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摘要 

在本論文中，我們提出以亮度／色彩對比為基礎的客觀視覺評量以估測人類主觀

視覺感受評量。針對不同的影像分析應用，如自動面板缺陷檢測應用及彩色切割

應用，我們先透過設計視覺實驗得到人類在分析影像時的主觀視覺評量標準，並

設計客觀評量因子來估測這些主觀視覺評量，最後再將這些客觀評量因子應用在

自動面板缺陷檢測、彩色切割評量技術以及彩色切割技術上。 

在傳統的影像分析系統流程中，包含有四個基本的步驟： 1) 影像擷取，2) 

影像分析，3) 輸出影像分析結果，及 4) 分析結果評估。具體而言，在一個影

像分析系統中，在輸入端我們輸入一張或多張影像進行分析，此系統將針對不同

的影像分析應用，使用不同的影像分析技術來分析影像，並輸出分析結果。然後，

再根據一些視覺感受評量來對影像分析結果進行評估。在這篇論文中，我們在傳

統的影像分析系統流程中，增加兩個重要的分析程序，分別是視覺實驗以及亮度

∕色彩對比測量。為了得到和人眼主觀視覺分析影像一致之結果，我們針對不同

的影像分析應用，分析亮度∕色彩對比在人眼視覺感知中所扮演的角色。透過視

覺實驗，我們針對不同的影像分析應用，定義合適的亮度∕色彩對比，並且粹取

出符合人類視覺感受的主觀視覺評量因子。之後，為了量測這些主觀視覺評量因
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子，我們以亮度∕色彩對比為基礎來發展客觀的視覺評量因子估測方法，並且應

用在發展影像分析技術，以此來得到和以人眼分析影像近似的方法和結果。 

對於不同的影像分析應用，人眼的主觀視覺評量因子可能不盡相同。在這篇

論文中，我們討論了兩種不同的影像分析應用：1) 自動面板缺陷檢測以及 2) 彩

色切割應用。在自動面板缺陷檢測的應用中，我們討論人類主觀視覺對低亮度對

比的面板缺陷影像的之視覺評量因子及其量測問題。首先，我們先介紹在 Mori 

等人發表的論文中所提到的以亮度對比為基礎的主觀視覺因子及其量測公式 

SEMU 公式，同時介紹他們得到此一視覺因子的視覺實驗。結合 SEMU 公式，

我們提出了一些影像分析技術，試著來偵測不同形態的面板缺陷。其中包括我們

提出合適的偵測運算子，如 LOG 運算子，並且討論最佳的自動門檻值設定方法。 

在彩色切割應用方面，我們針對包含少量紋理的彩色切割應用，考慮了人眼

對於色彩對比的感受。在一張包含少量紋理的彩色影像中，低色彩對比的相鄰像

素往往被視為相同的影像區塊，而相鄰高色彩對比的像素位置則為影像區塊的邊

界。因此，我們在論文中討論人眼對色彩對比和色差的感受評量。另外，針對彩

色切割應用，我們也考慮了人眼對於色彩對比的主觀視覺評量因子，如人眼對於

過度切割  (over-segmentation) 的程度感受以及不足切割  (under-segmentation) 

的程度感受 … 等等。對此，在論文中，我們透過視覺實驗來驗證這些主觀的視

覺評量因子和彩色切割結果品質的關係。之後，我們設計了一些以色彩對比為基

礎的客觀視覺評量方法，來估測這些主觀視覺評量因子。同時，我們結合這些設

計出來的客觀視覺評量量化估測方法，應用在客觀的彩色切割結果評量以及發展

彩色切割演算法的應用上。 

最後，我們模擬驗證了所提出的以亮度∕色彩對比為基礎的影像分析技術在

不同的應用上的分析結果。其結果驗證，我們以亮度∕色彩對比為基礎所設計的

客觀評量因子和人類的主觀視覺評量因子有很高關聯性。而且，我們也驗證了，

在針對不同的影像分析應用所設計的影像分析技術中，亮度∕色彩對比的確扮演

著不可或缺的角色。因此，如果可以有效率且有效地估測亮度∕色彩對比，並且
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用亮度∕色彩對比為基礎來發展客觀視覺評量，以估測人眼在不同影像分析應用

中的主觀視覺評量因子，我們可設計得到近似人類分析影像方法及結果的影像分

析技術。 
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Abstract 

In this dissertation, a study of image analysis techniques by correlating subjective 

visual qualities with objective visual quantities based on luminance/color contrast is 

presented. To mimic the way humans perform image analysis, some subjective visual 

quantities are considered. To extract and verify the applicability of these visual 

quantities, subjective experiments are performed first. Then, to measure these 

subjective visual quantities, some objective quantitative measures based on 

luminance/color contrast are proposed. With these objective quantitative measures, 

contrast-based image analysis techniques can be developed for various image analysis 

applications. 

In the flow chart of a conventional image analysis system, four basic parts are 

included: 1) inputting of images to be analyzed, 2) image analysis with one or more 

techniques, 3) outputting of analyzed results, and 4) evaluation of the analyzed results. 

Specifically, given one or more images to be analyzed, different image analysis 

techniques are adopted for different applications. Then, the analyzed results are 

evaluated with some evaluation methods according to predefined visual perception 

requirements. In this dissertation, two more processes are added into an image 
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analysis system. They are 1) subjective experiments and 2) measurement of 

luminance/color contrast and/or measurement of visual perception quantities. To 

mimic the way humans perform image analysis, we need some suitable subjective 

visual quantities. To extract appropriate visual quantities that may well correspond to 

humans’ perception, subjective experiments are needed. To estimate these subjective 

visual quantities for different applications, we need to propose effective and efficient 

objective quantitative measures. 

In this dissertation, we consider two different image analysis applications: 1) 

automatic inspection for visual defects on LCD panels, and 2) color segmentation. For 

different image analysis applications, the applicable visual quantities will be different. 

In the automatic defect inspection application, we discuss the suitable visual 

quantities for the extraction of visual defects with low luminance contrast. Here, we 

follow Mori’s proposal to quantify the degrees of image defects based on the 

luminance contrast and area size of visual defects. Based on Mori’s subjective 

experiments, which were performed to relate human visual perception with the 

luminance contrast and area size of visual defects, and the SEMU formula, which was 

proposed by Mori et al for a quantitative measurement of visual perception, we may 

effectively quantify the degrees of image defects based on luminance contrast and 

defect area. The LOG operator is then used to detect several types of visual defects. 

An optimal thresholding mechanism is also discussed.  

For the applications of color segmentation with little texture, we consider 

segmentation quality, degree of over-segmentation, and degree of under-segmentation 

as the visual quantities. To verify the correlation among these visual quantities, a few 

subjective experiments are performed. Here, we use color contrast to quantify these 

visual quantities. Usually, given a color image, adjacent pixels with low color-contrast 

are grouped into regions; while adjacent pixels with high color-contrast are regarded 
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as edges. For color segmentation, we define color-contrast in terms of visible color 

difference and invisible color difference. Then, some objective quantitative measures 

based on visible/invisible color difference are proposed to measure these 

aforementioned subjective visual quantities. In this dissertation, the “intra-region 

visual error” is proposed to measure the degree of under-segmentation, while the 

“inter-region visual error” is proposed to measure the degree of over-segmentation. 

With these visual measures, some image analysis techniques are proposed to perform 

color segmentation and also the evaluation of color segmentation. 

With simulations for these two image analysis applications, some conclusions are 

drawn. First, the correlations between the luminance/color contrast-based quantitative 

measures and the visual quantities are really significant. Second, luminance/color 

contrast may play an important role in the development of image analysis techniques 

that mimic the way of human perception. 
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deviation σ 

( )IPSNR     Peak Signal to Noise Ratio function 

),( yxMuraCluster      Round-type Cluster Mura 

SEMU      Semi Mura 

SNR      Signal to Noise Ratio 

( )tu       The step function 

VarEstimed_Noise  Variance of AWGN noise produced in the photography 
process 

σ      Standard deviation  

δ(x)      The impulse function 

( )xϕ       The 2nd derivative of an intensity profile 
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Introduction 
______________________________________________ 
 

In Section 1.1, the overview of this dissertation is introduced. Then, the organization 

and contribution of this dissertation is given in Section 1.2. 

1.1 Dissertation Overview 
As shown in Fig. 1.1, the block diagram within the blue contour shows a conventional 

flowchart for an image analysis system. In this flowchart, four essential steps are 

included: 1) inputting of images to be analyzed, 2) image analysis with one or more 

techniques, 3) outputting of analyzed results, and 4) evaluation of the analyzed results. 

Specifically, given one or more images to be analyzed, different image analysis 

techniques are adopted for different applications. The analyzed results are then 

evaluated with some evaluation methods according to predefined visual perception 

requirements. Especially, the evaluation methods could be further categorized into 1) 

objective evaluation methods and 2) subjective evaluation methods. 

In this dissertation, two more processes are included: 1) subjective experiments 
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and 2) measurement of luminance/color contrast and/or measurement of visual 

perception quantities. To mimic the way humans perform image analysis, we need 

some suitable subjective visual quantities. For example, in color segmentation 

applications, subjective visual quantities such as the degree of segmentation quality, 

the degree of over-segmentation, and the degree of under-segmentation may be 

considered to be essential. To extract appropriate visual quantities that may well 

correspond to humans’ perception, subjective experiments are necessary. Moreover, 

subjective experiments may also be useful in discovering the relationships among 

these selected visual quantities.  

On the other hand, to measure these visual quantities for a specific application, 

we need to propose effective and efficient objective quantitative measures. In this 

dissertation, we consider the use of luminance/color contrast-based measures to 

mimic the way humans perform image analysis. In fact, in our study, the 

luminance/color contrast is used in the blocks of image analysis, evaluation methods, 

and subjective experiments in Fig. 1.1. For example, in the development of color 

segmentation algorithms, with proper definitions of color contrast in terms of color 

difference, we demand that pixels with invisible color difference are to be merged 

together, while pixels with visible color difference are treated as edges. Based on the 

visible color difference, some quantitative measures are proposed as the objective 

counterparts of the subjective visual quantities, which are considered in the subjective 

experiments. Based on the subjective experiments, the correlations between the 

subjective visual quantities and the objective quantitative measures are verified. Then, 

these objective measures can be used for the development of evaluation methods for 

color segmentation and/or for the development of color segmentation algorithms. 
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Fig. 1.1 Image Analysis Flowchart Based on Luminance/Color Contrast. 

 

Fig. 1.2 and Fig. 1.3 show two examples for image analysis applications. Fig. 1.2 

shows the illustration of a luminance contrast-based auto-inspection process for the 

detection of visual defects on LCD panels. On the other hand, Fig. 1.3 shows the 

illustration of a color contrast-based color segmentation process. 
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Fig. 1.2 Automatic Inspection Based on Luminance Contrast. 

 

The gray-level image at the top of Fig. 1.2 represents the image of an LCD panel. 

Compared to a uniform background, the areas with noticeable luminance difference 

are considered as defects in human’s perception. To mimic the way human detects 

these defects, some luminance contrast-based visual perception formulas, like the 

SEMU formula explored by Mori et al, can be deduced based on properly designed 

subjective experiments, as illustrated in the right side of Fig. 1.2. With this SEMU 
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formula, we develop an optimal threshold mechanism unified with some specified 

analysis techniques, as explained in Chapter 3 of this dissertation. The analyzed result 

is then shown in the left side of Fig. 1.2, where the red point indicates a detected 

Cluster Mura with a very low luminance contrast. 

 

 

Fig. 1.3 Color Segmentation Based on Color Contrast. 

 

 On the other hand, Fig. 1.3 shows the illustration for color segmentation 

application. The top image shows the input image to be processed. To avoid directly 

measuring the subjective quality of color segmentation, two subjective visual 
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quantities, the quantity of missing boundaries and the quantity of fake boundaries, are 

considered in this dissertation. As shown in the right side of Fig. 1.3, a few subjective 

experiments are performed to verify the correlations between these two visual 

quantities and the quality of color segmentation. On the other hand, an objective 

quantity, named visible color difference, is defined. Intuitively, given a color image, 

adjacent pixels with invisible color difference are considered to be grouped together, 

while adjacent pixels with visible color difference are regarded as image edges. Hence, 

based on the visible color difference, some objective visual quantities, such as the 

“intra region visual error measure” and the “inter region visual error measure”, are 

proposed to measure the degree of missing boundaries and the degree of fake 

boundaries. With the subjective experiments, the correlations between the subjective 

visual quantities and the objective quantitative measures can be verified. With these 

objective visual quantities, we may propose image analysis techniques for color 

segmentation and the evaluation color segmentation. For example, in the left side of 

Fig. 1.3, an image in pseudo colors indicates such a segmented result based on the 

developed color segmentation algorithm. In this image, pixels painted with the same 

color are segmented into the same region. 
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1.2 Organization and Contribution 
The following chapters in this dissertation are organized as follows.  

 In Chapter 2, some definitions of luminance/color contrast for different image 

analysis applications are introduced. Also, for the color segmentation issue, some 

existing image segmentation algorithms and evaluation methods in the literature 

are introduced.  

 In Chapter 3, for the automatic inspection of defects on LCDs, a luminance 

contrast based formula, named SEMU formula, is introduced. A SEMU-based 

optimal thresholding mechanism is then proposed to automatically inspect 

Cluster defects on LCDs.  

 In Section 4.1, the definition of a directional color contrast is proposed first. 

Then, with the directional color contrast, the definition of color contrast in the 

CIE L*a*b* color space is proposed. Also, a technique that can estimate the 

directional color contrast of color edges in a color image is proposed. On the 

other hand, a definition of “visible color difference” in the CIE L*a*b* color 

space is introduced to represent the effects of color difference in human visual 

perception. Then, based the defined color contrast, a so-called visible color 

difference is proposed to differentiate visible color difference from invisible 

color difference. In Section 4.2, some visual rating experiments are performed to 

verify the correlation between segmentation quality and degree of 

over-segmentation and/or degree of under-segmentation. Then, based on the 

defined “visible color difference” formula in Section 4.1, which are used to 

estimate the degree of over-segmentation, the degree of under-segmentation, and 

segmentation quality, some quantitative visual error measures are proposed. 

These quantitative measures are also used in the evaluation of color 
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segmentation. In Section 4.3, based on the directional color contrast introduced 

in Section 4.1, a color segmentation algorithm is proposed. On the other hand, 

uniting with the proposed quantitative evaluation method mentioned in Section 

4.2, a new color segmentation algorithm is proposed. 

 Finally, conclusions are drawn in Chapter 5. 
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CHAPTER 2 
 

 

 

Backgrounds 
______________________________________________ 
 

Luminance/color contrast has played an important role in the development of image 

analysis techniques. In Section 2.1, some existing definitions of luminance/color 

contrast for different applications will be introduced first. On the other hand, since in 

this dissertation the evaluation of image segmentation results is especially discussed, 

the backgrounds for image segmentation algorithms and related evaluation methods 

are briefly introduced in Section 2.2.  

2.1 Luminance/Color Contrast 
To measure luminance/color contrast, several definitions of luminance/color contrast 

have already been proposed for various applications. In Section 2.1.1, we first 

introduce some existing definitions of luminance contrast. Then, in Section 2.1.2, 

among a variety of color difference definitions, we introduce the CIE L*a*b* color 

difference. Based on the CIE L*a*b* color difference, we will propose in the 

following chapters a few more definitions about color difference. 
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2.1.1 Luminance Contrast 

In this section, we introduce four commonly used definitions related to luminance 

contrast: 1) Luminance Contrast (Weber Contrast), 2) Luminance Ratio, 3) 

Peak-to-Peak Contrast (Michelson Contrast, Modulation), and 4) Just Noticeable 

Difference (JND). The details for each of these four definitions are as follows. 

 

1) Luminance Contrast, or Weber Contrast: 

To define the relationship between the luminance of an interested area and the 

luminance of the surrounding area, a measure called Weber contrast is defined in [1]: 

 

CW = (LS–Lb) / Lb.                      (2.1) 

 

Here, LS is the luminance of the interested area and Lb is the luminance of the 

adjacent background. In [1], a thorough technical discussion of this type of measure 

can be found. 

When the background is brighter than the interested area, CW is negative and 

ranges from zero to –1. On the contrary, when the background is darker, CW is a 

positive number that can be potentially very large. Hence, the sign and value of Cw 

can be used to describe the relationship between the luminance of an interested area 

and the luminance of the adjacent background. 

 

2) Luminance Ratio: 

To specify the difference between bright parts and dark parts in a photo, another 

measure called Contrast Ratio is often used. This contrast ratio is defined as: 
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CR = LS / Lb.                          (2.2) 

 

In practice, a logarithmic variation of this CR definition, as expressed in (2.3), is also 

widely used.  

log(CR) = log(LS) – log(Lb).                   (2.3) 

 

In Equation (2.2), the contrast ratio is defined as LS divided by Lb, where LS and 

Lb have the same definitions as that in (2.1). The Lb in the denominator is often a 

reasonable estimate of the adapted luminance level around this stimulus level in 

human eyes. Instead of the luminance difference away from the background, the 

numerator is defined as the luminance of the interested area, Hence, this CR definition 

has a rather different mathematical behavior from the Weber contrast.  

 

3) Peak-to-Peak Contrast (Michelson Contrast, Modulation): 

To determine the strength of a signal luminance relative to the noise luminance 

level [1], a measure which evaluates the relation between the spread and the sum of 

signal and noise is introduced. Here, we have 

 

Modulation = (Lmax - Lmin) / (Lmax + Lmin)          (2.4) 

 

In the context of human vision, such kind of noise fluctuation could be caused by 

scattered lights introduced into the view path by a translucent element, which partly 

obscures the scene behind it. 
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4) JND (Abbreviation for Just Noticeable Difference) [2]: 

For a certain stimulus, the smallest change in the stimulus that can be perceived 

by human is called the JND. The JND measure is usually used in the study of 

Psychophysics. Specifically, this definition is often used to indicate a measure in the 

statistical sense that the probability of being “perceptible” is 50%. For different 

applications, the definition of the JND measure could be different. Especially in the 

FPD (Flat Panel Display) visual inspection problem that is to be discussed in this 

dissertation, the JND over a uniform luminance background is regarded as a gauge of 

luminance contrast.  

2.1.2 CIE L*a*b* Color Difference 

On the other hand, for color images, color difference is usually adopted as a gauge of 

color contrast. Among a variety of color difference definitions, we focus on the CIE 

L*a*b* color difference. In Section 2.1.2.1, the CIE L*a*b* color space is to be 

introduced. The color space transformation from the RGB color space to the CIE 

L*a*b* color space is also described. Then, in Section 2.1.2.2, we introduce the 

definition of color difference in this CIE L*a*b* color space. 

2.1.2.1 CIE L*a*b* Color Space 

In the analysis of colors, a proper choice of the color space is a key issue. In this 

dissertation, we demand three major requirements in the selection of color space: 1) 

separation of achromatic information from chromatic information, 2) uniform color 

space, and 3) similar to human visual perception. Among various color spaces, we 

pick the CIE L*a*b* color space. In this color space, L* represents luminance, while 

a* and b* represent color components. The definitions for L*, a*, and b* are 

expressed as follows. 
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The detail about the CIE L*a*b* space can be easily found in many color related 

books, like [6]. In Figure 2.1, we show an illustration of this CIE L*a*b* color space. 

 

Fig. 2.1 Illustration of the CIE L*a*b* color space [7]. 

 

On the other hand, Fig. 2.2 illustrates the color transformation from the CIE L*a*b* 

color space to the RGB color space. To digitize colors in photos, the (L*,a*,b*) values 

within an area of interest are first converted to (Rt, Gt, Bt) by using Equations 

(2.5)(2.6) (2.7)(2.8), and (2.9).  
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In (2.9), Rt, Gt, and Bt are stimulus values captured from the scenery. C11, C12, …, C33 

are the coefficients of the color transformation from the RGB color space to the XYZ 

color space. 
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Fig. 2.2 Color space transformation from the CIE L*a*b* space to the RGB color space. 

 

Then, for the compression of data size and the compensation of the nonlinear effect of 

the monitors, the (Rt, Gt, Bt) values are further mapped to the (R, G, B) values by 

applying the Gamma correction process expressed in Equation (2.10). 

),,(),,( BGR BGRBGR ttt
γγγ= .                    (2.10) 

In Equation (2.10),  ,, BG γγγ R indicate the nonlinear gamma factors for the R, G, and 

G channels of the output monitor. 
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2.1.2.2 Color Difference in CIE L*a*b* Color Space 

In the CIE L*a*b* space, the differences of color components between Patch X and 

Patch Y are defined by their differences in lightness (∆L*), redness-greenness (∆a*), 

and yellowness-blueness (∆b*). That is,  

***
YX LLL −=∆                         (2.11) 

***
YX aaa −=∆                         (2.12) 

***
YX bbb −=∆                         (2.13) 

The overall color difference between these two samples is defined as the 

Euclidean distance in the CIE L*a*b*. That is, 

2/1**2** )]()()[( baLEab ∆+∆+∆=∆                (2.14) 

The differences in color can also be defined by the differences in lightness (∆L*), 

chroma ( *
abC∆ ), and hue ( *

abH∆ ) [8]. In mathematics, we have 

***
BA LLL −=∆                        (2.15) 

                       2/12*2*2/12*2** )()( BBAAab babaC +−+=∆       (2.16) 

2/12*2*2** ])()()[( ababab CLEH ∆−∆−∆=∆            (2.17) 

or  

2/1**2** )]()()[( ababab HCLE ∆+∆+∆=∆ .             (2.18) 
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2.2 Introduction of Image Segmentation 
In Section 2.2.1, we will introduce some existing image segmentation algorithms first. 

Then, evaluation methods for color segmentation are introduced in Section 2.2.2. 

2.2.1 Image Segmentation Algorithms 

In recent years, plenty of efforts have been focusing on the segmentation of color 

images. In general, current image segmentation algorithms can be roughly classified 

into three major categories: 1) image domain-based techniques; 2) feature space-based 

techniques; and 3) physics-based techniques [13]. For image domain-based techniques, 

like [14], the similarity of neighboring pixels or the discontinuity of local information 

is used as the gauge for segmentation. Adjacent pixels with small intensity/color 

variations are merged together, while pixels with large enough variations are split 

apart. For feature space-based techniques, like [26], the data distribution of the entire 

image plays a crucial role. Clustering or grouping techniques are usually applied over 

the data distribution to allot image data into groups. On the other hand, for 

physics-based techniques, the adopted mathematical tools are basically the same as 

the former two kinds of techniques, while an underlying physical model is used to 

account for the reflection properties of colored matter [40]. 

2.2.1.1 Image Domain-Based Approaches 

In general, for image domain-based techniques, the similarity of neighboring pixels or 

the discontinuity of local information is used as the gauge for segmentation. These 

image domain-based methods could be roughly classified into two kinds of methods: 

1) edge-based methods and 2) region-based methods. Edge-based methods usually 

split apart pixels with large enough data variations, while region-based methods 
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merge together adjacent pixels with small intensity/color variations. 

2.2.1.1.1 Edge-Based Methods 

As mentioned above, edge-based methods usually split apart pixels with large enough 

data variations. So far, plentiful methods have been proposed to detect image 

boundaries/edges. For example, in [16], to detect boundaries in a given image, three 

criteria are introduced by the author: 1) good detection, 2) good localization, and 3) 

single response to a single edge. To have good boundary detection, the detector 

maximizes the signal-to-noise ratio; on the other hand, to have good localization of 

boundaries, the detected edge points should be as close to the position of the true edge 

as possible. With these three criteria, the author finds the optimal detector based on 

numerical optimization. In [14] and [18], the authors proposed a boundary detection 

scheme based on “edge flow”. This scheme utilizes a predictive coding model to 

identify the direction of change in colors and textures at each image location at a 

given scale. An edge flow vector at each image location is then constructed. By 

propagating the edge flow vectors, the boundaries can be detected at the image 

locations where two opposite directions of flow are encountered in a stable state. On 

the other hand, in [17] and [19], the gradient vector of intensity/color data is used as a 

gauge to locate boundaries. Usually, the locations with large gradient values are 

regarded as the locations of edges. 

2.2.1.1.2 Region-Based Methods 

Different from edge-based methods, region-based methods merge adjacent pixels with 

small intensity/color variations into regions. In [15] and [23], colors in an image are 

first quantized into several representative classes. These image pixels are then 

replaced by the corresponding color-class labels. Then, a criterion using the class-map 
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is proposed to estimate the data variations in local windows. A region growing method 

is used to segment the image based on the estimated data variations. In 

[20][21][22][25], image gradient is used as a gauge to estimate image 

boundaries/edges. By applying the watershed transform on the gradient magnitude, 

primitive regions can be produced. Then, region competition, region growing, and/or 

region merging are used to produce the final segmentation results. 

2.2.1.2 Feature Space-Based Approaches 

For feature space-based techniques [26], the data distribution of the entire image plays 

a crucial role. Clustering or grouping techniques are usually applied over the data 

distribution to allot image data into groups. In [26] and [33], given a color image, a 

neighborhood is modeled as a distribution of colors. Then, the authors tried to show 

that the increase in the accuracy of the representation causes higher-quality results for 

low-level vision tasks on complicated natural images, especially as the size 

neighborhood increases. In [27][30][32], the authors proposed a general 

non-parametric technique to analyze a complex multimodal feature space and to 

delineate arbitrarily shaped clusters in the feature space. A recursive mean shift 

procedure is used to detect the modes of the distribution. Based on the estimated 

modes of the distribution, an image segmentation algorithm is performed by 

classifying images pixels into corresponding clusters. On the other hand, in [29] and 

[34], the authors treated image segmentation as a graph partitioning problem and 

proposed a so-called “normalized cut” method to segment the graph. The normalized 

cut method measures the overall dissimilarity between different groups as well as the 

overall similarity within the groups. In [31], image segmentation is formulated as a 

data clustering problem based sparse proximity data. Dissimilarities of pairs of 

textured regions are computed based on a multiscale Gabor filter representation. Then, 
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an optimization framework, which uses statistical tests as a measure of homogeneity, 

is proposed for unsupervised texture segmentation. In [35], the authors extended the 

general idea of a histogram to the homogeneity domain. Then, uniform regions are 

identified via multi-level thresholding on the homogeneity histogram. On the other 

hand, in [36][37][38], based on statistical frameworks with the assumption of 

Gaussian/Non-Gaussian densities, image analysis techniques, such as expectation 

maximization, independent component analysis, or Data-Driven Markov Chain Monte 

Carlo, are applied for image segmentation.  

2.2.1.3 Physics-Based Approaches 

For physics-based techniques, the adopted mathematical tools are basically the same 

as the former two kinds of techniques, while an underlying physical model is used to 

account for the reflection properties of colored matter [40]. In [13] and [40], several 

photometric invariant similarity measures are proposed to assist image analysis 

techniques in handling undesired imaging conditions, such as shading, shadows, 

illumination changes, and highlights. 
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2.2.2 Evaluation Methods for Image Segmentation 

Color segmentation is a crucial step in image analysis and pattern recognition. The 

performance of color segmentation may significantly affect the quality of an image 

understanding system. So far, hundreds of color segmentation algorithms have already 

been developed to deal with various kinds of image-related applications [13][41]. For 

these color segmentation algorithms, the automatic setting of controlling parameters is 

usually a difficult task. Currently, these control parameters are often adjusted by the 

users in an interactive and tiresome manner. Moreover, the selection of control 

parameters is also image-dependent. For most color segmentation algorithms, there 

exists no parameter setting that is universally applicable. 

On the other hand, it is well known that performance evaluation of segmentation 

algorithms is critical and essential in the development of image understanding 

systems. However, as compared with the tremendous efforts spent in the development 

of segmentation algorithms, relatively fewer efforts have been made on the subject of 

image segmentation evaluation [42][43][44][45][46]. As shown in Fig. 2.3, Zhang 

classified existing evaluation methods for image segmentation into three categories 

[42][43]: 1) analytical methods; 2) discrepancy methods; and 3) goodness methods. 

Analytical methods directly evaluate segmentation algorithms by analyzing their 

principles, requirements, utilities and complexity, etc [42][43]. Due to the lack of a 

general theory for image segmentation, analytical methods work well only for some 

particular models or for some desirable properties of the algorithms. Moreover, these 

analytical methods themselves are seldom used alone. On the contrary, both 

discrepancy methods and goodness methods evaluate the performance of 

segmentation by judging the quality of segmentation results directly. Especially, 

discrepancy methods measure the difference between the segmentation result and a 
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reference result, which is usually an expected result or a ground truth [47][48]. On the 

other hand, as illustrated in Fig. 2.3, goodness methods evaluate the segmentation 

results directly with certain quality measures, without the use of any reference result.  

 

 

Fig. 2.3 Approaches for Evaluating Image Segmentation [42][43]. 

 

Among these three evaluation categories, the third type of methods, the goodness 

methods, is considered a more practical approach due to its direct evaluation of 

segmentation results without any user-dependent ground truth [49][50]. In this 

dissertation, we’ll focus on this type of evaluation methods. Moreover, we believe that, 

some evaluation principles and formulas in these evaluation methods can be used to 

facilitate the development of segmentation algorithm. Hence, some goodness 

measures that had been proposed before are to be used in the development of a 

segmentation algorithm in this dissertation. 

So far, several goodness methods have already been proposed [42][43][49][50]. 

One type of method is to evaluate segmented results with the use of the “Peak Signal 

to Noise Ratio” (PSNR) function, which is defined as follows: 
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where I is an N×M color image f(x,y), and f’(x,y) is denoted as the segmented result, 

with the color of each segmented region being filled with the average color of that 

region. Then, with a specified region number, the desired segmented results are 

defined to be the results with the maximal PSNR value, or equally with the minimum 

MSE value. In general, this type of method tends to measure the within-region color 

difference between the original color image and the segmented result. However, due 

to the lack of consideration regarding the color contrast between adjacent regions, this 

type of method tends to prefer over-segmented results, which include many small 

regions. This is because a larger value of MSE would be expected when we merge 

several small regions into a large one.  

To avoid producing overly segmented results, the factor of region area is 

considered in the approach proposed by Liu and Yang [49]. In their approach, an 

evaluation function named F function is defined as: 
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where I is the image to be segmented, R is the number of regions in the segmented 

image, ei is the color error of the ith region, Ai is the area of the ith region, and N, M 

represent the length and width of the image. Here, ei is defined as the sum of the 

Euclidean distance in the RGB color space between the color vectors in the original 

image and the color vectors in the segmented image, in the ith region. Consequently, 

with a smaller F-function value, the segmented result is regarded to be better.  

Although these methods take the factor of region area into account to avoid the 
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segmented results from including too many small regions, the relation between color 

difference and region area is not clearly treated. Hence, these F-function based 

methods may include both over-segmented regions and under-segmented regions at 

the same time. Furthermore, since these evaluation functions only consider the color 

differences within regions but ignore the color contrast between regions, they may 

cause some undesired circumstances. For example, the segmented result with each 

pixel being labeled as an independent region may be treated as a “perfect” result 

without any color difference error.  

Based on Equation (2.21), two further improved evaluation functions are 

proposed in [50] that are defined as: 
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where R(Ai) represents the number of regions with the area size Ai. In both equations, 

the areas of regions are considered to punish these segmentation results with too many 

small regions. Similarly, the number of segmented regions is also included, aiming to 

achieve segmented results with an appropriate number of homogeneous regions.  

For the above evaluation functions, two primary requirements are adopted to 

define “preferred” segmentation results: smaller color difference and fewer segmented 

regions. However, color difference and the number of segmented regions are two very 

different measures in their physical meanings. The trade-off between these two 

measures would be very difficult. Moreover, the preferred number of segmented 

regions could be very different from image to image. When this image-dependent 

measure is involved in a single evaluation function, it would be rather difficult to 
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perform segmentation evaluation without having the prior knowledge of the image 

contents in advance.  

In summary, although several goodness functions have already been proposed, 

most of them are not directly based on human visual perception. Instead, most 

goodness methods combine several existing measures together to formulate their 

evaluation functions. The selection and combination of measures are usually 

subjective. The adjustment of weighting coefficients is often troublesome. Moreover, 

for most evaluation methods, the quality of segmentation is usually represented in a 

single function, which mixes together several weakly related measures. Without 

knowing the erroneous information about the segmented result under evaluation, these 

approaches could be very unreliable. 
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CHAPTER 3 
 

 

 

Visual Inspection for Mura on LCDs 
Based on Luminance Contrast 
______________________________________________ 
 

3.1 Introduction of Automatic Inspection for 

Mura on LCDs 
Recently, Liquid Crystal Displays (LCDs) have received increasing market attention 

because of the decreasing prices and the improved visual quality. Among several 

characteristics regarding the visual quality of LCDs, the front-of-screen (FOS) quality 

of LCDs is essential. Most existing FOS quality tests depend on the perception of 

human eyes. However, human inspection needs higher labor power and usually causes 

inefficient and inconsistent inspection. Instead of human inspection, automatic 

inspection that employs efficient algorithms over photographed images could be a 

reasonable and reliable way to evaluate the FOS quality of LCDs.  

So far, several efforts have been spent on the fulfillment of defect classification 
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and the establishment of quality evaluation standards [2][9]. For example, the Video 

Electronics Standards Association (VESA) has been carrying activities related to the 

standards for classifying defects [9], and the Semiconductor Equipment and Materials 

International (SEMI) has spent a lot of efforts on the standardization of defect 

quantification [2]. However, even though there is a high demand of automatic 

inspection of FOS quality, there are relatively few efforts spent on the development of 

defect detection algorithms [3][10][11][12]. 

 

 
Fig. 3.1 Cross-section of an active matrix TFT-LCD. 

 

In this chapter, we focus on the development of detection algorithms for the 

inspection of the FOS quality of an active matrix thin-film transistor liquid crystal 

display (AM TFT-LCD). Fig. 3.1 illustrates the cross-section of an AM TFT-LCD. 

Basically, an LCD display includes two essential components: Cell Unit and 

Backlight Unit. In the cell unit, there are mainly five elements: liquid crystal, 

thin-film-transistor (TFT) array, color filters, glasses, and polarizer. In general, the 

functionality of cell unit is to make the RGB color switching at each pixel controllable. 

On the other hand, in the backlight unit, there are four basic elements: lamp, light pipe, 
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reflective film and optical film. Generally, the functionality of backlight unit is to 

produce uniform light. 

In the inspection of FOS quality, the so-called Mura defects greatly influence the 

FOS quality [9]. The Mura defects are defined as the visible imperfections of the FOS 

of a display screen in active use. Mura defects usually appear as a low contrast, 

non-uniform brightness regions, typically larger than a single pixel [2]. As shown in 

Table 3.1 Mori et al [10] listed several causes of Mura defects in TFT-LCD. Usually, 

the manufacturing performance of each component in the cell unit or in the backlight 

unit would affect the appearance of Mura defects. A superior manufacture process 

produces fewer Mura defects. Usually, the non-uniformity in various kinds of 

components induces different kinds of Mura defects. 

 

Table 3.1  Causes of Mura defects on TFT-LCD [10] 

Basic Unit Causes of Mura 
(1) Non-uniform gap between glasses 
(2) Non-uniform color of color filter 
(3) Non-uniform density of liquid crystal 

 
Cell unit 

(4) Non-uniform thickness of TFT array layer 
(5) Wrinkled optical filter   

Backlight unit (6) Non-uniform lamp’s rays 
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3.1.1 SEMU Formula Based on Just Noticeable Difference 

As mentioned above, Mura indicates the defects as the visible imperfections on the 

FOS of a display screen. To make standard for the quantification of Mura 

phenomenon, a committee in SEMI defines a measurement index for Mura in the 

inspection of FPD (Flat Panel Display) image quality. To define Mura, an ergonomic 

approach is used to investigate human eye’s sensitivity with respect to Mura by 

exploring the relation between Mura’s area and contrast. Also, an index, named 

SEMU (Semi Mura), is defined to express the degree of Mura defects. This SEMU 

index is defined to be the ratio of the target’s contrast over the contrast at JND. To 

deduce the SEMU formula, a subjective experiment had been conducted in [3], as 

shown in Fig. 3.2. In this experiment, a special LCD panel was produced to display 

256 gradations in the luminance range between 43 cd/m2 and 54 cd/m2. A program 

created synthesized Mura and displayed the Mura at the center of the LCD panel. The 

observer looked at the screen with both eyes without any artificial pupil. The viewing 

direction is normal to the center of the LCD panel and the viewing distance is 500 

mm. The experiments were performed in a darkroom and the observer could freely 

adjust the luminance of the displayed Mura by using a numeric keypad. The test 

began with the gray level of the synthesized Mura set to the same level as that of the 

background. Then, the observer adjusted the luminance of the Mura to the level where 

the Mura region was just perceptible and also to another level where the Mura can be 

clearly detected. The contrast values of the synthesized Mura at both levels were 

recorded. The contrast at the first level provided the data for the JND (Just Noticeable 

Difference) contrast, while the contrast at the second level provided the data for the 

“Dist (Distinct difference)” contrast. 
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L + ∆LL + ∆L  
Fig. 3.2 Experimental conditions and equipment used in the subjective evaluations in [3]. 

 

Assume the background luminance is denoted as L and the Mura luminance is 

denoted as L + ∆L. In this experiment, the contrast of the Mura was defined to be the 

value of ∆L/L. Various sizes of circle-type and rectangle-type Muras were used in the 

experiments. The observers include 8 experts, who regularly conduct Mura 

inspections and analysis, and 8 college students with normal vision (with near vision 

strength (500mm) of 1.2 or greater for both eyes). 

Fig. 3.3 shows the experimental results for Muras larger than 1 pixel, where the 

horizontal axis is 1/A0.33 and the vertical axis is the value of contrast. The observers’ 

JND data are plotted as “ •”, while the Dist data are plotted as “ο”. The bold line was 

determined by the linear regression of the JND data. This line indicates a strong 

correlation between the size of Mura and the perceived contrast value of Mura. In this 

experiment, the larger the area of the Mura is, the smaller the JND contrast becomes. 

In other words, Muras are more visible as their area becomes larger. In mathematics, 

the linear relationship between JND contrast (Cjnd) and A0.33 was expressed in [3] as  

Cjnd = 1.97/A0.33 + 0.72.                    (3.1) 

This equation indicates the important characteristics of the “just noticeable 
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difference” for LCD Muras. 

 

 
Fig. 3.3  JND and Dist result of the subjective evaluation in [3]. 

f(A) = A0.33, A: Mura area (mm2) 

 

Fig. 3.3 also shows the straight lines for 2.0×Cjnd and 3.0×Cjnd. The Dist 

contrast data is around the 2.0×Cjnd line. This indicates that not only the JND level 

but also the visible contrast level has the linear relationship between the contrast level 

and A0.33. Hence, the level of Mura defects can be described accordingly. 

To evaluate the blemish degree of Cluster Mura defect, the SEMU formula is 

defined as: 
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x ,                 (3.2) 

where Cx is the average contrast of Mura, Cjnd is the just noticeable contrast of Mura, 

and A is the area of Mura [2]. A larger value of SEMU indicates a more serious 
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blemish. In [4] and [5], some modified versions of this SEMU formula have been 

further proposed. In these modified SEMU formulae, the contrast and the area of 

Mura defects are still the main factors. Similar to Equation (3.2), either a larger 

contrast of Mura or a larger area of Mura will cause a higher degree of blemish.  

As mentioned above, Mura defects appear as low contrast, non-uniform 

brightness regions. They are typically larger than a single pixel when the screen is at a 

constant gray level. Moreover, various kinds of Mura defects are caused by different 

reasons. It would be difficult to develop a single universal algorithm to detect all 

kinds of Mura defects. In this dissertation, we consider two major kinds of Mura 

defects, Cluster Mura and Vertical-Band Mura. These two types of Mura are common 

in the FOS of LCDs. In Section 3.2, we’ll introduce the photography of the FOS 

image first. Then, in Section 3.3, the proposed techniques in the detection of Cluster 

Mura are discussed. In Section 3.4, on the other hand, we discuss the proposed 

techniques for the detection of Vertical-Band Mura. 
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3.2 Photography of FOS Images 
Fig. 3.4(a) shows the prototype of our automatic inspection system. In this system, we 

have an LCD panel that is under test, a CCD camera to capture the FOS image of the 

LCD panel, and a computer to execute Mura detection algorithms. In the inspection 

process, the LCD panel under test is vertically placed on the apparatus. Each time, the 

LCD panel is driven by a pattern generator to display a certain gray level image 

pattern. Then, the camera will capture an FOS image for this specific pattern. The 

FOS image is transmitted to the computer for storage and then is inspected by a set of 

Mura detection algorithms. 

At markets, 15-inch and 17-inch LCD panels are the mainstream for desktop 

displays and notebook displays. In fact, the manufacture processes in these two types 

of LCD panels are quite similar. Hence, the appearances of Mura defects are also 

similar. Both types of LCD panels can be inspected by this prototype system. 

Moreover, to mimic the performance of human inspection, the specifications of the 

CCD camera are chosen to have a more than 12-bit dynamic range and a spatial 

resolution of 1532 × 1024 pixels.  

(a) Inspection prototype (b) Flowchart of LCD inspection  

Fig. 3.4 The prototype of the LCD inspection system. 
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3.2.1 Aliasing 

In the photography process, aliasing usually occurs when the lens of camera is well 

focused on the center of the FOS. Fig. 3.5(a) shows an image with aliasing. Fig. 3.5(b) 

shows the enlarged image of the portion inside the red rectangular in Fig. 3.5(a). As 

shown in Fig. 3.5(b), the lattice-like pattern occurs when the camera lens is in focus. 

This lattice-like pattern will not only increase the difficulty in automatic inspection 

but also influence the inspection results of Mura defects. 

To eliminate the aliasing effect, several anti-aliasing approaches have already 

been published or patented [51][52]. These approaches usually require additional 

accessories and may cause image blurring. Among these approaches, we adopt the 

de-focusing approach, which may eliminate the aliasing effect without additional 

accessories. In this approach, we focus the camera lens on the FOS of LCD first, 

followed by slightly de-focusing the lens till the lattice-like pattern disappears. 

Although this method still causes some degree of blurring in the FOS image, this 

method demands no extra expense. In Fig. 3.5(c), we show the de-focused image of 

Fig. 3.5(a). It can be easily seen that the lattice-like pattern is suppressed.  
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Fig. 3.5 Aliasing in the photography process. 
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3.2.2 Cluster Mura and V-Band Mura 

Among several kinds of Mura defects, the detection of two major kinds of Mura 

defects, Cluster Mura and Vertical Band (V-Band) Mura, will be taken into account in 

this dissertation. As mentioned before, Mura defects appear as non-uniform brightness 

regions in the FOS of an LCD panel. Nevertheless, not all kinds of Mura defects 

appear in a similar manner. For example, Cluster Mura usually appears as a cluster of 

several points locating within a small area. As shown in Fig. 3.6(a)(c), a round-type 

Cluster Mura defect locates at (x=750, y=820), while a rectangular-type Cluster Mura 

defect appears as a narrow region ranging from (x=200, y=720) to (x=600, y=720). 

On the other hand, a V-Band Mura usually appears as a wide vertical strip with either 

brighter or darker brightness with respect to the uniform background. As shown in Fig. 

3.6(e), a V-Band Mura is centered around x=850. The cause of V-Band Mura usually 

comes from non-uniform thickness of components, such as non-uniform thickness of 

the glasses in the cell unit. In comparison, Cluster Muras usually appear within a local 

area, while V-Band Muras usually occupy a larger area. The appearance model of a 

Cluster Mura is quite different from that of a V-Band Mura. It would be impractical to 

detect both types of Muras based on a single algorithm. 
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(a) Round-type Cluster Mura (b) Detection result of (a) 

(c) Rectangular-type Cluster Mura (d) Detection result of (c) 

 
(e) V-Band Mura 

Fig. 3.6 Cluster Mura and V-Band Mura. 
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In the following sections, we will present the use of two different approaches to 

deal with these two kinds of Mura defects. These two different approaches actually 

share the same kernel: a Laplacian of Gaussian (LOG) filter. This LOG filter, which 

compares the intensity of the target with the intensity of the surroundings, will be 

demonstrated to be very useful in the development of Mura detection algorithms. To 

detect Cluster Mura defects, an approach based on 2-D LOG filters will be presented 

in Section 3.3. To detect V-Band Mura, on the other hand, an approach based on 1-D 

LOG filters will be presented in Section 3.4. 
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3.3 Inspection of Cluster Mura 

3.3.1 Cluster Mura Detection 

In practice, there are two types of Cluster Mura defects: round-type Cluster Mura and 

rectangular-type Cluster Mura. In the selection of operators to detect these two types 

of Muras on a constant luminance level, two requirements are demanded: 1) having 

fewer parameters and 2) being less influenced by the shading of the luminance level. 

Therefore, to detect round-type Cluster Mura defects, we use a 2-D round-type LOG 

filter as shown in Fig. 3.7(a). The kernel function of this LOG filter is chosen to be 

the 2st derivative of a Gaussian function. In mathematics, this kernel function can be 

formulated as  

( ) ),,;,(),( yxyyxx
Round

LOG yxNyxfilter σσ0∇+∇= ,           (3.3) 

where ),,;,( yxyxN σσ0  denotes a 2-D Gaussian function with zero mean and standard 

deviations σx and σy. If we set σx = σy= σ, then there is only one parameter to be 

assigned by users. In Section 3.3.2, we will discuss the rule of parameter setting. 
 

 

Fig. 3.7 2-D LOG filters for point detection and line detection. 
 

On the other hand, to detect rectangular-type Cluster Muras, we adopt a 2-D 

rectangular-type LOG filter, as shown in Figure 3.7(b). The corresponding formula of 
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this rectangular -type LOG filter can be formulated as 

( ) ),,;,(),( yxyyLOG yxNyxfilter σσ0rRectangula ∇= .          (3.4) 

Similarly, in Equation (3.4), there are two parameters, σx and σy. If the ratio of these 

two parameters, yxr σσ /= , is fixed, then there is only one parameter left to be 

assigned by users.  

With the round-type LOG filters and the rectangular-type LOG filters, the 

round-type Cluster Mura defects and the rectangular-type Cluster Mura can be 

detected. The detection result of Fig. 3.6(a) is given in Fig. 3.6(b), in which the blue 

region denotes the area of no interest while the red area denotes the detection result of 

Cluster Mura. Similarly, the detection result of Fig. 3.6(c) is given in Fig. 3.6(d). 
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3.3.2 Optimal Threshold Based on the SEMU Formula 

To evaluate the blemish degree of the Cluster Mura defects, the SEMU formula [2] 

mentioned in Section 3.1.1 is defined as  
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where Cx is the average contrast of Mura, Cjnd is the just noticeable contrast of Mura, 

and A is the area of Mura. As indicated in this equation, either a larger contrast or a 

larger area will cause a higher degree of blemish.  

On the other hand, as mentioned in Section 3.3.1, to detect round-type Cluster 

Muras, the round-type LOG filters are adopted. As illustrated in Fig. 3.8, we assume 

additive white Gaussian noise (AWGN) is involved in the photography process. 

 

 

Fig. 3.8 Cluster Mura and photography process. 

Hence, the filtered image of a Cluster Mura defect could be described as 

 ),(),(),( yxfilteryxMurayxOutput Round
LOGCluster ⊗= .         (3.6) 

Assume the round-type Cluster Mura is modeled as 
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where r is the radius of the round-type Cluster Mura, and u(t) is the step function 

defined as 
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Combining Equation (3.6) with Equation (3.7), we could derive 
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On the other hand, the variance of the filtered noise can be estimated to be 

 

( )∫ ∫= dvduvuHVarVar NoiseEstimatedNoiseFiltered
2),(__ ,          (3.10) 

where VarEstimed_Noise denotes the variance of the AWGN noise produced in the 

photography process and H(x,y) represents the round-type LOG filter. 

If combining Equation (3.3) and Equation (3.10), we can have 
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By optimizing the Signal to Noise Ratio (SNR), which is defined as 

( )
noiseFilteredVar __

2OutputSNR ≡ ,                    (3.12) 

we can derive the relationship between the radius of the round-type Cluster Mura and 

the standard deviation of the optimal LOG filter. The relationship is found to be   
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This radius corresponds to the size of the “matched” Mura that can produce the 

maximal output after the LOG filtering. 

As mentioned before, to evaluate the blemish degree of Cluster Mura, the SEMU 

formula is suggested in [2]. If we assume the SEMU value to be a constant S, the 

relation between Mura’s contrast and Mura’s area can be derived. That is, if we define 
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then we have 
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Fig. 3.9 Optimal threshold. 

According to the Bayesian formula, the optimal threshold for the detection of 

Mura is shown in Fig. 3.9. Once the constant S is fixed and the standard deviation of 

the Gaussian function is determined, the optimal threshold can be decided as 

expressed in Equation (3.16), 

 

( ) Sthreshold )/exp(.. / 4109021260
2
1 238 −+−×= −− σσ .     (3.16) 
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3.4 Inspection of V-Band Mura 

3.4.1 V-Band Mura Detection 

Unlike Cluster Muras, a V-Band Mura usually appears with a large area. In general, as 

the size of filters increases, the computation time increases dramatically. Therefore, 

the use of a 2-D LOG filter whose shape “matches” the shape of V-Band Mura is no 

longer a suitable way for efficient inspection. In this dissertation, we take a different 

approach to detect V-Band Mura defects. Fig. 3.10(b) shows the FOS image with 

three contours, where the pixels with similar intensity values are drawn in the same 

color. The pixels with red color have larger intensity values than the pixels with 

brown color, while the pixels with brown color have larger intensity values than the 

pixels with black color. In Fig. 3.10(b), we can see that the tendency of the intensity 

variation along the vertical direction is approximately the same at any horizontal 

coordinate. Basically, with a fixed horizontal coordinate, the intensity in the center 

area tends to be larger than the intensities on the two sides. Due to this similarity in 

the intensity variation along the vertical direction, the operation of intensity 

integration along the vertical direction will not affect the tendency of intensity 

variation along the horizontal direction.  
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Fig. 3.10 V-Band Mura detection. 
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Hence, in our approach, the projection method is applied first along the vertical 

direction. As shown in Fig. 3.10(d), the blue dotted line represents the intensity profile 

projected along the y-axis. With this projected intensity profile, we can easily see that 

the profile around x=850 have a significant variation. To detect this significant 

variation, we first estimate a smooth curve from the original profile. To estimate the 

smooth curve, some specific sample points are needed. Since the zero-crossing points 

of the 2nd derivative of the intensity profile represent the locations of the profile with 

no significant curvature variation. Therefore, we use these zero-crossing points as the 

sample points in our proposed algorithm in order to estimate the smooth curve from 

the original intensity profile.  

To extract zero-crossing points, we use a 1-D LOG filter to estimate the 2nd 

derivative of the profile. With a 1-D LOG filter formulated in Equation (3.17), we can 

apply this filter over the projected profile to estimate the 2nd derivative of the profile. 

Then, zero-crossing points can be detected, as represented in green points in Fig. 

3.10(d).  

( ) ),;()( xxxLOG xNxfilter σ0∇= .                 (3.17) 

 

With these zero-crossing points, a 2nd-order curve fitting method is adopted to 

generate a smooth intensity profile, shown as the pink curve in Fig. 3.10(d). 

Comparing this smooth curve to the original curve, we define the fractions with a 

large deviation from the original curve to be the locations of V-Band Mura defects. 

Fig. 3.10(c) shows the detection result of V-Band Mura in Fig. 3.10(a), with the red 

box circling the area of V-Band Mura.  
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3.4.2 FOS Surface Reconstruction 

To verify the V-Band detection approach, we reconstruct an imaginary FOS image 

based on an approximated smooth intensity profile. In Fig. 3.11(c), with these 

zero-crossing points extracted by the 1-D LOG filter, Spline interpolation is adopted 

to estimate the smooth intensity profile, which is represented as the red curve in Fig. 

3.11(c). With this smooth intensity profile, we can reconstruct the smoothed FOS 

surface, as shown in Fig. 3.11(b).  

To conclude this chapter, we suggest the use of 2-D round-type/rectangular-type 

LOG filters to detect round-type/rectangular-type Cluster Mura defects. With 2-D 

LOG filters, the optimal threshold is analyzed based on the SEMU formula which is 

based on luminance contrast. Also, we propose a curvature based approach to detect 

V-Band Mura defects. In the curvature based approach, a 1-D LOG filter is used to 

generate a smooth curve that represents the curvature tendency of the 1-D projected 

profile. With this smooth curve, V-Band Mura defects with a large deviation of 

luminance contrast can be detected easily. In simulation, the results demonstrate the 

LOG filters are very useful in the development of detection algorithms for the 

inspection of Mura defects. 
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Fig. 3.11 FOS surface reconstruction. 
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CHAPTER 4 
 

 

 

Development and Evaluation of Color 
Segmentation Algorithms Based on 
Color Contrast   
______________________________________________ 
 

In this chapter, for the applications of color segmentation with little texture, the 

definitions of color contrast and visible color difference are introduced first. In 

Section 4.1, the definition of a directional color contrast is proposed In Section 4.1 

first. Then, with the directional color contrast, the definition of color contrast in the 

CIE L*a*b* color space is proposed. Also, a technique that can estimate the 

directional color contrast of color edges in a color image is proposed. On the other 

hand, a definition of “visible color difference” in the CIE L*a*b* color space is 

introduced to represent the effects of color difference in human visual perception. 

Then, based the defined color contrast, a so-called visible color difference is proposed 

to differentiate visible color difference from invisible color difference. In Section 4.2, 

some visual rating experiments are performed to verify the correlation between 
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segmentation quality and degree of over-segmentation and/or degree of 

under-segmentation. Then, based on the defined “visible color difference” formula in 

Section 4.1, which are used to estimate the degree of over-segmentation, the degree of 

under-segmentation, and segmentation quality, some quantitative visual error 

measures are proposed. These quantitative measures are also used in the evaluation of 

color segmentation. In Section 4.3, based on the directional color contrast introduced 

in Section 4.1, a color segmentation algorithm is proposed. On the other hand, uniting 

with the proposed quantitative evaluation method mentioned in Section 4.2, a new 

color segmentation algorithm is proposed. 

4.1 Color Contrast and Visible Color Difference 
In Section 4.1.1, we’ll introduce the definition of directional luminance contrast and 

directional color contrast in the CIE L*a*b* color space. On the other hand, we 

introduce a new definition of color difference, called visible color difference in 

Section 4.1.2. Based on the visible color difference, new measurements are to be 

proposed for a quantitative evaluation of color segmentation in the next section. 

4.1.1 Color Contrast in CIE L*a*b* Color Space 

For color segmentation, we define directional luminance contrast in Section 4.1.1.1 

for image domain-based color segmentation algorithms. Then, directional color 

contrast in the CIE L*a*b* color space is discussed in Section 4.1.1.2. 

4.1.1.1 Definition of Directional Contrast 

For color segmentation applications, data variation in a local area is usually used as 

the gauge for segmentation. Pixels with a small data variation are grouped together, 

while pixels with a large data variation are detected as boundaries. To measure data 
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variation, the derivative information is commonly used. Nevertheless, a direct use of 

derivative values may not faithfully reflect the way humans perceive object 

boundaries. Fig. 4.1(a) shows an intensity profile extracted from a real image. 

Basically, each edge on this profile comprises three major factors: 1) edge height, 2) 

edge slope, and 3) noise irritation. Among these three factors, edge height is more 

related to the way human perceives edges than the other two [26]. However, all these 

three factors influence the measurement of the derivative information around an edge. 

For example, the values of the 1st differentiation are plotted in Fig. 4.1(b). In the 

middle of Fig. 4.1 (a), there appear two apparent edges: a sharp edge around x = 40 

and a smooth edge around x = 50. Even though these two edges have similar edge 

height, their 1st derivatives are quite different. Furthermore, the noise fluctuation 

around x = 80 generates a 1st derivative value that is as large as the 1st derivative value 

around x = 50. These two examples imply that a direct use of the 1st derivative 

information could be very risky if we aim for accurate segmentation. 

In this dissertation, we name the edge height as edge contrast. It is defined as the 

intensity or color difference between the high-curvature points on the two sides of the 

boundary, as shown in Fig. 4.2. To detect these high-curvature points, we use a 2nd 

derivative operator to estimate the curvature of the profile. As shown in Fig 4.2, we 

treat the extreme points on the 2nd derivative profile as the high-curvature points. In 

our approach, the 2nd derivative operator is designed as 

 

( ) ( ) ( )σδ ,;0xNxxB −= .                   (4.1) 

Here, δ(x) denotes the impulse function: 

( )


 =

=
otherwise         0

0                 1
,
, x

xδ ,                (4.2) 

while N(x;0,σ) denotes a Gaussian function with zero mean and standard deviation σ.  
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By convoluting a profile I(x) with this operator, we have  

 

( ) ( ) ( )xBxIx ⊗=ϕ                             

( ) ( ) ( )σ,;0xNxIxI ⊗−= .            (4.3) 

 

Basically, ( )xϕ can be imagined as the 2nd derivative of the profile I(x). Moreover, 

the local extremes of ( )xϕ correspond to the high-curvature points of I(x). Fig. 4.1(c) 

shows the contrast information extracted from Fig. 4.1(a) using Equation (4.3) with σ 

= 2.0, which is determined empirically. It is obvious that Fig. 4.1(c) offers much more 

reliable information than Fig. 4.1(b). 

x
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I(x)

dI(x)

Contrast

(a)

(b)

(c)

x

x

x

I(x)

dI(x)

Contrast

(a)

(b)

(c)

 

Fig. 4.1 (a) An intensity profile extracted from a real image. (b) The estimated 1st     
derivative information. (c) The estimated contrast information with σ = 2.0. 



 53

 

Fig. 4.2 The definition of contrast in one dimension. 

 

Since the 2nd derivative is orientation-dependent, the contrast information at an 

image pixel can be measured along various orientations. In this dissertation, we 

propose a contrast-based color segmentation algorithm which is to be introduced in 

Section 4.3.1. In that algorithm, we detect boundaries by checking the relations 

between each pixel and its eight neighbors. Hence, four directional operators are used 

at each pixel to measure the curvature information at that pixel. These four directions 

are 0°, 45°, 90° and 135°, respectively. All these four directional contrast data are 

then grouped together in subsequent processes. 

4.1.1.2 Definition of Color Contrast in CIE L*a*b* Color Space 

In color image segmentation, a proper choice of color space is also a crucial issue. In 

the selection of color space, we choose the CIE L*a*b* color space due to three major 

properties of this color space: 1) separation of achromatic information from chromatic 

information, 2) uniform color space, and 3) similar to human visual perception [53]. 

Here, L* represents the luminance component, while a* and b* represent two color 

components. The formulae for converting an RGB image into the (L*, a*, b*) 

coordinates can be found in many color-related articles, like [53] and [54]. 

In the CIE L*a*b* color space, the Euclidean distance between the color 

( )*** ,, 111 baL  and the color ( )*** ,, 222 baL  is defined as 
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( ) ( ) ( )2*
1

*
2

2*
1

*
2

2*
1

*
2

* bbaaLLE Lab −+−+−=∆ .          (4.4) 

This is approximately equivalent to the perceptual difference between these two 

colors [26][53]. By incorporating this color difference formula into our contrast 

definition, we define the color contrast across an edge as 

 

2
*b

2
*a

2
L* contrastcontrastcontrastcontrastcolor ++≡        (4.5) 

 

To further explore the correlation between color contrast and the luminance level 

or color level, we performed a subjective experiment. In our experiment, 10 observers 

are involved and the patterns are displayed over a calibrated ViewSonic PT775 

monitor. Here, the values of luminance/color contrast are coarsely quantized into 

eleven steps: 0, 5, 10, 15, …, 50. In the experiment, a set of 11 step images with 

different contrast values but the same level value is used as reference. Each time, a 

step image with randomly specified contrast and level values is generated and is 

placed on the right side of each reference pattern for comparison, as shown in Fig. 4.3. 

The observers are asked to choose one or two reference patterns whose perceptual 

contrast is most similar to the randomly generated step image. Totally, 131 testing 

images are examined and the averaged results are shown in Fig. 4.4(a)-(d). It can be 

seen that our color contrast definition is roughly equivalent to the perceived color 

contrast and is weakly correlated with luminance/color levels. This implies that a 

single global threshold may work reasonably well over the whole image to suppress 

perceptually faint edges. 
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Fig. 4.3 An example of the test pattern in the subjective experiment. 
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(a)  
(b)

(c)  (d)
Fig. 4.4 Subjective experiment results for color contrast perception.  

(a) Perceived color contrast versus luminance level for 5 different L* contrasts. 
(b) Perceived color contrast versus luminance level for 5 different a* contrasts. 
(c) Perceived color contrast versus color level for 5 different L* contrasts.  
(d) Perceived color contrast versus color level for 5 different a* contrasts. 
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4.1.2 Definition of Visible Color Difference 

In this section, for the evaluation of color segmentation, we introduce a new color 

contrast definition named “visible color difference”, which is used to mimic the way 

human perceives color difference. Among various definitions regarding color 

difference [55], we choose the aforementioned CIE ∆E*Lab definition as the basis of 

color difference. As mentioned in the literature [53][55], the value of ∆E*Lab is 

perceptually analogous to humans’ visual perception of color difference. This color 

difference definition is defined over the CIE L*a*b* color space, which is a roughly 

perceptually uniform color space. As aforementioned, the ∆E*Lab color difference 

between two colors, ( )*** ,, 111 baL  and ( )*** ,, 222 baL  in the CIE L*a*b* color space is 

defined as 

( ) ( )
***

******* ,,,,
baLLab baLbaLE 222111 −≡∆  

( ) ( ) ( )221
2

21
2

21
****** bbaaLL −+−+−=             (4.6) 

Moreover, as indicated in [56], the values of ∆E*Lab could be roughly classified into 

three different levels to reflect three different degrees of color difference perceived by 

humans. As listed in Table 4.1, the color difference is hardly perceptible when 

∆E*Lab is smaller than 3; is perceptible but still not distinct when ∆E*Lab is between 

3 and 6; and is distinct when ∆E*Lab is larger than 6 [56]. Hence, in this dissertation, 

we define a color difference is “visible” if its ∆E*Lab value is larger than 6. 

Table 4.1: The effect of color difference in the CIE L*a*b* color space on 
human visual perception [56] 

∆E*Lab Effect 
< 3 Hardly perceptible 

3 < 6 Perceptible, but not distinct 
> 6 Distinct 
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4.2 Quantitative Evaluation for Color 

Segmentation Based on Visible Color 

Difference  
In Section 4.2.1, to extract visual perception factors for color segmentation, we’ll 

perform a series of visual rating experiments. Based on these visual rating 

experiments, we’ll introduce a visible color difference-based quantitative evaluation 

for color segmentation in Section 4.2.2. 

4.2.1 Visual Rating Experiments for Color Segmentation 

Evaluation 

As aforementioned, existing color segmentation algorithms can be roughly classified 

into three major categories: 1) image domain-based approaches; 2) feature 

space-based approaches; and 3) physics-based approaches [13]. For image 

domain-based approaches, most methods could be further classified into two groups: 

1) edge-based methods and 2) region-based methods. To select appropriate color 

segmentation algorithms for the visual rating experiments, the segmentation 

algorithms are picked based on three criteria: 

1) diverseness: these algorithms represent different types of image segmentation 

algorithms; 

2) visibility: these algorithms had been presented to the vision community 

through a refereed publication; and 

3) availability: the codes of these algorithms are readily available. 

Based on these three criteria, we pick three different kinds of segmentation algorithms 

for our visual rating experiments. For edge-based approaches, we picked Ma and 
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Manjunath’s Edge Flow algorithm [14]; for region-based approaches, we picked Deng 

and Manjunath’s JSEG algorithm [15]; and for feature space-based approaches, we 

picked Comaniciu and Meer’s Mean Shift algorithm [27]. Since physics-based 

approaches are much less popular than the others, this type of approaches is not 

considered in our experiments. 

To mimic the way humans evaluate segmentation results, we consider the degree 

of “visible” missing boundaries and the degree of “visible” fake boundaries. To 

explore how missing boundaries and fake boundaries affect the perceived quality of 

image segmentation, a few visual rating experiments are made. In our experiments, 20 

observers are involved. To acquire more accurate experiment results with less 

sensitivity to contexts, the stimulus-comparison method is used [57]. In the 

stimulus-comparison method, any two of the subjects should be compared. Hence, 

this type of approach is very time-consuming. To avoid heavy time consumption but 

without sacrificing the diversity of color images, 6 different color images are used. 

These six images are shown in Figs. 4.5(a)-(f) and are named “Fruit”, “Lena”, 

“House”, “Tower”, “Room”, and “Table Tennis”, respectively. On the other hand, 

since the attributes of segmentation results produced by different algorithms are quite 

different, it would be fairly difficult to compare segmentation results among different 

algorithms. For example, one algorithm may generate segmentation results with 

inaccurately located boundaries, while another algorithm may generate segmentation 

results with accurate boundaries but with some extra fake boundaries. Hence, in this 

dissertation, we only focus on the comparison of segmentation results produced by the 

same algorithm, but with different settings of the control parameters.  
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(a) 

(b) (c) 

 

(d) 

 

 

 

(e) 

 

 

 

(f) 

Fig. 4.5 Six test images. 

     (a) “Fruit”.   (b) “Lena”.   (c) “House”. 
     (d) “Tower”.  (e) “Room”.  (f) “Table Tennis”. 
 

In the experiments, the segmented results of “Fruit” and “Lena” are produced by 

the Edge Flow algorithm [14]. The “Fruit” image is less textured, while the “Lena” 

image includes slight texture over the hat fringe region. On the other hand, the 

segmented results of “House” and “Tower” are produced by the JSEG algorithm [15], 

while the segmented results of “Room” and “Table Tennis” are produced by the 

Mean-Shift algorithm [27]. Table 4.2 shows the summary of these 6 color images and 

the corresponding segmentation algorithms. 
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Table 4.2: Color images versus the applied segmentation algorithms 
Color image 

Segmentation algorithm 
Fruit Lena House Tower Room Table 

Tennis 
Edge-Flow algorithm [14] ◎ ◎     
JSEG algorithm [15]   ◎ ◎   
Mean-Shift algorithm [27]     ◎ ◎ 

 

For each image, 9 segmentation results are produced by one of the three 

algorithms with 9 different settings. Then, every two of these nine segmentation 

results are displayed in a random order on an LCD (Liquid Crystal Display) monitor 

for comparisons, as shown in Fig. 4.6. That is, for each color image, there are 

369
2 =C  segmentation pairs to be compared. Totally, for all 6 color images, there are 

6×36 = 216 segmentation pairs to be compared. For each pair, 20 observers are asked 

to subjectively compare the right segmentation result, named Seg I, with the left 

segmentation result, named Seg II, in terms of the perceived segmentation quality, 

together with the perceived degree of missing boundaries and the perceived degree of 

fake boundaries. Here, we use the seven-grade scales with a set of categories defined 

in semantic terms (e.g. much better, better, slightly better). 
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Fig. 4.6 One of the 36 comparison patterns for the “House” image. 

 

The experiment results for Figs. 4.5(a)-(f) are shown in Figs. 4.7(a)-(b). In Fig. 

4.7(a), the 9 triangles represent the averaged segmentation quality versus the averaged 

degree of missing boundaries for the 9 segmentation results of the “Fruit” image. The 

term “averaged” means that value is computed based on the grades from all 20 

observers. Similarly, the asterisks, pentagrams, squares, circles, and plus-signs 

represent the averaged segmentation quality versus the averaged degree of missing 

boundaries for the segmentation results of “Lena”, “House”, “Tower”, “Room”, and 

“Table Tennis”, respectively. In Fig. 4.7(a), it seems there is no apparent correlation 

between the perceived segmentation quality and the degree of missing boundaries. On 

the other hand, Fig. 4.7(b) shows the plot of the averaged segmentation quality versus 
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the averaged degree of fake boundaries for the segmentation results of the 6 color 

images. Similarly, the correlation between the segmentation quality and the degree of 

fake boundaries is not apparent. 

 

(a) (b) 

Fig. 4.7 Results of the visual rating experiments. 

    (a) Segmentation quality versus the degree of missing-boundary for  
          Figs. 4.5(a)-(f). 

(b) Segmentation quality versus the degree of fake-boundary for Figs. 4.5(a)-(f). 
 

To measure the correlation between the averaged segmentation quality and the 

averaged degree of missing-boundary/fake-boundary, we calculate the correlation 

coefficient, which is defined as  

∑∑
∑

−−

−−
=

22 )()(

))((

YYXX

YYXX
r

,                (4.7) 

where X  is the mean of the scores on the X variable, while Y  is the mean of the 

scores on the Y variable. In Table 4.3, we list the correlation coefficient representing 

the correlation between the segmentation quality and the degree of 

missing-boundary/fake-boundary. As listed in Table 4.3, we can see that the 

correlation between the segmentation quality and the degree of missing boundaries is 
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not always significant at the 0.05 level for these 6 images. Neither is the correlation 

between the segmentation quality and the degree of fake boundaries. Here, the level 

of significance is defined as a small value which is larger than or equal to a rejection 

probability yielded by a statistical hypothesis test [58].  

 

Table 4.3: Averaged segmentation quality vs. Missing-boundary and/or Fake-boundary  
Color Image 

Correlation 
Fruit Lena House Tower Room Table 

Tennis 
Quality vs. Missing-boundary -0.954** -0.840** 0.001 -0.206 -0.432 -0.496 
Quality vs. Fake-boundary 0.642 0.509 -0.788* -0.396 -0.434 -0.114 
Quality vs. 
Missing-boundary + Fake-boundary 

-0.944** -0.797* -0.994** -0.964** -0.994** -0.920**

* correlation is significant at the 0.05 level (two-tailed) [59]. 
** correlation is significant at the 0.01 level (two-tailed) [59]. 

 

Since the correlation between the averaged segmentation quality and the 

averaged degree of missing-boundary/fake-boundary is not strong, we try to explore 

the correlation between the averaged segmentation quality and the combination of 

missing-boundary and fake-boundary. In Fig. 4.8(a), the horizontal axis represents the 

degree of missing boundaries, increasing from left to right; while the vertical axis 

represents the degree of fake boundaries, increasing from bottom to top. Each of the 9 

segmentation results for Fig. 4.5(a) is represented by a square pattern in Fig. 4.8(a). 

The color of the square patterns denotes the normalized averaged grade of 

segmentation quality, increasing from dark red to white. It can be seen that the best 

quality scores usually occur at the lower-left corner of the figure. This means the 

preferred segmentation results are these results with both a lower degree of missing 

boundaries and a lower degree of fake boundaries. Similarly, the simulation results for 

Figs. 4.5(b)-(f) are shown in Figs. 4.8(b)-(f), respectively. All these figures reveal the 

same phenomenon. To confirm this phenomenon, we plot the averaged segmentation 



 65

quality versus the averaged degree of missing boundaries plus the averaged degree of 

fake boundaries for all 6 color images, as shown in Fig. 4.8(g). In Fig. 4.8(g), we can 

easily see that the correlation between the visual quality of color segmentation and the 

combination of these two visual errors is strong. To verify the strong correlation 

between the segmentation quality and the degree of missing boundaries plus fake 

boundaries, we calculate the corresponding correlation coefficients. As listed in Table 

4.3, it can be seen that the correlation coefficients between the segmentation quality 

and the combined degree of missing boundaries and fake boundaries is significant at 

the 0.05 level, or even at the 0.01 level, for all 6 images. Moreover, since the sign of 

the correlation coefficient is negative, it implies that the preferred segmentation result 

is a segmentation result with a lower degree of missing boundaries plus a lower 

degree of fake boundaries. Hence, once if we can find some reasonable measures to 

estimate the degree of missing boundaries and the degree of fake boundaries, we may 

use these measures to evaluate the segmentation quality in a reasonable and practical 

way. 
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(a) (b) 

(c) (d) 

(e) (f) 
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(g) 

Fig. 4.8 Segmentation quality with respect to the degree of missing boundary and the 

degree of fake boundary. 

       (a) “Fruit”. (b) “Lena”. (c) “House”. (d) “Tower”. (e) “Room”. 
       (f) “Table Tennis”. (g) The quality of segmentation versus the degree of  
       missing-boundary plus the degree of fake-boundary. 
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4.2.2 Quantitative Evaluation for Color Segmentation  

In Section 4.2.2.1, we first propose visible color difference-based quantitative 

measures of visual errors. To avoid directly evaluating the subjectively perceived 

quality of color segmentation, two objective visual quantities, the quantity of missing 

boundaries and the quantity of fake boundaries, are considered. To explore how 

missing boundaries and fake boundaries affect the perceived quality of color 

segmentation, a few visual rating experiments were made. On the other hand, to fit for 

human’s visual perception on color difference, the visible color difference has been 

defined in Section 4.1.2. Based on these experiments and the definition of visible 

color difference, two measures, named intra-region visual error and inter-region visual 

error, are proposed to estimate the degrees of missing boundaries and fake boundaries, 

respectively. With these two measures, a scheme by using the 

Inter-Region-Error/Intra-Region-Error plot for the evaluation of color segmentation is 

proposed. Then, in Section 4.2.2.2, we’ll demonstrate the use of the 

Inter-Region-Error/Intra-Region-Error plot for color Segmentation. Also, in Section 

4.2.2.3, we’ll demonstrate the use of the Inter-Region-Error/intra-Region-Error plot 

for the performance comparison of various color segmentation algorithms. 

4.2.2.1 Quantitative Measures of Visual Errors Based on Visible 

Color Difference 

To estimate the degree of missing boundaries and fake boundaries, some appropriate 

quantitative measures are formulated in this section. In general, for quantitative 

methods, three basic types of measures are considered: 1) intra-region measure; 2) 

inter-region measure; and 3) region-shape measure [42][43]. Usually, intra-region 

measures are designed to measure the homogeneity within segmented regions, while 
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inter-region measures are designed to measure the heterogeneity between adjacent 

regions. On the other hand, region-shape measures are usually designed to measure 

the regularity of region shape. Intuitively, the former two types of measures may be 

closely linked to the way humans evaluate the quality of segmentation at the 

discrimination level, while the third type of measures is more likely to be linked to the 

evaluation at the recognition level. Moreover, the intra-region measure which 

evaluates the homogeneity within segmented regions can be adopted to estimate the 

degree of missing boundaries, while the inter-region measure which evaluates the 

heterogeneity between adjacent regions can be used to estimate the degree of fake 

boundaries. Hence, in this dissertation, we focus on the discussion of intra-region 

measure and inter-region measure. In Section 4.2.2.1.1, 4.2.2.1.2, and 4.2.2.1.3, some 

new quantitative measures, which are based on the preference of having less visual 

errors for the evaluation of color segmentation, are introduced. Also, some experiment 

results deduced in Section 4.2.1 demonstrate that the combination of the degree of 

missing boundaries and the degree of fake boundaries is closely related to humans’ 

subjective evaluation over segmentation performance. Therefore, if we can formulate 

some appropriate measures to estimate the degrees of missing boundaries and fake 

boundaries, we may find some quantitative and effective ways to evaluate color 

segmentation algorithms. 
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4.2.2.1.1 Intra-region Visual Error  

To evaluate the degree of missing boundaries, a measure, named “intra-region visual 

error”, is designed. In each segmented region, these pixels with visible color 

difference away from the average color of that region are regarded as pixels with 

visible color errors. Intuitively, a properly segmented region should contain as few 

visible color errors as possible. Any missing boundary will cause the increase of 

intra-region visual errors. Given an N×M color image f(x,y), we first denote ( )yxf ,ˆ  

as the segmented color image, with the color of each segmented region being filled 

with the average color of that region. We then define the intra-region error as: 

 

( )
( ) ( )

MN

thyxfyxfu
I

N

x

M

y baL

×

−−
=
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= =1 1

intraE
),ˆ,(

***
,         (4.8) 

where 
*** baL
 denotes the color difference in the CIE L*a*b* space, th denotes the 

threshold for visible color difference, and u(.) denotes the step function that is defined 

as 

( )


 ≥

=
otherwise           0

      0            1 x
xu .                  (4.9) 

In this dissertation, we choose the threshold “th” to be 6 based on the reason 

explained in Section 4.1.2 

In Equation (4.8), given a segmented result, we calculate the total amounts of the 

pixels with visible color errors in order to estimate the degree of missing boundaries. 

When a segmented region contains more missing boundaries, the average color of that 

region will has a larger color difference from the original colors of those pixels. Once 

the color difference is large enough to be visible, the number of the pixels will be 

counted in Equation (4.8). Hence, as the degree of missing boundaries increases, there 

will be more pixels with visible color errors in Equation (4.8). 
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In Table 4.4, for each of the 6 color images, we confirm that the correlation 

between the intra-region visual error and the degree of missing boundaries is 

significant at the 0.01 level and the sign of the correlation is positive. This implies 

that, given a segmentation result, the intra-region visual error could be an effective 

way to estimate the perceived degree of missing boundaries. 

 

Table 4.4: Missing-boundary vs. Intra-region visual error  
Color Image 

Correlation 
Fruit Lena House Tower Room Table 

Tennis 
Missing-boundary vs. Intra-error 0.978** 0.980** 0.901** 0.980** 0.866** 0.918**

** correlation is significant at the 0.01 level (two-tailed) [59]. 

 

4.2.2.1.2 Inter-region Visual Error 

On the other hand, the second measure, named “inter-region visual error”, is designed 

to evaluate the degree of fake boundaries. Given a color segmentation result, we take 

into account these boundary pixels with invisible color difference across the boundary. 

Intuitively, these pixels are not supposed to be detected as boundaries. Hence, as more 

fake boundaries appear in the segmented image, more inter-region visual errors are 

expected. In this dissertation, we define the inter-region visual error of a segmented 

image as: 
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where R denotes the number of segmented regions, and wij denotes the joined length 

between Region i and Region j. Here, wij is equal to zero if Region i and Region j are 

not connected.  
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Similarly, in Equation (4.10), given a segmented result, we calculate the total 

amounts of the boundary pixels with invisible color errors to measure the degree of 

fake boundaries. Actually, when two adjacent regions contain an invisible boundary, 

the color difference between the average colors of the adjacent regions will be small. 

Therefore, once the average color difference between any two adjacent regions is too 

small to be visible, the joined boundary pixels will be counted. Hence, if the degree of 

fake boundaries increases, more boundary pixels with invisible color errors will be 

counted in Equation (4.10). 

In Table 4.5, for each of the 6 color images, we confirm that the correlation 

between inter-region visual error and the perceived degree of fake boundaries in the 

visual rating experiments is also significant at the 0.01 level and the sign of the 

correlation is positive. This implies that the inter-region visual error could be an 

effective measure for the perceived degree of fake boundaries.  

 

Table 4.5: Fake-boundary vs. Inter-region visual error  
Color Image 

Correlation 
Fruit Lena House Tower Room Table 

Tennis 

Fake-boundary vs. Inter-error 0.961** 0.964** 0.988** 0.991** 0.982** 0.853**

** correlation is significant at the 0.01 level (two-tailed) [59]. 

 

4.2.2.1.3 The Inter-Region Error/Intra-Region Error Plot 

With these two newly designed measures, we can estimate the degrees of missing 

boundaries and fake boundaries, respectively. Even though each of these two 

measures is still image-dependent, the alliance of both measures may provide an 

effective way for segmentation evaluation.  
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In Fig. 4.9, we show the plot of intra-region visual error versus inter-region 

visual error. As the given image is under-segmented, more boundaries are missing and 

the intra-region visual error increases. On the contrary, as the image is 

over-segmented, more fake boundaries appear and the inter-region error increases. 

These two measures are complementary to each other. With these two measures, the 

segmentation can be evaluated in a reasonable way. These two measures are also 

closely related in physical meaning. This makes the trade-off between these two 

measures much easier.  

In this dissertation, we focus on the evaluation of color segmentation for these 

images without complex texture. In Section 4.2.2.2, the use of the 

Inter-Region-Error/Intra-Region-Error plot in the evaluation of color segmentation is 

to be introduced. First, the evaluation of segmentation results for a given 

segmentation algorithm is described. Then, the evaluation method for the comparison 

of various segmentation algorithms is presented in Section 4.2.2.3. 

 

 

Fig. 4.9 Inter-Region-Error/Intra-Region-Error plot. 

 



 74

4.2.2.1.4 Ratio of Intra-region Visual Error to Inter-region Visual Error  

As shown in Figs. 4.8(a)-(f), the preferred segmented results are usually located at the 

lower-left corner in the plot of the quality segmentation versus the sum of the degree 

of missing boundaries and the degree of fake boundaries. Since the defined 

intra-region visual error is proportional to the degree of missing boundaries and the 

inter-region visual error is proportional to the degree of missing boundaries, a 

preferred segmentation result is expected to locate at the lower-left corner of the 

Inter-Region-Error/Intra-Region-Error plot, as shown in Fig. 4.9. Analogous to the 

phenomenon that perceived segmentation quality is closely correlated with the sum of 

the degree of missing boundaries and the degree of fake boundaries, we assume the 

visual quality of a segmentation result can be evaluated based on a linear combination 

of intra-region visual error and inter-region visual error. That is, for i
jI , the jth 

segmentation result of the ith image, we define its total visual error i
jE  as 
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j
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j IEIEE interintra βα += .                (4.11) 

The total visual error i
jE  may also be normalized with respect to i

jα  and we have  
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In Equation (4.12), the coefficient 
i
jλ  is to balance the contributions of visual error 

from )(intra
i
jIE  and ( )i

jIEintra . For different image contents and different 

segmentation algorithms, i
jλ ’s are expected to be different. Based on the results of 

the visual experiments we made in Section 4.2.1, we may perform linear fitting over 
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perceived segmentation quality, measured intra-region errors, and measured 

inter-region error to estimate the value of λ. Table 4.6 shows the estimated values of λ 

for these 6 color images. In general, as the value of λ increases, the preferred 

segmented results are the results with more intra-region visual errors; while as the 

value of λ decreases, the preferred segmented results are the results with more 

inter-region visual errors. We can easily see that for different images and different 

algorithms the values of λ are quite different. Nevertheless, for each segmentation 

algorithm, the values of λ are basically between 1 and 10, except the value of λ for 

the Edge Flow algorithm with the Fruit image  

 

Table 4.6: Optimal Values of λ for Different Images 
Color Image 

 
Fruit Lena House Tower Room Table 

Tennis 
λi 0.586 1.36 9.05 7.70 3.18 5.34 
Segmentation algorithm Edge Flow Edge Flow JSEG JSEG Mean Shift Mean Shift

 

To further investigate the impact of coefficient λ over the performance of the 

proposed evaluation scheme, we discuss the correlation of the averaged segmentation 

quality and the total visual error with respect to λ’s. As shown in Fig. 4.10, the 9 

triangles denote the minus values of the correlation coefficients for the segmented 

results of “Fruit”, with λ = 1, 2, …, 9, respectively. Similarly, the asterisks, 

pentagrams, squares, circles and plus-signs denote the minus correlation coefficients 

for the segmented results of “Lena”, “House”, “Tower”, “Room” and “Table Tennis”, 

respectively. It can be seen that the λ’s in Table 4.6 correspond to the λ that causes the 

maximal correlation. For example, for the case of the “Room” image, the minus value 

of the correlation coefficient reaches its local maximum around λ = 3. Moreover, for 

most images, the value of the correlation coefficient remains large even if λ is 
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changed. The averaged values of the minus correlation coefficients are represented in 

the black solid line. It can be seen that, with λ ranging from 2 to 7, the correlation of 

the averaged segmentation quality and the total visual error remains significant at the 

0.05 level. Hence, in this dissertation, we use the averaged value of λ’s in Table 4.6, 

as calculated in Equation (4.13), to be a typical choice of λ.  
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Of course, this typical choice of λ is only a rough estimate and may not work for all 

types of images. How to automatically choose an appropriate value of λ for a given 

image deserves further investigation in the future. 

 

 

Fig. 4.10 The correlation plot of averaged segmentation quality and total visual error with 

respect to different λ’s. 
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4.2.2.2 Color Segmentation Evaluation Based on  

Inter-Region-Error/Intra-Region-Error Plot  

In this section, the use of the Inter-Region-Error/Intra-Region-Error plot in the 

evaluation of color segmentation is introduced. Also, the automatic selection of 

parameter settings for a given segmentation algorithm is described.  

Fig. 4.11(a) shows the “Fruit” image. Figs. 4.11(b)-(f) show several 

segmentation results of Fig. 4.11(a) produced by the Edge-Flow algorithm [14], with 

different parameter settings. Subjectively, Fig. 4.11(c) is preferable. In comparison 

with Fig. 4.11(c), Fig. 4.11(b) has a higher degree of fake boundaries, while Figs. 

4.11(d)-(f) have higher degrees of missing boundaries. As shown from left to right in 

Fig. 4.11(s), the five blue circles represent the “intra-region visual error” versus 

“inter-region visual error” pairs of Figs. 4.11(b)-(f), respectively. It can be seen that, 

with similar intra-region errors, Fig. 4.11(b) has larger inter-region error values than 

that of Fig. 4.11(c). On the other hand, with similar inter-region errors, Figs. 

4.11(d)-(f) have larger intra-region error values than that of Fig. 4.11(c). Hence, in the 

selection of parameter setting, the sum of Eintra(I) and Einter(I)|λ=4.54 may serve as a 

suitable measure for the evaluation of segmentation performance. As the sum reaches 

a smaller value, the parameter setting is expected to achieve better segmentation. In 

Fig. 4.11(s), we use the quality straight line, Eintra(I) + Einter(I) |λ=4.54 to illustrate this 

idea. Here we use gray straight quality lines to denote the lines Eintra(I) + Einter(I) |λ=4.54 

= constant. It can be easily seen that Fig. 4.11(c) does have the smallest sum if 

compared with the other four. 

In Figs. 4.11(g) and 4.11(m), we show another two examples of color images. 

Figs. 4.11(h)-(l) show the segmentation results of Fig. 4.11(g) produced by the JSEG 

algorithm [15], while Figs. 4.11(n)-(r) show the segmentation results of Fig. 4.11(m) 

produced by the Mean-Shift algorithm [27], all with different parameter settings. 
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Similarly, in Fig. 4.11(s), from left to right, the “intra-region error” versus 

“inter-region error” pairs of Figs. 4.11(h)-(l) are represented in five magenta triangles; 

while the error pairs of Figs. 4.11(n)-(r) are represented in five red crosses. It can be 

easily seen that Fig. 4.11(j) has the smallest error sum if compared with Figs. 

4.11(h)-(l); while Fig. 4.11(p) has the smallest error sum if compared with Figs. 

4.11(n)-(r). In perception, the segmented results in Fig. 4.11(j) and Fig. 4.11(p) do 

appear to be the most preferable results among these candidates. 

Similarly, In Figs. 4.12(a), 4.12(g) and 4.12(m), we show the other three color 

images. Figs. 4.12(b)-(f) show the segmentation results of Fig. 4.12(a) produced by 

the Edge-Flow algorithm [14]; Figs. 4.12(h)-(l) show the segmentation results of Fig. 

4.12(g) produced by the JSEG algorithm [15]; and Figs. 4.12(n)-(r) show the 

segmentation results of Fig. 4.12(m) produced by the Mean-Shift algorithm [27]; all 

with different parameter settings. Similarly, in Fig. 4.12(s), from left to right, the 

“intra-region error” versus “inter-region error” pairs of Figs. 4.12(b)-(f) are 

represented in five blue circles; the error pairs of Figs. 4.12(h)-(l) are represented in 

five magenta triangles; and the error pairs of Figs. 4.12(n)-(r) are represented in five 

red crosses. It can be easily seen that Fig. 4.12(d) has the smallest error sum if 

compared with Figs. 4.12(b)-(f); Fig. 4.12(j) has the smallest error sum if compared 

with Figs. 4.12(h)-(l); and Fig. 4.12(p) has the smallest error sum if compared with 

Figs. 4.12(n)-(r). In perception, the segmented results in Fig. 4.12(d), Fig. 4.12(j) and 

Fig. 4.12(p) do appear to be the most preferable results among these candidates.  

In summary, we use the above three simulation results to demonstrate how the 

Inter-Region-Error/Intra-Region-Error plot can be used to automatically select the 

parameter setting based on the performance of segmentation results. In fact, Eintra(I) 

and Einter(I) can be combined in various forms based on user’s requirements. So far, 

we found that the simple form Eintra(I) + Einter(I) performs pretty well when applied to 



 79

various types of color images. 
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Fig. 4.11 Evaluation of segmentation results. 

     (a) The Fruit image. (g) The Tower image. (m) The Room image. 
     (b)-(f) Segmented results of a by using the Edge-Flow algorithm [14]. 
     (h)-(l) Segmented results of g by using the JSEG algorithm [15]. 
     (n)-(r) Segmented results of m by using the Mean-Shift algorithm [27]. 
     (s) The Inter-Region-Error/Intra-Region-Error plot of b-f, h-l, and n-r. 
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Fig. 4.12 Evaluation of segmentation results. 

     (a) The Lena image. (g) The House image. (m) The Table Tennis image. 
     (b)-(f) Segmented results of a by using the Edge-Flow algorithm [14]. 
     (h)-(l) Segmented results of g by using the JSEG algorithm [15]. 
     (n)-(r) Segmented results of m by using the Mean-Shift algorithm [27]. 
     (s) The Inter-Region-Error/Intra-Region-Error plot of b-f, h-l, and n-r. 
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In Table 4.7, we compare the proposed evaluation measure, Eintra(I) + Einter(I) 

|λ=4.54, with three existing evaluation measures in the literature. These three measures 

are the F(I) measure in [49], the F’(I) measure in [50], and the Q(I) measure in [50]. 

In Table 4.7, the five segmentation results shown in Fig. 4.11(b)-(f) are used as the 

test inputs for the comparison. Here, the “averaged visual quality” denotes the 

subjective evaluation results based on the visual experiment mentioned in Section 

4.2.1, with a larger number indicating a better rating of perceived quality. The other 

four rows indicate the evaluation scores based on the proposed measure, Eintra(I) + 

Einter(I) |λ=4.54, the F(I) measure, the F’(I) measure, and the Q(I) measure, respectively. 

For these four evaluation measures, a smaller number indicates a better rating of the 

measurement. Moreover, the numbers in parentheses indicate the ranking of these five 

test inputs based on the applied evaluation measure. According to the subjective 

visual experiment results, Fig. 4.11(c) is ranked as the best segmentation results 

among Figs. 4.11(b)-(f). As shown in Table 4.7, the proposed evaluation measure does 

pick Fig. 4.11(c) as the best segmentation with the smallest visual errors, while all the 

other three evaluation measures pick Fig. 4.11(f) as the best segmentation result. 

Similarly, in Tables 4.8~4.12, we show the comparisons over the other five color 

images. All these tables illustrate that the proposed evaluation measure Eintra(I) + 

Einter(I) does provide a reasonable and reliable way for the evaluation of color 

segmentation. 
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Table 4.7: Evaluation Comparison for the Fruit image 
Segmented Result 

Evaluation 
Fig. 4.11(b) Fig. 4.11(c) Fig. 4.11(d) Fig. 4.11(e) Fig. 4.11(f)

Averaged Visual Quality 0.488 (3) 1.100 (1) 0.806 (2) -0.225 (4) -0.469 (5) 

Eintra(I) + Einter(I) |λ=4.54 0.600 (4) 0.528 (1) 0.542 (2) 0.572 (3) 0.625 (5) 

F(I) 0.753 (5) 0.730 (4) 0.440 (3) 0.379 (2) 0.285 (1) 

F’(I) 0.075 (5) 0.073 (4) 0.044 (3) 0.038 (2) 0.029 (1) 

Q(I) 0.201 (5) 0.183 (4) 0.154 (3) 0.143 (2) 0.128 (1) 

 

Table 4.8: Evaluation Comparison for the Tower image 
Segmented Result 

Evaluation 
Fig. 4.11(h) Fig. 4.11(i) Fig. 4.11(j) Fig. 4.11(k) Fig. 4.11(l)

Averaged Visual Quality -0.469 (4) -0.181 (3) 0.569 (1) 0.556 (2) -0.625 (5) 
Eintra(I) + Einter(I) |λ=4.54 0.702 (4) 0.677 (2) 0.576 (1) 0.681 (3) 0.893 (5) 
F(I) 1.090 (5) 0.987 (4) 0.194 (3) 0.091 (1) 0.184 (2) 
F’(I) 0.109 (5) 0.099 (4) 0.019 (3) 0.009 (1) 0.018 (2) 
Q(I) 0.354 (5) 0.330 (4) 0.153 (2) 0.092 (1) 0.180 (3) 

 
Table 4.9: Evaluation Comparison for the Room image 

Segmented Result 
Evaluation 

Fig. 4.11(n) Fig. 4.11(o) Fig. 4.11(p) Fig. 4.11(q) Fig. 4.11(r)

Averaged Visual Quality -0.963 (4) 0.100 (3) 1.869 (1) 1.306 (2) -1.988 (5) 
Eintra(I) + Einter(I) |λ=4.54 0.950 (4) 0.479 (3) 0.205 (1) 0.262 (2) 0.959 (5) 
F(I) 1.021 (5) 0.540 (4) 0.389 (2) 0.392 (3) 0.076 (1) 
F’(I) 0.102 (5) 0.054 (4) 0.039 (2) 0.039 (2) 0.008 (1) 
Q(I) 0.155 (5) 0.094 (2) 0.085 (1) 0.107 (3) 0.135 (4) 
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Table 4.10: Evaluation Comparison for the Lena image 
Segmented Result 

Evaluation 
Fig. 4.12(b) Fig. 4.12(c) Fig. 4.12(d) Fig. 4.12(e) Fig. 4.12(f)

Averaged Visual Quality 0.219 (3) 0.231 (2) 0.765 (1) -0.999 (4) -1.363 (5) 
Eintra(I) + Einter(I) |λ=4.54 0.733 (5) 0.606 (3) 0.525 (1) 0.602 (2) 0.673 (4) 
F(I) 0.902 (5) 0.769 (4) 0.614 (3) 0.224 (2) 0.173 (1) 
F’(I) 0.090 (5) 0.077 (4) 0.061 (3) 0.022 (2) 0.017 (1) 
Q(I) 0.175 (5) 0.173 (4) 0.149 (3) 0.127 (2) 0.113 (1) 

 

Table 4.11: Evaluation Comparison for the House image 
Segmented Result 

Evaluation 
Fig. 4.12(h) Fig. 4.12(i) Fig. 4.12(j) Fig. 4.12(k) Fig. 4.12(l)

Averaged Visual Quality -1.363 (5) 1.050 (2) 1.469 (1) 0.725 (4) 0.769 (3) 
Eintra(I) + Einter(I) |λ=4.54 0.502 (5) 0.303 (2) 0.286 (1) 0.303 (2) 0.333 (4) 
F(I) 0.473 (5) 0.194 (4) 0.125 (3) 0.100 (1) 0.116 (2) 
F’(I) 0.047 (5) 0.019 (4) 0.013 (3) 0.001 (1) 0.012 (2) 
Q(I) 0.148 (5) 0.072 (4) 0.059 (2) 0.050 (1) 0.064 (3) 

 

Table 4.12: Evaluation Comparison for the Table Tennis image 
Segmented Result 

Evaluation 
Fig. 4.12(n) Fig. 4.12(o) Fig. 4.12(p) Fig. 4.12(q) Fig. 4.12(r)

Averaged Visual Quality -1.713 (5) 0.794 (3) 1.306 (1) 0.831 (2) -0.894 (4) 
Eintra(I) + Einter(I) |λ=4.54 0.977 (5) 0.595 (2) 0.560 (1) 0.598 (3) 0.897 (4) 
F(I) 6.320 (5) 2.195 (4) 1.738 (3) 0.704 (2) 0.218 (1) 
F’(I) 0.632 (5) 0.220 (4) 0.174 (3) 0.070 (2) 0.022 (1) 
Q(I) 1.124 (5) 0.576 (4) 0.462 (3) 0.268 (2) 0.184 (1) 

 

In summary, in this dissertation, we describe a new evaluation scheme based on 

the visible color difference for color segmentation. To avoid directly evaluating the 

subjective quality of color segmentation, we estimate the degrees of missing 

boundaries and fake boundaries first. With the combination of these two quantities, 

we could approach the subjective evaluation of color segmentation. Also, based the 

definition of visible color difference, we design two measures, the intra-region visual 
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error and inter-region visual error, to estimate the degrees of missing boundaries and 

fake boundaries, respectively. We found the measures based on these two types of 

visible color differences have significant correlation with the degree of missing 

boundaries and the degree of fake boundaries. With these two measures, an evaluation 

scheme is proposed to evaluate the segmentation results and help the automatic 

selection of parameters for a given segmentation algorithm. The simulation results 

have demonstrated the potential of this approach in providing reliable and efficient 

evaluations over color segmentation. Moreover, given that the proposed measures of 

segmentation quality are designed to fit for subjective evaluations of segmentation 

quality, these measures are particularly applicable to tasks such as content-based 

image retrieval. 
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4.2.2.3 Performance Comparison of Color Segmentation Algorithms 

Based on Inter-Region-Error/Intra-Region-Error Plot  

The performance comparison between different segmentation algorithms is also an 

important issue in image segmentation. In the evaluation of segmentation algorithms, 

an objective and quantitative evaluation is essential. In this section, we demonstrate 

how to use the Inter-Region-Error/Intra-Region-Error plot to compare the 

performance of various segmentation algorithms. 

Fig. 4.13(a) shows a color image and several segmented results produced by the 

JSEG algorithm [15] and the Mean-Shift algorithm [27]. In Fig. 4.13(h), the red 

circles denote the inter-region error and the intra-region error pairs of 7 segmentation 

results produced by the JSEG algorithm, while the blue crosses represent the error 

pairs of 7 segmentation results produced by the Mean-Shift algorithm. Fig. 

4.13(b)(c)(d) show three of these seven segmentation results produced by the JSEG 

algorithm, while Fig. 4.13(e)(f)(g) show three of these seven segmentation results 

produced by the Mean-Shift algorithm. With these sample pairs, a 2nd-order curve 

fitting is adopted to estimate the tendency between the inter-region error and the 

intra-region error in Fig. 4.13(h). Here, the red curve shows the performance tendency 

of the JSEG algorithm, while the blue curve shows the performance tendency of the 

Mean-Shift algorithm. With these two tendency curves, it can be easily seen that with 

a similar intra-region error, the segmentation results produced by the Mean-Shift 

algorithm have smaller inter-region errors. That is, with a similar intra-error value, the 

segmentation results produced by the JSEG algorithm tend to be more 

over-segmented. Similarly, with a similar inter-region error, the segmentation results 

produced by the Mean-Shift algorithm tend to have smaller intra-region errors.  
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Fig. 4.13 Comparison with different algorithms. 

     (a) Original image. 
     (b)(c)(d) Segmentation results using the JSEG algorithm [15]. 
     (e)(f)(g) Segmentation results using the Mean-Shift algorithm [27]. 
     (h) Comparison of the JSEG algorithm and the Mean-Shift algorithm. 
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4.3 Color Segmentation Algorithms Based on 

Color-Contrast and Visible-Color-Difference  
In Section 4.3.1, we’ll introduce a color-contrast based color segmentation algorithm, 

which is an image domain-based approach. On the other hand, we’ll also propose in 

Section 4.3.2 a visible-color-difference based color segmentation, which unites with 

quantitative visual measures  

4.3.1 Color Segmentation Algorithm Based on Color 

Contrast 

As mentioned in Section 2.2, for image domain-based color segmentation approaches, 

the gauge of segmentation is usually based on data variation in a local area. 

Similarity-based algorithms group together pixels with small data variation, while 

discontinuity-based algorithms detect places with large data variation. To measure 

data variation, the derivative information is commonly used. Nevertheless, as 

aforementioned, direct uses of derivative values may not faithfully reflect the way 

human perceives object boundaries. Basically, each edge on this profile comprises 

three major factors: 1) edge height, 2) edge slope, and 3) noise irritation. Among these 

three factors, edge height is closely related to the way human perceives edges. In 

Section 4.1.1.1, we define edge contrast in terms of edge height, which is the intensity 

or color difference between the high-curvature points on the two sides of the 

boundary. To detect these high-curvature points, we use a 2nd derivative operator B(x) 

to estimate the curvature of the profile.  

( ) ( ) ( )σδ ,;0xNxxB −= .                      (4.14) 

By convoluting a profile I(x) with this operator, we have  
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( ) ( ) ( )xBxIx ⊗=ϕ   

   ( ) ( ) ( )σ,;0xNxIxI ⊗−= .               (4.15) 

Basically, ( )xϕ can be imagined as the 2nd derivative of the profile I(x). The local 

extremes of ( )xϕ correspond to the high-curvature points of I(x). 

Since the 2nd derivative is orientation-dependent, the contrast information at an 

image pixel has to be measured along various orientations. As aforementioned, we 

detect boundaries by checking the relations between each pixel and its eight neighbors. 

Hence, four directional operators are used at each pixel to measure the curvature 

information at that pixel. These four directions are 0°, 45°, 90° and 135°, respectively. 

Based on directional contrast information and a single-threshold scheme over the 

estimated color contrast, the flowchart of the proposed algorithm is illustrated in Fig. 

4.14. 

          

Color Image
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Prominent Boundaries

Segmentation Result  

Fig. 4.14 Flow chart of the proposed algorithm. 
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Fig. 4.15 Illustration of consistency verification. 

 

In the flowchart, the color space conversion is applied first. Then four directional 

operators are applied to each component of (L*,a*,b*) to extract directional contrast. 

A single threshold is then applied over the estimated color contrast to detect 

boundaries. These directional data are merged together via the connection-and 

-verification process. In the connection-and-verification process, horizontal 

boundaries and vertical boundaries are checked first. Any two neighboring pixels 

without a boundary between them are connected together. Then, these 45° and 135° 

boundaries are checked to remove logically inconsistent connections. 

Here we use Fig. 4.15 to illustrate the meaning of a logically consistent 

connection. Take the triplet of Pixel-A, Pixel-B and Pixel-C as an example. Let “=” 

denote there is no boundary between two neighboring pixels; “≠” denote there is a 

boundary between two neighboring pixels; and “∩” denote the logical AND. We have 

that 

If A=B is true,  

then either (A=C)∩(B=C) or (A≠C)∩(B≠C) has to be true. 

Otherwise, the connection between Pixel-A and Pixel-B is logically 

inconsistent. 



 92

In this verification step, all logically inconsistent connections are disconnected. 

Surviving connections are then merged together to produce the final segmentation 

result. 

Fig. 4.16(a) shows a color image. The segmented result of the proposed 

algorithm is shown in Fig. 4.16(b), represented in pseudo colors with σ = 1.4 and 

contrast-threshold = 23. Even though these two parameters are determined empirically, 

the parameter setting process is quite simple. Usually, a larger σ is used to better 

suppress noise, while a smaller σ value is used to distinguish tiny details. Similarly, a 

larger value of threshold is used to extract objects of larger intensity variations, while 

a small value of threshold is used to distinguish object details. In comparison, the 

parameter setting process is usually troublesome in many existing segmentation 

algorithms. Take the Deng and Manjunath’s algorithm [15] as an example, as we 

choose a small quantization threshold, many tiny details are revealed but the uniform 

background is split into several regions, as shown in Fig. 4.16(c). On the contrary, as 

we increase the value of quantization threshold, the background is merged together, 

but many tiny objects, like the palm in Fig. 4.16(e), are mistakenly merged. These two 

algorithms were performed on a PC with an Intel Pentium III CPU, running at 800 

Mhz and with 256 MB memory. Given a 512×512 color image, the CPU time is 

around 1 to 2 minutes for Deng and Manjunath’s algorithm, is around 10 to 20 

seconds and for our proposed algorithm, without performing code optimization.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 4.16 (a) Original image. (b) Segmentation result of the proposed algorithm, 

represented in pseudo-color, with σ = 1.4 and threshold = 23.           

(c)(d)(e) Segmentation results of the Deng and Manjunath’s algorithm [15], 

represented in pseudo-color, with different threshold values. 

 

In summary, in this section, we propose the use of contrast information for color 

image segmentation. We found that the contrast information is quite useful and 

reliable in detecting boundaries. To estimate the color contrast in a 2-D image, we use 

four directional operators to extract directional color contrast information. A 

single-threshold scheme is then applied over the estimated color contrast to detect 

directional boundaries. Finally, these directional boundaries are merged together via a 

connection and verification process to form 2-D boundaries. Based on the contrast 

definition, the simulation results demonstrate that this simple new algorithm is 

capable of providing reasonable and reliable results. 
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4.3.2 Color Segmentation Algorithm Based on Visible 

Color Difference  

In image analysis and pattern recognition, color segmentation is a crucial step. So far, 

hundreds of color segmentation algorithms have already been developed to deal with 

various kinds of image-related applications. In our opinions, the development of color 

segmentation algorithm should be highly related to segmentation evaluation. In this 

section, we’ll discuss how to apply previously proposed evaluation measures to 

facilitate the development of segmentation algorithms.  

4.3.2.1 Modified Quantitative Visual Error Measures 

In previous sections, to avoid directly measuring the subjectively perceived quality of 

color segmentation, we consider two objective visual quantities, the quantity of 

missing boundaries and the quantity of fake boundaries. Then, two quantitative 

measures, named intra-region visual error and inter-region visual error, are designed 

to measure the degrees of missing boundaries and fake boundaries, respectively. 

Given an N×M color image f(x,y), we denote ff(x,y) as a segmented result, with the 

color of each segmented region being filled with the average color of that region. 

Then the intra-region error is defined as  
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where || ||L*a*b* denotes the color difference in the CIE L*a*b* space, th denotes the 

threshold for visible color difference, and u(.) denotes the step function. On the other 

hand, the inter-region visual error of a segmented image is defined as: 
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where R denotes the number of segmented regions, and wij denotes the joined length 

between Region i and Region j. Here, wij is equal to zero if Region i and Region j are 

not connected.  

In Section 4.2.1, a series of visual rating experiments had been made to 

demonstrate that the correlation between the intra-region visual error and the degree 

of missing boundaries is significant and the sign of the correlation is positive. 

Similarly, the correlation between the inter-region visual error and the degree of fake 

boundaries is verified to be significant and positive. In this section, two slightly 

modified measures, named “modified intra-region visual error” and “modified 

inter-region visual error”, are proposed to further include the color distance values in 

the measures. The modified intra-region error is defined as: 
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                                       (4.18) 

In Table 4.13, for each of the 6 color images, we confirm that the correlation 

between the modified intra-region visual error and the perceived degree of missing 

boundaries in the visual rating experiments, which has been mentioned in Section 

4.2.1, is significant at the 0.01 level and the sign of the correlation is positive. This 

implies that the modified intra-region visual error could also be an effective measure 

for the perceived degree of missing boundaries.  
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Table 4.13: Missing-boundary v.s. Modified Intra-region visual error  
Color Image 

Correlation 
Fruit Lena House Tower Room Table 

Tennis 
Missing-boundary vs. Intra-error 0.856** 0.962** 0.914** 0.961** 0.835** 0.950**

** correlation is significant at the 0.01 level (two-tailed) [59]. 

 

On the other hand, the modified inter-region error is defined as: 
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In this section, we still set the threshold th in Equation (4.18) and Equation (4.19) to 

be 6, as mentioned in Section 4.1.2. 

In Table 4.14, for each of the 6 color images, we confirm that the correlation 

between the modified inter-region visual error and the perceived degree of fake 

boundaries in the visual rating experiments is significant at the 0.01 level and the sign 

of the correlation is positive. This implies that the modified intra-region visual error 

could also be an effective measure for the perceived degree of fake boundaries. 

 

Table 4.14: Fake-boundary v.s. Modified Inter-region visual error  
Color Image 

Correlation 
Fruit Lena House Tower Room Table 

Tennis 

Fake-boundary vs. Inter-error 0.961** 0.963** 0.978** 0.984** 0.968** 0.846**

** correlation is significant at the 0.01 level (two-tailed) [59]. 

 

Same as before, even though each of these two measures is image-dependent, the 

alliance of both measures may provide an effective way for the evaluation of color 

segmentation. As the given image is under-segmented, more boundaries are missing 
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and the modified intra-region visual error increases. On the contrary, as the image is 

over-segmented, more fake boundaries appear and the modified inter-region error 

increases. These two measures are complementary to each other. Therefore, we could 

combine the modified intra-region visual error and the modified inter-region visual 

error into a single measure, named the modified total visual error. That is, 

 

( ) ( ) ( )IMIMI interintratotal EEME λ+= .           (4.20) 

 

Here, λ is set to be 5. In the following sections, based on these modified quantitative 

visual error measures, a color segmentation algorithm will be proposed. 

 

4.3.2.2 Color Segmentation Algorithm Uniting with Quantitative 

Measures  

In this section, we’ll propose a color segmentation algorithm which unites with some 

quantitative visual measures. Given a color image, at the initial step, we produce an 

initial segmented image in which each pixel is regarded as an independent region. 

Then, for this initial segmented image, all the regions and the connection between any 

two adjacent regions are represented in a region adjacent graph (RAG) data structure. 

With the RAG, a merging process, consisting of a sorting procedure, a merging 

procedure, and an updating procedure, is used to further merge the segmented image. 

In the following subsections, the region adjacent graph data structure is introduced 

first and then the proposed color segmentation algorithm is presented. 
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4.3.2.2.1 Region Adjacent Graph  

Region Adjacent Graph (RAG) data structure is a data structure consisting of two 

basic elements: nodes and edges [22]. Given a segmented result, each region can be 

denoted as a node and the connection between any two adjacent regions can be 

denoted as an undirected edge connecting two corresponding nodes. In mathematics, 

given a segmented result with R regions, the RAG is defined as an undirected graph G 

= (V, E), where V = {1, 2, …, R} and E denotes the set of undirected edges. Moreover, 

a weight e(i,j), with e(i,j) ∈ E if i, j ∈ V, is assigned to each edge to represent the 

connection relation. Here, the edge weight is assigned a nonzero value when the two 

regions are adjacent to each other. Fig. 4.17 shows an example to illustrate the relation 

between a segmented image and its corresponding RAG. Fig. 4.17(a) illustrates a 

segmented image containing five regions, R1, R2, R3, R4 and R5. Its corresponding 

RAG is shown in Fig. 4.17(b). In Fig. 4.17(b), the five nodes represent the five 

separate regions in Fig. 4.17(a), while the corresponding connections are denoted as 

the edges having the weights, e(1,2), e(1,3), …, and e(4,5).  

Furthermore, after a merging process, the processed result of an RAG can also be 

represented with another RAG. For the RAG in Fig. 4.17(b), if the regions R4 and R5 

are merged, the result can be described by another RAG, as shown in Fig. 4.17(c). 

Here, the weight e(4,5) between R4 and R5 is removed, and the weights related to R4 

and R5, such as e(2,3) and e(3,4), are updated. As shown in Fig. 4.17(d), the merged 

result is represented in a new RAG. The merged node of R4 and R5 is denoted as R’4, 

while the updated edges, e(2,3) and e(3,4), are represented as e’(2,3) and e’(3,4), 

respectively. 
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Fig. 4.17 An Image Segmentation of Five Regions and Its Corresponding RAG. 

 

4.3.2.2.2 Color Segmentation Uniting with Quantitative Measures 

The flowchart of the proposed color segmentation algorithm is shown in Fig. 4.18. 

Given a color image, at the initial step, each pixel is regarded as an independent 

region. This sets up an initial RAG. Here, the connection relation is referred to the 

cost if the corresponding two regions are to be merged into one region.  

Based on the initial RAG, two regions are merged into one region each time. 

Within one iteration, there would be one sorting procedure, one merging procedure, 

and one updating procedure. For the sorting procedure, all the edge weights of the 

current RAG are sorted in an ascending order. Then, the two regions with the minimal 

edge weight are merged into one region in the merging procedure. The weights 

relating to the two regions are updated in the updating procedure and a new RAG is 

generated accordingly. The iterative process continues till some predefined stop 
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criterion is satisfied. 

In the proposed segmentation algorithm, we define the edge weight of an edge as 

e(i, j) = fk(Ri, Rj),                       (4.21) 

where fk(Ri, Rj), with k=1, 2, 3, denotes a cost function made of some quantitative 

measurements, like the modified total visual error, the F-function, or the PSNR 

function. This cost function denotes the cost produced by merging Ri and Rj into one 

region. For example, we may define the cost function to be 

f1(Ri, Rj) = PSNR(Ri) + PSNR(Rj) − PSNR(Ri, Ri);       (4.22) 

f2(Ri, Rj) = F(Ri, Ri) − F(Ri) − F(Rj);           (4.23) 

or              f3(Ri, Rj) = MEintra(Ri, Ri) − MEintra(Ri) − MEintra(Rj)             

 − λ MEinter(Ri, Rj).                           (4.24) 

As mentioned above, for the PSNR function, the preferred segmented results are 

the images with larger PSNR values. Since the merging of two regions into one region 

usually decreases the PSNR value, the weight function in Equation (4.22) is assigned 

to be the subtraction of PSNR(Ri, Rj) from the summation of PSNR(Ri) and PSNR(Rj). 

On the contrary, since the merging of two regions usually increases the value of the 

F-function, the weight function in Equation (4.23) is assigned the increased 

F-function value. On the other hand, for the modified total visual error, the merging 

process usually increases the modified intra error while decreases the modified inter 

error at the same time. Hence, the weight function in Equation (4.24) is assigned the 

summation of the increased modified intra-region error value and the decreased 

modified inter-region error value.  
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Fig. 4.18  Flowchart of the Proposed Color Segmentation Algorithm. 

 

Assume we adopt the modified total error to define the edge weights, then a 

segmented result with a smaller modified total error is regarded as a better segmented 

result. During the merging process, the modified inter-region error decreases while the 

modified intra-region error increases. In our proposed algorithm, we actually define 

the stop criterion to be the point when the modified intra-region error reaches a 

threshold C1. That is, the iterative process stops when ( ) 1intraE CIM ≥ . Here, C1 is a 

application-dependent constant. The use of a threshold over the modified intra-region 

error is to allow some degree of under segmentation. 

Figs. 4.19(a)-(f) show the results produced by using the proposed segmentation 

algorithm with use of the modified total error. Fig. 4.19(a) is an 84×128 color image 

named “Tower”. Fig. 4.19(b) is the segmented result which contains 700 segmented 

regions, with MEintra = 0.036 and MEinter = 0.012. In Fig. 4.19(b), it can be seen 

that pixels with invisible color difference are merged into regions while pixels with 

visible color difference are treated as image edges.  
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On the other hand, the segmented results with fewer details, like the segmented 

result in Fig. 4.19(d) and (e), are sometimes useful for many applications. To fit for 

different requirements, we may adjust the constant C1 in the stop criterion. Figs. 

4.19(c)(d)(e) show the segmented results with C1 = 0.673, 1.63 and 2.24, respectively. 

Fig. 4.19(c) shows a finer segmented image containing 60 regions in total, while Fig. 

4.19(d) and Fig. 4.19(e) show two coarser results containing 19 and 12 regions, 

respectively. In Fig. 4.19(c), we can see some finer detials, like grasses on the ground 

and clouds in the sky. On the contrary, the segmented result in Fig. 4.19(e) is much 

coarser.  

Moreover, the plot of the modified intra error versus the modified inter error is 

given in Fig. 4.19(f). In this figure, the triangle, the square, and the circle denote the 

error pairs of Figs. 4.19(c), (d) and (e), respectively. It can be seen that by setting 

different threshold values over the modified intra-region error, we can obtain different 

segmentation results with different degrees of under-segmentation. 

Figs. 4.20(a)-(i) show the comparison of the segmented results produced by the 

proposed algorithm uniting with the modified total visual error, the F function, and the 

PSNR function. Fig. 4.20(a) is a 128×88 color image, named “Tennis”. Fig. 4.20(b) 

shows the segmented results having 90 regions, with MEintra = 1.19 produced by the 

proposed algorithm. Fig. 4.20(c) shows the average color representation of Fig. 

4.20(b). For the PSNR function, Figs. 4.20(d)(e)(f) show the segmented results having 

1000, 90 and 30 regions, respectively. As mentioned above, the use of the PSNR 

function only measures the within-region color difference but not the color contrast 

between adjacent regions. Hence, over-segmented results are expected. For example, 

if compared with Fig. 4.20(b), some regions in Fig. 4.20(e), like the background 

regions, are over-segmented. On the other hand, Figs. 4.20(g)(h)(i) show the 

segmented results having 1000, 90 and 30 regions when the F-function is used in the 



 103

cost function. As mentioned above, the methods by using the F-function directly may 

generate both over-segmented regions and under-segmented regions at the same time. 

For example, even though some parts of the player’s hand in Fig. 4.20(g) have already 

been mistakenly merged into the background, many small regions still exist in the 

segmented image.  

In Figs. 4.21(a)-(c) and Figs 4.22(a)-(c), two more segmented results are shown. 

Fig. 4.21(a) shows a 128×100 image and Figs. 4.21(b)(c) show the segmented results 

containing 7 regions with MEintra = 2.16. Fig. 4.22(a) is a 56×128 image and Figs. 

4.22(b)(c) are the segmented results containing 10 regions with MEintra = 2.49.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 
(f) 

Fig. 4.19 Segmentation uniting with Modified Total Visual Error. 

            (a) Original Image. 
            (b) Segmented Results with minimum Modified Total Error. 
            (c)(d)(e) Segmented Results with MEintra = 0.763, 1.63, and 2.24. 
            (f) Plot of Modified Intra Error versus Modified Inter Error. 
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(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Fig. 4.20 Color Segmentation with Quantitative Measures for “Tennis” Image. 

        (a) Original Image. 
        (b) Segmented Result with MEintra=1.19 for the proposed algorithm. 
        (c) Averaged Color Representation of (b). 
        (d)-(f) Segmented Results for the PSNR Function. 
        (g)-(i) Segmented Results for the F Function. 
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(a) (b) (c) 

Fig. 4.21 Segmentation for “Hand” Image. 

        (a) Original Image. 
        (b) Segmented Result with MEintra = 2.16. 
        (c) Averaged Color Representation of (b).  

 

                     
            (a)                   (b)                     (c) 

Fig. 4.22 Segmentation for “Woman” Image. 

        (a) Original Image. 
        (b) Segmented Result with MEintra = 2.49. 
        (c) Averaged Color Representation of (b).  
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CHAPTER 5 
 

 

 

Conclusions 
______________________________________________ 
 

In this dissertation, image analysis techniques based on luminance/color contrast are 

presented. To mimic the way humans perform image analysis, we perform subjective 

experiments to deduce useful subjective visual quantities. Some suitable objective 

visual quantities are then designed to quantify these subjective visual quantities. In 

this dissertation, a few definitions of luminance/color contrast are especially used to 

quantify these visual quantities. Based on these objective visual quantities, effective 

and efficient quantitative measures are developed for various kinds of applications. 

In this dissertation, we consider two image analysis applications: 1) automatic 

inspection for visual defects on LCD panels, and 2) color segmentation. In the 

problem of automatic defect inspection, we follow Mori’s proposal to quantify the 

degrees of image defects, based on the luminance contrast and area size of visual 

defects. Based on Mori’s subjective experiments, which were performed to relate 

human visual perception with the contrast and size of visual defects, and the SEMU 

formula, which was proposed by Mori et al for the quantitative measurement of visual 
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perception, we can effectively quantify the degrees of visual defects in terms of 

luminance contrast and defect size. In this dissertation, 2-D LOG operators and 1-D 

LOG operators are presented to detect Cluster Mura and V-Band Mura, respectively. 

Specifically, to detect round-type/rectangular-type cluster Mura defects, the use of 

2-D round-type /rectangular LOG filters are suggested. Based on SEMU formula, we 

presented an optimal thresholding mechanism in the inspection of Cluster Mura. On 

the other hand, a curvature-based approach is proposed to detect V-Band Mura. In the 

curvature-based approach, a 1-D LOG filter is used to generate a smooth curve that 

represents the curvature tendency of the 1-D projected profile. With this smooth curve, 

V-Band Mura defects can be detected easily. In simulation, the results demonstrate the 

LOG filters, unifying with measures of visual quantities, are very useful in the 

inspection of Mura defects. 

In the problem of color segmentation, we estimate the degrees of missing 

boundaries and fake boundaries, instead of directly evaluating the subjective quality 

of color segmentation. With the combination of these two quantities, we can well 

quantify the subjective evaluation of color segmentation. Moreover, based the 

definition of visible color difference, we design two measures, the intra-region visual 

error and inter-region visual error, to estimate the degrees of missing boundaries and 

fake boundaries, respectively. We found these two measures have significant 

correlation with the degree of missing boundaries and the degree of fake boundaries. 

With these two measures, an evaluation scheme is proposed to evaluate the 

segmentation results and to help the automatic selection of the parameters for a given 

segmentation algorithm. On the other hand, we also present a color segmentation 

algorithm uniting with quantitative visual measures. In this algorithm, two more 

quantitative measures, named modified intra-region visual error and modified 

inter-region visual error, are designed to measure the degrees of missing boundaries 
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and fake boundaries, respectively. Combing these two visual errors, the modified total 

visual error is used to measure the amount of visible errors for segmented results. 

With these quantitative visual measures, a merging process based on the region 

adjacent graph (RAG) data structure is adopted to generate segmentation results with 

small intra-region errors. The experiments demonstrate the proposed color 

segmentation algorithm does offer flexible and reasonable segmented results. 
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