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Resour ce and Remembering I nfluences on

Acquaintance Networks

Student: Yu-Kuan Jiang Advisor : Dr. Chuen-Tsai Sun

Institute of Computer anbhformation Science

National Chiao Tung University

ABSTRACT

To better reflect actual human interactions.in social netwaskets, the authors take a
bottom-up simulation approach to analyzing acquaintance network evolutied bas
local interaction rules. Resources and-remembering are consideaddition to common
friends, meeting by chance, and leaving and arriving. Based onfHwses, friendships
that have been established and built up can be strengthened, weakebeaken up.
Results from a series of simulations indicate that (a)lssald statistics, especially mean
degree of nodes, are irrelevant to parametric distributions betaepaely on average
values for initial parameters; (b) resource, remembering, anal iiniendship all raise the
average number of friends and lower both degree of clusteringepadation; (c) widely
used fieldwork sampling methods cannot capture the actual degrebudiists of social
networks; and (d) the epidemic dynamics and critical thresholaddeaftious disease in our
acquaintance network differ from those in Newman and Watts'lswoald model. These
findings indicate a strong need for a bottom-up simulation approacbctal :ietwork

research, one that stresses interactive rules and experimentalisimsulat
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Chapter 1
| ntr oduction

The primary feature of any social network is its small ldvaharacteristics of low
separation (showing how small the world is) and high degree oechgpt(explaining
why our friend’s friend is often our friend also). Watts’ (1999¢eesh has been the basis
for models that apply small world, techniques to measuring sodwaiories [15-17].
Most of these models [e.g., .13,.15,17]-mix regular and random networks—good for
explaining small world features but inadequate for explaining t@ugonary
mechanisms of social networks due to-their neglect of local rules thatiafégerctions
and relationships between individuals. Furthermore, researchers mevrallyefocused
on the final products of network topologies—that is, they have shown dolwasd
top-down approaches that facilitate theoretical analyses [13-20].a&utl social
network construction involves bottom-up processes entailing local hurtexadtions.
Our focus in this study is on the local interaction rules and dynpracesses that affect

network formation.

Other complex network models and applications can be referenced when
researching social networks. Examples include Albert et (@080) proposal that the
Internet possesses scale-free features, Barabasi and A[i&@9) use of growth and
preferential attachment mechanisms to establish a scaldrternet model (the BA

model). Bianconi and Barabasi (2001) added the fitness concept BAthsodel, in

1



which new added nodes are possible to attach more edges then oldoosiesulate
this kind of complex network more realistically, Li and Chen (2008¢ atroduced the
concept oflocal-world connectivity, which exists in many complex physical networks.
Their local-world model exhibits transitions between power-law apdreential scaling;

the Barabéasi—Albert (1999) scale-free model is one of several speciahf)sases.

As is the case with other complex networks, social networks éxibsmall world
phenomenon but differ in terms of characteristic detail (Newmakagk, 2003).
Davidsen et al. (2002) have proposed a model based on local rules for building
acquaintancenetworks; the rules involve such factors as making acquaintances,

becoming familiar with other individuals, and losing connections.

Acquaintance networks are a type of.social network that reprebenfgocesses
and results of people meeting people for the first time. Befiigy someone in a social
network is an important daily. activity,~one that more often thanimatlves two
individuals and a go-between who'is a“friend or acquaintance of botheudr, a
significant number of acquaintances are made by chance, with tworerindividuals
coming together at a specific time in a specific placeabge of a shared interest or
activity. As part of their acquaintance network model, Davidseh €2002) identified
two local and interactive rules, the first involving introductions anctingéy chance
and the second involving the effect of aging on acquaintance networksniduel is
considered more realistic because it acknowledges a simplevatise from everyday
experience that often one of our friends introduces us to one air ther friends.
However, the model is still inadequate for explaining changes dhatir once
acquaintances evolve into friendships—for example, strengthening, nusgker

separation that does not involve the death of one party.



In this paper we will introduce a rule that involves limited resesirand
remembering—the latter a memory factor through which individeatember or forget
their friends. This bottom-up, human-interaction-based simulation agped@ws for
analyses of how individual interaction factors affect the sidis features of
acquaintance networks. For example, researchers can adopt diffegadtmaking
resource distributions and probe their effects on entire acquaintete®rks and

measure correlations between statistical features under diffn@mhstances.



Chapter 2
Complex Networks Applied to
Friend-making Simulations

The small world concept reflects the “What a small world&lifeg that two strangers
have when they find out they have a friend in common. Milgram (1968 )the first to

design experiments involving the small world characteristic; esitteen, many
experiments have been conducted to verify the characteristic iarhunteractions. To
overcome practical barriers; Watts and . Strogatz (1998) restatesstlee as “general
conditions under which the world.can-be.small*[see also 13, 16, 18, andat@{ Bn

these efforts, social networks are.now.graphically expressed as (regeesenting

persons) and links (connecting persons who know each other).

According to Watts [16, 17], the small world feature and its chenatics of low
separation and high clustering is common to all social networks. Degree otisepara
measured using average path length and degree of clustering is measuwiedtasiag

coefficient. Average path length in any given network is calculated as

- _ 1 _ 2
FO )T R TR = o
2

whereN is the number of nodes in the network of interest (i.e., netgiadd andd, ,

denotes the shortest path betweeandv. Suppose node hask, number of neighbors



and a total ok, edges betweeky, nodes The clustering coefficient is defined as

2 1& 2E,
C=<Cv>=<—EV>=—Z—- (2)
k(k -1/ NZk(k-D
To make sense of the dimension of network separatiee average path length in a
network must be compared to that in a random gvapihthe same average number of
neighbors. To make sense of the magnitude of n&talastering, a network’s clustering

coefficient must be compared to that of a reguéwork with the same average number

of degrees.

2.1. Lattice Graphs

Lattice graphs are also callédatticesandnearest-neighbor coupled networkishey
represent regular networks that have ‘been thorgugtdearched. Each node in a
d-lattice can only be connected to immediately @eha neighbors. A two-neighbdk &

2) periodic 1-lattice is a ring and a four-neighlggr= 4) 2-lattice is a two-dimensional
grid graph. The average path length fé€ a 1 periodic 1-lattice is calculated as

_N(N+K-2)

NC 2K(N -1) (N - ). 3)

Here the average path length is so large thatnhaabe considered a small world
characteristic. The clustering coefficient for ttitaes with larger numbers of neighbors

is calculated as



w

_3K-2)_3
Cre = HK-1) 4 @

When high clustering is observed in such netwaitkay are said to conform to social

network characteristics.

2.2. Random Graphs

Random graphs are constructed using nodes that fEndom connection edges.
Another way of building a random graph is to deteenthep probability of a link
between node pairs; the result isian'ER randomhgj@jpconsisting ofN nodes and
[PN(N — 1) / 2] edges. In their analysis-of ER randompys, Erdos and Rényi (1960)
estimated the average number of neighbors (i.erage degree of nodes) as

<k>ER:w: p(N—]_): pN- (5)

The average path length of an ER random graphimaed as

In N

Ler O W . (6)

As seen in Equation (6), the average path lengndER random graph.£gr) increases
logarithmically with network sizeN). This agrees with the small world characteristic
observed in social networks. In other words, a comsmall world feature—the “small”

in “small world"—is that even large-scald &> 1) networks can have short path lengths.

Another small world characteristic is high clustgriwhich for an ER random graph



is estimated as
k>
C..= <— 7
r = 7)

meaning that unlike social networks, ER random lggago not have the clustering

characteristic.

In cases where the average degreeis fixed and the node totillis large enough,
the independent addition of edges results in asBnislistribution (Bollobas, 2001) of
the ER random graph with the equation

(ke

" (8)

N
Per(K) = ( kjpk 1-p"*=

2.3. Small Worlds

Regular networks exhibit high clustering but notaimvorld characteristics; random
networks have short average path lengths but mt tiustering. Watts and Strogatz
(1988) introduced a small world model that we wefler to as the WS model. The WS
algorithm starts from a 1-lattice graph in whicltle@mode ha& neighbors, with each
side havindk / 2 edges. The algorithm then determines whethénking an edge with a
probabilityp maintains a maximum of one edge between two arlgitrodes without any
self-links. Newman and Watts (1999) simplified & model by replacing random
edge rewiring with random edge additions. The NW W models are equivalent in
cases where the probabilpgyof edge rewiring or additions is small aNds sufficiently
large. The two models retain the clustering featineegular networks. Adding a small

7



amount of randomness dramatically shortens theagegpath length.

The two models just described capture the smallldvégatures of complex
networks, but social networks have additional cttaréstics. For instance, clustering in
social networks is relatively unmixed, and manyigagetworks are divided into groups
(Newman & Park, 2003). Leenders (1996) observetftiegmdships are not all identical,
and can be categorized as acquaintances, “justdfjégood friends, best friends, true

friends, and so forth.

2.4. Skewed Degree Distributions

In addition to the small-world “features of low Segieon and high clustering, social
networks also have the propertysifewed-degree distributiofik, 2]. For example, the
degree distribution in a collaboration network obvie actors approximately obeys a
power law for a part of its range, and has an apybrexponential cutoff for very high
degree. This kind of skewed degree distributionolserved also in coauthoring

networks, such as collaboration network of bioltggand physicists [21].

On the other hand, the degree distribution of tewvark of directors of Fortune
1000 companies is much less skewed. It has a glealparound a certain mean degree,
and a fast decay in the tail—its right-skewed it maticeably in contrast with that in
the collaboration networks. Newman (2001) explaitieat the network of company
directors has a substantial cost associated witlt tiakes continual work to be a

company director [21, 24].



2.5. Growing Social Networks

The most classical network growth models are thainternet or on the World-Wild
Web, such as Barabasi and Albert's (1999) growtll gmeferential attachment
mechanisms, and Bianconi and Barabasi’s (2001 iaddif fithess on the BA model’s
vertices. These models continuously add both \esta&nd edges to the network as time
passes (growth); and edges are more likely to atroevertices of high degree than to

ones of low degree (preferential attachment).

Growth models on Internet or on the Web, howeves, quite inappropriate as
models of the growth of social networks or acquaine networks. The reasons are (a)
the degree distribution of many acquaintance netsvaloes not appear to follow a
power-law distribution; (b) the ‘preferential attagmnt mechanism is not an important
one in acquaintance networks; and (c) social ndtsveuch as acquaintance networks
usually appear high clustering, but‘growth modédlshe Web or Internet show weak
clustering. Jin, Girvan, and Newman (2001), heriicst attempted at modeling the
evolution of the structure of social networks ahelit model creates a sharply peaked

distribution that is conforming to the observatiora lot of real social networks.



Chapter 3
Friendship Evolution and the Three-Rule
M odel

Davidsen et al. (2002) propose a two-rule modehatfuaintance network evolution,
with the first rule addressing how people make rfeends—via introductions or
meetings-by-chance. The second rule is that frieipdsare broken when one partner
dies. The model formulates a.fixed numbembhodes and undirected links between
pairs of nodes representingindividuals who knoeheather. We will introduce fiend
rememberingule that allows for the weakeningand strengthgoif friendships (Fig. 1).
The model repeats the three rules until the ‘actarée network in question reaches a

statistically stationary state.

* Rulel. Friend Making: Randomly chosen persons introduce two friencsatin
other. If this is their first meeting, a new lirkkformed between them. Randomly
chosen persons with less than two friends introdbheenselves to one other
random person. Thus, we use the term “introducedésxzribe meetings by chance

as well as meetings via a common friend.

* Rule2. Leaving and Arriving: At a probabilityp, a randomly chosen individual
and all associated links are removed from a netveordk replaced by another

person. Accordingly, acquaintances can be viewediraks of friends whose

10



members can leave for reasons other than deatlkrandthe circle for reasons

other than birth.

* Rule3. Friend Remembering: A certain number of friendships are updated, with
the number depending on an update propottiohis proportion and details

about updating will be explained in the next twotgms.

N ¥ l

R - Friend
Making
R - T

{Rule 2; Leaving and

e ———
'\_I_{}l_l_e__3? Friend
[Remembering

|
|
|
|
|
|
|
|
|
|
|
|
|
.. |
Arriving |
|
|
|
|
|
|
|
|
|
|
|
I
/

Figure 1. Three-rule model flow diagram.

3.1. Friendship Selection Methods

We considered three selection methods for upddtiegdships. In the firstperson
selection an individual choosds x N persons before picking a specific friend for each

person and updating their friendship. The updasdwt occur if the chosen person

11



does not have any friends. In this methoi a proportion factor for deciding how many
persons are chosen aNdaepresents the number of persons in the netwoitkid second
method,pair selection the individual chooséds x N pairs of persons and updates their
friendships. Updating is canceled if the pairedspes don’t know each other—a
frequent occurrence, since the network in quessi@parse in comparison to a complete
graph. In this methodh is a proportion factor for deciding how many pairs chosen. In
the last,edge selectignthe individual has more direct choice in selegtnx M
friendships for updating. In this methdwis a proportion factor for deciding how many
friendships are chosen amd is the number of friendships (or edges) at a $peci

moment.

We rejected the first two methods because in batdes, the number of chosen
friendships is in proportion tid (humber of nodes or persons). Sihte (N— 1) / 2 (the
upper boundary of the number of friendships) igctiy proportional toM (the number

of edges or friendships), we adopted the edgetsmtemethod for choosing friendships.

3.2. Friendship Update Equation

During friend remembering, the model uses the $electactic described in the
preceding section for choosing a specific numbdriendships. If a selected friendship
links persoru with persorv, their friendship is updated using Equation (@pehdent

upon individual remembering, resource, and bredkrgshold factors:
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0fo + (1—q)m| D| v | p| v
foe = Aty +(-a) ij (kv L iff 28, 9)

0, if f%<@

where fv" represents the new friendship betweenand v, ;' the original

friendship, g the old friend remembering the breakup threshold, personu’s
friend-making resourcess, his or her number of friends, amd and k, personv's
resources and friend numbers, respectivélg a joint function and a distribution
function. For convenience, the friend remembegngesource, and breakup threshold

6 parameters are normalized between 0 and 1.

Simplification without loss of generality is behiodr decision to us@(x) =x as the
distribution function and(a, b) =«a + b) / 2 as the joint functiaimhe updated equation

is written as

Df0|d + 1_ r_u+r_V G]_'
frow = qmy + q)Eﬁku kJ 2,1 > 8. (10)

0, if /<@

The equation is divided into two parts by the brgathresholdd. The first part consists
of the termgy (representing the effect of old friendships) ahd-Q) (representing the
effect of limited resources). The newly updatecrfdship may be weakening or
strengthening. It may also theoretically equal zérthe new friendship is below the

breakup threshold, as shown in the second pahieoéquation.

13



3.3. Expected Effectsof Local Rules

Acting locally, the three rules influence severgpects of an acquaintance network: (a)
the friend-making rule adds links, thereby incregghe average number of friends; (b)
the leaving and arriving and friend-rememberingesuboth remove links, thereby
reducing the average number of friends; (c) in@eas average number of friende<
lead to decreases in the average shortest patthlen@gnd (d) the direction of the

clustering coefficienC and average shortest path lenigthill reverse.

As opposed to the large number of factors assatiain the friend-remembering
rule, the leaving and arriving rule has.a singleapeeter (probability). The factorq
denotes a person’s ability to remember friendss thareasing that person’s number of
friends. The resource factordetermines an individual’s resources for makingnfs,
thereby setting an upper limit. The breakup thresldodetermines the difficulty of
cutting off a friendship—a negative ‘influence. Timtial friendship factorfy is a
reflection of how much attention a person is payumgn making a new acquaintance—a
positive contribution to friend-making. We expdtat parameters, r, andfy will exert
positive (increasing) influences ok><and that parametepsandé will exert negative

influences on k>.

3.4. Fittinga Normal Distribution

For sensitivity analyses of skewness and critiGabmeters affecting distribution, a

feasible probability-distribution function (pdf) miube applied. In most situations a

14



normal distribution is considered the best chdicg,it does not fit our purposes in this
study. Since critical parameters such as initi@nfiship, old friends remembering,
resources, and breakup thresholds have rangewodf,Qve chose betadistribution—a

two-parameter family of continuous probability distitions defined according to the

interval [0, 1] with a probability density functiaof

1

f(xa,pB)= B(a.f)

X7 1-x)P 1, (11)

whereB is the beta function andandg must be greater than zero (Larson, 1995).

We used a beta distribution subset calleth14that satisfies + = 14 and hag =
a | (a + p) as its average. Figure 2 presents pdf curveddtalddistributions with

averages of 0.1, 0.5, and 0.9. Figure 3 preseritsysdes for comparingpetal4and

normal distributions.

| — —

1.0

Figure 2. Betal4 pdf curves at different averades10 0.5, and 0.9
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Figure 3. Comparison of beta and normal distrimgio

Once a simulation reaches a statistically statyplevel, then clustering coefficient,
average path length, average degree, average ifedsguared, and degree distribution
statistics can be collected. Degrege distributior@ur simulations involved some random
rippling, especially for smaller populations.”Howe\since large populations consume
dramatically greater amounts of simulation time, apglied Bruce’s (2001) ensemble

average as follows:
1 M
P(K) =2 Pn(K), (12)
m=1

whereM is the number of curves to be averaged @iyl a curve that represents, for

example, a degree distribution, a time series,sanorth.
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Chapter 4
Experiment

A simulation of our model begins with parametettiatization and ends once the
acquaintance network reaches a statistically statio state. Initialized parameters
included the number of persoNsleaving and arriving probability, updated friendship
proportion b, old friend rememberingg, breakup thresholdd, distribution of
friend-making resourceas and distribution of initial friendshify. Statistically stationary
states were determined by observing-average dereaverage square of degrdé>s
clustering coefficientC, and. average path ‘length Each of these four statistics

eventually converged to values with slight ripples.

A statistically stationary state of parameter alization atN = 1,000,p = 0,b =
0.001,9g=0.9,0 = 0.1,r with a fixed value of 0.5, andkeetal4fy (u = 0.9) is shown in
Figure 4. Solid lines indicate the acquaintancevagk and the dashed lines in Figures 4c
and d (which are calculated using Equation 6 angaion 7) indicate the ER random

model at the same average degree as the acquaimerae|.
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Figure 4. Example of‘a statistically stationantesiasing the proposed model.

4.1. Effectsof Leaving and Arriving

For comparison, we reproduced Davidsen et al.' 84P8imulations using their original
parameters dfl = 7,000 angb at 0.04, 0.01, and 0.0025. We then chari¢jeai1,000 and
tested a broadep range. As noted in an earlier section, the leavand arriving
probability p is the only parameter in rule 2. In addition tangsvarious degree
distribution diagrams, we gathered> C, andL varying in p and analyzed their

correlations to determine the effectgpadn the acquaintance network.

The degree distributioB(k) from the two-rule model is shown in Figure 5. Al>,

18



C, andL values with parameter initializations for variqusbabilityp values are shown
in Figure 6. Correlations amonde>s C, andL are shown in Figure 7. The solid lines in
Figure 6 reflect the application of Davidsen etsalo-rule model; the dashed lines
(which are calculated using Equation 6 and Equat)aeflect the application of the ER
model at the same average degree. Contrasts betiaeetmo lines in Figures 6b and 6¢
indicate that the acquaintance network has thelsn@ld characteristic. Figure 6a
shows that the number of friends increases asifgspén of an individual lengthens.
According to Figure 7d, the clustering coefficietdsely follows average degree not but

average path length.

A larger p indicates a higher death rate and a lopex longer life span. Thus,
parametep acts as an aging facter. Relative.to other spgkigsans require more time
to make friends; Davidsen etal. therefore onlyigad on the << 0.1 regime. To satisfy
the needs of integrity theory, we also exploredptbe 0.1 regime and found that mean
degree &> decreased fqu values between 0.and 0.5. The decrease slowedponfel

(Fig. 6a).
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Figure 5.-Two:rule model degree distributigfk).
Table 1. «>, C andL vary-in-leaving :and arriving probability
p 5 A .05 .04 .01 .0025
<k> 1.55 5.246 10.02 12.64 39.71 115.34
< k*> 4.88 60.13 314.18 467.23 4708.25 29652.69
C 0.213 0.413 0.453 0.465 0.577 0.697
L 17.076 4.226 3.262 3.053 2.416 2.111
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Figure 7. Correlations amondas C andL vary in leaving and arriving probabilify

Note that in our model, a leaving and arriving @iobty of 0 means that rule 2 is
inactive, and a friendship update proportion oféans that rule 3 is inactive. Once rule
3 becomes inactive, our three-rule model becomes®tuivalent of Davidsen et al.’s
two-rule model. In all of the experiments descriliedhe following sectionsN was

initialized at 1,000 and at 0.001.

4.2. Effectsof Breakup Threshold

To determine the effects of the breakup threshaidtlte acquaintance network,

experiments were performed with parameters iruggali at different levels of the

22



friendship-breakup threshold. Other initialized parameters wege= 0.6 and the

constants = 0.5 andy = 0.5. The solid lines in Figure 8 represekit,<C, andL statistics

without rule 2 p = 0) and the dashed lines represent the samstismtwith rule 2

included p = 0.0025). The data indicate that rule 2—whicls &g an aging factor on

acquaintances in the network—reduced both averaggred «> and clustering

coefficientC and increased average path lerigth

According to the data presented in Figure 8, treakup threshold lowers the

average degreek= and raises both the clustering coeffici€r@nd average path lendth

The Figure 9 data show that tGe<k> andL—<k> corrections are negative and el

correction is positive. The threshold reflects ¢lase with which a friendship is broken.

As expected, a highet results in<a smaller humber of “average friendsd greater

separation between individuals.

Table 2. «>, C andL vary in‘breakup-threshollwith different leaving and arriving

probabilityp.
0 0.2 0.1 0.05 0.025 0.0125
p 0
<k> 5.99 9.94 14.39 22.05 38.21
< k*> 58.84 153.62 256.06 533.08 1528.89
C 0.3778 0.3146 0.1899 0.1284 0.1085
L 4.0986 3.2369 2.8368 2.5431 2.1414
p 0.0025
<k> 6.00 9.61 14.30 21.89 34.84
< k*> 60.48 146.94 257.08 531.31 1365.39
C 0.3876 0.3112 0.1532 0.1108 0.1484
L 4.0543 3.3064 2.8975 2.6230 2.3075
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Figure 9. Correlations amonds C andL vary in breakup threshold

4.3. Effectsof Resources

To determine the effects of resources and mematgrfson acquaintance networks, we
ran a series of experiments using parameters lingdh with different friend-making
resource and friend-rememberingvalues. Initialized parameters also incluged0, 6

= 0.1, and a fixedy value of 1. According to our results, a largeaised the average
degree &> but lowered the clustering coefficie@tand average path lendth(Fig. 10).
While it is not obvious that statistical characteas are influenced by different resource
distributions, they are clearly influenced by di#fet resource averages. In other words,

<k>, C, andL are affected by different resource averages bubwalifferent resource
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distributions. The Figure 10 data also show thaharease in q raiseds< and lowered
both C andL. FurthermoreC—<k> andL—<k> corrections were identified as negative

while theC-L correction was positive (Fig. 11).

Table 3. «>, C andL vary in friend-remembering value with different distributions of
friend-making resource

q 0. 2 4 .6 .8 9
r betal4(=0.1)
<k> 4.00 4.05 6.00 8.17 18.00 39.95
< k*> 24.62 25.60 68.48 135.10 616.24 2338.91
C 0.3588 0.3816 0.3582 0.3590 0.2969 0.1780
L 0.5254  5.4701 3.9116 3.4143 2.7518 2.2644
r betal4(=0.5)
<k> 4.96 6.03 7.99 11.43 21.20 41.25
< k*> 30.59 49:21 105.52 237.55 753.64 2438.32
C 0.4554  0.3840 0.3642 0.3245 0.2382  0.1802
L 6.0173 4.4481 3.4747 3.0483 2.5915 2.2003
r betal4(=0.9)
<k> 8.18 9.73 11.60 14.00 23.97 43.99
< k> 71.30 109.03 161.57 252.06 821.56 2625.60
C 0.1905 0.2246 0.1737 0.1778 0.1705 0.1461
L 3.8626  3.3340  3.1260 2.8912 2.4840 2.1564
r fixed_value=0.5)
<k> 4.68 6.02 8.01 11.37 19.97 40.30
< k*> 26.03 46.23 95.12 226.93 659.40 2356.56
C 0.486 0.386 0.348 0.319 0.275 0.189
L 6.954 4.611 3.575 3.067 2.624 2.201
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4.4. Effectsof Initial Friendship

Experiments were run using parameters initializediféerent initial-friendshipf, and
friend-remembering| values for the purpose of determining the effethose factors
on acquaintance networks. Other initialized paranseterep = 0,64 = 0.1, and a fixed
value of 0.5. Our results show that a larfgerised the average degrde><but lowered
both the clustering coefficier@ and average path length(Fig. 12). That different
distributions of initial friendship influenced ttatistical characteristics was not obvious,
but different averages of initial friendship clgedid. In other wordssk>, C, andL were

affected by different initial friendship averagest Imot by different initial friendship
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distributions. The Figure 12 data also show thatftlend remembering factor raised
<k> and lowered botk andL. BothC—<k> andL—<k> corrections were negative and

the C—L correction positive (Fig. 13).

Table 4. «>, C andL vary in friend-remembering value with different distributions of
initial friendshipfy

q 0. 2 4 6 8 9
fo betal4(=0.1)

<k> 4.01 4.14 4.58 5.05 6.00 8.00

< k*> 19.00 19.59 24.33 30.8 44.01 84.36
C 0.5007 0.4788 0.4539 0.4512 0.3547 0.2886
L 9.2204 9.7683  7.7325 6.6268 4.7783  3.7074
fo betal4(=0.5)

<k> 4.74 6.00 7.03 9.52 15.96 29.98

< k*> 25.41 47,06 69:95 141.19 442,85  1342.34
C 0.4892  0.4023 0.3652 0.3232 0.2939  0.2065
L 8.1108 45738 3.8898 3.2932 2.7749 2.3597
fo betal4(=0.9)

<k> 4.66 5.99 7.99 10.59 20.04 40.04

< k*> 25.24 45.92 92.82 179.43  625.14 2330.23
C 0.5064 0.4068 0.3370 0.3031 0.2313 0.1691
L 8.2640 4.7841  3.6030 3.1511 2.6172  2.2277
fo fixed_valueg=0.5)

<k> 4.66 6.00 7.37 9.94 16.01 30.46

< k*> 24.85 46.29 76.41 153.62 395.63  1352.15
C 0.4950 0.4299 0.3670 0.3146 0.2312  0.1862
L 7.9614 4.8324 3.8830 3.2369 2.7998 2.3541
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Figure 13. Correlations amonde C andL fram the ‘different distributions of initial friestipf,.

We analyzed the effects of “different parametersoon proposed model by
relationally cross-classifying all experiments; oesults are shown in Tables 5 and 6.
The plus/minus signs in Table 5 denote positivediieg relations between parameters
and statistics. In Table 6 the plus or minus sidesote the strength and direction of
correlations. As Table 5 indicates, in additiorthe effects of rule 1g, r, andf, had
positive correlations with average degrée endp andéd had negative correlations with
<k>. Furthermore, each average degree had a negathationship with its
corresponding average path length. All of the Rilgarameters affected the clustering
coefficientC and average lengthin a positive manner, while rules 1 and 2 affec@ed

andL negatively. Note that friendships are initializadule 1 and updated in rule 3.
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Table 5. Effective directions of the parameterskn, C, L.

o Rule 2 Rule 3
Statistics| Rule 1
p q fo
<k> + - + - + +
C + - - + - -
L - + - + - -

Table 6. Summary of the correlations betwekn, €, L from above experiments

Experi nents \ge[riaargtoenra: C- <k> L- <k> CL
4.1 p +++ -- -
4.2 6, p -- --- +++
4.3 q, r = +++
4. 4 q, fo -- +++

4.5. Sampling

Surveys, questionnaires, and sampling technigaesl stt the center of traditional social
science research and are considered cheaper amdpmamtical than collecting large
amounts of census data. However, the effectivesfebgese methods for analyzing social
networks has not been examined. We therefore ramtaimary simulation of our model
after reaching a statistically stationary state ewltected a sample of nodes. Initialized
parameters werd = 1,000p = 0,b =0.001,g= 0.4, and? = 0.1; constants were= 0.5

andfy = 0.5.

Figure 14 presents the degree distribuigk) after sampling at 100, 300, 500 and

700 nodes. Figures 14a and 14b are log plots wijlstaling on the x and y axes; these
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were used to determine if distributions were séade- Figures 14c and 14d are semi-log
plots with log scaling on the x axis only; theser@vased to determine if distributions
were exponential. Degrees in Figures 14b and leld@st-normalization, as required for
different numbers of sampled nodes. Each curveignré 14 represents an ensemble
average of 100 sampling repetitions. The solidsling=igure 14 reflect a lower sampling
ratio of 0.1—considered common for traditional ®yv and sampling techniques. The
dotted lines reflect a higher sampling ratio (@@hsidered common for a census. Turns
in the direction of the y-axis were observed fghhsampling but not for low. The degree

distribution clearly lost its original shape afsampling.
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Figure 14. Model acquaintance network samples.
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Chapter 5
Conclusion

Most small world models of social networks are gmeadl by mixing regular graphs with
random networks. This practice is based on WattisStrogatz’'s (1988) model, which
mixes one regular and one random graph to fa@litatoretical analysis. While the WS
model has had a strong impact, there is growingewvess that social network research
should not be restricted to issues associatedselaration and clustering (Newman &

Park, 2003).

Exploring how people make new-friends is a meaningisk. In most cases, people
make new social connections via introductions gnfits in common, but there are many
cases in which strangers become friends throughcehmeetings with no introductions.
With few exceptions, most of us can only give leditattention or spend limited
resources on friend-making, therefore friends wherewonce considered close can
become distant over time. To gain a better undedstg of acquaintance networks, we
propose a three-rule model of network evolutiontule 1, acquaintances are made via
introductions and chance meetings; an aging faistoadded in rule 2; in rule 3,
friendships are altered according to such factoss limited resources, friend

remembering, breakup thresholds, and initial fremis.

In our model, small world statistics (especiallyamedegree for each node) were

solely dependent on the average for each parantaerexample, we used a fixed
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friend-making resource value to compare resourdsbetal4distributions of different
averages, and found that thé&><statistic says more about average than resource

distribution. A similar phenomenon was also fouadthe initial friendship factdi.

Experimental simulations are a necessary aspscioidl network research, not only
because of the expenses and other difficultieshnedowith fieldwork, but also because
widely used sampling approaches cannot capturesoeal! network distributions, since

distributions for higher sampling rates differ frahose for lower sampling rates.

Taking a bottom-up, human-interaction-based sinanapproach to modeling is a
reflection of the evolution mechanism of real sbogtworks. Building on insights from
previous studies, we applied local..and interactivies to acquaintance network
evolution. This approach producednew findings ttet be used to explore human
activity in specific social networks—for examplejnmror propagation and disease

outbreaks.
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Appendix A
Terms and Abbreviations

Table 7. Terms and abbreviations for parameters.

Abbr evi ati on Descri ption
N Number of persons (nodes) in acquaintance netw@ﬂé%@\'f\ ~E)
M Number of friendships (edges) in acquaintance netwo ™ F gy~ ZE7)
fo, f(t=0) Initial friendship distribution. (?Jt{fﬁy )
p Leaving and arriving probability in rule 2.1} * #53 )
b Proportion of updated friendships in rule(@x g 1#rH=)
f Friendships: & 7%1s)
q Old friend remembering( &2 )
r Friend-making resourcedistribution( % * =¥/ )
6, th Breakup threshold. (&% [If/#%)
u, m Mean. (2 $5(ifi )

Table 8. Terms and abbreviations for statistics.

Abbr evi ati on Description
<k> Average degree.( "% 15 (i )
<k?> Average square of degree. & 114l )
C Average clustering coefficient( F53& f75r)
L Average shortest path length(. " H= 2 =% )

Table 9. Terms and abbreviations for initial dmttions.

Abbr evi ati on Descri ption

fixed_val ue( p) | Adistribution that sets its random variable axad valuep.

A bet a distribution instance in [0, 1] that forces+ g = 14 withu = o

bet al4d( p) I (a+p)

36



Appendix B
Application to Examining Scales Effects

A model acquaintance network can be used to exatinéneffects of network scales. An
arbitrary simulation of our model after reachingstatistically stationary state was
selected to sample its maximum connected compoifientie purpose of selecting a
connected subgraph with a specific number of nodkes.selected network contained
five connected components, with the maximum comtecbmponents holding 986 of
1,000 nodes. Selected acquaintance network.pareswetee initialized ail = 1,000p =

0,b=0.001g=0.4,/ =0.1,r= 0.5 (fixed).andy = 0.5 (fixed).

Figure 15 shows the degree distributi®Xk) after sampling for selecting a
connected subgraph with the number of nodes 4€ixt300, 500 and 700. Subfigures a
and b are log plots with log scaling on the x amckgs (for determining if the distribution
is scale-free). Subfigures ¢ and d are semi-lotsphith log scaling on the x axis only
(for determining if the distribution is exponenjiaDegrees for subfigures b and d are
post-normalization. Each curve in the figure isnfr@an ensemble average of 100

sampling repetitions.
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Figure 15. Modeliacquaintance network scales.
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Appendix C
Application to Epidemiology

Some infections (e.g., common colds) do not cdiofgg-lasting immunity. Accordingly,
such infections do not have a “recovered” state iaddd/iduals become repeatedly
susceptible. We applied our model acquaintance arktto a simulation of the SIS
model (SIS stands for Susceptible, Infected, arst&atible). An acquaintance network
and its analogous NW model were selected to makgaaosons of time series and phase

transitions with the SIS model.

Selected acquaintance network.parameters weralingd atN = 1,000,p = 0,b =
0.001,g=0.4,6=0.1,r = 0.5 (fixed) andp = 0.5 (fixed). Table 10 compares the statistics
between an instance of our acquaintance networlitsadalogous NW model. Table 11
lists the SIS parameters using for Figure 16 amgirei 17. Figure 16 shows the time

series during SIS model simulation process. Figdrshows the phase transitions of SIS

model.
Table 10. Network statistics.
Q” Anal ogous NW
Acquail nt ance Vodel
Net wor k
Mean of degree < k> 7.844 8.092
Clustering coefficient C 0.346 0.346
Average shortest path length L 3.712 4.109
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Table 11. SIS model parameters.

Fi gure 16 Figure 17
. from0to0.4in
Infection rate 0.13 rules of 0.02
Recovery rate 0.9 1
Initialratioofinfectedpeople 0.005 0.5
Repetitions 20 20

3 I 3-rule Acq. |
0 - — — — NW model
R I i
c L §
©
)
(8]
()
—
c
=
()
pa
Q
2
[s1
(O]
(&)
(72}
>
N
=
(O]
pa

Time

Figure 16. Time series during SIS model simulapiococess.
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Figure 17. SIS'model phase transition.
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Appendix D
Distribution of Co-directors

The three main properties of social networks ayeh@ small-world phenomenon, (b)
the high-clustering characteristic, and (c) skewedree distribution. In this chapter,
we focus on the third property. Networks of boardl alirector interlocks reveal a
remarkable degree distribution that is differentféyfrom either scale-free or normal
random networks [24]. For example, the nearly 80@8ctors on the board of Fortune
1000 companies in 1999 are connected, and.thespomding degree distribution has a
strongly peak and a fast approximately exponedsahy in the tail, much faster than a
power-law distribution but slower-than-a-Poissomormal distribution [see also 19

and 21].

Figure 18 shows the degree-distribution comparisemveen one of our acquaintance
networks after at a statistically stationary s{atdid curve) and co-directors for Davis’
boards-of-directors data (dashed curve). Selectegiaantance network parameters
were initialized aN =1,000p=0,b=0.0019=0.4,0=0.1,r = 0.5 (fixed) andy, = 0.5

(fixed). Davis’ data is about the nearly 8000 dioes on the board of Fortune 1000
companies in 1999 [23]. Both curves exhibit didtipeaks and then a long tail that

doesn't appear to decay smoothly.
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Degree distribution comparison with Babbards of directors data.
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Appendix E
Source Code

The simulation was coded in Python using the NeitWopackage. Statistical data
collection was performed using Python with the rdlip package. Information about
Python and relative package installation is avalab at

http://yukuan.blogspot.com/2006/08/graph-based-imugi®n-python.html Table 12

briefs the files in our acquaintance network projec
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Table 12. Summary of source files.

Directory Fil e Nane Descri ption
Jsrc/ acq2006.py Our three-rule model.
Asrcl/ acq2002.py Davidsen et al.’s two-rule model.
Jsrclacq2006log/  *log Ir_noogdgllles for experimental simulations of our
. Log files for experimental simulations of
ISR NG | g Davidsen et al.’s model.
. i Files for storing acquaintance networks in
Jsrc/ .adjlist : . : .
stationary states using adjacency-list.
Jsrc/acq2006log/ @ stats_fig.v1.8.py For generating all other figures.
Jsrc/acq2006log/ @ base.py For parsing log files.
Jsrc/acq2006log/  acq2002Figs.py For generating Figures 5, 6 and 7.
Jsrc/acq2006log/  plotKCL.py. For-generating Figu8e40 and 12.
Jsrc/acq2006log/ plotCorr.py For generating Figures 9, 11 and 13.
Asrc/ pdf_fig.py For generating Figures 2 and 3.
Jsrc/ sis.py For application to SIS model (Figs. 16 & 17).
Isrc/ sampleNode For sampling an acquaintance network to select
) P -PY a sub-net with k nodes (Fig. 14).
For sampling max connected component of an
Jsrc/ sampleMaxCmp.py acquaintance network to select a connected
subgraph with k nodes (Fig. 15).
Asrcl/ components.py To gather statistics for cotetecomponents.
Jsrcl/ assortCoef.py To gather statistics of Assortativity Coefficients
Jsrc/ direct99.csv Gerald (Jerry) Davis’ boardslioéctors data
Jsrc/ direct99.py To process Davis’ boards of directors data
Asrcl/ acqCk.py To plot C-k diagram for our acq. e
Jsrcl/ Davis99AcqCmp.py For generating Figure 18
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Appendix F
CoreAlgorithm

def fixed_value(mu):
""" Generate a fixed value.

- mu: mean in [0, 1]

return mu

def betal4(mu):
""" Generate random variates with beta distribut
and satisfies alpha+beta=14.

While mu=.5 The distribution is similar te-nerm
distribution with mu=.5, sigma=.136

ref. http://en.wikipedia.org/wiki/Beta._ distribu
ref. http://docs.python.org/lib/module-random.h

- mu: mean; must in [0, 1]
a=14*mu

b=14-a

return rnd.betavariate(a, b)

def _create():
""[nitialize the acquaintance network.

Adds _N nodes to _G, and _G contains no any edg
global _G
_ G =nx.XGraph() # The acquaintance network
for ID in xrange(_N):

_G.add_node(Person(ID))

def _stepi():
...... Friend making of two persons.

One randomly chosen person picks any two his fr
them to each another. If they have not met befo
between them is formed. In case the person chos
acquaintances, he introduces himself to one oth

ion

al

tion
tml

€s.

iends and introduces
re, a new link

en has less than two
er random person.
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47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

u, v = rnd.sample(_G.nodes(), 2)
nb = _G.neighbors(u)
if len(nb) > 1:
u, v = rnd.sample(nb, 2)
if not _G.has_neighbor(u, v):
_G.add_edge(u, v, _rv_f(_mu_f))

def _step2(p):
""" Leave and Arrive of a chosen person.

With probability p, one randomly chosen person

network, including all links connected to this

a new person.

if rnd.random() < p:
v = rnd.choice(_G.nodes())
_G.delete_node(v)
_G.add_node(Person(v.ID))

def _update_friendship(u, v):
""" Friend remembering between two persons.

The two persons update their friendship via the
-f_new = g*f_old + (1-q)*3(D(r_u/k_u), D(r_v/k
- The friendship breaks when f_new is less than
f old =_G.get_edge(u, v)

u, r_v =u.res, v.res

r
k_u, k v=_G.degree([u, v])

g = (u.q+v.q)/2

D = fixed_value # Distribution function
J = lambda x,y: (x+y)/2 # Join function
f new = g*f_old + (1-q)*J(D(r_u/k_u), D(r_v/k ‘v

th = (u.th+v.th)/2
if f_old < th:

_G.delete_edge(u, v, f_old) # breaks the f
else:

_G.add_edge(u, v, f_new) # updates the fri

def step3e(b):
""" Friend remembering for any b*M friendships.

M means the total friendships/edges of the whol

S = int(b*_G.number_of edges())
for i in xrange(S):
u, v, f = rnd.choice(_G.edges())
_update_friendship(u, v)

def _loop(i_ttl=0):
""" Loop the three steps of Iters times and gath
Thisfunctionusesyieldstatementandreturns

- i_ttl: total loops for now

is removed from the
node, and replaced by

following:
V)5
a threshold.

)

riendship

endship

e network.

er statistics.

thetotaliterationsofloop
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106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

import time

t_start = time.time() # records the start time
t _ttl = O # clears the total time spent

i_cnt =0 # clears the loop counter

while 1:
icnt+=1

_stepl()
_step2(_p)
_step3(_b)

if i_cnt == Iters:
i_ttl+=1i_cnt
icnt=0

if TURN_STAT_ON:
_stat()

t_inc = time.time() - t_start
t ttl+=t inc
if TURN_STAT_ON:
print "Time spent (increment,total)
yield i_ttl
t start = time.time()

- (%f,%)" % (t_inc, t_ttl)

(For details please see acq2006.py)
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