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Abstract

Augmented cubes, AQn, are derivatives of cubes with good geometric nature. A graph
G is panconnected if there exists a path of length l joining any two vertices x and y with
d(x, y) ≤ l ≤ |V (G)| − 1.In this paper, we make a study of pan-connectivity of a simple
graph and prove that augmented cubes are panconnected.
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Chapter 1

Introduction

For the good of convenience, we traditionally model a network by a graph, in which nodes

stand for processors and edges present the direct communication between two proces-

sors. Many topologies have been proposed to balance the performance and some cost

parameters. Hypercubes are widely studied in the interconnection networks[3][4]. Several

variations of hypercubes have been proposed to improve the efficiency of hypercube net-

work, like twisted cubes[5][6], twisted N-cubes[7], crossed cubes[8][9], Mobius cubes[10],

augmented cubes[2].

1.1 Hamiltonian connected

A graph G is hamiltonian connected if there exists a hamiltonian path joining any two

vertices of G. all hamiltonian connected graphs except K1 and K2 are hamiltonian. A

graph G is k-fault hamiltonian connected if G-F remains hamiltonian connected for every

F ⊂ V (G)
⋃

E(G) with |F | ≤ k. The fault hamiltonian connectivity, Hk
f (G), is defined to
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be the maximum integer k such that G is k-fault hamiltonian connected if G is hamiltonian

connected and is undefined otherwise.

It can be checked that Hk
f (G) ≤ δ(G)− 3 if Hk

f (G) is defined and |V (G)| ≥ 4. In[11],

it is proved that Hk
f (G) = 2n − 4 if n  {1, 3}, Hk

f (AQ3) = 0. Again, this result

concerning the fault hamiltonian connectivity of the augmented cube AQn is optimal

since δ(AQn) = 2n − 1 and δ(AQn) − 3 = 2n − 4. Thus, Hk
f (AQn) = 2n − 4, if n ≥ 4.

This is described in Theorem 1.

1.2 Pan-connected

A graph G is pan-connected if there exists a path of length ≤ l joining any two vertices x

and y with d(x, y) ≤ l ≤ |V (G)| − 1. That says, any two processors in the network with

pan-connectivity can communicate with each other at all possible distances that varies

from the length of the shortest path to that of the hamiltonian path. With that, we can

decide the routing ways most possibly, and it is useful in some multi-casting works.

A graph which is hamiltonian connected is not always pan-connected, but a graph

is pan-connected is always hamiltonian connected. This is easy to check if we know the

definitions of both of them.

The rest of this paper is organized as follows. In chapter 2, we gave definitions of the

augmented cubes and discuss some properties of AQn. And then we gave a new definition
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that help discussing pan-connectivity on augmented cubes. In chapter 3, we prove that

AQ2, AQ3, and AQ4 are all pan-connected by listing all paths of all lengths of them. In

chapter 4, we discussed the pan-connectivity of augmented cubes and then discussed the

pan-connectivity of other graphs. Finally, we make some concluding remarks in chapter

5. We also wrote one program - Graphic which work for testing pan-connectivity, vertex-

pan-cyclic, and fault-vertex-pan-cyclic of a graph. And we briefly state its method on

search part and introduce Graphic in chapter 6.
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Chapter 2

Augmented cubes and
pan-connectivity

2.1 Preliminaries

To make a description of simple graphic, we gave some definitions and notations below.

LetG = (V,E) be a graph if V is a finite set and E is a subset of {(u, v) | (u, v) is an

unordered pair of V }. V is the vertex set and E is the edge set. Two vertices u and v are

adjacent if (u, v) ∈ E. A path , denoted by 〈v0, v1, v2, . . . , vk〉, is a sequence of distinct

vertices where vi and vi+1 are adjacent for all i, 0 ≤ i ≤ k − 1. We use l(P ) to present

the length of a path P and d(u, v) to denote the distance between u and v. A path is a

Hamiltonian path if its vertices are distinct and span V. A graph G is pan-connected if there

exists a path of length l joining any two vertices x and y with d(x, y) ≤ l ≤ |V (G)| − 1.
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2.2 Augmented cubes

Let n ≥ 1 be an integer, the n-dimensional augmented cube [2], denoted by AQn, has 2n

vertices, each is labelled by an n-bit binary string V (AQn) = {u1, u2...un | ui ∈ {0, 1}}.

For n ≥ 2, AQn can be recursively constructed by two copies of AQn−1, denoted by AQ0
n−1

and AQ1
n−1, and adding 2n edges between the two as follows:

Let V (AQ0
n−1) = {(0u2u3 . . . un) | ui = 0 or 1 for 2 ≤ i ≤ n} and V (AQ1

n−1) =

{(1v2v3 . . . vn) | vi = 0 or 1 for 2 ≤ i ≤ n}. A vertex u = (0u2u3 . . . un) of AQ0
n−1 is joined

to a vertex v = (1v2v3 . . . vn) of AQ1
n−1 if and only if either

(i) ui = vi, for 2 ≤ i ≤ n; in this case, (u,v) is called a hypercube edge and we set v = uh,

or

(ii) ui = v̄i, for 2 ≤ i ≤ n; in this case, (u,v) is called a complement edge and we set

v = uc.

In figure 2.1, there are augmented cubes with dimension 1, 2, 3, respectively.

In [11], we have the result theorem 1. Clearly, augmented cubes with dimension n ≥

4 are 1 - fault hamiltonian connected.

To describe theorem 1, we need to explain the followings. In [11], We say a graph G

has property 2H if it satisfies the following conditions: Let {w,x} and {y,z} be two pairs
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Figure 2.1: The augmented cubes AQ1, AQ2, and AQ3.

of four distinct vertices of G. There exist two disjoint paths P1 and P2 of G such that (1)

P1 joins w to x, (2) P2 joins y to z, and (3) every vertex of G is either on path P1 or on

P2.

A graph G is k-fault hamiltonian connected if G-F remains hamiltonian connected for

every F ⊂ V (G)
⋃

E(G) with |F | ≤ k. The fault hamiltonian connectivity, Hk
f (G), is

defined to be the maximum integer k such that G is k-fault hamiltonian connected if G

is hamiltonian connected and is undefined otherwise.

Theorem 1 Let n be a positive integer with n ≥ 4. Then AQn is (2n− 3)-fault hamilto-

nian, (2n− 4)-fault hamiltonian connected, and has property 2H.

Besides, an augmented cube of dimension n is vertex transitive , (2n-1)-regular, (2n-

1)-connected, and has diameter dn/2e.
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2.3 T-set

For the convenience of discussing pan-connectivity of AQn, we have a new notation :

T − set , the short writing of Together − Set.

Definition 1 Given a vertex u=(0u1, u2...un) in AQ0
n−1 (or u=(1u1, u2...un) in AQ1

n−1),

we can find a vertex set {v, w, x} such that v=(0u1, u2...un), w=(1u1, u2...un), x=(1u1, u2...un)

(or v=(1u1, u2...un), w=(0u1, u2...un), x=(0u1, u2...un)). We say that T-set(u)={v, w, x}.

Suppose the set {b, c, d} is T-set(a), then {a, b, c, d} form a K4. The identity of node

b, c, d is as one is ac, another is ah, and the last is (ac)h which is equal to (ah)c.

From the definition, we can easily check the following lemma.

Lemma 1 For any node v in AQn, n ≥ 2, there must exist one T-set(v).

For an example in AQ3, let a = (000) is in AQ0
2. By definition node a connect both to

b = (100) and c = (111). {b, c} is in AQ1
2. The complement node of b, we name it as d, is

(011). T-set(a) is {b, c, d}, T-set(b) is {a, c, d}, T-set(c) is {a, b, d}, T-set(d) is {a, b, c}.

The set {a, b, c, d} and its connections between each two nodes of them form a K4.

2.4 Pan-connected graphs

A graph is pan-connected is always with many edges. But it is not only for completed

graphs to have the property. Some other graphs have that also. No matter they are
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regular ones or not.

We have determined that the graphs like HQ, Star, and (n, k)Star are all not pan-

connected. It is easy to do just with the program - ”Graphic”, which is described in

Appendix.

Additionally, We conclude some necessary conditions for pan-connectivity. They are

the properties that a pan-connected graph must not have.

Lemma 2 if a connected graph G except triangle has any node with degree 2, then G is

not pan-connected.

Proof . For the generality we suppose nodes u and v are the neighbors of the node that

has degree 2. Then the path between u and v can not be a hamiltonian path. Therefore,

G is not pan-connected.

Lemma 3 if a connected graph G contains any articulation point, then it is also not

pan-connected. In another word, if G can not tolerant of one fault, then G is not a

pan-connected graph.

Proof . We can find two neighbors of the articulation point, u and v. It is impossible

to find the hamiltonian path start at u and end at v. So G is not a pan-connected graph.

10



corollary 1 For a graph G with order n≥ 4, if G either has a node that has degree 2 or

an articulation point, then G is not a pan-connected graph.
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Chapter 3

Pan-connectivity of AQ2, AQ3, and
AQ4

The augmented cubes AQ2 and AQ3 and AQ4 are all pan-connected. For the proof, we

list the essential paths of AQ2, AQ3 and AQ4.

To match the program’s outcome, we named each nodes in AQn from 1 to 2n. See

also figure 3.1.

3.1 Pan-connectivity on AQ2

Since AQn has the property of symmetry and transition. We only to need list the case of

starting with some node. Generally, we start at node 1.
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from 1 to - length and path
2 1 : 1,2

2 : 1,3,2
3 : 1,3,4,2

3 1 : 1 3
2 : 1,2,3
3 : 1 2 4 3

4 1 : 1,5
2 : 1 4 5
3 : 1 2 4 5

Table 2.1: paths with different lengths form node 1 to other nodes in AQ2

3.2 Pan-connectivity on AQ3

We start at node 1. See also figure 3.1.
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from 1 to - length and path from 1 to - length and path
2 1 : 1,2

2 : 1,3,2
3 : 1,3,4,2
4 : 1,3,6,7,2
5 : 1,3,4,5,6,2
6 : 1,3,4,5,6,7,2
7 : 1,3,4,5,6,8,7,2

6 2 : 1 2 6
3 : 1 2 3 6
4 : 1 2 3 7 6
5 : 1,2,3,4,5,6
6 : 1 2 3 4 5 7 6
7 : 1 2 3 4 5 7 8 6

3 1 : 1 3
2 : 1,2,3
3 : 1 2 4 3
4 : 1 2 6 7 3
5 : 1 2 4 5 6 3
6 : 1 2 4 5 6 7 3
7 : 1 2 4 5 6 8 7 3

7 2 : 1 2 7
3 : 1 2 3 7
4 : 1 2 3 6 7
5 : 1,2,3,4,5,7
6 : 1,2,3,4,5,6,7
7 : 1,2,3,4,5,6,8,7

4 1 : 1,4
2 : 1 2 4
3 : 1,2,3,4
4 : 1 2 6 3 4
5 : 1 2 3 6 5 4
6 : 1 2 3 6 5 8 4
7 : 1 2 3 6 5 7 8 4

8 1 : 1,8
2 : 1 4 8
3 : 1 2 4 8
4 : 1 2 3 4 8
5 : 1 2 3 4 5 8
6 : 1,2,3,4,5,6,8
7 : 1,2,3,4,5,6,7,8

5 1 : 1,5
2 : 1 4 5
3 : 1 2 4 5
4 : 1,2,3,4,5
5 : 1 2 3 4 8 5
6 : 1 2 3 4 8 6 5
7 : 1 2 3 4 8 6 7 5

Table 2.1: paths with different lengths form node 1 to other nodes in AQ3

With the table above, we complete the discussion of pan-connectivity of AQ3.

3.3 Pan-connectivity on AQ4

AQ4 only need to be discussed in the case in which one end is node 1.
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See figure 3.2, 3.3, 3.4, 3.5, 3.6.

The ”1” in the final matrix represents the path from 1 to other node u that is the

node-descriptor shown on that row exists.
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Figure 3.1: AQ2, AQ3, AQ4
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 1 2 ,from 1 to 2 length is 1

 1 2 3 ,from 1 to 3 length is 2

 1 2 3 4 ,from 1 to 4 length is 3

 1 2 3 4 5 ,from 1 to 5 length is 4

 1 2 3 4 5 6 ,from 1 to 6 length is 5

 1 2 3 4 5 6 7 ,from 1 to 7 length is 6

 1 2 3 4 5 6 7 8 ,from 1 to 8 length is 7

 1 2 3 4 5 6 7 8 9 ,from 1 to 9 length is 8

 1 2 3 4 5 6 7 8 9 10 ,from 1 to 10 length is 9

 1 2 3 4 5 6 7 8 9 10 11 ,from 1 to 11 length is 10

 1 2 3 4 5 6 7 8 9 10 11 12 ,from 1 to 12 length is 11

 1 2 3 4 5 6 7 8 9 10 11 12 13 ,from 1 to 13 length is 12

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ,from 1 to 14 length is 13

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ,from 1 to 15 length is 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ,from 1 to 16 length is 15

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 ,from 1 to 16 length is 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 15 ,from 1 to 15 length is 15

 1 2 3 4 5 6 7 8 9 10 11 12 13 15 ,from 1 to 15 length is 13

 1 2 3 4 5 6 7 8 9 10 11 12 13 15 14 ,from 1 to 14 length is 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 14 ,from 1 to 14 length is 15

 1 2 3 4 5 6 7 8 9 10 11 12 13 16 ,from 1 to 16 length is 13

 1 2 3 4 5 6 7 8 9 10 11 12 16 ,from 1 to 16 length is 12

 1 2 3 4 5 6 7 8 9 10 11 12 16 13 ,from 1 to 13 length is 13

 1 2 3 4 5 6 7 8 9 10 11 12 16 14 13 ,from 1 to 13 length is 14

 1 2 3 4 5 6 7 8 9 10 11 12 16 14 15 13 ,from 1 to 13 length is 15

 1 2 3 4 5 6 7 8 9 10 11 14 ,from 1 to 14 length is 11

 1 2 3 4 5 6 7 8 9 10 11 14 13 12 ,from 1 to 12 length is 13

 1 2 3 4 5 6 7 8 9 10 11 14 13 15 16 12 ,from 1 to 12 length is 15

 1 2 3 4 5 6 7 8 9 10 11 14 13 16 12 ,from 1 to 12 length is 14

 1 2 3 4 5 6 7 8 9 10 11 14 15 ,from 1 to 15 length is 12

 1 2 3 4 5 6 7 8 9 10 11 15 ,from 1 to 15 length is 11

 1 2 3 4 5 6 7 8 9 10 11 15 14 ,from 1 to 14 length is 12

 1 2 3 4 5 6 7 8 9 10 12 ,from 1 to 12 length is 10

 1 2 3 4 5 6 7 8 9 10 12 11 ,from 1 to 11 length is 11

 1 2 3 4 5 6 7 8 9 10 12 13 ,from 1 to 13 length is 11

 1 2 3 4 5 6 7 8 9 10 12 13 14 11 ,from 1 to 11 length is 13

 1 2 3 4 5 6 7 8 9 10 12 13 14 15 11 ,from 1 to 11 length is 14

 1 2 3 4 5 6 7 8 9 10 12 13 14 16 15 11 ,from 1 to 11 length is 15

 1 2 3 4 5 6 7 8 9 10 12 16 ,from 1 to 16 length is 11

 1 2 3 4 5 6 7 8 9 10 14 ,from 1 to 14 length is 10

 1 2 3 4 5 6 7 8 9 10 14 11 12 ,from 1 to 12 length is 12

 1 2 3 4 5 6 7 8 9 10 14 15 11 ,from 1 to 11 length is 12

 1 2 3 4 5 6 7 8 9 10 15 ,from 1 to 15 length is 10

 1 2 3 4 5 6 7 8 9 11 ,from 1 to 11 length is 9

 1 2 3 4 5 6 7 8 9 11 10 ,from 1 to 10 length is 10

 1 2 3 4 5 6 7 8 9 11 12 10 ,from 1 to 10 length is 11

 1 2 3 4 5 6 7 8 9 11 12 13 14 10 ,from 1 to 10 length is 13

 1 2 3 4 5 6 7 8 9 11 12 13 14 15 10 ,from 1 to 10 length is 14

 1 2 3 4 5 6 7 8 9 11 12 13 14 16 15 10 ,from 1 to 10 length is 15


Figure 3.2: pan-connectivity of AQ4 part 1
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 1 2 3 4 5 6 7 8 9 11 14 15 10 ,from 1 to 10 length is 12

 1 2 3 4 5 6 7 8 9 12 ,from 1 to 12 length is 9

 1 2 3 4 5 6 7 8 9 12 13 ,from 1 to 13 length is 10

 1 2 3 4 5 6 7 8 9 12 16 ,from 1 to 16 length is 10

 1 2 3 4 5 6 7 8 9 13 ,from 1 to 13 length is 9

 1 2 3 4 5 6 7 8 9 16 ,from 1 to 16 length is 9

 1 2 3 4 5 6 7 8 16 ,from 1 to 16 length is 8

 1 2 3 4 5 6 7 8 16 9 ,from 1 to 9 length is 9

 1 2 3 4 5 6 7 8 16 12 9 ,from 1 to 9 length is 10

 1 2 3 4 5 6 7 8 16 12 10 9 ,from 1 to 9 length is 11

 1 2 3 4 5 6 7 8 16 12 10 11 9 ,from 1 to 9 length is 12

 1 2 3 4 5 6 7 8 16 12 10 11 14 13 9 ,from 1 to 9 length is 14

 1 2 3 4 5 6 7 8 16 12 10 11 14 15 13 9 ,from 1 to 9 length is 15

 1 2 3 4 5 6 7 8 16 12 10 14 11 9 ,from 1 to 9 length is 13

 1 2 3 4 5 6 7 8 16 14 ,from 1 to 14 length is 9

 1 2 3 4 5 6 7 8 16 15 ,from 1 to 15 length is 9

 1 2 3 4 5 6 7 10 ,from 1 to 10 length is 7

 1 2 3 4 5 6 7 10 9 8 ,from 1 to 8 length is 9

 1 2 3 4 5 6 7 10 9 11 12 13 14 15 16 8 ,from 1 to 8 length is 15

 1 2 3 4 5 6 7 10 9 11 12 13 14 16 8 ,from 1 to 8 length is 14

 1 2 3 4 5 6 7 10 9 11 12 13 16 8 ,from 1 to 8 length is 13

 1 2 3 4 5 6 7 10 9 11 12 16 8 ,from 1 to 8 length is 12

 1 2 3 4 5 6 7 10 9 12 16 8 ,from 1 to 8 length is 11

 1 2 3 4 5 6 7 10 9 16 8 ,from 1 to 8 length is 10

 1 2 3 4 5 6 7 10 11 ,from 1 to 11 length is 8

 1 2 3 4 5 6 7 10 12 ,from 1 to 12 length is 8

 1 2 3 4 5 6 7 10 14 ,from 1 to 14 length is 8

 1 2 3 4 5 6 7 10 15 ,from 1 to 15 length is 8

 1 2 3 4 5 6 7 15 ,from 1 to 15 length is 7

 1 2 3 4 5 6 7 15 10 ,from 1 to 10 length is 8

 1 2 3 4 5 6 7 15 13 ,from 1 to 13 length is 8

 1 2 3 4 5 6 8 ,from 1 to 8 length is 6

 1 2 3 4 5 6 8 7 ,from 1 to 7 length is 7

 1 2 3 4 5 6 8 9 ,from 1 to 9 length is 7

 1 2 3 4 5 6 8 9 10 7 ,from 1 to 7 length is 9

 1 2 3 4 5 6 8 9 10 11 12 13 14 15 7 ,from 1 to 7 length is 14

 1 2 3 4 5 6 8 9 10 11 12 13 14 16 15 7 ,from 1 to 7 length is 15

 1 2 3 4 5 6 8 9 10 11 12 13 15 7 ,from 1 to 7 length is 13

 1 2 3 4 5 6 8 9 10 11 14 15 7 ,from 1 to 7 length is 12

 1 2 3 4 5 6 8 9 10 11 15 7 ,from 1 to 7 length is 11

 1 2 3 4 5 6 8 9 10 15 7 ,from 1 to 7 length is 10

 1 2 3 4 5 6 8 16 ,from 1 to 16 length is 7

 1 2 3 4 5 6 11 ,from 1 to 11 length is 6

 1 2 3 4 5 6 11 9 8 ,from 1 to 8 length is 8

 1 2 3 4 5 6 11 10 7 ,from 1 to 7 length is 8

 1 2 3 4 5 6 11 12 ,from 1 to 12 length is 7

 1 2 3 4 5 6 11 14 ,from 1 to 14 length is 7

 1 2 3 4 5 6 14 ,from 1 to 14 length is 6

 1 2 3 4 5 6 14 11 ,from 1 to 11 length is 7

 1 2 3 4 5 6 14 13 ,from 1 to 13 length is 7


Figure 3.3: pan-connectivity of AQ4 part 2
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 1 2 3 4 5 7 ,from 1 to 7 length is 5

 1 2 3 4 5 7 6 ,from 1 to 6 length is 6

 1 2 3 4 5 7 8 6 ,from 1 to 6 length is 7

 1 2 3 4 5 7 8 9 10 11 6 ,from 1 to 6 length is 10

 1 2 3 4 5 7 8 9 10 11 12 13 14 6 ,from 1 to 6 length is 13

 1 2 3 4 5 7 8 9 10 11 12 13 15 14 6 ,from 1 to 6 length is 14

 1 2 3 4 5 7 8 9 10 11 12 13 15 16 14 6 ,from 1 to 6 length is 15

 1 2 3 4 5 7 8 9 10 11 14 6 ,from 1 to 6 length is 11

 1 2 3 4 5 7 8 9 10 11 15 14 6 ,from 1 to 6 length is 12

 1 2 3 4 5 7 8 9 11 6 ,from 1 to 6 length is 9

 1 2 3 4 5 7 10 ,from 1 to 10 length is 6

 1 2 3 4 5 7 10 11 6 ,from 1 to 6 length is 8

 1 2 3 4 5 7 15 ,from 1 to 15 length is 6

 1 2 3 4 5 8 ,from 1 to 8 length is 5

 1 2 3 4 5 8 9 ,from 1 to 9 length is 6

 1 2 3 4 5 8 16 ,from 1 to 16 length is 6

 1 2 3 4 5 12 ,from 1 to 12 length is 5

 1 2 3 4 5 12 13 ,from 1 to 13 length is 6

 1 2 3 4 5 13 ,from 1 to 13 length is 5

 1 2 3 4 5 13 12 ,from 1 to 12 length is 6

 1 2 3 4 8 ,from 1 to 8 length is 4

 1 2 3 4 8 5 ,from 1 to 5 length is 5

 1 2 3 4 8 6 5 ,from 1 to 5 length is 6

 1 2 3 4 8 6 7 5 ,from 1 to 5 length is 7

 1 2 3 4 8 6 7 10 9 11 12 5 ,from 1 to 5 length is 11

 1 2 3 4 8 6 7 10 9 11 12 13 5 ,from 1 to 5 length is 12

 1 2 3 4 8 6 7 10 9 11 12 16 13 5 ,from 1 to 5 length is 13

 1 2 3 4 8 6 7 10 9 11 12 16 14 13 5 ,from 1 to 5 length is 14

 1 2 3 4 8 6 7 10 9 11 12 16 14 15 13 5 ,from 1 to 5 length is 15

 1 2 3 4 8 6 7 10 9 12 5 ,from 1 to 5 length is 10

 1 2 3 4 8 6 7 10 12 5 ,from 1 to 5 length is 9

 1 2 3 4 8 6 11 12 5 ,from 1 to 5 length is 8

 1 2 3 4 8 9 ,from 1 to 9 length is 5

 1 2 3 4 8 16 ,from 1 to 16 length is 5

 1 2 3 4 12 ,from 1 to 12 length is 4

 1 2 3 4 12 10 ,from 1 to 10 length is 5

 1 2 3 4 12 11 ,from 1 to 11 length is 5

 1 2 3 4 13 ,from 1 to 13 length is 4

 1 2 3 4 13 14 ,from 1 to 14 length is 5

 1 2 3 4 13 15 ,from 1 to 15 length is 5

 1 2 3 6 ,from 1 to 6 length is 3

 1 2 3 6 5 4 ,from 1 to 4 length is 5

 1 2 3 6 5 7 8 4 ,from 1 to 4 length is 7

 1 2 3 6 5 7 8 9 10 11 12 4 ,from 1 to 4 length is 11

 1 2 3 6 5 7 8 9 10 11 12 13 4 ,from 1 to 4 length is 12

 1 2 3 6 5 7 8 9 10 11 12 16 13 4 ,from 1 to 4 length is 13

 1 2 3 6 5 7 8 9 10 11 12 16 14 13 4 ,from 1 to 4 length is 14

 1 2 3 6 5 7 8 9 10 11 12 16 14 15 13 4 ,from 1 to 4 length is 15


Figure 3.4: pan-connectivity of AQ4 part 3
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 1 2 3 6 5 7 8 9 10 12 4 ,from 1 to 4 length is 10

 1 2 3 6 5 7 8 9 12 4 ,from 1 to 4 length is 9

 1 2 3 6 5 7 10 12 4 ,from 1 to 4 length is 8

 1 2 3 6 5 8 4 ,from 1 to 4 length is 6

 1 2 3 6 7 ,from 1 to 7 length is 4

 1 2 3 6 11 ,from 1 to 11 length is 4

 1 2 3 6 14 ,from 1 to 14 length is 4

 1 2 3 7 ,from 1 to 7 length is 3

 1 2 3 7 6 ,from 1 to 6 length is 4

 1 2 3 7 10 ,from 1 to 10 length is 4

 1 2 3 7 15 ,from 1 to 15 length is 4

 1 2 3 11 ,from 1 to 11 length is 3

 1 2 3 11 9 ,from 1 to 9 length is 4

 1 2 3 14 ,from 1 to 14 length is 3

 1 2 3 14 16 ,from 1 to 16 length is 4

 1 2 4 ,from 1 to 4 length is 2

 1 2 4 3 ,from 1 to 3 length is 3

 1 2 4 5 ,from 1 to 5 length is 3

 1 2 4 5 6 3 ,from 1 to 3 length is 5

 1 2 4 5 6 7 3 ,from 1 to 3 length is 6

 1 2 4 5 6 7 8 9 10 11 3 ,from 1 to 3 length is 10

 1 2 4 5 6 7 8 9 10 11 12 13 14 3 ,from 1 to 3 length is 13

 1 2 4 5 6 7 8 9 10 11 12 13 15 14 3 ,from 1 to 3 length is 14

 1 2 4 5 6 7 8 9 10 11 12 13 15 16 14 3 ,from 1 to 3 length is 15

 1 2 4 5 6 7 8 9 10 11 14 3 ,from 1 to 3 length is 11

 1 2 4 5 6 7 8 9 10 11 15 14 3 ,from 1 to 3 length is 12

 1 2 4 5 6 7 8 9 11 3 ,from 1 to 3 length is 9

 1 2 4 5 6 7 10 11 3 ,from 1 to 3 length is 8

 1 2 4 5 6 8 7 3 ,from 1 to 3 length is 7

 1 2 4 8 ,from 1 to 8 length is 3

 1 2 4 12 ,from 1 to 12 length is 3

 1 2 4 13 ,from 1 to 13 length is 3

 1 2 6 ,from 1 to 6 length is 2

 1 2 6 3 4 ,from 1 to 4 length is 4

 1 2 6 7 3 ,from 1 to 3 length is 4

 1 2 7 ,from 1 to 7 length is 2

 1 2 7 10 ,from 1 to 10 length is 3

 1 2 7 15 ,from 1 to 15 length is 3

 1 2 10 ,from 1 to 10 length is 2

 1 2 10 9 ,from 1 to 9 length is 3

 1 2 15 ,from 1 to 15 length is 2

 1 2 15 16 ,from 1 to 16 length is 3

 1 3 ,from 1 to 3 length is 1

 1 3 2 ,from 1 to 2 length is 2

 1 3 4 2 ,from 1 to 2 length is 3

 1 3 4 5 6 2 ,from 1 to 2 length is 5

 1 3 4 5 6 7 2 ,from 1 to 2 length is 6

 1 3 4 5 6 7 8 9 10 2 ,from 1 to 2 length is 9

 1 3 4 5 6 7 8 9 10 11 12 13 14 15 2 ,from 1 to 2 length is 14

 1 3 4 5 6 7 8 9 10 11 12 13 14 16 15 2 ,from 1 to 2 length is 15


Figure 3.5: pan-connectivity of AQ4 part 4
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 1 3 4 5 6 7 8 9 10 11 12 13 15 2 ,from 1 to 2 length is 13

 1 3 4 5 6 7 8 9 10 11 14 15 2 ,from 1 to 2 length is 12

 1 3 4 5 6 7 8 9 10 11 15 2 ,from 1 to 2 length is 11

 1 3 4 5 6 7 8 9 10 15 2 ,from 1 to 2 length is 10

 1 3 4 5 6 7 10 2 ,from 1 to 2 length is 7

 1 3 4 5 6 7 10 15 2 ,from 1 to 2 length is 8

 1 3 6 7 2 ,from 1 to 2 length is 4

 1 3 11 ,from 1 to 11 length is 2

 1 3 14 ,from 1 to 14 length is 2

 1 4 ,from 1 to 4 length is 1

 1 4 5 ,from 1 to 5 length is 2

 1 4 8 ,from 1 to 8 length is 2

 1 4 12 ,from 1 to 12 length is 2

 1 4 13 ,from 1 to 13 length is 2

 1 5 ,from 1 to 5 length is 1

 1 8 ,from 1 to 8 length is 1

 1 8 9 ,from 1 to 9 length is 2

 1 8 16 ,from 1 to 16 length is 2

 1 9 ,from 1 to 9 length is 1

 1 16 ,from 1 to 16 length is 1


The pan_cont_matrix (1)

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


It is Pan-connected!


Figure 3.6: pan-connectivity of AQ4 part 5
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Chapter 4

Pan-connectivity of augmented cubes

4.1 Pan-connectivity of AQn

In this chapter, we will prove augmented cubes are pan-connected by induction.

Theorem 2 The augmented cubes with dimension n ≥ 1, AQn, are pan-connected.

Base on the results of chapter 3, AQ2, AQ3, and AQ4 are pan-connected, we suppose

that AQn is pan-connected when n ≥ 4. Then we prove that AQn+1 is also pan-connected.

Let a, b be any two vertices in AQn+1, we want to find the path P of length ≤ l join

a and b with d(a, b) ≤ l ≤ 2n+1 − 1.

case 1: a, b are in AQ0
n or a and b are in AQ1

n.

Without loss of generality, let a and b are in AQ0
n. By induction, there exist the paths

of length from d(a, b) to 2n − 1 joining a to b.
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case 1.1: a and b are not adjacent

a


c


b


a’


c’


AQ
n+1


Figure 4.1: a and b are not adjacent in the augmented cubeAQn+1.

Let T-set(a)={c, a′, c′}. Without loss of generality, let (a, a′), (c, c′) are hypercube

edges and a, c are in AQ0
n.

By theorem 1, there exist a hamiltonian path P1 of AQ0
n − {a} joining c to b. Hence,

l(P1) = 2n− 2. And by induction, there exist paths Qi of lengths from 1 to 2n− 1 in AQ1
n

joining a′ to c′. l(Qi) = 1 ∼ 2n − 1.

We trace P in the following sequences to get different lengths:

First, to get the path of length 2n:

Let P = 〈a, a′, c, P1, b〉, and let l(〈c,..., b〉) = 2n − 2. Then l(P ) = 2n.
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Second, to get the path of lengths from 2n + 1 to 2n+1 − 1:

Let Pi = 〈a, a′, Qi, c
′, c, P1, b〉, i = 1 ∼ 2n − 1. l(Pi) = 2n + 1 ∼ 2n+1 − 1. So this case

is completed.

case 1-2: a and b are adjacent

case 1-2-1: b is in a′s T-set

a


c


b


a’

c’


AQ
n+1


d


b’


d’


Figure 4.2: b is in a′s T-set

Lemma 4 For any node a in AQn, n ≥ 4, suppose {a′, b, b′} is T-set(a) and both a and b

are in AQ0
n−1 or AQ1

n−1. There exist two pairs of distinct nodes, c, d in AQ0
n−1 and c′, d′

in AQ1
n−1, that have the following relations: (1). c and d are adjacent and c is adjacent

to a and d is adjacent to b. (2). c′ and d′ are adjacent and c′ is adjacent to a′ and d′ is

adjacent to b′. (3). c is adjacent to c′ and d is adjacent to d′.
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Proof . Without loss of generality, let a and b are in AQ0
n−1 and a = (0, v1, v2,...vi...vn−2), b =

(0, v1, v2,...vi..., vn−2). Let c = (0, v1, v2,...vi...vn−2) , d = (0, v1, v2,...vi..., vn−2), c′ =

(1, v1, v2,...vi...vn−2), and d′ = (1, v1, v2,...vi..., vn−2) for some i, 1 ≤ i ≤ 2n − 2. Such

c, d, c′, d′ conform to the conditions (1), (2), (3) of lemma 4.

This case can be constructed as Figure 4.2. Let T-set(a)={b, a′, b′}. Without loss of

generality, let (a, a′), (b, b′) are hypercube edges and a, b are in AQ0
n.

First, to get the path of length 2n:

By induction, there exist the path P1 of length l = 2n− 2 in AQ1
n joining a′ to b′. Let

P = 〈a, a′, P1, b
′, b〉, then l(P ) = 2n.

Second, to get the path of length 2n + 1 ∼ 2n+1 − 1:

By theorem 1, there exist the hamiltonian path Pa in AQ0
n joining a to c and not pass

through b. Thus, l(Pa) = 2n − 2. By induction, there exist paths Qi of lengths from 1 to

2n − 1 in AQ1
n joining c′ to a′.

Let Pi = 〈a, Pa, c, c
′, Qi, a

′, b〉, 1 ≤ i ≤ 2n − 1. l(Pi) = 2n + 1 ∼ 2n+1 − 1. Which

completes this case.

case 1-2-2: b is not in a′s T-set
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a


b


a’


AQ
n+1


b’


(a)


a


b


a’


AQ
n+1


c’


(b)


c


Figure 4.3: b is not in a′s T-set

In AQn, since AQ0
n−1 and AQ1

n−1 are isomorphic, we have the following lemma.

Lemma 5 If a and b are adjacent in AQ0
n−1, let a′ = (ah) and b′ = (bh), then a′ and b′

are also adjacent in AQ1
n−1.

By lemma 5, we can trade a and b as in figure 4.3.a in this case. But it is not enough

to explain all subcases. Thus, we need a more detail descriptions about a and b. We see

that b is not in a’s T-set, so there exists another node c 6= b and c is in a’s T-set. Watch

that c and b are not always adjacent, so we dotted it in figure 4.3.b. Of course, there exist

another two nodes c′ and a′ which are both in T-set(a). Without loss of generality, let a

and c are both in AQ0
n.

We begin our subcases that to find the paths of lengths from 2n to 2n+1 − 1.

First, to get the path of length 2n:
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See figure 4.3.a. By induction, there exist a path P1 of length 2n − 2 in AQ1
n joining

c′ to a′. Let P = 〈a, a′, P1, b
′, b〉. As a result, l(P ) = 2n.

Second, to get the path of lengths 2n + 1 ∼ 2n+1 − 1:

See figure 4.3.b. By induction, there exist paths Qi of lengths from 1 to 2n−1 in AQ1
n

joining a′ to c′. And by theorem 1, there exist the hamiltonian path P1 that does not go

through a joining c to b. l(P1) = 2n − 2. Let Pi = 〈a, a′, Qi, c
′, c, P1, b〉, i = 1 ∼ 2n − 1.

Thus, l(Pi) = 2n + 1 ∼ 2n+1 − 1. And it completes this case.

case 2: a is in AQ0
n and b is in AQ1

n, or a is in AQ1
n and b is in AQ0

n

Without loss of generality, let a is in AQ0
n and b is in AQ1

n.

case 2-1: a, b are adjacent

In this case, it is obvious to see that b is in T-set(a). And d(a, b) = 1. Let T-

set(a)={a′, b, b′}. It is shown in figure 4.4.

By induction, there exist paths Qi of lengths from 1 to 2n − 1 in AQ0
n joining a to a′,

1 ≤ i ≤ 2n − 1. l(Qi) = 1 ∼ 2n − 1.

First, to get the path of lengths 2 ∼ 2n:

Let Pi = 〈a,Qi, a
′, b〉, 1 ≤ i ≤ 2n − 1. l(Pi) = 2 ∼ 2n.
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a
 b


a’


AQ
n+1


b’


Figure 4.4: a, b are adjacent

Second, to get the path of lengths 2n + 1 ∼ 2n+1 − 1:

By induction, there exist the hamiltonian path P1 in AQ0
n joining a to a′. Also, there

exist paths Qi of lengths from 1 to 2n − 1 in AQ1
n joining b to b′.

Let Pi = 〈a, P1, a
′, b, Qi, b

′〉, 1 ≤ i ≤ 2n − 1. l(Pi) = 2n + 1 ∼ 2n+1 − 1.

case 2-2: a, b are not adjacent

Without loss of generality, let a be in AQ0
n, and let d(a, b) = k ≥ 2. Since a is not

adjacent to b, there exist another node c 6= a in AQ0
n such that c is in T-set(b), and b′ in

AQ1
n is also in T-set(b). So d(a, c) = k − 1.

Without loss of generality, let (c, b) be the hypercube edge. When tracing a path

joining a to b, if we take each step when going from node u to v as a bit-operation,
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a


b


c


AQ
n+1


b’


Figure 4.5: a, b are not adjacent

where u and v are adjacent on the path. Then tracing a path from a to b is as many

bit-operations. And any combination of those bit-operations have the same result. For

example, if a = (000) and b = (110), then we can go from a to b by the following steps :

(1). Change the most right bit to 1, which acts as go from a=(000) to (001).(2). Inverse

all bits, which acts as go from (001) to (110)=b. Or we can do the (2)-step first, and then

do the (1)-step. It does not matter to have any combinations. See figure 4.5. As a result,

we can say that if the path joining a to b exist, then the path going from a to c and from

c to b′ and from b′ to b exist, and the passing nodes in the segment from a to c are all in

AQ0
n, and the passing nodes in the segment from b′ to b are all in AQ1

n.

By induction, there exist paths Qi of lengths from k− 1 to 2n− 1 in AQ0
n joining a to

c. Also, there exist paths Rj of lengths from 1 to 2n − 1 in 2n − 1 in AQ1
n joining b′ to b.

To get the paths of lengths k + 1 ∼ 2n+1 − 1:
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Let Pij = 〈a,Qi, c, b
′, Rj, b〉, k−1 ≤ i ≤ 2n−1, 1 ≤ j ≤ 2n−1. l(Pij) = k+1 ∼ 2n+1−1.

With all above, it is completed of proof of theorem 2.

4.2 Other pan-connected graphs

As we see, not only completed graphs, but also some other graphs still are pan-connected.

However, the cost be paid are large degrees of nodes.

Besides augmented cubes, there are still some other graphs found are also pan-connected.

We just introduce them in this section.

We find that C(n, 1, 2, n − 2, n − 1), n is from 5 to 10, are also pan-connected. All

nodes in these graphs all have a regular degree 4. Among them, C(5, 1, 2, 3, 4) is equal to

K5. Figure 4.6 and figure 4.7 below are displayed for them.

Figure 4.6: C(6, 1, 2, 4, 5) and C(7, 1, 2, 5, 6)
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Figure 4.7: C(8, 1, 2, 6, 7) and C(9,1,2,7,8)

But C(5, 1, 2, 3, 4) is not the pan-connected graph with fewest edges when the order

is 5. The graph shown in the left of figure 4.8 is another pan-connected graph with fewer

edges than C(5, 1, 2, 3, 4).

It is also not true that a pan-connected graph G1 × ( cross-product ) G2, another

pan-connected graph, is also pan-connected.

We disprove it by a contrary example of K2 ×K3, although K3 ×K3 is pan-connected.
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( both are )   pan-cont-matrix ( 1 ) 


     1    2    3    4


2    1    1    1    1


3    1    1    1    1


4    1    1    1    1


5    1    1    1    1


TRUE


Figure 4.8: C(5, 1, 2, 3, 4) and another pan-connected graph
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1
 2


3
 4


5
 6


       1   2   3   4   5

 2     1   0   1   1   1

 3     1   1   1   1   1

 4     0   1   1   1   1

 5     1   1   1   1   1

 6     0   1   1   1   1


FALSE


Figure 4.9: K2 ×K3 is not pan-connected
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Chapter 5

Conclusion

In this paper, we have proved that augmented cubes are pan-connected. It can be im-

plemented on the network like the priority queue of routing paths from one processor to

another.

Augmented cubes have other good properties that have been demonstrated like vertex

symmetry, maximum connectivity ( 2n−1, equals to degree ), best possible wide diameter

( dn/2e+ 1 ), routing and broadcasting procedures with linear time complexity.

It remains space to discover more pan-connected graphs. Any attempt may cause a

new result. But we still do not know what is the minimum number of edges should a

pan-connected graph of order n have. Although the graphs mentioned in the figures 4.6,

4.7 have fewer degrees than augmented cubes, we don’t discuss them in this paper.
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Chapter 6

Appendix

6.1 The tool - ”Graphic”

The tool - Graphic is written in VC++. With this GUI tool, we can build a graph and

edit it. An edge is presented as two nodes. A user just needs to draw the nodes and

connect the edges to build a graph. The actions ”move” and ”delete” for nodes and edges

are ready if one user clicks both ”node− button” and ”move− button” for moving a node

or ”edge” and ”delete” for deleting an edge, etc. It can be applied to find the isomorphic

one of the original graph. The main point is, users can test pan-connectivity of any graph

in it. Anybody needs only draw the graph and clicks the button ”Pan− connected”, then

he will get the result of ”true” or ”false”. Besides, ”Graphic” can determine if a graph is

vertex-pan-cyclic, and fault-vertex-pan-cyclic or not.

The algorithm of testing the pan-connectivity of a graph is to trace every path from

each node, and check if all lengths from the shortest one to hamiltonian path exist. The

way to trace a path is by D.F.S ( Depth First Search).

35



Initially, it is must be done to establish the topology. In ”Graphic”, we record the

topology in iterators which save the graph as linked lists. The second, we deal with the

signals when the state on the drawing board is changed. ”Depth First Search” is adapted

to trace the graph. We show the mainly function of search part in figure 6.1.

6.2 Pan-cont-matrix

We use pan-cont-matrix(v) in our program, where v is a description-number of any node

v in graph. We explain it as follows.

The pan-cont-matrix(v) records each lengths of paths connect to v and presents as

a matrix. The row of it presents the other node’s description-number, and the column

of it stands for the distance between v to other node. In a graph G, if two nodes u

and v have the path with length l, then we record the content on the matrix on row u

and column l to be 1. Obviously, a matrix of a completed graph is filled with 1. Any

hypercube’s pan-cont-matrices looks as ’0’ and ’1’ occurs alternatively. We demonstrate

the pan-cont-matrix of HQ3 and AQ3 in figure 6.2.

According to the definition of pan-connectivity, it’s known that for a connected graph

G with order n, it’s node set V is {v0, v1,...vn}, if pan-cont-matrix(vi, i = 1 to n) has

a series of 1 from an positive integer k, k ≤ n − 1 to n-1, then We call such pan-cont-

matrix(vi) is true or false otherwise. Obviously, if pan-cont-matrix(vi, i = 1 to n) is
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true, G is pan-connected. On the other way, if G is pan-connected, then all its pan-cont-

matrix(vi, i = 1 to n) is true.
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void CGraphicDoc::PathAll(int n)

{


GraphTopo();          // topology initialization


POSITION P;           // use iterator to record path

int v=n,len=-1,k=0;

Cnode Pnode;          // also use iterator to record a node

P=eGraph[v].GetHeadPosition();                        

Pnode.ID=v;           // ID is an alias of a node

Path.AddTail(Pnode);

visit[k]=v;

if(eGraph[v].IsEmpty())


return;

old_visit=0;


while(P!=NULL){       // when P is NULL, 

                              // the search from some node is over


if(old_visit!=0){     // use old_visit 

                                      // to record privious walking


            for(;eGraph[v].GetAt(P).ID!=old_visit;\

eGraph[v].GetNext(P));


    eGraph[v].GetNext(P);


}

for(;P!=NULL;eGraph[v].GetNext(P)){           

    if(!Visited(eGraph[v].GetAt(P).ID)){


break;

    }

}

if(P==NULL){        // back search

    if(v==n)


return;

    Visit_Record();

    Path.RemoveTail();

    for(k=0;visit[k]!=-1;k++);

    old_visit=visit[k-1];

    visit[k-1]=-1;

    v=Path.GetTail().ID;

    P=eGraph[v].GetHeadPosition();

    continue;

}

old_visit=0;

Pnode.ID=eGraph[v].GetAt(P).ID;     // search new

Path.AddTail(Pnode);

for(k=0;visit[k]!=-1;k++);

visit[k]=Pnode.ID;

len=Path.GetCount()-1;

pan_cont[Pnode.ID][len]=TRUE;

v=Pnode.ID;

P=eGraph[v].GetHeadPosition();


}

}


Figure 6.1: the search-path function
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HQ
3 
 and the pan-cont-matrix(1):


        (  1  2  3  4  5  6  7 )

(node_2)    1  0  1  0  1  0  1

(node_3)    1  0  1  0  1  0  1

(node_4)    0  1  0  1  0  1  0

(node_5)    1  0  1  0  1  0  1

(node_6)    0  1  0  1  0  1  0

(node_7)    0  1  0  1  0  1  0

(node_8)    0  0  1  0  1  0  1


           length

 node


        (  1  2  3  4  5  6  7 )

(node_2)    1  1  1  1  1  1  1

(node_3)    1  1  1  1  1  1  1

(node_4)    1  1  1  1  1  1  1

(node_5)    1  1  1  1  1  1  1

(node_6)    0  1  1  1  1  1  1

(node_7)    0  1  1  1  1  1  1

(node_8)    1  1  1  1  1  1  1


           length

 node


AQ
3 
 and the pan-cont-matrix(1):


1
 2


3
 4


5
 6


7
 8


1
 2


3
 4


5
 6


7
 8


Figure 6.2: two pan-cont-matrices
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