JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING43, 15-20 (1997)
ARTICLE NO. PC971330

Resetting Vector Clocks in Distributed Systems!

Li-Hsing Yer? and Ting-Lu Huang

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan 300, Republic of China

reset vector clocks at each process when any of them is
This paper establishes the necessary and sufficient condition about to overflow. The purpose of this paper is to establish
for a correct clock resetting such that the functionality of vector the necessary and sufficient condition for a correct clock
clocks can be preserved. A clock reset protocol is presented with resetting such that the functionality of vector clocks can be
its applicability anq Iimitation discussgd. Our result indicates preserved. Our result indicates that for some applications,
that for some applications, the potential of clock overflow can o hvential clock overflow can be completely prevented by
be completely prevented by carefully choosing the condition for) - e
intiating the Clock reset protocol. e 1907 Academic Press carefully choosing the condition for initiating the clock reset
protocol.
The rest of this paper is organized as follows. Section 2
introduces our system model. Section 3 presents and proves a
1. INTRODUCTION necessary and sufficient rule for a correct clock resetting. The
implementation details of this rule is given in Section 4, with
No common system-wide clocks exist in distributed sydts applicability and limitation discussed in Section 5. Section
tems. Their absence makes it difficult to reason about tempofa¢oncludes this paper.
ordering of events occurring in these systems. Lamport [15]
defined thehappened-beforeelation which is a partial order-

ing on the set of system events. To realize this relation, Fidgep e types of events occur in distributed systems: the
[8] and Mattern [18] introduced theector clockscheme, in sendingof messages, thesceipt of messages, and internal
which each event is timestamped with the value of the vegyants [18]. Thehappened-beforeslation (denoted by-) on
tor clock malntalne_d by the process where the event OCCUiSe set of events is the smallest transitive relation satisfying
By comparing the timestamps of events, we can determine #@ tolowing conditions [15]: (1) if eventa andb occur in
causal relationof events in the system. the same process and af comes beforéb thena — b; (2)
It has been proven that, givem processes, vector clockis 4 is g sending of a message andb is the receipt ofm,
size must be at least in order to characterize the causalityana — b. Eventsa andb are said to beausally relatedf
of events [4]. Singhal and Kshemkalyani also presented gn, porp — a: otherwise a andb are said to beoncurrent.
efficient implementation of vector clocks [24]. Applications | ot b pe the number of processes in a distributed system.
of vector clocks have been found in the field of distributeg,.p, proces® has its own vector clock} which is defined
debugging [12, 18], especially in detecting global predicateg 5nn_element integer vector. Every evembccurring inP,
[5-7, 10, 11]. Vector clocks have also been used in de"elc’pi%gassigned imestampZ (), which is the content o} at the
protocols which guarantee causal ordering among messags, i thaie occurs. The rule by which each process evolves
[2, 23], rollback recovery [19], and many other distributeds cjock and timestamps its events is as follows. (1) When
applications [20]. o _ an internal or sending evemtoccurs at proces®, Vi[i] is
When using vector clocks, it is difficult to determine thg, reased by 1 and then assignedZie). (2) Every message
optimal number of bits used to implement the integer variables is attached a timestamp(m) equal to the timestamp of
for clock values. If the number is too small, overflows avent that sendsi. When messagen is received by
is imminent; if the number is too large, the extra cost OﬁrocessP., Vi[i] is incremented by 1, and for ak # i,
stor!ng and maintaining cIock§ becomes mtolerable.. O':i)‘?[k]:zmax(vi[k], T (m)[K]). The timestamp of this receipt
straightforward strategy to relieve us from such a dilemm&ant is then set to be the restit

is to roughly estimate the necessary number of bits, and to 4 7 and 7] represent two distinct timestamps, between

which an ordering relatiortess-than(<) is defined [24] as

1This research was supported by the National Science Council, Taiwap, . .
R.O.C., under Grants NSC85-2213 E009-061. I < T it T # T AVKTIK < Ti[Kl. The set of all

2E-mail: Isyen@csie.nctu.edu.tw. events possesses thector clock property18]. That is, for
3e-mail: thuang@csie.nctu.edu.tw. any two events andb, a - b <= 7 (a) < 7 (b). Note both

2. THE MODEL

15

0743-7315/97 $25.00
Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.

16 YEN AND HUANG

the happened-beforand theless-tharrelation areprecedence This rule demands synchronization between clock resetting
[17] relations, which means that they are antisymmetric amthd message receptions. In the next subsection we shall justify
transitive. Many researchers have extended these relationshit the reset rule is not only necessary, but also sufficient to
include the reflexivity property, so that the terminologies anehsure RVCP.
results pertaining tgartial ordering relations can be applied.

We call the action that a process takes to reset its vec®2. The Reset Rule Is Sufficient for RVCP

clocrl]< areset event A collection of r:eset ever}ts, one from - » get of eventst, together with the happened-before relation
each process, constituteseset cut The setup of a new reset_, o, ¢ "congtitutes an event structut@, —) that represents

cut concludes the current timestamping phase and starts a eWstributed computation. Aausal chaindefined on(€, —)
one. Let us begin with Phase 1 and [t be the set of all ;o sequence of evends, & &, wherer > 2. such that
events occurring in Phase It is necessary that the vectory ¢) _j < ¢ andél N ezez N e, ... e{’ 1> 8

clock property holds for eack!': The set of all possible causal chains starting at eeeand
_ ending with evenb is denoted byd(a, b). Let X (&) denote
Vi:Va,be E':;a— b= 7T (@) < 7(b). the set of all elements contained in a causal cl§aiA causal

chain&: e, e, ..., & is said to be alosure of ® (e, &)
This is referred to as the restricted vector clock properyand only if Vi € {1, ...,r —1}:V€ € £ — Z(&) g A

(RVCP). Note that a reset event does not bel_ong to Bhy EVveE A ey

Let sentm) andrecum) represent the sending and receipt] o
of a messagen, respectively. Suppose thsentm) € E' and LEMMA 1. Given afinite event sétand two events ab €
recym) € El. We callm a normal message ifi = j, a &, each nonclosure causal chajne ®(a, b) can be extended
forward message if < j, or abackwardmessage if > j. [0 &closure of®(a, b).

Proof. Leté&:e, e, ..., & be a nonclosure causal chain,
3. THE RESET RULE wherea = e, andb = g. It follows that3i € {1, ..., r —
1:3¢ € £ -Z(¢)g > € A€ — gy1. By placing
3.1. The Reset Rule Is Necessary for RVCP € betweeng and g,1, we can form a new causal chain
We define aeset lineto be a temporal line connecting twoé’:e1, €, ..., &, €, 41, ..., &. If £ is a closure of
reset events in the time—space diagram (refer to the dotteda, b), then we are done. Otherwise, we follow the above
lines shown in Fig. 1). A reset cut partitions the progressrgument and yield another causal chain. Since the number
sion of clocks into two separate parts. However, a forwamf events in€ is finite, eventually we will obtain a closure of
or backward message which crosses some reset line can bieék b). W

the vector clock property. The delivery of a forward mes- Leté(a, b) C ®(a, b) be the set of all closures df(a, b).
sage propagates obsolete information about the sender’s clgck;ins out that for any two events andb, a — b if and

to the receiver, causing the receiver to incorrectly update Eﬁly if (a, b) is not empty. A causal chaifie;, &, ..., &,
clock. So it is possible that there exist two eveatandej \yherer > 2, such thawi € {1, ..., r — 1}:7(g) < T(641)

in the same timestamping phase and thaé) < 7(ej) but g gaid to bemonotonic Obviously, a closure causal chain

& 7> €. As an example, consider the time-space diagraghose elements are all in the same timestamping phase is

shown in Fig. 1. Suppose that each procBssesets its re- gngtonic. Thus we have the following invariant.
spective vector clock at timg. The delivery ofm; causes the

timestamp of evenb, which is the receipt ofm,, to leap to P i
[7, 2, 7]. We can see thaf(a) < 7(b) buta /4 b. The de- Y& PEE:Ico@ DAZE) CE = T@) <7 (b).
livery of a backward message can also break RVCP. Message (1)
my in Fig. 1 is such an example. We can see that d but

7(c) « 7(d). This problem arises because the clock evolu- THEOREM 1. The reset rule suffices to guarantee RVCP.
tion contributed by the reception of a backward message will
vanish when later this clock is reset. Evidently, it is necessary
to preclude the possibility of forward or backward messages

to guarantee RVCP. This is explicitly stated as follows. P1 [1,0-———>,01
Reset Rule. Messages must not cross any reset line. b
* All messages sent from proceBsto processPj before P2 [7.2,71 —>
P resets its clock must be receivé@fore B has reset its
clock, thus precluding the possibility of forward messages. P3 d. »

* All messages sent from proceBsto processP; after R (6,6,8] [0.0,1]
resets its ClO_Ck must be ,ref(?ewaﬁer R has reset its clock, FIG. 1. A reset cut with a forward message, and a backward mes-
thus precluding the possibility of backward messages. sagem,.

RESETTING VECTOR CLOCKS IN DISTRIBUTED SYSTEMS 17

Proof. Suppose that RVCP does not hold. We shall ProVe ,on receiving a reset req message from P; do

that the reset rule is violated. 5, = normal then/* enf;:ﬁffsnfﬁﬁfffq for the first time */
5 — mute
Casel. Jda,be E':a— bAa7(a) ¢ 7(b). The relation o resct-reg to all By € 1(R)
a — b implies that¢(a, b) is not empty, while by (1), Sij e mute /* records P;’s mode as mute */
. if Six # normal for all Py, € 7(P;) then
T (@) # 7 (b) implies that there exists no causal chgirin reset Ps clock
i d reset_done to all Py € 9(P)
¢(@ b) such thatE(é)_ C E'. Therefore, for each causal by enters stund.by mode ¥/
chainé:e, e, ..., & in ¢(a, b), wherea = e, b = g, dendif
andr > 2, we can find the minimaJ, 2< j <r —1, such % , e
il U ivi 1 message from P; do
thate; € E) andj’ < i, or we can find the maximak, B e tamd by]# reconds Pob mode as stand-by */
/ . 3 L — - _,),
2 <k <r —1, such thatex € EK andk’ > i. The former 'f5-S;S;":ija::;;-,{;—aﬁtgiby for all P, € n(P)) then
case indicates a backward message serg;jby to ej, while i mormal - [* enters normal mode */
. . end 1
the latter indicates the presence of a backward message frcend.
& 10 ex41.

FIG. 2. The clock reset protocol in proces$s.

Case2. Ja,b € E:7(@ < 7() Aa 4 b. Since
timestamps always take monotonically increasing values in
the same timestamping phase, this case arises only if thetemode. In the mean time, it sef x to mute if Py is
timestamp of even is illogically enlarged. The only way for the process that sergset_regto P,.. When P, in mutemode
processes to illogically enlarge vector contents is to receiueceives a control message from one of its neighbors,Bay,
forward messages whose timestamps are obsolete but laigeets § j according to the message it receives: it s&ts
than those of the receivers. Message in Fig. 1 is a such to muteon receivingreset req, and sets§ j to stand-byon

example. receivingreset done
At B, when the values of al§ j’s have been changed
4. THE IMPLEMENTATION OF THE RESET RULE from normal to mute or stand-by P, resets its clock, sends

control messageseset doneto all its neighbors, and then
consistentcut [9, 13], i.e., a consistent cut without in-transit ntersstand-by_moc_je. A process operating Btand-pymode
. N an send application messages to another only if the former
messages (forward messages in terms of our definition). 58 , .
i - /' has recorded the latter's mode stand-by Finally, after the
the following we present a coordinating protocol that yields ;
values of all§ j's have been changed &tand-by P sets
on-the-fly reset cuts. , X .
all S, j’'s to normal and enters back tnormal mode, which
4.1. The Algorithm indicates the completion of the current run of the protocol on
.this process. The detailed algorithm of the clock reset protocol
I%e'xecuting ink is shown in Fig. 2. Note both message-driven

tines are atomic, i.e., noninterruptable during its execution.

Theorem 1 implies that a correct reset cut must beangly

Our approach is inspired by Chandy and Lamport’'s d
tributed snapshot algorithm [3]. We assume that between
two processes, there is at most one communication channe
connected whlch provides bldlrec_t|0r_1al, reliable, and FIFO4-_% Correctness Justification
ordered delivery. Message transmission delays are assumed {0
be arbitrary but finite. We now justify that the presented protocol correctly imple-

Two kinds of control messages are used by our protocahents the clock reset rule. For any two adjacent proceBses
reset req andreset done Each proces#;, which can operate and Pj, Pj does not send any application messag@ tafter
in one of the three modesormal mute and stand-by it sendsresetreqto P and before it reset¥;. Because mes-
maintains a variabl& that recordsP’s current process mode. sage delivery is FIFO, the delivery &j’s reset req message
Let n(P;) denote the set of processes having a communication P, indicates that all application messages sentPpybe-
channel connected t®. For each ofR’s neighbor,P; € foreV; is reset have been received. Sirgeresets its clock
n(P), P maintains a variable§ j, that recordsP;’s process after it has receivedeset req along each incoming channel,
mode currently known by?. § and S j are initiated to be our protocol precludes the possibility of forward messages.
normalfor all i, j. After resettingl}, P sends application messagesiponly

The execution of our algorithm is triggered by somafter it has receivedeset donefrom Pj, which indicates that
condition local to a process (which will be discussed later; has already reset its own clock. Therefore, our protocol
A process that starts the execution is called an initiator, whiettso precludes the possibility of backward message.
first sends control messageset req to each of its neighbors The process that initiates the reset protocol effectively plays
and then entemsiutemode. A process operating inutemode the role of a diffusing source ofesetreq messages. |If
is not allowed to send application messages. Any noninitiattvo or more processes initiate the protocol simultaneously,
processP, operating innormal mode, on receivingesetreq there will be multiple sources that spregebet req messages.
for the first time, behaves like an initiator. That is, it send8oncurrent initiations of the protocol do not cause any
outreset req message to each of its neighbors and then entexarectness problem, since the correctness of the protocol

18 YEN AND HUANG

relies on the fact that eventuallgset req messages are spreactorresponding to a particular channel reaches a predefined
over every communication channel, no matter how maiynit for that channel. Since if all processes constrain the

diffusing sources there will be. number of messages they send, the number of messages they
S may receive is also bounded, there is no need to also constrain
4.3. Eliminating Reset_done Messages the number of messages a process is allowed to receive.

Control messageesetdoneis used to prevent the occur- Let Li j denote the maximal number of messages allowed
rence of backward messages. It can be eliminated if we mdg-be sent fromf to Pj. With our reset protocol, an overflow-
ify the original protocol as follows. (1) Each process nof€e setting ofLi j must satisfy the inequality
operates in two possible modesormal or mute (2) As soon
as P resets its cIocI§, it is allowed to send out ap'plicgtion Vi Z (Li,j +Lji) <t, (2)
messages to any adjacent process. (3) WHRenperating in Pien(P)
mutemode receives an application messagesent fromP;,
it examines the value o j to decide what action should bewheret; denotes the maximal value d[i]. Finding a trig-
taken. If the value of§ j is normal m must have been sentgering condition subject to (2) is not difficult. As an example,

before Pj resetsVj and therefore can be acceptedSifj = Li,j can be set to

mute m must have been sent aftey resets)j and thus needs

to be buffered. The buffered messages will not be accepted or 1 t t:
rocessed untiP; resetsy;. 5 X min <\‘ J . { J J)

P | | 2 in®)1]" LinPpI

With this modification, potential backward messages are not

inhipited py their sgnder. Instead, they are buﬁereq at th§ each P, and Pj € n(P). However, finding a triggering
receiver site and will not be processed unt|I.tr_1e receiver hé§ndition both to satisfy (2) and to constrain message sending
reset its clock. So the correctness of the original protocol ¢y when necessary is impossible without prior knowledge of

still preserved. run-time behavior of the processes in the system.
This approach reduces message cost, but we need to pay

for storage cost instead. If available storage for buffering2 The Insufficiency of RVCP

backward messages at some process is limited, all other o)
processes sending messages to this process must be carefgfr Some applications, we may have to compare timestamps
not to overrun its buffer. Suppose tha has a storage buffer of events occurring in different timestamping phasgs. RVCP
which is capable of storing messages foP,. After P, resets d_oes not .help in this case, thus we need an auxiliary func-
Vi but before any application message is received fRymP tion for this k|'nd of evenF comparisons. thand b be two

has no way to tell ifP; has resed; or not, so the maximal €Vents occurring respectively in timestamping phaseand
number of messages allowed to be sent filgrto Pj is limited El (i <). Itisimpossible thab happens befora, since the
tor. P, must suspend sending ®@; after it has sent out reset protocol pr_epludes th.e possibility of any backward mes-
application messages @, unless and until it has received arsages. The auxiliary function therefore only needs to decide

application message fror®; which indicates the completion whethera happens beforb or a andb are concurrent. Figure

of Vj’s reset. 3 shows the auxiliary function which attempts to find a causal
chain froma to b by referring to a set of intermediate events,
5. DISCUSSION specifically, the set of each process’s last event in each times-
tamping phase betwee' and EI~1. This function returns
5.1. The Triggering Condition of the Protocol true if a — b andfalse otherwise.

The triggering condition of the reset protocol must be Unfortunatel_y, implementing such a W_'e will in_evitably
appropriately set up so that vector clocks do not overfloljvolve attaching to each event an additional variable that
before being reset. Mattern [18] showed that at any instant
of time, Vi, j:Vi[i] = Vj[i]. Therefore, if each procesB PFunction happen-before(a, b)

can ensure that CIOCk entm [I] will not get 0V€I’Whe|med, ;: festsu(;n:e;};:ezta?libb(i):-ivuil;eill“f;:d%?ipEe‘:a.rt:p:afl::;ez(pfa?r-{;zi:e/manner */
overflow is not possible. Generall¥[i] is incremented by Let £} represent the timestamp of Py's last event in E7
1 every time a message is sent. a message is received. or Let 7V be an integer vector of length =, initially (0,0,...,0].
’ ’ for!=1tondo
internal event occurs. In some applications, however, we ar o diffof(a)éfi then IV(i) <1
not concerned about the causality of internal events, and vectt fork=i+1t0j-1do
clocks do not advance on the occurrence of internal event: o T 10.0,....0] then IV(0) 1
We can prevent clock overflow in this kind of applications by end for

end for

constraining the number of messages allowed to be sent withi it 7)o 1v #0,0,...,0] then return true
each timestamping phase. Specifically, each process cour _, "™/

the number of messages it sends in a per-channel basis ai
initiates the reset protocol when some of its counting value FIG. 3. A function implementing the auxiliary rule.

RESETTING VECTOR CLOCKS IN DISTRIBUTED SYSTEMS 19

indicates the number of the current timestamping phagmitation is usually considered unacceptable. Therefore, for
which has essentially the same unfavorable effect as addihis kind of application, clock resetting is not appropriate.

an extra entry in the clock vector. Moreover, the variable

storing the timestamping phase number may also overflosv4. Related Work

How this problem can be dealt with depends on available o -
domain knowledge about the applications. For example, if Our necessary apd sufficient condition for clock reset can be
a vector-clock application never needs to examine the cau&@ipted to the consistent snapshot recording problem [3] in the
relationship between events that are two or more timestamp#fj1S€ that a correct reset cut forms a consistent snapshot with
phases apart, a three-valued counter is sufficient to repres@in-transit messages, if each reset event is viewed as an event
the current timestamping phase number. I&t2, 3} be that takes local snapshot. However, existing solutions to this
the set of possible values. We can explicitly define tgat Problem [1, 3, 13, 14, 16] do not preclude the existence of in-
precedesE?, E2 precedesE3, and E3 precedesEl. These {ransitmessages and thus cannotbe adopted as a reset protocol.
three values thus can be cyclicly used without worrying abofitscher et al. [9] proposed a method of taking strongly
overflow. consistent (i.e., no in-transit message) global checkpointings
for distributed transaction system. Their method is suitable
L only for an off-line analysis of the entire system, and thus
5.3. Applicability of the Protocol cannot be used to produce on-the-fly reset cuts.
Birmanet al. proposed a flushing protocol which is used to
In the application of preserving causal message ordering E&pe with the changes of group membership in a process group
21, 23], vector clocks advance only when a message is St After executing the flush protocol, all processes can reset
or received, so clock overflow can be completely prevented Eheir clocks so that clock overflow can be prevented in some
setting up a triggering condition satisfying (2). Vector clockgay. Our method is similar to their timestamp reinitializing
in this kind of applications are mainly used to timestamgchnique. Both approaches use two-phase flushing protocol
messages. Timestamps are to be examined by receierconclude a timestamping phase and start the next one.
processes to determine if received messages can be delivefeidiitionally, both require that message sending should be
Once a message has been delivered, its timestamp becoimkibited during the execution of the flushing protocol.
useless and can be safely discarded. Since our protocoHowever, Birman's method resets vector clocks after the
flushes all messages between timestamping phases, there ilush protocol is completed, while ours does so as soon as
possibility to compare two timestamps or vector clock contertise first phase of the flushing protocol has been completed.
that are from different timestamping phases. Therefore, tMoreover, in our protocol, after resetting its clock a process
insufficiency of RVCP does not cause a problem. can start communicating with another process provided that
In some applications, vector clocks advance only whentae former has been informed of the latter’'s reset action
message is sent or received and are used to timestamp evéfisexplained in Section 4.1). As a consequence, the time
or states as well as messages. However, only certain type@fiod during which message sending is inhibited will be much
events or states are of interest, and so are their timestan§hgrter in our protocol.
For example, in applications that exploit vector clock to
detect global predicates [5, 6, 10, 11], only local states that 6. CONCLUDING REMARKS
satisfy some particular local predicate are of interest. Their
timestamps are locally collected on which a consistent globalFor many vector-clock applications, our scheme relieves us
predicate is to be identified by either a centralized checkpm the difficult task of determining the optimal number of
process or a set of cooperative processes. Since this kindP8# © implement vector clocks. One only has to determine
clock does not advance on the occurrences of internal eveftstfiggering condition for the reset protocol such that the
clock overflow will not happen if we set up trigger condition®Vverhead of strong _conS|stency enforcement between phases
satisfying (2). However, the insufficiency of RVCP does pogtd" Pe tolerated while clock overflow can be prevented.
a problem, as noted in Section 5.2, in identifying consistentAlthough we are primarily concerned with vector clock
global states. We believe that this problem has no satisfactd et, the established result can also be applied to matrix clocks
solution other than using extra counter bits to represent phase’ 22].
numbers.
In other applications, clocks advance even on the occurrence REFERENCES
of internal events, and examination of timestamps from
different timestamping phases is necessary. The insufficienc’y Acharya, A., and Badrinath, B. R..Recording distributed snapshots based
of RVCP remains an inherent problem. Since internal events on causal order of message delivetgform. Process. Lett44 (Dec.
s Glt TR) 1992), 317-321.
may occur arbitrarily, it is impossible to prevent clpck overflow 2. Birman, K., Schiper, A., and Stephenson, P. Lightweight causal and
unless we can suspend a process’s computation during the atomic group multicast. ACM Trans. Comput. Systerss 3 (1991),
execution of the reset protocol. Suspending a process’s com- 272-314.

20

10.

11.

12.

13.

14.

15.

16.

YEN AND HUANG

Chandy, K. M., and Lamport, L. Distributed snapshots: Determinind.7.
global states of distributed systen&CM Trans. Comput. Syster@sl

(Feb. 1985), 63-75. 18.
Charron-Bost, B. Concerning the size of logical clocks in distributed
systems.Inform. Process. Lett39,1 (1991), 11-16.

Chiou, H.-K., and Korfhage, W. Efficient global event predicate detec-
tion. Proc. 14th International Conference on Distributed Computinglg_
SystemsJune 1994, pp. 642-649.

Chiou, H.-K., and Korfhage, W. Enhancing distributed event predicate
detection algorithmsIEEE Trans. Parallel Distrib. Systenig 7 (July
1996), 673—-676.

Cooper, R., and Marzullo, K. Consistent detection of global predicates.
Proc. ACM/ONR Workshop on Parallel and Distributed Debugging,21-
ACM SIGPLAN Noticeg6, 12 (Dec. 1991), 167-174.

Fidge, J. Timestamps in message-passing systems that preserve the

partial ordering. Proc. 11th Australian Computer Science Conference?2.
Feb. 1988, 56—66.

Fischer, M. J., Griffeth, N. D., and Lynch, N. A. Global states of a3,
distributed system.IEEE Trans. Software Engrg8, 3 (May 1982),
198-202.

Garg, V. K., and Chase, C. M. Distributed algorithms for detectin 4
conjunctive predicates. Proc. 15th International Conference on
Distributed Computing Systemdune 1995, pp. 423-430.

Garg, V. K., and Waldecker, B. Detection of weak unstable predicates in
distributed programslEEE Trans. Parallel Distrib. Systents 1 (Mar.
1994), 299-307.

Goldberg, A. P., Gopal, A., Lowry, A., and Strom, R. Restoring
consistent global states of distributed computatiodCM SIGPLAN
Notices26, 12 (Dec. 1991), 144-154.

Helary, J.-M. Observing global states of asynchronous distribut
applications. Proc. Third International Workshop on Distributed
Algorithms. 1989, pp. 124-135.

Lai, T. H., and Yang, T. H. On distributed snapshdtgorm. Process.
Lett. 25 (May 1987), 153—158.

Liu, C. L.Elements of Discrete MathematiddcGraw—Hill, New York,
1985, 119.

Mattern, F. Virtual time and global states of distributed systems.
In Cosnard, M., Robert, Y., Quinton, P.,, and Raynal, M. (Eds.).
Proc. International Workshop on Parallel and Distributed Algorithms.
Elsevier, North-Holland, 1989, pp. 215-226.

Peterson, S. L., and Kearns, P. Rollback based on vector firee.
12th Symposium on Reliable Distributed Syste@et. 1993, pp. 68—
77.

Raynal, M. About logical clocks for distributed systen@per. System
Rev.26,1 (Jan. 1992), 41-48.

Raynal, M., Schiper, A., and Toueg, S. The causal ordering abstraction
and a simple way to implement itnform. Process. Lett39, 6 (Sept.
1991), 343-350.

Raynal, M., and Singhal, M. Logical time: Capturing causality in
distributed systemsEEE Comput.30, 2 (Feb. 1996), 49-56.

Schiper, A., Eggli, J., and Sandoz, A. A new algorithm to implement
causal ordering. Proc. Third International Workshop on Distributed
Algorithms. 1989

Singhal, M., and Kshemkalyani, A. An efficient implementation of

vector clocks.Inform. Process. Let43, 1 (1992), 47-52.

LI-HSING YEN received the B.S. and M.S. in computer science and
information engineering, from National Chiao Tung University, Hsinchu,
Taiwan, in 1989 and 1991, respectively. Since September 1993, he has been
a Ph.D. student in the Department of Computer Science and Information

ngineering at National Chiao Tung University, Hsinchu, Taiwan.
current research interests include distributed algorithms, program testing and
verification, and mobile computing.

His

TING-LU HUANG studied at Tung-hi University (B.S., 1976), University

Lamport, L. Time, clocks, and the ordering of events in a distributesf Texas at Arlington (M.S., 1981), and Northwestern University (Ph.D.,

system.Comm. ACM21, 7 (July 1978), 558-565.

1989). He is currently an associate professor in the Department of Computer

Li, H. F., Radhakrishnan, T., and Venkatesh, K. Global state detectionSeience and Information Engineering at National Chiao Tung University. He
non-FIFO networksProc. 7th International Conference on Distributedhas been working on mutual exclusion algorithms, causality in distributed

Computing System&ept. 1987, pp. 364—-370.

Received January 2, 1996; accepted May 6, 1997

computing, testing and debugging of concurrent software, and verification.

