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Chapter 5 

Conclusions and Future Works 

5.1 Conclusions 

We apply cellular neural networks for seismic horizon linking and pattern 
recognition. For horizon linking, we establish the energy function by setting four 
different constraints of peak distribution. Then we compare this energy function and 
the standard energy function of a cellular neural network, and then we can get the 
weightings A(i, j; k, l). Then we use this network which is trained to deal with seismic 
horizon linking. Experimental results show that the extracted horizons are the same 
with the results of our visual observation. 

For pattern recognition, we design discrete-time cellular neural networks to 
behave as associative memories first. Discrete-time cellular neural networks work as 
associative memories when the memory patterns correspond to asymptotically stable 
equilibrium points of the network dynamics. And then we use the associative 
memories to recognize patterns. Seismic pattern recognition will help the analysis and 
interpretation of seismic data.  

5.2 Future Works 

For seismic horizon linking, we can link the broken horizons which have the 
short broken parts now. The broken part with length 2 can be linked by our algorithm 
now. In the future work, we can add some other constraints to link the broken 
horizons which have the longer broken parts. 

In the future work, we may use the high-order CNN to design associative 
memories with better performance. High order neural networks for associative 
memories with a greater storage capability with respect to the first-order ones have 
been introduced [1]-[6]. M. Brucoli, L. Carnimeo and G. Grassi proposed a design 
method for associative memories using discrete-time high-order neural networks 
which includes local interconnections among neurons [7]. Simulation results show 
that the performance of [7] is quite better than the first-order cellular neural 
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associative memories [8]. We perhaps can apply the high-order structure to the 
synthesis procedure of cellular neural networks for associative memories. A 
discrete-time second-order CNN is considered. 
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Equation (5-1) can be rewritten in vector form as 
 

x(h + 1) = A y(h) + G z(h) + B u + e             (5-2a) 
y(h) = f(x(h))                        (5-2b) 

 

where 1T
21 ]   [ ×ℜ∈= n

nxxx Lx ; 1T
21 ]   [ ×ℜ∈= n
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21 ]   [ ×ℜ∈= n
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p
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123213121 ]        [ LLLz . 

 
In order to design G as a circulant matrix, we must rearrange the elements of z. 

According to linear neighboring (1-D template), Equation (5-1a) can be rewritten as 
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where { })( and )(),( iNCiNCkjNS rkrji ∈∈= , jC  is the jth cell, )(iN r  is the 

r-neighborhood of the cell iC . 
 
G can be decomposed into 2r circulant matrices. For r = 1, G can be decomposed into 
2 circulant matrices. Suppose that these two circulant matrices are 1G  and 2G . We 
can design 1G  and 2G  as the following. 
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Index of cell 
Indexes of neighboring 

cells 
Pairs of indexes of 
neighboring cells 

1 1, 2, n (1, 2), (1, n), (2, n) 
2 1, 2, 3 (1, 2), (1, 3), (2, 3) 
3 2, 3, 4 (2, 3), (2, 4), (3, 4) 
n 1, n-1, n (1, n-1), (1, n), (n-1, n) 

 
We can design 1G  consist of the coefficients corresponding to the following pairs: 
(1, 2)→(2, 3)→(3, 4)→…→(n-1, n)→(1, n)→(1, 2) 

2G  consists of the coefficients corresponding to the following pairs: 
(1, 3)→(2, 4)→(3, 5)→…→(n-2, n)→(1, n-1)→(2, n)→(1, 3) 

1z  multiples 1G , so ]   [ 114332211 nnn yyyyyyyyyy −= Lz  

2z  multiples 2G , so ]    [ 21125342312 nnnn yyyyyyyyyyyy −−= Lz  
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So Equation (5-2a) can be rewritten as 
 

eBuzGzGAyx ++++=+ )()()()1( 2211 hhhh  
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For r = 2, we design 1G , 2G , 3G  and 4G  as circulant matrices, then 
 

Index of cell 
Indexes of neighboring 

cells 
Pairs of indexes of neighboring cells 

1 1, 2, 3, n-1, n 
(1, 2), (1, 3), (1, n-1), (1, n), (2, 3),  
(2, n-1), (2, n), (3, n-1), (3, n), (n-1, n) 

2 1, 2, 3, 4, n 
(1, 2), (1, 3), (1, 4), (1, n), (2, 3), (2, 4), 
(2, n), (3, 4), (3, n), (4, n) 

3 1, 2, 3, 4, 5 
(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), 
(2, 5), (3, 4), (3, 5), (4, 5) 

n 1, 2, n-2, n-1, n 
(1, 2), (1, n-2), (1, n-1), (1, n), (2, n-2), 
(2, n-1), (2, n), (n-2, n-1), (n-2, n), (n-1, 
n) 

 
We can design 1G  consist of the coefficients corresponding to the following pairs: 
(1, 2)→(2, 3)→(3, 4)→…→(n-1, n)→(1, n)→(1, 2) 
 

2G  consists of the coefficients corresponding to the following pairs: 
(1, 3)→(2, 4)→(3, 5)→…→(n-2, n)→(1, n-1)→(2, n)→(1, 3) 
 

3G  consists of the coefficients corresponding to the following pairs: 
(1, 4)→(2, 5)→(3, 6)→…→(n-3, n)→(1, n-2)→(2, n-1)→(3, n)→(1, 4) 
 

4G  consists of the coefficients corresponding to the following pairs: 
(1, 5)→(2, 6)→(3, 7)→…→(n-4, n)→(1, n-3)→(2, n-2)→(3, n-1)→(4, n)→(1, 5) 
 

1z  multiples 1G , so ]   [ 114332211 nnn yyyyyyyyyy −= Lz  

2z  multiples 2G , so ]    [ 21125342312 nnnn yyyyyyyyyyyy −−= Lz  

3z  multiples 3G , so ]     [ 3122136352413 nnnnn yyyyyyyyyyyyyy −−−= Lz  

4z  multiples 4G , so ]      [ 413223147362514 nnnnnn yyyyyyyyyyyyyyyy −−−−= Lz  
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So Equation (5-2a) can be rewritten as 
 

eBuzGzGzGzGAyx ++++++=+ )()()()()()1( 44332211 hhhhhh  
 
Equation (5-2a) can be rewritten as the general form: 
 

eBuzGzGzGAyx ++++++=+ )()()()()1( 222211 hhhhh rrL     (5-3) 
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Analysis of 1G ~ r2G  
 

If neighborhood radius is r, then each cell has 2r + 1 neighboring cells, and 
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design 1G  consist of the coefficients corresponding to the following pairs: 
(1, 2)→(2, 3)→(3, 4)→…→(n-1, n)→(1, n)→(1, 2) 
According to r, we right cyclic shift the list of these pairs r times, so the list of these 
pairs becomes: 
If r = 1: 
(1, n)→(1, 2)→(2, 3)→(3, 4)→…→(n-1, n)  
If r > 1: 
(n-r+1, ξ(n-r+2))→…→(n-r, n-r+1) 

whereξ(a) = 
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So if r = 1, 1G ’s element index is as the following: 
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Other matrices kG , k = 2,…, 2r are the same, according to r, right cyclic shift its 
own pairs r times. 
 
So in general: 
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Globally Asymptotically Stable Condition 
 

The discrete time cellular neural network with matrices A, 1G ~ r2G  given in 
the above is globally asymptotically stable, if and only if   
 

1)/  2()/  2()/  2( 21 <+++ nqPnqPnqS r πππ L , q = 0, 1, 2, . . . , n-1       (5-4) 

 
where   

∑
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r

rh

nhqjehanqS / 2)()/  2( ππ , ∑
−

=

−=
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0

/ 2)/  2(
n

h

nhqj
khk egnqP ππ ,              (5-5) 

k = 1, 2, …, 2r  
 
Proof:  
The eigenvalues of matrix A can be derived as follows [9]: 
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The eigenvalues of kG  are 
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So )()/  2( Aλπ =nqS , )()/  2( kk nqP Gλπ = . We want to prove that if 

1)()()( 21 <+++ rGGA λλλ L , then the cellular neural network is globally 

asymptotically stable. Consider nonlinear mapping 
eBuxtGxtGxAfxH +++++= )()()()( 2211 rrL . For every nℜ∈21 xx , , 
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According to the mean value theorem, there is a 3x  in ( 1x , 2x ), it makes 

))(()()( 21321 xxxfxfxf −′=−  and ))(()()( 21321 xxxtxtxt −′=− kkk . And because 
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the slopes of f(‧) and )(⋅kt are less than or equal to 1, namely 1)( ≤′ xf  and 

1)( ≤′ xt k , so 
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where |‧| represents a arbitrary vector norm, ||A|| represents spectral norm of A.  
 
The spectral norm of A and the spectral norm of kG  are as follows [9]: 

)( T
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AAA λ=  

                          )( T
max2 kkk GGG λ= , k = 1, 2, …, 2r 

where )(max ⋅λ  denotes the maximum eigenvalue. 

 
From [9], we can know that 
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So the condition (5-4) implies that  
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So H(‧) is a contraction and there is a unique solution to the nonlinear equation H(x) 
= x, namely a unique fixed point of system (5-3). It can be shown that for any initial 
state x(0), the system (5-3) converges to this unique fixed point. 
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Given m bipolar training patterns as input vectors iu , i = 1, 2, …, m, Equation (5-2a) 
can be rewritten in compact form as 
 

JBUZGZGAYX +++++= rr 2211 L             (5-6) 

rr 2211 ZGZGAYXJBU −−−−=+ L  
 

Define the following matrices: 

][ T hUR =  

T]1    1  1[ L=h  

]      [ 21 m
jjjj xxx L=X  

mnmm
y

×ℜ∈=== ]      []      [ 2121 dddAyAyAyAYA LL  

1T
21 ]      [ ×ℜ∈= ni

n
iii ddd Ld , i = 1, …, m 

]      [ 21
,

m
jjjjy ddd L=A  

]        [ 21 jjnjjj Ibbb L=w  

 
Equation (5-6) becomes  
 

( ) ( )T22
T

11,
TTT

jrrjjyjj ZGZGAXRw −−−−= L ,  j = 1, 2, …, n     (5-7) 

 

where ( ) jiiZG  is the jth row of iiZG . 

 
Define one matrix S to represent the locally connected network architecture. 
The matrix S: 

,1=ijS  if the jth neuron belongs to the r-neighborhood of the ith neuron; 

,0=ijS  otherwise (i = 1,…, n; j = 1,…, n). 

 

A new matrix jR  can be obtained from the matrix R by eliminating the following 

columns: The columns whose indexes correspond to the zero elements in the jth row 
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of S. In the same way, a vector jw~  can be defined as the vector obtained from jw  

by eliminating its zero elements. Thus, Equation (5-7) can be rewritten as 
 

( ) ( )T22
T

11,
T TT~

jrrjjyjjj ZGZGAXwR −−−−= L ,  j = 1,…, n    (5-8) 

 
From (5-8) it follows: 

 

( ) ( )[ ]T
22

T
11,

T TT~
jrrjjyjjj ZGZGAXRw −−−−= + L ,  j = 1,…, n    (5-9) 

 
We test the performance of the second-order CNN associative memory with an 

experiment. The following experiment is using first-order CNN associative memory 
and second-order CNN associative memory to store five training patterns respectively. 
And then we compare the performances of these two associative memories. 
 
The information of the experiment: 
 
Pattern size 7 × 7 
The number of training patterns 5 
Hamming distance(HD) 3 
Neighborhood radius r 1 
α 3 

 

             
(a)                  (b)                 (c) 

       
(d) (e) 

Fig. 5.1 (a) ~ (e) Five training patterns. 
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(a)                  (b)                 (c) 

 

       
(d)                  (e) 

Fig. 5.2 (a) ~ (e) Five noisy input patterns. 
 
 
Fig. 5.3 is the recognition results of the first-order CNN associative memory: 
 

             
(a)                  (b)                 (c) 

 

       
(d) (e) 

Fig. 5.3 (a) ~ (e) The recognition results of Fig. 5.2(a) ~ (e) outputted by the 
first-order CNN associative memory. 

 
 
 
 
 



 170

Fig. 5.4 is the recognition results of the second-order CNN associative memory: 
 

             
(a)                  (b)                 (c) 
 

       
(e) (e) 

Fig. 5.4 (a) ~ (e) The recognition results of Fig. 5.2(a) ~ (e) outputted by the 
second-order CNN associative memory. 

 
 
Compare Fig. 5.3 and Fig. 5.4, we can know that the performance of the second-order 
CNN associative memory is better than that of the first-order CNN associative 
memory. 

In the future work, we may apply the CNN associative memory to the 
recognition of 3-D seismic patterns. 
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