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Abstract

Augmented cubes, AQ, is a graph whichradding some €dges to hypercube Q, to improve
some properties according to some rule. In this thesis, we consider the fault-tolerant
pancyclicity of the augmented cubes AQ, for n>4. Assume that F = V(AQ,) U E(AQy,) for
n>4. We prove that AQ, - F is pancyclic if |F|<2n-3.

Keywords : fault-tolerant, pancyclicity, augmented cubes.
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Chapter 1

Introduction

Network topology is a crucial factor for the interconnection networks since it determines
the performance of the networks. Many interconnection network topologies have been
proposed in the literature for the purpese oficennecting thousands of processing elements.
When we design the topology of a‘fintérconnection nétwork, there are a lot of requirements
which affect the characteristics of network: Network topology is usually represented by a

graph where vertices represent processors and edges represent links between processors.

There are a lot of literature to propose the interconnection network topologies. The
hamiltonian properties of a network are important aspects of designing a network. A lot
of related works have appeared in the following literature. D.Barth et al. proved that
there are two disjoint hamiltonian cycles in the butterfly graph [2]. J.C. et al. showed
that Caley graphs of degree 4 can be decomposed to disjoint hamiltonian cycles [3]. The
hypercube is one of the most popular network since it has a simple structure and is

easy to implement. The n-dimensional hypercube [19, 25], denoted by @, is a popular



one. Several variations of the hypercubes have been investigated to improve the efficiency
of the hypercubes, such as twisted N-cubes [10], twisted cubes [1, 12], crossed cubes
8, 9], M&bius cubes [7]. The augmented cubes AQ,,, recently proposed by Choudum and
Sunitha [6], is one of such variations. For any positive integer n, AQ,, is a vertex transitive,
(2n — 1)-regular, and (2n — 1)-connected graph with 2" vertices. The pancycle problem
asks if a cycle of length [ is a subgraph of a given graph with a given positive integer [.
Hwang [16] and Fan [11] et al. studied this problem on butterfly graphs and Mébius cubes,
respectively. But they did not consider the possibilities of failures of vertices and/or edges.
Fault tolerant ability is also desirable on network which have relatively high probability
of failure. There are many researches related to fault-tolerant hamiltonian properties of

networks [15, 13, 17, 18, 20, 21, 22, 234124/ 263:27].

In this thesis, we consider the important property fault-tolerant pancyclicity of the

augmented cubes.

A graph G is pancyclic if and only if there are cycles of length from 3 to N in G where
N is the vertex number of G. A pancyclic graph G is k-fault pancyclic if G — F remains
pancyclic for every F' C V(G) U E(G) with |F| < k. The fault pancyclicity, Ps(G), is
defined to be the maximum interger k£ such that G is k-fault pancyclic. In this thesis, we

prove that the fault pancyclicity of the augmented cube AQ, is exactly 2n — 3 for n > 4.

The rest of this thesis is organized as follows. In Chapter 2, we give some definitions



and notations. In Chapter 3, we give the definition of the augmented cubes and discuss
some properties of them. In Charpter 4, we prove the fault pancyclicity of the augmented

cubes. Finally, we make some concluding remarks in Chapter 5.




Chapter 2

Some definitions and notations

In this chapter, we introduce several definitions and notations.

For the graph definitions and notations we follow [4]. G=(V, E) is a graph if V is a
finite set and E is a subset of {(u,4) | (ugu)sdis-an tnordered pair of V'}. We say that V is
the vertex set and F is the edgeset. For any vertex & of V, degs(x) denotes its degree in
G. We use 6(G) to denote min{degg (@)} €V (G)}. Two vertices u and v are adjacent if
(u,v) € E. A path, denoted by (vg, v1, Vs, ..., 0%), is a sequence of distinct vertices where v;
and v; ;1 are adjacent for all 0 < i < k—1. The length of a path P, [(P), is the number of
edges in P. We also write the path (v, vi, va, ..., vg) as (vo, Pr, Vs, Vit1, ..., Vg, Po, Uty .o, U),
where P is the subpath (vo, vy, ..., v;) and P is the subpath (v, v;41, ..., v;). In this thesis,
it is possible to write a path as (vg, vy, P, vy, va, ..., vg) if [(P) is 0. Sometime, a path can
also be represented by (vg, v1, ..., U, €, V11, ..., V) to emphasize that e is the edge (v;, viy1).
We use d(u,v) to denote the distance between u and v. That is the length of the shortest

path joining v and v. Let a path be a hamiltonian path if its vertices are distinct and



included the whole V. Let a path be named a cycle with at least three vertices if the first

vertex is the same as the last vertex. Let the cycle be denoted C), with length n for n > 3.

A graph G is pancyclic if and only if there are cycles of length from 3 to N in G where
N is the vertex number of G. A pancyclic graph G is k-fault pancyclic if G — F remains
pancyclic for every ' C V(G) U E(G) with |F| < k. The fault-tolerant pancyclicity,
P(G), is defined to be the maximum interger k such that G is k-fault pancyclic. In this

thesis, we abbreviate k-fault-tolerant pancyclicity as k — faultpancyclicity.

A hamiltonian cycle of G is a cycle that traverses every vertex of G exactly once.
A graph is hamiltonian if it has a hamiltonian cycle. A hamiltonian graph G is k-fault
hamiltonian if G — F remain hamiltonian for every /' C V(G)U E(G) with |F| < k. The
fault hamiltonianicity, H(G), is define to be the maximum integer k such that G is k-fault

hamiltonian if G is hamiltonian.

For a set S C V(G), the notation G — S represents the graph obtained by removing
the vertices in S from G and deleting those edges with at least one end vertex in S
simultaneously. In graph G, the connectivity k is the minimum number of a set S of G

such that G — S is disconnected or trivial.

A graph G is hamiltonian connected if there exists a hamiltonian path joining any
two vertices of G. All hamiltonian connected graphs except K; and K, are hamiltonian.

A graph G is k-fault hamiltonian connected if G — F remains hamiltonian connected for



every ' C V(G) U E(G) with |F| < k. The fault hamiltonian connectivity, H%(G), is
defined to be the maximum integer k such that G is k-fault hamiltonian connected if G

is hamiltonian connected.




Chapter 3

Augmented cubes

3.1 Definition and notation

First, we shows the define of hypercube and several examples of hypercube which are

illustrated in Fig.3.1.

Definition 1 Let n > 1 be an integer. Lhe Hypercube Q),, of dimension n has 2™ nodes.
Q1 is a complete graph with two*moedes labeled by 0 and 1, respectively. For n > 2,
an n-dimensional Hypercube Q,, is obtained by taking two copies of (n — 1)-dimensional
subcubes Q,_1, denoted by Q° | and QL _,. For each v € V(Q,), insert a 0 to the front
of (n — 1)-bit binary string for v in Q°_, and a 1 to the front of (n — 1)-bit binary string

for v in QL . There are 2" edge between Q°_, and QL | as follows:

Let V(QO_) = {Oup_oup_3..ug s u; = 0 or 1} and V(QL_,) = {1v,_2v,_3...00 : v; = 0
or 1}, where 0 < i < n—2. A node u = Oup_sup,_3...ug of V(QO_, is joined to a node

n—1

v =10, 90, _3..v0 of V(QL_,) if and only if u; = v; for 0 <i <n— 2.



Let n > 1 be an integer. The n-dimensional augmented cube [6], denoted by AQ),, has
2™ vertices, each labeled by an n-bit binary string V(AQ,) = {ujus...u,| u; € {0,1}}.
AQ) is the complete graph K, with vertex set {0,1}. For n > 2, we write this recursive
construction of AQ, symbolically as AQ, = AQY $AQL | and by adding 2" edges

between AQ?_, and AQ! ;| as follows:

Let V(AQ? ) = {(Ouguz...u,) | u; = 0 or 1 for 2 < 7 < n} and V(AQL ;) =
{(lvguz..v,) | v; = 0 or 1 for 2 < i < n}. A vertex u = (Ougus...u,,) of AQY ;| is

joined to a vertex v = (lvgus...v,) of AQ}_; if and only if either

(1) u;=v; for 2 < i < n; in this case, (u,v) is called a hypercube edge and we denote

v=u" or

(i) w;=v; for 2 < i < n; in this case, (u,v) is called a complement edge and we denote

v=u®‘.

3.2 Some basic properties of augmented cubes

There are several augmented cubes (ex:AQ1, AQ9, and AQ3) that are illustrated in Fig.3.2
By definition, AQ), is a vertex transitive, (2n — 1)-regular, and (2n — 1)-connected graph
with 2" vertices for any positive integer n. Let E" = {(u,u”")] u € V(AQ’ ,)} and
E¢ = {(u,u®)|ue V(AQ’_,)}. Obviously, E" and E¢ are two perfect matchings between

the vertices of AQ®_, and AQ. ,. Then, |E"| and |E¢| are both equal to 27! Let C* =

10



{(u,v) | = 0uy...u,, and v = 0wy...u, }. In other words, C} is the set of all complement
edges in AQY ;. Let F C V(AQ,)U E(AQ,) be the set of faults. We divide F into five
parts:

(WE)=FNV(AQ,_,), (F)=F N E(AQ,_,),

(B)F,=FNV(AQ, ), () F=F N E(AQ,_,),

(B)Fy=F — F(Angl) U F(AQ;_,)

By the way, we let F, = FOUFE! and F, = FPUF!UF?. Let f=|F|, f,=|F,|, f°=|FY|,

f=IFL fo=IEy |, fo = |F2| and fo=|F|.

0 1

o—©

10 i1 010 111
(a) Q@ (b) @ (c) Q

Figure 3.1: The hypercubes Q1, @2, and Q5.

The folowing lemmas are derived directly from the definition.

Lemma 1 Given a graph AQ, for n > 4, let u and v be two distinct vertices in which
are both in AQ°_, or both in AQL . Then u”,u¢,v", and v¢ are distinct if and only if

(u,v) ¢ Cx.

11
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0 1

*—o

10

(a) AQ (b)AQ

(c)AQ

Figure 3.2: The augmented cubes AQ, AQ>, and AQs.

Lemma 2 Assume that (u,v) € AQ®_|. Then (u",v") € AQL | and (u,v¢) € AQ}

n—1-

Lemma 3 Given a verter u € AQ° . Let A = {v|(u,v) € E(AQ"_,)} and B =

{vh v¢|v € A}. Then |A| = 2n — 3 _and |B| =4n — 8.

For example, given a vertex 00000 in AQS.-Let A = {00001,00010,00100,01000,00011,00111,01111}
and B = {10001, 11110, 10010, 11101;10100, 11011,:11000, 10111, 10011, 11100, 11111, 10000}.

Hence, only two vertices in A which are in C.

12



Chapter 4

Fault-tolerant pancyclicity of
augmented cubes

To discuss the fault-tolerant pancyclicity of augmented cubes, we need to introduce the
following term for graphs. A graph G:has!property 2H if it satisfies the following condi-
tions: Let {w,z} and {y,z} be two pairs-of four distinct vertices of G. There ezist two
disjoint paths Py and Py of G such that (1) Py joinsiw to xz, (2) Py joins y to z, and (3)

every vertex of G is either on pathPy or on Ps.

Lemma 4 [5] Let n > 4. AQ,, is (2n — 3)-fault hamiltonian, (2n — 4)-fault hamiltonian

connected and has property 2H.
Property 1 Given a path P. P has i+ 1 subpaths of length [(P)—i for 0 <i <[(P)—1.

Now, we are going to discuss the fault-tolerant pancyclicity of augmented cube. We
can find that AQs is not fault-tolerant pancyclicity with our computer programs. The
base case is AQ, for n = 4. We translated the proof to computer programs and we put

13



these programs and their outputs on the web site "http://140.113.167.44 /aq4.html”. Let
F C V(AQ,) U E(AQ,) be any faulty set of AQ,. An edge (u,v) is called F-fault free
if (u,v) ¢ F,u¢ F, and v ¢ F; otherwise it is called F-fault. Let H = (V' E’) be a

subgraph of AQ,. We use F'(H) to denote the set (V'UE")NF

Theorem 1 Let n > 5. Suppose AQ,_1 is (2n — 5)-fault pancyclic. Then, AQ, is

(2n — 3)-fault pancyclic

Proof. Let F' be any subset of V(AQ,) U F(AQ,) with |F| < 2n — 3. Without loss
of generality, we assume that |F(AQ°_,)| > |F(AQ. ,)|. We discuss this problem with
|F| = 2n — 3. If the fault of augmented cubes is less then 2n — 3, we can add some edges
into fault set which are fault free s"To show that AQ, is (2n — 3)-fault pancyclic, we
shall find cycles of lengths from-3 to [V(AQx#)| = |E,(AQ,)|. We divide the proof into
three cases. Because we suppose augmeénted-eubes is (2n — 3)-fault pancyclic, AQ,,_; is

(2n — b)-fault pancyclic.

Case 1: Cycles of lengths from 3 to |V (AQL_,)| — fL.

Since AQ,,_1 is (2n—5)-fault pancyclic, AQL | contains of lengths from 3 to |V (AQL _,)|—

fLfor n > 5. Clearly, AQ, — F also contains cycles of these lengths.

Case 2: A cycle of length |V (AQ}_)| — fl+1.

14



We shall claim that there exists a vertex u in AQY ; such that both (u,u") and
(u,u®) are F-fault free. Suppose it is not exist, |F| = 2n — 3 > 2"71/2 = 2"72 which is
a contradiction for n > 5. In addition, AQ} _, is (2n — 6)-fault hamiltonian connected,
AQL | — (F}U F) has a hamiltonian path (u”, P, u®). Thus, (u,u", P,u u) is a cycle

of length |[V(AQL ;)| — fL+ 1.

We follow [5] to construct cycles of lengths from |V (AQL )| — f1+2 to [V(AQ,)| — fo-

Case 3: Cycles of lengths from |V (AQ. )| — fl+2 to |[V(AQ,)| — f.

Subcase 3.1: |F(AQ° )| = 2n — 3. Thus, |F — F(AQ® )| = 0. Let f; and f; be
any two elements in F(AQ° ;). Since"AQ),1s,(2n — 5)-fault hamiltonian, there exists
a hamiltonian cycle C' = (u, f;, v,P1,w, f};x, Py, w) in AQY | — (F(AQ°_,) — {f1, f2})
where f = fi if f; is on C or f] is an-arbitrary edge of C' otherwise and f} = fo if fo
is on C' or f} is an arbitrary edge of €' otherwise." Without loss of generality, we assume

that [(P3) < [(Pq).(See Fig.4.1)

Subcase 3.1.1: [(P3) >1. First, we take Py to construct the cycles of lengths from
V(AQL_)|— fi+2to |[V(AQL_))|— fi+1+1(Py). Let P} = (m, P, n) be the subpaths
of the path P; have lengths from 1 to [(P;) by Property 1. Since vertices m and n
are distinct in AQY_,, there are two vertices m" and n” which are distinct in AQ?_, by

Lemma 1. By Lemma 4, there exists one hamiltonian path H = (m" Pz, n") in AQ! ,.

Thus, (m,P,”,n,n" P3, m m") forms cycles of lengths from |V (AQ. )| — fI + 2 to

15



Figure 4.1: Thetexample of Subcase 3.1.

V(AQL )| — fL+1+1(Py).(See Fig.4.2)

Now, let P} = (m,P,,n) of the path Py which have length I(P;) — 2 and the set
of subpaths P, = (k,P,,q) of Py which have lengths from 1 to I(Pz) by Property 1.
Since AQ,_; has property 2H, there exist two disjoint spanning paths (k" P3, m") and
(n" Py, q") in AQL_,. Thus, the set of cycles = (n, P, m, m" P3, k" k, P, q,q" P4, n" n)
which have lengths from [V(AQ}_,)| — fo + 2+ 1(P1) to |V(AQ,)| — f, — 2.(See Fig.4.3)
Finally, we take the two kind of subpaths P] which have lengths [(P1) —1 to [(P1). Thus,
the set of cycles = (n,P;,m,m" P3, k" k, P,,q,q" P4, n" n) are results of Subcase

3.1.1.

16



AQ?F 1 Aan- 1

Figure 4.2: The cycles of lengths from JV(AQY1;)| — f1 +2 to [V(AQL_)|— fl+1+1(Py).

Subcase 3.1.2: [(P3) = 0. Then u= x. By Property 1, we use the set of subpaths P} =
(a, P}, b) of path P; have lengths from 1'to /{Py) by Property 1 with the hamiltonian path
P, = (a", P,,b") of AQ! | to construet.the cycles= (a, P, b,b" P, a" a) of lengths
from |[V(AQL )| — fl+2to |[V(AQ,)| — f, — 1.(See Fig.4.4) Since the hamiltonian cycle

is constructed in Lemma 4, this completes the proof of Subcase 3.1.

Subcase 3.2: |F(AQ° ;)| =2n—4. Thus, |[F—F(AQ"_,)| = 1. Since AQ,_1 is (2n—5)-
fault hamiltonian, there exists a hamiltonian cycle C; of AQY | — (F(AQY_,) — {fi}) for
every f; € F(AQY_,). We can write C; as (u;, P;,v;, fi,w;). Since |[F(AQ°_ )| > 6
and |F — F(AQ°_,)| < 1, there exists an index i such that (u;,u?) and (v;, v?) are F-

fault free. Since AQ,_1 is (2n — 6)-fault hamiltonian connected, there is a hamiltonian

17



Figure 4.3: The cycles of lengths from |V (AQL )| — fl +2+1(Py)
to [V(AQn)| — fo — 2.

path Q; in AQ! |, — F(AQ} ) joiling ulianhd . Thus, (u;, ul, Q1, vt vi, P;, u;) forms a
hamiltonian cycle in AQ,,—F'. By Property-1, we can find out the necessary set of subpaths
P} = (a,P;,b) of P;. We claim that edges (a,a")and (b, b") are F-fault free, too. Since
AQ,_1 is (2n — 6)-fault hamiltonian connected for n > 5, there is a hamiltonian paths
(a", Py, b") of AQL | — F(AQL ). Then the cycles (a,a”", Py, b" b, P}, a) are cycles of
length from |V (AQ. ;)| — fl+2 to |[V(AQ,)| — f, — 1 of AQ,, — F. This completes the

proof of Subcase 3.2.

Subcase 3.3: |F(AQ°_,)| < 2n—5. Thus, |F(AQ,)—F(AQY_,)|is 2n—3—|F(AQ°_,)|.
Since AQ,_1 is (2n — 5)-fault hamiltonian, there is a hamiltonian cycle C' in AQ? ;| —

F(AQ°_,). We want to select a path P; which has lengths from 1 to |[V(AQY_,)|— f2—1

18



Ps3

AQns AQL.,

Figure 4.4: The cycles of lengths fiom (VA(AQ. )| — f1 +2 to |V (AQ,)| — f, — 1.

in AQY_,. We wish that there exists the set.of subpath Py = (u, P}, v) in C such that
both (u,u") and (v, v") are fault freé. We-canfind out | (2! — f9)/2| pairs of vertices
to construct the subpaths of lengths ffomd-46. |V (AQ°_,)| — f2 — 1 in this hamiltonian
cycle. Because |F(AQ,)—F(AQY_,)|is at most 2n—3—|F(AQ°_,)|, we can find out that
|27 1= f9)/2] > 2n—3—|F(AQY_,)| for n > 5. We decide that there exist two vertices
{u,v} which construct necessary subpaths of lengths from 1 to |[V(AQ°_ )| — f2 —1
in C such that both (u,u”") and (v,v") are fault free. Since AQ,_; is (2n — 6)-fault
hamiltonian connected, there is a hamiltonian path (u”, Py, v") of AQL |, — F(AQL ).
Then (u,u”, Py, v" v, P}, u) can construct subpaths of lengths from |V (AQ: )| — f1+2

to |[V(AQ.,)| — f,- This completes the proof of Subcase 3.3(See Fig.4.5).

19



0 1
AQn_ 1 AQ1- 1

Figure 4.5: Thé example of Subcase 3.3.

This completes the proof of the theorem.

Corollary 1 By Theorem 1 and our computer programs, AQ,, is (2n — 3)-fault pancyclic

forn > 4.

20



Chapter 5

Conclusion

There are a lot of good properties in hamiltonian cubes. Various hamiltonian properties
of hypercube-based graphs have been proposed in literature. In addition, fault tolerance
is also considered. The augmented cubestisintroduced as an alternative to hypercubes.
In this thesis, we discuss the faiilt-tolerant pancyclicity of the augmented cubes. We
proved that AQ), is 5-fault pancyclic for induction base by computer programs, then by

induction, we proved that AQ, is{2nr — 3)-fault.pancyclic for n > 4.

21
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