Chapter 5

Conclusions and FutureWorks

5.1 Conclusions

We apply cellular neural networks for seismic horizon linking and pattern
recognition. For horizon linking, we establish the energy function by setting four
different constraints of peak distribution. Then we compare this energy function and
the standard energy function of a cellular neural network, and then we can get the
weightings A(i, j; k, ). Then we use this network which is trained to deal with seismic
horizon linking. Experimental results show that the extracted horizons are the same
with the results of our visual observation.

For pattern recognition, we designdiscrete-time cellular neural networks to
behave as associative memories first. Discrete-time cellular neural networks work as
associative memories when thememory |patterns correspond to asymptotically stable
equilibrium points of the network dynamics. And then we use the associative
memories to recognize patterns.-Sel smic¢ pattern recognition will help the analysis and
interpretation of seismic data.

5.2 FutureWorks

For seismic horizon linking, we can link the broken horizons which have the
short broken parts now. The broken part with length 2 can be linked by our algorithm
now. In the future work, we can add some other constraints to link the broken
horizons which have the longer broken parts.

In the future work, we may use the high-order CNN to design associative
memories with better performance. High order neural networks for associative
memories with a greater storage capability with respect to the first-order ones have
been introduced [1]-[6]. M. Brucoli, L. Carnimeo and G. Grass proposed a design
method for associative memories using discrete-time high-order neural networks
which includes local interconnections among neurons [7]. Simulation results show
that the performance of [7] is quite better than the first-order cellular neural
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associative memories [8]. We perhaps can apply the high-order structure to the
synthesis procedure of cellular neural networks for associative memories. A
discrete-time second-order CNN is considered.

X+ =38y, (0 +3 X g,y My + Ybu, +1, (519

yi(h) = f(x (h) = %(in () +1-[x (M)-1) i=L-n (5-1b)
Equation (5-1) can be rewritten in vector form as

x(h+1)=Ayh)+Gzh)+Bu+e (5-2a)
y(h) =f(x(h)) (5-2b)

where X =[x X, X,]" € R™; y=[y, ¥, -y, ]" €eR™; u=[uu,--u]" e R™;
e=[l 1,1, ] eRr™ ; FO) =110 (X)) - F(x)]" eR™ and

Z=[Y,Ys YVi¥a - YiYa Yo Y5 o YoV YaaYsl € R

In order to design G as a circulant matrix, we must rearrange the elements of z.
According to linear neighboring (1-D template), Equation (5-1a) can be rewritten as

X (h+1) :iaij Yi (h) + Zgijkyj (h)yk(h)"'zbuuj +1,

n
(j.k)eNs =1

where NS ={(j,k)[C, €N, ()andC, e N, ()}, C,

J

isthejthcell, N, (i) isthe

r-neighborhood of thecell C,.

G can be decomposed into 2r circulant matrices. For r = 1, G can be decomposed into
2 circulant matrices. Suppose that these two circulant matricesare G, and G,. We
candesign G, and G, asthefollowing.
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Indexes of neighboring Pairs of indexes of
Index of cell . .
cells neighboring cells
1 1,2,n (1, 2), (1, n),(2,n)
2 1,23 (1,2),(1,3),(2,3)
3 2! 3! 4 (2! 3)! (27 4)' (3’ 4)
n 1,n1n (14, n-2), (1, n), (n-1, n)

Wecandesign G, consist of the coefficients corresponding to the following pairs:
(1, 2—(2, 3)—>(3, 49)—---—(n-1, n)—(1, nN)—(1, 2)

G, consists of the coefficients corresponding to the following pairs:

1, 3)—(2, )—(3,5)—--—(n-2, )—(1, n-1)—(2, n)—(1, 3)

z, multiples G;,s0 z; =[Y;Y, Y,Ys ¥3¥a " Yn1Yn Y1Yal

z, multiples G,,50 Z, =[Y,Y; ¥,Ys Ya¥s " Va2 Yn Y1¥na Y2 Vil

G,z =

12 (23 (34 - (n-1Ln) (Ln)
1 O, (1) 0 0 o 0 91(2) YiYo
2 91(2) 91(1) 0 0 0 i Yo ¥s
n 0 0 0 e 0:(2 0@ [ Vi Ys
Glemnxn
G, z,=

3 (24 B5 - (h-2n) @Ln-1) (Zn)
i, 0 0 0 - 0 0 9@ | %y
2|9, 0 0 0 0 0 ||y,
nf o 0 0 -- 0 g, 0 J[YVn
G2E£er><n

So Equation (5-2a) can be rewritten as

x(h+1 =Ay(h)+G,z,(h)+G,z,(h)+Bu+e
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Forr=2,wedesign G,, G,, G, and G, ascirculant matrices, then

Indexes of neighboring . . : .
Index of cell ol Pairs of indexes of neighboring cells

1 123 nLn (1, 2), (1, 3), (1, n-1), (1, n), (2, 3),
(2, n-1), (2, n), (3, n-1), (3, n), (n-1, n)

5 1234n (1,2),(1,3),(1,4),(1,n),(23),(2 4,
(2,n), (3,4),(3,n),4n

3 12345 (1,2),(1,3),(1,4),(1,5), (2 3), (2 4,
(2,5),(3,4),(3,5), (4,5
(1, 2), (1, n-2), (1, n-1), (1, n), (2, n-2),

n 1,2,n2,n1,n (2, n-1), (2, n), (n-2, n-1), (n-2, n), (n-1,
n)

Wecandesign G, consist of the coefficients corresponding to the following pairs:
(1, 2—(2, 3)—>(3, 4)—---—(n-1, n)—(1, nN)—(1, 2)

G, consists of the coefficients correspondingto the following pairs:
(1, 3)—(2, )—(3,5)—-—(n-2,n)—>(1,n-1)->(2, N)—(1, 3)

G, consists of the coefficients eorresponding to thefollowing pairs:
(1, H—(2,5—(3, 6)—---—(n-3, N)—=>(1, n-2)-=(2, n-1)—(3, n)—(1, 4)

G, consists of the coefficients corresponding to the following pairs:
(1, 5—(2, 6)—(3, 7)—---—(n-4, nN)—(1, n-3)—(2, n-2)—(3, n-1)—(4, n)—(1, 5)

, multiples G,, 50 z; =[Y;Y, ¥,¥3 Ya¥a " Yo1Ya YiVal

, multiples G,,50 z, =[Y,Y; ¥,Ys Y3¥5 " Yn-2¥Yn Y1¥n1 Y2Yal

3 mU|tip|eS Gs’ SO Z, :[y1y4 Y2Ys Ya¥Ye Yna¥Yn Y1¥n2 Y2 Ynu y3yn]

4 mU|tip|eS C';4’ S0z, = [y1y5 YoYe Ya¥7 " Yna¥Yn Y1¥n3 Yo Yn2 ¥YaYna y4yn]
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G,z =
12 (23
119, 903 0

91(2) gl(l) 91(3)

n g3 0 0
Gl e iRnXI']

G, z,=

L3
19, 0 0
219,38 g, O
nfl O 0 0
G, eR™

G;-2;=

14 (25 (B8 -

1 o0 0 O
2/g,2) 0 O

n O 0 0
Gs Emnxn

G, z,=

5 (26) @7 -

1 /0 O O
210 0 O

(34) -

(24 @35 -

(n-2,n-1) (n-1n)

0 9,(4)
0 0
9,(4)

(Ln)
0.2 | | Y2

0.4 | [ v.y5

9.2 9@ | [ %Y,

(n-2,n) Ln-1 (2n)
0 9:(2 9,9 | | \u¥s
0 0 92(2) | | ¥2Ya
9,(2) 9.3 9@ | Y.V,
Ln-2) [ (Zn=1) (3n)
¢! 90 8:(2 | | \iYs
0 0 95 | Y2Ys
9;(D 9:(2) 0 Y3Yn
(2,n-2) (3n-1) (4,n)
0 9, 0 Y1Ys
0 0 9, | | Y2Ye
9, 0 0 YaYn
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So Equation (5-2a) can be rewritten as
X(h+1 =Ay(h)+G,z,(h)+G,z,(h) + G,z,(h)+G,z,(h)+ Bu+e
Equation (5-2a) can be rewritten as the genera form:
x(h+1) =Ay(h)+G,z,(h)+G,z,(h)+:--+ G, z, (h)+Bu+e (5-3)

where

Oko Ja Gk Ok
Okin-y ko Ja Y« :
G-y Yo G

- - Ok2

Oi1
G Ok(n-1) Owo

Analysisof G,~G,,

If neighborhood radius is'r, then each cell has 2r + 1 neighboring cells, and

2r+1
( 5 ) pairs. We distribute one pair to-G,, , two pairs to G,, ,,..., 2r parsto

2r+1
G,. The total number of all distributed pairs is 1+2+---+2r :( 5 j We can

design G, consist of the coefficients corresponding to the following pairs:

(1,22, 3)—>(3,4)—>--—(n-1,n)—(1, n)—>(1, 2

According to r, we right cyclic shift the list of these pairsr times, so the list of these
pairs becomes:

Ifr=1

(1, N)—(1, 2—(2, 3)—>(3, 4)—---—(n-1, n)

Ifr>1

(n-r+l, £(n-r+2))—---—(n-r, n-r+1)

aifas<n
WhereZ (@) = {a—n ifa>n’
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Soifr=1, G,’selementindex is asthe following:

G, =
&n @2 (23 - (n-1n)

Other matrices G,, k = 2,..., 2r are the same, according to r, right cyclic shift its

own pairsr times.

So in general:
G, =
(n-r+LéMn-r+2) - o - (n=r,n—-r+1
1 9. o gy(2r) 0 - 0
2
n
G, =
(n-r+Lé(n-r+3) - - - (n=r,&(n-=r+2))
1 9,(®) e gy(2r=1) 0 - 0
2
n
G, =
(n-r+L&(n+r+12) - - o+ (n=r,&(n+r))
1 g, O - 0 --- 0
2
"
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Globally Asymptotically Sable Condition

The discrete time cellular neural network with matrices A, G,~G,, given in
the above is globally asymptotically stable, if and only if

S@zaln)|+|R(2zaln)|+-+|P, (27 q/n)|<1,9=0,1,2,...,n1 (5-4)
where
r n-1
S2zqln)= > a(h)e ™", B (2xq/n)=> g,e'*™", (5-5)
h=-r h=0
k=12, ...,2r
Proof:

The eigenvalues of matrix A can be derived as follows[9]:

AA) =D ah)e’>™", q=0,1,2,...,n1
h=-r

Theeigenvaluesof G, are

n-1
MG =D 04", q=20,1,2,...,n1
h=0
So S(2zqg/n)=A(A) , RP(2zq/n)=A(G,) . We want to prove that if
A(A) +]A(G )|+ +|A(G )| <1, then the cellular neural network is globally

asymptotically stable. Consider nonlinear mapping
H(x) = Af(X) + G t,(X) +---+ G, t, (X)+Bu+e. Forevery x',x>eR",

[HO) = H(x?)

= [AFO) = AT () + Gty () =Gyt (X*) ++++ G 5 1y (X1) = Gy t, (7))
= Al o)~ £ () [+ Gt ¢ ~ 1, () [+ + G [t (k) — 1, (63|
<AL () = £ 03|+ Gt () =t ()] -+ ]Gt () o0 (x7)

According to the mean value theorem, there is a x° in (x',x?), it makes

f(x") -f(x*) =f'(x})(x* =x?) and t, (x") -t (x*) =t] (x*)(x* =x*). And because
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the slopes of f(+) and t,(-) are less than or equal to 1, namely

f'(x)|<1 and

t (¥)|<1,s0

\H(xl) - H(xz)\ <||A| \f ") (X — xz)\ +[G,| \t;(x3)(x1 - xz)\ +oe Gy
<|A| ‘f ’(xs)‘ ‘xl - xz‘ + ||Gl||‘t1(x3)‘ ‘xl - xz‘ +o+ |G|
<[Aljxt =x¥|+[G[x* =x*| 4 +[G |

=(Al+lGd]++ ]G )

th 0Pt = x?))

th, (xs’)Hxl —xz‘

xl—xz‘

x* — xz‘
where | « | represents a arbitrary vector norm, ||A|| represents spectral norm of A.

The spectral norm of A and the spectral normof G, areasfollows[9]:
A, =\ e (ATA)
G, =y (G, 1GY) k=1,2, .., 2r

where 4., () denotesthe maximum eigenvalue.
From [9], we can know that

A (ATA) = A (A5 A GG = e G ) k=12, 2r

So the condition (5-4) implies that

Al +1Gall, -+ ]Gl

= \Jﬂ’max (ATA) + Vﬂ“max (GlTel) +"'+\/ﬂ“max (GZrTGZr)

:\/|ﬂmax (A)|2 +\/|ﬂmax (Gl)|2 Tt |ﬂ’max (G 2r)|2
= |ﬂ’max (A)| + |ﬂ’max (Gl)| teeet |ﬂ’max (G 2r )|

<1

= ‘H(xl) - H(xz)‘ < ‘xl —xz‘

So H( - ) isacontraction and there is a unique solution to the nonlinear equation H(x)
= X, namely a unique fixed point of system (5-3). It can be shown that for any initial
state x(0), the system (5-3) converges to this unique fixed point.
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Given m bipolar training patterns asinput vectors u',i =1, 2, ..., m, Equation (5-2a)
can be rewritten in compact form as

X=AY+G,Z,+--+G,Z, +BU+J (5-6)
BU+J=X-AY-G,Z,—-G,Z,

Define the following matrices:

R=[U"|h]

h=[11---1"

X, =[x - x7]

A, =AY =[Ay" Ay? ... Ay"]=[d' d* --- d"] e R™"
d=[d; d} ---d!]"eR™,i=1,..,m

A, =Ld df - 7]

Equation (5-6) becomes

Rw] =X] -AJ, —(Glzl)JT —=(G,Z,)!, i=1,2,..,n (5-7)

j )
where (G,Z;), isthejthrow of GZ,.

Define one matrix S to represent the locally connected network architecture.
The matrix S:

S, =1 if thejth neuron belongs to the r-neighborhood of the ith neuron;

S; =0, otherwise (i =1,...,n;j=1,...,n).

A new matrix R; can be obtained from the matrix R by eliminating the following

columns: The columns whose indexes correspond to the zero elements in the jth row
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of S. In the same way, a vector W, can be defined as the vector obtained from w,

by eliminating its zero elements. Thus, Equation (5-7) can be rewritten as

R'VT/-I'F:x-J'r_AT'_(Glzl)}-_“'_(GZrZZr)T j:]-"--1n (5'8)

j b
From (5-8) it follows:
W =RIXT-AT —(G,Z,) —-(6G,2Z,) ], i=1.in (59

We test the performance of the second-order CNN associative memory with an
experiment. The following experiment is using first-order CNN associative memory
and second-order CNN associative memory to store five training patterns respectively.
And then we compare the performances of these two associative memories.

The information of the experiment:

Pattern size Tx7
The number of training patterns 5
Hamming distance(HD)
Neighborhood radiusr

W =W

a

@ G
Fig. 5.1 (a) ~ (e) Fivetraining patterns.
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(d) (€)
Fig. 5.2 (a) ~ (e) Five noisy input patterns.

Fig. 5.3 isthe recognition results of thefirst-order CNN associative memory:

'(5)"

(@ CH
Fig.5.3 (@) ~ (e) The recognition results of Fig. 5.2(2) ~ (e) outputted by the
first-order CNN associative memory.
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Fig. 5.4 isthe recognition results of the second-order CNN associative memory:

(@) ®
Fig.5.4 (@) ~ (e) The recognition results of Fig. 5.2(2) ~ (e) outputted by the
second-order CNN associative memary.

Compare Fig. 5.3 and Fig. 5.4, we can know that the performance of the second-order
CNN associative memory is better ‘than~that' of the first-order CNN associative
memory.

In the future work, we may apply the CNN associative memory to the
recognition of 3-D seismic patterns.
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