Chapter 4
Cdlular Neural Networksfor Seismic Pattern

Recognition

4.1 Introduction

Seismic pattern recognition can help us to analyze seismic data and interpret
seismic data. We use associative memories to store seismic patterns and recognize
noisy patterns.

The neural network models which are used for associative memories mostly
operate by utilizing a large amount of memory and the process of information
distribution. Some neural network models can be used for associative memories, such
as linear associative memory [1], temporal associative memory [2], correlation matrix
memory [3], Hopfield memory: [4], etcl Content. address memory that Hopfield
proposed is most famous among them. This'thesis uses cellular neural networks to
design associative memories. Many ,researchers had: proposed the methods of using
cellular neural networks to design associative memeries: Liu and Michel have aready
proposed a design method for sparsely-interconnected neural networks and applied it
to cellular neural networks [5]. Their method is a synthesis procedure based on
singular value decomposition and it is a modification of the eigenstructure method [ 6]
which is well known as an effective design technique for fully connected neural
networks. Seiler, Schuler, and Nossek developed an algorithm to design a
space-varying cellular neural network with prescribed stable and unstable output
patterns while maximizing its robustness with respect to changes of its parameters [7].
The algorithm consists of formulating and solving a set of linear inequalities using
linear programming. The method proposed by Grassi [8]-[9] is different from others
because it uses the cellular neural networks that have a unique equilibrium point
which is globaly asymptotically stable and input patterns are fed into such cellular
neural networks as bias vectors. Park, etc. [10] have proposed one kind synthesis
procedure to design space-varying cellular neural networks. This procedure is based
on generalized eigenvalue minimization (GEVM) [11]-[13]. It produces a cellular
neural network associative memory that its connection weighting matrix is symmetric
and diagona elements of the connection weighting matrix are al 1. Liu and Lu
showed that the perceptron training algorithm can be applied to design space-varying
cellular neural networks as well as fully connected feedback neural networks [14].
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Chan and Zak proposed “designer” neural network for the synthesis of associative
memories based on a class of discrete cellular neural networks [15]. Perfetti presented
alocal learning algorithm which can efficiently be implemented on chip by exploiting
the parallel analog computation of cellular neural networks [16].

The network model we used for associative memory is discrete time cellular
neural network (DT-CNN). We adopt the synthesis procedure that is proposed by
Grassi [8]-[9]. This synthesis procedure design DT-CNN to behave as an associative
memory. Each memory pattern corresponds to a unique globally asymptotically stable
equilibrium point of the network. Experimental results show the satisfying
performance of this synthesis procedure. We use this synthesis procedure to design the
motion equation of a cellular neural network to behave as an associative memory, and
then use the associative memory to recognize patterns. So the whole process of
pattern recognition will be divided into two parts and discussed respectively, as Fig.
4.1 shows.

Training :

o Cellular .
Training Neural ::> Autoassociative
patterns Network Memory

Recognition :

Testing Autoassociative Recovered
— >
patterns Memory patterns

Fig. 4.1 The process of cellular neural networks for seismic pattern recognition.

4.2 Associative Memories

There are two kinds of associative memories. They are autoassociative memory
and heteroassociative memory. Suppose we have M pairs of vector {( X*, Y'), (X?,
Y2), .., (XM, YM)}, where X' eR" and Y' e RP. In the autoassociative
memory, it is assumed that X' =Y' and the network implements a mapping ® of
R" to R" suchthat d(X')= X', If somearbitrary pattern X iscloserto X' thanto

any other X', j=1,2 ..., M, | =i, then ®(X)=X"; that is, the network will
produce the stored pattern X' when the key pattern X is presented as input. In the
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heteroassociative memory, the network implements a mapping @ of R" to R such
that ®(X')=Y', and if some arbitrary pattern X is closer to X' than to any other
X1 i=1,2 ....,M,j=i,then ®(X)=Y".Intheabove, “closer” means with respect
to some proper distance measure, for example, the Hamming distance. Fig. 4.2 shows

ageneral block diagram of an associative memory performing an associative mapping
of an input vector X into an output Y. The system maps vector X to vector Y where the

input spaceis R" and the output spaceis RP, by performing the transformation
Y=M[X]

The operator M[ . ] denotes a genera nonlinear matrix-type operator. For different

memory model, the operator has different meanings.

An efficient associative memory can store a large set of memory patterns and
recall each pattern when a key containing a portion of the memory’s information is
presented as an input. And if sufficient amount of the content of the memory is
provided, then an associative memory may be able to correct erroneous data.

X Y
| M =

Input pattern Associative Output
Associative

Memory

Fig. 4.2 Associative memory.

4.3 DT-CNNsfor Associative Memories

We use the design method proposed by G. Grassi [9] to design DT-CNNs for
associative memories. The detail of the design method and the stability results are
summarized in the following.

Consider a DT-CNN with atwo-dimensional M x N cell array. We can renumber
al cellsfrom 1 ton, n=M x N, then the following motion equation (4-1) and output
equation (4-2) can be rewritten as vector form, as Equation (4-3) and (4-4) show:
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X (h+D= ZA(i, ik Dy (h)+ ZB(i, Lk Dug(h)y+1; (41

Cy eNij Cy eNij

{+1 for x,(h+1)>0
y; (h+1) = f(x;(h+1)=

4-2
-1 for x;(h+1)<0 (4-2)
1<i<M;1<j<N

x(h+) =Ay(h)+Bu+e (4-3)
y(h)=f(x(h)) (4-4)

In Equation (4-3) and (4-4):
X =[x X, % ]" e R™ isavector compose of state value of every cell;

y=[y, ¥, - ¥,]" e R™ isavector compose of output of every cell;
u=[uu,---u]" eR™ isavector compose of input of every cell;

e=[l,1,---1,]" e R™ isavector compose of extrainput of every cell;

a;; a, - 4,
ay Ay 3y,

e R¥"isamatrix compose of al A, j; k, I);

anl an2 e a

nn

b, b, - b,
b b. - b
ks 2,2. 2" '€ R™™ isamatrix-compose of al B(, j; k, ).

bnl bn2 b

nn

f=[f(x) f(x) - f(x,)] eR™ isavector containsoutput functions.

4.3.1 Design of Feedback Template
Linear Neighboring

A one-dimensional space-invariant template is used as the feedback template.
The corresponding network structure (r =1 and n =16) isshown in Fig. 4.3 [9].
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Fig. 4.3 The connection relation of cells for designing associative memories (r = 1 and
n = 16). The links represent the outputs of cells.

If there are n cells, then the feedback coéfficients of the cells can be expressed with
the following matrix A.

8y Q, o &,

8y 8y Ay,

A= (4-5)

a'nl anz a'nn
a,, represents the self-feedback coefficient of 1st cell, a, represents the feedback
coefficient of the next cell (the 2nd cell) of 1st cell in clockwise order, a,, represents

the feedback coefficient of the next cell (the 1st cell) of 2nd cell in counterclockwise
order. Since the feedback template is a one-dimensiona space-invariant template, so

a,=a,= = =a,=«a represent the self-feedback coefficient of each cell,
,=au= r =q,q, =y =a, represent the feedback coefficient of the next cell in
clockwise order, a,=a,=a,= ‘- =a,,, =, represent the feedback coefficient

of the next cell in counterclockwise order, a;=a,= " =&, 5, =3 1=, =

represent the feedback coefficient of the next two cell in clockwise order, and so on.
So matrix A can be expressed as
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al az cee an

A = a, oy - Oy,

az a3 cee al

Therefore A is a circulant matrix. The following one-dimensional space-invariant
template is considered:

[a(r)...a-1) a(0) &) ...a(r)]

r is neighborhood radius, a(0) is the self-feedback, a(1) is the feedback of next cell in
the clockwise order, a(-1) is the feedback of next cell in the counterclockwise order,
and so on. So according to Equation (4-5), we rearrange the template elements as the
following row vector.

[a(0) a(1l)..&(r) 0..0 a(-r)..a(-1)] (4-6)

The Equation (4-6) is the first'row of matrix, A. We arrange the last element of
the first row of matrix A in the first position of the second row of matrix A, it is
regarded as the first element of the second row of matrix A, other elements of the first
row of matrix A cycle right shift one position, they form the second to the last element
of the second row of matrix A. The same, wetake the previous row to cycle right shift
once, the new sequence is the next row of -matrix A, then we can define matrix A.

"a(0) a() ---a(r) 0---0 a(-r) - a1
a(-1) a0 --- a(r) 0--- 0 a(-r) - a(-2

as | ; @
_a(i) a(2) ........................... a(_l) a(O) |

It only needs to design the first row of matrix A when we design matrix A as a
circulant matrix. Each next row is the previous row which is cycle right shifted once.
The number of Os of Equation (4-6) is decided by radiusr and n. Ae R™", namely
each row of matrix A has n elements, and there are n rows in A. If n = 9, then there
are nine elements in each row. When r = 1, the one dimensional template is sorted
according to the Equation (4-6), as the following Equation (4-8) shows.

[a(0) &1) 0 0 0 0 O O &-1)] (4-8)
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In the Equation (4-8), there are six Os in the middle of the template, add other three
elements, there are nine elementsin arow.

4.3.2 Sability Results

If a dynamic system has a unique equilibrium point which attracts every
tragjectory in state space, then it is called globally asymptotically stable. A criterion for
the global asymptotic stability of the equilibrium point of DT-CNNs with circulant
matrices has been introduced [17]. The criterion is summarized in the following.
DT-CNNs described by (4-3) and (4-4), with matrix A given by (4-7), are globally
asymptotically stable, if and only if

S(2zq/n)|<1,9=0,1,2,...,n1 (4-9)
where

S(2 7 gfn) = Zr:a(h)e“'z” hain (4-10)

h=-r

The stability criterion (4-9) can be easily satisfied by choosing small values for
the elements of the one-dimensional space-invariant template. In particular, the larger
the network dimension n is, the smaller the valuesof the elements will be (see (4-10)).
On the other hand, the feedback values cannot be zero, since the stability properties
considered herein require that (4-3) be a dynamical system. These guidelines can help
the designer in fixing the values of the feedback parameters. Namely, the lower bound
is zero, whereas the upper bound is related to the network dimension.

4.3.3 Design of DT-CNNsfor Associative Memories

The method is designing the motion equation of a cellular neural network to
behave as an associative memory. Given m bipolar (value for +1 or -1) training
patterns as input vectors u', i = 1, 2, ..., m, for each u', there is only one
equilibrium point x' satisfying motion equation:
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x'=Ay' +Bu' +e
x?=Ay?+Bu’+e
yorElE (4-11)

x"=Ay"+Bu" +e

Design cellular neural networks to behave as associative memories, mainly set up A
and calculate B and e according to training patterns.

In order to express Equation (4-11) into a matrix form, we define the following
matrices first:

1 )(12 le
1 2 m

x:[xl X2 Xm]: X2 X2 ) X2 Eg{nxm
X X2 X
VY Y
yl y2 ym

Y=[y'y® oyTl=| 7 R P e R
Y. Vamman Yo

Ay:AY :[Ayl ,A\y2 ' b= Aym]Z[dl d2 . dm]ESRnxm
di =[dlI d'2 drl‘n]T Ei}{nxl’i:]_’ ..., m

1 2 m
ul ul ul
1 2 m
u u e U
U:[ul u2 um]: 2 2. 2 eiRnxm
[Up Uy - Up
Il ll Il
I2 I2 I2 nxm
J=[ee-- ¢g= eR

The Equation (4-11) can be expressed in the matrix form:

X =AY +BU +J (4-12)
BU+J=X-AY
BU+J=X- A, (4-13)

U=[u" u®---u™, u' isatraining pattern,i=1,2, ..., m
U has been aready known. Because Y is the desired output, so Y = U has been
aready known. Under global asymptotic stability condition, choose a
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sequence{a(-r) --- a(-1) a(0) a() --- a(r)}, which satisfies the criterion
(4-9). And design A as a circulant matrix, so A has been aready known too. We can
know from output function, if yis+1, then x> 1; if yis-1, then x < -1. U is a bipolar
vector, so Y is a bipolar vector too, namely all elements in Y are +1 or -1, so the
elements of the state vector X corresponded to Y are all greater than +1 or lessthan -1,
so we can establish X = a¥Y =aU, a>1. So U, Y, A and X have been aready
known, we want to calculate B and J.

Define the following matrices:

R:[UT h]eiRmx(n+l)
up uy - Ut 1
fuf uy U1
[TARTARSRTLEY

u; u; ut 1
v v BT
LU uy uy 1]

h=[11---1"eR™
X, =[x} x? - x"eR"™ isthejth row of matrix X
A, =[d" d? - d"]eR>™

b11 b12 bln l W,

[B|e]: by by by _ W,

bnl bn2 bnn In W,
w; =[b;, b, - b, 1,]e R
j=1,2,...,n
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The Equation (4-13) can be rewritten as Equation (4-14):

BU+J=X- A, (4-13)
b, b, - b, ful u? .oul] o1, 0
t?ﬂ bz.2 b.z“ u; u; ---ouy N I‘2 I, l,
by by t;nn Ul u? uy | I.n I, I
) e x| [l e e d]
| X o x| |dp dy e df
X Xo oo x| [dyodyoe

In the view of the jth row

1 2 m
u, U U,
1 2 m
u, u, u,
[bjl bj2 bjn] . Jr[Ij lj I,]
1 2 m
Lun un un J

Rwj = X5 =AY (4-14)
) BT S
oot T [ [a
u> u’ u> 1 :,z:ij | df =12 ..n
: b, : :
[RTTLE | I B P B P
i

The Equation (4-14) is the transpose of the jth row of Equation (4-13), so we can
rewrite Equation (4-13) as Equation (4-14).

Because each cell is only influenced by its neighboring cells, so matrix B is a
sparse matrix, and elementsin w; are mostly 0. We remove O elementsof w, , then

we can get W, . And we remove the corresponding columns of R, then we can get

R.,and ﬁj

J

=3

T T
i =Rw;.
RW| =X] -A], (4-15)

~T D+ T T P
W] =R} (X]-A]).j=L2 (4-16)
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I?e]. Is got from R according to the connection relation of the input of the jth cell and

inputs of other cells. We express the connection relation of the inputs of cells by

matrix S, so F~2j can be got by taking out partly vectors of R according to the jth row

of S. R* isthepseudoinverseof R,. R, e, W, eR ', h, =(ZSjij+1.
i=1

Matrix Sis the matrix represents the connection relation of cells inputs. Se R™", if
the ith cell’s input and jth cell’s input have connection relation, then S; =1, on the

other hand, if the ith cell’s input and jth cell’s input have no connection relation,
S, =0.
ij

1if theith cell'sinput and jth cell'sinput have connection relation

0,if theith cell'sinput and jth cell'sinput have no connection relation

For example, a4 x 4 cell array:

13 14 15 16

and radiusr = 1, then Siswritten as the following:
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O 0o o0ooooboocoo kP, P oo =R BF
O oooooooocoocookFPr kP P ORFP PP
O ooooooobkFRr kP, P O, P P O
O 0o o0ooooooohkFPr kPP ook, P OO
O oooocoookFRPr P OO P OORBR
coooooootFrrrrotrrrr ok kL
cooooo+Fr—rrrotrrrrorr r o
c oook+r r ook, Hr ook kFr OO
ocoo+r prookr krHroohkr kr o o oo
okF+rrrrokrrPFkroOoORFrPFEP PFPF OO OoOOo
-+~ ~robkrr rFrF PP OPFEPFPPFP OOOO O
PR POoOOPFPPFPOOFFPF OOOOO O
oOookFr PP OoOOFPPFPF OOOOOOOOo
orr kP oOoOkFPFPFPPFP OOOOOOOoODOo
PR PP OoOPFP PP OOOOOOOOOo
PR P OORFFPF OOOOOOOOOOo

Weexplan R, W! =Rw] in thefollowing.
Proof:

R =[U™'h]
U, Fiseeely 1
Uy Uy -+ U, 1

Uy U

me

w; =[b;;, by, - by, 1]

b,
U Up o Uy, 1 b
i2
RwT = Up Uy - Upy, 1 :
j - . . : .
: b
uml um2 “'umn 1 IJ“
L

The jth row [s;; s;, -~ s;,] of matrix S represents that whether the jth cell and
other cells (include the jth cell) are neighbors, s; =1 represents that the jth cell and
the ith cell are neighbors, on the contrary, s; =0 represents that the jth cell and the

ith cell are not neighbors. The jth cell and the ith cell are not neighbors, it represents
that the jth cell can not be influenced by the input of theith cell, so b; =0, and when
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R multiplies w, uy, Uy, ..., u, areal multiplied by 0, so we can remove theith
column [u; uy, -+ u,]" of matrix R, then it forms R, and remove b, of w,
thenitforms W] ,and R,W] =Rw] .
In Equation (4-14), we can get WIT by the following equation.

wi =R*(X] A7)
R* may not be unique, so WjT may not be unique. B may not be unique. Then B

may not accord with the interconnecting structure of network inputs. So we must use a
matrix S to represent the interconnecting structure of network inputs and use the
above skill to calculate matrix B. We summarize the algorithm of using cellular neural
networks to design associative memories in the following.

Algorithm 4.1: Design the DT-CNN to behave as an associative memory

Input: mbipolar patterns u',i=1,.....,m
Output: w; =[b;, b, --- b,

I I Py , N, namely B and e
Start:
Step 1: Calculate matrix U from-known -t
U=[u*"u?"" um]
Step 2: Establish matrix Y = matrix U.
Y=U=[u"u® - u"
Step 3: Establish matrix S.

1,if theith cell'sinput and jth cell'sinput have connection relation

0,if theith cell'sinput and jth cell'sinput have no connection relation

Namely Se R™" is a sguare matrix. If the ith cell’s input and jth cell’s input
have connection relation, then S; =1. On the other hand, if they have no

connection relation, then S; = 0.
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Step 4. Design matrix A as the circulant matrix which satisfies globally
asymptotically stable condition.

Step 5: Setthevalueof a (a>1),andcaculate X = aY.

Step 6: Calculate A, =AY .

Step 7: for (j =1ton) do:
Calculate X; by X.
Calculate A, ; by A, .

CalculateR, R=[U" h].

Establish matrix ﬁj from matrix S and matrix R.

Calculate pseudoinverse matrix- R of ‘R, .
~T =T _op+ T Eji
Calculate w;, w; =R (Xy"=AJ5).

Recover w, from vT/].T.

End
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Theflowchart of Algorithm 4.1:

Input mbipolar patternsu' ,i =1,......,m

'

Calculate matrix U fromu', U =[ u® u?... u™]

A 4

Set matrix Y = matrix U, Y =U=[u* u?...u"]

\4

Establish matrix S

v

Design matrix A as acirculant matrix

A4

Set ¢ vaue(a>1),andcaculateX = aY

A

Calculate Ay= AY

A 4

for(j=1ton)do:

Calculate Xj, Ay, R, R;, RT
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4.3.4 Associative Memories Design Principle

X=[x' x* -+ x"]
X' =[x X x]TeR™, i=1,2..m
Y=[y" y* - y"]
y' =y ¥z yalt €™, i=1,2..,m
U=[u' u® - u"
u' =[uuy--ul"eR™i=12..m
J=[ee-- ¢
e=[l,1,--1,]" eR™
X =AY +BU +J
[X' x? - x"]=Aly" y* .- y"]+B[u* u® ---um+[ee--- €
=[Ay* Ay? --- Ay™]+[Bu’ Bu® --- Bu™]+[e e - €]
X' =Ay' +Bu' +e,i=1,2,...,m
u',i=1,2, ..., maretraining paiterns, namely. memorized patterns. Because we want
to design autoassociative memaries, 'so outputs are memorized patterns. Output y' =
input u', and u' are bipolar ‘patterns, so y' are bipolar patterns too, namely the
elementsof y' are +1 or -1. From output function we can know that if output is +1,

then the state is greater than +1; if output is-1,then the state is less than -1. So we set
up X = aV, a>1. Andthen we design matrix A as acirculant matrix which satisfies
the globally asymptotically stable condition, then calculate B and e.

Then G(x) = Af(x) + Bu + eis acontraction and there is a unique solution to the
nonlinear equation G(x) = x, namely there is a unique solution to x = Af(x) + Bu + ¢,
where x =[x, X, --- X.]". Soif u= u', then x' isthe unique solution. No matter
what initial x is, x must converge to x' finaly. There is a unique solution for each
element x of x too. We can write the motion equation of the ith cell as the following
equation:

o ax (t
A dt( )

= 9(x) +w =h(x;w)
where
-X+a, x=1
g(%)=-x+af(x)=1(a -Dx, [xkl

-X—-a, X<-1
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wo=1+ > af(x)+ D bu,

CieNj,j= CieN;

Thedynamic routesof x areshownin Fig. 4.4.

() 2 X =09(x)
dope=-1 dope=3;-1>0
1 Q-
Q. W 0 +1 > X
.......... _ai
: dope=-1
(b) F A% =hGw) =g(x) +w

¢—§vv.>aa

Fig. 4.4 Thedynamic routesof X;.

Because there is a unique solution for each element X, of x, soin Fig. 4.4, the second

and third dynamic routes of (b) cannot be appeared. Only the first and fourth dynamic
routes can be appeared. The first dynamic route is the case of w, > a,; the fourth
dynamic route is the case of w <-a . The elements of the one dimensiona
space-invariant template we designed for matrix A are very small, namely a are
very small, so w are greater than a or lessthan —a ( maybe only | has aready
been greater than a, or lessthan —a, ). So only the first and fourth dynamic routes
can be appeared. On the first and fourth dynamic routes, no matter what is the initial
vaueof each x,each x will converge to aunique equilibrium point. Soif u= u’,
then each element x, of x converges to a unique equilibrium point x’'. Namely x

convergesto x’. Therefore designing cellular neural networks to work as associative
memories is designing each training pattern to behave as an equilibrium point of the
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network.
We consider the situation that input is a noisy pattern q after the network is
trained, q=[q, q, --- 9,] . We suppose that the noisy pattern q is closer to training

pattern u® thantoany other u',j=1, 2, ..., m, j#k. We compare the situations that

input is u* and input is g. The elements of g are mostly equal to the corresponding
elementsof u®, only some elements of q are not equal to the corresponding elements
of u. And in the equation of w;, only u; of input = q is possibly different to u,

of input = u®, other parameters of input = q are all equal to the corresponding
parameters of input = u*. So w, of input = q are mostly equal to w, of input = u*.
Several w, of input = q are not equal to the corresponding w, of input = u* due
tosome u; of theequationof w wheninputisq are not equal to the corresponding

u; of theequationof w; wheninputis u®. Because the different u; arenot many,

sothesum > b,u; when input is g is similar to the sum ) b,u; when input is
CjeNi CjeNi

u, namely the difference of the sym, > b,u;, when input is q and the sum

CieN;

ijuj when input is u® is.small, therefore the dynamic route of input = q is
CieN,

similar to the dynamic route of-input =-u*. So the equilibrium point of input = q is
similar to the equilibrium point of input =" u* 1f.the equilibrium point of input = u*
is greater than +1, then the equilibrium peint of input = q is greater than +1 too; if the
equilibrium point of input = u* islessthan -1, then the equilibrium point of input =
g islessthan -1 too. So the output when input is q is equal to the output when input is

u®. Therefore we can recover the pattern u* which is noisy pattern g most similar to
when we input g to the network. But if the number of different elements of input g

correspond to its most similar pattern u® is large, then the difference of the sum

D b,u; wheninputis g and the sum > b,u; when inputis u“ islarge, so w
CjeN; CjeN;

of input = g isnot similar to w,_ of input = u®. Therefore the dynamic route of input

= q is not similar to the dynamic route of input = u*. So the equilibrium point of
input = ¢ is not similar to the equilibrium point of input = u®. If the equilibrium
point of input = u® is greater than +1, then the equilibrium point of input = q is
possibly less than -1; if the equilibrium point of input = u® isless than -1, then the
equilibrium point of input = q is possibly greater than +1. So the output when input is
q is possibly not equal to the output when input is u*. Therefore we cannot recover
the pattern u* which is noisy pattern g most similar to when we input q to the
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network. So the number of different elements of input g correspond to its most similar
pattern u® cannot be too large. Namely the Hamming distance between input g and

its most similar pattern u* cannot be too large. This states that the error correcting
ability of associative memoriesis limited.

4.3.5 Comparison of DT-CNN Associative Memory and Hopfield Associative
Memory

When a Hopfield neural network is used for designing associative memories, the
weightings of the Hopfield neural network are calculated by Hebb's rule. In this thesis,
we use the synthesis procedure presented by G Grass to design DT-CNNSs for
associative memories. The input data are fed viainitial conditions in Hopfield neural
network and the outputs reach their steady state value at an equilibrium point which
depends on the initial conditions, this approach presents a drawback from the VLS
implementation point of view, that is,initia:eonditions are required to be set to zero
each time the network is run. Obviously,.this.is an undesirable feature for networks
running in rea time [19]. But the input-data are fed via externa inputs in cellular
neural networks, each trajectory converges to a unique equilibrium point, which
depends only on the input and net on theinitial state. This feature makes perceive the
possihility of implementing associative memoriesvia cellular neural networks running
inreal time.

4.4 Pattern Recognition of Using DT-CNN Associative Memories

After calculating B and J, we finish designing the part of associative memories,
then we do the part of recognition. We input the known A, B, e and the testing pattern
as u to the motion equation x = Ay + B u + e, then we can get the state value at the
next time, and then we use output function to calculate the output at the next time, we
use the output function of the standard cellular neural network here. We calculate
state value and output as so until al output values are not changed anymore, then final
output vector is the classification of the testing pattern. The algorithm and flowchart
are shown in the following:
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Algorithm 4.2: Use DT-CNN associative memories to recognize patterns
Input: A, B, e and the testing pattern u in the motion equation
Output: Classification of the testing pattern u
Start:
Step 1: Set up initial output vector y, its element valuesare al in [-1, 1] interval.
Step 2: Input the known A, B, e, y and testing pattern u into the motion equation.
Xt+1)=Ay({t)+Bu+e
Step 3: Input x(t + 1) into activation function, then get new output y(t + 1).
x>1 theny =1

activation function: {—-1<x<1, theny =x
x< -1 theny =-1

Step 4: Compare new output y(t+ 1) and y(t)..Check whether they are the same, if
they are the same, then stop, otherwiSe input-new output y(t + 1) into motion
equation again, repeat Step 2 to-Step 4-until eutput y is not changed.

End
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The flowchart of Algorithm 4.2:

Start

A 4

Set up initial output vector y

&
<«

Input testing pattern u and output y into motion equation
x=Ay+Bu+e

A 4
Input x into activation function, then get new y
x>1, theny =1
—-1<x<1,theny =X
x<-1,theny =-1

!

Are outputs the same?

= O

4.5 Example

We use an example to explain the process of pattern recognition with DT-CNNSs.
In this example, we suppose that there are two training patterns and one testing pattern,

as Fig. 4.5 shows. We use “ 1 ” to represent white color and use “ -1 “ to represent
black color.
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Pattern size 2x3
Number of training patterns 2
Neighborhood radiusr 1
1-D template [0.01 0.01 0.01]
a 3
@ (b) (©)

Fig. 4.5 (a) Thefirst training pattern; (b) The second training pattern; (c) Testing pattern.

The first and second training patterns and testing pattern can be represented by three
vectors u*, u?, andt respectively.

1 —1] -1
-1 1 -1
ut = 1 . U= ik ikt = 1
-X 1 -1
1 -1 1
| — L] s |1

The process of pattern recognition:
Training:

Step 1: Calculate matrix U from known u'.

-1 1

U:[u1 u2]= 11

-1 1
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Step 2: Establish matrix Y = matrix U.

1 -1
-1 1
Y:U:1—1
-1 1
1 -1
__11_
Step 3: Establish matrix S.
11 0 1 1 O]
111111
011011
>“l110110
111111
011011,

Step 4: Design matrix A as a circul ant matrix which: satisfies globally asymptotically
stable condition.

Globally asymptotically stable condition:
i a(h)efj27rhq/n

h=—r

<1,9=0,1,2,...,n1

g=_0:

1 .
> a(h)e'#™’® =]0.01+0.01+0.0] = 0.03< 1
h=-1

g=1

ia(h)e*iz”“'“‘6 =(0.02 =0.02<1
h=-1

g=2

1 .
Y a(h)e *7"'%| = 5.2042x 10| = 5.2042x10™ <1
h=-1
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q=3:

a(h)efj27rhq/6

M-

=]-0.0]=0.01<1

h

-1

q=4

1

a(h)efj 27 hg/6
h=-1

g=>5:

i a(h)efj 27 hg/6
h=-1

=(0.02]=0.02<1

So 1-D template [0.01 0.01 0.01] satisfies globally asymptotically stable condition.

Design matrix A as acirculant matrix:

001 001 0 O

001 001 001 O
A_| O 0Qu001 601

0 0

0 =0

001°0 107 0

Step 5: Calculate X = a'Y.

X=aY¥Y =3

- \ 8.6736x 10| =8.6736x10™ <1

0 0.01]
0 0
0 0

001 001 601 O

0 001001 001

-1 1

-1 1

-1 1
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Step 6: Calculate A, =AY.

Step 7: for (j =1to 6) do:

Calculate X; by X:

Calculate A, by A :

y*

(001 000 0 0 O
001 001 001 0 O O
0 00L 001 001 O O
0 0 00L 001 001 O
0O 0 0 00l 001 001
001 0 0 0 001 001
~0.01 001
001 -001
-001 001
0.01 -0.01
-001 001
| 001 -001

0.01] [

-1 1

121 1

-1 1

A,,=[-001 001, A ,=[001 -001], A ,=[-001 0.01],

A,,=[001 -001], A

Y,

CalculateR, R=[U" h]:

1 -1

R=[U" h]{_1 )

Establish matrix R

i

~ 1 -1 -1 1 1] =~ 1 -1 1
R1: , R2:
-1 1 1 -11 -1 1

1 -1 1 -1
-1 1 -1 1
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from matrix S and matrix R:

-1

-1 1

s=[-001 001], A =[0.01 -0.01].

-1 1 1/

1 -1 1}




~ -1 1 1 -11| =~ 1 -1 -1 1 1
R3 = y R4 = ’
1 -1 -1 1 1 -1 1 1 -11
~ 1 -1 1 -1 1 -11| =~ -11 1 -11
R, = R, = .
-11 -1 1 -1 1 1 1 -1 -1 11

Calculate inverse matrix I5j+ of Fej:

[ 0.0833 —0.0833]
(0125 -0.125] ~0.0833 0.0833 0125 0.125 ]
~0.125 0125 0.0833 —0.0833 0125 -0.125
RF=|-0125 0125 |, R} =|-00833 00833 |, R} =| 0125 -0.125
0125 -0.125 0.0833 —0.0833 ~0.125 0.125
| 05 05 | ~0.0833 0.0833 | 05 05 |
| 05 05 |
[ 0.0833 —0.0833]
(0125 -0.125] ~0.0833 0.0833 0125 0.125 ]
~0.125 0125 0,0833:;,— 0.0833 0125 -0.125
RI=/-0125 0125 |, Ry ={=00833 .00833 |, R} =| 0125 -0.125/.
0125 -0.125 0.0833:1 '-0.0833 ~0.125 0125
| 05 05 | ~0.0833 0.0833 | 05 05 |
| L05 05 |

[ 0125 -0.125] [ 0.7525 |
-0.125 0.125 —0.7525
~T g + T T 3 - 001
w, =R (X; -A,,)=|-0125 0.125 |- - =|-0.7525],
oot o ~-3| | 001
0.125 -0.125 0.7525
| 05 05 | . 0 ]
[ 0.0833 -0.0833] [—0.5017 |
—0.0833 0.0833 0.5017

0.0833 -0.0833 ~0.5017
ot =it 1 -3] [ 001
Wl =R} (X]-AT,)=|-00833 0.0833 - =| 0.5017
2o e 3| |-001
0.0833 -0.0833 ~0.5017
~0.0833 0.0833 0.5017
0.5 0.5 0
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[-0.125 0.125 | [—0.7525]
0125 -0.125 0.7525
~T = + T T 3 - 001
Wi =RI(X] -A],))=| 0125 -0.125 - =| 0.7525 |,
' -3 0.01
-0.125 0.125 —0.7525
| 05 05 | 0|
[ 0125 -0.125] [—0.7525]
-0.125 0.125 0.7525
=it o -3] [ 001
Wi=Ry(X;-AJ,)=|-0125 0125 ||| “|-| " ||=| 0.7525 |,
0125 -0.125 —0.7525
| 05 05 | 0|
[ 0.0833 —0.0833] [ 0.5017 ]
—0.0833 0.0833 —0.5017
0.0833 —-0.0833 0.5017
~T = + T T 3 - 001
W{ =R (X] -A];)=|-00833 0.0833 - =|-05017,
' -3 0.01
0.0833 -0.0833 0.5017
—0.0833 0.0833 —0.5017
| 05 051, 0 |
[-0.125,4 0.125_| [ 0.7525 |
0.125 -0125 —0.7525
=1 1 =3} [F0.01
W{ =R7(X{-A];)=| 0125 "~0.125 4 =|-0.7525
' 3 —~0.01
-0.125 . 04125 0.7525
| 05 05 | 0|

Recover w; from W] :

w, =[0.7525 -0.7525 0 -0.7525 0.7525 0 0],

-
[0 -0.7525 0.7525 0 0.7525 -0.7525 0],
[-0.7525 0.7525 0 0.7525 -0.7525 0 0],
[

w,
W,
W,
w

w,=[0 07525 -0.7525 0 -0.7525 0.7525 O0].

[ 0.7525 -0.7525 0 -0.7525 0.7525
-05017 05017 -05017 0.5017 -0.5017

S B 0 -0.7525 0.7525 0 0.7525
-0.7525 0.7525 0 0.7525 -0.7525

05017 -0.5017 05017 -0.5017 0.5017
0 0.7525 -0.7525 0 —-0.7525

1

26

0.5017 0.5017 -0.5017 0.5017 -0.5017 0.5017 O],

. =[0.5017 -0.5017 0.5017 -0.5017 0.5017 -0.5017 O],

0
0.5017
~0.7525
0
- 0.5017

0.7525 |

o O O O O o




Recognition:

Step 1: Set up initial output vector vy, its element valuesare all in [-1, 1] interval.
We use arandom value vector asinitial output vector y.

Step 2: Input the known A, B, e, y and testing pattern t as u into the motion equation.

x=Ay+Bu+e

001 001 0 O 0 001][-1]
001 001 000 0 O o0 ||1
0 001 001 001 0 O ||-1
0 o0 o001 001 0010
0 0 0 001 001 00K
001 0 0 0 001 001f}-1]
(07525 -07525 O -07525 07525 O
_05017 05017 -—05017 - 05017 ~05017 05017
0  —07525 07525 150107525 -0.7525
T|_07525 07525 0 07525 -07525 O |
05017 —-05017 05017 -05017 05017 -—0.5017
| 0 07525 -075%5 0  -07525 0.7525 |
© 1495
10133
1515
T| —1.495
1.0133
1515
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Step 3: Input x into activation function f, then get new output vy, .

Step 4: Compare new output y,, andy. Check whether they are the same, if they are
the same, then stop, otherwise input new output y, asy into motion equation
again, repeat Step 2 to Step 4 until output y is not changed.

1 -1
-1 1
1 -1

Yo=| 4| Y=| L [2Ye7Y S Y =Ya
1 1
__1_ __1_

x=Ay+Bu+e
[ 1.495 |
-1.0033
1.495
—1.495
1.0033
| —1.495 |

yo=f(x)=| " |, y, =Y, stop.

y,, = U', so the testing pattern belongs to the class of the first training pattern.
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We use the energy equation [20]:

EW) =, X Ta %0y, 0+ 5Ty 0"

—ZZb” Yi (t)uj _Zlyi (t)

Compute the energy after each iteration:
Iteration O

y=| . |= E(0) = 6.0000

y=| " |= E@) =-4.997

y=| " |= E(2) =-4.9967
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Energy curve:

0 1
Iteration

We use pseudoinverse technique to compute matrix B. But pseudoinverse matrix
of R is not unique, so matrix B is not unique. We compute matrix B without using
matrix S to indicate the interconnecting structure of network inputs now. Then matrix

B is shown in the following:

[ 05017 -0.5017 05017 -05017 05017 -0.5017]
-0.5017 05017 -0.50%7:,0.5017 -0.5017 0.5017
5 - 05017 -0.5017.5 05017 . -05017 05017 -0.5017
-0.5017 0.5017 —0.5017' 0.501/ -0.5017 0.5017
05017 -0.50%x7 05017  -0.501r7/ 05017 -0.5017
|—0.5017 0.5017: -0.50%77-70.50L7 -0.5017 0.5017 |

The interconnecting structure of network” inputs is fully connected. This is not the
same with the genera CNN structure. The result of this example with the fully
connected CNN is the same with the locally connected CNN and is shown in the

following:

The energy curve is shown in the following:

Iteration
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4.6 Experimental Results

In Experiment 1, we use two values for o and several different feedback
templates to observe the influences of o and the feedback template for the network

performance. In Experiment 2, 3, 4 and 5, we apply DT-CNN associative memory
with matrix S, DT-CNN associative memory without matrix S and Hopfield
associative memory to simulated seismic patterns and compare performances of these
three systems. In Experiment 6, we apply the DT-CNN associative memory with
matrix Sto real seismic patterns. In Experiment 7, we use an example to introduce the
case of indefinite cells.

Experiment 1.

To observe the effect of o and the effect of feedback template, we use two
different values of « and different feedback templates to do the same experiment.

Pattern size F<H
The number of training patterns |3
Hamming distance(HD) 6
Neighborhood radiusr 1,2
a 3,100
1-D feedback template [0.01 0.01 0.01],
[0.0001 0.0001 0.0001],
[0.01 0.01 0.01 0.01 0.01],
[0.0001 0.0001 0.0001 0.0001 0.0001]
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@ ) ©
(d) (€) (f)

Fig. 4.6 (@) The 1st training pattern; (b) The 2nd training pattern; (c) The 3rd training
pattern; (d) The 1st noisy input pattern; () The 2nd noisy input pattern; (f) The
3rd noisy input pattern.

Casel: a =3,r=1,1-D feedback template: [0.01 0.01 0.01]
(@ (b) (©

Fig. 4.7 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(Ff).

20¢ . . 50 r - 40
ol | 20/
0 )
? .20} | ol |
& & B 20
40! B 5
& T
-60} = 1 -50 = Energy = -B9.4675
Energy =-93.4262 Energy = -92.6924 80!
-B0} { o]
ul | | 20 \
100! . . 0oL : o | :
1] 1 2 3 0 1 2 0 1 2
Iteration Heration Iteration

Fig. 4.8 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).
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Case2: o =100, r =1, 1-D feedback template: [0.01 0.01 0.01]

(@ (b) (©)
Fig. 4.9 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f).
(@ (b) (©)

Fig. 4.10 (a) Energy curve of Fig. 4.6(d);(lb) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).

Case 3. a =3,r=2,1-D feedback template: [0.01 ' 0.01 0.01 0.01 0.01]

(@) (b) (©)
Fig. 4.11 (@) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f).
& -ZDj ? -ZDj ? -ZDj
(@) (b) (©)

Fig. 4.12 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).
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Case4: a =100, r =2, 1-D feedback template: [0.01 0.01 0.01 0.01 0.01]

(@ (b) (©)
Fig. 4.13 (@) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f).
(a (b) (©)
Fig. 4.14 () Energy curve of Fig. 4.6(d);(b) Energy:ecurve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).

The outputs of Case 1 are equal:to the outputs of Case 2. And the outputs of Case 3
are equal to the outputs of Case 4. So-network performances are not affected by the

choiceof «.

Case5: a =3,r =1, 1-D feedback template: [0.0001 0.0001 0.0001]

@ O L ©
Fig. 4.15 (@) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f).
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20 . - 507 . 40;

0 20
ol
? -201 | ol
& & 8 .20
40! s
I ul” a0
.60 Energy =-93.6378 { -50 | Energy = -92.6843 ol Energy = -89.6263
-80 | |
¥ ' -80 ]
=100+ ' - =100+ . =100+ .
1] 1 2 3 0 1 2 0 1 2
Iteration Heration Iteration

Fig. 4.16 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).

Case6: a =3,r=2,1-D feedback template: [0.0001 0.0001 0.0001 0.0001
0.0001]

(@) (b) (©)
Fig. 4.17 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4:6(e); (c) Output of Fig. 4.6(f).
B -zzj ? -zzj ? -zzj
(@ (b) (©)

Fig. 4.18 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).

The outputs of Case 1 are equal to the outputs of Case 5. And the outputs of Case 3

are equal to the outputs of Case 6. So network performances are not affected by the
choice of 1-D feedback template.
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Experiment 2.

In this experiment, we store two simulated seismic patterns and recognize a noisy

input pattern.
Pattern size 8x12
The number of training patterns 2
Hamming distance(HD) 6

training pattern? training pattern2

1 2 3 4 4 B 7 8 9 o1 12 1 2, 3 4 5 B e g 9 m 1 12

noisy input pattern
T T T T

=
T

[]
T

m
T

-1
T

o
T

9 mo M 12

1 2 3

: ;!; ..
(©)

Fig. 4.19 (@) The 1st training pattern: sealevel fal; (b) The 2nd training pattern; (c) The
noisy input pattern.

We apply this DT-CNN associative memory with matrix S to ssimulated seismic
patternsfirst. We set @ = 3 and neighborhood radiusr = 1. The result is shown in Fig.

4.20.
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output pattem
T T

50¢

50t

-100¢+

Energy

=150}

-200

-260 "

Fig. 4.20 (@) Output of Fig. 4.19(c); (b) Energy curve.

1 2
Iteration

(b)

Next, we apply DT-CNN associative memory without matrix S to this
experiment. We set « = 3 and neighborhood radius r = 1. The output pattern is the

same with Fig. 4.20(a).

And then we apply Hopfield associative memory to this experiment. The output
pattern is also the same with Fig. 4.20(a). The comparison of these three systems for
this experiment is shown in Table 4.1.

DT-CNN.with- Sy | DT-ENN without S
Hopfield
r=1 r=1
Recognition Suceess Success Success
Training time
9 0.141 0.047 0.0003
(second)
Recognition time
0.312 0.281 0.156
(second)

Table. 4.1 Comparison of three systems for Experiment 2.

Experiment 3.

In this experiment, we store two simulated seismic patterns and recognize two

noisy input patterns.

Pattern size 19x 29
The number of training patterns 2
Hamming distance(HD) 100, 90
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naluy input pattem

:-'

- ll..Il::..

fII..£_|.m '! l.-'-:
(d)

Fig. 4.21 (a) The 1st training pattern: bright-spot; (b) The 2nd training pattern: pinch-out;
(c) The 1st noisy input pattern (HD = 100); (d) The 2nd noisy input pattern (HD
=90).

We apply this DT-CNN assogiative.memory with matrix S to simulated seismic
patterns first. We set @ = 3 and neighborhood radius r = 1, 2 and 3. The results are
shown in Fig. 4.22, 4.23 and 4.24.

r=1:

nnnnnnnnnnn

e %5 25 T8 5 =

400 . . . 400 . .

200} { 200

o o
g 200 & 200
2
W 400 | W 400f
Energy = -858.155 Energy =-901.31
-600 | { -600 |
-800 | v 1 -800 ]
-1000 . i -1000 L i
1] 1 2 3 1] 1 2 3
Iteration Iteration

Fig. 4.22 (a) Output of Fig. 4.21(c); (b) Output of Fig. 4.21(d); (c) Energy curve of Fig.
4.21(c); (d) Energy curve of Fig. 4.21(d).
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Fig. 4.22(a) and (b) are uncorrected output patterns, so we set neighborhood radius to
2 and try again.

r=2:

35 = =5 ) ) 10 15
400 ’ 3 200 -
200 0
0 B 200
)
<2004
= ] 100!
]
~400 Energy = -614.18 | Energy = -874.338
600} |
600
-800+
-800 | ! |
1000 . 3 -1000 -
0 1 2 0 1
Iteration Iteration

Fig. 4.23 (a) Output of Fig. 4.21(c); (b) Output of.Fig. 4.21(d); (c) Energy curve of Fig.
4.21(c); (d) Energy curve of Fig. 4.21(d).

Fig. 4.23(a) and (b) are uncorrected eutput_patterns, so we set neighborhood radius to
3 and try again.

r=3:
[ ] [—
"
"
"
o 15 20 F:3 5 10 15
500 - . 400, .
| 200
ot
0 i
5 8 200
5
&
Energy = -797.2T6 ~400 Energy = -655.456
5001 |
_EQD )
A
-800 | 1
-1000 - - -1000 . .
0 1 2 0 1 2
Iteration Iteration

Fig. 4.24 () Output of Fig. 4.21(c); (b) Output of Fig. 4.21(d); (c) Energy curve of Fig.
4.21(c); (d) Energy curve of Fig. 4.21(d).
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Two output patterns in Fig. 4.24 are all correct. Next, we apply DT-CNN associative
memory without matrix Sto this experiment. We set ¢ = 3 and neighborhood radiusr
= 1. The output patterns are the same with Fig. 4.24(a) and (b). And then we apply
Hopfield associative memory to this experiment. The output patterns are also the same
with Fig. 4.24(a) and (b). The comparison of these three systems for this experiment is
shown in Table 4.2.

DT-CNN with S DT-CNN without S )
Hopfield
r=1 r=2 r=3 r=1

Recognition Failure | Failure | Success Success Success

Average trainin

. ~ g 8.5 7.25 0.047

time (second)

Average

recognition time 0.3205 0.328 0.172

(second)

Table. 4.2 Comparison of three systems for Experiment 3.

Experiment 4.

In this experiment, we store three ssmulated seismic patterns and recognize three
noisy input patterns.

Pattern size 12 x 48
The number of training patterns 3
Hamming distance(HD) 107, 118, 118
@ (b) (©)

Fig. 4.25(a) The 1st training pattern: bright-spot; (b) The 2nd training pattern: right
pinch-out; (c) The 3rd training pattern: left pinch-out.
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“I: (o [ El
| "T ¥ .w.?‘,. 3 flr LT

(@) (b) (©)
Fig. 4.26 (a) ~ (c) Three noisy input patterns with HD = 107, 118, 118 respectively.

We apply this DT-CNN associative memory with matrix S to simulated seismic
patterns first. We set & = 3 and neighborhood radius r = 2, 3 and 4. The results are
shown in Fig. 4.27, 4.28 and 4.29.

r=2:
cadpad paTen Calpad paTen ctE
] 1 1 0 = 0 38 a0 s ] s 1) 15 20 = £ 38 a0 45 ] s "0 13 20 = 0 38 & A
400 = . 400 x 2 . 400 i 2
200 ! 200} ! 200/
0 0t 0
& 200 & 200 & 200
H H H
w400 | w400 i L W ap0 Energy = -747 158
Energy = -845.102
-600 | -600 | -600
v
v
-800 Y | -800 | -800
-1000 n 4 -1000 A o . -1000 A o .
0 1 2 0 1 2 3 0 1 2 3
Iteration Iteration Iteration

Fig. 4.27 (a) Output of Fig. 4.26(a); (b) Output of Fig. 4.26(b); (c) Output of Fig. 4.26(c);
(d) Energy curve of Fig. 4.26(a); (e) Energy curve of Fig. 4.26(b); (f) Energy
curve of Fig. 4.26(c).

Three output patterns in Fig. 4.27 are uncorrected output patterns, so we set
neighborhood radius to 3 and try again.
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0 - 0 38 a0 s ] s "0 13 20 = 0 38 a0 s ] s "0 13 20 - 0 38 El
400 . ! 400 . ! 400 - -
200! | 200 | 200/
0 o 0
& 200 & 200 & 200
< < Energy = 756805 <
w400 | w400 v { w400 Energy = -772.742
Energy = -534 464
-600 | -600 | -600
\J v
-800 ¥ 1 -800 | -800
-1000 n 4 -1000 n 4 -1000 A o .
0 1 2 0 1 2 0 1 2 3
Iteration Iteration Iteration

Fig. 4.28 (a) Output of Fig. 4.26(a); (b) Output of Fig. 4.26(b); (c) Output of Fig. 4.26(c);
(d) Energy curve of Fig. 4.26(a); (e) Energy curve of Fig. 4.26(b); (f) Energy
curve of Fig. 4.26(c).

Fig. 4.28(b) is an uncorrected qutput pattern, so we set neighborhood radius to 4 and
try again.
r=4:

-200

Energy

Energy = -T56.704
-400

-600
\

-800

-1000 n -
0 1 2

Iteration

_,(a).. —a—a -
Fig. 4.29 (a) Output of Fig. 4.26(b); (b) Energy curve of Fig. 4.26(b).

Next, we apply DT-CNN associative memory without matrix S to this
experiment. We set ¢ = 3 and neighborhood radius r = 1. The output patterns are the
same with Fig. 4.28(a), Fig. 4.29(a) and Fig. 4.28(c). And then we apply Hopfield
associative memory to this experiment. The output patterns are shown in Fig. 4.30.
The comparison of these three systems for this experiment is shown in Table 4.3.
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(b)

38 a0 48

(©)

Fig. 4.30 (a) Output of Fig. 4.26(a) by Hopfield associative memory; (b) Output of Fig.
4.26(b) by Hopfield associative memory; (c) Output of Fig. 4.26(c) by Hopfield
associative memory.

DT-CNN with S DT-CNN without S .
Hopfield
r=2 | r=3 r=4 r=1

Recognition Failure | Failure | Success Success Failure

Average trainin

. i~ J 9.922 8.25 0.047

time (second)

Average

recognition time 0.3177 0.3023 0.193

(second)

Table. 4.3 Comparison of three systemsfor Experiment 4.
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Experiment 5.

In this experiment, we store five ssmulated seismic patterns and recognize five
noisy input patterns.

Pattern size 19x 29
The number of training patterns 5
Hamming distance(HD) 100, 90, 100, 100, 100

Ernirig paterm1 Erniring patems Erniring patemd

(a) Bright spot

......... —

e

(d) Sealevel fall (e) Sealevel rise
Fig. 4.31 () ~ (e) Fivetraining patterns.

© (b)Rinchout (c) Flat spot

Ernining pa —

Fig. 4.32 (@) ~ (e) Five noisy input patterns with HD = 100, 90, 100, 100, 100 respectively.
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We apply this DT-CNN associative memory with matrix S to simulated seismic
patterns first. We set @ = 3 and neighborhood radius r = 3 and 4. The results are

shown in Fig. 4.33 and 4.34.

R ooty —
"
»
. .
.............. . cupapuen
y
.
.
w
"
”
400, . : 400,
200} ! 200} ! 200}
1) (1} 1)
200 = 200/ 200
5 - b =.TE8.T { S o } = o b -
S -400 Energy = -768.793 5 -400 Sanys A S -400 Enorgy = -783.94
E00 -600 ¢ E00
v v
-B00 ¢ 1 -B00 ¢ \d -B00 ¢
-1000 + ’ -1000 + ’ -1000 + ’
() 1 2 () 1 2 () 1 2
lteration lteration lteration
400 - = 2 400 - . 2 2
200} ! 200}
1) (1}
z 200 = 200/
3
i 400+ Energy = -790.611 ' i 400+ Energy = -B05 366
E00 -600
v \
-B00} 1 -BOD ¢
-1000 + o -1000 " - :
0 1 2 0 1 2 3
lteration lteration

Fig. 4.33 (@) Output of Fig. 4.32(a); (b) Output of Fig. 4.32(b); (c) Output of Fig. 4.32(c);
(d) Output of Fig. 4.32(d); (e) Output of Fig. 4.32(e); (f) Energy curve of Fig.
4.32(a); (g) Energy curve of Fig. 4.32(b); (h) Energy curve of Fig. 4.32(c); (i)
Energy curve of Fig. 4.32(d); (j) Energy curve of Fig. 4.32(e).

Fig. 4.33(a), (c) and (e) are uncorrected output patterns, so we set neighborhood
radiusto 4 and try again.
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400 - ! 400
200} 1 200} 1 200+
] o ]
& -200f & -200f & -200f
5 - 5 5
o -400} Energy = 777463 | S -a00 Energy = -783.027 } G -400} Energy = -796.24
600 1 600 1 600
v \ v
800} 1 800} 1 800}
-1000 - ! -1000 - ! -1000 - !
1] 1 2 1] 1 2 1] 1 2
Iteration Iteration Iteration

Fig. 4.34 (a) Output of Fig. 4.32(a); (b) Output of Fig. 4.32(c); (c) Output of Fig. 4.32(e);
(d) Energy curve of Fig. 4.32(a);(e)Energy curve of Fig. 4.32(c); (f) Energy
curve of Fig. 4.32(e).

Three output patternsin Fig. 4.34 aré all-correct: Next, we apply DT-CNN associative
memory without matrix Sto this experiment. Weset @ = 3 and neighborhood radius r
= 1. The output patterns are the same with'Fig. 4.34(a), Fig. 4.33(b), Fig. 4.34(b), Fig.
4.33(d) and Fig. 4.34(c). And then we apply Hopfield associative memory to this
experiment. The output patterns are shown in Fig. 4.35. The comparison of these three
systems for this experiment is shown in Table 4.4.
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Fig. 4.35(a) Output of Fig. 4.32(a) by Hopfield associative memory; (b) Output of Fig.
4.32(b) by Hopfield associative memory; (¢) Output of Fig. 4.32(c) by Hopfield
associative memory; (d) Output of Fig. 4.32(d) by Hopfield associative memory;
(e) Output of Fig. 4.32(e) by Hopfield associative memory.

CNN with-S CNN without S .
Hopfield
r=3 r=4 r=1

Recognition Failure Success Success Failure
Average trainin

.V - " 9.281 7.5 0.079
time (second)
Average

recognition time 0.294 0.2976 0.2622
(second)

Table. 4.4 Comparison of three systems for Experiment 5.
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Experiment 6.

We apply this DT-CNN associative memory with matrix S to real seismic
patterns. In this experiment, we store two training patterns and recognize three real
seismic patterns.

Training pattern size 16 x 50
Real seismic pattern size 64 x 64
The number of training patterns 2
Neighborhood radiusr 1,3

a 3

€Y (b)
Fig. 4.36"Two training patterns.

The size of real seismic pattern is larger than the size of training pattern. We use a
window to extract the testing pattern from rea seismic pattern. The size of this
window is equal to the size of training pattern. This window is shifted from left to
right and top to bottom on the real seismic pattern. If the output pattern of the network
is equal to one of training patterns. We record the coordinate of upper-left corner of
the window. After the window is shifted to the last position on the real seismic pattern
and all testing patterns are recognized, we calculate the coordinate of the center of al
recorded coordinates which are about the same training pattern. And then we use the
detected training pattern and the center coordinate to recover the pattern. We set
neighborhood radius r = 1 to process the first and second real seismic patterns and set
r = 3to process the third real seismic pattern.
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(@ (b) (©

Fig. 4.37 (a) The first real seismic pattern; (b) Coordinates of successful recognition; (c)
Output of (a).

—_—— —_——
@ (b) (©

Fig. 4.38 (a) The second real seismic pattern; (b) Coordinates of successful recognition; (C)
Output of (a).

r=3:
e i = —_———
(@ (b) (©)

Fig. 4.39 (@) The third real seismic pattern; (b) Coordinates of successful recognition; (c)
Output of (a).
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Experiment 7.

Pattern size 4x4
The number of training patterns 2
Hamming distance(HD) 3
Neighborhood radiusr 1,2
a 3

(@) (b)
Fig. 4.40 Two training patterns.

Fig. 4.41 @ne noisy input pattern.

Energy
]

Energy = -30.8424

=30 1

1 2

lteration

(@ (b)
Fig. 4.42 (@) Output of Fig. 4.41if r = 1; (b) Energy curveof Fig. 441 ifr=1.

When r = 1, the output pattern shown in Fig. 4.42 is not a correct pattern. The pixel on
the 1st row and the 2nd column should be a black pixel. Namely the output pattern
should be equal to the training pattern 1 shown in Fig. 4.40(a). The pixel on the 1st
row and the 2nd column is an indefinite cell. The definition of indefinite cells is
explained after. The problem of indefinite cells can be solved by increasing
neighborhood radius. So we increase neighborhood radiusr to 2 and try again.
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=]

(@ (b)
Fig. 4.43 (a) Output of Fig. 4.41if r = 2; (b) Energy curve of Fig. 4.41if r = 2.

Indefinite Cdll

If more than two similar patterns are stored, the conventional synthesis procedure
may generate the cells with only self-input from these patterns, which are so-called
indefinite cells. As the outputs of indefinite cells are determined by only their inputs,
DT-CNN can’t always associate the expected memory pattern.

‘f 1
S
=/ a"n

(@ (b)
Fig. 4.44 Example of the indefinite cell.

Two patterns shown in Fig. 4.44 are overall different forms each other [21]. But,

it is found that the r (=1) -neighborhood of C, in Fig. 4.44(a) is the same pattern as
one of C, in Fig. 4.44(b) except C,. Therefore, the conventional DT-CNN
associative memory can’'t determine the output of C, from its r-neighborhood. C,
is called an indefinite cell. We know the following equations for every cell.
k=20 g0)+w = hex;w)

where
-X+a, X=1
ax)=-x+af(x)=1(a -Dx, [xkl
-X%-a, X<-1

wo=l+ > af(x)+ Y bu,

CieS,j=i Cie§
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We observe w, of C, for two patterns in Fig. 4.44 and a testing pattern. For the
patternin Fig. 4.44, we notethe w of (a) as w; andthe w of (b) as w>. And we

note the w of testing pattern as w3 . We plot the dynamic routes of the cell C, of
two patternsin Fig. 4.44 asFig. 4.45.

wo=1+ Y af(x)+ Y buj,i=123

CieS;,j#2 CieS,

A X =h(X;w,) =9(x,) +w,

Daw, =1+ > af(x)+ > bu

CieS, j#2 CieS;, j#2

.
.

D1: Fig. 4.44(a)

Fig. 4.45 The dynamic routes of cell C,.

3 K| 3 K
‘Wz_Wz‘— I+ Z ajf(xi)+ Zbiuj -1 - Z ajf(xj)_ Zbiuj
CjeS,,j=2 CieS, CjeS,,j#2 CjeS,
3 k
=| 2. bui = > by,
CieS, CieS,
3 k
=| 2 b (u7 -uf)
CjeSZ
=1 > b (u?-u¥)+b,(u; —uj)
CjeS,.j#2
k=1,2
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Because the Hamming distance between the testing pattern and the two patternsin Fig.
4.44 can not be too large, so (uf, C, €S,,j#2) aeamost equal to (uﬂf , C,e€S,,]

#2,k=10r2). Therefore > b (uj—uy) issmall, its absolute value should be

CjeS,,j2
less than |b,| . bui-u;)) is egua to 0 o +2b,
> b l-udl<| D bui-u)=2b, So if ul=1 , then
CieS,,j#2 CjeS,.j#2
W -wy=| > bui-uf) and  w-wi=| > bjui-uf)+2b,
CjeS,.j#2 CieSy,j#2

WS — w;‘ < ‘Wﬁ —~ sz‘ . Therefore x, will converge to a value greater than +1, namely

the output will converge to +1. If us=-1 then
Wo-wy|=| > bui-uf)-2b,| and |(W-wi=| > bi-u)
CieS;,j#2 CieS,,j#2

‘WS —~ vv;‘ > ‘WS —~ WZZ‘ . Therefore x, will converge to avalue less than -1, namely the

output will converge to -1. So the outputs of indefinite cells are determined by only
their input values.

Therefore, if such memery “patterns  exist, then the conventional DT-CNN
associative memory has the indefinite-cells-and can’'t determine the outputs of
indefinite cells from their r-neighborhoods.

T. Kamio and H. Asa proposed ‘@ DT-CNN system to overcome this problem
[21]. The DT-CNN system for associative memory uses two-dimensional discrete
Walsh transform. This DT-CNN system consists of two kinds of DT-CNN associative
memories and two-dimensional DWT processor as shown in Fig. 4.46 [21]. One of
the DT-CNNSs is the conventional DT-CNN and the other is the DT-CNN with
multilevel threshold function. The former works for the bipolar memory patterns and
the latter remembers the 2D-DWT of these bipolar memory patterns.
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DWT of Memories

Memory Patterns

\ 4
v Learning
Learning
¥ | Multi-level
@ Ly 2levdl (b) | DT-cNN
DT-CNN [°
IA I < IDWT [«
= Fig. 4.44(a) ©

Fig. 4.46 DT-CNN for associative memory using two-dimensional discrete Walsh
transform.

As a simple example, it is supposed that two DT-CNNs have the r = 1
neighborhood and the system has two memory patterns shown in Fig. 4.44. If the
noisy pattern shown in Fig. 4.46(a)is input to 2-level DT-CNN, then Fig. 4.46(b) is
output. As a result, it is foundthat 2-level ' DT-CNN fails to associate the desired
memory pattern (Fig. 4.44(a)) dueto the indefinite cell C, . Furthermore, if the DWT
of Fig. 4.46(b) is input to the multilevel“DT-CNN, then the output in Fig. 4.46(C) is
obtained as the IDWT of the image from the'multilevel DT-CNN. Fig. 4.46(c) shows
that the output value of indefinite cell C,-is€lose to the correct value (+1). Finaly,
2-level DT-CNN can completely derive the desired pattern shown in Fig. 4.44(a) from
Fig. 4.46(c).

The other method that overcomes this problem is increasing the neighborhood
radius of template B. It makes the neighborhood size larger, and then the same
neighborhood patterns originally will be not the same. We observe the two training
patternsin Fig. 4.44. If neighborhood radius r is increased to 2, then the neighborhood
of C, in Fig. 4.44(a) is not the same pattern as the neighborhood of C, in Fig.

4.44(b), as Fig. 4.47 shows.

Cz CZ

Il
_

Fig. 4.471f r = 2, the neighborhoods of C, intwo training patterns.

+—Cy6
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So C, inFig. 4.47 isnot the indefinite cell.

The process of the above method is recognizing input pattern first. If the output
pattern is different to all memory patterns and that is caused by some indeterminate
cells, then increase neighborhood radius and recognize input pattern again until the
output pattern is correct. The computation time of this method is much. M. Namba, S.
Takatori, H. Kawabata and Z. Zhang proposed an algorithm which can reduce the
computation time [22]. This algorithm searches indeterminate cells by matching every
memory pattern in advance, and modifies the neighborhood of indeterminate cells.
This algorithm can be shown as Fig. 4.48 [22].

Start

i
<
y

Matching every

memory pattern

Modifying its
neighborhood

T

Yes

Exit

Fig. 4.48 The algorithm searching indeterminate cells.

4.7 Conclusions

In this chapter an application of autoassociative memories using DT-CNNSs has
been proposed. If each element of the 1-D space-invariant template is equivalent, then
matrix A is symmetric. The symmetry of the interconnection matrix A assures that the
synthesized network does not oscillate nor become chaotic. Moreover, al the stored
patterns correspond to asymptotically stable equilibrium points.
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