

容 錯 代 理 伺 服 器 之 設 計 與 實 作

The Design and Implementation of Fault Tolerant Proxy Server

研 究 生：吳家志

指導教授：張瑞川 教授

容錯代理伺服器之設計與實作

The Design and Implementation of Fault Tolerant Proxy Server

研 究 生：吳家志 Student：Chia-Chih Wu

指導教授：張瑞川 Advisor：Prof. Ruei-Chuan Chang

國 立 交 通 大 學
資 訊 科 學 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三六年六月

容錯代理伺服器之設計與實作

研究生：吳家志 指導教授：張瑞川教授

國立交通大學資訊科學所

論 文 摘 要

代理快取技術是一種被廣泛使用於增進網路使用效率及降低存取時間的技術。然

而，研究指出仍然存在著相當多的原因會使得系統中斷服務。一旦系統中斷服務，使用

代理主機存取網站資料的用戶將因此無法獲得正常服務。他們必須等待系統管理者發現

並修復系統的錯誤。儘管已有很多技術能夠讓代理主機服務能夠容在有錯誤的情況下運

作，但是那些當代理主機錯誤時正在服務的用戶請求，卻無法被回復。

我們提出了一個容錯的代理主機系統。他能夠在用戶端以及網頁伺服器端沒有察覺

的情況下，發覺本身的錯誤，並且回復所有在錯誤發生時正在服務的請求。我們採用

FT-TCP 的技術來修復連線。這個系統建構在作業系統層級，透過攔截 TCP 通訊協定的

封包以及一些系統呼叫（system call）來紀錄代理主機軟體的狀態，並且在它發生錯誤

時回復它的狀態。根據實驗結果，這個系統在正常的運作情況下需要花費少量的時間來

記錄狀態。錯誤回復的速度也在可以接受的範圍。

 I

The Design and Implementation of Fault Tolerant

Proxy Server

Student：Chia-Chih Wu Advisor：Prof. Ruei-Chuan Chang

Institute of Computer and Information Science

National Chiao-Tung University

Abstract

Proxy caching is a widely deployed technique to improve user-perceived latency and

usage efficiency of network resources. However, researches show that many reasons may

cause the outage of a proxy server. Thus, the clients cannot request web sites through the

proxy before the administrator fixes the failure. Although many techniques provide fault

tolerance for web caching, the requests which are processed when the proxy fails cannot be

recovered.

We purpose a fault tolerant proxy system which can log the state, detect the fault, and

recover the on-line requests in a way transparent to clients and servers. We adopt FT-TCP [2]

techniques to recover the connections. The system is implemented in the kernel-level. TCP

traffic and system calls are intercepted to perform state logging and recovery. According to

the experimental results, the system has low overhead and acceptable performance.

 II

Acknowledgments

For accomplishing this thesis, I deeply appreciate the guidance of my advisor, Prof.

Ruei-Chuan Chang, for instructing me in research and for providing the abundant resources

for study and experiments. Additionally, I deeply appreciated Dr. Da-Wei Chang’s assistance

for giving me much advice and opinions on revising this thesis. Thanks to each member of the

computer system laboratory for their encouragement and kindly help.

I’d like to thank my parent, too, for their encouragement and unlimited love. Finally, I

want to thank all my friends for all the joyous things that inspire my life.

Chia-Chih Wu

Institute of Computer and Information Science

National Chiao-Tung University

2004/6

 III

Contents

論 文 摘 要 ...I

ABSTRACT .. II
ACKNOWLEDGMENT.. III
CONTENTS ...IV
LIST OF FIGURES.. V
LIST OF TABLES ...VI
CHAPTER 1 INTRODUCTION... 1
CHAPTER 2 BACKGROUND ... 4

2.1 ARCHITECTURE OF FT-TCP... 4

2.2 CONNECTION RECOVERY ... 5
CHAPTER 3 RELATED WORK ... 7

3.1 PROXY REPLICAS .. 7

3.2 CONNECTION MIGRATION TECHNIQUES.. 8
CHAPTER 4 DESIGN AND IMPLEMENTATION ... 10

4.1 SESSION-BASED LOGGING .. 11

4.2 THE FLOW OF RECOVERING... 18

4.3 CONNECTION REESTABLISHMENT.. 19

4.4 SOCKET IO STREAM RECOVERY .. 21

4.5 FILE IO STREAM RECOVERY.. 23

4.6 IMPLEMENTATION ... 23
CHAPTER 5 EXPERIMENTAL RESULTS.. 25

5.1 EXPERIMENTAL ENVIRONMENT ... 25

5.2 EFFECTIVENESS... 26

5.3 OVERHEAD .. 26

5.4 PERFORMANCE.. 30

5.5 SPACE AND TIME REQUIREMENT.. 31
CHAPTER 6 CONCLUSION AND FUTURE WORK....................................... 33

6.1 CONCLUSION ... 33

6.2 FUTURE WORK.. 33
REFERENCES .. 35

 IV

List of Figures

Figure 2.1: FT-TCP Architecture ... 5

Figure 2.2: The Flow of Connection Recovery in FT-TCP 6

Figure 4.1: Simple HTTP Proxy Architecture ... 10

Figure 4.2: Relating the Proxy-Server Connection with the Session 13

Figure 4.3: Relating the Cache File with the Session.. 14

Figure 4.4: Logging of a HTTP Response... 16

Figure 4.5: the second case of information recording ... 17

Figure 4.6: The Flow of Recovery a Session... 19

Figure 4.7: Packet Header Adjustment after the Proxy Restarts 21

Figure 4.8: HTTP response decomposition ... 22

Figure 4.9: Kernel Threads for Fault Detection and Packet Spoofing 24

Figure 5.1: Traces of Client-Proxy TCP Connections ... 26

Figure 5.2: Performance of Squid (Connection Rate) ... 27

Figure 5.3: Performance of Squid (Connection Throughput)................................ 27

Figure 5.4: Performance of Squid (Response Time) ... 28

Figure 5.5: Decrease of Squid Performance.. 28

Figure 5.6: Performance of Apache (Connection Throughput) 29

Figure 5.7: Decrease of Apache Performance ... 30

 V

List of Tables
Table 5.1: Transmit Time of Different Size of File which Experience Recovery31
Table 5.2: Transmit Time of Different Size of File with Optimization31
Table 5.3: Relation between Number of Sessions and Required Log Buffer Size31
Table 5.4: Relation between Number of Sessions and Recovery Time..............................32

 VI

CHAPTER 1

INTRODUCTION

World Wide Web (WWW) has become the most popular application on the Internet.

Among the WWW technologies, proxy caching is a widely deployed one for improving

user-perceived latency and usage efficiency of network resources. By caching web pages in a

proxy server, many requests can directly be satisfied from the proxy instead of the web

servers.

However, proxy systems may fail. According to the previous studies [7] [12] [20], human

error is the main source of system failure. To take an example, a proxy application may be

killed by the administrator carelessly. Besides, transient faults or the software aging [8]

problem may cause a proxy to crash. Such unintentional proxy termination has impacts on the

clients who access web sites through the proxy.

Proxy failures often result in performance loss. Moreover, in some cases, clients are

forced to rely on proxies to access web sites on Internet and therefore the failure of the

proxies leads to service unavailability. For example, some services (e.g., e-magazines) only

accept requests from registered IP addresses in order to restrain the access from unregistered

clients. For saving the subscription cost, an organization usually uses the IP address of the

proxy to subscribe the service. This makes all the staffs in the organization be able to access

the service. However, if the proxy fails, the service will become unavailable. For another

example, many companies and schools use proxy technique to provide WWW access for a

large number of hosts through a few number of public IP addresses. The failure of the proxy

will cause the WWW channel to break until the administrator fixes it.

Previous techniques have limitations when they are used for building fault tolerant proxies.

Specifically, simple mechanisms based on proxy replicas [6, 9, 10, 14, 19] can not recover the

 1

requests that are served when a proxy service fails (i.e., on-line requests). Connection

migration techniques [4, 22, 23, 24, 28] can recover on-line requests. However, they can not

do it in a server transparent way. They replay the requests from the beginning again, which

makes the proxy to establish connections to the server and issue the requests one more time.

The replay not only wastes the sever resources and increases the recovery time, but also cause

problems for dynamic-object or transaction-based requests. Some connection migration

techniques [22, 23, 24] even require modifications to the client-side TCP implementations,

which limits the feasibility of these techniques on providing fault tolerant proxy services.

The main reason that the connection migration techniques have limitations on providing

fault tolerant proxy service is as follows. In their systems, a host only plays a single role,

either a client or a server. Therefore, they did not consider how to transparently recover a

system that acts as both clients and servers, like proxy.

This kind of connection reestablishment wastes the server resources, increases the

replaying time, and may cause problems for dynamic-object requests.

In this thesis, we propose a system to make a proxy service become fault tolerant. It can

automatically detect the proxy service failures, restart the proxy, and recover the state

(including the on-line requests) associated with the proxy. Thus, the interactions between the

clients and the servers would not be interrupted because of the failures. In our system, the

TCP connection recovery is based on the FT-TCP [4]. However, unlike the FT-TCP, the

recovery is transparent to not only the clients but also the servers. In addition, it is also

transparent to both the proxy application and the TCP/IP stack of the proxy.

We implement the fault-tolerant system as a Linux kernel module. The target application

is Squid [25], the most popular proxy application in UNIX-like systems. In the original

implementation, the overhead of states logging is around 4% and 839 ms is required to

recovery 30 client sessions on the proxy server. To reduce the recovery time, we further

 2

proposed two optimization techniques. Furthermore, small space is required to store the

states.

The rest of this thesis is organized as follows. Chapter 2 describes the background

technique, FT-TCP, which is adopted in our system. Chapter 3 surveys various existing

solutions to provide a fault-tolerant proxy server. The design and implementation of our

system is described in Chapter 4. We show the experimental results and the analysis of the

results in Chapter 5. We conclude this paper and describe the future works in Chapter 6.

 3

CHAPTER 2

BACKGROUND

In this chapter, we describe the techniques of FT-TCP [4], which were adopted and

modified by us for building a fault-tolerant proxy system.

2.1 ARCHITECTURE OF FT-TCP

The architecture of FT-TCP is presented in Figure 2.1. The main idea of FT-TCP is to

intercept all the TCP traffic, record the traffic information to a logger machine, and recover

the TCP connections in another backup machine during the recovery period. It is worth to

mention that the clients are not aware of the connection migration. All the tasks are performed

on the server side and transparent to the clients.

The TCP traffic interception is done by two separated wrapping layers. The layer between

applications and TCP is called North Side Wrapper (or NSW). It records the interactions

between TCP and the applications (e.g., socket read/write operations) to the logger, and

recovers the states (i.e., socket stream states) of the applications during the recovery period.

Specifically, the NSW records the data read by the application and the return values of each

socket write operation to the logger. To recover the socket stream states, the NSW

communicates with the logger and feeds the logged data (or, returns the logged return values

to the application), while it performs socket read or write operations. In other words, the NSW

makes the application replay socket read/write operations to recover the states. The layer

between TCP and IP layers is called South Side Wrapper (or SSW). It records each TCP

connection to the logger and helps to re-establish the connections during the recovery period.

When TCP sends/receives a packet during normal operations, it intercepts the packet and

 4

records the information required for re-establishing the connection (e.g., the sequence number)

to the logger. When FT-TCP re-establishes a connection, the SSW modifies (sometimes

destroys) the packets sent to/from TCP in order to perform the recovery transparent to the

application and the clients.

Figure 2.1: FT-TCP Architecture

2.2 CONNECTION RECOVERY

Figure 2.2 illustrates the flow of connection recovery performed in FT-TCP. In order to

re-establish a connection with client transparency, FT-TCP spoofs and intercepts packets to

complete a fake 3-way handshake with the server-side TCP, which is described in the

following.

After the server restarts, FT-TCP spoofs an SYN packet to the server-side TCP with the

initial sequence number as the last ACK sequence number sent by the server. So that, the

sequence number of the next incoming packet in this new connection will follow the number

of the original one. When getting the SYN packet, the server’s TCP stack sends a SYN/ACK

 5

packet back, which is intercepted by the FT-TCP. The FT-TCP destroys the packet. In addition,

it records the delta_seq, the difference between the initial sequence numbers of the

re-established and the original connections. The delta_seq is used for adjusting the sequence

numbers of the following TCP packets in order to maintain server-application and client-side

transparency. Finally, FT-TCP fakes an ACK packet to complete the 3-way handshake.

After the connection is re-established, the sequence numbers of all packets in this

connection should be adjusted. Specifically, FT-TCP adjusts the ACK sequence number of the

incoming packets and the sequence number of the outgoing packets. Needless to say, the

checksum should be re-computed after the sequence number adjustment.

Figure 2.2: The Flow of Connection Recovery in FT-TCP

 6

CHAPTER 3

RELATED WORK

Previous techniques for providing proxy fault tolerance can briefly be classified into two

categories, proxy replicas and connection migration. We will describe these techniques in this

chapter.

3.1 PROXY REPLICAS

A straightforward approach to provide proxy fault tolerance is to use multiple proxy

replicas. Based on this approach, many techniques can be used. Proxy auto-configuration

script [19] enables the clients to choose another proxy while the primary one fails. DNS

aliasing [6] can be used to select a proxy in a round-robin manner. This reduces the impact of

a single proxy failure. Moreover, this technique can also be enhanced to select the live proxies

only [9] to eliminate the problem of proxy failure. However, the effectiveness of this

technique may be reduced due to the caching of the DNS results on the clients and other DNS

servers. Specifically, a client can’t connect to another live proxy before issuing the DNS query

again once the cached DNS result targets to a failed proxy. ARP spoofing and IP aliasing [14]

techniques can also be used to provide fault tolerance for proxies. When the primary proxy

fails, the backup proxy takes over the IP address of the primary one by sending gratuitous

ARP packets. Therefore, following requests will be directed to the backup proxy. All the

techniques described above are client-transparent except for the proxy auto-configuration

script. However, they do not support for recovering the requests that are being served when

the proxy fails.

Web Cache Communication Protocol (WCCP) [10] allows a router to communicate with

 7

multiple proxies so as to enable transparent caching. Using this protocol, a layer-4 router is

responsible for intercepting web traffic and routing the web requests to the proxy hosts. In

addition, the router also detects the state of each proxy machine so as to route the requests to

well-functioned proxies. The drawback of this approach is that it requires the router support.

Moreover, it cannot recover on-line requests.

Squirrel [15] uses a peer-to-peer routing protocol to provide distributed web caching on

client desktop machines. Since each client machine cooperates in the peer-to-peer

environment, the departure or failure of one Squirrel node could be handled properly.

However, similar to the above approaches, it cannot recover on-line requests.

3.2 CONNECTION MIGRATION TECHNIQUES

Connection state migration in our fault-tolerant proxy subsystem is based on FT-TCP [4,

28], which recovers the TCP connection state of a server in a client-transparent way. It logs

the connection information and the related server process states, so that the un-closed

connections can be re-established and the states can be recovered when the server fails.

However, FT-TCP is not suitable for proxy applications. Specifically, FT-TCP will

re-establish new proxy-server connections and forward requests to web servers again while

recovering a proxy. This causes problems such as inconsistent dynamic content1 and

duplicated transactions for dynamic-object or transaction-based requests. In addition, it

consumes an unnecessary long time.

The approach proposed in [23] has the ability to migrate TCP connections across server

replicas. When a server fails, one of the replicas will re-establish the client connections which

were previously managed by the failed server and resume the service. Although this approach

operates transparently to the client application and the server application, the connection

1 The resulting content of a dynamic page becomes a mixture of two different responses due to the replay. This
will be mentioned in Chapter 4.

 8

migration mechanism requires modifications to both the client-side and the server-side TCP

implementations. Specifically, the TCP implementations should be extended to support the

TCP Migrate Options [22]. For proxy service, it is difficult to deploy the TCP extension to all

the hosts interacting with a proxy. Migratory TCP (M-TCP) [24] is a transport layer protocol

which enables the resumption of a failed service in the fashion of connection migration. A

degradation in quality of service triggers the migration, which makes the client to reconnect to

a better performing server replica. A set of API is provided for the server applications to

support state transfer between server replicas. Similar to the approach used in [23], the TCP

stacks on both the client and the server require modifications to achieve connection migration.

On the other hand, our approach does not require any modifications to the client-side and

server-side TCP implementations. Thus, it is much easier to be deployed.

In addition to the research efforts in the above two categories, there are also projects that

focus on providing fault-tolerance web systems [1, 2, 26, 27]. These systems log the TCP/IP

and HTTP information in order to achieve seamless service failover. Moreover, they eliminate

the problem of inconsistent dynamic result by delaying the sending of a HTTP response to the

client until the response is fully generated. However, they still cannot achieve server

transparency while the mechanisms are applied on proxies. This is because the on-line

requests will be replayed (by the backup proxy) from the beginning again. For

transaction-based requests, the replay will cause the transaction to be executed again. This

may lead to problems in the server or make the user be charged twice.

 9

CHAPTER 4

DESIGN AND IMPLEMENTATION

In a normal HTTP system with a proxy server (as shown in Figure 4.1), a client sends a

HTTP request to the proxy, which reads the cached web page from its memory (or disk) or

forwards the request to the web server. And then, the proxy sends the requested page to the

client. In the meantime, the proxy may crash or be unintentionally terminated by the

administrator, making the underlying TCP/IP protocol stack send out FIN packets for all the

connections belonging to this process. As a result, all the connection states will be lost. In

order to avoid this problem, we have to modify the existing TCP/IP protocol implementation

to transparently re-establish the connections after restarting the proxy.

Figure 4.1: Simple HTTP Proxy Architecture

We adopt the techniques used in FT-TCP [4], which provide a recoverable TCP/IP

protocol stack suitable for web server and other network services [28]. We have described the

techniques in Chapter 2. However, using FT-TCP for proxy recovery faces two problems.

First, FT-TCP cannot recover the proxy-server connections. Since FT-TCP replays all

operations while performing recovery, the proxy will reconnect to the server and forward the

 10

HTTP request again after it restarts. This lacking of server transparency may cause problems

for transaction-based or dynamic object requests. In the former case, the server will start two

transactions while the client issues a request only. In the latter case, two requests may result in

two different response objects, and the object returned to the client may be a mix of the both

response objects, which is obviously an incorrect result.

Second, FT-TCP consumes an unnecessary long time, which can be reduced in our work,

while recovering a proxy server. This is due to the communication with the long-distance

servers while performing replay. In our work, the replay is performed locally (without

interacting with the servers) which reduces the communication time.

In the following of this chapter, we will describe the design and implementation of our

fault-tolerant proxy system. Section 4.1 describes how to record the information that is

required for recovery. The flow of recovering a proxy server is presented in Section 4.2.

Section 4.3 describes how to re-establish the connections. Section 4.4 describes the way to

recover the data in socket streams. The recovery approach of file stream data will be

presented in Section 4.5. Finally, we will show the detailed implementation of our system in

Section 4.6.

4.1 SESSION-BASED LOGGING

In order to recover the state of a proxy application after it restarts, we have to record the

states during its normal operation period. Instead of taking snapshots of the whole process

state, we record what the proxy did for each client and recover the on-line client sessions only.

A client session starts when a client request arrives to the proxy. The proxy may serve the

request directly from its cache or get the requested page from the server. After the proxy

returns the page completely to the client, the session terminates. Therefore, the states in a

client session include the state of the client-side and the server-side socket streams, and the

 11

state of the cache file streams. Although the state is available in the kernel, it is still a

challenging problem to associate the states with the client sessions. Association of the

client-proxy connections can be achieved through the use of the (client IP address, client TCP

port) pair since the pair is unique for each client session. However, the other information (i.e.,

opened file and proxy-server connection) can’t easily be associated to a client session without

modifying the proxy application.

In Section 4.1.1, we will describe how to associate the required states to the corresponding

client session. In Section 4.1.2, we will show the way to log the streams states which is

needed while recovering a proxy. The cases of information logging will be presented in

Section 4.1.3.

4.1.1 STREAM-SESSION ASSOCIATION

As we described above, we can associate a client-proxy connection to the corresponding

client session. However, associating the proxy-server connection and the opened cache file to

the session is not easy. In the following, we will describe how to do this in a way transparent

to the proxy application.

The first step is to establish the mapping from a proxy-server connection to the

corresponding client session. Since two different clients may request the same web site, even

the same URL, we can’t differentiate these connections by the client IP addresses, TCP port

numbers, or even the client requests. One way to workaround this problem is to allow the

proxy application to give a hint about the client-proxy connection when it establishes a

proxy-server connection. However, this approach requires modification to the proxy

application.

To avoid modifying the proxy application, we take another approach. We use the

“Pragma” field in HTTP header to carry the session identifier. Figure 4.2 illustrates the flow

 12

of the mapping-establishment. When a HTTP request arrives (step 1), the NSW hijacks the

HTTP request, parses it, and appends a string “pragma: sid=n” into the HTTP header, where n

is the session identifier assigned by the SSW when the 3-way handshake completes. Then, the

request is handed to the proxy application (step 2). According to HTTP standard [13], the

“Pragma” directives must be passed through by a proxy or gateway application. Therefore, the

proxy forwards the modified request to the server (step 3). The request is again intercepted by

the NSW, which then extracts the session identifier to establish the mapping of the

proxy-server connection to the client session. Finally, the request is sent out to the server (step

4).

Figure 4.2: Relating the Proxy-Server Connection with the Session

The overheads of this approach are the monitoring of socket read/write operations and the

insertion/extracting of the session identifiers. According to the experimental results, these

overheads have little impact on the performance. Moreover, the overheads only occur on the

proxy applications. As show in Figure 4.2, the overheads don’t occur in the httpd and ftpd

paths.

 13

Figure 4.3: Relating the Cache File with the Session

In the following, we describe how to relate the cache file with the client session. Since

Squid writes a full HTTP response including the HTTP header to the cache file, we can apply

a similar solution as we proposed above. Figure 4.3 illustrates the flow of establishing the

mapping between the cache file name and the client session. When a HTTP response arrives

(step 1), the NSW inserts the client session identifier into the response header and hands the

modified response to the proxy application (step 2). If the proxy application writes the

response to a cache file (step 3), the write() system call will be intercepted and the session

identifier will be extracted to establish the mapping. After the mapping has been established,

the response is written to cache file via the original write operation (step 4).

4.1.2 LOGGING OF STREAM STATES

After describing how to associate streams with the client sessions, we present the way to

record the states of each stream belonging to the proxy application. In a proxy, the socket

 14

streams can be divided into two parts, client-side and server-side streams. In addition to the

socket streams, the states of the file streams are also required to recover. For the three kinds of

streams, the states needed to be logged are different due to their availability when the proxy

restarts.

Basically, the data transmitted within these streams are HTTP requests and responses. For

example, a proxy receives HTTP requests from the client streams, receives HTTP response

from the server streams, and writes HTTP response (including the header) via the file streams.

Each on-line HTTP request should fully be recorded in order to re-issue it during the recovery

period. However, we don’t keep the full HTTP responses. Only the header and the unhandled

data2 of a response are stored in the log buffer. The former is kept in order to make the proxy

application normally processes the HTTP response after it restarts. The latter is logged

because it is no longer available from other places.

Figure 4.4 illustrates the unhandled data logging. The number W, P, and Q are the

numbers of bytes received from the server, written to the cache file, and sent to the client,

respectively. Since the proxy receives data before processing it, the value of W is larger than

or equal to the maximum value of P and Q. In this figure, we store the data between P and W.

The bytes from Q to W are kept since they are not transmitted to the client yet. Moreover, data

bytes from P to Q also need to be stored since they reflect the data that was sent to the client

but not yet stored into the cache file. In the case that Q is smaller than P, we kept the data

between Q and W in the log buffer. In summary, data bytes between W and the minimum

number of P and Q are stored in the log for recovery purpose.

2 Unhandled Data stands for the data that is received within each stream but not yet been processed (i.e. stored
into the cache file or sent to the client).

 15

Figure 4.4: Logging of a HTTP Response

It is worth to mention that, in Figure 4.4, W and Q are implemented based on the sequence

numbers in TCP, while the implementation of P is based on the file offset.

4.1.3 CASES OF INFORMATION LOGGING

The control flow of a proxy varies according to whether the object requested by the client

is in the cache or not, and the cacheablility of the object. We divide the flows into three cases

and describe the information that need to be recorded for each case.

The first case is that the requested object is in the cache. The proxy reads the object, forms

the HTTP response, and sends the response back to the client. In this case, we should record

the information of the client-proxy connection so that we can reestablish the connection after

restarting the proxy. In addition, we also have to record the stream state of this connection so

that the proxy can continue sending/receiving data with the client after it restarts.

 16

Figure 4.5: the second case of information recording

The second case is that the requested object is not in the proxy’s cache and the object is

not cacheable. The proxy gets the requested page from the web server and sends it back to the

client. However, after examining the HTTP header, page size and other information, the proxy

decides not to cache this page. In addition to logging the information mentioned in the

previous case, we have to record the information of the proxy-server connection. Figure 4.5

illustrates the flow of information logging in this case. When a HTTP request arrives at the

proxy, we record the complete request and insert the session identifier (that is assigned while

establishing the client-proxy connection (a)) into the request (b). After establishing the

proxy-server connection, the proxy forwards the request to the server. We parse the request to

extract the session identifier and associate the proxy-server connection (specifically, the

source port of the connection) with the session (c). Each time a HTTP response packet arrives,

 17

we append it to the log buffer and update the byte count accordingly (d). Similarly, we record

the number of bytes received by the client and delete part of the response from log buffer

accordingly (e).

The last case is similar to the second one except that the proxy decides to cache the

response in the storage. Besides logging the information in the second case, we also record the

states of file streams. We don’t mention the details of logging a file stream. It is similar to the

approach of logging a socket stream, which was described in the previous paragraph.

4.2 THE FLOW OF RECOVERING

Figure 4.6 illustrates the flow of recovering a session. When the proxy restarts, the SSW

first re-establishes the client-proxy connection (a). The HTTP request will be resent to the

Squid after the connection re-establishment (b). This way make the proxy connect to the

server and forward the request. Similarly, the server connection re-establishment is performed

by the SSW (c). After both connections are re-established, the HTTP response is fed to the

proxy application to recover the socket stream states and the cache file stream states (d). Note

that part of the HTTP response was already received by the client, thus we drop them during

the recovery. Finally, the HTTP traffic could be transmitted normally.

In the following sections, we will describe the details of the recovery flow.

 18

Figure 4.6: The Flow of Recovery a Session

4.3 CONNECTION REESTABLISHMENT

In this section, we show how the connections are re-established according to the logged

information. For proxy-client connections, we adopt the same techniques proposed in FT-TCP

[4], which was described in Chapter 2. For proxy-server connections, which cannot

transparently be re-established in FT-TCP, we modify the FT-TCP techniques to perform the

connection re-establishment in a way that transparent to the proxy application.

While re-establishing a client-proxy connection, the SSW fakes SYN packet to the TCP

stack to make it feel that it is accepting a new connection. After receiving the HTTP request

(which is also spoofed by the proxy’s kernel), the proxy application starts connecting to the

 19

server. This makes the underlying TCP stack send out a initial SYN packet, which is discarded

by the SSW. After discarding the SYN packet, the SSW fakes a SYN/ACK packet and sends it

to the TCP layer. However, during the recovery period, new client requests (i.e., new sessions)

may arrive and thus making the proxy application build new connections to the servers. The

SYN packets for these server connections should not be discarded. Instead, they should be

sent to the corresponding servers. Therefore, the SSW should determine whether a SYN

packet corresponds to a failed connection or a new one.

We achieve this by controlling the incoming of the HTTP requests. Before all of the failed

server connections are re-established, we process one HTTP request at a time. Specifically,

when an incoming HTTP request arrives at the NSW, it blocks further requests until the proxy

sends an outgoing SYN packet to the server or returns a HTTP response back to the client.

Therefore, when the proxy sends an outgoing SYN packet, we can tell whether or not the

connection is for a new session by checking the (client IP, client port number) pair. If the pair

matches one of the existing sessions, the connection corresponds to the failed session and the

SYN packet should be dropped. Otherwise, it corresponds to a new session, and the SYN

packet should be sent to the server.

In addition to the problem mentioned above, we have to modify each packet header after

the proxy restarts so as to continue communicating with the clients and the servers.

Specifically, we may adjust the sequence number, acknowledgement sequence number, and

destination port. Figure 4.7 illustrates the packet header adjustment. The numbers in the

brackets indicate the (sequence number, acknowledgement sequence number, source port,

destination port). Assume that the proxy originally connects to the server via port u, and

reconnects to the server via port v. Furthermore, the difference between the initial sequence

numbers of the original and the re-established connections is δ. For each outgoing packet, the

SSW adjusts the sequence number p to (p+δ) and the source port v to u. For each incoming

 20

packet, the SSW adjusts the acknowledgement sequence number s to (s-δ) and the destination

port u to v.

Figure 4.7: Packet Header Adjustment after the Proxy Restarts

4.4 SOCKET IO STREAM RECOVERY

After a proxy restarts, we have to recover the states of the socket streams so that we can

continue transmitting/receiving data through the connections. For the client-side socket

streams, we adopt the same approach as FT-TCP, which was described in Section 2.2. In this

section, we will describe the approach of recovering the states of server-side socket streams.

After the proxy re-establishes a connection to the server, it forwards the logged HTTP

request to the server. However, to maintain the server transparency, we cannot actually send

the request to the server. Instead, the NSW accepts the request and triggers the recovery of the

HTTP response. From the recovery point of view, a HTTP response can be divided into three

parts, as shown in Figure 4.8. There are two stages while performing the recovery, which will

 21

be described in the following.

Figure 4.8: HTTP response decomposition

The first stage is to recover the receiving states for the data that is already received by the

client. Since the data has been received by the client, we should not send it to the client again.

However, for proxy application transparency, the data should be sent to the restarted proxy

application. From Figure 4.8 we can see that, only a part of the data is in the log buffer. For

the data bytes that are logged, we can send it to the proxy application. For the other data bytes,

we generate dummy data and send it to the proxy application. This works because a proxy

application doesn’t watch the content of a HTTP response. The only exception to this is the

response header. A proxy will examine the header and decide whether or not cache the page.

Therefore, the logged HTTP response header is returned when the proxy application performs

the socket read operation at the first time.

The second stage is to recover the data which is already received by the proxy but not yet

received by the client. We can find the data in the unhandled HTTP response buffer (as we

described in Section 4.1.2). The NSW intercepts the socket read operation and returns the

corresponding data from the buffer. And then, the proxy can forward them to the client and

decide whether or not to store the data into the cache file.

After the two-stage recovery, the proxy can receive the remaining HTTP response from

the server through the re-established connection.

 22

4.5 FILE IO STREAM RECOVERY

If our target application, Squid, crashes before storing a full HTTP response to the cache

file, the file will become incomplete. When the proxy performs recovery, it may open a new

cache file and write the received HTTP response into it. As we described in Section 4.4, only

a part of the response contains correct data (since it is in the log buffer), and the other part

consist of dummy data. As a result, the proxy will create a cache file with incorrect content,

which will be sent to a client when the client requests it.

To solve this problem, we must replace the dummy data with the original HTTP response

data stored in the incomplete cache file. The steps are as follows. First, we backup all of the

incomplete cache files that correspond to the failed sessions in case the restarted proxy

application overwrites the files. When the proxy recovers a session, it will open a new cache

file and write HTTP response to that file. Therefore, we intercept the write system call and

replace the dummy data in the source buffer with the from the backup file. After all the

dummy data is replaced, the remaining data bytes written by the proxy application will be

stored in the new cache file without modification since they are the original response data

bytes.

4.6 IMPLEMENTATION

The system is implemented as a kernel module in Linux 2.4.18. Similar to FT-TCP, we

insert the NSW and SSW layers by intercepting several socket-related and TCP-related

functions. We also intercept write system call to recover the states of file streams. In addition,

we add two kinds of kernel threads for fault detection and packet spoofing.

 23

Figure 4.9: Kernel Threads for Fault Detection and Packet Spoofing

For the socket-related functions, we intercept sock_recvmsg() to insert session identifier

and record HTTP requests. We also intercept sock_sendmsg() for session identifier extraction.

Besides, these two functions are intercepted to perform the recovery of the socket streams.

For the TCP-related functions, we intercept tcp_v4_rcv() to hijack the incoming TCP packets.

Outgoing TCP packets are hijacked by intercepting the ip_queue_xmit() and the

ip_build_and_send_pkt() functions. All these functions are intercepted in order to record the

TCP traffic and establish the fake 3-way handshakes during the recovery period. Finally, for

recovering the states of the file streams, we intercept sys_write(), which is the in-kernel

service routine of write system call.

The kernel thread health_monitor is used to monitor the status of Squid. It triggers the

recovery operations when Squid fails. For each session that needs to be recovered, the

health_monitor creates a spoofer thread, which spoofs packets for re-establishing the

corresponding connections (as shown in Figure 4.9).

 24

CHAPTER 5

EXPERIMENTAL RESULTS

This chapter evaluates the fault-tolerant proxy system in four ways. First, we present

traces of client-proxy TCP connections to demonstrate the effectiveness of recovering client

sessions. Second, we show the overhead on the proxy application and other applications

running on the modified operating system. Third, we measure the connection performance

of the client sessions which are recovered since the intentional termination of the proxy.

Finally, we show the relation between size of log buffer and number of connections and the

relation between recovery time and the number of connections.

5.1 EXPERIMENTAL ENVIRONMENT

We use an Intel Pentium 4 2.0 GHz PC running Squid-2.5.STABLE4 [25] as the proxy

machine and a server machine which is identical to the proxy machine in hardware running

Apache 2.0.40 [5]. Three Pentium 4 1.6 GHz PCs are used as client machines. Each

machine is equipped with 512KB cache, 256MB DDR RAM, one 100Mbps Ethernet

adaptor, and one Gigabit Ethernet adaptor. All the machines are connected by two

independent Ethernet switches (i.e., 100Mbps Ethernet and Gigabit Ethernet).

 25

5.2 EFFECTIVENESS

Figure 5.1: Traces of Client-Proxy TCP Connections

In this experiment, the client downloads a 25MB file from the web server through the

proxy. We use tcpdump [16] to check the TCP ACK sequence number of each outgoing

packet sent by the client. Figure 5.1 shows the results. The normal line represents the case

that the client completes the downloading normally. In the other two cases, we terminate the

proxy application when the client has downloaded 12MB of the file. The FT-PROXY line

represents the recovery performance of our approach and the FT-TCP line represents that of

the FT-TCP mechanism. Since FT-TCP make the proxy reconnect to the server and

download the file from the beginning again, its recovery time is longer.

5.3 OVERHEAD

In this section, we characterize the overhead of the fault-tolerant proxy system in terms

of the impact on the performance of proxy application and other TCP/IP-based applications.

In Section 5.2.1, we measure the performance of Squid while logging states of client

sessions with WebStone benchmark [17]. We show the overhead occurs in an Apache web

server running in the modified operating system in Section 5.2.2.

 26

5.3.1 SQUID PERFORMANCE

To present the impact of states logging on Squid performance, we use the standard

workload of WebStone 2.5 but make each request be forwarded to the web server (all

request are direct access). We achieve this by modifying the cache policy of Squid. This

workload shows the impact of session insertion/extraction to associate the socket streams

mentioned in Section 4.1.1.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Clients

C
on

ne
ct

io
n

R
at

e
(c

on
ns

/s
ec

) FT-PROXY clean

Figure 5.2: Performance of Squid (Connection Rate)

0

10

20

30

40
50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Clients

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

FT-PROXY clean

Figure 5.3: Performance of Squid (Connection Throughput)

 27

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Clients

Re
sp

on
se

 T
im

e
(s

ec
)

FT-PROXY clean

Figure 5.4: Performance of Squid (Response Time)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clients

D
if

fe
re

nc
e

Connectio Rate Throughput Response Time

Figure 5.5: Decrease of Squid Performance

Figure 5.2, Figure 5.4, and Figure 5.5 illustrate the runtime overhead caused by the state

logging operations. The x-axis stands for the number of clients simulated by WebStone. The

shaded bars present the performance of Squid running on the modified operating system

(the state logging operations are performed) and the empty bars present the performance of

Squid running on the normal operating system. Figure 5.5 shows the decrease of Squid

performance in the three criteria. It is worth to mention that the overheads are around 1.5%

to 3.8% only.

 28

5.3.2 APACHE PERFORMANCE

We install Apache web server 2.0.40 on the proxy machine. Since the fault-tolerant

kernel module checks all TCP traffic and socket read/write operations for logging, the

performance of Apache may drop. We measure the overhead with WebStone 2.5. The client

machine is the same as Section 5.2.1.

Figure 5.6 illustrates the throughput of the client-server connections. The shaded bars

present the performance of Apache running on the modified operating system and the empty

bars present the performance of Apache running on the normal operating system. The

connection throughput decreases obviously while only one client is simulated. The reason is

that the web server has no request to process when the only request is delayed by the

modified operating system. Figure 5.7 illustrates the performance decreases of Apache in

three ways. Not surprisingly, the performance decrease in each criterion is around 2% while

only one client is simulated. The performance decrease of each criterion is lower then 0.5%

even lower than 0% while more clients are simulated. Those small or even minus difference

numbers are caused by the inaccuracy of measurement. In summary, the overheads of the

modified operating system have little impact on Apache web server.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Clients

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
) FT-PROXY Clean

Figure 5.6: Performance of Apache (Connection Throughput)

 29

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Clients

D
if

fe
re

n
ce

Connection Rate Throughput Response Time

Figure 5.7: Decrease of Apache Performance

5.4 PERFORMANCE

In this section, we measure the performance of Squid which experience failure and

recovery. The client requests one file from the server machine through the proxy in each run.

We turn off the caching functions of the proxy in order to measure the worst case of

recovery latency. Squid process is being terminated intentionally when the client receives

1Kbytes of data in each run. The transmit time is measured in Gigabit Ethernet environment.

Table 5.1 shows the results of the experiment. According to the result, the recovery latency

is around 720 ms in average.

Since the newly establishing connection (server-proxy connection) cannot receive any

packet before completing the re-establishment process, the server-side TCP stack should

retransmit the packets which have not been acknowledged. However, the long recovery time

of Squid (about 200 ms) leads the expiration of retransmission timer. The server-side TCP

retransmits those packets again according to the RTO value, and the value will increase

twice if the corresponding ACK packet is not received. By tracking the server-proxy

connection, we found that the newly established connection cannot continue transmitting

data immediately because of the increasing RTO. We solve this problem by receiving the

retransmitted packets in the SSW for the newly establishing connection. According to the

result shown in Table 5.2, about 240 ms in average of the recovery latency can be reduced.

 30

File Size (Mbytes) 5 10 15 20 25 30

Normal Transmit Time (sec) 0.258050 0.482425 0.690599 0.925669 1.028636 1.217583
Transmit Time including

Recovery Latency (sec)
0.976818 1.228987 1.458313 1.647249 1.768556 1.928813

Recovery Latency (sec) 0.718768 0.746562 0.767713 0.721579 0.739921 0.711230

Table 5.1: Transmit Time of Different Size of File which Experience Recovery

File Size (Mbytes) 5 10 15 20 25 30
Optimized Transmit Time

including Recovery Latency (sec)
0.654799 0.961413 1.139041 1.348164 1.478254 1.701996

Optimized Recovery Latency (sec) 0.396749 0.478988 0.448442 0.422494 0.449619 0.484413

Table 5.2: Transmit Time of Different Size of File with Optimization

5.5 SPACE AND TIME REQUIREMENT

Table 5.3 shows the relation between number of on-line sessions and the size of required

log buffer. The required buffer size increases while the number of sessions increases. The

reason is that we store unhandled data (mentioned in Chapter 4) in the log buffer. Intuitively,

the amount of unhandled data increases when the load of Squid increases. Only 132 Kbytes

of memory is required to log the state of one session while the proxy is serving 30 sessions.

Number of Sessions 5 10 15 20 25 30

Required Log Buffer (Kbytes) 2.78 28.97 31.06 80.55 127.22 131.94

Table 5.3: Relation between Number of Sessions and Required Log Buffer Size

Table 5.4 shows the relation between number of sessions need to recover and the total

recovery time. We intentionally terminate the Squid process when proper number of

sessions (e.g., 5, 10, 15) are served. Each client session requests a 25MB web page.

 31

Obviously, to recover more sessions takes more time. And the recovery latency is

acceptable.

Number of Sessions 5 10 15 20 30 50

Recovery Time (ms) 102.814 147.626 445.338 525.354 839.004 1751.086

Table 5.4: Relation between Number of Sessions and Recovery Time

 32

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

We purpose a subsystem to make a proxy service become fault tolerant. Transient faults

on a proxy application (either caused by hardware, administrator or the proxy application

itself) can be recovered in a way transparent to the clients, servers, and the proxy application.

The subsystem can recover the ongoing requests which are processed when the failure occurs.

In addition, the feature of transparency enables the fault tolerant proxy system functions

without any support of the clients and the servers. The subsystem is implemented as a Linux

kernel module. TCP traffic and system calls are intercepted in kernel-level to log the state.

The experimental results show low overhead for state logging and acceptable recovery

latency.

6.2 FUTURE WORK

Currently, we focus on the errors happened on a proxy application only. In the future, we

will address the operating system failures. Operating system crashes such as kernel panics

could be detected by another machine, and the states could also be logged in that machine.

Therefore, we can use a logger machine to monitor the proxy. When the proxy fails, the state

of the proxy would be migrated to another backup server. Instead of using an additional

machine, the system crashes can also be detected by an intellectual network interface card [3].

With the help of fast system restart techniques such as LOBOS [18] which stores the state in a

safe memory area that survives after restarting the system, the state recovery can be

performed.

 33

In addition, we plan to extend our fault tolerant mechanisms to other network services in

the future. In network services such as Web Service [11] and peer-to-peer network [21], each

host may play the role of client and server at the same time. This is similar to the proxy

service. Therefore, we will evaluate the possibility to extend our approach to provide fault

tolerance for those services.

 34

REFERENCES
[1] Navid Aghdaie, Yuval Tamir, “Client-Transparent Fault-Tolerant Web Service,” 20th

IEEE International Performance, Computing, and Communications Conference,
Phoenix, AZ, pp. 209-216, Apr. 2001.

[2] Navid Aghdaie, Yuval Tamir, “Fast Transparent Failover for Reliable Web Service,” In
Proceedings of the International Conference on Parallel and Distributed Computing and
Systems, Marina del Rey, California, pp. 757-762, Nov. 2003.

[3] Alacritech, “Alacritech quad port server accelerator,” available at
http://www.alacritech.com/html/100x4.html

[4] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, D. Zagorodnov, “Wrapping
Server-side TCP to Mask Connection Failures,” In Proceedings of the IEEE INFOCOM,
Anchorage, Alaska, pp. 329-337, Apr. 2001.

[5] Apache Software Foundation, “The Apache Web Server,” available at
http://www.apache.org/.

[6] T. Briso, “DNS Support for Load Balancing,” IETF RFC 1794, April 1995.
[7] A. Brown, D. A. Patterson, “To Err is Human,” In Proceedings of the 2001 Workshop on

Evaluating and Architecting System dependabilitY, Göteborg, Sweden, July 2001.
[8] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaidyanathan,

W. P. Zeggert, “Proactive Management of Software Aging,” IBM JRD, Vol. 45, No. 2,
Mar. 2001.

[9] Cisco Systems Inc., “Cisco DistributedDirector,” available at
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/distrdir/dd2501/ovr.htm

[10] Cisco Systems Inc., “Web Cache Communication Protocol,” available at
http://www.cisco.com/en/US/tech/tk122/tk717/tech_protocol_family_home.html

[11] Harvey M. Deitel, “Web Services: A Technical Introduction,” Prentice Hall, Aug. 2002.
[12] P. Enriquez, A. Brown, D. A. Patterson, “Lessons from the PSTN for Dependable

Computing,” In Proceedings of the 2002 Workshop on Self-Healing, Adaptive and
self-MANaged systems (SHAMAN), New York, June 2001.

[13] R. Fielding, J. Gettys, J. Mogul, H.Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,” RFC 2616, Jun. 1999.

[14] S. Horman, “Creating Redundant Linux Servers,” In Proceedings of the 4th Annual
Linux Expos, Durham NC, May 1998.

[15] S. Iyer, A. Rowstron, P. Druschel, “Squirrel: A Decentralized, Peer-to-Peer Web Cache,”
21th ACM Symposium on Principles of Distributed Computing (PODC), Monterey,
California, Jul. 2002.

[16] Van Jacobson, Craig Leres, Steve McCanne, “tcpdump,” available at
http://www.tcpdump.org/.

[17] Mindcraft Inc., “WebStone: the Benchmark for Web Servers,” available at

 35

http://www.mindcraft.com/benchmarks/webstone/.
[18] Ron Minnich, “LOBOS: (Linux OS Boots OS) Booting a Kernel in 32-bit Mode,” The

Fourth Annual Linux Showcase and Conference, Atlanta GA, Oct. 2000.
[19] Netscape, “Navigator Proxy Auto-Config File Format,” available at

http://wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html, Mar. 1996.
[20] D. Oppenheimer, D. A. Patterson, “Why do Internet services fail, and what can be done

about it?” In Proceedings of the 10th ACM SIGOPS European Workshop, Saint-Emilion,
France, Sep. 2002.

[21] Andy Oram, “Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology,”
O’Reilly, Mar. 2001.

[22] Alex C. Snoeren, Hari Balakrishnan, “An End-to-End Approach to Host Mobility,” In
Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile
Computing and Networking, pp. 155–166, Boston, Massachusetts, Aug. 2000.

[23] Alex C. Snoeren, David G. Andersen, Hari Balakrishnan, “Fine-Grained Failover Using
Connection Migration,” In Proceedings of the 3rd USENIX Symposium on Internet
Technologies and Systems (USITS '01), Mar. 2001.

[24] K. Srinivasan, “M-TCP: Transport Layer Support for Highly Available Network
Services,” Technical Report DCS-TR459, Rutgers University, Oct. 2001.

[25] D. Wessels, “Squid Web Proxy Cache,” available at http://www. squid-cache.org/.
[26] C. S. Yang, M. Y. Luo, “Realizing Fault Resilience in Web-Server Cluster”, In

Proceedings of the 2000 ACM/IEEE Conf. on Supercomputing (CDROM), p.21-es, Nov.
2000.

[27] C. S. Yang, M. Y. Luo, “Constructing Zero-Loss Web Services”, In Proceedings of IEEE
INFOCOM 2001, pp. 1781-1790, Apr. 2001.

[28] Dmitrii Zagorodnov, Keith Marzullo, Lorenzo Alvisi, Thomas C. Bressoud,
“Engineering fault-tolerant TCP/IP servers using FT-TCP,” In Proceedings of IEEE Intl.
Conf. on Dependable Systems and Networks (DSN), pp. 22-26, Apr. 2003.

 36

	論文摘要
	Abstract

