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Student : Hsin-Chia Chen Advisor : Dr. Sheng-Jyh Wang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

In this dissertation, a study of image analysis techniques by correlating subjective
visual qualities with objective visual quantities based on luminance/color contrast is
presented. To mimic the way humans perforny image-analysis, some subjective visual
quantities are considered. To extract and-verify the applicability of these visual
quantities, subjective experiments: are. performed first. Then, to measure these
subjective visual quantities, some objective quantitative measures based on
luminance/color contrast are proposed. With these objective quantitative measures,
contrast-based image analysis techniques can be developed for various image analysis
applications.

In the flow chart of a conventional image analysis system, four basic parts are
included: 1) inputting of images to be analyzed, 2) image analysis with one or more
techniques, 3) outputting of analyzed results, and 4) evaluation of the analyzed results.
Specifically, given one or more images to be analyzed, different image analysis
techniques are adopted for different applications. Then, the analyzed results are
evaluated with some evaluation methods according to predefined visual perception

requirements. In this dissertation, two more processes are added into an image
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analysis system. They are 1) subjective experiments and 2) measurement of
luminance/color contrast and/or measurement of visual perception quantities. To
mimic the way humans perform image analysis, we need some suitable subjective
visual quantities. To extract appropriate visual quantities that may well correspond to
humans’ perception, subjective experiments are needed. To estimate these subjective
visual quantities for different applications, we need to propose effective and efficient
objective quantitative measures.

In this dissertation, we consider two different image analysis applications: 1)
automatic inspection for visual defects on LCD panels, and 2) color segmentation. For
different image analysis applications, the applicable visual quantities will be different.
In the automatic defect inspection application, we discuss the suitable visual
quantities for the extraction of visnal defects with. low luminance contrast. Here, we
follow Mori’s proposal to quantify the degrees of image defects based on the
luminance contrast and area size of visual-defects. Based on Mori’s subjective
experiments, which were performed-to relate human visual perception with the
luminance contrast and area size of visual defects, and the SEMU formula, which was
proposed by Mori et al for a quantitative measurement of visual perception, we may
effectively quantify the degrees of image defects based on luminance contrast and
defect area. The LOG operator is then used to detect several types of visual defects.
An optimal thresholding mechanism is also discussed.

For the applications of color segmentation with little texture, we consider
segmentation quality, degree of over-segmentation, and degree of under-segmentation
as the visual quantities. To verify the correlation among these visual quantities, a few
subjective experiments are performed. Here, we use color contrast to quantify these
visual quantities. Usually, given a color image, adjacent pixels with low color-contrast

are grouped into regions; while adjacent pixels with high color-contrast are regarded
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as edges. For color segmentation, we define color-contrast in terms of visible color
difference and invisible color difference. Then, some objective quantitative measures
based on visible/invisible color difference are proposed to measure these
aforementioned subjective visual quantities. In this dissertation, the “intra-region
visual error” is proposed to measure the degree of under-segmentation, while the
“inter-region visual error” is proposed to measure the degree of over-segmentation.
With these visual measures, some image analysis techniques are proposed to perform
color segmentation and also the evaluation of color segmentation.

With simulations for these two image analysis applications, some conclusions are
drawn. First, the correlations between the luminance/color contrast-based quantitative
measures and the visual quantities are really significant. Second, luminance/color
contrast may play an important role in the development of image analysis techniques

that mimic the way of human perception.
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CHAPTER 1

Introduction

In Section 1.1, the overview of'this dissertation is introduced. Then, the organization

and contribution of this dissertation is given in Section 1.2.

1.1 Dissertation Overview

As shown in Fig. 1.1, the block diagram within the blue contour shows a conventional
flowchart for an image analysis system. In this flowchart, four essential steps are
included: 1) inputting of images to be analyzed, 2) image analysis with one or more
techniques, 3) outputting of analyzed results, and 4) evaluation of the analyzed results.
Specifically, given one or more images to be analyzed, different image analysis
techniques are adopted for different applications. The analyzed results are then
evaluated with some evaluation methods according to predefined visual perception
requirements. Especially, the evaluation methods could be further categorized into 1)
objective evaluation methods and 2) subjective evaluation methods.

In this dissertation, two more processes are included: 1) subjective experiments



and 2) measurement of luminance/color contrast and/or measurement of visual
perception quantities. To mimic the way humans perform image analysis, we need
some suitable subjective visual quantities. For example, in color segmentation
applications, subjective visual quantities such as the degree of segmentation quality,
the degree of over-segmentation, and the degree of under-segmentation may be
considered to be essential. To extract appropriate visual quantities that may well
correspond to humans’ perception, subjective experiments are necessary. Moreover,
subjective experiments may also be useful in discovering the relationships among
these selected visual quantities.

On the other hand, to measure these visual quantities for a specific application,
we need to propose effective and efficient objective quantitative measures. In this
dissertation, we consider the use¢-of luminance/color contrast-based measures to
mimic the way humans perform’' image .analysis. In fact, in our study, the
luminance/color contrast is used in the‘blocks-of image analysis, evaluation methods,
and subjective experiments in Fig: I:l. For-example, in the development of color
segmentation algorithms, with proper definitions of color contrast in terms of color
difference, we demand that pixels with invisible color difference are to be merged
together, while pixels with visible color difference are treated as edges. Based on the
visible color difference, some quantitative measures are proposed as the objective
counterparts of the subjective visual quantities, which are considered in the subjective
experiments. Based on the subjective experiments, the correlations between the
subjective visual quantities and the objective quantitative measures are verified. Then,
these objective measures can be used for the development of evaluation methods for

color segmentation and/or for the development of color segmentation algorithms.
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Fig. 1.2 and Fig. 1.3 show two examples for image analysis applications. Fig. 1.2
shows the illustration of a luminance contrast-based auto-inspection process for the
detection of visual defects on LCD panels. On the other hand, Fig. 1.3 shows the

illustration of a color contrast-based color segmentation process.



1]

§§§§§}I§§§§

Liquid crystal display

) Psaudo mura

Numerio ki
AREBEEED
a

Image Analysis Techniques

J, "h._\_‘_
*:_\ﬁ_ Analyzed Results _
‘H‘-I"-\-..\ )”‘__/

T

I

|

|

|

o |

r( Evaluation Method I\ I
]

“ 5 T

PP --l Objective Subjective J]‘

Evaluation | Evaluation

I
|
I
I
f
|
|
| - R
|
|
I
-
I

N A ST R

lf..’

SssssEEmsEEESEEsEEEEEEREENEEEEd

Luminance Contrast

SNSRI NS NSNS NSNS NS NSNS NSNS NSNS E SR EE NN NS EEEEEEE
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The gray-level image at the top of Fig. 1.2 represents the image of an LCD panel.
Compared to a uniform background, the areas with noticeable luminance difference
are considered as defects in human’s perception. To mimic the way human detects
these defects, some luminance contrast-based visual perception formulas, like the
SEMU formula explored by Mori et al, can be deduced based on properly designed

subjective experiments, as illustrated in the right side of Fig. 1.2. With this SEMU
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formula, we develop an optimal threshold mechanism unified with some specified
analysis techniques, as explained in Chapter 3 of this dissertation. The analyzed result
is then shown in the left side of Fig. 1.2, where the red point indicates a detected

Cluster Mura with a very low luminance contrast.
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Fig. 1.3 Color Segmentation Based on Color Contrast.

On the other hand, Fig. 1.3 shows the illustration for color segmentation
application. The top image shows the input image to be processed. To avoid directly

measuring the subjective quality of color segmentation, two subjective visual

5



quantities, the quantity of missing boundaries and the quantity of fake boundaries, are
considered in this dissertation. As shown in the right side of Fig. 1.3, a few subjective
experiments are performed to verify the correlations between these two visual
quantities and the quality of color segmentation. On the other hand, an objective
quantity, named visible color difference, is defined. Intuitively, given a color image,
adjacent pixels with invisible color difference are considered to be grouped together,
while adjacent pixels with visible color difference are regarded as image edges. Hence,
based on the visible color difference, some objective visual quantities, such as the
“intra region visual error measure” and the “inter region visual error measure”, are
proposed to measure the degree of missing boundaries and the degree of fake
boundaries. With the subjective experiments, the correlations between the subjective
visual quantities and the objective’quantitative measures can be verified. With these
objective visual quantities, we- may propose image analysis techniques for color
segmentation and the evaluation color'segmentation; For example, in the left side of
Fig. 1.3, an image in pseudo colors indicates such a segmented result based on the
developed color segmentation algorithm. In this image, pixels painted with the same

color are segmented into the same region.



1.2 Organization and Contribution

The following chapters in this dissertation are organized as follows.

€ In Chapter 2, some definitions of luminance/color contrast for different image
analysis applications are introduced. Also, for the color segmentation issue, some
existing image segmentation algorithms and evaluation methods in the literature
are introduced.

€ In Chapter 3, for the automatic inspection of defects on LCDs, a luminance
contrast based formula, named SEMU formula, is introduced. A SEMU-based
optimal thresholding mechanism is then proposed to automatically inspect
Cluster defects on LCDs.

€ In Section 4.1, the definition-of a directional color contrast is proposed first.
Then, with the directional=color contrast, the definition of color contrast in the
CIE L*a*b* color space 18 proposed--Also, a‘technique that can estimate the
directional color contrast of colot.edges in a color image is proposed. On the
other hand, a definition of “visible color difference” in the CIE L*a*b* color
space is introduced to represent the effects of color difference in human visual
perception. Then, based the defined color contrast, a so-called visible color
difference is proposed to differentiate visible color difference from invisible
color difference. In Section 4.2, some visual rating experiments are performed to
verify the correlation between segmentation quality and degree of
over-segmentation and/or degree of under-segmentation. Then, based on the
defined “visible color difference” formula in Section 4.1, which are used to
estimate the degree of over-segmentation, the degree of under-segmentation, and
segmentation quality, some quantitative visual error measures are proposed.

These quantitative measures are also used in the evaluation of color
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segmentation. In Section 4.3, based on the directional color contrast introduced
in Section 4.1, a color segmentation algorithm is proposed. On the other hand,
uniting with the proposed quantitative evaluation method mentioned in Section
4.2, a new color segmentation algorithm is proposed.

Finally, conclusions are drawn in Chapter 5.



CHAPTER 2

Backgrounds

Luminance/color contrast has played-an important fole in the development of image
analysis techniques. In Section 2.1, seme existing. definitions of luminance/color
contrast for different applications will be introdueced first. On the other hand, since in
this dissertation the evaluation of image segmentation results is especially discussed,
the backgrounds for image segmentation algorithms and related evaluation methods

are briefly introduced in Section 2.2.

2.1 Luminance/Color Contrast

To measure luminance/color contrast, several definitions of luminance/color contrast
have already been proposed for various applications. In Section 2.1.1, we first
introduce some existing definitions of luminance contrast. Then, in Section 2.1.2,
among a variety of color difference definitions, we introduce the CIE L*a*b* color
difference. Based on the CIE L*a*b* color difference, we will propose in the

following chapters a few more definitions about color difference.



2.1.1 Luminance Contrast

In this section, we introduce four commonly used definitions related to luminance
contrast: 1) Luminance Contrast (Weber Contrast), 2) Luminance Ratio, 3)
Peak-to-Peak Contrast (Michelson Contrast, Modulation), and 4) Just Noticeable

Difference (JND). The details for each of these four definitions are as follows.

1) Luminance Contrast, or Weber Contrast:
To define the relationship between the luminance of an interested area and the

luminance of the surrounding area, a measure called Weber contrast is defined in [1]:

CW = (Ls—Lb) / Lb, (2 1)

Here, Ls is the luminance of-the interested area and L, is the luminance of the
adjacent background. In [1], a thorough technical discussion of this type of measure
can be found.

When the background is brighter than the interested area, Cyw is negative and
ranges from zero to —1. On the contrary, when the background is darker, Cw is a
positive number that can be potentially very large. Hence, the sign and value of Cw
can be used to describe the relationship between the luminance of an interested area

and the luminance of the adjacent background.

2) Luminance Ratio:

To specify the difference between bright parts and dark parts in a photo, another

measure called Contrast Ratio is often used. This contrast ratio is defined as:
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CR = Ls / Lb. (22)

In practice, a logarithmic variation of this CR definition, as expressed in (2.3), is also
widely used.

log(CR) = log(Ls) — log(Ls). (2.3)

In Equation (2.2), the contrast ratio is defined as Ls divided by Ly, where Lg and
Ly have the same definitions as that in (2.1). The Ly in the denominator is often a
reasonable estimate of the adapted Iuminance level around this stimulus level in
human eyes. Instead of the luminance difference away from the background, the
numerator is defined as the luminance of the interested area, Hence, this CR definition

has a rather different mathematical:behavior fromthe Weber contrast.

3) Peak-to-Peak Contrast (MichelsonContrast-Modulation):
To determine the strength of a signal luminance relative to the noise luminance
level [1], a measure which evaluates the relation between the spread and the sum of

signal and noise is introduced. Here, we have

Modulation = (Lmax - Lmin) / (Lmax + Lmin) (2.4)

In the context of human vision, such kind of noise fluctuation could be caused by

scattered lights introduced into the view path by a translucent element, which partly

obscures the scene behind it.
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4) JND (Abbreviation for Just Noticeable Difference) [2]:

For a certain stimulus, the smallest change in the stimulus that can be perceived
by human is called the JND. The JND measure is usually used in the study of
Psychophysics. Specifically, this definition is often used to indicate a measure in the
statistical sense that the probability of being “perceptible” is 50%. For different
applications, the definition of the JND measure could be different. Especially in the
FPD (Flat Panel Display) visual inspection problem that is to be discussed in this
dissertation, the JND over a uniform luminance background is regarded as a gauge of

luminance contrast.

2.1.2 CIE L*a*b* Color Difference

On the other hand, for color images, color difference is usually adopted as a gauge of
color contrast. Among a variety of color difference definitions, we focus on the CIE
L*a*b* color difference. In Section: 2.1.2.15-the CIE L*a*b* color space is to be
introduced. The color space transformation. from the RGB color space to the CIE
L*a*b* color space is also described. Then, in Section 2.1.2.2, we introduce the

definition of color difference in this CIE L*a*b* color space.

2.1.2.1 CIE L*a*b* Color Space

In the analysis of colors, a proper choice of the color space is a key issue. In this
dissertation, we demand three major requirements in the selection of color space: 1)
separation of achromatic information from chromatic information, 2) uniform color
space, and 3) similar to human visual perception. Among various color spaces, we
pick the CIE L*a*b* color space. In this color space, L* represents luminance, while
a* and b* represent color components. The definitions for L*, a* and b* are

expressed as follows.
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books, like [6]. In Figure 2.1, we show an 111ustrat10n of this CIE L*a*b* color space.
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Fig. 2.1 Illustration of the CIE L*a*b* color space [7].

On the other hand, Fig. 2.2 illustrates the color transformation from the CIE L*a*b*
color space to the RGB color space. To digitize colors in photos, the (L*,a*,b*) values

within an area of interest are first converted to (R;, Gy, B{) by using Equations

(2.5)(2.6) (2.7)(2.8), and (2.9).
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Y =Gy sz C23 : Gt (2.9)
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In (2.9), Ry, Gy, and B, are stimulus values captured from the scenery. Cy;, Cia, ..., Cs3

are the coefficients of the color transformation from the RGB color space to the XYZ

color space.

Camera Storage Monitor
Convert I a
L*)a*ab* L* * b* 17
SR ] o ‘C »[ ® G,B) [— —
(R,G.B) . i
Color Space Gamma Correction Nonlinear Effect
Conversion

Fig.2.2  Color space transformation fromthe CIE L*a*b* space to the RGB color space.

Then, for the compression of data size and the-compensation of the nonlinear effect of
the monitors, the (R, G, By) values ‘are further mapped to the (R, G, B) values by

applying the Gamma correction process expressed in Equation (2.10).
(R,,G,,B)=(R"",G"*,B™"). (2.10)
In Equation (2.10), y,,7s,7s indicate the nonlinear gamma factors for the R, G, and

G channels of the output monitor.
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2.1.2.2 Color Difference in CIE L*a*b* Color Space
In the CIE L*a*b* space, the differences of color components between Patch X and
Patch Y are defined by their differences in lightness (AL, redness-greenness (Aa)),

and yellowness-blueness (Ab’). That is,

AL =L, L, (2.11)
a =a, —da .

Aa" =dy —ay (2.12)
Ab" =b, —b, (2.13)

The overall color difference between these two samples is defined as the

Euclidean distance in the CIE L*a*b*. That is,
AE,, =[(AL')* +(Aa") +(Ab)]'"? (2.14)

The differences in color can also be defined by the differences in lightness (AL"),

chroma (AC),), and hue (AH,) [8]. In mathematics, we have

AL =L, 1L, (2.15)
ACr=@ [ +b)"* —(a) +b,))"” (2.16)
AH,, =[(AE,,)* =(AL)’ =(AC,,)"]"? (2.17)
or
AE,, =[(AL')* +(AC,,) + (AH,,)]"*. (2.18)
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2.2 Introduction of Image Segmentation

In Section 2.2.1, we will introduce some existing image segmentation algorithms first.

Then, evaluation methods for color segmentation are introduced in Section 2.2.2.

2.2.1 Image Segmentation Algorithms

In recent years, plenty of efforts have been focusing on the segmentation of color
images. In general, current image segmentation algorithms can be roughly classified
into three major categories: 1) image domain-based techniques; 2) feature space-based
techniques; and 3) physics-based techniques [13]. For image domain-based techniques,
like [14], the similarity of neighboring pixels or the discontinuity of local information
is used as the gauge for segmentation. Adjacent pixels with small intensity/color
variations are merged together; while pixelsswith large enough variations are split
apart. For feature space-based techniques;-like-[26], the data distribution of the entire
image plays a crucial role. Clustering ot grouping techniques are usually applied over
the data distribution to allot image data into groups. On the other hand, for
physics-based techniques, the adopted mathematical tools are basically the same as
the former two kinds of techniques, while an underlying physical model is used to

account for the reflection properties of colored matter [40].

2.2.1.1 Image Domain-Based Approaches

In general, for image domain-based techniques, the similarity of neighboring pixels or
the discontinuity of local information is used as the gauge for segmentation. These
image domain-based methods could be roughly classified into two kinds of methods:
1) edge-based methods and 2) region-based methods. Edge-based methods usually

split apart pixels with large enough data variations, while region-based methods
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merge together adjacent pixels with small intensity/color variations.

2.2.1.1.1 Edge-Based Methods

As mentioned above, edge-based methods usually split apart pixels with large enough
data variations. So far, plentiful methods have been proposed to detect image
boundaries/edges. For example, in [16], to detect boundaries in a given image, three
criteria are introduced by the author: 1) good detection, 2) good localization, and 3)
single response to a single edge. To have good boundary detection, the detector
maximizes the signal-to-noise ratio; on the other hand, to have good localization of
boundaries, the detected edge points should be as close to the position of the true edge
as possible. With these three criteria, the author finds the optimal detector based on
numerical optimization. In [14] and {18], the authors proposed a boundary detection
scheme based on “edge flow”=This scheme utilizes a predictive coding model to
identify the direction of change in colors and textures at each image location at a
given scale. An edge flow vector at each image location is then constructed. By
propagating the edge flow vectors, the boundaries can be detected at the image
locations where two opposite directions of flow are encountered in a stable state. On
the other hand, in [17] and [19], the gradient vector of intensity/color data is used as a
gauge to locate boundaries. Usually, the locations with large gradient values are

regarded as the locations of edges.

2.2.1.1.2 Region-Based Methods

Different from edge-based methods, region-based methods merge adjacent pixels with
small intensity/color variations into regions. In [15] and [23], colors in an image are
first quantized into several representative classes. These image pixels are then

replaced by the corresponding color-class labels. Then, a criterion using the class-map
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is proposed to estimate the data variations in local windows. A region growing method
is used to segment the image based on the estimated data variations. In
[20][21][22][25], image gradient is used as a gauge to estimate image
boundaries/edges. By applying the watershed transform on the gradient magnitude,
primitive regions can be produced. Then, region competition, region growing, and/or

region merging are used to produce the final segmentation results.

2.2.1.2 Feature Space-Based Approaches

For feature space-based techniques [26], the data distribution of the entire image plays
a crucial role. Clustering or grouping techniques are usually applied over the data
distribution to allot image data into groups. In [26] and [33], given a color image, a
neighborhood is modeled as a distribation of ¢olors. Then, the authors tried to show
that the increase in the accuracy of the representation causes higher-quality results for
low-level vision tasks on complicated natural 1images, especially as the size
neighborhood increases. In [27][30][32], the authors proposed a general
non-parametric technique to analyze a complex multimodal feature space and to
delineate arbitrarily shaped clusters in the feature space. A recursive mean shift
procedure is used to detect the modes of the distribution. Based on the estimated
modes of the distribution, an image segmentation algorithm is performed by
classifying images pixels into corresponding clusters. On the other hand, in [29] and
[34], the authors treated image segmentation as a graph partitioning problem and
proposed a so-called “normalized cut” method to segment the graph. The normalized
cut method measures the overall dissimilarity between different groups as well as the
overall similarity within the groups. In [31], image segmentation is formulated as a
data clustering problem based sparse proximity data. Dissimilarities of pairs of

textured regions are computed based on a multiscale Gabor filter representation. Then,
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an optimization framework, which uses statistical tests as a measure of homogeneity,
is proposed for unsupervised texture segmentation. In [35], the authors extended the
general idea of a histogram to the homogeneity domain. Then, uniform regions are
identified via multi-level thresholding on the homogeneity histogram. On the other
hand, in [36][37][38], based on statistical frameworks with the assumption of
Gaussian/Non-Gaussian densities, image analysis techniques, such as expectation
maximization, independent component analysis, or Data-Driven Markov Chain Monte

Carlo, are applied for image segmentation.

2.2.1.3 Physics-Based Approaches

For physics-based techniques, the adopted mathematical tools are basically the same
as the former two kinds of techniques; while an underlying physical model is used to
account for the reflection propetties of colored matter [40]. In [13] and [40], several
photometric invariant similarity measures are proposed to assist image analysis
techniques in handling undesiréd imaging conditions, such as shading, shadows,

illumination changes, and highlights.
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2.2.2  Evaluation Methods for Image Segmentation

Color segmentation is a crucial step in image analysis and pattern recognition. The
performance of color segmentation may significantly affect the quality of an image
understanding system. So far, hundreds of color segmentation algorithms have already
been developed to deal with various kinds of image-related applications [13][41]. For
these color segmentation algorithms, the automatic setting of controlling parameters is
usually a difficult task. Currently, these control parameters are often adjusted by the
users in an interactive and tiresome manner. Moreover, the selection of control
parameters is also image-dependent. For most color segmentation algorithms, there
exists no parameter setting that is universally applicable.

On the other hand, it is well known that petrformance evaluation of segmentation
algorithms is critical and essential in the.-development of image understanding
systems. However, as compared-with:the tremendous efforts spent in the development
of segmentation algorithms, relatively: fewer efforts have been made on the subject of
image segmentation evaluation [42][43][44][45][46]. As shown in Fig. 2.3, Zhang
classified existing evaluation methods for image segmentation into three categories
[42][43]: 1) analytical methods; 2) discrepancy methods; and 3) goodness methods.
Analytical methods directly evaluate segmentation algorithms by analyzing their
principles, requirements, utilities and complexity, etc [42][43]. Due to the lack of a
general theory for image segmentation, analytical methods work well only for some
particular models or for some desirable properties of the algorithms. Moreover, these
analytical methods themselves are seldom used alone. On the contrary, both
discrepancy methods and goodness methods evaluate the performance of
segmentation by judging the quality of segmentation results directly. Especially,

discrepancy methods measure the difference between the segmentation result and a
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reference result, which is usually an expected result or a ground truth [47][48]. On the
other hand, as illustrated in Fig. 2.3, goodness methods evaluate the segmentation

results directly with certain quality measures, without the use of any reference result.

v
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color image ™= :
: image
1

segmentation
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v
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Fig. 2.3  Approaches-for.Evaluating Image Segmentation [42][43].

Among these three evaluation eategories; the third type of methods, the goodness
methods, is considered a more practical approach due to its direct evaluation of
segmentation results without any user-dependent ground truth [49][50]. In this
dissertation, we’ll focus on this type of evaluation methods. Moreover, we believe that,
some evaluation principles and formulas in these evaluation methods can be used to
facilitate the development of segmentation algorithm. Hence, some goodness
measures that had been proposed before are to be used in the development of a
segmentation algorithm in this dissertation.

So far, several goodness methods have already been proposed [42][43][49][50].
One type of method is to evaluate segmented results with the use of the “Peak Signal

to Noise Ratio” (PSNR) function, which is defined as follows:
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PSNR () = 10 log ‘°(MzSSE—SEI)j’and (2.19)

MSE (£)= 33 (F(ray)— £ (ay)f ¥ x M), 20)

x=1 y=1

where [ is an NxM color image f(x,y), and f’(x,y) is denoted as the segmented result,
with the color of each segmented region being filled with the average color of that
region. Then, with a specified region number, the desired segmented results are
defined to be the results with the maximal PSNR value, or equally with the minimum
MSE value. In general, this type of method tends to measure the within-region color
difference between the original color image and the segmented result. However, due
to the lack of consideration regarding the color contrast between adjacent regions, this
type of method tends to prefer over-segmented results, which include many small
regions. This is because a larger'value, of MSE would be expected when we merge
several small regions into a large one.

To avoid producing overly segmented-results, the factor of region area is
considered in the approach proposed by Liu and Yang [49]. In their approach, an

evaluation function named F function is defined as:

(2.21)

()= 156 (zifo) K XZ\/_

where [ is the image to be segmented, R is the number of regions in the segmented
image, e; is the color error of the ith region, 4; is the area of the ith region, and N, M
represent the length and width of the image. Here, e; is defined as the sum of the
Euclidean distance in the RGB color space between the color vectors in the original
image and the color vectors in the segmented image, in the ith region. Consequently,
with a smaller F-function value, the segmented result is regarded to be better.

Although these methods take the factor of region area into account to avoid the
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segmented results from including too many small regions, the relation between color
difference and region area is not clearly treated. Hence, these F-function based
methods may include both over-segmented regions and under-segmented regions at
the same time. Furthermore, since these evaluation functions only consider the color
differences within regions but ignore the color contrast between regions, they may
cause some undesired circumstances. For example, the segmented result with each
pixel being labeled as an independent region may be treated as a “perfect” result
without any color difference error.

Based on Equation (2.21), two further improved evaluation functions are

proposed in [50] that are defined as:

Max 141/ 4

F'(I)= 5000 (N M) \/Z [R(4)] Xi ei , (2.22)

and

- 1 X R(Ai) 2
Q([)_IOOOO (N XML i Z‘ l+logA +( I ] ,(2.23)

1

where R(4;) represents the number of regions with the area size 4;. In both equations,
the areas of regions are considered to punish these segmentation results with too many
small regions. Similarly, the number of segmented regions is also included, aiming to
achieve segmented results with an appropriate number of homogeneous regions.

For the above evaluation functions, two primary requirements are adopted to
define “preferred” segmentation results: smaller color difference and fewer segmented
regions. However, color difference and the number of segmented regions are two very
different measures in their physical meanings. The trade-off between these two
measures would be very difficult. Moreover, the preferred number of segmented
regions could be very different from image to image. When this image-dependent

measure is involved in a single evaluation function, it would be rather difficult to
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perform segmentation evaluation without having the prior knowledge of the image
contents in advance.

In summary, although several goodness functions have already been proposed,
most of them are not directly based on human visual perception. Instead, most
goodness methods combine several existing measures together to formulate their
evaluation functions. The selection and combination of measures are usually
subjective. The adjustment of weighting coefficients is often troublesome. Moreover,
for most evaluation methods, the quality of segmentation is usually represented in a
single function, which mixes together several weakly related measures. Without
knowing the erroneous information about the segmented result under evaluation, these

approaches could be very unreliable.
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CHAPTER 3

Visual Inspection for Mura on LCDs
Based on Luminance Contrast

3.1 Introduction of Automatic Inspection for

Mura on LCDs

Recently, Liquid Crystal Displays (LCDs) have received increasing market attention
because of the decreasing prices and the improved visual quality. Among several
characteristics regarding the visual quality of LCDs, the front-of-screen (FOS) quality
of LCDs is essential. Most existing FOS quality tests depend on the perception of
human eyes. However, human inspection needs higher labor power and usually causes
inefficient and inconsistent inspection. Instead of human inspection, automatic
inspection that employs efficient algorithms over photographed images could be a
reasonable and reliable way to evaluate the FOS quality of LCDs.

So far, several efforts have been spent on the fulfillment of defect classification
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and the establishment of quality evaluation standards [2][9]. For example, the Video
Electronics Standards Association (VESA) has been carrying activities related to the
standards for classifying defects [9], and the Semiconductor Equipment and Materials
International (SEMI) has spent a lot of efforts on the standardization of defect
quantification [2]. However, even though there is a high demand of automatic
inspection of FOS quality, there are relatively few efforts spent on the development of

defect detection algorithms [3][10][11][12].
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Fig. 3.1 Cross-section of an active matrix TFT-LCD.

In this chapter, we focus on the development of detection algorithms for the
inspection of the FOS quality of an active matrix thin-film transistor liquid crystal
display (AM TFT-LCD). Fig. 3.1 illustrates the cross-section of an AM TFT-LCD.
Basically, an LCD display includes two essential components: Cell Unit and
Backlight Unit. In the cell unit, there are mainly five elements: liquid crystal,
thin-film-transistor (TFT) array, color filters, glasses, and polarizer. In general, the
functionality of cell unit is to make the RGB color switching at each pixel controllable.

On the other hand, in the backlight unit, there are four basic elements: lamp, light pipe,
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reflective film and optical film. Generally, the functionality of backlight unit is to
produce uniform light.

In the inspection of FOS quality, the so-called Mura defects greatly influence the
FOS quality [9]. The Mura defects are defined as the visible imperfections of the FOS
of a display screen in active use. Mura defects usually appear as a low contrast,
non-uniform brightness regions, typically larger than a single pixel [2]. As shown in
Table 3.1 Mori et al [10] listed several causes of Mura defects in TFT-LCD. Usually,
the manufacturing performance of each component in the cell unit or in the backlight
unit would affect the appearance of Mura defects. A superior manufacture process
produces fewer Mura defects. Usually, the non-uniformity in various kinds of

components induces different kinds of Mura defects.

Table 3.1 Causes of Mura defects on TFT-LCD [10]

Basic Unit Causes of'Mura

(1) Non-uniform gap-between glasses

Cell unit (2) Non-uniform color of color filter

(3) Non-uniform density of liquid crystal

(4) Non-uniform thickness of TFT array layer
(5) Wrinkled optical filter
Backlight unit | (6) Non-uniform lamp’s rays

27



3.1.1 SEMU Formula Based on Just Noticeable Difference

As mentioned above, Mura indicates the defects as the visible imperfections on the
FOS of a display screen. To make standard for the quantification of Mura
phenomenon, a committee in SEMI defines a measurement index for Mura in the
inspection of FPD (Flat Panel Display) image quality. To define Mura, an ergonomic
approach is used to investigate human eye’s sensitivity with respect to Mura by
exploring the relation between Mura’s area and contrast. Also, an index, named
SEMU (Semi Mura), is defined to express the degree of Mura defects. This SEMU
index is defined to be the ratio of the target’s contrast over the contrast at JIND. To
deduce the SEMU formula, a subjective experiment had been conducted in [3], as
shown in Fig. 3.2. In this experiment, a special ECD panel was produced to display
256 gradations in the luminance range between 43 ¢d/m” and 54 cd/m’. A program
created synthesized Mura and displayed-the-Muia at the center of the LCD panel. The
observer looked at the screen with both.eyes without any artificial pupil. The viewing
direction is normal to the center of the LCD panel and the viewing distance is 500
mm. The experiments were performed in a darkroom and the observer could freely
adjust the luminance of the displayed Mura by using a numeric keypad. The test
began with the gray level of the synthesized Mura set to the same level as that of the
background. Then, the observer adjusted the luminance of the Mura to the level where
the Mura region was just perceptible and also to another level where the Mura can be
clearly detected. The contrast values of the synthesized Mura at both levels were
recorded. The contrast at the first level provided the data for the JND (Just Noticeable
Difference) contrast, while the contrast at the second level provided the data for the

“Dist (Distinct difference)” contrast.
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Fig. 3.2 Experimental conditions and equipment used in the subjective evaluations in [3].

Assume the background luminance is denoted as L and the Mura luminance is
denoted as L + AL. In this experimient, the contrast Qf the Mura was defined to be the
value of AL/L. Various sizes of'circle-type and rectangle-type Muras were used in the
experiments. The observers include 8 -experts, ‘§vh0 regularly conduct Mura
inspections and analysis, and 8 college students with normal vision (with near vision
strength (500mm) of 1.2 or greater for both eyes).

Fig. 3.3 shows the experimental results for Muras larger than 1 pixel, where the
horizontal axis is 1/A%* and the vertical axis is the value of contrast. The observers’
JND data are plotted as *“ o”, while the Dist data are plotted as “o”. The bold line was
determined by the linear regression of the JND data. This line indicates a strong
correlation between the size of Mura and the perceived contrast value of Mura. In this
experiment, the larger the area of the Mura is, the smaller the JND contrast becomes.
In other words, Muras are more visible as their area becomes larger. In mathematics,
the linear relationship between JND contrast (Cj,q) and A% was expressed in [3] as

Cina = 1.97/A% +0.72. (3.1)

This equation indicates the important characteristics of the “just noticeable

29



difference” for LCD Muras.
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Fig. 3.3  JND and Dist result of the subjective evaluation in [3].
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Fig. 3.3 also shows the straight lines for 2.0xCjnd and 3.0xCjnd. The Dist
contrast data is around the 2.0xCjnd line. This indicates that not only the JND level
but also the visible contrast level has the linear relationship between the contrast level
and A°*. Hence, the level of Mura defects can be described accordingly.

To evaluate the blemish degree of Cluster Mura defect, the SEMU formula is

defined as:

C

X

X

197

SEMU =~ :
(240,72
( y )

(3.2)

0.33
where C is the average contrast of Mura, Cj,4 1s the just noticeable contrast of Mura,

and A is the area of Mura [2]. A larger value of SEMU indicates a more serious
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blemish. In [4] and [5], some modified versions of this SEMU formula have been
further proposed. In these modified SEMU formulae, the contrast and the area of
Mura defects are still the main factors. Similar to Equation (3.2), either a larger
contrast of Mura or a larger area of Mura will cause a higher degree of blemish.

As mentioned above, Mura defects appear as low contrast, non-uniform
brightness regions. They are typically larger than a single pixel when the screen is at a
constant gray level. Moreover, various kinds of Mura defects are caused by different
reasons. It would be difficult to develop a single universal algorithm to detect all
kinds of Mura defects. In this dissertation, we consider two major kinds of Mura
defects, Cluster Mura and Vertical-Band Mura. These two types of Mura are common
in the FOS of LCDs. In Section 3.2, we’ll introduce the photography of the FOS
image first. Then, in Section 3.3, the proposed techniques in the detection of Cluster
Mura are discussed. In Section 3.4, on the-other -hand, we discuss the proposed

techniques for the detection of Vertical-Band-Mura.
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3.2 Photography of FOS Images

Fig. 3.4(a) shows the prototype of our automatic inspection system. In this system, we
have an LCD panel that is under test, a CCD camera to capture the FOS image of the
LCD panel, and a computer to execute Mura detection algorithms. In the inspection
process, the LCD panel under test is vertically placed on the apparatus. Each time, the
LCD panel is driven by a pattern generator to display a certain gray level image
pattern. Then, the camera will capture an FOS image for this specific pattern. The
FOS image is transmitted to the computer for storage and then is inspected by a set of
Mura detection algorithms.

At markets, 15-inch and 17-inch LCD panels are the mainstream for desktop
displays and notebook displays. In‘fact, the manufaqture processes in these two types
of LCD panels are quite similar, Hence, the:appearances of Mura defects are also
similar. Both types of LCD panelsCan-be inspeéted by this prototype system.
Moreover, to mimic the performance-of human 1nspection, the specifications of the
CCD camera are chosen to have a more than 12-bit dynamic range and a spatial

resolution of 1532 x 1024 pixels.

(1) LCD under test

Pattern Generation

=

I

3

L3 e (2) CCD Camera
k. —— 4 =
L S, A,
-  _JA =
e
i T G MR
i v — SN < —
/S W e
N —— (3) Computer
— Segmentation
# Algorithms

(b) Flowchart of LCD inspection

Fig. 3.4 The prototype of the LCD inspection system.



3.2.1 Aliasing

In the photography process, aliasing usually occurs when the lens of camera is well
focused on the center of the FOS. Fig. 3.5(a) shows an image with aliasing. Fig. 3.5(b)
shows the enlarged image of the portion inside the red rectangular in Fig. 3.5(a). As
shown in Fig. 3.5(b), the lattice-like pattern occurs when the camera lens is in focus.
This lattice-like pattern will not only increase the difficulty in automatic inspection
but also influence the inspection results of Mura defects.

To eliminate the aliasing effect, several anti-aliasing approaches have already
been published or patented [51][52]. These approaches usually require additional
accessories and may cause image blurring. Among these approaches, we adopt the
de-focusing approach, which may eliminate the aliasing effect without additional
accessories. In this approach, w& focusithe camera lens on the FOS of LCD first,
followed by slightly de-focusing the lens till -the- lattice-like pattern disappears.
Although this method still causes some ‘degree of blurring in the FOS image, this
method demands no extra expense. In“Fig.'3.5(c), we show the de-focused image of

Fig. 3.5(a). It can be easily seen that the lattice-like pattern is suppressed.
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Enlargement of
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De-focusing 1

Fig. 3.5 Aliasingv in the photography process.

34



3.2.2 Cluster Mura and V-Band Mura

Among several kinds of Mura defects, the detection of two major kinds of Mura
defects, Cluster Mura and Vertical Band (V-Band) Mura, will be taken into account in
this dissertation. As mentioned before, Mura defects appear as non-uniform brightness
regions in the FOS of an LCD panel. Nevertheless, not all kinds of Mura defects
appear in a similar manner. For example, Cluster Mura usually appears as a cluster of
several points locating within a small area. As shown in Fig. 3.6(a)(c), a round-type
Cluster Mura defect locates at (x=750, y=820), while a rectangular-type Cluster Mura
defect appears as a narrow region ranging from (x=200, y=720) to (x=600, y=720).
On the other hand, a V-Band Mura usually appears as a wide vertical strip with either
brighter or darker brightness with respect,to.the uniform background. As shown in Fig.
3.6(e), a V-Band Mura is centered around'x=850. The cause of V-Band Mura usually
comes from non-uniform thickness of components, such as non-uniform thickness of
the glasses in the cell unit. In comparison,-Cluster Muras usually appear within a local
area, while V-Band Muras usually occupy @ larger area. The appearance model of a
Cluster Mura is quite different from that of a V-Band Mura. It would be impractical to

detect both types of Muras based on a single algorithm.
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Fig. 3.6 Cluster Mura and V-Band Mura.

36



In the following sections, we will present the use of two different approaches to
deal with these two kinds of Mura defects. These two different approaches actually
share the same kernel: a Laplacian of Gaussian (LOG) filter. This LOG filter, which
compares the intensity of the target with the intensity of the surroundings, will be
demonstrated to be very useful in the development of Mura detection algorithms. To
detect Cluster Mura defects, an approach based on 2-D LOG filters will be presented
in Section 3.3. To detect V-Band Mura, on the other hand, an approach based on 1-D

LOG filters will be presented in Section 3.4.
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33 Inspection of Cluster Mura

3.3.1 Cluster Mura Detection

In practice, there are two types of Cluster Mura defects: round-type Cluster Mura and
rectangular-type Cluster Mura. In the selection of operators to detect these two types
of Muras on a constant luminance level, two requirements are demanded: 1) having
fewer parameters and 2) being less influenced by the shading of the luminance level.
Therefore, to detect round-type Cluster Mura defects, we use a 2-D round-type LOG
filter as shown in Fig. 3.7(a). The kernel function of this LOG filter is chosen to be
the 2% derivative of a Gaussian function. In mathematics, this kernel function can be

formulated as

filter/s ) = (Vo ¥, NG, 1:0,0,,0,) (3.3)
where N(x,y;0,0,,0,) denotes a2-D Gaussian function with zero mean and standard

deviations o, and o,. If we set 6, = 6,= o, then there is only one parameter to be

assigned by users. In Section 3.3.2, we will discuss the rule of parameter setting.

. Intensity Value . Intensity Value

| Sxe-d

(b)

Line detector

(a)

Point detector

Intensity Value
Intensity Value

X-axis U keaxis

Fig. 3.7 2-D LOG filters for point detection and line detection.

On the other hand, to detect rectangular-type Cluster Muras, we adopt a 2-D

rectangular-type LOG filter, as shown in Figure 3.7(b). The corresponding formula of
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this rectangular -type LOG filter can be formulated as
ﬁlterg’gangm (x, )= (V »y )N(xa »30,0,, o,). (3.4)
Similarly, in Equation (3.4), there are two parameters, o, and o,. If the ratio of these

two parameters, r=o /o, is fixed, then there is only one parameter left to be

assigned by users.

With the round-type LOG filters and the rectangular-type LOG filters, the
round-type Cluster Mura defects and the rectangular-type Cluster Mura can be
detected. The detection result of Fig. 3.6(a) is given in Fig. 3.6(b), in which the blue
region denotes the area of no interest while the red area denotes the detection result of

Cluster Mura. Similarly, the detection result of Fig. 3.6(c) is given in Fig. 3.6(d).
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3.3.2 Optimal Threshold Based on the SEMU Formula

To evaluate the blemish degree of the Cluster Mura defects, the SEMU formula [2]

mentioned in Section 3.1.1 is defined as

CX Cx
SEMU == , (3.5)
jnd (A°o.33 +0.72)

where C, is the average contrast of Mura, Cj,, is the just noticeable contrast of Mura,
and A4 is the area of Mura. As indicated in this equation, either a larger contrast or a
larger area will cause a higher degree of blemish.

On the other hand, as mentioned in Section 3.3.1, to detect round-type Cluster
Muras, the round-type LOG filters areé’adoptéd. As illustrated in Fig. 3.8, we assume

additive white Gaussian noise (AWGN) is inyolved in the photography process.

AWGN noise
H(x,y)= filter ;.o (x,¥)

Cluster Mura R photography ‘ - output

Fig. 3.8 Cluster Mura and photography process.

Hence, the filtered image of a Cluster Mura defect could be described as

Output (x, y) = Mura ., (x,y)® filter 3 (x,y) . (3.6)
Assume the round-type Cluster Mura is modeled as
x*+y°
MuraCluster (x9 y) = h xXu 1- ) . (37)
r

where r is the radius of the round-type Cluster Mura, and u(¢) is the step function
defined as
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u(t)z{o’ r<0 (3.8)

Combining Equation (3.6) with Equation (3.7), we could derive

Output(x, y)|x:y:0 =Mura,,,, (x,y)® filter,,.(x,y)

o,=0,=0,x=y=0

— hr? r
exp(———;

" 40 207 (39)

On the other hand, the variance of the filtered noise can be estimated to be

2
VarFiltered_ Noise — (VarEstimated_ Noise )J- J. |H(l/l, V)| dudv 5 (3 . 10)
where Varggimea noise denotes the.variance of the AAWGN noise produced in the

photography process and H(x,y)représents.theround=type LOG filter.

If combining Equation (3.3) and'Equation(3.10), we can have

VarEStimated _ Noise

VarFiltered_ Noise — 3272_0_ 7 . (3 A1 )

By optimizing the Signal to Noise Ratio (SNR), which is defined as

(Output)2

Var

_ Filtered _noise

SNR =

: (3.12)

we can derive the relationship between the radius of the round-type Cluster Mura and

the standard deviation of the optimal LOG filter. The relationship is found to be

(3.13)

r=——=0o.
V2
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This radius corresponds to the size of the “matched” Mura that can produce the
maximal output after the LOG filtering.

As mentioned before, to evaluate the blemish degree of Cluster Mura, the SEMU
formula is suggested in [2]. If we assume the SEMU value to be a constant S, the

relation between Mura’s contrast and Mura’s area can be derived. That is, if we define

h
S .
1.97 : (3-14)
Coo +0.7)
then we have
Output(x, )| _,_, =—(0.212607" +0.095 Jexp(~1/4)s (3.15)
Fhreshold

S1gnal-Output

Noise

|
|
!
A I
|
!
|
|

Y

Fig. 3.9 Optimal threshold.
According to the Bayesian formula, the optimal threshold for the detection of
Mura is shown in Fig. 3.9. Once the constant S is fixed and the standard deviation of
the Gaussian function is determined, the optimal threshold can be decided as

expressed in Equation (3.16),

threshold = %x 0212657 +0.095 Jexp(~1/4)S . (3.16)

42



34 Inspection of V-Band Mura

3.4.1 V-Band Mura Detection

Unlike Cluster Muras, a V-Band Mura usually appears with a large area. In general, as
the size of filters increases, the computation time increases dramatically. Therefore,
the use of a 2-D LOG filter whose shape “matches” the shape of V-Band Mura is no
longer a suitable way for efficient inspection. In this dissertation, we take a different
approach to detect V-Band Mura defects. Fig. 3.10(b) shows the FOS image with
three contours, where the pixels with similar intensity values are drawn in the same
color. The pixels with red color have larger intensity values than the pixels with
brown color, while the pixels withtbrown color have larger intensity values than the
pixels with black color. In Fig.-3.10(b), we can see that the tendency of the intensity
variation along the vertical direction-is-approximately the same at any horizontal
coordinate. Basically, with a fixed+horizontal coordinate, the intensity in the center
area tends to be larger than the intensities on the two sides. Due to this similarity in
the intensity variation along the vertical direction, the operation of intensity
integration along the vertical direction will not affect the tendency of intensity

variation along the horizontal direction.
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Fig. 3.10 V-Band Mura detection.

44



Hence, in our approach, the projection method is applied first along the vertical
direction. As shown in Fig. 3.10(d), the blue dotted line represents the intensity profile
projected along the y-axis. With this projected intensity profile, we can easily see that
the profile around x=850 have a significant variation. To detect this significant
variation, we first estimate a smooth curve from the original profile. To estimate the
smooth curve, some specific sample points are needed. Since the zero-crossing points
of the 2™ derivative of the intensity profile represent the locations of the profile with
no significant curvature variation. Therefore, we use these zero-crossing points as the
sample points in our proposed algorithm in order to estimate the smooth curve from
the original intensity profile.

To extract zero-crossing points, we use a 1-D LOG filter to estimate the 2™
derivative of the profile. With a 1-D LOG filter formulated in Equation (3.17), we can
apply this filter over the projected.profile to estimate the 2™ derivative of the profile.
Then, zero-crossing points can-be detecteds-as represented in green points in Fig.

3.10(d).

filter, 06 (x) = (V  JN(x30,0.,) . (3.17)

With these zero-crossing points, a 2nd-order curve fitting method is adopted to
generate a smooth intensity profile, shown as the pink curve in Fig. 3.10(d).
Comparing this smooth curve to the original curve, we define the fractions with a
large deviation from the original curve to be the locations of V-Band Mura defects.
Fig. 3.10(c) shows the detection result of V-Band Mura in Fig. 3.10(a), with the red

box circling the area of V-Band Mura.
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3.4.2 FOS Surface Reconstruction

To verify the V-Band detection approach, we reconstruct an imaginary FOS image
based on an approximated smooth intensity profile. In Fig. 3.11(c), with these
zero-crossing points extracted by the 1-D LOG filter, Spline interpolation is adopted
to estimate the smooth intensity profile, which is represented as the red curve in Fig.
3.11(c). With this smooth intensity profile, we can reconstruct the smoothed FOS
surface, as shown in Fig. 3.11(b).

To conclude this chapter, we suggest the use of 2-D round-type/rectangular-type
LOG filters to detect round-type/rectangular-type Cluster Mura defects. With 2-D
LOG filters, the optimal threshold is analyzed based on the SEMU formula which is
based on luminance contrast. Alsej we propose a curvature based approach to detect
V-Band Mura defects. In the curvature based-approach, a 1-D LOG filter is used to
generate a smooth curve that represents.the-cutvature tendency of the 1-D projected
profile. With this smooth curve, 'V-Band Mura defects with a large deviation of
luminance contrast can be detected easily. In simulation, the results demonstrate the
LOG filters are very useful in the development of detection algorithms for the

inspection of Mura defects.
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Fig. 3.11 FOS surface reconstruction.
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CHAPTER 4

Development and Evaluation of Color
Segmentation Algorithms Based on

Color Contrast

In this chapter, for the applications of"color segmentation with little texture, the
definitions of color contrast and visible color difference are introduced first. In
Section 4.1, the definition of a directional color contrast is proposed In Section 4.1
first. Then, with the directional color contrast, the definition of color contrast in the
CIE L*a*b* color space is proposed. Also, a technique that can estimate the
directional color contrast of color edges in a color image is proposed. On the other
hand, a definition of “visible color difference” in the CIE L*a*b* color space is
introduced to represent the effects of color difference in human visual perception.
Then, based the defined color contrast, a so-called visible color difference is proposed
to differentiate visible color difference from invisible color difference. In Section 4.2,

some visual rating experiments are performed to verify the correlation between
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segmentation quality and degree of over-segmentation and/or degree of
under-segmentation. Then, based on the defined “visible color difference” formula in
Section 4.1, which are used to estimate the degree of over-segmentation, the degree of
under-segmentation, and segmentation quality, some quantitative visual error
measures are proposed. These quantitative measures are also used in the evaluation of
color segmentation. In Section 4.3, based on the directional color contrast introduced
in Section 4.1, a color segmentation algorithm is proposed. On the other hand, uniting
with the proposed quantitative evaluation method mentioned in Section 4.2, a new

color segmentation algorithm is proposed.

4.1 Color Contrast and Visible Color Difference

In Section 4.1.1, we’ll introduce the definition of.directional luminance contrast and
directional color contrast in the CIE L*a*b* color space. On the other hand, we
introduce a new definition of+color-difference, called visible color difference in
Section 4.1.2. Based on the visible color difference, new measurements are to be

proposed for a quantitative evaluation of color segmentation in the next section.

4.1.1 Color Contrast in CIE L*a*b* Color Space

For color segmentation, we define directional luminance contrast in Section 4.1.1.1
for image domain-based color segmentation algorithms. Then, directional color

contrast in the CIE L*a*b* color space is discussed in Section 4.1.1.2.

4.1.1.1 Definition of Directional Contrast
For color segmentation applications, data variation in a local area is usually used as
the gauge for segmentation. Pixels with a small data variation are grouped together,

while pixels with a large data variation are detected as boundaries. To measure data
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variation, the derivative information is commonly used. Nevertheless, a direct use of
derivative values may not faithfully reflect the way humans perceive object
boundaries. Fig. 4.1(a) shows an intensity profile extracted from a real image.
Basically, each edge on this profile comprises three major factors: 1) edge height, 2)
edge slope, and 3) noise irritation. Among these three factors, edge height is more
related to the way human perceives edges than the other two [26]. However, all these
three factors influence the measurement of the derivative information around an edge.
For example, the values of the 1% differentiation are plotted in Fig. 4.1(b). In the
middle of Fig. 4.1 (a), there appear two apparent edges: a sharp edge around x = 40
and a smooth edge around x = 50. Even though these two edges have similar edge
height, their 1% derivatives are quite different. Furthermore, the noise fluctuation
around x = 80 generates a 1* derivative value that'is as large as the 1* derivative value
around x = 50. These two examples imply-that a-direct use of the 1% derivative
information could be very risky4f we.aim-for-accurate segmentation.

In this dissertation, we name the'edge height as edge contrast. It is defined as the
intensity or color difference between the high-curvature points on the two sides of the
boundary, as shown in Fig. 4.2. To detect these high-curvature points, we use a 2™
derivative operator to estimate the curvature of the profile. As shown in Fig 4.2, we
treat the extreme points on the 2™ derivative profile as the high-curvature points. In

our approach, the 2™ derivative operator is designed as

B(x)=6(x)- N(x3;0,0). 4.1)
Here, &(x) denotes the impulse function:

5(x)= {1’ =0 (42)

0, otherwise

while N(x;0, 0) denotes a Gaussian function with zero mean and standard deviation c.
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By convoluting a profile /(x) with this operator, we have

p(x)=1(x)® B(x)

zl(x)— I(x)® N(x;O,G). 4.3)

Basically, go(x)can be imagined as the 2™ derivative of the profile /(x). Moreover,
the local extremes of ¢ (x)correspond to the high-curvature points of /(x). Fig. 4.1(c)

shows the contrast information extracted from Fig. 4.1(a) using Equation (4.3) with
= 2.0, which is determined empirically. It is obvious that Fig. 4.1(c) offers much more

reliable information than Fig. 4.1(b).
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Fig. 4.1 (a) An intensity profile extracted from a real image. (b) The estimated 1*

derivative information. (c) The estimated contrast information with ¢ = 2.0.
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Fig. 4.2 The definition of contrast in one dimension.

Since the 2™ derivative is orientation-dependent, the contrast information at an
image pixel can be measured along various orientations. In this dissertation, we
propose a contrast-based color segmentation algorithm which is to be introduced in
Section 4.3.1. In that algorithm, we detect boundaries by checking the relations
between each pixel and its eight neighbors. Hence, four directional operators are used
at each pixel to measure the curvature information at that pixel. These four directions
are 0°, 45°, 90° and 135°, respectively.“All these four directional contrast data are

then grouped together in subsequént processes.

4.1.1.2 Definition of Color Contrast in CIE L*a*b* Color Space

In color image segmentation, a proper choice of color space is also a crucial issue. In
the selection of color space, we choose the CIE L*a*b* color space due to three major
properties of this color space: 1) separation of achromatic information from chromatic
information, 2) uniform color space, and 3) similar to human visual perception [53].
Here, L* represents the luminance component, while a* and b* represent two color
components. The formulae for converting an RGB image into the (L*, a*, b*)
coordinates can be found in many color-related articles, like [53] and [54].

In the CIE L*a*b* color space, the Euclidean distance between the color

(L;’ ,a, ,bl*) and the color (L2 ,az,b;) is defined as
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* * * \2 * * \2 * * \2
AE =L, - L) + (s —a) Y+ (b; -5 ) . (4.4)
This is approximately equivalent to the perceptual difference between these two
colors [26][53]. By incorporating this color difference formula into our contrast

definition, we define the color contrast across an edge as

color contrast = \/ contrast L*z + contrast a*2 + contrast b*z (4.5)

To further explore the correlation between color contrast and the luminance level
or color level, we performed a subjective experiment. In our experiment, 10 observers
are involved and the patterns are,displayedover a calibrated ViewSonic PT775
monitor. Here, the values of laminance/color contrast are coarsely quantized into
eleven steps: 0, 5, 10, 15, ...,250. In the experiment, a set of 11 step images with
different contrast values but the Same level value+is used as reference. Each time, a
step image with randomly specified contrast and level values is generated and is
placed on the right side of each reference pattern for comparison, as shown in Fig. 4.3.
The observers are asked to choose one or two reference patterns whose perceptual
contrast is most similar to the randomly generated step image. Totally, 131 testing
images are examined and the averaged results are shown in Fig. 4.4(a)-(d). It can be
seen that our color contrast definition is roughly equivalent to the perceived color
contrast and is weakly correlated with luminance/color levels. This implies that a
single global threshold may work reasonably well over the whole image to suppress

perceptually faint edges.
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Fig. 4.4 Subjective experiment results for color contrast perception.

(a) Perceived color contrast versus luminance level for 5 different L* contrasts.

(b) Perceived color contrast versus luminance level for 5 different a* contrasts.

(c) Perceived color contrast versus color level for 5 different L* contrasts.

(d) Perceived color contrast versus color level for 5 different a* contrasts.
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4.1.2 Definition of Visible Color Difference

In this section, for the evaluation of color segmentation, we introduce a new color
contrast definition named “visible color difference”, which is used to mimic the way
human perceives color difference. Among various definitions regarding color
difference [55], we choose the aforementioned CIE AE*Lab definition as the basis of
color difference. As mentioned in the literature [53][55], the value of AE*Lab is
perceptually analogous to humans’ visual perception of color difference. This color
difference definition is defined over the CIE L*a*b* color space, which is a roughly
perceptually uniform color space. As aforementioned, the AE*Lab color difference
between two colors, (LT ,a, ,b]*) and (L*2 NN ) in the CIE L*a*b* color space is

defined as

AE}, = (2@ sbi )= (B asp )

SN AN s P

Moreover, as indicated in [56], the values of AE*Lab could be roughly classified into

L*a*b*

+(br—br) (4.6)

three different levels to reflect three different degrees of color difference perceived by
humans. As listed in Table 4.1, the color difference is hardly perceptible when
AE*Lab is smaller than 3; is perceptible but still not distinct when AE*Lab is between
3 and 6; and is distinct when AE*Lab is larger than 6 [56]. Hence, in this dissertation,

we define a color difference is “visible” if its AE*Lab value is larger than 6.

Table 4.1: The effect of color difference in the CIE L*a*b* color space on
human visual perception [56]
AE* . Effect
<3 Hardly perceptible
3<6 Perceptible, but not distinct
>6 Distinct
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4.2 Quantitative Evaluation for Color
Segmentation Based on Visible Color

Difference

In Section 4.2.1, to extract visual perception factors for color segmentation, we’ll
perform a series of visual rating experiments. Based on these visual rating
experiments, we’ll introduce a visible color difference-based quantitative evaluation

for color segmentation in Section 4.2.2.

4.2.1 Visual Rating Experiments for Color Segmentation

Evaluation

As aforementioned, existing color,segmentation algorithms can be roughly classified
into three major categories: = 1) limage--domain=based approaches; 2) feature
space-based approaches; and 3)  ‘physics-based approaches [13]. For image
domain-based approaches, most methods could be further classified into two groups:
1) edge-based methods and 2) region-based methods. To select appropriate color
segmentation algorithms for the visual rating experiments, the segmentation
algorithms are picked based on three criteria:
1) diverseness: these algorithms represent different types of image segmentation
algorithms;
2) visibility: these algorithms had been presented to the vision community
through a refereed publication; and
3) availability: the codes of these algorithms are readily available.
Based on these three criteria, we pick three different kinds of segmentation algorithms

for our visual rating experiments. For edge-based approaches, we picked Ma and
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Manjunath’s Edge Flow algorithm [14]; for region-based approaches, we picked Deng
and Manjunath’s JSEG algorithm [15]; and for feature space-based approaches, we
picked Comaniciu and Meer’s Mean Shift algorithm [27]. Since physics-based
approaches are much less popular than the others, this type of approaches is not
considered in our experiments.

To mimic the way humans evaluate segmentation results, we consider the degree
of “visible” missing boundaries and the degree of “visible” fake boundaries. To
explore how missing boundaries and fake boundaries affect the perceived quality of
image segmentation, a few visual rating experiments are made. In our experiments, 20
observers are involved. To acquire more accurate experiment results with less
sensitivity to contexts, the stimulus-comparison method is used [57]. In the
stimulus-comparison method, any:‘two of the subjects should be compared. Hence,
this type of approach is very time-consuming: To.avoid heavy time consumption but
without sacrificing the diversity of ¢olot-images, 6-different color images are used.
These six images are shown in Figs. 4.5(a)~-(f) and are named “Fruit”, “Lena”,
“House”, “Tower”, “Room”, and “Table Tennis”, respectively. On the other hand,
since the attributes of segmentation results produced by different algorithms are quite
different, it would be fairly difficult to compare segmentation results among different
algorithms. For example, one algorithm may generate segmentation results with
inaccurately located boundaries, while another algorithm may generate segmentation
results with accurate boundaries but with some extra fake boundaries. Hence, in this
dissertation, we only focus on the comparison of segmentation results produced by the

same algorithm, but with different settings of the control parameters.
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Fig. 4.5 Six test images.

(a) “Fruit”.  (b) “Lena”.  (c) “House”.
(d) “Tower”. (e) “Room”. (f) “Table Tennis”.

In the experiments, the segmented results of “Fruit” and “Lena” are produced by
the Edge Flow algorithm [14]. The “Fruit” image is less textured, while the “Lena”
image includes slight texture over the hat fringe region. On the other hand, the
segmented results of “House” and “Tower” are produced by the JSEG algorithm [15],
while the segmented results of “Room” and “Table Tennis” are produced by the
Mean-Shift algorithm [27]. Table 4.2 shows the summary of these 6 color images and

the corresponding segmentation algorithms.
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Table 4.2:

Color images versus the applied segmentation algorithms

Color image | Fruit Lena House | Tower | Room | Table
Segmentation algorithm Tennis
Edge-Flow algorithm [14] © ©
JSEG algorithm [15] © ©
Mean-Shift algorithm [27] © ©

For each image, 9 segmentation results are produced by one of the three

algorithms with 9 different settings. Then, every two of these nine segmentation

results are displayed in a random order on an LCD (Liquid Crystal Display) monitor

for comparisons, as shown in Fig. 4.6. That is, for each color image, there are

C; =36 segmentation pairs to be compared. Totally, for all 6 color images, there are

6x36 = 216 segmentation pairs to be compared. For each pair, 20 observers are asked

to subjectively compare the right segmentation result, named Seg I, with the left

segmentation result, named Seg II; in terms”of the perceived segmentation quality,

together with the perceived degtee of missmgrboundaries and the perceived degree of

fake boundaries. Here, we use the seven-grade scales with a set of categories defined

in semantic terms (e.g. much better, better, slightly better).
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Compare SegIto Seg Il

Quality Comparison

House

3 Much better

2 Eetter

1 Slightly hetter

0 Similar or hardly comparable

-1 Slightly worse

-2 Worse

-3 Much worse
Missing-houndary Comparison

3 Much more missing boundaries

2 More missing houndaries

1 | Slighily more missing houndaries

0 Similar or hardly comparable

-1 | Slightly less missing houndaries

-2 Less missing boundaries

-3 Much less missing houndaries

Fake-houndary Comparison

3 Much more fake boundaries

2 More fake houndaries

1 Slightly more fake houndaries

0 Sirnilar or hardly comparable

-1 Slightly less fake houndaries

-2 Less fake boundaries

-3 Much less fake houndaries

) U

<

Seg [I

Seg |

Fig. 4.6 One of the 36 compar‘isoii"péttems for the “House” image.

The experiment results for Figs. 4.5(a)-(f) are shown in Figs. 4.7(a)-(b). In Fig.
4.7(a), the 9 triangles represent the averaged segmentation quality versus the averaged
degree of missing boundaries for the 9 segmentation results of the “Fruit” image. The
term “averaged” means that value is computed based on the grades from all 20
observers. Similarly, the asterisks, pentagrams, squares, circles, and plus-signs
represent the averaged segmentation quality versus the averaged degree of missing
boundaries for the segmentation results of “Lena”, “House”, “Tower”, “Room”, and
“Table Tennis”, respectively. In Fig. 4.7(a), it seems there is no apparent correlation
between the perceived segmentation quality and the degree of missing boundaries. On

the other hand, Fig. 4.7(b) shows the plot of the averaged segmentation quality versus
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Segmentation Quality

the averaged degree of fake boundaries for the segmentation results of the 6 color
images. Similarly, the correlation between the segmentation quality and the degree of

fake boundaries is not apparent.

Quality versus Missing-boundary

Quality versus Fake-boundary

4 Visual Rating Pairs for *Fruit" 4 Visual Rating Pairs for "Fruit"
+ Visual Rating Pairs for "Lena” St + Visual Rating Pairs for "Lena”
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Fig. 4.7 Results of the visual rating experiments.

(a) Segmentation quality versus the degree of missing-boundary for
Figs. 4.5(a)-(%).

(b) Segmentation quality versus the degree of fake-boundary for Figs. 4.5(a)-(f).

To measure the correlation between the averaged segmentation quality and the
averaged degree of missing-boundary/fake-boundary, we calculate the correlation

coefficient, which is defined as

L LX)
XXX -1y

where X is the mean of the scores on the X variable, while Y is the mean of the

4.7)

scores on the Y variable. In Table 4.3, we list the correlation coefficient representing

the correlation between the segmentation quality and the degree of

missing-boundary/fake-boundary. As listed in Table 4.3, we can see that the

correlation between the segmentation quality and the degree of missing boundaries is
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not always significant at the 0.05 level for these 6 images. Neither is the correlation
between the segmentation quality and the degree of fake boundaries. Here, the level
of significance is defined as a small value which is larger than or equal to a rejection

probability yielded by a statistical hypothesis test [58].

Table 4.3: Averaged segmentation quality vs. Missing-boundary and/or Fake-boundary

Color Image | Fruit Lena House Tower Room Table
Correlation Tennis
Quality vs. Missing-boundary -0.954** | -0.840** | 0.001 -0.206 -0.432 -0.496
Quality vs. Fake-boundary 0.642 0.509 -0.788* | -0.396 -0.434 -0.114
Quality vs. -0.944%* | -0.797* | -0.994%* | -0.964%* | -0.994%* | -0.920**
Missing-boundary + Fake-boundary

* correlation is significant at the 0.05 level (two-tailed) [59].

** correlation is significant at the 0.01 level (two-tailed) [59].

Since the correlation between the averaged:- segmentation quality and the
averaged degree of missing-boundary/fake=boundary is not strong, we try to explore
the correlation between the averaged segmentation quality and the combination of
missing-boundary and fake-boundary. In Fig. 4.8(a), the horizontal axis represents the
degree of missing boundaries, increasing from left to right; while the vertical axis
represents the degree of fake boundaries, increasing from bottom to top. Each of the 9
segmentation results for Fig. 4.5(a) is represented by a square pattern in Fig. 4.8(a).
The color of the square patterns denotes the normalized averaged grade of
segmentation quality, increasing from dark red to white. It can be seen that the best
quality scores usually occur at the lower-left corner of the figure. This means the
preferred segmentation results are these results with both a lower degree of missing
boundaries and a lower degree of fake boundaries. Similarly, the simulation results for
Figs. 4.5(b)-(f) are shown in Figs. 4.8(b)-(f), respectively. All these figures reveal the

same phenomenon. To confirm this phenomenon, we plot the averaged segmentation
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quality versus the averaged degree of missing boundaries plus the averaged degree of
fake boundaries for all 6 color images, as shown in Fig. 4.8(g). In Fig. 4.8(g), we can
easily see that the correlation between the visual quality of color segmentation and the
combination of these two visual errors is strong. To verify the strong correlation
between the segmentation quality and the degree of missing boundaries plus fake
boundaries, we calculate the corresponding correlation coefficients. As listed in Table
4.3, it can be seen that the correlation coefficients between the segmentation quality
and the combined degree of missing boundaries and fake boundaries is significant at
the 0.05 level, or even at the 0.01 level, for all 6 images. Moreover, since the sign of
the correlation coefficient is negative, it implies that the preferred segmentation result
is a segmentation result with a lower degree of missing boundaries plus a lower
degree of fake boundaries. Hence, once if we ean. find some reasonable measures to
estimate the degree of missing boundaries and the.degree of fake boundaries, we may
use these measures to evaluate the segmentation quality in a reasonable and practical

way.
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Fig. 4.8 Segmentation quality with respect to the degree of missing boundary and the

degree of fake boundary.

(a) “Fruit”. (b) “Lena”. (c) “Housé”;.‘ (d).“Tower”. (e) “Room”.
(f) “Table Tennis”. (g) The'quality of segmentation versus the degree of

missing-boundary plus-the degrée of fake-boundary.
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4.2.2 Quantitative Evaluation for Color Segmentation

In Section 4.2.2.1, we first propose visible color difference-based quantitative
measures of visual errors. To avoid directly evaluating the subjectively perceived
quality of color segmentation, two objective visual quantities, the quantity of missing
boundaries and the quantity of fake boundaries, are considered. To explore how
missing boundaries and fake boundaries affect the perceived quality of color
segmentation, a few visual rating experiments were made. On the other hand, to fit for
human’s visual perception on color difference, the visible color difference has been
defined in Section 4.1.2. Based on these experiments and the definition of visible
color difference, two measures, named intra-region visual error and inter-region visual
error, are proposed to estimate the.degrees of missing boundaries and fake boundaries,
respectively.  With  these =two' measures,. a scheme by wusing the
Inter-Region-Error/Intra-Region=Error plot-foi-the evaluation of color segmentation is
proposed. Then, in Section %.2:2.2, we’ll demonstrate the use of the
Inter-Region-Error/Intra-Region-Error plot for color Segmentation. Also, in Section
4.2.2.3, we’ll demonstrate the use of the Inter-Region-Error/intra-Region-Error plot

for the performance comparison of various color segmentation algorithms.

4.2.2.1 Quantitative Measures of Visual Errors Based on Visible
Color Difference

To estimate the degree of missing boundaries and fake boundaries, some appropriate

quantitative measures are formulated in this section. In general, for quantitative

methods, three basic types of measures are considered: 1) intra-region measure; 2)

inter-region measure; and 3) region-shape measure [42][43]. Usually, intra-region

measures are designed to measure the homogeneity within segmented regions, while
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inter-region measures are designed to measure the heterogeneity between adjacent
regions. On the other hand, region-shape measures are usually designed to measure
the regularity of region shape. Intuitively, the former two types of measures may be
closely linked to the way humans evaluate the quality of segmentation at the
discrimination level, while the third type of measures is more likely to be linked to the
evaluation at the recognition level. Moreover, the intra-region measure which
evaluates the homogeneity within segmented regions can be adopted to estimate the
degree of missing boundaries, while the inter-region measure which evaluates the
heterogeneity between adjacent regions can be used to estimate the degree of fake
boundaries. Hence, in this dissertation, we focus on the discussion of intra-region
measure and inter-region measure. In Section 4.2.2.1.1, 4.2.2.1.2, and 4.2.2.1.3, some
new quantitative measures, whichare based on the preference of having less visual
errors for the evaluation of color segmentation; are introduced. Also, some experiment
results deduced in Section 4.2.1 demonstrate-that the combination of the degree of
missing boundaries and the degree:of fake boundaries is closely related to humans’
subjective evaluation over segmentation performance. Therefore, if we can formulate
some appropriate measures to estimate the degrees of missing boundaries and fake
boundaries, we may find some quantitative and effective ways to evaluate color

segmentation algorithms.
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4.2.2.1.1 Intra-region Visual Error

To evaluate the degree of missing boundaries, a measure, named “intra-region visual
error”, is designed. In each segmented region, these pixels with visible color
difference away from the average color of that region are regarded as pixels with
visible color errors. Intuitively, a properly segmented region should contain as few

visible color errors as possible. Any missing boundary will cause the increase of

intra-region visual errors. Given an NxM color image f(x,y), we first denote f (x, y)

as the segmented color image, with the color of each segmented region being filled

with the average color of that region. We then define the intra-region error as:

N M
—th)

ZZu(Hf (xs3)— / (X,Y)( e

Eintra (I) = Lt N XM 5 (48)

where || denotes the color difference in the CIE L*a*b* space, th denotes the

L*a*b*
threshold for visible color difference, and u(.) denotes the step function that is defined

as

1 x=0

()= { | (4.9)

0 otherwise

In this dissertation, we choose the threshold “th” to be 6 based on the reason
explained in Section 4.1.2

In Equation (4.8), given a segmented result, we calculate the total amounts of the
pixels with visible color errors in order to estimate the degree of missing boundaries.
When a segmented region contains more missing boundaries, the average color of that
region will has a larger color difference from the original colors of those pixels. Once
the color difference is large enough to be visible, the number of the pixels will be
counted in Equation (4.8). Hence, as the degree of missing boundaries increases, there

will be more pixels with visible color errors in Equation (4.8).
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In Table 4.4, for each of the 6 color images, we confirm that the correlation
between the intra-region visual error and the degree of missing boundaries is
significant at the 0.01 level and the sign of the correlation is positive. This implies
that, given a segmentation result, the intra-region visual error could be an effective

way to estimate the perceived degree of missing boundaries.

Table 4.4: Missing-boundary vs. Intra-region visual error
Color Image | Fruit Lena House Tower Room Table
Correlation Tennis
Missing-boundary vs. Intra-error | 0.978** | 0.980** | 0.901** | 0.980** | 0.866** | 0.918**

** correlation is significant at the 0.01 level (two-tailed) [59].

4.2.2.1.2 Inter-region Visual:Error

On the other hand, the second measute, named-“‘inter-region visual error”, is designed
to evaluate the degree of fake boundaries. Given a color segmentation result, we take
into account these boundary pixels with invisible color difference across the boundary.
Intuitively, these pixels are not supposed to be detected as boundaries. Hence, as more
fake boundaries appear in the segmented image, more inter-region visual errors are
expected. In this dissertation, we define the inter-region visual error of a segmented

image as:

.[>/j%

: A A
33w, a7 -,

Einter(l): ‘ NxM 2

L*a*b*

~~
* o1

(4.10)

where R denotes the number of segmented regions, and w;; denotes the joined length
between Region i and Region j. Here, w;; is equal to zero if Region i and Region j are

not connected.
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Similarly, in Equation (4.10), given a segmented result, we calculate the total
amounts of the boundary pixels with invisible color errors to measure the degree of
fake boundaries. Actually, when two adjacent regions contain an invisible boundary,
the color difference between the average colors of the adjacent regions will be small.
Therefore, once the average color difference between any two adjacent regions is too
small to be visible, the joined boundary pixels will be counted. Hence, if the degree of
fake boundaries increases, more boundary pixels with invisible color errors will be
counted in Equation (4.10).

In Table 4.5, for each of the 6 color images, we confirm that the correlation
between inter-region visual error and the perceived degree of fake boundaries in the
visual rating experiments is also significant at the 0.01 level and the sign of the
correlation is positive. This implies that the inter-region visual error could be an

effective measure for the perceived.degree of fake boundaries.

Table 4.5: Fake-boundary vs./Inter-region visual error
Color Image | Fruit Lena House Tower Room Table
Correlation Tennis
Fake-boundary vs. Inter-error | 0.961%* | 0.964** | 0.988** | 0.991** | 0.982** | (0.853%*

** correlation is significant at the 0.01 level (two-tailed) [59].

4.2.2.1.3 The Inter-Region Error/Intra-Region Error Plot

With these two newly designed measures, we can estimate the degrees of missing
boundaries and fake boundaries, respectively. Even though each of these two
measures is still image-dependent, the alliance of both measures may provide an

effective way for segmentation evaluation.
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In Fig. 4.9, we show the plot of intra-region visual error versus inter-region
visual error. As the given image is under-segmented, more boundaries are missing and
the intra-region visual error increases. On the contrary, as the image is
over-segmented, more fake boundaries appear and the inter-region error increases.
These two measures are complementary to each other. With these two measures, the
segmentation can be evaluated in a reasonable way. These two measures are also
closely related in physical meaning. This makes the trade-off between these two
measures much easier.

In this dissertation, we focus on the evaluation of color segmentation for these
images without complex texture. In Section 4.2.2.2, the wuse of the
Inter-Region-Error/Intra-Region-Error plot in the evaluation of color segmentation is
to be introduced. First, the evaluation of" segmentation results for a given
segmentation algorithm is described. Then, the evaluation method for the comparison

of various segmentation algorithms is.preseanted.in Section 4.2.2.3.
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Fig. 4.9 Inter-Region-Error/Intra-Region-Error plot.
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4.2.2.1.4 Ratio of Intra-region Visual Error to Inter-region Visual Error

As shown in Figs. 4.8(a)-(f), the preferred segmented results are usually located at the
lower-left corner in the plot of the quality segmentation versus the sum of the degree
of missing boundaries and the degree of fake boundaries. Since the defined
intra-region visual error is proportional to the degree of missing boundaries and the
inter-region visual error is proportional to the degree of missing boundaries, a
preferred segmentation result is expected to locate at the lower-left corner of the
Inter-Region-Error/Intra-Region-Error plot, as shown in Fig. 4.9. Analogous to the
phenomenon that perceived segmentation quality is closely correlated with the sum of
the degree of missing boundaries and the degree of fake boundaries, we assume the

visual quality of a segmentation result'can be evaluated based on a linear combination

of intra-region visual error and inter-region ‘visual error. That is, for I;, the jth

segmentation result of the ith image, wexdefinerits total visual error E; as

E; :a;Emtra(I;)—‘rﬂlemter(I;) (411)
The total visual error E ; may also be normalized with respect to a; and we have

E' =FE

J intra

(1)+ 2 B, (1), (4.12)

J

i
In Equation (4.12), the coefficient ﬂ’j is to balance the contributions of visual error

from E,.,(})) and E,, (1 ;) For different image contents and different

segmentation algorithms, /13. ’s are expected to be different. Based on the results of

the visual experiments we made in Section 4.2.1, we may perform linear fitting over
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perceived segmentation quality, measured intra-region errors, and measured
inter-region error to estimate the value of A. Table 4.6 shows the estimated values of A
for these 6 color images. In general, as the value of A increases, the preferred
segmented results are the results with more intra-region visual errors; while as the
value of A decreases, the preferred segmented results are the results with more
inter-region visual errors. We can easily see that for different images and different
algorithms the values of A are quite different. Nevertheless, for each segmentation
algorithm, the values of A are basically between 1 and 10, except the value of A for

the Edge Flow algorithm with the Fruit image

Table 4.6: Optimal Values of A for Different Images
Color Image | Fruit Lena House Tower Room Table
Tennis
Ai 0.586 136 9.05 7.70 3.18 5.34
Segmentation algorithm | Edge Flow | Edge Flow | JSEG JSEG Mean Shift | Mean Shift

To further investigate the impact of ‘coefficient A over the performance of the
proposed evaluation scheme, we discuss the correlation of the averaged segmentation
quality and the total visual error with respect to A’s. As shown in Fig. 4.10, the 9
triangles denote the minus values of the correlation coefficients for the segmented
results of “Fruit”, with A = 1, 2, ..., 9, respectively. Similarly, the asterisks,
pentagrams, squares, circles and plus-signs denote the minus correlation coefficients
for the segmented results of “Lena”, “House”, “Tower”, “Room” and “Table Tennis”,
respectively. It can be seen that the A’s in Table 4.6 correspond to the A that causes the
maximal correlation. For example, for the case of the “Room” image, the minus value
of the correlation coefficient reaches its local maximum around A = 3. Moreover, for

most images, the value of the correlation coefficient remains large even if A is
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changed. The averaged values of the minus correlation coefficients are represented in
the black solid line. It can be seen that, with A ranging from 2 to 7, the correlation of
the averaged segmentation quality and the total visual error remains significant at the
0.05 level. Hence, in this dissertation, we use the averaged value of A’s in Table 4.6,

as calculated in Equation (4.13), to be a typical choice of A.

6
/15%22[ =4.54. (4.13)

i=1

Of course, this typical choice of A is only a rough estimate and may not work for all
types of images. How to automatically choose an appropriate value of A for a given

image deserves further investigation in the future.
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4.2.2.2 Color Segmentation Evaluation Based on
Inter-Region-Error/Intra-Region-Error Plot

In this section, the use of the Inter-Region-Error/Intra-Region-Error plot in the

evaluation of color segmentation is introduced. Also, the automatic selection of

parameter settings for a given segmentation algorithm is described.

Fig. 4.11(a) shows the “Fruit” image. Figs. 4.11(b)-(f) show several
segmentation results of Fig. 4.11(a) produced by the Edge-Flow algorithm [14], with
different parameter settings. Subjectively, Fig. 4.11(c) is preferable. In comparison
with Fig. 4.11(c), Fig. 4.11(b) has a higher degree of fake boundaries, while Figs.
4.11(d)-(f) have higher degrees of missing boundaries. As shown from left to right in
Fig. 4.11(s), the five blue circles represent the “intra-region visual error” versus
“inter-region visual error” pairs of ‘Figs. 4.11(b)-(f), respectively. It can be seen that,
with similar intra-region errors;Fig. 4.11(b) has larger inter-region error values than
that of Fig. 4.11(c). On the -othet hands—with similar inter-region errors, Figs.
4.11(d)-(f) have larger intra-region etrot. values than that of Fig. 4.11(c). Hence, in the
selection of parameter setting, the sum of Ejya(/) and Eiyer({)]n=4.54 may serve as a
suitable measure for the evaluation of segmentation performance. As the sum reaches
a smaller value, the parameter setting is expected to achieve better segmentation. In
Fig. 4.11(s), we use the quality straight line, Eipga(/) + Einter(/) |1=4.54 to illustrate this
idea. Here we use gray straight quality lines to denote the lines Einya(/) + Einter(Z) |1=4.54
= constant. It can be easily seen that Fig. 4.11(c) does have the smallest sum if
compared with the other four.

In Figs. 4.11(g) and 4.11(m), we show another two examples of color images.
Figs. 4.11(h)-(1) show the segmentation results of Fig. 4.11(g) produced by the JSEG
algorithm [15], while Figs. 4.11(n)-(r) show the segmentation results of Fig. 4.11(m)

produced by the Mean-Shift algorithm [27], all with different parameter settings.
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Similarly, in Fig. 4.11(s), from left to right, the “intra-region error” versus
“inter-region error” pairs of Figs. 4.11(h)-(1) are represented in five magenta triangles;
while the error pairs of Figs. 4.11(n)-(r) are represented in five red crosses. It can be
easily seen that Fig. 4.11(j) has the smallest error sum if compared with Figs.
4.11(h)-(1); while Fig. 4.11(p) has the smallest error sum if compared with Figs.
4.11(n)-(r). In perception, the segmented results in Fig. 4.11(j) and Fig. 4.11(p) do
appear to be the most preferable results among these candidates.

Similarly, In Figs. 4.12(a), 4.12(g) and 4.12(m), we show the other three color
images. Figs. 4.12(b)-(f) show the segmentation results of Fig. 4.12(a) produced by
the Edge-Flow algorithm [14]; Figs. 4.12(h)-(1) show the segmentation results of Fig.
4.12(g) produced by the JSEG algorithm [15]; and Figs. 4.12(n)-(r) show the
segmentation results of Fig. 4.12(m) produced by.the Mean-Shift algorithm [27]; all
with different parameter settings..Similatly,in Fig: 4.12(s), from left to right, the
“intra-region error” versus “mteriegion—-ertor’ pairs of Figs. 4.12(b)-(f) are
represented in five blue circles; the error pairs of Figs. 4.12(h)-(1) are represented in
five magenta triangles; and the error pairs of Figs. 4.12(n)-(r) are represented in five
red crosses. It can be easily seen that Fig. 4.12(d) has the smallest error sum if
compared with Figs. 4.12(b)-(f); Fig. 4.12(j) has the smallest error sum if compared
with Figs. 4.12(h)-(1); and Fig. 4.12(p) has the smallest error sum if compared with
Figs. 4.12(n)-(r). In perception, the segmented results in Fig. 4.12(d), Fig. 4.12(j) and
Fig. 4.12(p) do appear to be the most preferable results among these candidates.

In summary, we use the above three simulation results to demonstrate how the
Inter-Region-Error/Intra-Region-Error plot can be used to automatically select the
parameter setting based on the performance of segmentation results. In fact, Einya(/)
and Eiye(/) can be combined in various forms based on user’s requirements. So far,

we found that the simple form Eiyya(/) + Einter(£) performs pretty well when applied to
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various types of color images.
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Fig. 4.11 Evaluation of segmentation results.
(a) The Fruit image. (g) The Tower image.  (m) The Room image.
(b)-(f) Segmented results of a by using the Edge-Flow algorithm [14].
(h)-(1) Segmented results of g by using the JSEG algorithm [15].
(n)-(r) Segmented results of m by using the Mean-Shift algorithm [27].
(s) The Inter-Region-Error/Intra-Region-Error plot of b-f, h-1, and n-r.
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- Segmented Results for Lena image
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Fig. 4.12 Evaluation of segmentation results.

0

(a) The Lena image. (g) The House image.  (m) The Table Tennis image.
(b)-(f) Segmented results of a by using the Edge-Flow algorithm [14].

(h)-(1) Segmented results of g by using the JSEG algorithm [15].

(n)-(r) Segmented results of m by using the Mean-Shift algorithm [27].

(s) The Inter-Region-Error/Intra-Region-Error plot of b-f, h-1, and n-r.
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In Table 4.7, we compare the proposed evaluation measure, Eipga(/) + Einer(Z)
|r=4.54, With three existing evaluation measures in the literature. These three measures
are the F(/) measure in [49], the F’(/) measure in [50], and the Q(/) measure in [50].
In Table 4.7, the five segmentation results shown in Fig. 4.11(b)-(f) are used as the
test inputs for the comparison. Here, the “averaged visual quality” denotes the
subjective evaluation results based on the visual experiment mentioned in Section
4.2.1, with a larger number indicating a better rating of perceived quality. The other
four rows indicate the evaluation scores based on the proposed measure, Einya(/) +
Einter(]) |5=4.54, the F(I) measure, the F”(/) measure, and the Q(/) measure, respectively.
For these four evaluation measures, a smaller number indicates a better rating of the
measurement. Moreover, the numbers in parentheses indicate the ranking of these five
test inputs based on the applied:evaluation measure. According to the subjective
visual experiment results, Fig=4.l1l(c) is ranked as the best segmentation results
among Figs. 4.11(b)-(f). As shown in-Table-4.7;the proposed evaluation measure does
pick Fig. 4.11(c) as the best segmentation with the smallest visual errors, while all the
other three evaluation measures pick Fig. 4.11(f) as the best segmentation result.
Similarly, in Tables 4.8~4.12, we show the comparisons over the other five color
images. All these tables illustrate that the proposed evaluation measure Einya(l) +
Einer(/) does provide a reasonable and reliable way for the evaluation of color

segmentation.
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Table 4.7: Evaluation Comparison for the Fruit image
egmented Result | Fig. 4.11(b) | Fig. 4.11(c) | Fig. 4.11(d) | Fig. 4.11(e) | Fig. 4.11(f)
Evaluation
Averaged Visual Quality 0.488 (3) 1.100 (1) 0.806 (2) -0.225(4) | -0.469 (5)
Eintra(7) + Einter(/) r=4.54 0.600 (4) 0.528 (1) 0.542 (2) 0.572 (3) 0.625 (5)
F{) 0.753 (5) 0.730 (4) 0.440 (3) 0.379 (2) 0.285 (1)
F’(I) 0.075 (5) 0.073 (4) 0.044 (3) 0.038 (2) 0.029 (1)
0/0)) 0.201 (5) 0.183 (4) 0.154 (3) 0.143 (2) 0.128 (1)
Table 4.8: Evaluation Comparison for the Tower image
egmented Result | Fig. 4.11(h) | Fig. 4.11(1) | Fig. 4.11(j) | Fig. 4.11(k) | Fig. 4.11(1)
Evaluation
Averaged Visual Quality -0.469 (4) |-0.181(3) |0.569 (1) 0.556 (2) -0.625 (5)
Eintra(D) + Einter(1) =454 0.702 (4) 0.677 (2) 0.576 (1) 0.681 (3) 0.893 (5)
F() 1.090 (5) 0.987 (4) 0.194 (3) 0.091 (1) 0.184 (2)
F’(]) 0.109 (5) 0.099 (4) 0:019 (3) 0.009 (1) 0.018 (2)
0/0)) 0.354 (5) 0.330 (4) 0.153 (2) 0.092 (1) 0.180 (3)
Table 4.9: Evaluation Comparison for the Room image
egmented Result | Fig. 4.11(n) | Fig. 4.11(0) | Fig. 4.11(p) | Fig. 4.11(q) | Fig. 4.11(r)
Evaluation
Averaged Visual Quality -0.963 (4) | 0.100 (3) 1.869 (1) 1.306 (2) -1.988 (5)
Eintra(/) + Einter(1) [1=4.54 0.950 (4) 0.479 (3) 0.205 (1) 0.262 (2) 0.959 (5)
F(I) 1.021 (5) 0.540 (4) 0.389 (2) 0.392 (3) 0.076 (1)
F’(I) 0.102 (5) 0.054 (4) 0.039 (2) 0.039 (2) 0.008 (1)
o) 0.155(5) [0.094(2) ]0.085(1) |0.107(3) |0.135(4)
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Table 4.10: Evaluation Comparison for the Lena image
egmented Result | Fig. 4.12(b) | Fig. 4.12(c) | Fig. 4.12(d) | Fig. 4.12(e) | Fig. 4.12(f)
Evaluation
Averaged Visual Quality 0.219 (3) 0.231 (2) 0.765 (1) -0.999 (4) | -1.363(5)
Eintra(/) + Einter(1) [1=4.54 0.733 (5) 0.606 (3) 0.525 (1) 0.602 (2) 0.673 (4)
F{) 0.902 (5) 0.769 (4) 0.614 (3) 0.224 (2) 0.173 (1)
F’(I) 0.090 (5) 0.077 (4) 0.061 (3) 0.022 (2) 0.017 (1)
o) 0.175(5) [0.173(4) ]0.149(3) |0.127(2) |0.113(1)
Table 4.11:  Evaluation Comparison for the House image
egmented Result | Fig. 4.12(h) | Fig. 4.12(1) | Fig. 4.12(j) | Fig. 4.12(k) | Fig. 4.12(1)
Evaluation
Averaged Visual Quality -1.363 (5) 1.050 (2) 1.469 (1) 0.725 (4) 0.769 (3)
Eintra(/) + Einter(1) [1=4.54 0.502 (5) 0.303 (2) 0.286 (1) 0.303 (2) 0.333 (4)
F{) 0.473 (5) 0.194 (4) 0.125 (3) 0.100 (1) 0.116 (2)
F’(I) 0.047 (5) 0.019(4) 0.013 (3) 0.001 (1) 0.012 (2)
o) 0.148 (5) <11 0.072.(4). " 4.0.059 (2) | 0.050 (1) | 0.064 (3)
Table 4.12: Evaluation Comparison for the Table Tennis image
egmented Result | Fig. 4.12(n) ["Fig. 4.12(0)| Fig. 4.12(p) | Fig. 4.12(q) | Fig. 4.12(r)
Evaluation
Averaged Visual Quality -1.713.(5) | 0.794 (3) 1.306 (1) 0.831 (2) -0.894 (4)
Eintra(/) + Einter(1) [1=4.54 0.977 (5) 0.595 (2) 0.560 (1) 0.598 (3) 0.897 (4)
F() 6.320 (5) 2.195 4) 1.738 (3) 0.704 (2) 0.218 (1)
F’(I) 0.632 (5) 0.220 (4) 0.174 (3) 0.070 (2) 0.022 (1)
o) 1.124(5) [ 0.576 (4) | 0.462(3) |0.268(2) |0.184(1)

In summary, in this dissertation, we describe a new evaluation scheme based on

the visible color difference for color segmentation. To avoid directly evaluating the

subjective quality of color segmentation, we estimate the degrees of missing

boundaries and fake boundaries first. With the combination of these two quantities,

we could approach the subjective evaluation of color segmentation. Also, based the

definition of visible color difference, we design two measures, the intra-region visual
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error and inter-region visual error, to estimate the degrees of missing boundaries and
fake boundaries, respectively. We found the measures based on these two types of
visible color differences have significant correlation with the degree of missing
boundaries and the degree of fake boundaries. With these two measures, an evaluation
scheme is proposed to evaluate the segmentation results and help the automatic
selection of parameters for a given segmentation algorithm. The simulation results
have demonstrated the potential of this approach in providing reliable and efficient
evaluations over color segmentation. Moreover, given that the proposed measures of
segmentation quality are designed to fit for subjective evaluations of segmentation
quality, these measures are particularly applicable to tasks such as content-based

image retrieval.
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4.2.2.3 Performance Comparison of Color Segmentation Algorithms
Based on Inter-Region-Error/Intra-Region-Error Plot

The performance comparison between different segmentation algorithms is also an

important issue in image segmentation. In the evaluation of segmentation algorithms,

an objective and quantitative evaluation is essential. In this section, we demonstrate

how to wuse the Inter-Region-Error/Intra-Region-Error plot to compare the

performance of various segmentation algorithms.

Fig. 4.13(a) shows a color image and several segmented results produced by the
JSEG algorithm [15] and the Mean-Shift algorithm [27]. In Fig. 4.13(h), the red
circles denote the inter-region error and the intra-region error pairs of 7 segmentation
results produced by the JSEG algorithm, while,the blue crosses represent the error
pairs of 7 segmentation results produced. by’ the Mean-Shift algorithm. Fig.
4.13(b)(c)(d) show three of these seven segmentation results produced by the JSEG
algorithm, while Fig. 4.13(e)(f)(g) show three of these seven segmentation results
produced by the Mean-Shift algorithm. With these sample pairs, a 2"_order curve
fitting is adopted to estimate the tendency between the inter-region error and the
intra-region error in Fig. 4.13(h). Here, the red curve shows the performance tendency
of the JSEG algorithm, while the blue curve shows the performance tendency of the
Mean-Shift algorithm. With these two tendency curves, it can be easily seen that with
a similar intra-region error, the segmentation results produced by the Mean-Shift
algorithm have smaller inter-region errors. That is, with a similar intra-error value, the
segmentation results produced by the JSEG algorithm tend to be more
over-segmented. Similarly, with a similar inter-region error, the segmentation results

produced by the Mean-Shift algorithm tend to have smaller intra-region errors.
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Fig. 4.13 Comparison with different algorithms.

(a) Original image.

(b)(c)(d) Segmentation results using the JSEG algorithm [15].
(e)(f)(g) Segmentation results using the Mean-Shift algorithm [27].
(h) Comparison of the JSEG algorithm and the Mean-Shift algorithm.
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4.3 Color Segmentation Algorithms Based on

Color-Contrast and Visible-Color-Difference

In Section 4.3.1, we’ll introduce a color-contrast based color segmentation algorithm,
which is an image domain-based approach. On the other hand, we’ll also propose in
Section 4.3.2 a visible-color-difference based color segmentation, which unites with

quantitative visual measures

4.3.1 Color Segmentation Algorithm Based on Color

Contrast

As mentioned in Section 2.2, for image domain-based color segmentation approaches,
the gauge of segmentation is*usually :based on“data variation in a local area.
Similarity-based algorithms group together pixels with small data variation, while
discontinuity-based algorithms detect places with-large data variation. To measure
data variation, the derivative information is commonly used. Nevertheless, as
aforementioned, direct uses of derivative values may not faithfully reflect the way
human perceives object boundaries. Basically, each edge on this profile comprises
three major factors: 1) edge height, 2) edge slope, and 3) noise irritation. Among these
three factors, edge height is closely related to the way human perceives edges. In
Section 4.1.1.1, we define edge contrast in terms of edge height, which is the intensity
or color difference between the high-curvature points on the two sides of the
boundary. To detect these high-curvature points, we use a 2™ derivative operator B(x)
to estimate the curvature of the profile.

B(x)=6(x)- N(x30,0). (4.14)

By convoluting a profile /(x) with this operator, we have
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o(x)=1(x)® B(x)
=I(x)-I(x)® N(x;0,0). (4.15)
Basically, (o(x)can be imagined as the 2" derivative of the profile /(x). The local
extremes of ¢ (x )correspond to the high-curvature points of I(x).

Since the 2™ derivative is orientation-dependent, the contrast information at an
image pixel has to be measured along various orientations. As aforementioned, we
detect boundaries by checking the relations between each pixel and its eight neighbors.
Hence, four directional operators are used at each pixel to measure the curvature
information at that pixel. These four directions are 0°, 45°, 90° and 135°, respectively.
Based on directional contrast information and a single-threshold scheme over the
estimated color contrast, the flowchart of the proposed algorithm is illustrated in Fig.

4.14.

Color Image
J L'w 6B

Color Space Conversion

ﬂ (L*, a*, b*)

Directional Contrast Estimation

Directional Contrast Information

Thresholding

Prominent Boundaries

Connection & Consistency Verification

e

Segmentation Result

Fig. 4.14 Flow chart of the proposed algorithm.
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Fig. 4.15 Illustration of consistency verification.

In the flowchart, the color space conversion is applied first. Then four directional
operators are applied to each component of (L*,a*,b*) to extract directional contrast.
A single threshold is then applied over the estimated color contrast to detect
boundaries. These directional data are merged together via the connection-and
-verification process. In the “connection-and=verification process, horizontal
boundaries and vertical boundaries are checked-first. Any two neighboring pixels
without a boundary between thém are connected together. Then, these 45° and 135°
boundaries are checked to remove logically-inconsistent connections.

Here we use Fig. 4.15 to illustrate the meaning of a logically consistent
connection. Take the triplet of Pixel-A, Pixel-B and Pixel-C as an example. Let “=”
denote there is no boundary between two neighboring pixels; “#” denote there is a
boundary between two neighboring pixels; and “” denote the logical AND. We have
that

If A=B is true,
then either (A=C)N\(B=C) or (A=C)N(B+#C) has to be true.
Otherwise, the connection between Pixel-A and Pixel-B is logically

inconsistent.
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In this verification step, all logically inconsistent connections are disconnected.
Surviving connections are then merged together to produce the final segmentation
result.

Fig. 4.16(a) shows a color image. The segmented result of the proposed
algorithm is shown in Fig. 4.16(b), represented in pseudo colors with ¢ = 1.4 and
contrast-threshold = 23. Even though these two parameters are determined empirically,
the parameter setting process is quite simple. Usually, a larger o is used to better
suppress noise, while a smaller ¢ value is used to distinguish tiny details. Similarly, a
larger value of threshold is used to extract objects of larger intensity variations, while
a small value of threshold is used to distinguish object details. In comparison, the
parameter setting process is usually troublesome in many existing segmentation
algorithms. Take the Deng and Manjunath’s algerithm [15] as an example, as we
choose a small quantization threshold, many tiny details are revealed but the uniform
background is split into several-regions;.as-shown in Fig. 4.16(c). On the contrary, as
we increase the value of quantization-threshold, ‘the background is merged together,
but many tiny objects, like the palm in Fig. 4.16(e), are mistakenly merged. These two
algorithms were performed on a PC with an Intel Pentium III CPU, running at 800
Mhz and with 256 MB memory. Given a 512x512 color image, the CPU time is
around 1 to 2 minutes for Deng and Manjunath’s algorithm, is around 10 to 20

seconds and for our proposed algorithm, without performing code optimization.
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image segmentation. We found that the contrast information is quite useful and
reliable in detecting boundaries. To estimate the color contrast in a 2-D image, we use
four directional operators to extract directional color contrast information. A
single-threshold scheme is then applied over the estimated color contrast to detect
directional boundaries. Finally, these directional boundaries are merged together via a
connection and verification process to form 2-D boundaries. Based on the contrast
definition, the simulation results demonstrate that this simple new algorithm is

capable of providing reasonable and reliable results.
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4.3.2 Color Segmentation Algorithm Based on Visible

Color Difference

In image analysis and pattern recognition, color segmentation is a crucial step. So far,
hundreds of color segmentation algorithms have already been developed to deal with
various kinds of image-related applications. In our opinions, the development of color
segmentation algorithm should be highly related to segmentation evaluation. In this
section, we’ll discuss how to apply previously proposed evaluation measures to

facilitate the development of segmentation algorithms.

4.3.2.1 Modified Quantitative Visual Error Measures

In previous sections, to avoid directly measuring the subjectively perceived quality of
color segmentation, we consider.two objective, visual quantities, the quantity of
missing boundaries and the quantity ef fake, boundaries. Then, two quantitative
measures, named intra-region visual error and inter-region visual error, are designed
to measure the degrees of missing boundaries and fake boundaries, respectively.
Given an NxM color image f(x,y), we denote ff(x,y) as a segmented result, with the
color of each segmented region being filled with the average color of that region.

Then the intra-region error is defined as

>3 uf o) - ), — )

Eintra (1) = = NxM s (4 1 6)

where || ||L#2*b* denotes the color difference in the CIE L*a*b* space, th denotes the
threshold for visible color difference, and u(.) denotes the step function. On the other

hand, the inter-region visual error of a segmented image is defined as:
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where R denotes the number of segmented regions, and w;; denotes the joined length
between Region i and Region j. Here, w;; is equal to zero if Region i and Region j are
not connected.

In Section 4.2.1, a series of visual rating experiments had been made to
demonstrate that the correlation between the intra-region visual error and the degree
of missing boundaries is significant and the sign of the correlation is positive.
Similarly, the correlation between the inter-region visual error and the degree of fake
boundaries is verified to be significant and positive. In this section, two slightly
modified measures, named “modified  intrasregion visual error” and “modified
inter-region visual error”, are proposed to further include the color distance values in

the measures. The modified intra-region etror is defined as:

Y

S Sl (o) f7er)

ME intra (1) = =

Légvb® th) x (”f(x, y) - ﬁ(x, y]

NxM

(4.18)

In Table 4.13, for each of the 6 color images, we confirm that the correlation
between the modified intra-region visual error and the perceived degree of missing
boundaries in the visual rating experiments, which has been mentioned in Section
4.2.1, is significant at the 0.01 level and the sign of the correlation is positive. This
implies that the modified intra-region visual error could also be an effective measure

for the perceived degree of missing boundaries.

95



Table 4.13:

Missing-boundary v.s. Modified Intra-region visual error

Color Image | Fruit Lena House Tower Room Table
Correlation Tennis
Missing-boundary vs. Intra-error | 0.856** | 0.962** | 0.914** | 0.961** | 0.835** | 0.950**
** correlation is significant at the 0.01 level (two-tailed) [59].
On the other hand, the modified inter-region error is defined as:
R R
S by xuteh =1~ 7., % @ 0
==l
MEinter (1) = - (4 1 9)

NxM

In this section, we still set the threshold #2 in Equation (4.18) and Equation (4.19) to

be 6, as mentioned in Section 4.1.2.

In Table 4.14, for each of the 6 color images; we confirm that the correlation

between the modified inter-region visual efror and the perceived degree of fake

boundaries in the visual rating experiments-is-significant at the 0.01 level and the sign

of the correlation is positive. This implies that the modified intra-region visual error

could also be an effective measure for the perceived degree of fake boundaries.

Table 4.14: Fake-boundary v.s. Modified Inter-region visual error
Color Image | Fruit Lena House Tower | Room Table
Correlation Tennis
Fake-boundary vs. Inter-error | 0.961** | 0.963** | 0.978** | 0.984** | 0.968** | 0.846%*

** correlation is significant at the 0.01 level (two-tailed) [59].

Same as before, even though each of these two measures is image-dependent, the

alliance of both measures may provide an effective way for the evaluation of color

segmentation. As the given image is under-segmented, more boundaries are missing
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and the modified intra-region visual error increases. On the contrary, as the image is
over-segmented, more fake boundaries appear and the modified inter-region error
increases. These two measures are complementary to each other. Therefore, we could
combine the modified intra-region visual error and the modified inter-region visual

error into a single measure, named the modified total visual error. That is,

ME total (I) =ME intra (1) + ﬂ”ME inter ([) : (420)

Here, A is set to be 5. In the following sections, based on these modified quantitative

visual error measures, a color segmentation algorithm will be proposed.

4.3.2.2 Color Segmentation Algorithm Uniting with Quantitative
Measures

In this section, we’ll propose a color segmentation-algorithm which unites with some
quantitative visual measures. Given a color image, at the initial step, we produce an
initial segmented image in which each pixel is regarded as an independent region.
Then, for this initial segmented image, all the regions and the connection between any
two adjacent regions are represented in a region adjacent graph (RAG) data structure.
With the RAG, a merging process, consisting of a sorting procedure, a merging
procedure, and an updating procedure, is used to further merge the segmented image.
In the following subsections, the region adjacent graph data structure is introduced

first and then the proposed color segmentation algorithm is presented.
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4.3.2.2.1 Region Adjacent Graph

Region Adjacent Graph (RAG) data structure is a data structure consisting of two
basic elements: nodes and edges [22]. Given a segmented result, each region can be
denoted as a node and the connection between any two adjacent regions can be
denoted as an undirected edge connecting two corresponding nodes. In mathematics,
given a segmented result with R regions, the RAG is defined as an undirected graph G
=(V,E), where V = {1, 2, ..., R} and E denotes the set of undirected edges. Moreover,
a weight e(i,)), with e(i,j) € E if i, j € V, is assigned to each edge to represent the
connection relation. Here, the edge weight is assigned a nonzero value when the two
regions are adjacent to each other. Fig. 4.17 shows an example to illustrate the relation
between a segmented image and its corresponding RAG. Fig. 4.17(a) illustrates a
segmented image containing five regions, R1, R2; R3, R4 and RS5. Its corresponding
RAG is shown in Fig. 4.17(b). In'Fig. 4.17(b), the five nodes represent the five
separate regions in Fig. 4.17(a); while‘the-corresponding connections are denoted as
the edges having the weights, e(1,2); €(1,3), ..+; and e(4,5).

Furthermore, after a merging process, the processed result of an RAG can also be
represented with another RAG. For the RAG in Fig. 4.17(b), if the regions R4 and RS
are merged, the result can be described by another RAG, as shown in Fig. 4.17(c).
Here, the weight e(4,5) between R4 and RS is removed, and the weights related to R4
and RS, such as e(2,3) and e(3,4), are updated. As shown in Fig. 4.17(d), the merged
result is represented in a new RAG. The merged node of R4 and RS is denoted as R’4,
while the updated edges, e(2,3) and e(3,4), are represented as ¢’(2,3) and e’(3,4),

respectively.
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Fig. 4.17 An Image Segmentation of Five Regions and Its Corresponding RAG.

4.3.2.2.2 Color Segmentation-Uniting with-Quantitative Measures
The flowchart of the proposed color segmentation algorithm is shown in Fig. 4.18.
Given a color image, at the initial step, each pixel is regarded as an independent
region. This sets up an initial RAG. Here, the connection relation is referred to the
cost if the corresponding two regions are to be merged into one region.

Based on the initial RAG, two regions are merged into one region each time.
Within one iteration, there would be one sorting procedure, one merging procedure,
and one updating procedure. For the sorting procedure, all the edge weights of the
current RAG are sorted in an ascending order. Then, the two regions with the minimal
edge weight are merged into one region in the merging procedure. The weights
relating to the two regions are updated in the updating procedure and a new RAG is

generated accordingly. The iterative process continues till some predefined stop
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criterion is satisfied.
In the proposed segmentation algorithm, we define the edge weight of an edge as

e(i, j) = fuRi, R)), 4.21)
where fi(R;, R;), with k=1, 2, 3, denotes a cost function made of some quantitative
measurements, like the modified total visual error, the F-function, or the PSNR
function. This cost function denotes the cost produced by merging R;and R; into one

region. For example, we may define the cost function to be

fi(Ri, R) = PSNR(R)) + PSNR(R;) — PSNR(R;, R); (4.22)
S2(R;, R)) = F(R;, R) — F(R)) — F(R)); (4.23)

or f3(Ri, R)) = MEinya(Ri, Ri) — MEinyo(R;) — MEinyo(R))
— A MEneAR;, R)). (4.24)

As mentioned above, for the PSNR function;.the preferred segmented results are
the images with larger PSNR values. Since the merging of two regions into one region
usually decreases the PSNR value, the‘weight-function in Equation (4.22) is assigned
to be the subtraction of PSNR(R;, R;) from the-summation of PSNR(R;) and PSNR(R)).
On the contrary, since the merging of two regions usually increases the value of the
F-function, the weight function in Equation (4.23) is assigned the increased
F-function value. On the other hand, for the modified total visual error, the merging
process usually increases the modified intra error while decreases the modified inter
error at the same time. Hence, the weight function in Equation (4.24) is assigned the
summation of the increased modified intra-region error value and the decreased

modified inter-region error value.
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Fig. 4.18 Flowchart of the Proposed Color Segmentation Algorithm.

Assume we adopt the modified total erfor to.define the edge weights, then a
segmented result with a smallet' modified total error is regarded as a better segmented
result. During the merging process; the modified inter-region error decreases while the
modified intra-region error increases. In‘our proposed algorithm, we actually define
the stop criterion to be the point when the modified intra-region error reaches a
threshold C,. That is, the iterative process stops when ME, (7)> C,. Here, C, is a
application-dependent constant. The use of a threshold over the modified intra-region
error is to allow some degree of under segmentation.

Figs. 4.19(a)-(f) show the results produced by using the proposed segmentation
algorithm with use of the modified total error. Fig. 4.19(a) is an 84x128 color image
named “Tower”. Fig. 4.19(b) is the segmented result which contains 700 segmented
regions, with MEintra = 0.036 and MEinter = 0.012. In Fig. 4.19(b), it can be seen

that pixels with invisible color difference are merged into regions while pixels with

visible color difference are treated as image edges.
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On the other hand, the segmented results with fewer details, like the segmented
result in Fig. 4.19(d) and (e), are sometimes useful for many applications. To fit for
different requirements, we may adjust the constant C; in the stop criterion. Figs.
4.19(c)(d)(e) show the segmented results with C; = 0.673, 1.63 and 2.24, respectively.
Fig. 4.19(c) shows a finer segmented image containing 60 regions in total, while Fig.
4.19(d) and Fig. 4.19(e) show two coarser results containing 19 and 12 regions,
respectively. In Fig. 4.19(c), we can see some finer detials, like grasses on the ground
and clouds in the sky. On the contrary, the segmented result in Fig. 4.19(e) is much
coarser.

Moreover, the plot of the modified intra error versus the modified inter error is
given in Fig. 4.19(f). In this figure, the triangle, the square, and the circle denote the
error pairs of Figs. 4.19(c), (d) and (e), respectively. It can be seen that by setting
different threshold values over the modified intra-region error, we can obtain different
segmentation results with different degrees of-under-segmentation.

Figs. 4.20(a)-(i) show the comparison of‘the segmented results produced by the
proposed algorithm uniting with the modified total visual error, the F function, and the
PSNR function. Fig. 4.20(a) is a 128x88 color image, named “Tennis”. Fig. 4.20(b)
shows the segmented results having 90 regions, with MEintra = 1.19 produced by the
proposed algorithm. Fig. 4.20(c) shows the average color representation of Fig.
4.20(b). For the PSNR function, Figs. 4.20(d)(e)(f) show the segmented results having
1000, 90 and 30 regions, respectively. As mentioned above, the use of the PSNR
function only measures the within-region color difference but not the color contrast
between adjacent regions. Hence, over-segmented results are expected. For example,
if compared with Fig. 4.20(b), some regions in Fig. 4.20(e), like the background
regions, are over-segmented. On the other hand, Figs. 4.20(g)(h)(i) show the

segmented results having 1000, 90 and 30 regions when the F-function is used in the
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cost function. As mentioned above, the methods by using the F-function directly may
generate both over-segmented regions and under-segmented regions at the same time.
For example, even though some parts of the player’s hand in Fig. 4.20(g) have already
been mistakenly merged into the background, many small regions still exist in the
segmented image.

In Figs. 4.21(a)-(c) and Figs 4.22(a)-(c), two more segmented results are shown.
Fig. 4.21(a) shows a 128x100 image and Figs. 4.21(b)(c) show the segmented results
containing 7 regions with MEintra = 2.16. Fig. 4.22(a) is a 56x128 image and Figs.

4.22(b)(c) are the segmented results containing 10 regions with MEintra = 2.49.
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Fig. 4.19 Segmentation uniting with Modified Total Visual Error.

(a) Original Image.

(b) Segmented Results with minimum Modified Total Error.
(c)(d)(e) Segmented Results with MEintra = 0.763, 1.63, and 2.24.
(f) Plot of Modified Intra Error versus Modified Inter Error.
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Fig. 4.20 Color Segmentation wit Qatitative Measures for “Tennis” Image.
(a) Original Image.
(b) Segmented Result with MEintra=1.19 for the proposed algorithm.
(c) Averaged Color Representation of (b).
(d)-(f) Segmented Results for the PSNR Function.
(g)-(1) Segmented Results for the F Function.
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(a) (b) (©)

Fig. 4.21 Segmentation for “Hand” Image.

(a) Original Image.
(b) Segmented Result with MEintra = 2.16.
(c) Averaged Color Representation of (b).

(a) (b)

Fig. 4.22 Segmentation for “Woman” Image.

(a) Original Image.
(b) Segmented Result with MEintra = 2.49.
(c) Averaged Color Representation of (b).

106



CHAPTER S

Conclusions

In this dissertation, image analysis techniques based on luminance/color contrast are
presented. To mimic the way humans perform image-analysis, we perform subjective
experiments to deduce useful subjective-visual quantities. Some suitable objective
visual quantities are then designed toquantify these subjective visual quantities. In
this dissertation, a few definitions of luminance/color contrast are especially used to
quantify these visual quantities. Based on these objective visual quantities, effective
and efficient quantitative measures are developed for various kinds of applications.

In this dissertation, we consider two image analysis applications: 1) automatic
inspection for visual defects on LCD panels, and 2) color segmentation. In the
problem of automatic defect inspection, we follow Mori’s proposal to quantify the
degrees of image defects, based on the luminance contrast and area size of visual
defects. Based on Mori’s subjective experiments, which were performed to relate
human visual perception with the contrast and size of visual defects, and the SEMU

formula, which was proposed by Mori et al for the quantitative measurement of visual
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perception, we can effectively quantify the degrees of visual defects in terms of
luminance contrast and defect size. In this dissertation, 2-D LOG operators and 1-D
LOG operators are presented to detect Cluster Mura and V-Band Mura, respectively.
Specifically, to detect round-type/rectangular-type cluster Mura defects, the use of
2-D round-type /rectangular LOG filters are suggested. Based on SEMU formula, we
presented an optimal thresholding mechanism in the inspection of Cluster Mura. On
the other hand, a curvature-based approach is proposed to detect V-Band Mura. In the
curvature-based approach, a 1-D LOG filter is used to generate a smooth curve that
represents the curvature tendency of the 1-D projected profile. With this smooth curve,
V-Band Mura defects can be detected easily. In simulation, the results demonstrate the
LOG filters, unifying with measures of visual quantities, are very useful in the
inspection of Mura defects.

In the problem of color=segmentationy we estimate the degrees of missing
boundaries and fake boundaries, instead-of.directly evaluating the subjective quality
of color segmentation. With the combination of these two quantities, we can well
quantify the subjective evaluation of color segmentation. Moreover, based the
definition of visible color difference, we design two measures, the intra-region visual
error and inter-region visual error, to estimate the degrees of missing boundaries and
fake boundaries, respectively. We found these two measures have significant
correlation with the degree of missing boundaries and the degree of fake boundaries.
With these two measures, an evaluation scheme is proposed to evaluate the
segmentation results and to help the automatic selection of the parameters for a given
segmentation algorithm. On the other hand, we also present a color segmentation
algorithm uniting with quantitative visual measures. In this algorithm, two more
quantitative measures, named modified intra-region visual error and modified

inter-region visual error, are designed to measure the degrees of missing boundaries
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and fake boundaries, respectively. Combing these two visual errors, the modified total
visual error is used to measure the amount of visible errors for segmented results.
With these quantitative visual measures, a merging process based on the region
adjacent graph (RAG) data structure is adopted to generate segmentation results with
small intra-region errors. The experiments demonstrate the proposed color

segmentation algorithm does offer flexible and reasonable segmented results.
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