
 100

Chapter 4

Cellular Neural Networks for Seismic Pattern

Recognition

4.1 Introduction

 Seismic pattern recognition can help us to analyze seismic data and interpret
seismic data. We use associative memories to store seismic patterns and recognize
noisy patterns.

The neural network models which are used for associative memories mostly
operate by utilizing a large amount of memory and the process of information
distribution. Some neural network models can be used for associative memories, such
as linear associative memory [1], temporal associative memory [2], correlation matrix
memory [3], Hopfield memory [4], etc. Content address memory that Hopfield
proposed is most famous among them. This thesis uses cellular neural networks to
design associative memories. Many researchers had proposed the methods of using
cellular neural networks to design associative memories: Liu and Michel have already
proposed a design method for sparsely interconnected neural networks and applied it
to cellular neural networks [5]. Their method is a synthesis procedure based on
singular value decomposition and it is a modification of the eigenstructure method [6]
which is well known as an effective design technique for fully connected neural
networks. Seiler, Schuler, and Nossek developed an algorithm to design a
space-varying cellular neural network with prescribed stable and unstable output
patterns while maximizing its robustness with respect to changes of its parameters [7].
The algorithm consists of formulating and solving a set of linear inequalities using
linear programming. The method proposed by Grassi [8]-[9] is different from others
because it uses the cellular neural networks that have a unique equilibrium point
which is globally asymptotically stable and input patterns are fed into such cellular
neural networks as bias vectors. Park, etc. [10] have proposed one kind synthesis
procedure to design space-varying cellular neural networks. This procedure is based
on generalized eigenvalue minimization (GEVM) [11]-[13]. It produces a cellular
neural network associative memory that its connection weighting matrix is symmetric
and diagonal elements of the connection weighting matrix are all 1. Liu and Lu
showed that the perceptron training algorithm can be applied to design space-varying
cellular neural networks as well as fully connected feedback neural networks [14].

 101

Chan and Zak proposed “designer” neural network for the synthesis of associative
memories based on a class of discrete cellular neural networks [15]. Perfetti presented
a local learning algorithm which can efficiently be implemented on chip by exploiting
the parallel analog computation of cellular neural networks [16].

The network model we used for associative memory is discrete time cellular
neural network (DT-CNN). We adopt the synthesis procedure that is proposed by
Grassi [8]-[9]. This synthesis procedure design DT-CNN to behave as an associative
memory. Each memory pattern corresponds to a unique globally asymptotically stable
equilibrium point of the network. Experimental results show the satisfying
performance of this synthesis procedure. We use this synthesis procedure to design the
motion equation of a cellular neural network to behave as an associative memory, and
then use the associative memory to recognize patterns. So the whole process of
pattern recognition will be divided into two parts and discussed respectively, as Fig.
4.1 shows.

Cellular
Neural

Network

Autoassociative
Memory

Training：

Training
patterns

Testing
patterns

Recognition：

Recovered
patterns

Autoassociative
Memory

Fig. 4.1 The process of cellular neural networks for seismic pattern recognition.

4.2 Associative Memories

There are two kinds of associative memories. They are autoassociative memory
and heteroassociative memory. Suppose we have M pairs of vector {(1X , 1Y), (2X ,

2Y), …, (MX , MY)}, where niX ℜ∈ and piY ℜ∈ . In the autoassociative
memory, it is assumed that ii YX = and the network implements a mapping Φ of

nℜ to nℜ such that ii XX =Φ)(. If some arbitrary pattern X is closer to iX than to

any other jX , j = 1, 2, …, M, j ≠ i, then iXX =Φ)(; that is, the network will

produce the stored pattern iX when the key pattern X is presented as input. In the

 102

heteroassociative memory, the network implements a mapping Φ of nℜ to pℜ such

that ii YX =Φ)(, and if some arbitrary pattern X is closer to iX than to any other
jX , j = 1, 2, …, M, j ≠ i, then iYX =Φ)(. In the above, “closer” means with respect

to some proper distance measure, for example, the Hamming distance. Fig. 4.2 shows
a general block diagram of an associative memory performing an associative mapping
of an input vector X into an output Y. The system maps vector X to vector Y where the
input space is nℜ and the output space is pℜ , by performing the transformation

Y = M[X]

The operator M[．] denotes a general nonlinear matrix-type operator. For different

memory model, the operator has different meanings.
An efficient associative memory can store a large set of memory patterns and

recall each pattern when a key containing a portion of the memory’s information is
presented as an input. And if sufficient amount of the content of the memory is
provided, then an associative memory may be able to correct erroneous data.

M
X Y

Input pattern Associative Output
Associative

Memory

Fig. 4.2 Associative memory.

4.3 DT-CNNs for Associative Memories

We use the design method proposed by G. Grassi [9] to design DT-CNNs for
associative memories. The detail of the design method and the stability results are
summarized in the following.

Consider a DT-CNN with a two-dimensional M × N cell array. We can renumber
all cells from 1 to n, n = M × N, then the following motion equation (4-1) and output
equation (4-2) can be rewritten as vector form, as Equation (4-3) and (4-4) show:

 103

 1 ;1

)24(
0)1(1
0)1(1

))1(()1(

)14()(),;,()(),;,()1(

NjMi

-
hxfor
hxfor

hxfhy

-IhulkjiBhylkjiAhx

ij

ij
ijij

ij
NC

kl
NC

klij
ijklijkl

≤≤≤≤
⎩
⎨
⎧

<+−
≥++

=+=+

++=+ ∑∑
∈∈

x(h+1) = A y(h) + B u + e (4-3)

y(h)=f(x(h)) (4-4)

In Equation (4-3) and (4-4):
 1T

21] [×ℜ∈= n
nxxx Lx is a vector compose of state value of every cell;

 1T
21] [×ℜ∈= n

nyyy Ly is a vector compose of output of every cell;

 1T
21] [×ℜ∈= n

nuuu Lu is a vector compose of input of every cell;

 1T
21] [×ℜ∈= n

nIII Le is a vector compose of extra input of every cell;

 A = nn

nnnn

n

n

aaa

aaa
aaa

×ℜ∈

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

21

22221

11211

L

MOM

L

L

 is a matrix compose of all A(i, j; k, l);

 B = nn

nnnn

n

n

bbb

bbb
bbb

×ℜ∈

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

21

22221

11211

L

MOM

L

L

 is a matrix compose of all B(i, j; k, l).

 [] 1T
21)()()(×ℜ∈= n

nxfxfxf Lf is a vector contains output functions.

4.3.1 Design of Feedback Template

Linear Neighboring

A one-dimensional space-invariant template is used as the feedback template.
The corresponding network structure (r =1 and n =16) is shown in Fig. 4.3 [9].

 104

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 4.3 The connection relation of cells for designing associative memories (r = 1 and

n = 16). The links represent the outputs of cells.

If there are n cells, then the feedback coefficients of the cells can be expressed with
the following matrix A.

A =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnnn

n

n

aaa

aaa
aaa

21

22221

11211

L

MOM

L

L

 (4-5)

11a represents the self-feedback coefficient of 1st cell, 12a represents the feedback

coefficient of the next cell (the 2nd cell) of 1st cell in clockwise order, 21a represents
the feedback coefficient of the next cell (the 1st cell) of 2nd cell in counterclockwise
order. Since the feedback template is a one-dimensional space-invariant template, so

11a = 22a = … = nna = 1α represent the self-feedback coefficient of each cell,

12a = 23a = … = nna)1(− = 1na = 2α represent the feedback coefficient of the next cell in

clockwise order, na1 = 21a = 32a = … =)1(−nna = nα represent the feedback coefficient

of the next cell in counterclockwise order, 13a = 24a = … = nna)2(− = 1)1(−na = 2na = 3α

represent the feedback coefficient of the next two cell in clockwise order, and so on.
So matrix A can be expressed as

 105

A =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

132

11

21

ααα

ααα
ααα

L

MOM

L

L

nn

n

Therefore A is a circulant matrix. The following one-dimensional space-invariant
template is considered:

[a(-r) … a(-1) a(0) a(1) … a(r)]

r is neighborhood radius, a(0) is the self-feedback, a(1) is the feedback of next cell in
the clockwise order, a(-1) is the feedback of next cell in the counterclockwise order,
and so on. So according to Equation (4-5), we rearrange the template elements as the
following row vector.

[a(0) a(1) … a(r) 0 …0 a(-r)… a(-1)] (4-6)

The Equation (4-6) is the first row of matrix A. We arrange the last element of

the first row of matrix A in the first position of the second row of matrix A, it is
regarded as the first element of the second row of matrix A, other elements of the first
row of matrix A cycle right shift one position, they form the second to the last element
of the second row of matrix A. The same, we take the previous row to cycle right shift
once, the new sequence is the next row of matrix A, then we can define matrix A.

A =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−−−
−−

)0((-1))2()1(

)2()(0 0)()0()1(
)1()(0 0)()1()0(

aaaa

araraaa
araraaa

LLLLLLLLL

MLM

MLM

MLM

LLL

LLL

 (4-7)

It only needs to design the first row of matrix A when we design matrix A as a

circulant matrix. Each next row is the previous row which is cycle right shifted once.
The number of 0s of Equation (4-6) is decided by radius r and n. A nn×ℜ∈ , namely
each row of matrix A has n elements, and there are n rows in A. If n = 9, then there
are nine elements in each row. When r = 1, the one dimensional template is sorted
according to the Equation (4-6), as the following Equation (4-8) shows.

[a(0) a(1) 0 0 0 0 0 0 a(-1)] (4-8)

 106

In the Equation (4-8), there are six 0s in the middle of the template, add other three
elements, there are nine elements in a row.

 4.3.2 Stability Results

If a dynamic system has a unique equilibrium point which attracts every
trajectory in state space, then it is called globally asymptotically stable. A criterion for
the global asymptotic stability of the equilibrium point of DT-CNNs with circulant
matrices has been introduced [17]. The criterion is summarized in the following.
DT-CNNs described by (4-3) and (4-4), with matrix A given by (4-7), are globally
asymptotically stable, if and only if

1)/ 2(<nqS π , q = 0, 1, 2, . . . , n-1 (4-9)

where

∑
−=

−=
r

rh

nhqjehanqS / 2)()/ 2(ππ (4-10)

The stability criterion (4-9) can be easily satisfied by choosing small values for

the elements of the one-dimensional space-invariant template. In particular, the larger
the network dimension n is, the smaller the values of the elements will be (see (4-10)).
On the other hand, the feedback values cannot be zero, since the stability properties
considered herein require that (4-3) be a dynamical system. These guidelines can help
the designer in fixing the values of the feedback parameters. Namely, the lower bound
is zero, whereas the upper bound is related to the network dimension.

4.3.3 Design of DT-CNNs for Associative Memories

The method is designing the motion equation of a cellular neural network to
behave as an associative memory. Given m bipolar (value for +1 or -1) training
patterns as input vectors iu , i = 1, 2, …, m, for each iu , there is only one
equilibrium point ix satisfying motion equation:

 107

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++=

++=

++=

eBuAyx

eBuAyx
eBuAyx

mmm

M

222

111

 (4-11)

Design cellular neural networks to behave as associative memories, mainly set up A
and calculate B and e according to training patterns.

In order to express Equation (4-11) into a matrix form, we define the following
matrices first:

mn

m
nnn

m

m

m

xxx

xxx
xxx

×ℜ∈

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

] [

21

2
2
2

1
2

1
2
1

1
1

21

L

OM

L

L

L xxxX

mn

m
nnn

m

m

m

yyy

yyy
yyy

×ℜ∈

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

] [

21

2
2
2

1
2

1
2
1

1
1

21

L

OM

L

L

L yyyY

mnmm
y

×ℜ∈===] [] [2121 dddAyAyAyAYA LL
1T

21] [×ℜ∈= ni
n

iii ddd Ld , i = 1, …, m

mn

m
nnn

m

m

m

uuu

uuu
uuu

×ℜ∈

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

] [

21

2
2
2

1
2

1
2
1

1
1

21

L

OM

L

L

L uuuU

mn

nnn III

III
III

×ℜ∈

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

] [222

111

L

MOM

L

L

L eeeJ

The Equation (4-11) can be expressed in the matrix form:

X = AY + BU + J (4-12)
BU + J = X–AY

BU + J = X– yA (4-13)

] [21 muuuU L= , iu is a training pattern, i = 1, 2, …, m
U has been already known. Because Y is the desired output, so Y = U has been
already known. Under global asymptotic stability condition, choose a

 108

sequence { })()1()0()1()(raaaara LL −− , which satisfies the criterion
(4-9). And design A as a circulant matrix, so A has been already known too. We can
know from output function, if y is +1, then x > 1; if y is -1, then x < -1. U is a bipolar
vector, so Y is a bipolar vector too, namely all elements in Y are +1 or -1, so the
elements of the state vector X corresponded to Y are all greater than +1 or less than -1,
so we can establish X = αY =αU, α>1. So U, Y, A and X have been already
known, we want to calculate B and J.

Define the following matrices:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ℜ∈= +×

1

1

1

1

1

1

] [

21

22
2

2
1

11
2

1
1

21

22
2

2
1

11
2

1
1

)1(T

m
n

mm

n

n

m
n

mm

n

n

nm

uuu

uuu
uuu

uuu

uuu
uuu

L

MOM

L

L

L

MOM

L

L

hUR

1T]1 1 1[×ℜ∈= mLh
mm

jjjj xxx ×ℜ∈= 121] [LX is the jth row of matrix X
mm

jjjjy ddd ×ℜ∈= 121
,] [LA

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nnnnnn

n

n

Ibbb

Ibbb
Ibbb

w

w
w

eB
M

L

MMOM

L

L

 2

1

21

222221

111211

)1(1
21] [+×ℜ∈= n

jjnjjj Ibbb Lw

j = 1, 2, …, n

 109

The Equation (4-13) can be rewritten as Equation (4-14):
BU + J = X– yA (4-13)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnnn

n

n

bbb

bbb
bbb

21

22221

11211

L

MOM

L

L

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

m
nnn

m

m

uuu

uuu
uuu

21

2
2
2

1
2

1
2
1

1
1

L

OM

L

L

＋

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnn III

III
III

222

111

L

MOM

L

L

＝

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

m
nnn

m

m

xxx

xxx
xxx

21

2
2
2

1
2

1
2
1

1
1

L

OM

L

L

－

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

m
nnn

m

m

ddd

ddd
ddd

21

2
2
2

1
2

1
2

1
1
1

L

OM

L

L

In the view of the jth row

] [21 jnjj bbb L

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

m
nnn

m

m

uuu

uuu
uuu

21

2
2
2

1
2

1
2
1

1
1

L

OM

L

L

＋] [jjj III L

＝] [21 m
jjj xxx L －] [21 m

jjj ddd L

TTT

, jyjj AXRw −= (4-14)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1

1

1

21

22
2

2
1

11
2

1
1

m
n

mm

n

n

uuu

uuu
uuu

L

MOM

L

L

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

j

jn

j

j

I
b

b
b

M
2

1

＝

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

m
j

j

j

x

x

x

M

2

1

－

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

m
j

j

j

d

d

d

M

2

1

, j = 1, 2, …, n

The Equation (4-14) is the transpose of the jth row of Equation (4-13), so we can
rewrite Equation (4-13) as Equation (4-14).

Because each cell is only influenced by its neighboring cells, so matrix B is a
sparse matrix, and elements in jw are mostly 0. We remove 0 elements of jw , then

we can get jw~ . And we remove the corresponding columns of R, then we can get

jR~ , and TT~~
jjj RwwR = .

TTT

,
~~

jyjjj AXwR −= (4-15)

)(~~ TTT
, jyjjj AXRw −= + , j = 1, 2, …, n (4-16)

 110

jR~ is got from R according to the connection relation of the input of the jth cell and

inputs of other cells. We express the connection relation of the inputs of cells by

matrix S, so jR~ can be got by taking out partly vectors of R according to the jth row

of S. +
jR~ is the pseudoinverse of jR~ . jhm

j
×

ℜ∈R~ , jh
j

×
ℜ∈

1~w , 1
1

+⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

n

i
jij Sh .

Matrix S is the matrix represents the connection relation of cells’ inputs. S nn×ℜ∈ , if
the ith cell’s input and jth cell’s input have connection relation, then 1=ijS , on the

other hand, if the ith cell’s input and jth cell’s input have no connection relation,
0=ijS .

⎪
⎩

⎪
⎨

⎧
=

relation connection no haveinput scell'th andinput scell'th theif ,0

 relation connection haveinput scell'th andinput scell'th theif ,1

ji

ji

ijS

For example, a 4 × 4 cell array:

1 2 3 4

5 6 7 8

9 10 12

13 14 15 16

11

and radius r = 1, then S is written as the following:

 111

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0

1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0

0
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0

0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0

1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0

1
1
1
0
1
1
1
0
1
1
1
0
0
0
0
0

0
1
1
1
0
1
1
1
0
1
1
1
0
0
0
0

0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0

0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0

0
0
0
0
1
1
1
0
1
1
1
0
1
1
1
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1
1

0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1

0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0

0
0
0
0
0
0
0
0
1
1
1
0
1
1
1
0

0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
1

0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1

S

We explain TT~~
jjj RwwR = in the following.

Proof:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

=

1

1
1

] [

21

22221

11211

T

mnmm

n

n

uuu

uuu
uuu

L

MOM

L

L

hUR

] [21 jjnjjj Ibbb L=w

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1

1
1

21

22221

11211

T

mnmm

n

n

j

uuu

uuu
uuu

L

MOM

L

L

Rw ．

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

j

jn

j

j

I
b

b
b

2

1

M

The jth row] [21 jnjj sss L of matrix S represents that whether the jth cell and

other cells (include the jth cell) are neighbors, 1=jis represents that the jth cell and

the ith cell are neighbors, on the contrary, 0=jis represents that the jth cell and the

ith cell are not neighbors. The jth cell and the ith cell are not neighbors, it represents
that the jth cell can not be influenced by the input of the ith cell, so 0=jib , and when

 112

R multiplies T
jw , iu1 , iu2 , …, miu are all multiplied by 0, so we can remove the ith

column T
21] [miii uuu L of matrix R, then it forms jR~ , and remove jib of T

jw ,

then it forms T~
jw , and TT~~

jjj RwwR = .

In Equation (4-14), we can get T

jw by the following equation.

()TTT
, jyjj AXRw −= +

+R may not be unique, so T
jw may not be unique. B may not be unique. Then B

may not accord with the interconnecting structure of network inputs. So we must use a
matrix S to represent the interconnecting structure of network inputs and use the
above skill to calculate matrix B. We summarize the algorithm of using cellular neural
networks to design associative memories in the following.

Algorithm 4.1: Design the DT-CNN to behave as an associative memory
Input: m bipolar patterns iu , i = 1,……, m
Output:] [21 jjnjjj Ibbb L=w , j = 1,……, n, namely B and e

Start:

Step 1: Calculate matrix U from known iu .

] [21 muuuU L=

Step 2: Establish matrix Y = matrix U.

] [21 muuuUY L==

Step 3: Establish matrix S.

⎪
⎩

⎪
⎨

⎧
=

relation connection no haveinput scell'th andinput scell'th theif ,0

 relation connection haveinput scell'th andinput scell'th theif ,1

ji

ji

ijS

Namely S nn×ℜ∈ is a square matrix. If the ith cell’s input and jth cell’s input
have connection relation, then 1=ijS . On the other hand, if they have no

connection relation, then 0=ijS .

 113

Step 4: Design matrix A as the circulant matrix which satisfies globally
asymptotically stable condition.

Step 5: Set the value of α (α> 1), and calculate X = αY.

Step 6: Calculate AYA =y .

Step 7: for (j =1 to n) do:

Calculate jX by X.

Calculate jy ,A by yA .

Calculate R,] [T hUR = .

Establish matrix jR~ from matrix S and matrix R.

Calculate pseudoinverse matrix +
jR~ of jR~ .

Calculate T~
jw ,)(~~ TTT

, jyjjj AXRw −= + .

Recover jw from T~

jw .

End

 114

The flowchart of Algorithm 4.1:

 Start

Input m bipolar patterns ui , i = 1,……, m

Set matrix Y = matrix U, Y = U= [u1
 u2 … um]

Design matrix A as a circulant matrix

Set α value (α> 1), and calculate X = αY

Calculate matrix U from ui, U = [u1
 u2

 … um]

Establish matrix S

Calculate Ay = AY

for (j = 1 to n) do：

Calculate Xj, Ay, j, R, jR~ , +
jR~ , jw~ , wj

 End

 115

4.3.4 Associative Memories Design Principle

] [21 mxxxX L=
1T

21] [×ℜ∈= ni
n

iii xxx Lx , i = 1, 2, …, m

] [21 myyyY L=
1T

21] [×ℜ∈= ni
n

iii yyy Ly , i = 1, 2, …, m

] [21 muuuU L=
1T

21] [×ℜ∈= ni
n

iii uuu Lu , i = 1, 2, …, m

] [eeeJ L=
1T

21] [×ℜ∈= n
nIII Le

X = AY + BU + J

] [] [] [
] [] [] [] [

2121

212121

eeeBuBuBuAyAyAy
eeeuuuByyyAxxx

LLL

LLLL

++=

++=
mm

mmm

eBuAyx ++= iii , i = 1, 2, …, m
iu , i = 1, 2, …, m are training patterns, namely memorized patterns. Because we want

to design autoassociative memories, so outputs are memorized patterns. Output iy =

input iu , and iu are bipolar patterns, so iy are bipolar patterns too, namely the

elements of iy are +1 or -1. From output function we can know that if output is +1,
then the state is greater than +1; if output is -1, then the state is less than -1. So we set
up X = αY, α>1. And then we design matrix A as a circulant matrix which satisfies
the globally asymptotically stable condition, then calculate B and e.

Then G(x) = Af(x) + Bu + e is a contraction and there is a unique solution to the
nonlinear equation G(x) = x, namely there is a unique solution to x = Af(x) + Bu + e,
where T

21] [nxxx L=x . So if u = iu , then ix is the unique solution. No matter

what initial x is, x must converge to ix finally. There is a unique solution for each
element ix of x too. We can write the motion equation of the ith cell as the following

equation:

);()(
)(

iiii
i

i wxhwxg
dt

tdx
x =+==&

where

⎪
⎩

⎪
⎨

⎧

−≤−−
<−

≥+−
=+−=

1,
1||,)1(

1,
)()(

iii

iii

iii

iiii

xax
xxa
xax

xfaxxg

 116

∑∑
∈≠∈

++=
ijij NC

jj
ijNC

jji ubxfaIw
,

)(

The dynamic routes of ix are shown in Fig. 4.4.

xi

ai

-ai

0 +1

-1 Q+

Q-

slope = -1

slope = -1

slope = ai -1 > 0

xi

iiiii wxgwxhx +==)();(&

wi > ai

0 < wi < ai

-ai < wi < 0

wi < -ai

(a)

(b)

)(ii xgx =&

Fig. 4.4 The dynamic routes of ix .

Because there is a unique solution for each element ix of x, so in Fig. 4.4, the second

and third dynamic routes of (b) cannot be appeared. Only the first and fourth dynamic
routes can be appeared. The first dynamic route is the case of ii aw > ; the fourth

dynamic route is the case of ii aw −< . The elements of the one dimensional

space-invariant template we designed for matrix A are very small, namely ia are

very small, so iw are greater than ia or less than ia− (maybe only I has already

been greater than ia or less than ia−). So only the first and fourth dynamic routes

can be appeared. On the first and fourth dynamic routes, no matter what is the initial
value of each ix , each ix will converge to a unique equilibrium point. So if u = ju ,

then each element ix of x converges to a unique equilibrium point j
ix . Namely x

converges to jx . Therefore designing cellular neural networks to work as associative
memories is designing each training pattern to behave as an equilibrium point of the

 117

network.
We consider the situation that input is a noisy pattern q after the network is

trained,] [21 nqqq L=q . We suppose that the noisy pattern q is closer to training

pattern ku than to any other ju , j = 1, 2, …, m, j≠k. We compare the situations that

input is ku and input is q. The elements of q are mostly equal to the corresponding
elements of ku , only some elements of q are not equal to the corresponding elements
of ku . And in the equation of iw , only ju of input = q is possibly different to ju

of input = ku , other parameters of input = q are all equal to the corresponding
parameters of input = ku . So iw of input = q are mostly equal to iw of input = ku .

Several iw of input = q are not equal to the corresponding iw of input = ku due

to some ju of the equation of iw when input is q are not equal to the corresponding

ju of the equation of iw when input is ku . Because the different ju are not many,

so the sum ∑
∈ ij NC

jjub when input is q is similar to the sum ∑
∈ ij NC

jjub when input is

ku , namely the difference of the sum ∑
∈ ij NC

jjub when input is q and the sum

∑
∈ ij NC

jjub when input is ku is small, therefore the dynamic route of input = q is

similar to the dynamic route of input = ku . So the equilibrium point of input = q is
similar to the equilibrium point of input = ku . If the equilibrium point of input = ku
is greater than +1, then the equilibrium point of input = q is greater than +1 too; if the
equilibrium point of input = ku is less than -1, then the equilibrium point of input =
q is less than -1 too. So the output when input is q is equal to the output when input is

ku . Therefore we can recover the pattern ku which is noisy pattern q most similar to
when we input q to the network. But if the number of different elements of input q
correspond to its most similar pattern ku is large, then the difference of the sum

∑
∈ ij NC

jjub when input is q and the sum ∑
∈ ij NC

jjub when input is ku is large, so iw

of input = q is not similar to iw of input = ku . Therefore the dynamic route of input

= q is not similar to the dynamic route of input = ku . So the equilibrium point of
input = q is not similar to the equilibrium point of input = ku . If the equilibrium
point of input = ku is greater than +1, then the equilibrium point of input = q is
possibly less than -1; if the equilibrium point of input = ku is less than -1, then the
equilibrium point of input = q is possibly greater than +1. So the output when input is
q is possibly not equal to the output when input is ku . Therefore we cannot recover
the pattern ku which is noisy pattern q most similar to when we input q to the

 118

network. So the number of different elements of input q correspond to its most similar
pattern ku cannot be too large. Namely the Hamming distance between input q and
its most similar pattern ku cannot be too large. This states that the error correcting
ability of associative memories is limited.

4.3.5 Comparison of DT-CNN Associative Memory and Hopfield Associative
Memory

When a Hopfield neural network is used for designing associative memories, the
weightings of the Hopfield neural network are calculated by Hebb’s rule. In this thesis,
we use the synthesis procedure presented by G. Grassi to design DT-CNNs for
associative memories. The input data are fed via initial conditions in Hopfield neural
network and the outputs reach their steady state value at an equilibrium point which
depends on the initial conditions, this approach presents a drawback from the VLSI
implementation point of view, that is, initial conditions are required to be set to zero
each time the network is run. Obviously, this is an undesirable feature for networks
running in real time [19]. But the input data are fed via external inputs in cellular
neural networks, each trajectory converges to a unique equilibrium point, which
depends only on the input and not on the initial state. This feature makes perceive the
possibility of implementing associative memories via cellular neural networks running
in real time.

4.4 Pattern Recognition of Using DT-CNN Associative Memories

After calculating B and J, we finish designing the part of associative memories,
then we do the part of recognition. We input the known A, B, e and the testing pattern
as u to the motion equation x = A y + B u + e, then we can get the state value at the
next time, and then we use output function to calculate the output at the next time, we
use the output function of the standard cellular neural network here. We calculate
state value and output as so until all output values are not changed anymore, then final
output vector is the classification of the testing pattern. The algorithm and flowchart
are shown in the following:

 119

Algorithm 4.2: Use DT-CNN associative memories to recognize patterns
Input: A, B, e and the testing pattern u in the motion equation
Output: Classification of the testing pattern u

Start:

Step 1: Set up initial output vector y, its element values are all in [-1, 1] interval.

Step 2: Input the known A, B, e, y and testing pattern u into the motion equation.

x(t + 1) = A y(t) + B u + e

Step 3: Input x(t + 1) into activation function, then get new output y(t + 1).

activation function:
⎪
⎩

⎪
⎨

⎧

−=−<
=≤≤−

=>

1 then ,1
 then ,11

1 then ,1

yx
xyx

yx

Step 4: Compare new output y(t + 1) and y(t). Check whether they are the same, if

they are the same, then stop, otherwise input new output y(t + 1) into motion
equation again, repeat Step 2 to Step 4 until output y is not changed.

End

 120

The flowchart of Algorithm 4.2:

 Start

Set up initial output vector y

Input testing pattern u and output y into motion equation

x = A y + B u + e

 Input x into activation function, then get new y
x>1, then y = 1
–1≤ x≤ 1, then y = x
x< –1, then y = –1

 End

Are outputs the same? No

Yes

4.5 Example

We use an example to explain the process of pattern recognition with DT-CNNs.
In this example, we suppose that there are two training patterns and one testing pattern,
as Fig. 4.5 shows. We use “ 1 ” to represent white color and use “ -1 “ to represent
black color.

 121

Pattern size 2 × 3
Number of training patterns 2
Neighborhood radius r 1
1-D template [0.01 0.01 0.01]
α 3

 (a) (b) (c)
Fig. 4.5 (a) The first training pattern; (b) The second training pattern; (c) Testing pattern.

The first and second training patterns and testing pattern can be represented by three
vectors 1u , 2u , and t respectively.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

1
1
1

1
1

1

1u ,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

1
1

1
1

1
1

2u ,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

1
1
1

1
1
1

t

The process of pattern recognition:

Training:
Step 1: Calculate matrix U from known iu .

[]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

==

11
11

11
11

11
11

 21 uuU

 122

Step 2: Establish matrix Y = matrix U.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

==

11
11

11
11

11
11

UY

Step 3: Establish matrix S.

66110110
111111
011011
110110
111111
011011

×⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=S

Step 4: Design matrix A as a circulant matrix which satisfies globally asymptotically

stable condition.

Globally asymptotically stable condition:

1)(/ 2 <∑
−=

−
r

rh

nhqjeha π , q = 0, 1, 2, . . . , n-1

q = 0:

103.001.001.001.0)(
1

1

6/ 2 <=++=∑
−=

−

h

hqjeha π

q = 1:

102.00.02)(
1

1

6/ 2 <==∑
−=

−

h

hqjeha π

q = 2:

1105.2042105.2042)(18-18-
1

1

6/ 2 <×=×=∑
−=

−

h

hqjeha π

 123

q = 3:

10.010.01-)(
1

1

6/ 2 <==∑
−=

−

h

hqjeha π

q = 4:

1108.6736108.6736-)(18-18-
1

1

6/ 2 <×=×=∑
−=

−

h

hqjeha π

q = 5:

10.020.02)(
1

1

6/ 2 <==∑
−=

−

h

hqjeha π

So 1-D template [0.01 0.01 0.01] satisfies globally asymptotically stable condition.
Design matrix A as a circulant matrix:

6601.001.000001.0
01.001.001.0000
001.001.001.000
0001.001.001.00
00001.001.001.0
01.000001.001.0

×⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=A

Step 5: Calculate X = αY.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

⋅==

33
33

33
33

33
33

11
11

11
11

11
11

3YX α

 124

Step 6: Calculate AYA =y .

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

01.001.0
01.001.0
01.001.0

01.001.0
01.001.0

01.001.0

11
11

11
11

11
11

01.001.000001.0
01.001.001.0000
001.001.001.000
0001.001.001.00
00001.001.001.0
01.000001.001.0

AYA y

Step 7: for (j =1 to 6) do:

Calculate jX by X:

[]331 −=X , []332 −=X , []333 −=X , []334 −=X , []335 −=X ,
[]336 −=X .

Calculate jy ,A by yA :

[]01.001.01, −=yA , []01.001.02, −=yA , []01.001.03, −=yA ,

[]01.001.04, −=yA , []01.001.05, −=yA , []01.001.06, −=yA .

Calculate R,] [T hUR = :

⎥
⎦

⎤
⎢
⎣

⎡
−−−

−−−
==

1111111
1111111

] [T hUR

Establish matrix jR~ from matrix S and matrix R:

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

11111
11111~

1R , ⎥
⎦

⎤
⎢
⎣

⎡
−−−

−−−
=

1111111
1111111~

2R ,

 125

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

11111
11111~

3R , ⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

11111
11111~

4R ,

⎥
⎦

⎤
⎢
⎣

⎡
−−−

−−−
=

1111111
1111111~

5R , ⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

11111
11111~

6R .

Calculate inverse matrix +
jR~ of jR~ :

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=+

5.05.0
125.0125.0

125.0125.0
125.0125.0
125.0125.0

~
1R ,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

=+

5.05.0
0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

~
2R ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=+

5.05.0
125.0125.0
125.0125.0
125.0125.0

125.0125.0

~
3R ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=+

5.05.0
125.0125.0

125.0125.0
125.0125.0
125.0125.0

~
4R ,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

=+

5.05.0
0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

~
5R ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=+

5.05.0
125.0125.0
125.0125.0
125.0125.0

125.0125.0

~
6R .

Calculate T~
jw ,)(~~ TTT

, jyjjj AXRw −= + :

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡−
−⎥

⎦

⎤
⎢
⎣

⎡
−

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=−= +

0
7525.0
7525.0
7525.0

7525.0

01.0
01.0

3
3

5.05.0
125.0125.0

125.0125.0
125.0125.0
125.0125.0

)(~~ TTT
1,111 yAXRw ,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

=−= +

0
5017.0
5017.0

5017.0
5017.0

5017.0
5017.0

01.0
01.0

3
3

5.05.0
0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

)(~~ TTT
2,222 yAXRw ,

 126

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡−
−⎥

⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=−= +

0
7525.0

7525.0
7525.0
7525.0

01.0
01.0

3
3

5.05.0
125.0125.0
125.0125.0
125.0125.0

125.0125.0

)(~~ TTT
3,333 yAXRw ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡−
⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=−= +

0
7525.0

7525.0
7525.0
7525.0

01.0
01.0

3
3

5.05.0
125.0125.0

125.0125.0
125.0125.0
125.0125.0

)(~~ TTT
4,444 yAXRw ,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡−
−⎥

⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

=−= +

0
0.5017

0.5017
0.5017

0.5017
0.5017

0.5017

01.0
01.0

3
3

5.05.0
0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

0833.00833.0
0833.00833.0

)(~~ TTT
5,555 yAXRw ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

=−= +

0
7525.0
7525.0
7525.0

7525.0

01.0
01.0

3
3

5.05.0
125.0125.0
125.0125.0
125.0125.0

125.0125.0

)(~~ TTT
6,666 yAXRw

Recover jw from T~
jw :

[]007525.07525.007525.07525.01 −−=w ,
[]00.50170.50170.50170.50170.50170.50172 −−−=w ,
[]07525.07525.007525.07525.003 −−=w ,
[]007525.07525.007525.07525.04 −−=w ,
[]00.50170.50170.50170.50170.50170.50175 −−−=w ,
[]07525.07525.007525.07525.006 −−=w .

So

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−−

−−−
−−

=

7525.07525.007525.07525.00
0.50170.50170.50170.50170.50170.5017

07525.07525.007525.07525.0
7525.07525.007525.07525.00

0.50170.50170.50170.50170.50170.5017
07525.07525.007525.07525.0

B ,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0
0
0
0

e .

 127

Recognition:
Step 1: Set up initial output vector y, its element values are all in [-1, 1] interval.
We use a random value vector as initial output vector y.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

1
1
1
1

1
1

y

Step 2: Input the known A, B, e, y and testing pattern t as u into the motion equation.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−−

−−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

++=

515.1
1.0133

495.1
515.1

1.0133
495.1

0
0
0
0
0
0

1
1
1

1
1
1

7525.07525.007525.07525.00
0.50170.50170.50170.50170.50170.5017

07525.07525.007525.07525.0
7525.07525.007525.07525.00

0.50170.50170.50170.50170.50170.5017
07525.07525.007525.07525.0

1
1
1
1

1
1

01.001.000001.0
01.001.001.0000
001.001.001.000
0001.001.001.00
00001.001.001.0
01.000001.001.0

eBuAyx

 128

Step 3: Input x into activation function f, then get new output ny .

()

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

==

1
1
1

1
1

1

xfy n

Step 4: Compare new output ny and y. Check whether they are the same, if they are

the same, then stop, otherwise input new output ny as y into motion equation
again, repeat Step 2 to Step 4 until output y is not changed.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

1
1
1

1
1

1

ny , yyy ≠⇒

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

= n

1
1
1
1

1
1

, set nyy = .

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

++=

495.1
0033.1

495.1
495.1
0033.1
495.1

eBuAyx

()

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

==

1
1
1

1
1

1

xfy n , yy =n , stop.

1uy =n , so the testing pattern belongs to the class of the first training pattern.

 129

We use the energy equation [20]:

∑∑∑

∑∑∑
−−

+−=

i
i

i j
jiij

i
i

i j
jiij

tIyutyb

tytytyatE

)()(

)(
2
1)()(

2
1)(2

Compute the energy after each iteration:
Iteration 0
:

0000.6)0(

1
1
1
1

1
1

=⇒

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

= Ey

Iteration 1:

9967.4)1(

1
1
1

1
1

1

−=⇒

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

= Ey

Iteration 2:

9967.4)2(

1
1
1

1
1

1

−=⇒

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

= Ey

 130

Energy curve:

We use pseudoinverse technique to compute matrix B. But pseudoinverse matrix

of R is not unique, so matrix B is not unique. We compute matrix B without using
matrix S to indicate the interconnecting structure of network inputs now. Then matrix
B is shown in the following:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−−
−−−

−−−
−−−

=

0.50170.50170.50170.50170.50170.5017
0.50170.50170.50170.50170.50170.5017

0.50170.50170.50170.50170.50170.5017
0.50170.50170.50170.50170.50170.5017

0.50170.50170.50170.50170.50170.5017
0.50170.50170.50170.50170.50170.5017

B

The interconnecting structure of network inputs is fully connected. This is not the
same with the general CNN structure. The result of this example with the fully
connected CNN is the same with the locally connected CNN and is shown in the
following:

The energy curve is shown in the following:

 131

4.6 Experimental Results

 In Experiment 1, we use two values for α and several different feedback
templates to observe the influences of α and the feedback template for the network
performance. In Experiment 2, 3, 4 and 5, we apply DT-CNN associative memory
with matrix S, DT-CNN associative memory without matrix S and Hopfield
associative memory to simulated seismic patterns and compare performances of these
three systems. In Experiment 6, we apply the DT-CNN associative memory with
matrix S to real seismic patterns. In Experiment 7, we use an example to introduce the
case of indefinite cells.

Experiment 1.

 To observe the effect of α and the effect of feedback template, we use two
different values of α and different feedback templates to do the same experiment.

Pattern size 7 × 7
The number of training patterns 3
Hamming distance(HD) 6
Neighborhood radius r 1, 2
α 3, 100

1-D feedback template [0.01 0.01 0.01],
[0.0001 0.0001 0.0001],
[0.01 0.01 0.01 0.01 0.01],
[0.0001 0.0001 0.0001 0.0001 0.0001]

 132

(a) (b) (c)

(d) (e) (f)

Fig. 4.6 (a) The 1st training pattern; (b) The 2nd training pattern; (c) The 3rd training
pattern; (d) The 1st noisy input pattern; (e) The 2nd noisy input pattern; (f) The
3rd noisy input pattern.

Case 1: α = 3, r = 1, 1-D feedback template: [0.01 0.01 0.01]

(a) (b) (c)

Fig. 4.7 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f).

(a) (b) (c)

Fig. 4.8 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).

 133

Case 2: α = 100, r = 1, 1-D feedback template: [0.01 0.01 0.01]

(a) (b) (c)

Fig. 4.9 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f).

(a) (b) (c)

Fig. 4.10 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).

Case 3: α = 3, r = 2, 1-D feedback template: [0.01 0.01 0.01 0.01 0.01]

(a) (b) (c)

Fig. 4.11 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f).

(a) (b) (c)

Fig. 4.12 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).

 134

Case 4: α = 100, r = 2, 1-D feedback template: [0.01 0.01 0.01 0.01 0.01]

(a) (b) (c)

Fig. 4.13 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f).

(a) (b) (c)

Fig. 4.14 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).

The outputs of Case 1 are equal to the outputs of Case 2. And the outputs of Case 3
are equal to the outputs of Case 4. So network performances are not affected by the
choice of α.

Case 5: α = 3, r = 1, 1-D feedback template: [0.0001 0.0001 0.0001]

(a) (b) (c)

Fig. 4.15 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f).

 135

(a) (b) (c)

Fig. 4.16 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).

Case 6: α = 3, r = 2, 1-D feedback template: [0.0001 0.0001 0.0001 0.0001
0.0001]

(a) (b) (c)

Fig. 4.17 (a) Output of Fig. 4.6(d); (b) Output of Fig. 4.6(e); (c) Output of Fig. 4.6(f).

(a) (b) (c)

Fig. 4.18 (a) Energy curve of Fig. 4.6(d); (b) Energy curve of Fig. 4.6(e); (c) Energy curve
of Fig. 4.6(f).

The outputs of Case 1 are equal to the outputs of Case 5. And the outputs of Case 3
are equal to the outputs of Case 6. So network performances are not affected by the
choice of 1-D feedback template.

 136

Experiment 2.

In this experiment, we store two simulated seismic patterns and recognize a noisy
input pattern.

Pattern size 8 × 12

The number of training patterns 2
Hamming distance(HD) 6

(a) (b)

(c)

Fig. 4.19 (a) The 1st training pattern: sealevel fall; (b) The 2nd training pattern; (c) The
noisy input pattern.

We apply this DT-CNN associative memory with matrix S to simulated seismic

patterns first. We set α = 3 and neighborhood radius r = 1. The result is shown in Fig.
4.20.

 137

(a) (b)

Fig. 4.20 (a) Output of Fig. 4.19(c); (b) Energy curve.

Next, we apply DT-CNN associative memory without matrix S to this
experiment. We set α = 3 and neighborhood radius r = 1. The output pattern is the
same with Fig. 4.20(a).

And then we apply Hopfield associative memory to this experiment. The output
pattern is also the same with Fig. 4.20(a). The comparison of these three systems for
this experiment is shown in Table 4.1.

DT-CNN with S DT-CNN without S

r = 1 r = 1
Hopfield

Recognition Success Success Success
Training time
(second)

0.141 0.047 0.0003

Recognition time
(second)

0.312 0.281 0.156

Table. 4.1 Comparison of three systems for Experiment 2.

Experiment 3.

In this experiment, we store two simulated seismic patterns and recognize two
noisy input patterns.

Pattern size 19 × 29

The number of training patterns 2
Hamming distance(HD) 100, 90

 138

(a) (b)

(c) (d)

Fig. 4.21 (a) The 1st training pattern: bright-spot; (b) The 2nd training pattern: pinch-out;
(c) The 1st noisy input pattern (HD = 100); (d) The 2nd noisy input pattern (HD
= 90).

We apply this DT-CNN associative memory with matrix S to simulated seismic

patterns first. We set α = 3 and neighborhood radius r = 1, 2 and 3. The results are
shown in Fig. 4.22, 4.23 and 4.24.

r = 1:

(a) (b)

(c) (d)

Fig. 4.22 (a) Output of Fig. 4.21(c); (b) Output of Fig. 4.21(d); (c) Energy curve of Fig.
4.21(c); (d) Energy curve of Fig. 4.21(d).

 139

Fig. 4.22(a) and (b) are uncorrected output patterns, so we set neighborhood radius to
2 and try again.

r = 2:

(a) (b)

(c) (d)

Fig. 4.23 (a) Output of Fig. 4.21(c); (b) Output of Fig. 4.21(d); (c) Energy curve of Fig.
4.21(c); (d) Energy curve of Fig. 4.21(d).

Fig. 4.23(a) and (b) are uncorrected output patterns, so we set neighborhood radius to
3 and try again.

r = 3:

(a) (b)

(c) (d)

Fig. 4.24 (a) Output of Fig. 4.21(c); (b) Output of Fig. 4.21(d); (c) Energy curve of Fig.
4.21(c); (d) Energy curve of Fig. 4.21(d).

 140

Two output patterns in Fig. 4.24 are all correct. Next, we apply DT-CNN associative
memory without matrix S to this experiment. We set α = 3 and neighborhood radius r
= 1. The output patterns are the same with Fig. 4.24(a) and (b). And then we apply
Hopfield associative memory to this experiment. The output patterns are also the same
with Fig. 4.24(a) and (b). The comparison of these three systems for this experiment is
shown in Table 4.2.

DT-CNN with S DT-CNN without S

r = 1 r = 2 r = 3 r = 1
Hopfield

Recognition Failure Failure Success Success Success
Average training
time (second)

8.5 7.25 0.047

Average
recognition time
(second)

0.3205 0.328 0.172

Table. 4.2 Comparison of three systems for Experiment 3.

Experiment 4.

In this experiment, we store three simulated seismic patterns and recognize three
noisy input patterns.

Pattern size 12 × 48

The number of training patterns 3
Hamming distance(HD) 107, 118, 118

(a) (b) (c)

Fig. 4.25 (a) The 1st training pattern: bright-spot; (b) The 2nd training pattern: right
pinch-out; (c) The 3rd training pattern: left pinch-out.

 141

(a) (b) (c)

Fig. 4.26 (a) ~ (c) Three noisy input patterns with HD = 107, 118, 118 respectively.

We apply this DT-CNN associative memory with matrix S to simulated seismic
patterns first. We set α = 3 and neighborhood radius r = 2, 3 and 4. The results are
shown in Fig. 4.27, 4.28 and 4.29.

r = 2:

(a) (b) (c)

(d) (e) (f)

Fig. 4.27 (a) Output of Fig. 4.26(a); (b) Output of Fig. 4.26(b); (c) Output of Fig. 4.26(c);
(d) Energy curve of Fig. 4.26(a); (e) Energy curve of Fig. 4.26(b); (f) Energy
curve of Fig. 4.26(c).

Three output patterns in Fig. 4.27 are uncorrected output patterns, so we set
neighborhood radius to 3 and try again.

 142

r = 3:

(a) (b) (c)

(d) (e) (f)

Fig. 4.28 (a) Output of Fig. 4.26(a); (b) Output of Fig. 4.26(b); (c) Output of Fig. 4.26(c);
(d) Energy curve of Fig. 4.26(a); (e) Energy curve of Fig. 4.26(b); (f) Energy
curve of Fig. 4.26(c).

Fig. 4.28(b) is an uncorrected output pattern, so we set neighborhood radius to 4 and
try again.

r = 4:

(a) (b)

Fig. 4.29 (a) Output of Fig. 4.26(b); (b) Energy curve of Fig. 4.26(b).

Next, we apply DT-CNN associative memory without matrix S to this
experiment. We set α = 3 and neighborhood radius r = 1. The output patterns are the
same with Fig. 4.28(a), Fig. 4.29(a) and Fig. 4.28(c). And then we apply Hopfield
associative memory to this experiment. The output patterns are shown in Fig. 4.30.
The comparison of these three systems for this experiment is shown in Table 4.3.

 143

(a) (b) (c)

Fig. 4.30 (a) Output of Fig. 4.26(a) by Hopfield associative memory; (b) Output of Fig.
4.26(b) by Hopfield associative memory; (c) Output of Fig. 4.26(c) by Hopfield
associative memory.

DT-CNN with S DT-CNN without S

r = 2 r = 3 r = 4 r = 1
Hopfield

Recognition Failure Failure Success Success Failure
Average training
time (second)

9.922 8.25 0.047

Average
recognition time
(second)

0.3177 0.3023 0.193

Table. 4.3 Comparison of three systems for Experiment 4.

 144

Experiment 5.

In this experiment, we store five simulated seismic patterns and recognize five
noisy input patterns.

Pattern size 19 × 29

The number of training patterns 5
Hamming distance(HD) 100, 90, 100, 100, 100

(a) Bright spot (b) Pinch out (c) Flat spot

 (d) Sealevel fall (e) Sealevel rise

Fig. 4.31 (a) ~ (e) Five training patterns.

(a) (b) (c)

 (d) (e)

Fig. 4.32 (a) ~ (e) Five noisy input patterns with HD = 100, 90, 100, 100, 100 respectively.

 145

We apply this DT-CNN associative memory with matrix S to simulated seismic
patterns first. We set α = 3 and neighborhood radius r = 3 and 4. The results are
shown in Fig. 4.33 and 4.34.

r = 3:

(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Fig. 4.33 (a) Output of Fig. 4.32(a); (b) Output of Fig. 4.32(b); (c) Output of Fig. 4.32(c);
(d) Output of Fig. 4.32(d); (e) Output of Fig. 4.32(e); (f) Energy curve of Fig.
4.32(a); (g) Energy curve of Fig. 4.32(b); (h) Energy curve of Fig. 4.32(c); (i)
Energy curve of Fig. 4.32(d); (j) Energy curve of Fig. 4.32(e).

Fig. 4.33(a), (c) and (e) are uncorrected output patterns, so we set neighborhood
radius to 4 and try again.

 146

r = 4:

(a) (b) (c)

(d) (e) (f)

Fig. 4.34 (a) Output of Fig. 4.32(a); (b) Output of Fig. 4.32(c); (c) Output of Fig. 4.32(e);
(d) Energy curve of Fig. 4.32(a); (e) Energy curve of Fig. 4.32(c); (f) Energy
curve of Fig. 4.32(e).

Three output patterns in Fig. 4.34 are all correct. Next, we apply DT-CNN associative
memory without matrix S to this experiment. We set α = 3 and neighborhood radius r
= 1. The output patterns are the same with Fig. 4.34(a), Fig. 4.33(b), Fig. 4.34(b), Fig.
4.33(d) and Fig. 4.34(c). And then we apply Hopfield associative memory to this
experiment. The output patterns are shown in Fig. 4.35. The comparison of these three
systems for this experiment is shown in Table 4.4.

 147

(a) (b) (c)

(d) (e)

Fig. 4.35 (a) Output of Fig. 4.32(a) by Hopfield associative memory; (b) Output of Fig.
4.32(b) by Hopfield associative memory; (c) Output of Fig. 4.32(c) by Hopfield
associative memory; (d) Output of Fig. 4.32(d) by Hopfield associative memory;
(e) Output of Fig. 4.32(e) by Hopfield associative memory.

CNN with S CNN without S

r = 3 r = 4 r = 1
Hopfield

Recognition Failure Success Success Failure
Average training
time (second)

9.281 7.5 0.079

Average
recognition time
(second)

0.294 0.2976 0.2622

Table. 4.4 Comparison of three systems for Experiment 5.

 148

Experiment 6.

We apply this DT-CNN associative memory with matrix S to real seismic
patterns. In this experiment, we store two training patterns and recognize three real
seismic patterns.

Training pattern size 16 × 50

Real seismic pattern size 64 × 64
The number of training patterns 2
Neighborhood radius r 1, 3
α 3

(a) (b)

Fig. 4.36 Two training patterns.

The size of real seismic pattern is larger than the size of training pattern. We use a
window to extract the testing pattern from real seismic pattern. The size of this
window is equal to the size of training pattern. This window is shifted from left to
right and top to bottom on the real seismic pattern. If the output pattern of the network
is equal to one of training patterns. We record the coordinate of upper-left corner of
the window. After the window is shifted to the last position on the real seismic pattern
and all testing patterns are recognized, we calculate the coordinate of the center of all
recorded coordinates which are about the same training pattern. And then we use the
detected training pattern and the center coordinate to recover the pattern. We set
neighborhood radius r = 1 to process the first and second real seismic patterns and set
r = 3 to process the third real seismic pattern.

 149

r = 1:

 (a) (b) (c)

Fig. 4.37 (a) The first real seismic pattern; (b) Coordinates of successful recognition; (c)
Output of (a).

 (a) (b) (c)

Fig. 4.38 (a) The second real seismic pattern; (b) Coordinates of successful recognition; (c)
Output of (a).

r = 3:

 (a) (b) (c)

Fig. 4.39 (a) The third real seismic pattern; (b) Coordinates of successful recognition; (c)
Output of (a).

 150

Experiment 7.

Pattern size 4 × 4
The number of training patterns 2
Hamming distance(HD) 3
Neighborhood radius r 1, 2
α 3

(a) (b)

Fig. 4.40 Two training patterns.

Fig. 4.41 One noisy input pattern.

r = 1:

(a) (b)

Fig. 4.42 (a) Output of Fig. 4.41 if r = 1; (b) Energy curve of Fig. 4.41 if r = 1.

When r = 1, the output pattern shown in Fig. 4.42 is not a correct pattern. The pixel on
the 1st row and the 2nd column should be a black pixel. Namely the output pattern
should be equal to the training pattern 1 shown in Fig. 4.40(a). The pixel on the 1st
row and the 2nd column is an indefinite cell. The definition of indefinite cells is
explained after. The problem of indefinite cells can be solved by increasing
neighborhood radius. So we increase neighborhood radius r to 2 and try again.

 151

r = 2:

(a) (b)

Fig. 4.43 (a) Output of Fig. 4.41 if r = 2; (b) Energy curve of Fig. 4.41 if r = 2.

Indefinite Cell

If more than two similar patterns are stored, the conventional synthesis procedure
may generate the cells with only self-input from these patterns, which are so-called
indefinite cells. As the outputs of indefinite cells are determined by only their inputs,
DT-CNN can’t always associate the expected memory pattern.

C1

C2

C16

C2

 (a) (b)

Fig. 4.44 Example of the indefinite cell.

Two patterns shown in Fig. 4.44 are overall different forms each other [21]. But,
it is found that the r (=1) -neighborhood of 2C in Fig. 4.44(a) is the same pattern as

one of 2C in Fig. 4.44(b) except 2C . Therefore, the conventional DT-CNN

associative memory can’t determine the output of 2C from its r-neighborhood. 2C
is called an indefinite cell. We know the following equations for every cell.

);()(
)(

iiii
i

i wxhwxg
dt

tdxx =+==&

where

⎪
⎩

⎪
⎨

⎧

−≤−−
<−
≥+−

=+−=
1,
1||,)1(

1,
)()(

iii

iii

iii

iiii

xax
xxa
xax

xfaxxg

∑∑
∈≠∈

++=
ijij SC

jj
ijSC

jji ubxfaIw
,

)(

 152

We observe iw of 2C for two patterns in Fig. 4.44 and a testing pattern. For the

pattern in Fig. 4.44, we note the iw of (a) as 1
2w and the iw of (b) as 2

2w . And we

note the iw of testing pattern as 3
2w . We plot the dynamic routes of the cell 2C of

two patterns in Fig. 4.44 as Fig. 4.45.

∑∑
∈≠∈

++=
22 2,

2)(
SC

i
jj

jSC
jj

i

jj

ubxfaIw , i = 1, 2, 3

x2

22222)();(wxgwxhx +==&

D1: Fig. 4.44(a)

D2: Fig. 4.44(b)

-1 +1
0

D3: ∑∑
≠∈≠∈

++=
2,2,

2
22

)(
jSC

k
jj

jSC
jj

jj

ubxfaIw

k = 1, 2

|b2|

|b2|

|b2|

D4: ∑∑
≠∈≠∈

++=
2,

3

2,
2

22

)(
jSC

jj
jSC

jj
jj

ubxfaIw

Fig. 4.45 The dynamic routes of cell 2C .

)()(

)(

)()(

2
3
22

2,

3

3

3

2,

3

2,
2

3
2

2

2

22

2222

kk
j

jSC
jj

k
j

SC
jj

SC

k
jj

SC
jj

SC

k
jj

jSC
jj

SC
jj

jSC
jj

k

uubuub

uub

ubub

ubxfaIubxfaIww

j

j

jj

jjjj

−+−=

−=

−=

−−−++=−

∑

∑

∑∑

∑∑∑∑

≠∈

∈

∈∈

∈≠∈∈≠∈

k = 1, 2

 153

Because the Hamming distance between the testing pattern and the two patterns in Fig.
4.44 can not be too large, so (3

ju , 2SC j ∈ , j≠2) are almost equal to (k
ju , 2SC j ∈ , j

≠2, k = 1 or 2). Therefore)(
2,

3

2

k
j

jSC
jj uub

j

−∑
≠∈

 is small, its absolute value should be

less than 2b .)(2
3
22

kuub − is equal to 0 or 22b± .

2
2,

3

2,

3 2)()(
22

buubuub k
j

jSC
jj

k
j

jSC
jj

jj

±−<− ∑∑
≠∈≠∈

. So if 13
2 =u , then

)(
2,

31
2

3
2

2

k
j

jSC
jj uubww

j

−=− ∑
≠∈

 and 2
2,

32
2

3
2 2)(

2

buubww k
j

jSC
jj

j

+−=− ∑
≠∈

,

2
2

3
2

1
2

3
2 wwww −<− . Therefore 2x will converge to a value greater than +1, namely

the output will converge to +1. If 13
2 −=u , then

2
2,

31
2

3
2 2)(

2

buubww k
j

jSC
jj

j

−−=− ∑
≠∈

 and)(
2,

32
2

3
2

2

k
j

jSC
jj uubww

j

−=− ∑
≠∈

,

2
2

3
2

1
2

3
2 wwww −>− . Therefore 2x will converge to a value less than -1, namely the

output will converge to -1. So the outputs of indefinite cells are determined by only
their input values.

Therefore, if such memory patterns exist, then the conventional DT-CNN
associative memory has the indefinite cells and can’t determine the outputs of
indefinite cells from their r-neighborhoods.

T. Kamio and H. Asai proposed a DT-CNN system to overcome this problem
[21]. The DT-CNN system for associative memory uses two-dimensional discrete
Walsh transform. This DT-CNN system consists of two kinds of DT-CNN associative
memories and two-dimensional DWT processor as shown in Fig. 4.46 [21]. One of
the DT-CNNs is the conventional DT-CNN and the other is the DT-CNN with
multilevel threshold function. The former works for the bipolar memory patterns and
the latter remembers the 2D-DWT of these bipolar memory patterns.

 154

2-level
DT-CNN

Learning

Memory Patterns

DWT

IDWT

= Fig. 4.44(a)

(a) (b)

(c)

Multi-level
DT-CNN

Learning

DWT of Memories

Fig. 4.46 DT-CNN for associative memory using two-dimensional discrete Walsh
transform.

As a simple example, it is supposed that two DT-CNNs have the r = 1

neighborhood and the system has two memory patterns shown in Fig. 4.44. If the
noisy pattern shown in Fig. 4.46(a) is input to 2-level DT-CNN, then Fig. 4.46(b) is
output. As a result, it is found that 2-level DT-CNN fails to associate the desired
memory pattern (Fig. 4.44(a)) due to the indefinite cell 2C . Furthermore, if the DWT
of Fig. 4.46(b) is input to the multilevel DT-CNN, then the output in Fig. 4.46(c) is
obtained as the IDWT of the image from the multilevel DT-CNN. Fig. 4.46(c) shows
that the output value of indefinite cell 2C is close to the correct value (+1). Finally,
2-level DT-CNN can completely derive the desired pattern shown in Fig. 4.44(a) from
Fig. 4.46(c).

The other method that overcomes this problem is increasing the neighborhood
radius of template B. It makes the neighborhood size larger, and then the same
neighborhood patterns originally will be not the same. We observe the two training
patterns in Fig. 4.44. If neighborhood radius r is increased to 2, then the neighborhood
of 2C in Fig. 4.44(a) is not the same pattern as the neighborhood of 2C in Fig.
4.44(b), as Fig. 4.47 shows.

C1

C2

C16

C2

Fig. 4.47 If r = 2, the neighborhoods of 2C in two training patterns.

 155

So 2C in Fig. 4.47 is not the indefinite cell.
 The process of the above method is recognizing input pattern first. If the output
pattern is different to all memory patterns and that is caused by some indeterminate
cells, then increase neighborhood radius and recognize input pattern again until the
output pattern is correct. The computation time of this method is much. M. Namba, S.
Takatori, H. Kawabata and Z. Zhang proposed an algorithm which can reduce the
computation time [22]. This algorithm searches indeterminate cells by matching every
memory pattern in advance, and modifies the neighborhood of indeterminate cells.
This algorithm can be shown as Fig. 4.48 [22].

Start

Matching every
memory pattern

Has the indeterminate
cell been found ?

Exit

No

Modifying its
neighborhood

Yes

Fig. 4.48 The algorithm searching indeterminate cells.

4.7 Conclusions

In this chapter an application of autoassociative memories using DT-CNNs has
been proposed. If each element of the 1-D space-invariant template is equivalent, then
matrix A is symmetric. The symmetry of the interconnection matrix A assures that the
synthesized network does not oscillate nor become chaotic. Moreover, all the stored
patterns correspond to asymptotically stable equilibrium points.

 156

References

[1] J. Anderson, “A Memory Storage Model Utilizing Spatial Correlation Functions”,
Kybernetik, 5, 113-119, 1986.

[2] Amari, “Learning Patternsand Pattern Sequences by Self-Organizing Nets of
Threshold Elements”, IEEE Trans. on Computers, c 21, 1197-206, 1972.

[3] T. Kohonen, “Correlation matrix memories”, IEEE Trans. Comput., vol. c 21, no.
4, pp. 353-359, April 1972.

[4] B. Kosko, “Adaptive Bidirectional Associative Memories”, Applied Optics, vol.
26, no. 23, Dec. 1987.

[5] D. Liu and A. N. Michel, “Sparsely interconnected neural networks for
associative memories with applications to cellular neural networks,” IEEE Trans.
Circuits Syst. II, vol. 41, pp. 295–307, Apr. 1994.

[6] A. N. Michel and J. A. Farrell, “Associative memories via artificial neural
networks,” IEEE Contr. Syst. Mag., vol. 10, pp. 6–17, Apr. 1990.

[7] G. Seiler, A. J. Schuler, and J. A. Nossek, “Design of robust cellular neural
networks,” IEEE Trans. Circuits Syst. I, vol. 40, pp. 358–364, May 1993.

[8] G. Grassi, “A new approach to design cellular neural networks for associative
memories,” IEEE Trans. Circuits Syst. I, vol. 44, pp. 835–838, Sept. 1997.

[9] G. Grassi, “On discrete-time cellular neural networks for associative memories,”
IEEE Trans. Circuits Syst. I, vol. 48, pp. 107–111, Jan. 2001.

[10] J. Park, H.-Y. Kim, Y. Park, and S.-W. Lee, “A synthesis procedure for
associative memories based on space-varying cellular neural networks,” Neural
Networks, vol. 14, no. 1, pp. 107–113, Jan. 2001.

[11] S. Boyd and L. El Ghaoui, “Method of centers for minimizing generalized
eigenvalues,” Linear Alg. Applicat., vol. 188, pp. 63–111, 1993.

[12] Y. E.Yu. E. Nesterov and A. S. Nemirovskii, “An interior-point method for
generalized linear-fractional programming,” Math. Prog., vol. 69, pp. 177–204,
1995.

[13] L. Vandenberghe and V. Balakrishnan, “Algorithms and software for LMI
problems in control,” IEEE Contr. Syst. Mag., vol. 17, pp. 89–95, Oct. 1997.

[14] Liu, D., and Lu, Z., “A new synthesis approach for feedback neural networks
based on the perceptron training algorithm,” IEEE Trans. Neural Networks, 8,
1468–1482.

[15] Chan, H. Y., and Zak, S. H., “Real-time synthesis of sparsely interconnected
neural associative memories,” Neural Networks, 11, 749–759.

[16] Perfetti, R., “Dual-mode space-varying self-designing cellular neural networks

 157

for associative memory,” IEEE Trans. Circuits Syst. I, 46, 1281–1285.
[17] R. Perfetti, “Frequency domain stability criteria for cellular neural networks,”

Int. J. Circuit Theory Appl., vol. 25, no. 1, pp. 55–68, 1997.
[18] S. Arik, A. Kilinc and F. A. Savaci, “Global Asymptotic Stability of

Discrete-Time Cellular Neural Networks,” 1998 Fifth IEEE International
Workshop on Cellular Neural Networks and their Applications, London,
England, 1998, pp.52-55.

[19] C. Guzelis and L. O. Chua, “Stability analysis of generalized cellular neural
networks”, Int. J. of Circ. Theory and Appl., 21, 1-33 (1993).

[20] L. O. Chua and Lin Yang, “Cellular Neural Networks: Theory,” IEEE Trans. on
CAS, vol. 35 no. 10, pp.1257-1272, 1988.

[21] T. Kamio and H. Asai, “Improvement of Discrete-Time Cellular Neural
Networks for Associative Memory Using 2-Dimensional Discrete Walsh
Transform,” Cellular Neural Networks and Their Applications Proceedings,
1998 Fifth IEEE International Workshop on, 14-17 April 1998, Page(s):416 -
421.

[22] M. Namba, S. Takatori, H. Kawabata and Z. Zhang, “The Variable
Neighborhood CNN,” Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE
International Symposium on, Volume 3, 6-9 May 2001, Page(s):105 - 108 vol. 2.

	Chapter 4前半.pdf
	Chapter 4中半.pdf
	Chapter 4後半.pdf

