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論 文 摘 要 

 

代理快取技術是一種被廣泛使用於增進網路使用效率及降低存取時間的技術。然

而，研究指出仍然存在著相當多的原因會使得系統中斷服務。一旦系統中斷服務，使用

代理主機存取網站資料的用戶將因此無法獲得正常服務。他們必須等待系統管理者發現

並修復系統的錯誤。儘管已有很多技術能夠讓代理主機服務能夠容在有錯誤的情況下運

作，但是那些當代理主機錯誤時正在服務的用戶請求，卻無法被回復。 

我們提出了一個容錯的代理主機系統。他能夠在用戶端以及網頁伺服器端沒有察覺

的情況下，發覺本身的錯誤，並且回復所有在錯誤發生時正在服務的請求。我們採用

FT-TCP 的技術來修復連線。這個系統建構在作業系統層級，透過攔截 TCP 通訊協定的

封包以及一些系統呼叫（system call）來紀錄代理主機軟體的狀態，並且在它發生錯誤

時回復它的狀態。根據實驗結果，這個系統在正常的運作情況下需要花費少量的時間來

記錄狀態。錯誤回復的速度也在可以接受的範圍。 
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Abstract 

 
Proxy caching is a widely deployed technique to improve user-perceived latency and 

usage efficiency of network resources. However, researches show that many reasons may 

cause the outage of a proxy server. Thus, the clients cannot request web sites through the 

proxy before the administrator fixes the failure. Although many techniques provide fault 

tolerance for web caching, the requests which are processed when the proxy fails cannot be 

recovered. 

We purpose a fault tolerant proxy system which can log the state, detect the fault, and 

recover the on-line requests in a way transparent to clients and servers. We adopt FT-TCP [2] 

techniques to recover the connections. The system is implemented in the kernel-level. TCP 

traffic and system calls are intercepted to perform state logging and recovery. According to 

the experimental results, the system has low overhead and acceptable performance. 
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CHAPTER 1 
 
INTRODUCTION 
 
 

World Wide Web (WWW) has become the most popular application on the Internet. 

Among the WWW technologies, proxy caching is a widely deployed one for improving 

user-perceived latency and usage efficiency of network resources. By caching web pages in a 

proxy server, many requests can directly be satisfied from the proxy instead of the web 

servers. 

However, proxy systems may fail. According to the previous studies [7] [12] [20], human 

error is the main source of system failure. To take an example, a proxy application may be 

killed by the administrator carelessly. Besides, transient faults or the software aging [8] 

problem may cause a proxy to crash. Such unintentional proxy termination has impacts on the 

clients who access web sites through the proxy. 

Proxy failures often result in performance loss. Moreover, in some cases, clients are 

forced to rely on proxies to access web sites on Internet and therefore the failure of the 

proxies leads to service unavailability. For example, some services (e.g., e-magazines) only 

accept requests from registered IP addresses in order to restrain the access from unregistered 

clients. For saving the subscription cost, an organization usually uses the IP address of the 

proxy to subscribe the service. This makes all the staffs in the organization be able to access 

the service. However, if the proxy fails, the service will become unavailable. For another 

example, many companies and schools use proxy technique to provide WWW access for a 

large number of hosts through a few number of public IP addresses. The failure of the proxy 

will cause the WWW channel to break until the administrator fixes it. 

Previous techniques have limitations when they are used for building fault tolerant proxies. 

Specifically, simple mechanisms based on proxy replicas [6, 9, 10, 14, 19] can not recover the 

 1



 

requests that are served when a proxy service fails (i.e., on-line requests). Connection 

migration techniques [4, 22, 23, 24, 28] can recover on-line requests. However, they can not 

do it in a server transparent way. They replay the requests from the beginning again, which 

makes the proxy to establish connections to the server and issue the requests one more time. 

The replay not only wastes the sever resources and increases the recovery time, but also cause 

problems for dynamic-object or transaction-based requests. Some connection migration 

techniques [22, 23, 24] even require modifications to the client-side TCP implementations, 

which limits the feasibility of these techniques on providing fault tolerant proxy services. 

The main reason that the connection migration techniques have limitations on providing 

fault tolerant proxy service is as follows. In their systems, a host only plays a single role, 

either a client or a server. Therefore, they did not consider how to transparently recover a 

system that acts as both clients and servers, like proxy. 

This kind of connection reestablishment wastes the server resources, increases the 

replaying time, and may cause problems for dynamic-object requests. 

In this thesis, we propose a system to make a proxy service become fault tolerant. It can 

automatically detect the proxy service failures, restart the proxy, and recover the state 

(including the on-line requests) associated with the proxy. Thus, the interactions between the 

clients and the servers would not be interrupted because of the failures. In our system, the 

TCP connection recovery is based on the FT-TCP [4]. However, unlike the FT-TCP, the 

recovery is transparent to not only the clients but also the servers. In addition, it is also 

transparent to both the proxy application and the TCP/IP stack of the proxy. 

We implement the fault-tolerant system as a Linux kernel module. The target application 

is Squid [25], the most popular proxy application in UNIX-like systems. In the original 

implementation, the overhead of states logging is around 4% and 839 ms is required to 

recovery 30 client sessions on the proxy server. To reduce the recovery time, we further 
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proposed two optimization techniques. Furthermore, small space is required to store the 

states. 

The rest of this thesis is organized as follows. Chapter 2 describes the background 

technique, FT-TCP, which is adopted in our system. Chapter 3 surveys various existing 

solutions to provide a fault-tolerant proxy server. The design and implementation of our 

system is described in Chapter 4. We show the experimental results and the analysis of the 

results in Chapter 5. We conclude this paper and describe the future works in Chapter 6. 
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CHAPTER 2 
 
BACKGROUND 
 
 

In this chapter, we describe the techniques of FT-TCP [4], which were adopted and 

modified by us for building a fault-tolerant proxy system. 

 

2.1 ARCHITECTURE OF FT-TCP 

The architecture of FT-TCP is presented in Figure 2.1. The main idea of FT-TCP is to 

intercept all the TCP traffic, record the traffic information to a logger machine, and recover 

the TCP connections in another backup machine during the recovery period. It is worth to 

mention that the clients are not aware of the connection migration. All the tasks are performed 

on the server side and transparent to the clients. 

The TCP traffic interception is done by two separated wrapping layers. The layer between 

applications and TCP is called North Side Wrapper (or NSW). It records the interactions 

between TCP and the applications (e.g., socket read/write operations) to the logger, and 

recovers the states (i.e., socket stream states) of the applications during the recovery period. 

Specifically, the NSW records the data read by the application and the return values of each 

socket write operation to the logger. To recover the socket stream states, the NSW 

communicates with the logger and feeds the logged data (or, returns the logged return values 

to the application), while it performs socket read or write operations. In other words, the NSW 

makes the application replay socket read/write operations to recover the states. The layer 

between TCP and IP layers is called South Side Wrapper (or SSW). It records each TCP 

connection to the logger and helps to re-establish the connections during the recovery period. 

When TCP sends/receives a packet during normal operations, it intercepts the packet and 
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records the information required for re-establishing the connection (e.g., the sequence number) 

to the logger. When FT-TCP re-establishes a connection, the SSW modifies (sometimes 

destroys) the packets sent to/from TCP in order to perform the recovery transparent to the 

application and the clients. 

 

 

Figure 2.1: FT-TCP Architecture 

 

2.2 CONNECTION RECOVERY 

Figure 2.2 illustrates the flow of connection recovery performed in FT-TCP. In order to 

re-establish a connection with client transparency, FT-TCP spoofs and intercepts packets to 

complete a fake 3-way handshake with the server-side TCP, which is described in the 

following. 

After the server restarts, FT-TCP spoofs an SYN packet to the server-side TCP with the 

initial sequence number as the last ACK sequence number sent by the server. So that, the 

sequence number of the next incoming packet in this new connection will follow the number 

of the original one. When getting the SYN packet, the server’s TCP stack sends a SYN/ACK 
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packet back, which is intercepted by the FT-TCP. The FT-TCP destroys the packet. In addition, 

it records the delta_seq, the difference between the initial sequence numbers of the 

re-established and the original connections. The delta_seq is used for adjusting the sequence 

numbers of the following TCP packets in order to maintain server-application and client-side 

transparency. Finally, FT-TCP fakes an ACK packet to complete the 3-way handshake.  

After the connection is re-established, the sequence numbers of all packets in this 

connection should be adjusted. Specifically, FT-TCP adjusts the ACK sequence number of the 

incoming packets and the sequence number of the outgoing packets. Needless to say, the 

checksum should be re-computed after the sequence number adjustment. 

 

 

Figure 2.2: The Flow of Connection Recovery in FT-TCP 

 6



 

CHAPTER 3 
 
RELATED WORK 
 
 

Previous techniques for providing proxy fault tolerance can briefly be classified into two 

categories, proxy replicas and connection migration. We will describe these techniques in this 

chapter. 

 

3.1 PROXY REPLICAS 

A straightforward approach to provide proxy fault tolerance is to use multiple proxy 

replicas. Based on this approach, many techniques can be used. Proxy auto-configuration 

script [19] enables the clients to choose another proxy while the primary one fails. DNS 

aliasing [6] can be used to select a proxy in a round-robin manner. This reduces the impact of 

a single proxy failure. Moreover, this technique can also be enhanced to select the live proxies 

only [9] to eliminate the problem of proxy failure. However, the effectiveness of this 

technique may be reduced due to the caching of the DNS results on the clients and other DNS 

servers. Specifically, a client can’t connect to another live proxy before issuing the DNS query 

again once the cached DNS result targets to a failed proxy. ARP spoofing and IP aliasing [14] 

techniques can also be used to provide fault tolerance for proxies. When the primary proxy 

fails, the backup proxy takes over the IP address of the primary one by sending gratuitous 

ARP packets. Therefore, following requests will be directed to the backup proxy. All the 

techniques described above are client-transparent except for the proxy auto-configuration 

script. However, they do not support for recovering the requests that are being served when 

the proxy fails. 

Web Cache Communication Protocol (WCCP) [10] allows a router to communicate with 
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multiple proxies so as to enable transparent caching. Using this protocol, a layer-4 router is 

responsible for intercepting web traffic and routing the web requests to the proxy hosts. In 

addition, the router also detects the state of each proxy machine so as to route the requests to 

well-functioned proxies. The drawback of this approach is that it requires the router support. 

Moreover, it cannot recover on-line requests. 

Squirrel [15] uses a peer-to-peer routing protocol to provide distributed web caching on 

client desktop machines. Since each client machine cooperates in the peer-to-peer 

environment, the departure or failure of one Squirrel node could be handled properly. 

However, similar to the above approaches, it cannot recover on-line requests. 

 

3.2 CONNECTION MIGRATION TECHNIQUES 

Connection state migration in our fault-tolerant proxy subsystem is based on FT-TCP [4, 

28], which recovers the TCP connection state of a server in a client-transparent way. It logs 

the connection information and the related server process states, so that the un-closed 

connections can be re-established and the states can be recovered when the server fails. 

However, FT-TCP is not suitable for proxy applications. Specifically, FT-TCP will 

re-establish new proxy-server connections and forward requests to web servers again while 

recovering a proxy. This causes problems such as inconsistent dynamic content1  and 

duplicated transactions for dynamic-object or transaction-based requests. In addition, it 

consumes an unnecessary long time. 

The approach proposed in [23] has the ability to migrate TCP connections across server 

replicas. When a server fails, one of the replicas will re-establish the client connections which 

were previously managed by the failed server and resume the service. Although this approach 

operates transparently to the client application and the server application, the connection 
                                                 
1 The resulting content of a dynamic page becomes a mixture of two different responses due to the replay. This 
will be mentioned in Chapter 4. 
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migration mechanism requires modifications to both the client-side and the server-side TCP 

implementations. Specifically, the TCP implementations should be extended to support the 

TCP Migrate Options [22]. For proxy service, it is difficult to deploy the TCP extension to all 

the hosts interacting with a proxy. Migratory TCP (M-TCP) [24] is a transport layer protocol 

which enables the resumption of a failed service in the fashion of connection migration. A 

degradation in quality of service triggers the migration, which makes the client to reconnect to 

a better performing server replica. A set of API is provided for the server applications to 

support state transfer between server replicas. Similar to the approach used in [23], the TCP 

stacks on both the client and the server require modifications to achieve connection migration. 

On the other hand, our approach does not require any modifications to the client-side and 

server-side TCP implementations. Thus, it is much easier to be deployed. 

In addition to the research efforts in the above two categories, there are also projects that 

focus on providing fault-tolerance web systems [1, 2, 26, 27]. These systems log the TCP/IP 

and HTTP information in order to achieve seamless service failover. Moreover, they eliminate 

the problem of inconsistent dynamic result by delaying the sending of a HTTP response to the 

client until the response is fully generated. However, they still cannot achieve server 

transparency while the mechanisms are applied on proxies. This is because the on-line 

requests will be replayed (by the backup proxy) from the beginning again. For 

transaction-based requests, the replay will cause the transaction to be executed again. This 

may lead to problems in the server or make the user be charged twice. 
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CHAPTER 4 
 
DESIGN AND IMPLEMENTATION 
 
 

In a normal HTTP system with a proxy server (as shown in Figure 4.1), a client sends a 

HTTP request to the proxy, which reads the cached web page from its memory (or disk) or 

forwards the request to the web server. And then, the proxy sends the requested page to the 

client. In the meantime, the proxy may crash or be unintentionally terminated by the 

administrator, making the underlying TCP/IP protocol stack send out FIN packets for all the 

connections belonging to this process. As a result, all the connection states will be lost. In 

order to avoid this problem, we have to modify the existing TCP/IP protocol implementation 

to transparently re-establish the connections after restarting the proxy. 

 

 

Figure 4.1: Simple HTTP Proxy Architecture 

 

We adopt the techniques used in FT-TCP [4], which provide a recoverable TCP/IP 

protocol stack suitable for web server and other network services [28]. We have described the 

techniques in Chapter 2. However, using FT-TCP for proxy recovery faces two problems. 

First, FT-TCP cannot recover the proxy-server connections. Since FT-TCP replays all 

operations while performing recovery, the proxy will reconnect to the server and forward the 
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HTTP request again after it restarts. This lacking of server transparency may cause problems 

for transaction-based or dynamic object requests. In the former case, the server will start two 

transactions while the client issues a request only. In the latter case, two requests may result in 

two different response objects, and the object returned to the client may be a mix of the both 

response objects, which is obviously an incorrect result. 

Second, FT-TCP consumes an unnecessary long time, which can be reduced in our work, 

while recovering a proxy server. This is due to the communication with the long-distance 

servers while performing replay. In our work, the replay is performed locally (without 

interacting with the servers) which reduces the communication time. 

In the following of this chapter, we will describe the design and implementation of our 

fault-tolerant proxy system. Section 4.1 describes how to record the information that is 

required for recovery. The flow of recovering a proxy server is presented in Section 4.2. 

Section 4.3 describes how to re-establish the connections. Section 4.4 describes the way to 

recover the data in socket streams. The recovery approach of file stream data will be 

presented in Section 4.5. Finally, we will show the detailed implementation of our system in 

Section 4.6. 

 

4.1 SESSION-BASED LOGGING 

In order to recover the state of a proxy application after it restarts, we have to record the 

states during its normal operation period. Instead of taking snapshots of the whole process 

state, we record what the proxy did for each client and recover the on-line client sessions only. 

A client session starts when a client request arrives to the proxy. The proxy may serve the 

request directly from its cache or get the requested page from the server. After the proxy 

returns the page completely to the client, the session terminates. Therefore, the states in a 

client session include the state of the client-side and the server-side socket streams, and the 
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state of the cache file streams. Although the state is available in the kernel, it is still a 

challenging problem to associate the states with the client sessions. Association of the 

client-proxy connections can be achieved through the use of the (client IP address, client TCP 

port) pair since the pair is unique for each client session. However, the other information (i.e., 

opened file and proxy-server connection) can’t easily be associated to a client session without 

modifying the proxy application. 

In Section 4.1.1, we will describe how to associate the required states to the corresponding 

client session. In Section 4.1.2, we will show the way to log the streams states which is 

needed while recovering a proxy. The cases of information logging will be presented in 

Section 4.1.3. 

 

4.1.1 STREAM-SESSION ASSOCIATION 

As we described above, we can associate a client-proxy connection to the corresponding 

client session. However, associating the proxy-server connection and the opened cache file to 

the session is not easy. In the following, we will describe how to do this in a way transparent 

to the proxy application. 

The first step is to establish the mapping from a proxy-server connection to the 

corresponding client session. Since two different clients may request the same web site, even 

the same URL, we can’t differentiate these connections by the client IP addresses, TCP port 

numbers, or even the client requests. One way to workaround this problem is to allow the 

proxy application to give a hint about the client-proxy connection when it establishes a 

proxy-server connection. However, this approach requires modification to the proxy 

application. 

To avoid modifying the proxy application, we take another approach. We use the 

“Pragma” field in HTTP header to carry the session identifier. Figure 4.2 illustrates the flow 
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of the mapping-establishment. When a HTTP request arrives (step 1), the NSW hijacks the 

HTTP request, parses it, and appends a string “pragma: sid=n” into the HTTP header, where n 

is the session identifier assigned by the SSW when the 3-way handshake completes. Then, the 

request is handed to the proxy application (step 2). According to HTTP standard [13], the 

“Pragma” directives must be passed through by a proxy or gateway application. Therefore, the 

proxy forwards the modified request to the server (step 3). The request is again intercepted by 

the NSW, which then extracts the session identifier to establish the mapping of the 

proxy-server connection to the client session. Finally, the request is sent out to the server (step 

4). 

 

 

Figure 4.2: Relating the Proxy-Server Connection with the Session 

The overheads of this approach are the monitoring of socket read/write operations and the 

insertion/extracting of the session identifiers. According to the experimental results, these 

overheads have little impact on the performance. Moreover, the overheads only occur on the 

proxy applications. As show in Figure 4.2, the overheads don’t occur in the httpd and ftpd 

paths. 
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Figure 4.3: Relating the Cache File with the Session 

 

In the following, we describe how to relate the cache file with the client session. Since 

Squid writes a full HTTP response including the HTTP header to the cache file, we can apply 

a similar solution as we proposed above. Figure 4.3 illustrates the flow of establishing the 

mapping between the cache file name and the client session. When a HTTP response arrives 

(step 1), the NSW inserts the client session identifier into the response header and hands the 

modified response to the proxy application (step 2). If the proxy application writes the 

response to a cache file (step 3), the write() system call will be intercepted and the session 

identifier will be extracted to establish the mapping. After the mapping has been established, 

the response is written to cache file via the original write operation (step 4). 

 

4.1.2 LOGGING OF STREAM STATES 

After describing how to associate streams with the client sessions, we present the way to 

record the states of each stream belonging to the proxy application. In a proxy, the socket 
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streams can be divided into two parts, client-side and server-side streams. In addition to the 

socket streams, the states of the file streams are also required to recover. For the three kinds of 

streams, the states needed to be logged are different due to their availability when the proxy 

restarts. 

Basically, the data transmitted within these streams are HTTP requests and responses. For 

example, a proxy receives HTTP requests from the client streams, receives HTTP response 

from the server streams, and writes HTTP response (including the header) via the file streams. 

Each on-line HTTP request should fully be recorded in order to re-issue it during the recovery 

period. However, we don’t keep the full HTTP responses. Only the header and the unhandled 

data2 of a response are stored in the log buffer. The former is kept in order to make the proxy 

application normally processes the HTTP response after it restarts. The latter is logged 

because it is no longer available from other places. 

Figure 4.4 illustrates the unhandled data logging. The number W, P, and Q are the 

numbers of bytes received from the server, written to the cache file, and sent to the client, 

respectively. Since the proxy receives data before processing it, the value of W is larger than 

or equal to the maximum value of P and Q. In this figure, we store the data between P and W. 

The bytes from Q to W are kept since they are not transmitted to the client yet. Moreover, data 

bytes from P to Q also need to be stored since they reflect the data that was sent to the client 

but not yet stored into the cache file. In the case that Q is smaller than P, we kept the data 

between Q and W in the log buffer. In summary, data bytes between W and the minimum 

number of P and Q are stored in the log for recovery purpose. 

 

                                                 
2 Unhandled Data stands for the data that is received within each stream but not yet been processed (i.e. stored 
into the cache file or sent to the client). 
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Figure 4.4: Logging of a HTTP Response 

 

It is worth to mention that, in Figure 4.4, W and Q are implemented based on the sequence 

numbers in TCP, while the implementation of P is based on the file offset. 

 

4.1.3 CASES OF INFORMATION LOGGING 

The control flow of a proxy varies according to whether the object requested by the client 

is in the cache or not, and the cacheablility of the object. We divide the flows into three cases 

and describe the information that need to be recorded for each case. 

The first case is that the requested object is in the cache. The proxy reads the object, forms 

the HTTP response, and sends the response back to the client. In this case, we should record 

the information of the client-proxy connection so that we can reestablish the connection after 

restarting the proxy. In addition, we also have to record the stream state of this connection so 

that the proxy can continue sending/receiving data with the client after it restarts. 
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Figure 4.5: the second case of information recording 

 

The second case is that the requested object is not in the proxy’s cache and the object is 

not cacheable. The proxy gets the requested page from the web server and sends it back to the 

client. However, after examining the HTTP header, page size and other information, the proxy 

decides not to cache this page. In addition to logging the information mentioned in the 

previous case, we have to record the information of the proxy-server connection. Figure 4.5 

illustrates the flow of information logging in this case. When a HTTP request arrives at the 

proxy, we record the complete request and insert the session identifier (that is assigned while 

establishing the client-proxy connection (a)) into the request (b). After establishing the 

proxy-server connection, the proxy forwards the request to the server. We parse the request to 

extract the session identifier and associate the proxy-server connection (specifically, the 

source port of the connection) with the session (c). Each time a HTTP response packet arrives, 
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we append it to the log buffer and update the byte count accordingly (d). Similarly, we record 

the number of bytes received by the client and delete part of the response from log buffer 

accordingly (e). 

The last case is similar to the second one except that the proxy decides to cache the 

response in the storage. Besides logging the information in the second case, we also record the 

states of file streams. We don’t mention the details of logging a file stream. It is similar to the 

approach of logging a socket stream, which was described in the previous paragraph. 

 

4.2 THE FLOW OF RECOVERING 

Figure 4.6 illustrates the flow of recovering a session. When the proxy restarts, the SSW 

first re-establishes the client-proxy connection (a). The HTTP request will be resent to the 

Squid after the connection re-establishment (b). This way make the proxy connect to the 

server and forward the request. Similarly, the server connection re-establishment is performed 

by the SSW (c). After both connections are re-established, the HTTP response is fed to the 

proxy application to recover the socket stream states and the cache file stream states (d). Note 

that part of the HTTP response was already received by the client, thus we drop them during 

the recovery. Finally, the HTTP traffic could be transmitted normally. 

In the following sections, we will describe the details of the recovery flow. 

 

 18



 

 

Figure 4.6: The Flow of Recovery a Session 

 

4.3 CONNECTION REESTABLISHMENT 

In this section, we show how the connections are re-established according to the logged 

information. For proxy-client connections, we adopt the same techniques proposed in FT-TCP 

[4], which was described in Chapter 2. For proxy-server connections, which cannot 

transparently be re-established in FT-TCP, we modify the FT-TCP techniques to perform the 

connection re-establishment in a way that transparent to the proxy application. 

While re-establishing a client-proxy connection, the SSW fakes SYN packet to the TCP 

stack to make it feel that it is accepting a new connection. After receiving the HTTP request 

(which is also spoofed by the proxy’s kernel), the proxy application starts connecting to the 
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server. This makes the underlying TCP stack send out a initial SYN packet, which is discarded 

by the SSW. After discarding the SYN packet, the SSW fakes a SYN/ACK packet and sends it 

to the TCP layer. However, during the recovery period, new client requests (i.e., new sessions) 

may arrive and thus making the proxy application build new connections to the servers. The 

SYN packets for these server connections should not be discarded. Instead, they should be 

sent to the corresponding servers. Therefore, the SSW should determine whether a SYN 

packet corresponds to a failed connection or a new one. 

We achieve this by controlling the incoming of the HTTP requests. Before all of the failed 

server connections are re-established, we process one HTTP request at a time. Specifically, 

when an incoming HTTP request arrives at the NSW, it blocks further requests until the proxy 

sends an outgoing SYN packet to the server or returns a HTTP response back to the client. 

Therefore, when the proxy sends an outgoing SYN packet, we can tell whether or not the 

connection is for a new session by checking the (client IP, client port number) pair. If the pair 

matches one of the existing sessions, the connection corresponds to the failed session and the 

SYN packet should be dropped. Otherwise, it corresponds to a new session, and the SYN 

packet should be sent to the server. 

In addition to the problem mentioned above, we have to modify each packet header after 

the proxy restarts so as to continue communicating with the clients and the servers. 

Specifically, we may adjust the sequence number, acknowledgement sequence number, and 

destination port. Figure 4.7 illustrates the packet header adjustment. The numbers in the 

brackets indicate the (sequence number, acknowledgement sequence number, source port, 

destination port). Assume that the proxy originally connects to the server via port u, and 

reconnects to the server via port v. Furthermore, the difference between the initial sequence 

numbers of the original and the re-established connections is δ. For each outgoing packet, the 

SSW adjusts the sequence number p to (p+δ) and the source port v to u. For each incoming 
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packet, the SSW adjusts the acknowledgement sequence number s to (s-δ) and the destination 

port u to v. 

 

 

Figure 4.7: Packet Header Adjustment after the Proxy Restarts 

 

4.4 SOCKET IO STREAM RECOVERY 

After a proxy restarts, we have to recover the states of the socket streams so that we can 

continue transmitting/receiving data through the connections. For the client-side socket 

streams, we adopt the same approach as FT-TCP, which was described in Section 2.2. In this 

section, we will describe the approach of recovering the states of server-side socket streams. 

After the proxy re-establishes a connection to the server, it forwards the logged HTTP 

request to the server. However, to maintain the server transparency, we cannot actually send 

the request to the server. Instead, the NSW accepts the request and triggers the recovery of the 

HTTP response. From the recovery point of view, a HTTP response can be divided into three 

parts, as shown in Figure 4.8. There are two stages while performing the recovery, which will 
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be described in the following. 

 

 

Figure 4.8: HTTP response decomposition 

 

The first stage is to recover the receiving states for the data that is already received by the 

client. Since the data has been received by the client, we should not send it to the client again. 

However, for proxy application transparency, the data should be sent to the restarted proxy 

application. From Figure 4.8 we can see that, only a part of the data is in the log buffer. For 

the data bytes that are logged, we can send it to the proxy application. For the other data bytes, 

we generate dummy data and send it to the proxy application. This works because a proxy 

application doesn’t watch the content of a HTTP response. The only exception to this is the 

response header. A proxy will examine the header and decide whether or not cache the page. 

Therefore, the logged HTTP response header is returned when the proxy application performs 

the socket read operation at the first time. 

The second stage is to recover the data which is already received by the proxy but not yet 

received by the client. We can find the data in the unhandled HTTP response buffer (as we 

described in Section 4.1.2). The NSW intercepts the socket read operation and returns the 

corresponding data from the buffer. And then, the proxy can forward them to the client and 

decide whether or not to store the data into the cache file. 

After the two-stage recovery, the proxy can receive the remaining HTTP response from 

the server through the re-established connection. 
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4.5 FILE IO STREAM RECOVERY 

If our target application, Squid, crashes before storing a full HTTP response to the cache 

file, the file will become incomplete. When the proxy performs recovery, it may open a new 

cache file and write the received HTTP response into it. As we described in Section 4.4, only 

a part of the response contains correct data (since it is in the log buffer), and the other part 

consist of dummy data. As a result, the proxy will create a cache file with incorrect content, 

which will be sent to a client when the client requests it. 

To solve this problem, we must replace the dummy data with the original HTTP response 

data stored in the incomplete cache file. The steps are as follows. First, we backup all of the 

incomplete cache files that correspond to the failed sessions in case the restarted proxy 

application overwrites the files. When the proxy recovers a session, it will open a new cache 

file and write HTTP response to that file. Therefore, we intercept the write system call and 

replace the dummy data in the source buffer with the from the backup file. After all the 

dummy data is replaced, the remaining data bytes written by the proxy application will be 

stored in the new cache file without modification since they are the original response data 

bytes. 

 

4.6 IMPLEMENTATION 

The system is implemented as a kernel module in Linux 2.4.18. Similar to FT-TCP, we 

insert the NSW and SSW layers by intercepting several socket-related and TCP-related 

functions. We also intercept write system call to recover the states of file streams. In addition, 

we add two kinds of kernel threads for fault detection and packet spoofing. 
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Figure 4.9: Kernel Threads for Fault Detection and Packet Spoofing 

 

For the socket-related functions, we intercept sock_recvmsg() to insert session identifier 

and record HTTP requests. We also intercept sock_sendmsg() for session identifier extraction. 

Besides, these two functions are intercepted to perform the recovery of the socket streams. 

For the TCP-related functions, we intercept tcp_v4_rcv() to hijack the incoming TCP packets. 

Outgoing TCP packets are hijacked by intercepting the ip_queue_xmit() and the 

ip_build_and_send_pkt() functions. All these functions are intercepted in order to record the 

TCP traffic and establish the fake 3-way handshakes during the recovery period. Finally, for 

recovering the states of the file streams, we intercept sys_write(), which is the in-kernel 

service routine of write system call. 

The kernel thread health_monitor is used to monitor the status of Squid. It triggers the 

recovery operations when Squid fails. For each session that needs to be recovered, the 

health_monitor creates a spoofer thread, which spoofs packets for re-establishing the 

corresponding connections (as shown in Figure 4.9). 
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CHAPTER 5 
 
EXPERIMENTAL RESULTS 
 
 

This chapter evaluates the fault-tolerant proxy system in four ways. First, we present 

traces of client-proxy TCP connections to demonstrate the effectiveness of recovering client 

sessions. Second, we show the overhead on the proxy application and other applications 

running on the modified operating system. Third, we measure the connection performance 

of the client sessions which are recovered since the intentional termination of the proxy. 

Finally, we show the relation between size of log buffer and number of connections and the 

relation between recovery time and the number of connections. 

 

5.1 EXPERIMENTAL ENVIRONMENT 

We use an Intel Pentium 4 2.0 GHz PC running Squid-2.5.STABLE4 [25] as the proxy 

machine and a server machine which is identical to the proxy machine in hardware running 

Apache 2.0.40 [5]. Three Pentium 4 1.6 GHz PCs are used as client machines. Each 

machine is equipped with 512KB cache, 256MB DDR RAM, one 100Mbps Ethernet 

adaptor, and one Gigabit Ethernet adaptor. All the machines are connected by two 

independent Ethernet switches (i.e., 100Mbps Ethernet and Gigabit Ethernet). 
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5.2 EFFECTIVENESS 

 
Figure 5.1: Traces of Client-Proxy TCP Connections 

 

In this experiment, the client downloads a 25MB file from the web server through the 

proxy. We use tcpdump [16] to check the TCP ACK sequence number of each outgoing 

packet sent by the client. Figure 5.1 shows the results. The normal line represents the case 

that the client completes the downloading normally. In the other two cases, we terminate the 

proxy application when the client has downloaded 12MB of the file. The FT-PROXY line 

represents the recovery performance of our approach and the FT-TCP line represents that of 

the FT-TCP mechanism. Since FT-TCP make the proxy reconnect to the server and 

download the file from the beginning again, its recovery time is longer. 

 

5.3 OVERHEAD 

In this section, we characterize the overhead of the fault-tolerant proxy system in terms 

of the impact on the performance of proxy application and other TCP/IP-based applications. 

In Section 5.2.1, we measure the performance of Squid while logging states of client 

sessions with WebStone benchmark [17]. We show the overhead occurs in an Apache web 

server running in the modified operating system in Section 5.2.2. 
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5.3.1 SQUID PERFORMANCE 

To present the impact of states logging on Squid performance, we use the standard 

workload of WebStone 2.5 but make each request be forwarded to the web server (all 

request are direct access). We achieve this by modifying the cache policy of Squid. This 

workload shows the impact of session insertion/extraction to associate the socket streams 

mentioned in Section 4.1.1. 
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Figure 5.2: Performance of Squid (Connection Rate) 
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Figure 5.3: Performance of Squid (Connection Throughput) 
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Figure 5.4: Performance of Squid (Response Time) 
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Figure 5.5: Decrease of Squid Performance 

 

Figure 5.2, Figure 5.4, and Figure 5.5 illustrate the runtime overhead caused by the state 

logging operations. The x-axis stands for the number of clients simulated by WebStone. The 

shaded bars present the performance of Squid running on the modified operating system 

(the state logging operations are performed) and the empty bars present the performance of 

Squid running on the normal operating system. Figure 5.5 shows the decrease of Squid 

performance in the three criteria. It is worth to mention that the overheads are around 1.5% 

to 3.8% only. 
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5.3.2 APACHE PERFORMANCE 

We install Apache web server 2.0.40 on the proxy machine. Since the fault-tolerant 

kernel module checks all TCP traffic and socket read/write operations for logging, the 

performance of Apache may drop. We measure the overhead with WebStone 2.5. The client 

machine is the same as Section 5.2.1. 

Figure 5.6 illustrates the throughput of the client-server connections. The shaded bars 

present the performance of Apache running on the modified operating system and the empty 

bars present the performance of Apache running on the normal operating system. The 

connection throughput decreases obviously while only one client is simulated. The reason is 

that the web server has no request to process when the only request is delayed by the 

modified operating system. Figure 5.7 illustrates the performance decreases of Apache in 

three ways. Not surprisingly, the performance decrease in each criterion is around 2% while 

only one client is simulated. The performance decrease of each criterion is lower then 0.5% 

even lower than 0% while more clients are simulated. Those small or even minus difference 

numbers are caused by the inaccuracy of measurement. In summary, the overheads of the 

modified operating system have little impact on Apache web server. 
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Figure 5.6: Performance of Apache (Connection Throughput) 
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Figure 5.7: Decrease of Apache Performance 

 

5.4 PERFORMANCE 

In this section, we measure the performance of Squid which experience failure and 

recovery. The client requests one file from the server machine through the proxy in each run. 

We turn off the caching functions of the proxy in order to measure the worst case of 

recovery latency. Squid process is being terminated intentionally when the client receives 

1Kbytes of data in each run. The transmit time is measured in Gigabit Ethernet environment. 

Table 5.1 shows the results of the experiment. According to the result, the recovery latency 

is around 720 ms in average. 

Since the newly establishing connection (server-proxy connection) cannot receive any 

packet before completing the re-establishment process, the server-side TCP stack should 

retransmit the packets which have not been acknowledged. However, the long recovery time 

of Squid (about 200 ms) leads the expiration of retransmission timer. The server-side TCP 

retransmits those packets again according to the RTO value, and the value will increase 

twice if the corresponding ACK packet is not received. By tracking the server-proxy 

connection, we found that the newly established connection cannot continue transmitting 

data immediately because of the increasing RTO. We solve this problem by receiving the 

retransmitted packets in the SSW for the newly establishing connection. According to the 

result shown in Table 5.2, about 240 ms in average of the recovery latency can be reduced. 
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File Size (Mbytes) 5 10 15 20 25 30 

Normal Transmit Time (sec) 0.258050 0.482425 0.690599 0.925669 1.028636 1.217583
Transmit Time including 

Recovery Latency (sec) 
0.976818 1.228987 1.458313 1.647249 1.768556 1.928813

Recovery Latency (sec) 0.718768 0.746562 0.767713 0.721579 0.739921 0.711230

Table 5.1: Transmit Time of Different Size of File which Experience Recovery 

 

File Size (Mbytes) 5 10 15 20 25 30 
Optimized Transmit Time 

including Recovery Latency (sec) 
0.654799 0.961413 1.139041 1.348164 1.478254 1.701996

Optimized Recovery Latency (sec) 0.396749 0.478988 0.448442 0.422494 0.449619 0.484413

Table 5.2: Transmit Time of Different Size of File with Optimization 

 

5.5 SPACE AND TIME REQUIREMENT 

Table 5.3 shows the relation between number of on-line sessions and the size of required 

log buffer. The required buffer size increases while the number of sessions increases. The 

reason is that we store unhandled data (mentioned in Chapter 4) in the log buffer. Intuitively, 

the amount of unhandled data increases when the load of Squid increases. Only 132 Kbytes 

of memory is required to log the state of one session while the proxy is serving 30 sessions. 

 

Number of Sessions 5 10 15 20 25 30 

Required Log Buffer (Kbytes) 2.78 28.97 31.06 80.55 127.22 131.94 

Table 5.3: Relation between Number of Sessions and Required Log Buffer Size 

 

Table 5.4 shows the relation between number of sessions need to recover and the total 

recovery time. We intentionally terminate the Squid process when proper number of 

sessions (e.g., 5, 10, 15) are served. Each client session requests a 25MB web page. 
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Obviously, to recover more sessions takes more time. And the recovery latency is 

acceptable. 

 

Number of Sessions 5 10 15 20 30 50 

Recovery Time (ms) 102.814 147.626 445.338 525.354 839.004 1751.086

Table 5.4: Relation between Number of Sessions and Recovery Time 
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CHAPTER 6 
 
CONCLUSION AND FUTURE WORK 
 
 
6.1 CONCLUSION 

We purpose a subsystem to make a proxy service become fault tolerant. Transient faults 

on a proxy application (either caused by hardware, administrator or the proxy application 

itself) can be recovered in a way transparent to the clients, servers, and the proxy application. 

The subsystem can recover the ongoing requests which are processed when the failure occurs. 

In addition, the feature of transparency enables the fault tolerant proxy system functions 

without any support of the clients and the servers. The subsystem is implemented as a Linux 

kernel module. TCP traffic and system calls are intercepted in kernel-level to log the state. 

The experimental results show low overhead for state logging and acceptable recovery 

latency.  

 

6.2 FUTURE WORK 

Currently, we focus on the errors happened on a proxy application only. In the future, we 

will address the operating system failures. Operating system crashes such as kernel panics 

could be detected by another machine, and the states could also be logged in that machine. 

Therefore, we can use a logger machine to monitor the proxy. When the proxy fails, the state 

of the proxy would be migrated to another backup server. Instead of using an additional 

machine, the system crashes can also be detected by an intellectual network interface card [3]. 

With the help of fast system restart techniques such as LOBOS [18] which stores the state in a 

safe memory area that survives after restarting the system, the state recovery can be 

performed. 
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In addition, we plan to extend our fault tolerant mechanisms to other network services in 

the future. In network services such as Web Service [11] and peer-to-peer network [21], each 

host may play the role of client and server at the same time. This is similar to the proxy 

service. Therefore, we will evaluate the possibility to extend our approach to provide fault 

tolerance for those services. 
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