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Chapter 4  

Cellular Neural Networks for Seismic Pattern 

Recognition 

4.1 Introduction 

 Seismic pattern recognition can help us to analyze seismic data and interpret 
seismic data. We use associative memories to store seismic patterns and recognize 
noisy patterns.  

The neural network models which are used for associative memories mostly 
operate by utilizing a large amount of memory and the process of information 
distribution. Some neural network models can be used for associative memories, such 
as linear associative memory [1], temporal associative memory [2], correlation matrix 
memory [3], Hopfield memory [4], etc. Content address memory that Hopfield 
proposed is most famous among them. This thesis uses cellular neural networks to 
design associative memories. Many researchers had proposed the methods of using 
cellular neural networks to design associative memories: Liu and Michel have already 
proposed a design method for sparsely interconnected neural networks and applied it 
to cellular neural networks [5]. Their method is a synthesis procedure based on 
singular value decomposition and it is a modification of the eigenstructure method [6] 
which is well known as an effective design technique for fully connected neural 
networks. Seiler, Schuler, and Nossek developed an algorithm to design a 
space-varying cellular neural network with prescribed stable and unstable output 
patterns while maximizing its robustness with respect to changes of its parameters [7]. 
The algorithm consists of formulating and solving a set of linear inequalities using 
linear programming. The method proposed by Grassi [8]-[9] is different from others 
because it uses the cellular neural networks that have a unique equilibrium point 
which is globally asymptotically stable and input patterns are fed into such cellular 
neural networks as bias vectors. Park, etc. [10] have proposed one kind synthesis 
procedure to design space-varying cellular neural networks. This procedure is based 
on generalized eigenvalue minimization (GEVM) [11]-[13]. It produces a cellular 
neural network associative memory that its connection weighting matrix is symmetric 
and diagonal elements of the connection weighting matrix are all 1. Liu and Lu 
showed that the perceptron training algorithm can be applied to design space-varying 
cellular neural networks as well as fully connected feedback neural networks [14]. 
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Chan and Zak proposed “designer” neural network for the synthesis of associative 
memories based on a class of discrete cellular neural networks [15]. Perfetti presented 
a local learning algorithm which can efficiently be implemented on chip by exploiting 
the parallel analog computation of cellular neural networks [16]. 

The network model we used for associative memory is discrete time cellular 
neural network (DT-CNN). We adopt the synthesis procedure that is proposed by 
Grassi [8]-[9]. This synthesis procedure design DT-CNN to behave as an associative 
memory. Each memory pattern corresponds to a unique globally asymptotically stable 
equilibrium point of the network. Experimental results show the satisfying 
performance of this synthesis procedure. We use this synthesis procedure to design the 
motion equation of a cellular neural network to behave as an associative memory, and 
then use the associative memory to recognize patterns. So the whole process of 
pattern recognition will be divided into two parts and discussed respectively, as Fig. 
4.1 shows.  
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Fig. 4.1 The process of cellular neural networks for seismic pattern recognition. 

4.2 Associative Memories 

There are two kinds of associative memories. They are autoassociative memory 
and heteroassociative memory. Suppose we have M pairs of vector {( 1X , 1Y ), ( 2X , 

2Y ), …, ( MX , MY )}, where niX ℜ∈  and piY ℜ∈ . In the autoassociative 
memory, it is assumed that ii YX =  and the network implements a mapping Φ of 

nℜ  to nℜ  such that ii XX =Φ )( . If some arbitrary pattern X is closer to iX  than to 

any other jX , j = 1, 2, …, M, j ≠ i, then iXX =Φ )( ; that is, the network will 

produce the stored pattern iX  when the key pattern X is presented as input. In the 
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heteroassociative memory, the network implements a mapping Φ of nℜ  to pℜ  such 

that ii YX =Φ )( , and if some arbitrary pattern X is closer to iX  than to any other 
jX , j = 1, 2, …, M, j ≠ i, then iYX =Φ )( . In the above, “closer” means with respect 

to some proper distance measure, for example, the Hamming distance. Fig. 4.2 shows 
a general block diagram of an associative memory performing an associative mapping 
of an input vector X into an output Y. The system maps vector X to vector Y where the 
input space is nℜ  and the output space is pℜ , by performing the transformation 

Y = M[X] 

The operator M[．] denotes a general nonlinear matrix-type operator. For different 

memory model, the operator has different meanings. 
An efficient associative memory can store a large set of memory patterns and 

recall each pattern when a key containing a portion of the memory’s information is 
presented as an input. And if sufficient amount of the content of the memory is 
provided, then an associative memory may be able to correct erroneous data. 

M 
X Y

Input pattern Associative Output 
Associative

Memory 
 

Fig. 4.2 Associative memory. 

4.3 DT-CNNs for Associative Memories  

We use the design method proposed by G. Grassi [9] to design DT-CNNs for 
associative memories. The detail of the design method and the stability results are 
summarized in the following. 

Consider a DT-CNN with a two-dimensional M × N cell array. We can renumber 
all cells from 1 to n, n = M × N, then the following motion equation (4-1) and output 
equation (4-2) can be rewritten as vector form, as Equation (4-3) and (4-4) show:  
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x(h+1) = A y(h) + B u + e                    (4-3) 

y(h)=f(x(h))                          (4-4) 
 
In Equation (4-3) and (4-4): 
     1T
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     [ ] 1T
21 )()()( ×ℜ∈= n

nxfxfxf Lf  is a vector contains output functions. 

4.3.1 Design of Feedback Template 

Linear Neighboring  

A one-dimensional space-invariant template is used as the feedback template. 
The corresponding network structure (r =1 and n =16) is shown in Fig. 4.3 [9]. 
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Fig. 4.3 The connection relation of cells for designing associative memories (r = 1 and 

n = 16). The links represent the outputs of cells. 

If there are n cells, then the feedback coefficients of the cells can be expressed with 
the following matrix A. 
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11a  represents the self-feedback coefficient of 1st cell, 12a  represents the feedback 

coefficient of the next cell (the 2nd cell) of 1st cell in clockwise order, 21a  represents 
the feedback coefficient of the next cell (the 1st cell) of 2nd cell in counterclockwise 
order. Since the feedback template is a one-dimensional space-invariant template, so 

11a = 22a = …  = nna = 1α  represent the self-feedback coefficient of each cell, 

12a = 23a = … = nna )1( − = 1na = 2α  represent the feedback coefficient of the next cell in 

clockwise order, na1 = 21a = 32a = … = )1( −nna = nα  represent the feedback coefficient 

of the next cell in counterclockwise order, 13a = 24a = … = nna )2( − = 1)1( −na = 2na = 3α  

represent the feedback coefficient of the next two cell in clockwise order, and so on. 
So matrix A can be expressed as 
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Therefore A is a circulant matrix. The following one-dimensional space-invariant 
template is considered: 
 

[ a(-r) … a(-1)  a( 0 )  a(1) … a( r ) ] 
 
r is neighborhood radius, a(0) is the self-feedback, a(1) is the feedback of next cell in 
the clockwise order, a(-1) is the feedback of next cell in the counterclockwise order, 
and so on. So according to Equation (4-5), we rearrange the template elements as the 
following row vector. 

 
[ a( 0 )  a( 1 ) … a( r )  0 …0  a( -r )… a( -1 ) ]        (4-6) 

 
The Equation (4-6) is the first row of matrix A. We arrange the last element of 

the first row of matrix A in the first position of the second row of matrix A, it is 
regarded as the first element of the second row of matrix A, other elements of the first 
row of matrix A cycle right shift one position, they form the second to the last element 
of the second row of matrix A. The same, we take the previous row to cycle right shift 
once, the new sequence is the next row of matrix A, then we can define matrix A.  
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It only needs to design the first row of matrix A when we design matrix A as a 

circulant matrix. Each next row is the previous row which is cycle right shifted once. 
The number of 0s of Equation (4-6) is decided by radius r and n. A nn×ℜ∈ , namely 
each row of matrix A has n elements, and there are n rows in A. If n = 9, then there 
are nine elements in each row. When r = 1, the one dimensional template is sorted 
according to the Equation (4-6), as the following Equation (4-8) shows. 

 
[ a( 0 )  a( 1 )  0  0  0  0  0  0  a( -1 ) ]           (4-8) 
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In the Equation (4-8), there are six 0s in the middle of the template, add other three 
elements, there are nine elements in a row. 

 4.3.2 Stability Results 

If a dynamic system has a unique equilibrium point which attracts every 
trajectory in state space, then it is called globally asymptotically stable. A criterion for 
the global asymptotic stability of the equilibrium point of DT-CNNs with circulant 
matrices has been introduced [17]. The criterion is summarized in the following. 
DT-CNNs described by (4-3) and (4-4), with matrix A given by (4-7), are globally 
asymptotically stable, if and only if   
 

1)/  2( <nqS π , q = 0, 1, 2, . . . , n-1              (4-9) 

where   

∑
−=

−=
r

rh

nhqjehanqS / 2)()/  2( ππ                  (4-10) 

 
The stability criterion (4-9) can be easily satisfied by choosing small values for 

the elements of the one-dimensional space-invariant template. In particular, the larger 
the network dimension n is, the smaller the values of the elements will be (see (4-10)). 
On the other hand, the feedback values cannot be zero, since the stability properties 
considered herein require that (4-3) be a dynamical system. These guidelines can help 
the designer in fixing the values of the feedback parameters. Namely, the lower bound 
is zero, whereas the upper bound is related to the network dimension. 

4.3.3 Design of DT-CNNs for Associative Memories 

The method is designing the motion equation of a cellular neural network to 
behave as an associative memory. Given m bipolar (value for +1 or -1) training 
patterns as input vectors iu , i = 1, 2, …, m, for each iu , there is only one 
equilibrium point ix  satisfying motion equation:  
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Design cellular neural networks to behave as associative memories, mainly set up A 
and calculate B and e according to training patterns.  

In order to express Equation (4-11) into a matrix form, we define the following 
matrices first:  
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The Equation (4-11) can be expressed in the matrix form:  

X = AY + BU + J                      (4-12) 
BU + J = X–AY 

BU + J = X– yA                       (4-13) 

]      [ 21 muuuU L= , iu  is a training pattern, i = 1, 2, …, m  
U has been already known. Because Y is the desired output, so Y = U has been 
already known. Under global asymptotic stability condition, choose a 
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sequence { })()1()0()1()( raaaara LL −− , which satisfies the criterion 
(4-9). And design A as a circulant matrix, so A has been already known too. We can 
know from output function, if y is +1, then x > 1; if y is -1, then x < -1. U is a bipolar 
vector, so Y is a bipolar vector too, namely all elements in Y are +1 or -1, so the 
elements of the state vector X corresponded to Y are all greater than +1 or less than -1, 
so we can establish X = αY =αU, α>1. So U, Y, A and X have been already 
known, we want to calculate B and J. 
 
Define the following matrices:  
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The Equation (4-13) can be rewritten as Equation (4-14):  
BU + J = X– yA                                                              (4-13) 
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In the view of the jth row  
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, j = 1, 2, …, n 

The Equation (4-14) is the transpose of the jth row of Equation (4-13), so we can 
rewrite Equation (4-13) as Equation (4-14).  

Because each cell is only influenced by its neighboring cells, so matrix B is a 
sparse matrix, and elements in jw  are mostly 0. We remove 0 elements of jw , then 

we can get jw~ . And we remove the corresponding columns of R, then we can get 

jR~ , and TT~~
jjj RwwR = . 
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)(~~ TTT
, jyjjj AXRw −= + , j = 1, 2, …, n                (4-16) 
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jR~  is got from R according to the connection relation of the input of the jth cell and 

inputs of other cells. We express the connection relation of the inputs of cells by 

matrix S, so jR~  can be got by taking out partly vectors of R according to the jth row 

of S. +
jR~  is the pseudoinverse of jR~ . jhm

j
×
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j
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1~w , 1
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jij Sh . 

Matrix S is the matrix represents the connection relation of cells’ inputs. S nn×ℜ∈ , if 
the ith cell’s input and jth cell’s input have connection relation, then 1=ijS , on the 

other hand, if the ith cell’s input and jth cell’s input have no connection relation, 
0=ijS .  
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For example, a 4 × 4 cell array:  

1 2 3 4 

5 6 7 8 

9 10 12 

13 14 15 16 

11 

 
 
and radius r = 1, then S is written as the following: 
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We explain TT~~
jjj RwwR =  in the following. 

Proof:  
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The jth row ]      [ 21 jnjj sss L  of matrix S represents that whether the jth cell and 

other cells (include the jth cell) are neighbors, 1=jis  represents that the jth cell and 

the ith cell are neighbors, on the contrary, 0=jis  represents that the jth cell and the 

ith cell are not neighbors. The jth cell and the ith cell are not neighbors, it represents 
that the jth cell can not be influenced by the input of the ith cell, so 0=jib , and when 
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R multiplies T
jw , iu1 , iu2 , …, miu  are all multiplied by 0, so we can remove the ith 

column T
21 ]      [ miii uuu L  of matrix R, then it forms jR~ , and remove jib  of T

jw , 

then it forms T~
jw , and TT~~

jjj RwwR = . 

 
In Equation (4-14), we can get T

jw  by the following equation. 

( )TTT
, jyjj AXRw −= +  

+R  may not be unique, so T
jw  may not be unique. B may not be unique. Then B 

may not accord with the interconnecting structure of network inputs. So we must use a 
matrix S to represent the interconnecting structure of network inputs and use the 
above skill to calculate matrix B. We summarize the algorithm of using cellular neural 
networks to design associative memories in the following. 
 
Algorithm 4.1: Design the DT-CNN to behave as an associative memory  
Input: m bipolar patterns iu , i = 1,……, m 
Output: ]        [ 21 jjnjjj Ibbb L=w , j = 1,……, n, namely B and e  

 
Start:  
 
Step 1: Calculate matrix U from known iu .  

 
]      [ 21 muuuU L=  

 
Step 2: Establish matrix Y = matrix U. 

 
]      [ 21 muuuUY L==  

 
Step 3: Establish matrix S. 

  

 
⎪
⎩

⎪
⎨

⎧
=

relation connection no haveinput  scell'th  andinput  scell'th   theif ,0

   relation   connection haveinput  scell'th  andinput  scell'th   theif ,1

ji

ji

ijS  

Namely S nn×ℜ∈   is a square matrix. If the ith cell’s input and jth cell’s input 
have connection relation, then 1=ijS . On the other hand, if they have no 

connection relation, then 0=ijS . 
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Step 4: Design matrix A as the circulant matrix which satisfies globally 
asymptotically stable condition.  

 
Step 5: Set the value of α (α> 1), and calculate X = αY. 
          
Step 6: Calculate AYA =y . 

 
Step 7: for ( j =1 to n ) do:  
 

Calculate jX  by X. 

 
Calculate jy ,A  by yA . 

 
Calculate R, ]  [ T hUR = . 
 

Establish matrix jR~  from matrix S and matrix R. 

 

Calculate pseudoinverse matrix +
jR~  of jR~ . 

    

Calculate T~
jw , )(~~ TTT

, jyjjj AXRw −= + . 

 
Recover jw  from T~

jw . 

  
End         
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The flowchart of Algorithm 4.1:  
 

 

    Start 

Input m bipolar patterns ui , i = 1,……, m 

Set matrix Y = matrix U, Y = U= [ u1
 u2 … um ]

Design matrix A as a circulant matrix 

Set α value (α> 1), and calculate X = αY 

Calculate matrix U from ui, U = [ u1
  u2

 … um ] 

Establish matrix S

Calculate Ay = AY 

for ( j = 1 to n ) do： 

Calculate Xj, Ay, j, R, jR~ , +
jR~ , jw~ , wj  

       End 

 

 

 

 



 115

4.3.4 Associative Memories Design Principle 

]      [ 21 mxxxX L=  
1T

21 ]   [ ×ℜ∈= ni
n

iii xxx Lx , i = 1, 2, …, m  

]      [ 21 myyyY L=  
1T

21 ]   [ ×ℜ∈= ni
n

iii yyy Ly , i = 1, 2, …, m 

]      [ 21 muuuU L=  
1T

21 ]   [ ×ℜ∈= ni
n

iii uuu Lu , i = 1, 2, …, m 

]      [ eeeJ L=  
1T

21 ]   [ ×ℜ∈= n
nIII Le  

X = AY + BU + J 

]      []      []      [                        
]      []      []      []      [

2121

212121

eeeBuBuBuAyAyAy
eeeuuuByyyAxxx

LLL

LLLL

++=

++=
mm

mmm

  

eBuAyx ++= iii , i = 1, 2, …, m 
iu , i = 1, 2, …, m are training patterns, namely memorized patterns. Because we want 

to design autoassociative memories, so outputs are memorized patterns. Output iy  = 

input iu , and iu  are bipolar patterns, so iy  are bipolar patterns too, namely the 

elements of iy  are +1 or -1. From output function we can know that if output is +1, 
then the state is greater than +1; if output is -1, then the state is less than -1. So we set 
up X = αY, α>1. And then we design matrix A as a circulant matrix which satisfies 
the globally asymptotically stable condition, then calculate B and e. 

Then G(x) = Af(x) + Bu + e is a contraction and there is a unique solution to the 
nonlinear equation G(x) = x, namely there is a unique solution to x = Af(x) + Bu + e, 
where T

21 ]      [ nxxx L=x . So if u = iu , then ix  is the unique solution. No matter 

what initial x is, x must converge to ix  finally. There is a unique solution for each 
element ix  of x too. We can write the motion equation of the ith cell as the following 

equation: 

);()(
)(

iiii
i

i wxhwxg
dt

tdx
x =+==&  

where 

⎪
⎩

⎪
⎨

⎧

−≤−−
<−

≥+−
=+−=

1,
1||,)1(

1,
)()(

iii

iii

iii

iiii

xax
xxa
xax

xfaxxg  
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∑∑
∈≠∈

++=
ijij NC

jj
ijNC

jji ubxfaIw
,

)(     

 
The dynamic routes of ix  are shown in Fig. 4.4. 

 

xi 

ai 

-ai 

0 +1 

-1 Q+ 

Q- 

slope = -1

slope = -1 

slope = ai -1 > 0

xi 

iiiii wxgwxhx +== )();(&

wi > ai 

0 < wi < ai 

-ai < wi < 0 

wi < -ai 

(a) 

(b) 

)( ii xgx =&

 
Fig. 4.4 The dynamic routes of ix . 

 
Because there is a unique solution for each element ix  of x, so in Fig. 4.4, the second 

and third dynamic routes of (b) cannot be appeared. Only the first and fourth dynamic 
routes can be appeared. The first dynamic route is the case of ii aw > ; the fourth 

dynamic route is the case of ii aw −< . The elements of the one dimensional 

space-invariant template we designed for matrix A are very small, namely ia  are 

very small, so iw  are greater than ia  or less than ia−  ( maybe only I has already 

been greater than ia  or less than ia−  ). So only the first and fourth dynamic routes 

can be appeared. On the first and fourth dynamic routes, no matter what is the initial 
value of each ix , each ix  will converge to a unique equilibrium point. So if u = ju , 

then each element ix  of x converges to a unique equilibrium point j
ix . Namely x 

converges to jx . Therefore designing cellular neural networks to work as associative 
memories is designing each training pattern to behave as an equilibrium point of the 



 117

network.  
We consider the situation that input is a noisy pattern q after the network is 

trained, ]      [ 21 nqqq L=q . We suppose that the noisy pattern q is closer to training 

pattern ku  than to any other ju , j = 1, 2, …, m, j≠k. We compare the situations that 

input is ku  and input is q. The elements of q are mostly equal to the corresponding 
elements of ku , only some elements of q are not equal to the corresponding elements 
of ku . And in the equation of iw , only ju  of input = q is possibly different to ju  

of input = ku , other parameters of input = q are all equal to the corresponding 
parameters of input = ku . So iw  of input = q are mostly equal to iw  of input = ku . 

Several iw  of input = q are not equal to the corresponding iw  of input = ku  due 

to some ju  of the equation of iw  when input is q are not equal to the corresponding 

ju  of the equation of iw  when input is ku . Because the different ju  are not many, 

so the sum ∑
∈ ij NC

jjub  when input is q is similar to the sum ∑
∈ ij NC

jjub  when input is 

ku , namely the difference of the sum ∑
∈ ij NC

jjub  when input is q and the sum 

∑
∈ ij NC

jjub  when input is ku  is small, therefore the dynamic route of input = q is 

similar to the dynamic route of input = ku . So the equilibrium point of input = q is 
similar to the equilibrium point of input = ku . If the equilibrium point of input = ku  
is greater than +1, then the equilibrium point of input = q is greater than +1 too; if the 
equilibrium point of input = ku  is less than -1, then the equilibrium point of input = 
q is less than -1 too. So the output when input is q is equal to the output when input is 

ku . Therefore we can recover the pattern ku  which is noisy pattern q most similar to 
when we input q to the network. But if the number of different elements of input q 
correspond to its most similar pattern ku  is large, then the difference of the sum 

∑
∈ ij NC

jjub  when input is q and the sum ∑
∈ ij NC

jjub  when input is ku  is large, so iw  

of input = q is not similar to iw  of input = ku . Therefore the dynamic route of input 

= q is not similar to the dynamic route of input = ku . So the equilibrium point of 
input = q is not similar to the equilibrium point of input = ku . If the equilibrium 
point of input = ku  is greater than +1, then the equilibrium point of input = q is 
possibly less than -1; if the equilibrium point of input = ku  is less than -1, then the 
equilibrium point of input = q is possibly greater than +1. So the output when input is 
q is possibly not equal to the output when input is ku . Therefore we cannot recover 
the pattern ku  which is noisy pattern q most similar to when we input q to the 
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network. So the number of different elements of input q correspond to its most similar 
pattern ku  cannot be too large. Namely the Hamming distance between input q and 
its most similar pattern ku  cannot be too large. This states that the error correcting 
ability of associative memories is limited.  

4.3.5 Comparison of DT-CNN Associative Memory and Hopfield Associative 
Memory 

When a Hopfield neural network is used for designing associative memories, the 
weightings of the Hopfield neural network are calculated by Hebb’s rule. In this thesis, 
we use the synthesis procedure presented by G. Grassi to design DT-CNNs for 
associative memories. The input data are fed via initial conditions in Hopfield neural 
network and the outputs reach their steady state value at an equilibrium point which 
depends on the initial conditions, this approach presents a drawback from the VLSI 
implementation point of view, that is, initial conditions are required to be set to zero 
each time the network is run. Obviously, this is an undesirable feature for networks 
running in real time [19]. But the input data are fed via external inputs in cellular 
neural networks, each trajectory converges to a unique equilibrium point, which 
depends only on the input and not on the initial state. This feature makes perceive the 
possibility of implementing associative memories via cellular neural networks running 
in real time. 

4.4 Pattern Recognition of Using DT-CNN Associative Memories 

After calculating B and J, we finish designing the part of associative memories, 
then we do the part of recognition. We input the known A, B, e and the testing pattern 
as u to the motion equation x = A y + B u + e, then we can get the state value at the 
next time, and then we use output function to calculate the output at the next time, we 
use the output function of the standard cellular neural network here. We calculate 
state value and output as so until all output values are not changed anymore, then final 
output vector is the classification of the testing pattern. The algorithm and flowchart 
are shown in the following:  
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Algorithm 4.2: Use DT-CNN associative memories to recognize patterns   
Input: A, B, e and the testing pattern u in the motion equation  
Output: Classification of the testing pattern u  
 
Start:  
 
Step 1: Set up initial output vector y, its element values are all in [-1, 1] interval.  
 
Step 2: Input the known A, B, e, y and testing pattern u into the motion equation.  

 
x(t + 1) = A y(t) + B u + e 

 
Step 3: Input x(t + 1) into activation function, then get new output y(t + 1).  

 

activation function: 
⎪
⎩

⎪
⎨

⎧

−=−<
=≤≤−

=>

1  then ,1
  then ,11

1  then ,1

yx
xyx

yx
 

 
Step 4: Compare new output y(t + 1) and y(t). Check whether they are the same, if 

they are the same, then stop, otherwise input new output y(t + 1) into motion 
equation again, repeat Step 2 to Step 4 until output y is not changed.  

 
End  
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The flowchart of Algorithm 4.2:  
 

      Start 

Set up initial output vector y 

Input testing pattern u and output y into motion equation 

x = A y + B u + e 

 Input x into activation function, then get new y 
x>1, then y = 1     
–1≤ x≤ 1, then y = x        
x< –1, then y = –1 

       End 

Are outputs the same? No 

Yes 

 

4.5 Example 

We use an example to explain the process of pattern recognition with DT-CNNs. 
In this example, we suppose that there are two training patterns and one testing pattern, 
as Fig. 4.5 shows. We use “ 1 ” to represent white color and use “ -1 “ to represent 
black color. 
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Pattern size 2 × 3 
Number of training patterns 2 
Neighborhood radius r 1 
1-D template [0.01  0.01  0.01] 
α 3 

 

 (a)  (b)  (c)  
Fig. 4.5 (a) The first training pattern; (b) The second training pattern; (c) Testing pattern. 

 
The first and second training patterns and testing pattern can be represented by three 
vectors 1u , 2u , and t respectively. 
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The process of pattern recognition: 
 
Training: 
Step 1: Calculate matrix U from known iu . 
 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎣

⎡

−
−

−
−

−
−

==

11
11

11
11

11
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    21 uuU  
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Step 2: Establish matrix Y = matrix U. 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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11
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UY  

 
Step 3: Establish matrix S. 

66110110
111111
011011
110110
111111
011011

×⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=S  

 
Step 4: Design matrix A as a circulant matrix which satisfies globally asymptotically 

stable condition. 
 
Globally asymptotically stable condition: 

1)( / 2 <∑
−=

−
r

rh

nhqjeha π , q = 0, 1, 2, . . . , n-1 

 
q = 0: 

103.001.001.001.0)(
1

1

6/ 2 <=++=∑
−=

−

h

hqjeha π  

 
q = 1: 

102.00.02)(
1

1

6/ 2 <==∑
−=

−

h

hqjeha π  

 
q = 2: 

1105.2042105.2042)( 18-18-
1

1

6/ 2 <×=×=∑
−=

−

h

hqjeha π  
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q = 3: 

10.010.01-)(
1

1

6/ 2 <==∑
−=

−

h

hqjeha π  

 
q = 4: 

1108.6736108.6736-)( 18-18-
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−

h

hqjeha π  

 
q = 5: 

10.020.02)(
1
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6/ 2 <==∑
−=

−

h

hqjeha π  

 
So 1-D template [0.01  0.01  0.01] satisfies globally asymptotically stable condition. 
Design matrix A as a circulant matrix: 

6601.001.000001.0
01.001.001.0000
001.001.001.000
0001.001.001.00
00001.001.001.0
01.000001.001.0
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Step 5: Calculate X = αY. 
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Step 6: Calculate AYA =y .  
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Step 7: for ( j =1 to 6 ) do: 

Calculate jX  by X: 

[ ]331 −=X , [ ]332 −=X , [ ]333 −=X , [ ]334 −=X , [ ]335 −=X , 
[ ]336 −=X . 

 

Calculate jy ,A  by yA : 

[ ]01.001.01, −=yA , [ ]01.001.02, −=yA , [ ]01.001.03, −=yA ,  

[ ]01.001.04, −=yA , [ ]01.001.05, −=yA , [ ]01.001.06, −=yA . 

 
Calculate R, ]  [ T hUR = : 

⎥
⎦

⎤
⎢
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1111111
1111111

]  [ T hUR  

 

Establish matrix jR~  from matrix S and matrix R: 
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Calculate inverse matrix +
jR~  of jR~ : 
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−

−
−

=+

5.05.0
0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

~
5R , 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=+

5.05.0
125.0125.0
125.0125.0
125.0125.0

125.0125.0

~
6R . 

 

Calculate T~
jw , )(~~ TTT

, jyjjj AXRw −= + : 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡−
−⎥

⎦

⎤
⎢
⎣

⎡
−

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=−= +

0
7525.0
7525.0
7525.0

7525.0

01.0
01.0

3
3

5.05.0
125.0125.0

125.0125.0
125.0125.0
125.0125.0

)(~~ TTT
1,111 yAXRw , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

=−= +

0
5017.0
5017.0

5017.0
5017.0

5017.0
5017.0

01.0
01.0

3
3

5.05.0
0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

)(~~ TTT
2,222 yAXRw , 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡−
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⎦

⎤
⎢
⎣

⎡
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=−= +

0
7525.0

7525.0
7525.0
7525.0

01.0
01.0

3
3

5.05.0
125.0125.0
125.0125.0
125.0125.0

125.0125.0

)(~~ TTT
3,333 yAXRw , 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
⎢
⎢
⎢

⎣

⎡

−

−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡−
⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=−= +

0
7525.0

7525.0
7525.0
7525.0

01.0
01.0

3
3

5.05.0
125.0125.0

125.0125.0
125.0125.0
125.0125.0

)(~~ TTT
4,444 yAXRw , 

⎥
⎥
⎥
⎥
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⎥
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⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡−
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⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

=−= +

0
0.5017

0.5017
0.5017

0.5017
0.5017

0.5017

01.0
01.0

3
3

5.05.0
0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

)(~~ TTT
5,555 yAXRw , 
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⎥

⎦

⎤

⎢
⎢
⎢
⎢
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⎢
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⎡
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=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=−= +

0
7525.0
7525.0
7525.0

7525.0

01.0
01.0

3
3

5.05.0
125.0125.0
125.0125.0
125.0125.0

125.0125.0

)(~~ TTT
6,666 yAXRw  

 

Recover jw  from T~
jw : 

[ ]007525.07525.007525.07525.01 −−=w , 
[ ]00.50170.50170.50170.50170.50170.50172 −−−=w , 
[ ]07525.07525.007525.07525.003 −−=w , 
[ ]007525.07525.007525.07525.04 −−=w , 
[ ]00.50170.50170.50170.50170.50170.50175 −−−=w , 
[ ]07525.07525.007525.07525.006 −−=w . 

 

So 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−−

−−−
−−

=

7525.07525.007525.07525.00
0.50170.50170.50170.50170.50170.5017

07525.07525.007525.07525.0
7525.07525.007525.07525.00

0.50170.50170.50170.50170.50170.5017
07525.07525.007525.07525.0

B , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0
0
0
0

e . 
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Recognition: 
Step 1: Set up initial output vector y, its element values are all in [-1, 1] interval. 
We use a random value vector as initial output vector y. 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

1
1
1
1

1
1

y  

 
Step 2: Input the known A, B, e, y and testing pattern t as u into the motion equation.  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−−

−−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

++=

515.1
1.0133

495.1
515.1

1.0133
495.1

   

0
0
0
0
0
0

1
1
1

1
1
1

7525.07525.007525.07525.00
0.50170.50170.50170.50170.50170.5017

07525.07525.007525.07525.0
7525.07525.007525.07525.00

0.50170.50170.50170.50170.50170.5017
07525.07525.007525.07525.0

   

1
1
1
1

1
1

01.001.000001.0
01.001.001.0000
001.001.001.000
0001.001.001.00
00001.001.001.0
01.000001.001.0

   

eBuAyx

 

 
 
 
 
 
 



 128

Step 3: Input x into activation function f, then get new output ny . 
 

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

==

1
1
1

1
1

1

xfy n  

 
Step 4: Compare new output ny  and y. Check whether they are the same, if they are 

the same, then stop, otherwise input new output ny  as y into motion equation 
again, repeat Step 2 to Step 4 until output y is not changed. 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

1
1
1

1
1

1

ny , yyy ≠⇒

⎥
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⎥
⎥
⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

= n

1
1
1
1

1
1

, set nyy = . 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

++=

495.1
0033.1

495.1
495.1
0033.1
495.1

   

eBuAyx

 

 

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎣

⎡

−

−

−

==

1
1
1

1
1

1

xfy n , yy =n , stop. 

1uy =n , so the testing pattern belongs to the class of the first training pattern.  
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We use the energy equation [20]: 
 

∑∑∑

∑∑∑
−−

+−=

i
i

i j
jiij

i
i

i j
jiij

tIyutyb

tytytyatE

)()(           

)(
2
1)()(

2
1)( 2

 

 
Compute the energy after each iteration: 
Iteration 0 
: 

0000.6)0(

1
1
1
1

1
1

=⇒

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

= Ey  

 
Iteration 1: 
 

9967.4)1(

1
1
1

1
1

1

−=⇒
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⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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−

−

= Ey  

 
Iteration 2: 
 

9967.4)2(
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1
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−=⇒
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⎥
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⎢
⎢
⎢
⎢
⎢
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⎡

−

−

−

= Ey  
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Energy curve: 
 

 

 
We use pseudoinverse technique to compute matrix B. But pseudoinverse matrix 

of R is not unique, so matrix B is not unique. We compute matrix B without using 
matrix S to indicate the interconnecting structure of network inputs now. Then matrix 
B is shown in the following: 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−−
−−−

−−−
−−−

=

0.50170.50170.50170.50170.50170.5017
0.50170.50170.50170.50170.50170.5017

0.50170.50170.50170.50170.50170.5017
0.50170.50170.50170.50170.50170.5017

0.50170.50170.50170.50170.50170.5017
0.50170.50170.50170.50170.50170.5017

B  

 
The interconnecting structure of network inputs is fully connected. This is not the 
same with the general CNN structure. The result of this example with the fully 
connected CNN is the same with the locally connected CNN and is shown in the 
following: 

 
 
The energy curve is shown in the following: 
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4.6 Experimental Results  

 In Experiment 1, we use two values for α and several different feedback 
templates to observe the influences of α and the feedback template for the network 
performance. In Experiment 2, 3, 4 and 5, we apply DT-CNN associative memory 
with matrix S, DT-CNN associative memory without matrix S and Hopfield 
associative memory to simulated seismic patterns and compare performances of these 
three systems. In Experiment 6, we apply the DT-CNN associative memory with 
matrix S to real seismic patterns. In Experiment 7, we use an example to introduce the 
case of indefinite cells. 

Experiment 1. 
 
 To observe the effect of α and the effect of feedback template, we use two 
different values of α and different feedback templates to do the same experiment. 
 
Pattern size 7 × 7 
The number of training patterns 3 
Hamming distance(HD) 6 
Neighborhood radius r 1, 2 
α 3, 100 

1-D feedback template [0.01  0.01  0.01],  
[0.0001  0.0001  0.0001], 
[0.01  0.01  0.01  0.01  0.01],  
[0.0001  0.0001  0.0001  0.0001  0.0001] 
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(a)                 (b)                (c) 

           
(d)                 (e)                (f) 

Fig. 4.6 (a) The 1st training pattern; (b) The 2nd training pattern; (c) The 3rd training 
pattern; (d) The 1st noisy input pattern; (e) The 2nd noisy input pattern; (f) The 
3rd noisy input pattern. 

 
Case 1: α = 3, r = 1, 1-D feedback template: [0.01  0.01  0.01] 
 

           
(a)                 (b)                (c) 

Fig. 4.7 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f). 
 

        
(a)                    (b)                    (c) 

Fig. 4.8 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve 
of Fig. 4.6(f). 
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Case 2: α = 100, r = 1, 1-D feedback template: [0.01  0.01  0.01] 
 

           
(a)                 (b)                (c) 

Fig. 4.9 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f). 
 

     
(a)                     (b)                     (c) 

Fig. 4.10 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve 
of Fig. 4.6(f). 

 
Case 3: α = 3, r = 2, 1-D feedback template: [0.01  0.01  0.01  0.01  0.01] 

           
(a)                 (b)                (c) 

Fig. 4.11 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f). 
 

     
(a)                    (b)                    (c)  

Fig. 4.12 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve 
of Fig. 4.6(f). 
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Case 4: α = 100, r = 2, 1-D feedback template: [0.01  0.01  0.01  0.01  0.01] 
 

           
(a)                 (b)                (c) 

Fig. 4.13 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f). 
 

     
(a)                     (b)                     (c) 

Fig. 4.14 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve 
of Fig. 4.6(f). 

 
The outputs of Case 1 are equal to the outputs of Case 2. And the outputs of Case 3 
are equal to the outputs of Case 4. So network performances are not affected by the 
choice of α. 
 
Case 5: α = 3, r = 1, 1-D feedback template: [0.0001  0.0001  0.0001] 
 

           
(a)                 (b)                (c) 

Fig. 4.15 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f). 
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(a)                    (b)                    (c)  

Fig. 4.16 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve 
of Fig. 4.6(f). 

 
Case 6: α = 3, r = 2, 1-D feedback template: [0.0001  0.0001  0.0001  0.0001  
0.0001] 
 

           
(a)                 (b)                (c) 

Fig. 4.17 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f). 
 

     
(a)                    (b)                    (c)  

Fig. 4.18 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve 
of Fig. 4.6(f). 

 
The outputs of Case 1 are equal to the outputs of Case 5. And the outputs of Case 3 
are equal to the outputs of Case 6. So network performances are not affected by the 
choice of 1-D feedback template. 
 
 
 
 
 
 



 136

Experiment 2. 
 

In this experiment, we store two simulated seismic patterns and recognize a noisy 
input pattern. 
 
Pattern size 8 × 12 

The number of training patterns 2 
Hamming distance(HD) 6 

 
 

  
(a)                                (b) 

  
(c) 

Fig. 4.19 (a) The 1st training pattern: sealevel fall; (b) The 2nd training pattern; (c) The 
noisy input pattern. 

 
We apply this DT-CNN associative memory with matrix S to simulated seismic 

patterns first. We set α = 3 and neighborhood radius r = 1. The result is shown in Fig. 
4.20. 
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(a)                                (b) 

Fig. 4.20 (a) Output of Fig. 4.19(c); (b) Energy curve. 
 

Next, we apply DT-CNN associative memory without matrix S to this 
experiment. We set α = 3 and neighborhood radius r = 1. The output pattern is the 
same with Fig. 4.20(a). 

And then we apply Hopfield associative memory to this experiment. The output 
pattern is also the same with Fig. 4.20(a). The comparison of these three systems for 
this experiment is shown in Table 4.1. 
 

DT-CNN with S DT-CNN without S
 

r = 1 r = 1 
Hopfield 

Recognition Success Success Success 
Training time 
(second) 

0.141 0.047 0.0003 

Recognition time 
(second) 

0.312 0.281 0.156 

Table. 4.1 Comparison of three systems for Experiment 2. 
 
 
Experiment 3. 
 

In this experiment, we store two simulated seismic patterns and recognize two 
noisy input patterns. 

 
Pattern size 19 × 29 

The number of training patterns 2 
Hamming distance(HD) 100, 90 
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(a)                             (b) 

           
(c)                             (d) 

Fig. 4.21 (a) The 1st training pattern: bright-spot; (b) The 2nd training pattern: pinch-out; 
(c) The 1st noisy input pattern (HD = 100); (d) The 2nd noisy input pattern (HD 
= 90). 

 
We apply this DT-CNN associative memory with matrix S to simulated seismic 

patterns first. We set α = 3 and neighborhood radius r = 1, 2 and 3. The results are 
shown in Fig. 4.22, 4.23 and 4.24. 
 
r = 1: 

       
(a)                         (b) 

      
(c)                       (d) 

Fig. 4.22 (a) Output of Fig. 4.21(c); (b) Output of Fig. 4.21(d); (c) Energy curve of Fig. 
4.21(c); (d) Energy curve of Fig. 4.21(d). 
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Fig. 4.22(a) and (b) are uncorrected output patterns, so we set neighborhood radius to 
2 and try again. 
 
r = 2: 

       
(a)                         (b) 

      
(c)                       (d) 

Fig. 4.23 (a) Output of Fig. 4.21(c); (b) Output of Fig. 4.21(d); (c) Energy curve of Fig. 
4.21(c); (d) Energy curve of Fig. 4.21(d). 

 
Fig. 4.23(a) and (b) are uncorrected output patterns, so we set neighborhood radius to 
3 and try again. 
 
r = 3: 

       
(a)                         (b) 

      
(c)                       (d) 

Fig. 4.24 (a) Output of Fig. 4.21(c); (b) Output of Fig. 4.21(d); (c) Energy curve of Fig. 
4.21(c); (d) Energy curve of Fig. 4.21(d). 
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Two output patterns in Fig. 4.24 are all correct. Next, we apply DT-CNN associative 
memory without matrix S to this experiment. We set α = 3 and neighborhood radius r 
= 1. The output patterns are the same with Fig. 4.24(a) and (b). And then we apply 
Hopfield associative memory to this experiment. The output patterns are also the same 
with Fig. 4.24(a) and (b). The comparison of these three systems for this experiment is 
shown in Table 4.2. 
 

DT-CNN with S DT-CNN without S 
 

r = 1 r = 2 r = 3 r = 1 
Hopfield 

Recognition Failure Failure Success Success Success 
Average training 
time (second) 

8.5 7.25 0.047 

Average 
recognition time 
(second) 

0.3205 0.328 0.172 

Table. 4.2 Comparison of three systems for Experiment 3. 
 
 
Experiment 4. 
 

In this experiment, we store three simulated seismic patterns and recognize three 
noisy input patterns. 
 
Pattern size 12 × 48 

The number of training patterns 3 
Hamming distance(HD) 107, 118, 118 

 
 

     
(a)                     (b)                     (c) 

Fig. 4.25 (a) The 1st training pattern: bright-spot; (b) The 2nd training pattern: right 
pinch-out; (c) The 3rd training pattern: left pinch-out. 
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(a)                     (b)                     (c) 

Fig. 4.26 (a) ~ (c) Three noisy input patterns with HD = 107, 118, 118 respectively. 
 

We apply this DT-CNN associative memory with matrix S to simulated seismic 
patterns first. We set α = 3 and neighborhood radius r = 2, 3 and 4. The results are 
shown in Fig. 4.27, 4.28 and 4.29. 
 
r = 2: 

     
(a)                     (b)                     (c) 

     
(d)                     (e)                     (f) 

Fig. 4.27 (a) Output of Fig. 4.26(a); (b) Output of Fig. 4.26(b); (c) Output of Fig. 4.26(c); 
(d) Energy curve of Fig. 4.26(a); (e) Energy curve of Fig. 4.26(b); (f) Energy 
curve of Fig. 4.26(c). 

 
Three output patterns in Fig. 4.27 are uncorrected output patterns, so we set 
neighborhood radius to 3 and try again. 
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r = 3: 

     
(a)                     (b)                     (c) 

     
(d)                     (e)                     (f) 

Fig. 4.28 (a) Output of Fig. 4.26(a); (b) Output of Fig. 4.26(b); (c) Output of Fig. 4.26(c); 
(d) Energy curve of Fig. 4.26(a); (e) Energy curve of Fig. 4.26(b); (f) Energy 
curve of Fig. 4.26(c). 

 
Fig. 4.28(b) is an uncorrected output pattern, so we set neighborhood radius to 4 and 
try again. 
 
r = 4: 

       
(a)                          (b) 

Fig. 4.29 (a) Output of Fig. 4.26(b); (b) Energy curve of Fig. 4.26(b). 
 

Next, we apply DT-CNN associative memory without matrix S to this 
experiment. We set α = 3 and neighborhood radius r = 1. The output patterns are the 
same with Fig. 4.28(a), Fig. 4.29(a) and Fig. 4.28(c). And then we apply Hopfield 
associative memory to this experiment. The output patterns are shown in Fig. 4.30. 
The comparison of these three systems for this experiment is shown in Table 4.3. 
 



 143

     
(a)                     (b)                     (c)  

Fig. 4.30 (a) Output of Fig. 4.26(a) by Hopfield associative memory; (b) Output of Fig. 
4.26(b) by Hopfield associative memory; (c) Output of Fig. 4.26(c) by Hopfield 
associative memory. 

 
 

DT-CNN with S DT-CNN without S 
 

r = 2 r = 3 r = 4 r = 1 
Hopfield 

Recognition Failure Failure Success Success Failure 
Average training 
time (second) 

9.922 8.25 0.047 

Average 
recognition time 
(second) 

0.3177 0.3023 0.193 

Table. 4.3 Comparison of three systems for Experiment 4. 
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Experiment 5. 
 

In this experiment, we store five simulated seismic patterns and recognize five 
noisy input patterns. 
 
Pattern size 19 × 29 

The number of training patterns 5 
Hamming distance(HD) 100, 90, 100, 100, 100 

 

     
(a) Bright spot           (b) Pinch out             (c) Flat spot 

           
             (d) Sealevel fall                  (e) Sealevel rise 

Fig. 4.31 (a) ~ (e) Five training patterns. 
 

     
(a)                     (b)                     (c) 

           
                  (d)                             (e) 

Fig. 4.32 (a) ~ (e) Five noisy input patterns with HD = 100, 90, 100, 100, 100 respectively. 
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We apply this DT-CNN associative memory with matrix S to simulated seismic 
patterns first. We set α = 3 and neighborhood radius r = 3 and 4. The results are 
shown in Fig. 4.33 and 4.34. 
 
r = 3: 

     
(a)                     (b)                     (c) 

             
(d)                             (e) 

     
(f)                    (g)                    (h) 

    
(i)                     (j) 

Fig. 4.33 (a) Output of Fig. 4.32(a); (b) Output of Fig. 4.32(b); (c) Output of Fig. 4.32(c); 
(d) Output of Fig. 4.32(d); (e) Output of Fig. 4.32(e); (f) Energy curve of Fig. 
4.32(a); (g) Energy curve of Fig. 4.32(b); (h) Energy curve of Fig. 4.32(c); (i) 
Energy curve of Fig. 4.32(d); (j) Energy curve of Fig. 4.32(e). 

 
Fig. 4.33(a), (c) and (e) are uncorrected output patterns, so we set neighborhood 
radius to 4 and try again. 
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r = 4: 
 

     
(a)                     (b)                     (c) 

     
(d)                    (e)                    (f) 

Fig. 4.34 (a) Output of Fig. 4.32(a); (b) Output of Fig. 4.32(c); (c) Output of Fig. 4.32(e); 
(d) Energy curve of Fig. 4.32(a); (e) Energy curve of Fig. 4.32(c); (f) Energy 
curve of Fig. 4.32(e). 

 
 
Three output patterns in Fig. 4.34 are all correct. Next, we apply DT-CNN associative 
memory without matrix S to this experiment. We set α = 3 and neighborhood radius r 
= 1. The output patterns are the same with Fig. 4.34(a), Fig. 4.33(b), Fig. 4.34(b), Fig. 
4.33(d) and Fig. 4.34(c). And then we apply Hopfield associative memory to this 
experiment. The output patterns are shown in Fig. 4.35. The comparison of these three 
systems for this experiment is shown in Table 4.4. 
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(a)                     (b)                     (c)  

           
(d)                             (e) 

Fig. 4.35 (a) Output of Fig. 4.32(a) by Hopfield associative memory; (b) Output of Fig. 
4.32(b) by Hopfield associative memory; (c) Output of Fig. 4.32(c) by Hopfield 
associative memory; (d) Output of Fig. 4.32(d) by Hopfield associative memory; 
(e) Output of Fig. 4.32(e) by Hopfield associative memory. 

 
 
 

CNN with S CNN without S 
 

r = 3 r = 4 r = 1 
Hopfield 

Recognition Failure Success Success Failure 
Average training 
time (second) 

9.281 7.5 0.079 

Average 
recognition time 
(second) 

0.294 0.2976 0.2622 

Table. 4.4 Comparison of three systems for Experiment 5. 
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Experiment 6. 
 

We apply this DT-CNN associative memory with matrix S to real seismic 
patterns. In this experiment, we store two training patterns and recognize three real 
seismic patterns. 
 
 
Training pattern size 16 × 50 

Real seismic pattern size 64 × 64 
The number of training patterns 2 
Neighborhood radius r 1, 3 
α 3 

 
 

        
(a)                           (b) 

Fig. 4.36 Two training patterns. 
 
 
The size of real seismic pattern is larger than the size of training pattern. We use a 
window to extract the testing pattern from real seismic pattern. The size of this 
window is equal to the size of training pattern. This window is shifted from left to 
right and top to bottom on the real seismic pattern. If the output pattern of the network 
is equal to one of training patterns. We record the coordinate of upper-left corner of 
the window. After the window is shifted to the last position on the real seismic pattern 
and all testing patterns are recognized, we calculate the coordinate of the center of all 
recorded coordinates which are about the same training pattern. And then we use the 
detected training pattern and the center coordinate to recover the pattern. We set 
neighborhood radius r = 1 to process the first and second real seismic patterns and set 
r = 3 to process the third real seismic pattern. 
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r = 1: 
 

     
           (a)                      (b)                    (c) 

Fig. 4.37 (a) The first real seismic pattern; (b) Coordinates of successful recognition; (c) 
Output of (a). 

 
 

     
           (a)                      (b)                    (c) 

Fig. 4.38 (a) The second real seismic pattern; (b) Coordinates of successful recognition; (c) 
Output of (a). 

 
 
r = 3: 
 

     
           (a)                      (b)                    (c) 

Fig. 4.39 (a) The third real seismic pattern; (b) Coordinates of successful recognition; (c) 
Output of (a). 
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Experiment 7. 
 
Pattern size 4 × 4 
The number of training patterns 2 
Hamming distance(HD) 3 
Neighborhood radius r 1, 2 
α 3 

 

         
(a)                    (b) 

Fig. 4.40 Two training patterns. 
 

 
Fig. 4.41 One noisy input pattern. 

 
r = 1: 

       
(a)                       (b)  

Fig. 4.42 (a) Output of Fig. 4.41 if r = 1; (b) Energy curve of Fig. 4.41 if r = 1. 
 
When r = 1, the output pattern shown in Fig. 4.42 is not a correct pattern. The pixel on 
the 1st row and the 2nd column should be a black pixel. Namely the output pattern 
should be equal to the training pattern 1 shown in Fig. 4.40(a). The pixel on the 1st 
row and the 2nd column is an indefinite cell. The definition of indefinite cells is 
explained after. The problem of indefinite cells can be solved by increasing 
neighborhood radius. So we increase neighborhood radius r to 2 and try again. 
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r = 2: 

       
(a)                       (b) 

Fig. 4.43 (a) Output of Fig. 4.41 if r = 2; (b) Energy curve of Fig. 4.41 if r = 2. 
 
Indefinite Cell 
 

If more than two similar patterns are stored, the conventional synthesis procedure 
may generate the cells with only self-input from these patterns, which are so-called 
indefinite cells. As the outputs of indefinite cells are determined by only their inputs, 
DT-CNN can’t always associate the expected memory pattern. 

C1

C2 

C16

C2

 
                         (a)                        (b) 

Fig. 4.44 Example of the indefinite cell. 
 

Two patterns shown in Fig. 4.44 are overall different forms each other [21]. But, 
it is found that the r (=1) -neighborhood of 2C  in Fig. 4.44(a) is the same pattern as 

one of 2C  in Fig. 4.44(b) except 2C . Therefore, the conventional DT-CNN 

associative memory can’t determine the output of 2C  from its r-neighborhood. 2C  
is called an indefinite cell. We know the following equations for every cell. 
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We observe iw  of 2C  for two patterns in Fig. 4.44 and a testing pattern. For the 

pattern in Fig. 4.44, we note the iw  of (a) as 1
2w  and the iw  of (b) as 2

2w . And we 

note the iw  of testing pattern as 3
2w . We plot the dynamic routes of the cell 2C  of 

two patterns in Fig. 4.44 as Fig. 4.45. 
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Fig. 4.45 The dynamic routes of cell 2C . 
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Because the Hamming distance between the testing pattern and the two patterns in Fig. 
4.44 can not be too large, so ( 3

ju , 2SC j ∈ , j≠2) are almost equal to ( k
ju , 2SC j ∈ , j

≠2, k = 1 or 2). Therefore )(    
2,
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2

k
j

jSC
jj uub

j

−∑
≠∈

 is small, its absolute value should be 
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2 wwww −>− . Therefore 2x  will converge to a value less than -1, namely the 

output will converge to -1. So the outputs of indefinite cells are determined by only 
their input values. 

Therefore, if such memory patterns exist, then the conventional DT-CNN 
associative memory has the indefinite cells and can’t determine the outputs of 
indefinite cells from their r-neighborhoods. 

T. Kamio and H. Asai proposed a DT-CNN system to overcome this problem 
[21]. The DT-CNN system for associative memory uses two-dimensional discrete 
Walsh transform. This DT-CNN system consists of two kinds of DT-CNN associative 
memories and two-dimensional DWT processor as shown in Fig. 4.46 [21]. One of 
the DT-CNNs is the conventional DT-CNN and the other is the DT-CNN with 
multilevel threshold function. The former works for the bipolar memory patterns and 
the latter remembers the 2D-DWT of these bipolar memory patterns. 
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2-level 
DT-CNN 

Learning 

Memory Patterns 

DWT 

IDWT 

= Fig. 4.44(a) 

(a) (b) 

(c) 

Multi-level 
DT-CNN 

Learning 

DWT of Memories

 

Fig. 4.46 DT-CNN for associative memory using two-dimensional discrete Walsh 
transform. 

 
As a simple example, it is supposed that two DT-CNNs have the r = 1 

neighborhood and the system has two memory patterns shown in Fig. 4.44. If the 
noisy pattern shown in Fig. 4.46(a) is input to 2-level DT-CNN, then Fig. 4.46(b) is 
output. As a result, it is found that 2-level DT-CNN fails to associate the desired 
memory pattern (Fig. 4.44(a)) due to the indefinite cell 2C . Furthermore, if the DWT 
of Fig. 4.46(b) is input to the multilevel DT-CNN, then the output in Fig. 4.46(c) is 
obtained as the IDWT of the image from the multilevel DT-CNN. Fig. 4.46(c) shows 
that the output value of indefinite cell 2C  is close to the correct value (+1). Finally, 
2-level DT-CNN can completely derive the desired pattern shown in Fig. 4.44(a) from 
Fig. 4.46(c). 

The other method that overcomes this problem is increasing the neighborhood 
radius of template B. It makes the neighborhood size larger, and then the same 
neighborhood patterns originally will be not the same. We observe the two training 
patterns in Fig. 4.44. If neighborhood radius r is increased to 2, then the neighborhood 
of 2C  in Fig. 4.44(a) is not the same pattern as the neighborhood of 2C  in Fig. 
4.44(b), as Fig. 4.47 shows. 

C1

C2 

C16

C2

 
Fig. 4.47 If r = 2, the neighborhoods of 2C  in two training patterns. 
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So 2C  in Fig. 4.47 is not the indefinite cell. 
 The process of the above method is recognizing input pattern first. If the output 
pattern is different to all memory patterns and that is caused by some indeterminate 
cells, then increase neighborhood radius and recognize input pattern again until the 
output pattern is correct. The computation time of this method is much. M. Namba, S. 
Takatori, H. Kawabata and Z. Zhang proposed an algorithm which can reduce the 
computation time [22]. This algorithm searches indeterminate cells by matching every 
memory pattern in advance, and modifies the neighborhood of indeterminate cells. 
This algorithm can be shown as Fig. 4.48 [22]. 

Start

Matching every 
memory pattern

Has the indeterminate 
cell been found ? 

Exit 

No 

Modifying its 
neighborhood 

Yes

 
Fig. 4.48 The algorithm searching indeterminate cells. 

4.7 Conclusions 

In this chapter an application of autoassociative memories using DT-CNNs has 
been proposed. If each element of the 1-D space-invariant template is equivalent, then 
matrix A is symmetric. The symmetry of the interconnection matrix A assures that the 
synthesized network does not oscillate nor become chaotic. Moreover, all the stored 
patterns correspond to asymptotically stable equilibrium points.  
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