
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING43, 15–20 (1997)
ARTICLE NO. PC971330

Resetting Vector Clocks in Distributed Systems1

Li-Hsing Yen2 and Ting-Lu Huang3

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan 300, Republic of China

This paper establishes the necessary and sufficient condition
for a correct clock resetting such that the functionality of vector
clocks can be preserved. A clock reset protocol is presented with
its applicability and limitation discussed. Our result indicates
that for some applications, the potential of clock overflow can
be completely prevented by carefully choosing the condition for
initiating the clock reset protocol. © 1997 Academic Press

1. INTRODUCTION

No common system-wide clocks exist in distributed sys-
tems. Their absence makes it difficult to reason about temporal
ordering of events occurring in these systems. Lamport [15]
defined thehappened-beforerelation which is a partial order-
ing on the set of system events. To realize this relation, Fidge
[8] and Mattern [18] introduced thevector clockscheme, in
which each event is timestamped with the value of the vec-
tor clock maintained by the process where the event occurs.
By comparing the timestamps of events, we can determine the
causal relationof events in the system.

It has been proven that, givenn processes, vector clock
size must be at leastn in order to characterize the causality
of events [4]. Singhal and Kshemkalyani also presented an
efficient implementation of vector clocks [24]. Applications
of vector clocks have been found in the field of distributed
debugging [12, 18], especially in detecting global predicates
[5–7, 10, 11]. Vector clocks have also been used in developing
protocols which guarantee causal ordering among messages
[2, 23], rollback recovery [19], and many other distributed
applications [20].

When using vector clocks, it is difficult to determine the
optimal number of bits used to implement the integer variables
for clock values. If the number is too small, overflow
is imminent; if the number is too large, the extra cost of
storing and maintaining clocks becomes intolerable. One
straightforward strategy to relieve us from such a dilemma
is to roughly estimate the necessary number of bits, and to

1This research was supported by the National Science Council, Taiwan,
R.O.C., under Grants NSC85-2213 E009-061.

2E-mail: lsyen@csie.nctu.edu.tw.
3E-mail: tlhuang@csie.nctu.edu.tw.

reset vector clocks at each process when any of them is
about to overflow. The purpose of this paper is to establish
the necessary and sufficient condition for a correct clock
resetting such that the functionality of vector clocks can be
preserved. Our result indicates that for some applications,
the potential clock overflow can be completely prevented by
carefully choosing the condition for initiating the clock reset
protocol.

The rest of this paper is organized as follows. Section 2
introduces our system model. Section 3 presents and proves a
necessary and sufficient rule for a correct clock resetting. The
implementation details of this rule is given in Section 4, with
its applicability and limitation discussed in Section 5. Section
6 concludes this paper.

2. THE MODEL

Three types of events occur in distributed systems: the
sendingof messages, thereceipt of messages, and internal
events [18]. Thehappened-beforerelation (denoted by→) on
the set of events is the smallest transitive relation satisfying
the following conditions [15]: (1) if eventsa and b occur in
the same process and ifa comes beforeb then a → b; (2)
if a is a sending of a messagem and b is the receipt ofm,
thena→ b. Eventsa andb are said to becausally relatedif
a→ b or b→ a; otherwise,a andb are said to beconcurrent.

Let n be the number of processes in a distributed system.
Each processPi has its own vector clock i which is defined
as ann-element integer vector. Every evente occurring inPi

is assigned atimestamp (e), which is the content of i at the
instant thate occurs. The rule by which each process evolves
its clock and timestamps its events is as follows. (1) When
an internal or sending evente occurs at processPi , i [i] is
increased by 1 and then assigned to(e). (2) Every message
m is attached a timestamp (m) equal to the timestamp of
the event that sendsm. When messagem is received by
processPi , i [i] is incremented by 1, and for allk 6= i ,

i [k] :=max(i [k], (m)[k]). The timestamp of this receipt
event is then set to be the resulti .

Let i and j represent two distinct timestamps, between
which an ordering relationless-than(<) is defined [24] as

i < j if i 6= j ∧ ∀k: i [k] ≤ j [k]. The set of all
events possesses thevector clock property[18]. That is, for
any two eventsa andb, a→ b⇐⇒ (a) < (b). Note both

15

0743-7315/97 $25.00
Copyright © 1997 by Academic Press

All rights of reproduction in any form reserved.

16 YEN AND HUANG

the happened-beforeand theless-thanrelation areprecedence
[17] relations, which means that they are antisymmetric and
transitive. Many researchers have extended these relations to
include the reflexivity property, so that the terminologies and
results pertaining topartial ordering relations can be applied.

We call the action that a process takes to reset its vector
clock a reset event. A collection of reset events, one from
each process, constitutes areset cut. The setup of a new reset
cut concludes the current timestamping phase and starts a new
one. Let us begin with Phase 1 and letEi be the set of all
events occurring in Phasei . It is necessary that the vector
clock property holds for eachEi :

∀i :∀a, b ∈ Ei :: a→ b⇐⇒ (a) < (b).

This is referred to as the restricted vector clock property
(RVCP). Note that a reset event does not belong to anyEi .

Let sent(m) and recv(m) represent the sending and receipt
of a messagem, respectively. Suppose thatsent(m) ∈ Ei and
recv(m) ∈ E j . We call m a normal message ifi = j , a
forward message ifi < j , or abackwardmessage ifi > j .

3. THE RESET RULE

3.1. The Reset Rule Is Necessary for RVCP

We define areset lineto be a temporal line connecting two
reset events in the time–space diagram (refer to the dotted
lines shown in Fig. 1). A reset cut partitions the progres-
sion of clocks into two separate parts. However, a forward
or backward message which crosses some reset line can break
the vector clock property. The delivery of a forward mes-
sage propagates obsolete information about the sender’s clock
to the receiver, causing the receiver to incorrectly update its
clock. So it is possible that there exist two eventsei and ej

in the same timestamping phase and that(ei) < (ej) but
ei 6→ ej . As an example, consider the time–space diagram
shown in Fig. 1. Suppose that each processPi resets its re-
spective vector clock at timeti . The delivery ofm1 causes the
timestamp of eventb, which is the receipt ofm1, to leap to
[7, 2, 7]. We can see that (a) < (b) but a 6→ b. The de-
livery of a backward message can also break RVCP. Message
m2 in Fig. 1 is such an example. We can see thatc→ d but
(c) (d). This problem arises because the clock evolu-

tion contributed by the reception of a backward message will
vanish when later this clock is reset. Evidently, it is necessary
to preclude the possibility of forward or backward messages
to guarantee RVCP. This is explicitly stated as follows.

Reset Rule. Messages must not cross any reset line.

• All messages sent from processPi to processPj before
Pi resets its clock must be receivedbefore Pj has reset its
clock, thus precluding the possibility of forward messages.

• All messages sent from processPi to processPj after Pi

resets its clock must be receivedafter Pj has reset its clock,
thus precluding the possibility of backward messages.

This rule demands synchronization between clock resetting
and message receptions. In the next subsection we shall justify
that the reset rule is not only necessary, but also sufficient to
ensure RVCP.

3.2. The Reset Rule Is Sufficient for RVCP

A set of events , together with the happened-before relation
→ on , constitutes an event structure(, →) that represents
a distributed computation. Acausal chaindefined on(, →)
is a sequence of eventse1, e2, . . . , er , wherer ≥ 2, such that
ei ∈ , 1 ≤ i ≤ r , ande1 → e2, e2 → e3, . . . , er−1 → er .
The set of all possible causal chains starting at eventa and
ending with eventb is denoted by8(a, b). Let 6(ξ) denote
the set of all elements contained in a causal chainξ . A causal
chain ξ : e1, e2, . . . , er is said to be aclosure of 8(e1, er)

if and only if ∀i ∈ {1, . . . , r − 1}: ∀e′ ∈ − 6(ξ) :: ei 6→
e′ ∨ e′ 6→ ei+1.

LEMMA 1. Given a finite event set and two events a, b ∈
, each nonclosure causal chainξ ∈ 8(a, b) can be extended

to a closure of8(a, b).

Proof. Let ξ : e1, e2, . . . , er be a nonclosure causal chain,
wherea = e1 and b = er . It follows that ∃i ∈ {1, . . . , r −
1}: ∃e′ ∈ − 6(ξ) :: ei → e′ ∧ e′ → ei+1. By placing
e′ betweenei and ei+1, we can form a new causal chain
ξ ′: e1, e2, . . . , ei , e′, ei+1, . . . , er . If ξ ′ is a closure of
8(a, b), then we are done. Otherwise, we follow the above
argument and yield another causal chain. Since the number
of events in is finite, eventually we will obtain a closure of
8(a, b).

Let φ(a, b) ⊆ 8(a, b) be the set of all closures of8(a, b).
It turns out that for any two eventsa and b, a → b if and
only if φ(a, b) is not empty. A causal chainξ : e1, e2, . . . , er ,
wherer ≥ 2, such that∀i ∈ {1, . . . , r − 1}: (ei) < (ei+1)

is said to bemonotonic. Obviously, a closure causal chain
whose elements are all in the same timestamping phase is
monotonic. Thus we have the following invariant.

∀a, b ∈ Ei : ∃ξ ∈ φ(a, b) ∧6(ξ) ⊆ Ei H⇒ (a) < (b).

(1)

THEOREM 1. The reset rule suffices to guarantee RVCP.

FIG. 1. A reset cut with a forward messagem1 and a backward mes-
sagem2.

RESETTING VECTOR CLOCKS IN DISTRIBUTED SYSTEMS 17

Proof. Suppose that RVCP does not hold. We shall prove
that the reset rule is violated.

Case1. ∃a, b ∈ Ei : a→ b∧ (a) (b). The relation
a → b implies that φ(a, b) is not empty, while by (1),
(a) 6< (b) implies that there exists no causal chainξ in

φ(a, b) such that6(ξ) ⊆ Ei . Therefore, for each causal
chain ξ : e1, e2, . . . , er in φ(a, b), where a = e1, b = er ,
and r > 2, we can find the minimalj , 2 ≤ j ≤ r − 1, such
that ej ∈ E j ′ and j ′ < i , or we can find the maximalk,
2 ≤ k ≤ r − 1, such thatek ∈ Ek′ and k′ > i . The former
case indicates a backward message sent byej−1 to ej , while
the latter indicates the presence of a backward message from
ek to ek+1.

Case 2. ∃a, b ∈ Ei : (a) < (b) ∧ a 6→ b. Since
timestamps always take monotonically increasing values in
the same timestamping phase, this case arises only if the
timestamp of eventb is illogically enlarged. The only way for
processes to illogically enlarge vector contents is to receive
forward messages whose timestamps are obsolete but larger
than those of the receivers. Messagem1 in Fig. 1 is a such
example.

4. THE IMPLEMENTATION OF THE RESET RULE

Theorem 1 implies that a correct reset cut must be astrongly
consistentcut [9, 13], i.e., a consistent cut without in-transit
messages (forward messages in terms of our definition). In
the following we present a coordinating protocol that yields
on-the-fly reset cuts.

4.1. The Algorithm

Our approach is inspired by Chandy and Lamport’s dis-
tributed snapshot algorithm [3]. We assume that between any
two processes, there is at most one communication channel
connected which provides bidirectional, reliable, and FIFO-
ordered delivery. Message transmission delays are assumed to
be arbitrary but finite.

Two kinds of control messages are used by our protocol:
reset_req andreset_done. Each processPi , which can operate
in one of the three modesnormal, mute, and stand-by,
maintains a variableSi that recordsPi ’s current process mode.
Let η(Pi) denote the set of processes having a communication
channel connected toPi . For each ofPi ’s neighbor, Pj ∈
η(Pi), Pi maintains a variable,Si, j , that recordsPj ’s process
mode currently known byPi . Si and Si , j are initiated to be
normal for all i , j .

The execution of our algorithm is triggered by some
condition local to a process (which will be discussed later).
A process that starts the execution is called an initiator, which
first sends control messagereset_req to each of its neighbors
and then entersmutemode. A process operating inmutemode
is not allowed to send application messages. Any noninitiator
processPi operating innormal mode, on receivingreset_req
for the first time, behaves like an initiator. That is, it sends
out reset_req message to each of its neighbors and then enters

FIG. 2. The clock reset protocol in processPi .

mutemode. In the mean time, it setsSi , k to mute, if Pk is
the process that sentreset_reqto Pi . When Pi in mutemode
receives a control message from one of its neighbors, say,Pj ,
it sets Si , j according to the message it receives: it setsSi, j

to muteon receivingreset_req, and setsSi, j to stand-byon
receivingreset_done.

At Pi , when the values of allSi , j ’s have been changed
from normal to mute or stand-by, Pi resets its clock, sends
control messagesreset_done to all its neighbors, and then
entersstand-bymode. A process operating instand-bymode
can send application messages to another only if the former
has recorded the latter’s mode asstand-by. Finally, after the
values of all Si , j ’s have been changed tostand-by, Pi sets
all Si , j ’s to normal, and enters back tonormal mode, which
indicates the completion of the current run of the protocol on
this process. The detailed algorithm of the clock reset protocol
executing inPi is shown in Fig. 2. Note both message-driven
routines are atomic, i.e., noninterruptable during its execution.

4.2. Correctness Justification

We now justify that the presented protocol correctly imple-
ments the clock reset rule. For any two adjacent processesPi

and Pj , Pj does not send any application message toPi after
it sendsreset_req to Pi and before it resets j . Because mes-
sage delivery is FIFO, the delivery ofPj ’s reset_req message
on Pi indicates that all application messages sent byPj be-
fore j is reset have been received. SincePi resets its clock
after it has receivedreset_req along each incoming channel,
our protocol precludes the possibility of forward messages.

After resetting i , Pi sends application messages toPj only
after it has receivedreset_donefrom Pj , which indicates that
Pj has already reset its own clock. Therefore, our protocol
also precludes the possibility of backward message.

The process that initiates the reset protocol effectively plays
the role of a diffusing source ofreset_req messages. If
two or more processes initiate the protocol simultaneously,
there will be multiple sources that spreadreset_req messages.
Concurrent initiations of the protocol do not cause any
correctness problem, since the correctness of the protocol

18 YEN AND HUANG

relies on the fact that eventuallyreset_req messages are spread
over every communication channel, no matter how many
diffusing sources there will be.

4.3. Eliminating Reset_done Messages

Control messagereset_done is used to prevent the occur-
rence of backward messages. It can be eliminated if we mod-
ify the original protocol as follows. (1) Each process now
operates in two possible modes:normal or mute. (2) As soon
as Pi resets its clock, it is allowed to send out application
messages to any adjacent process. (3) WhenPi operating in
mutemode receives an application messagem sent fromPj ,
it examines the value ofSi, j to decide what action should be
taken. If the value ofSi , j is normal, m must have been sent
before Pj resets j and therefore can be accepted; ifSi , j =
mute, m must have been sent afterPj resets j and thus needs
to be buffered. The buffered messages will not be accepted or
processed untilPi resets i .

With this modification, potential backward messages are not
inhibited by their sender. Instead, they are buffered at the
receiver site and will not be processed until the receiver has
reset its clock. So the correctness of the original protocol is
still preserved.

This approach reduces message cost, but we need to pay
for storage cost instead. If available storage for buffering
backward messages at some process is limited, all other
processes sending messages to this process must be careful
not to overrun its buffer. Suppose thatPj has a storage buffer
which is capable of storingr messages forPi . After Pi resets

i but before any application message is received fromPj , Pi

has no way to tell ifPj has reset j or not, so the maximal
number of messages allowed to be sent fromPi to Pj is limited
to r . Pi must suspend sending toPj after it has sent outr
application messages toPj , unless and until it has received an
application message fromPj which indicates the completion
of j ’s reset.

5. DISCUSSION

5.1. The Triggering Condition of the Protocol

The triggering condition of the reset protocol must be
appropriately set up so that vector clocks do not overflow
before being reset. Mattern [18] showed that at any instant
of time, ∀i, j : i [i] ≥ j [i]. Therefore, if each processPi

can ensure that clock entryi [i] will not get overwhelmed,
overflow is not possible. Generally,i [i] is incremented by
1 every time a message is sent, a message is received, or an
internal event occurs. In some applications, however, we are
not concerned about the causality of internal events, and vector
clocks do not advance on the occurrence of internal events.
We can prevent clock overflow in this kind of applications by
constraining the number of messages allowed to be sent within
each timestamping phase. Specifically, each process counts
the number of messages it sends in a per-channel basis and
initiates the reset protocol when some of its counting value

corresponding to a particular channel reaches a predefined
limit for that channel. Since if all processes constrain the
number of messages they send, the number of messages they
may receive is also bounded, there is no need to also constrain
the number of messages a process is allowed to receive.

Let Li , j denote the maximal number of messages allowed
to be sent fromPi to Pj . With our reset protocol, an overflow-
free setting ofLi , j must satisfy the inequality

∀i :
∑

Pj∈η(Pi)

(Li , j + L j , i) ≤ ti , (2)

where ti denotes the maximal value ofi [i]. Finding a trig-
gering condition subject to (2) is not difficult. As an example,
Li , j can be set to

1

2
×min

(⌊
ti

|η(Pi)|
⌋
,

⌊
t j

|η(Pj)|
⌋)

for each Pi and Pj ∈ η(Pi). However, finding a triggering
condition both to satisfy (2) and to constrain message sending
only when necessary is impossible without prior knowledge of
run-time behavior of the processes in the system.

5.2. The Insufficiency of RVCP

For some applications, we may have to compare timestamps
of events occurring in different timestamping phases. RVCP
does not help in this case, thus we need an auxiliary func-
tion for this kind of event comparisons. Leta and b be two
events occurring respectively in timestamping phasesEi and
E j (i < j). It is impossible thatb happens beforea, since the
reset protocol precludes the possibility of any backward mes-
sages. The auxiliary function therefore only needs to decide
whethera happens beforeb or a andb are concurrent. Figure
3 shows the auxiliary function which attempts to find a causal
chain froma to b by referring to a set of intermediate events,
specifically, the set of each process’s last event in each times-
tamping phase betweenEi and E j−1. This function returns
true if a→ b and falseotherwise.

Unfortunately, implementing such a rule will inevitably
involve attaching to each event an additional variable that

FIG. 3. A function implementing the auxiliary rule.

RESETTING VECTOR CLOCKS IN DISTRIBUTED SYSTEMS 19

indicates the number of the current timestamping phase,
which has essentially the same unfavorable effect as adding
an extra entry in the clock vector. Moreover, the variable
storing the timestamping phase number may also overflow.
How this problem can be dealt with depends on available
domain knowledge about the applications. For example, if
a vector-clock application never needs to examine the causal
relationship between events that are two or more timestamping
phases apart, a three-valued counter is sufficient to represent
the current timestamping phase number. Let{1, 2, 3} be
the set of possible values. We can explicitly define thatE1

precedesE2, E2 precedesE3, and E3 precedesE1. These
three values thus can be cyclicly used without worrying about
overflow.

5.3. Applicability of the Protocol

In the application of preserving causal message ordering [2,
21, 23], vector clocks advance only when a message is sent
or received, so clock overflow can be completely prevented by
setting up a triggering condition satisfying (2). Vector clocks
in this kind of applications are mainly used to timestamp
messages. Timestamps are to be examined by receiver
processes to determine if received messages can be delivered.
Once a message has been delivered, its timestamp becomes
useless and can be safely discarded. Since our protocol
flushes all messages between timestamping phases, there is no
possibility to compare two timestamps or vector clock contents
that are from different timestamping phases. Therefore, the
insufficiency of RVCP does not cause a problem.

In some applications, vector clocks advance only when a
message is sent or received and are used to timestamp events
or states as well as messages. However, only certain types of
events or states are of interest, and so are their timestamps.
For example, in applications that exploit vector clock to
detect global predicates [5, 6, 10, 11], only local states that
satisfy some particular local predicate are of interest. Their
timestamps are locally collected on which a consistent global
predicate is to be identified by either a centralized checker
process or a set of cooperative processes. Since this kind of
clock does not advance on the occurrences of internal events,
clock overflow will not happen if we set up trigger conditions
satisfying (2). However, the insufficiency of RVCP does pose
a problem, as noted in Section 5.2, in identifying consistent
global states. We believe that this problem has no satisfactory
solution other than using extra counter bits to represent phase
numbers.

In other applications, clocks advance even on the occurrence
of internal events, and examination of timestamps from
different timestamping phases is necessary. The insufficiency
of RVCP remains an inherent problem. Since internal events
may occur arbitrarily, it is impossible to prevent clock overflow
unless we can suspend a process’s computation during the
execution of the reset protocol. Suspending a process’s com-

putation is usually considered unacceptable. Therefore, for
this kind of application, clock resetting is not appropriate.

5.4. Related Work

Our necessary and sufficient condition for clock reset can be
related to the consistent snapshot recording problem [3] in the
sense that a correct reset cut forms a consistent snapshot with
no in-transit messages, if each reset event is viewed as an event
that takes local snapshot. However, existing solutions to this
problem [1, 3, 13, 14, 16] do not preclude the existence of in-
transit messages and thus cannot be adopted as a reset protocol.
Fischer et al. [9] proposed a method of taking strongly
consistent (i.e., no in-transit message) global checkpointings
for distributed transaction system. Their method is suitable
only for an off-line analysis of the entire system, and thus
cannot be used to produce on-the-fly reset cuts.

Birmanet al. proposed a flushing protocol which is used to
cope with the changes of group membership in a process group
[2]. After executing the flush protocol, all processes can reset
their clocks so that clock overflow can be prevented in some
way. Our method is similar to their timestamp reinitializing
technique. Both approaches use two-phase flushing protocol
to conclude a timestamping phase and start the next one.
Additionally, both require that message sending should be
inhibited during the execution of the flushing protocol.

However, Birman’s method resets vector clocks after the
flush protocol is completed, while ours does so as soon as
the first phase of the flushing protocol has been completed.
Moreover, in our protocol, after resetting its clock a process
can start communicating with another process provided that
the former has been informed of the latter’s reset action
(as explained in Section 4.1). As a consequence, the time
period during which message sending is inhibited will be much
shorter in our protocol.

6. CONCLUDING REMARKS

For many vector-clock applications, our scheme relieves us
from the difficult task of determining the optimal number of
bits to implement vector clocks. One only has to determine
a triggering condition for the reset protocol such that the
overhead of strong consistency enforcement between phases
can be tolerated while clock overflow can be prevented.

Although we are primarily concerned with vector clock
reset, the established result can also be applied to matrix clocks
[20, 22].

REFERENCES

1. Acharya, A., and Badrinath, B. R. Recording distributed snapshots based
on causal order of message delivery.Inform. Process. Lett.44 (Dec.
1992), 317–321.

2. Birman, K., Schiper, A., and Stephenson, P. Lightweight causal and
atomic group multicast.ACM Trans. Comput. Systems9, 3 (1991),
272–314.

20 YEN AND HUANG

3. Chandy, K. M., and Lamport, L. Distributed snapshots: Determining
global states of distributed systems.ACM Trans. Comput. Systems3, 1
(Feb. 1985), 63–75.

4. Charron-Bost, B. Concerning the size of logical clocks in distributed
systems.Inform. Process. Lett.39, 1 (1991), 11–16.

5. Chiou, H.-K., and Korfhage, W. Efficient global event predicate detec-
tion. Proc. 14th International Conference on Distributed Computing
Systems.June 1994, pp. 642–649.

6. Chiou, H.-K., and Korfhage, W. Enhancing distributed event predicate
detection algorithms.IEEE Trans. Parallel Distrib. Systems7, 7 (July
1996), 673–676.

7. Cooper, R., and Marzullo, K. Consistent detection of global predicates.
Proc. ACM/ONR Workshop on Parallel and Distributed Debugging,
ACM SIGPLAN Notices26, 12 (Dec. 1991), 167–174.

8. Fidge, J. Timestamps in message-passing systems that preserve the
partial ordering.Proc. 11th Australian Computer Science Conference,
Feb. 1988, 56–66.

9. Fischer, M. J., Griffeth, N. D., and Lynch, N. A. Global states of a
distributed system.IEEE Trans. Software Engrg.8, 3 (May 1982),
198–202.

10. Garg, V. K., and Chase, C. M. Distributed algorithms for detecting
conjunctive predicates. Proc. 15th International Conference on
Distributed Computing Systems.June 1995, pp. 423–430.

11. Garg, V. K., and Waldecker, B. Detection of weak unstable predicates in
distributed programs.IEEE Trans. Parallel Distrib. Systems5, 1 (Mar.
1994), 299–307.

12. Goldberg, A. P., Gopal, A., Lowry, A., and Strom, R. Restoring
consistent global states of distributed computations.ACM SIGPLAN
Notices26, 12 (Dec. 1991), 144–154.

13. Helary, J.-M. Observing global states of asynchronous distributed
applications. Proc. Third International Workshop on Distributed
Algorithms.1989, pp. 124–135.

14. Lai, T. H., and Yang, T. H. On distributed snapshots.Inform. Process.
Lett. 25 (May 1987), 153–158.

15. Lamport, L. Time, clocks, and the ordering of events in a distributed
system.Comm. ACM21, 7 (July 1978), 558–565.

16. Li, H. F., Radhakrishnan, T., and Venkatesh, K. Global state detection in
non-FIFO networks.Proc. 7th International Conference on Distributed
Computing Systems.Sept. 1987, pp. 364–370.

17. Liu, C. L.Elements of Discrete Mathematics.McGraw–Hill, New York,
1985, 119.

18. Mattern, F. Virtual time and global states of distributed systems.
In Cosnard, M., Robert, Y., Quinton, P., and Raynal, M. (Eds.).
Proc. International Workshop on Parallel and Distributed Algorithms.
Elsevier, North-Holland, 1989, pp. 215–226.

19. Peterson, S. L., and Kearns, P. Rollback based on vector time.Proc.
12th Symposium on Reliable Distributed Systems.Oct. 1993, pp. 68–
77.

20. Raynal, M. About logical clocks for distributed systems.Oper. System
Rev.26, 1 (Jan. 1992), 41–48.

21. Raynal, M., Schiper, A., and Toueg, S. The causal ordering abstraction
and a simple way to implement it.Inform. Process. Lett.39, 6 (Sept.
1991), 343–350.

22. Raynal, M., and Singhal, M. Logical time: Capturing causality in
distributed systems.IEEE Comput.30, 2 (Feb. 1996), 49–56.

23. Schiper, A., Eggli, J., and Sandoz, A. A new algorithm to implement
causal ordering. Proc. Third International Workshop on Distributed
Algorithms.1989

24. Singhal, M., and Kshemkalyani, A. An efficient implementation of
vector clocks.Inform. Process. Lett.43, 1 (1992), 47–52.

LI-HSING YEN received the B.S. and M.S. in computer science and
information engineering, from National Chiao Tung University, Hsinchu,
Taiwan, in 1989 and 1991, respectively. Since September 1993, he has been
a Ph.D. student in the Department of Computer Science and Information
Engineering at National Chiao Tung University, Hsinchu, Taiwan. His
current research interests include distributed algorithms, program testing and
verification, and mobile computing.

TING-LU HUANG studied at Tung-hi University (B.S., 1976), University
of Texas at Arlington (M.S., 1981), and Northwestern University (Ph.D.,
1989). He is currently an associate professor in the Department of Computer
Science and Information Engineering at National Chiao Tung University. He
has been working on mutual exclusion algorithms, causality in distributed
computing, testing and debugging of concurrent software, and verification.

Received January 2, 1996; accepted May 6, 1997

