiarity

of AXIS architecture, therefore we are going to discuss about the AXIS as well.

Furthermore, we will introduce implementation details of each components and

related design issues.

4.1 Implementation Overview

Inside our system implementation, we use Java programming language to

develop application programs. We use Apache Tomcat 4.1 [29] of Apache Software

Foundation as the Application Server and Apache Extensible Interaction System

(Apache AXIS) 1.2b [27] as SOAP Engine for processing XML Web Services.

Our architecture design and protocol implementation is based on WS-C/AT/BA.

We define all transaction related interface according to WS-C/AT/BA WSDL

definitions; XML schemas refer to the definitions of WS-C/AT/BA as well and Java

data types are generated by WSDL2Java tool of AXIS. Besides, the idea of context

management originates from WS-Context in the specification of WS-CAF; however,

we design the context management framework and activity state management as

24

some event handlers in the transaction architecture rather than services.

Because we use the definitions of WSDL PortTypes in WS-C/AT/BA for

transaction related program interfaces, our implementation primarily is composed of

many Coordinators and Transaction-Aware Web Services. We use a Java class to

implement multiple Port Types; leveraging the polymorphism of Java in Web

Services implementation makes Web Services implemented by a single class and

deployed as multiple Port Types. This implementation provides a flexibility way for

Web Services to be dynamically invoked at runtime.

Request/
Initiator

Root
Coordinator

Sub-
Coordinator

Participant

1: create transaction

2: application request
3: create sub transaction

5: register
4: enlist participant

6:enlist subordinate

7: terminate transaction
8: complete transaction

9: complete
10: completed

13: close
14: closed

15: transaction closed

11: transaction completed

12: close transaction

16: transaction terminated

Figure 4-1 Sequence Diagram of Transaction Coordination Protocols

25

Figure 4-1 shows the sequence diagram when requester or initiator, root

coordinator, sub-coordinator and participant are in proceeding of a transaction and

the message flows among them. This diagram mainly shows the part of messages of

transaction coordination protocols during creation , registration and interposition of

an activity.

Figure 4-2 shows the message content when coordinator is processing an

atomic transaction, i.e. the coordinator notifies the participants to go to prepare

phase and get ready for the commitment.

Figure 4-2 Protocol Message of Atomic Transaction from a Coordinator

4.2 Context Management

We have discussed about the design of context management framework in the

previous chapter. However, there are many difficulties to maintain persistent data

and correlated information within AXIS architecture. AXIS, as we have known, is an

event-driven XML SOAP processing engine for Web Services applications; the

<env:Envelope ...>

 <env:Header>

 <wsa:ReplyTo>http://localhost:8080/Part1</wsa:ReplyTo>

<wsa:Action>http://schemas.xmlsoap.org/ws/2003/09/wscoor#Prepare</wsa:Action>

<tx:activityID>urn:3fd333f8-b723-4acd-9d40-16a21fa5d1f8</tx:activityID>

<tx:scopeID>urn:d1de41df-844f-4c60-b984-2ec5c9b22aba</tx:scopeID>

 </env:Header>

 <env:Body>

 <wsat:Prepare/>

 </env:Body>

</env:Envelope>

26

design of AXIS is based on Tomcat servlet engine, which is a web application

container and doesn’t have any persistent storage for certain web applications to

maintain their data. Nevertheless, Web Services are only able to put and get data

elements as objects to and from the SOAP message bodies, but have difficulties to

get and put data elements as objects to and from the SOAP message headers.

Therefore, how to store and manage context information becomes an important issue

within the implementation system. Axis is organized with a series of Handlers;

MessageContext object, which contains request and response messages and some

associated properties, will be passed to each Handler invocation.

Figure 4-3 Server Message Path of AXIS Engine

source: ws.apache.com/axis/

The message path of the server is shown in the figure 4-3; a Transport Listener

will create a MessageContext object and invoke the Axis framework, and the target

Web Service is also a handler of the processing chain. Therefore, we can design one

CoordinationContext Request Handler within the Server request chain to retrieve the

context header from the request message and store it into the MessageContext object;

once when the MessageContext object is passed to the target services, the target

27

services can get the CoordinationContext object from the MessageContext at any

time without extra efforts for processing the SOAP headers by themselves and

context header messages won’t be lost during the processing time. The figure 4-4

shows the Transaction Context Management Framework of the server-side.

C
ontext M

anagem
ent Fram

ew
ork

Service Specific Message Context

Service Specific Message Context

Service Specific Message Context

…
…

…
.

Request

Request

service

Context object

service

service

C
ontext M

anagem
ent Fram

ew
ork

Service Specific Message Context

Service Specific Message Context

Service Specific Message Context

…
…

…
.

Request

Request

service

Context object

service

service

Figure 4-4 Server-side Transaction Context Management Framework

Figure 4-5 Client Message Path of AXIS Engine

source: ws.apache.com/axis/

The figure 4-5 shows the message path of the client; application code of a client

28

will generate a MessageContext object and invoke the Axis processing framework,

and the target Web Service is also a handler of the processing chain. Therefore, we

can design another CoordinationContext Request Handler within the Client request

chain to get the CoordinationContext object from the MessageContext object if

exists any and turn the CoordinationContext object into a SOAP header element in

the SOAP request message; if client application puts a CoordinationContext object

into the Client engine of Axis and issues any requests to Transaction-Aware Web

Services, the CoordinationContext object will be processed by

CoordinationContextHanlder as described above; the client applications can put the

CoordinationContext object into the request message headers freely without

processing the SOAP headers by themselves and context objects won’t be lost

during the processing time. The figure 4-5 shows the Transaction Context

Management Framework of the client-side.

Context
Management
Framework

Request

Context object

Requester SOAP
Message
SOAP

Message

Context
Header

Figure 4-6 Client-side Transaction Context Management Framework

Since then, we are finally able to provide a context propagation mechanism for

the transaction architecture to maintain and manage persistent and correlated data

among those many multiple Transaction-Aware Web Services.

29

4.3 Participant Lists Management

Since each joiner, transaction, and sub-transaction has an individual identifier,

we need to manage them among the coordinators and record those identifiers

respectively and separately for each protocol, in case that any exception and state

transition of the transaction occurs.

 The figure 4-7 shows the entire participant lists maps existing in atomic

transaction and business activity coordinators. ATCoordinator maintains the

Volatile2PC and Durable2PC protocol participant lists maps while BACoordinator

maintains the BusinessAgreementWithCoordinatorCompletion and

BusinessAgreementWithParticipantCompletion protocol participant lists maps.

Completion protocol doesn’t need a participant lists map because there is only one

initiator as participant role.

ATCoordinator

Volatile2PC Participants Lists

Durable2PC Participants Lists

BACoordinator

BAWCC Participants Lists

BAWPC Participants Lists

ATCoordinator

Figure 4-7 Protocol Participants Lists of Transaction Coordinators

We record the transaction identifier as the key and the joined participants’

address list as the value of the key/value pair in the map for all protocols

respectively. When a coordinator receives a register request after authentication, it

get the list of the transaction according to the transaction identifier, which is get

30

from the context object in the request header; if the list not exists in the coordinator,

create a new one, and then store the port references, i.e. the address of the

participants, into the list and put the list back to that protocol lists map.

4.4 Run-Time Scenario

The run time scenario of the transaction architecture will be described as

follows. When a client is going to issue a transaction request to a transaction-aware

Web Service, it first create a coordination context with its coordinator and get a

coordination context object returned; next, the client issues a application request

with a coordination context to a transaction-aware Web Service. On receiving the

request with a context header, the target services begin to interpose itself as a

subordinate of the created transaction and register to the previous coordinator for its

root coordinator. After these creation and registration flows, transaction protocol

messages are then able to be transmitted and form a protocol instance.

The figure 4-8 shows the creation and delegation scenario of a transaction

activity.

Web Service

Coordinator
A
C1

Bank

Coordinator
B
C1

ASa ASbRSa RSb

1) Create

CoordinationContext

1) Create

CoordinationContext

2)

C1

2)

C1
6)

Register

6)

Register

9)RegResp9)RegResp
4) Interpose CC4) Interpose CC

5)

C2

5)

C2

8)RegResp8)RegResp

7)Register7)Register

3)<C1>,

transfer

3)<C1>,

transfer

Figure 4-8 Creation and Delegation of a Transaction Activity

31

 When an atomic transaction is being processed between coordinators and

transaction-aware Web Services, there will be three kinds of participants:

Completion initiator, Volatile2PC participants and Durable2PC participants. If all

processes of each participants are finished, the Completion initiator, i.e. the

application, begin to commit the atomic transaction activity and send a commit

message to the coordinator. Then the root coordinator starts the prepare phase of the

2PC protocol and send a prepare message to each Volatile2PC participants; after

each Volatile2PC participant returns a prepared message, the coordinator sends a

prepare message to all Durable2PC participants. When all prepared messages are

returned from the Durable2PC participants, the coordinator decides to commit the

transaction and sends committed message to the completion initiator and commit

messages to all Volatile2PC and Durable2PC participants at the same time.

The figure 4-9 illustrates the two phase commit protocol as a state transition

diagram.

Figure 4-9 Two Phase Commit Protocol

source: msdn.microsoft.com

32

 When a business activity is being processed between coordinators and

transaction-aware Web Services, there will be two kinds of participants:

BusinessAgreementWithCoordinatorCompletion participants and

BusinessAgreementWithParticipantCompletion participants. The previous ones need

the coordinator to tell them when to complete their works while the second ones

decide when to complete their works by themselves. When BAWPC participants

finish their works, they signal the coordinator by sending a completed message and

enter the competed state; when BAWCC participants finish their works, they wait

for the coordinator’s complete message, and then complete their processes and

signal the coordinator by sending a completed message and enter the competed state.

If all processes of each participants are finished, the root coordinator decide to close

the transaction and notifies all participants with the close message. If any exception

or errors occur within a participant, the root coordinator will decide to begin a

compensation activity and notify the participant with a compensate message;

meanwhile, the root coordinator initiates another sub-transaction to replace the

original work of the compensated participant. Sometimes the compensation takes

more time and money to complete.

The figure 4-10 illustrates the business agreement with coordinator Completion

protocol as a state transition diagram.

33

Figure 4-10 Business Agreement With Coordinator Completion Protocol

source: msdn.microsoft.com

4.5 Transaction Application Development Model

Dynamic service invocation is an important technique in Web Services

architecture. However, not all Web Services applications achieve this characteristic,

especially in Web Services transaction systems. We design the transaction

architecture to provide an environment for transaction system developers to make

transaction-aware Web Services dynamically invoked. The PortTypes conventions

defined in the WSDL of WS-C/AT/BA help us to achieve this goal; we design all

transaction protocols and interfaces according to the specification and thus make all

protocol messages exchanged among specified interfaces.

With the architecture we implement, developers of transaction-aware Web

Services can develop and deploy Web Services transaction systems easily and fast

for the following reasons: 1) we design the class hierarchy as a single-rooted

architecture; all classes in the architecture inherit the “Coordinator” class; 2) one

single class implementing multiple interfaces (PortTypes) can make Web Services

application deployment in the Axis architecture faster, easier and multi-deployable;

34

3) one application code can be multiple port types and doesn’t have to write

different classes for different port types; this saves development time and application

protocols between different application codes within a single system; 4) services are

running in the application scope of the Axis architecture; this makes the applications

become available and won’t be down since they are initiated once, besides, easy to

maintain persistent data, such as participants lists, in the coordinators and

transaction-aware web services.

If the developers are going to make the new developed Web Services

transaction system connected with the legacy transaction systems, they can just

package the existing systems by interfaces of the architecture we defined.

35

CHAPTER 5

DISCUSSION AND RELATED WORKS

According to existing specifications of Web Services transaction, there are

several vendor products for reference: 1). IBM Corp. implements a application

programming interface package of WS-AT for WebSphere platform, but not

including WS-BA yet. 2). As for BTP, HP Company has developed a transaction

system called HP-WST [21] to support BTP in the first year of BTP and is open, but

no further development in the later years. 3). WS-CAF has a compatible product

published by Arjuna Technologies, called XML Transaction Service [22]. Arjuna

declares to support both WS-C/AT/BA and WS-CAF; however, it is not open. 4).

Choreology Corp. from England developed a product called Cohesions [20],

supporting BTP and WS-C/T (the old version of WS- specifications).

As we can learn from the previous paragraph, the implementations from the

vendors are not completed yet and none is for open platform.

OpenVendorVendorOldImplementations

2004200320042000Complete Year

YesYesNoNoContext Management Framework

YesNoYesNoWSDL based Transaction interface

YesYesYesNoSOAP based Transaction Protocol

MeWS-CAFWS-C/TBTP

OpenVendorVendorOldImplementations

2004200320042000Complete Year

YesYesNoNoContext Management Framework

YesNoYesNoWSDL based Transaction interface

YesYesYesNoSOAP based Transaction Protocol

MeWS-CAFWS-C/TBTP

Figure 5-1 Comparisons between Our Transaction Architecture and Related Works

The figure 5-1 shows comparisons between our transaction architecture and the

36

vendor specifications. There are four important characteristics: SOAP based

transaction protocol, WSDL based transaction interface, context management

framework and implementations. Our transaction architecture is obviously the

winner of all; it has all of the characteristics while others don’t have all.

Our transaction architecture achieves the following features as well:

1). Loosely-coupled, asynchronous communications, dynamic composition

architecture

2). Verified and open for Web Services transactions

3). Suited for heterogeneous, long-lived transactions

4). Compatible with WSDL, SOAP, WS-Coordination, WS-AtomicTransaction,

WS-BusinessActivity by leveraging WS-C/T and WS-CAF and integrating the

pros and minimize the cons of both

37

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In thesis, we proposed a demonstrative system for building transaction

architecture in Web Services environment. This will improve the interoperability

among various platforms and systems with B2B application integration. Besides, the

independent of transaction architecture from inside of an application is designed

with references of industry specifications; our experience of implementation will

help the developers of Web Services transaction-related systems in implementation.

Nevertheless, with the movement of XML and Web Services, transaction

architecture in Web Services environment must become standardized. We have

compared several commons and differences of those industry specifications, and we

will dedicate to all industry specifications or implementation of standards. Finally,

we will provide a complete development flow and design tool for developers. Before

we finish this thesis, there is still not any complete reference product or

implementation of WS-C/AT/BA. The goal of our researches chiefly is to design an

open architecture to provide developers in design of Web Services transaction.

Developers can implement their desired systems by referring to your design and

implementation experiences.

38

6.2 Future Work

 6.2.1 Web Services Composability

Service composition allows developers to “compose” services that exchange

SOAP messages and define their interface in WSDL and WS-Policy into an

aggregate solution. The aggregate is a composed Web service. WS-Policy enables a

service to specify what it expects of callers and how it implements its interface. The

BPEL4WS (Business Process Execution Language for Web Services specification)

together supports service composition. Supporting WS-Policy and BPEL4WS must

become a goal in the future.

6.2.2 Web Services Interoperability

Interoperability issues are very important in Web Services environment.

Currently, our system does not compatible with the definition of WS-I Basic Profile

[27]. This profile defines all basic constraints about Web Services interoperability to

various platforms or systems, such as Microsoft .NET and J2EE Web Services.

Document/Literal type messaging is an example of such issues.

6.2.3 Services Assurance and Reliable Messaging

Because of the Web Services environment is cross organizations and enterprises,

we need authentication and message integrity, confidentiality, trust and privacy.

WS-Security support secure Web Services with existing security models, such as

Kerberos, X509, etc. WS-Trust defines a Security Token Service (STS), which is a

distinguished Web Service that issues, exchanges and validates security tokens. In

addition, we need WS-ReliableMessaging for building unique identifiers, sequence

39

numbers and retransmission.

40

CHAPTER 7

REFERENCE

[1]. World Wide Web, http://www.w3.org/.

[2]. J. Gray and A. Reuter, “Transaction Processing: Concepts and Techniques,”

Morgan-Kaufmann Publishers, 1993.

[3]. Web Services, http://www.w3.org/2002/ws/.

[4]. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web Services

Description Language (WSDL) 1.1,” W3C, Note 15, 2001,

www.w3.org/TR/wsdl.

[5]. “Simple Object Access Protocol (SOAP) 1.1,” http://www.w3.org/TR/soap/,

W3C Note, May 2000.

[6]. Microsoft Corporation et al., “Web Services Coordination

(WS-Coordination),”

http://msdn.microsoft.com/library/en-us/dnglobspec/html/wscoor.asp.

[7]. IBM Corporation et al., “Web Services Atomic Transaction

(WS-AtomicTransaction),”

http://msdn.microsoft.com/library/en-us/dnglobspec/html/wsat.asp.

[8]. BEA Systems et al., “Web Services Business Activity Framework

(WS-BusinessActivity),”

http://msdn.microsoft.com/library/en-us/dnglobspec/html/wsba.asp.

[9]. Microsoft Corporation, “White Paper: Coordinating Web Services Activities

with WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity,”

http://msdn.microsoft.com/library/en-us/dnwebsrv/html/wsacoord.asp.

[10]. F. Curbera, Y. Goland, J. Klein, F. Leyman, D. Roller, S. Thatte, and S.

Weerawarana, “Business Process Execution Language for Web Services

(BPEL4WS) 1.0,” August 2002,

http://www.ibm.com/developerworks/library/ws-bpel.

[11]. Organization for the Advancement of Structured Information Standards,

“Business Transaction Protocol,” committee specification,

http://www.oasis-open.org/committees/business-transactions/documents/s

pecification/2002-06-03.BTP_cttee_spec_1.0.pdf, 26 June, 2002.

[12]. Organization for the Advancement of Structured Information Standards,

“OASIS Web Services Composite Application Framework,”

http://www.oasis-open.org/committees/documents.php?wg_abbrev=ws-caf

.

41

[13]. Brahim Medjahed, Boualem Benatallah, Athman Bouguettaya, Anne H. H.

Ngu, Ahmed K. Elmagarmid, “Business-to-business interactions: issues and

enabling technologies”, The VLDB Journal (2003) 12: 59-85.

[14]. Keisuke Yano, Hirotaka Hara, Sanya Uehara, “Collaboration management

framework for integrating B-to-B and Internal Process”, Proceedings of the

Sixth International Enterprise Distributed Object Computing Conferene

(EDOC’02), 2002.

[15]. Asit Dan, “Downloadable Service Contracts for Disconnected Transactions”,

Proceedings of the 12th Internet Workshop on Research Issues in Data

Engineering: Engineering e-Commerce/e-Business Systems (RIDE’02),

2002.

[16]. Deron Liang, Satish K. Tripathi, “Performance Analysis of Long-Lived

Transaction Processing Systems with Rollbacks and Aborts”, IEEE

Transactions on Knowledge and Data Engineering, Vol. 8, No. 5, October,

1996.

[17]. Kazutoshi Yokoyama, Eiji Yoshida and Shigeyuki Matsuda, “Requirements for

Open Service Collaboration among Web Services”, Proceedings of the 2002

Symposium on Applications and the Internet (SAINT’02w), 2002.

[18]. Takashi Hatashima, Daigoro Yokozeki, Masataka Suzuki, Kouji Tokumaru,

“WebServices Processing Platform – eCo-Flow”, Proceedings of the 2002

Symposium on Applications and the Internet (SAINT’02w), 2002.

[19]. Mark Little, “Transactions and Web Services”, Communications of the ACM,

Vol. 46, No. 10, October, 2003.

[20]. Michel P. Papazoglou, “Web Services and Business Transactions,”

http://maximus.uvt.nl/sigsoc/pub/Papazoglou%20-%20Web%20services%

20and%20business%20transactions.pdf.

[21]. IBM Corporation, “Web Services Atomic Transaction for WebSphere

Application Server,” http://www.alphaworks.ibm.com/tech/wsat/.

[22]. Choreology Ltd, “Choreology Cohesions,”

http://www.choreology.com/products/index.htm.

[23]. Hewlett-Packard, “HP web services transactions HP-WST,”

http://www.hpmiddleware.com/downloads/pdf/wst_specsheet.pdf.

[24]. Arjuna Technologies, “XML Transaction Service,”

http://www.arjuna.com/products/arjunaxts.

[25]. The OMG Group, “Activity Service specification,”

http://cgi.omg.org/cgi-bin/doc?orbos/2000-06-19.

[26]. Sun Microsystems, “Java Transaction API specification,”

http://java.sun.com/products/jta/index.html.

42

[27]. Web Services Interoperability Organization, “Basic Profile 1.1 WG Draft”,

http://www.ws-i.org/Profiles/Basic/2003-12/BasicProfile-1.1.pdf, Dec. 19,

2003.

[28]. Apache Software Foundation, “Jakarta Project Tomcat,”

http://jakarta.apache.org/tomcat/index.html.

[29]. Apache Software Foundation, “Extensible Interaction System (Apache

AXIS),” http://ws.apache.org/axis/.

[30]. The Open Group, “Distributed Transaction Processing: The XA Specification,”

http://www.opengroup.org/products/publications/catalog/c193.htm, 1992.

