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摘要 

 
增強立方體，AQn 是利用超立方體 Qn 加上額外的連線而得到原本超立方體所沒有的性

質，在本篇中我們將研究增強立方體在維度大於等於 4 時的容錯泛圈性質，假設當 n≥ 4
時 F⊆V(AQn)ΥE(AQn)，若|F|≤ 2n-3，我們可以證明 AQn - F 是泛圈圖 
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Abstract 
 
Augmented cubes, AQn is a graph which adding some edges to hypercube Qn to improve 
some properties according to some rule. In this thesis, we consider the fault-tolerant 
pancyclicity of the augmented cubes AQn for n≥ 4. Assume that F⊆V(AQn)∪ E(AQn) for 
n≥ 4. We prove that AQn - F is pancyclic if |F|≤ 2n-3. 
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Chapter 1

Introduction

Network topology is a crucial factor for the interconnection networks since it determines

the performance of the networks. Many interconnection network topologies have been

proposed in the literature for the purpose of connecting thousands of processing elements.

When we design the topology of a interconnection network, there are a lot of requirements

which affect the characteristics of network. Network topology is usually represented by a

graph where vertices represent processors and edges represent links between processors.

There are a lot of literature to propose the interconnection network topologies. The

hamiltonian properties of a network are important aspects of designing a network. A lot

of related works have appeared in the following literature. D.Barth et al. proved that

there are two disjoint hamiltonian cycles in the butterfly graph [2]. J.C. et al. showed

that Caley graphs of degree 4 can be decomposed to disjoint hamiltonian cycles [3]. The

hypercube is one of the most popular network since it has a simple structure and is

easy to implement. The n-dimensional hypercube [19, 25], denoted by Qn, is a popular
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one. Several variations of the hypercubes have been investigated to improve the efficiency

of the hypercubes, such as twisted N-cubes [10], twisted cubes [1, 12], crossed cubes

[8, 9], Möbius cubes [7]. The augmented cubes AQn, recently proposed by Choudum and

Sunitha [6], is one of such variations. For any positive integer n, AQn is a vertex transitive,

(2n − 1)-regular, and (2n − 1)-connected graph with 2n vertices. The pancycle problem

asks if a cycle of length l is a subgraph of a given graph with a given positive integer l.

Hwang [16] and Fan [11] et al. studied this problem on butterfly graphs and Möbius cubes,

respectively. But they did not consider the possibilities of failures of vertices and/or edges.

Fault tolerant ability is also desirable on network which have relatively high probability

of failure. There are many researches related to fault-tolerant hamiltonian properties of

networks [15, 13, 17, 18, 20, 21, 22, 23, 24, 26, 27].

In this thesis, we consider the important property fault-tolerant pancyclicity of the

augmented cubes.

A graph G is pancyclic if and only if there are cycles of length from 3 to N in G where

N is the vertex number of G. A pancyclic graph G is k-fault pancyclic if G − F remains

pancyclic for every F ⊂ V (G) ∪ E(G) with |F | ≤ k. The fault pancyclicity, Pf (G), is

defined to be the maximum interger k such that G is k-fault pancyclic. In this thesis, we

prove that the fault pancyclicity of the augmented cube AQn is exactly 2n− 3 for n ≥ 4.

The rest of this thesis is organized as follows. In Chapter 2, we give some definitions
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and notations. In Chapter 3, we give the definition of the augmented cubes and discuss

some properties of them. In Charpter 4, we prove the fault pancyclicity of the augmented

cubes. Finally, we make some concluding remarks in Chapter 5.
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Chapter 2

Some definitions and notations

In this chapter, we introduce several definitions and notations.

For the graph definitions and notations we follow [4]. G=(V,E) is a graph if V is a

finite set and E is a subset of {(u, v) | (u, v) is an unordered pair of V }. We say that V is

the vertex set and E is the edge set. For any vertex x of V , degG(x) denotes its degree in

G. We use δ(G) to denote min{degG(x) | x ∈ V (G)}. Two vertices u and v are adjacent if

(u, v) ∈ E. A path, denoted by 〈v0, v1, v2, ..., vk〉, is a sequence of distinct vertices where vi

and vi+1 are adjacent for all 0 ≤ i ≤ k− 1. The length of a path P , l(P ), is the number of

edges in P . We also write the path 〈v0, v1, v2, ..., vk〉 as 〈v0, P1, vi, vi+1, ..., vj, P2, vt, ..., vk〉,

where P1 is the subpath 〈v0, v1, ..., vi〉 and P2 is the subpath 〈vj, vj+1, ..., vt〉. In this thesis,

it is possible to write a path as 〈v0, v1, P, v1, v2, ..., vk〉 if l(P ) is 0. Sometime, a path can

also be represented by 〈v0, v1, ..., vi, e, vi+1, ..., vn〉 to emphasize that e is the edge (vi, vi+1).

We use d(u, v) to denote the distance between u and v. That is the length of the shortest

path joining u and v. Let a path be a hamiltonian path if its vertices are distinct and
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included the whole V . Let a path be named a cycle with at least three vertices if the first

vertex is the same as the last vertex. Let the cycle be denoted Cn with length n for n ≥ 3.

A graph G is pancyclic if and only if there are cycles of length from 3 to N in G where

N is the vertex number of G. A pancyclic graph G is k-fault pancyclic if G − F remains

pancyclic for every F ⊂ V (G) ∪ E(G) with |F | ≤ k. The fault-tolerant pancyclicity,

Pf (G), is defined to be the maximum interger k such that G is k-fault pancyclic. In this

thesis, we abbreviate k-fault-tolerant pancyclicity as k − faultpancyclicity.

A hamiltonian cycle of G is a cycle that traverses every vertex of G exactly once.

A graph is hamiltonian if it has a hamiltonian cycle. A hamiltonian graph G is k-fault

hamiltonian if G− F remain hamiltonian for every F ⊂ V (G)∪E(G) with |F | ≤ k. The

fault hamiltonianicity, H(G), is define to be the maximum integer k such that G is k-fault

hamiltonian if G is hamiltonian.

For a set S ⊂ V (G), the notation G − S represents the graph obtained by removing

the vertices in S from G and deleting those edges with at least one end vertex in S

simultaneously. In graph G, the connectivity κ is the minimum number of a set S of G

such that G − S is disconnected or trivial.

A graph G is hamiltonian connected if there exists a hamiltonian path joining any

two vertices of G. All hamiltonian connected graphs except K1 and K2 are hamiltonian.

A graph G is k-fault hamiltonian connected if G − F remains hamiltonian connected for
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every F ⊂ V (G) ∪ E(G) with |F | ≤ k. The fault hamiltonian connectivity, Hk
f (G), is

defined to be the maximum integer k such that G is k-fault hamiltonian connected if G

is hamiltonian connected.
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Chapter 3

Augmented cubes

3.1 Definition and notation

First, we shows the define of hypercube and several examples of hypercube which are

illustrated in Fig.3.1.

Definition 1 Let n > 1 be an integer. The Hypercube Qn of dimension n has 2n nodes.

Q1 is a complete graph with two nodes labeled by 0 and 1, respectively. For n ≥ 2,

an n-dimensional Hypercube Qn is obtained by taking two copies of (n − 1)-dimensional

subcubes Qn−1, denoted by Q0
n−1 and Q1

n−1. For each v ∈ V (Qn), insert a 0 to the front

of (n− 1)-bit binary string for v in Q0
n−1 and a 1 to the front of (n− 1)-bit binary string

for v in Q1
n−1. There are 2n−1 edge between Q0

n−1 and Q1
n−1 as follows:

Let V (Q0
n−1) = {0un−2un−3...u0 : ui = 0 or 1} and V (Q1

n−1) = {1vn−2vn−3...v0 : vi = 0

or 1}, where 0 ≤ i ≤ n − 2. A node u = 0un−2un−3...u0 of V (Q0
n−1 is joined to a node

v = 1vn−2vn−3...v0 of V (Q1
n−1) if and only if ui = vi for 0 ≤ i ≤ n − 2.
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Let n ≥ 1 be an integer. The n-dimensional augmented cube [6], denoted by AQn, has

2n vertices, each labeled by an n-bit binary string V (AQn) = {u1u2...un| ui ∈ {0, 1}}.

AQ1 is the complete graph K2 with vertex set {0, 1}. For n ≥ 2, we write this recursive

construction of AQn symbolically as AQn = AQ0
n−1♦AQ1

n−1 and by adding 2n edges

between AQ0
n−1 and AQ1

n−1 as follows:

Let V (AQ0
n−1) = {(0u2u3...un) | ui = 0 or 1 for 2 ≤ i ≤ n} and V (AQ1

n−1) =

{(1v2v3...vn) | vi = 0 or 1 for 2 ≤ i ≤ n}. A vertex u = (0u2u3...un) of AQ0
n−1 is

joined to a vertex v = (1v2v3...vn) of AQ1
n−1 if and only if either

(i) ui=vi for 2 ≤ i ≤ n; in this case, (u,v) is called a hypercube edge and we denote

v=uh ,or

(ii) ui=v̄i for 2 ≤ i ≤ n; in this case, (u,v) is called a complement edge and we denote

v=uc.

3.2 Some basic properties of augmented cubes

There are several augmented cubes (ex:AQ1, AQ2, and AQ3) that are illustrated in Fig.3.2

By definition, AQn is a vertex transitive, (2n− 1)-regular, and (2n− 1)-connected graph

with 2n vertices for any positive integer n. Let Eh
n = {(u,uh)| u ∈ V(AQ0

n−1
)} and

Ec
n = {(u,uc)| u ∈ V(AQ0

n−1
)}. Obviously, Eh

n and Ec
n are two perfect matchings between

the vertices of AQ0
n−1 and AQ1

n−1. Then, |Eh
n| and |Ec

n| are both equal to 2n−1. Let C∗

n =
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{(u, v) | u = 0u1...un and v = 0ū1...ūn}. In other words, C∗

n is the set of all complement

edges in AQ0
n−1. Let F ⊆ V (AQn) ∪ E(AQn) be the set of faults. We divide F into five

parts:

(1)F 0
v =F ∩ V (AQ0

n−1), (2)F 0
e =F ∩ E(AQ0

n−1),

(3)F 1
v =F ∩ V (AQ1

n−1), (4)F 1
e =F ∩ E(AQ1

n−1),

(5)F x
e =F − F (AQ0

n−1) ∪ F (AQ1
n−1)

By the way, we let Fv = F 0
v ∪F 1

v and Fe = F 0
e ∪F 1

e ∪F x
e . Let f=|F |, fv=|Fv|, f 0

v =|F 0
v |,

f 0
e =|F 0

e |, f 1
v =|F 1

v |, f 1
e = |F 1

e | and fx
e =|F x

e |.
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Figure 3.1: The hypercubes Q1, Q2, and Q3.

The folowing lemmas are derived directly from the definition.

Lemma 1 Given a graph AQn for n ≥ 4, let u and v be two distinct vertices in which

are both in AQ0
n−1 or both in AQ1

n−1. Then uh ,uc,vh , and vc are distinct if and only if

(u,v) /∈ C∗

n
.
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Figure 3.2: The augmented cubes AQ1, AQ2, and AQ3.

Lemma 2 Assume that (u,v) ∈ AQ0
n−1. Then (uh,vh) ∈ AQ1

n−1 and (uc,vc) ∈ AQ1
n−1.

Lemma 3 Given a vertex u ∈ AQ0
n−1. Let A = {v|(u,v) ∈ E(AQ0

n−1)} and B =

{vh,vc|v ∈ A}. Then |A| = 2n − 3 and |B| = 4n − 8.

For example, given a vertex 00000 in AQ0
5. Let A = {00001, 00010, 00100, 01000, 00011, 00111, 01111}

and B = {10001, 11110, 10010, 11101, 10100, 11011, 11000, 10111, 10011, 11100, 11111, 10000}.

Hence, only two vertices in A which are in C∗

n.
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Chapter 4

Fault-tolerant pancyclicity of
augmented cubes

To discuss the fault-tolerant pancyclicity of augmented cubes, we need to introduce the

following term for graphs. A graph G has property 2H if it satisfies the following condi-

tions: Let {w, x} and {y, z} be two pairs of four distinct vertices of G. There exist two

disjoint paths P1 and P2 of G such that (1) P1 joins w to x, (2) P2 joins y to z, and (3)

every vertex of G is either on path P1 or on P2.

Lemma 4 [5] Let n ≥ 4. AQn is (2n − 3)-fault hamiltonian, (2n − 4)-fault hamiltonian

connected and has property 2H.

Property 1 Given a path P. P has i+1 subpaths of length l(P)− i for 0 ≤ i ≤ l(P)−1.

Now, we are going to discuss the fault-tolerant pancyclicity of augmented cube. We

can find that AQ3 is not fault-tolerant pancyclicity with our computer programs. The

base case is AQn for n = 4. We translated the proof to computer programs and we put
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these programs and their outputs on the web site ”http://140.113.167.44/aq4.html”. Let

F ⊂ V (AQn) ∪ E(AQn) be any faulty set of AQn. An edge (u,v) is called F-fault free

if (u,v) /∈ F , u /∈ F , and v /∈ F ; otherwise it is called F -fault. Let H = (V ′, E ′) be a

subgraph of AQn. We use F (H) to denote the set (V ′ ∪ E ′) ∩ F

Theorem 1 Let n ≥ 5. Suppose AQn−1 is (2n − 5)-fault pancyclic. Then, AQn is

(2n − 3)-fault pancyclic

Proof. Let F be any subset of V (AQn) ∪ E(AQn) with |F | ≤ 2n − 3. Without loss

of generality, we assume that |F (AQ0
n−1)| ≥ |F (AQ1

n−1)|. We discuss this problem with

|F | = 2n− 3. If the fault of augmented cubes is less then 2n− 3, we can add some edges

into fault set which are fault free . To show that AQn is (2n − 3)-fault pancyclic, we

shall find cycles of lengths from 3 to |V (AQn)| − |Fv(AQn)|. We divide the proof into

three cases. Because we suppose augmented cubes is (2n − 3)-fault pancyclic, AQn−1 is

(2n − 5)-fault pancyclic.

Case 1: Cycles of lengths from 3 to |V (AQ1
n−1)| − f 1

v .

Since AQn−1 is (2n−5)-fault pancyclic, AQ1
n−1 contains of lengths from 3 to |V (AQ1

n−1)|−

f 1
v for n ≥ 5. Clearly, AQn − F also contains cycles of these lengths.

Case 2: A cycle of length |V (AQ1
n−1)| − f 1

v +1.

14



We shall claim that there exists a vertex u in AQ0
n−1 such that both (u,uh) and

(u,uc) are F-fault free. Suppose it is not exist, |F | = 2n − 3 ≥ 2n−1/2 = 2n−2, which is

a contradiction for n ≥ 5. In addition, AQ1
n−1 is (2n − 6)-fault hamiltonian connected,

AQ1
n−1 − (F 1

v ∪ F 1
e ) has a hamiltonian path 〈uh,P,uc〉. Thus, 〈u,uh,P,uc,u〉 is a cycle

of length |V (AQ1
n−1)| − f 1

v + 1.

We follow [5] to construct cycles of lengths from |V (AQ1
n−1)|−f 1

v +2 to |V (AQn)|−fv.

Case 3: Cycles of lengths from |V (AQ1
n−1)| − f 1

v + 2 to |V (AQn)| − fv

Subcase 3.1: |F (AQ0
n−1)| = 2n − 3. Thus, |F − F (AQ0

n−1)| = 0. Let f1 and f2 be

any two elements in F (AQ0
n−1). Since AQn−1 is (2n − 5)-fault hamiltonian, there exists

a hamiltonian cycle C = 〈u, f ′

1
,v,P1,w, f ′

2
,x,P2,u〉 in AQ0

n−1 − (F (AQ0
n−1) − {f1, f2})

where f ′

1 = f1 if f1 is on C or f ′

1 is an arbitrary edge of C otherwise and f ′

2 = f2 if f2

is on C or f ′

2 is an arbitrary edge of C otherwise. Without loss of generality, we assume

that l(P2) ≤ l(P1).(See Fig.4.1)

Subcase 3.1.1: l(P2) ≥1. First, we take P1 to construct the cycles of lengths from

|V (AQ1
n−1)|−f 1

v +2 to |V (AQ1
n−1)|−f 1

v +1+ l(P1). Let P′

1
= 〈m,P”

1
,n〉 be the subpaths

of the path P1 have lengths from 1 to l(P1) by Property 1. Since vertices m and n

are distinct in AQ0
n−1, there are two vertices mh and nh which are distinct in AQ1

n−1 by

Lemma 1. By Lemma 4, there exists one hamiltonian path H = 〈mh ,P3,n
h〉 in AQ1

n−1.

Thus, 〈m,P1”,n,nh,P3,m,mh〉 forms cycles of lengths from |V (AQ1
n−1)| − f 1

v + 2 to
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Figure 4.1: The example of Subcase 3.1.

|V (AQ1
n−1)| − f 1

v + 1 + l(P1).(See Fig.4.2)

Now, let P′

1
= 〈m,P”

1
,n〉 of the path P1 which have length l(P1) − 2 and the set

of subpaths P′

2
= 〈k,P”

2
,q〉 of P2 which have lengths from 1 to l(P2) by Property 1.

Since AQn−1 has property 2H, there exist two disjoint spanning paths 〈kh ,P3,m
h〉 and

〈nh ,P4,q
h〉 in AQ1

n−1. Thus, the set of cycles = 〈n,P”
1
,m,mh ,P3,k

h ,k, P”
2
,q,qh ,P4,n

h ,n〉

which have lengths from |V (AQ1
n−1)| − f 1

v + 2 + l(P1) to |V (AQn)| − fv − 2.(See Fig.4.3)

Finally, we take the two kind of subpaths P ′

1 which have lengths l(P1)−1 to l(P1). Thus,

the set of cycles = 〈n,P”
1
,m,mh ,P3,k

h ,k, P”
2
,q,qh ,P4,n

h ,n〉 are results of Subcase

3.1.1.
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Figure 4.2: The cycles of lengths from |V (AQ1
n−1)|−f 1

v +2 to |V (AQ1
n−1)|−f 1

v +1+ l(P1).

Subcase 3.1.2: l(P2) = 0. Then u = x. By Property 1, we use the set of subpaths P′

1
=

〈a,P”
1
,b〉 of path P1 have lengths from 1 to l(P1) by Property 1 with the hamiltonian path

P2 = 〈ah ,P′

2
,bh〉 of AQ1

n−1 to construct the cycles= 〈a,P”
1
,b,bh ,P′

2
, ah , a〉 of lengths

from |V (AQ1
n−1)| − f 1

v + 2 to |V (AQn)| − fv − 1.(See Fig.4.4) Since the hamiltonian cycle

is constructed in Lemma 4, this completes the proof of Subcase 3.1.

Subcase 3.2: |F (AQ0
n−1)| = 2n−4. Thus, |F −F (AQ0

n−1)| = 1. Since AQn−1 is (2n−5)-

fault hamiltonian, there exists a hamiltonian cycle Ci of AQ0
n−1 − (F (AQ0

n−1)− {fi}) for

every fi ∈ F (AQ0
n−1). We can write Ci as 〈ui,Pi,vi, fi,ui〉. Since |F (AQ0

n−1)| ≥ 6

and |F − F (AQ0
n−1)| ≤ 1, there exists an index i such that (ui,u

h
i ) and (vi,v

h
i ) are F-

fault free. Since AQn−1 is (2n − 6)-fault hamiltonian connected, there is a hamiltonian
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Figure 4.3: The cycles of lengths from |V (AQ1
n−1)| − f 1

v + 2 + l(P1)
to |V (AQn)| − fv − 2.

path Q1 in AQ1
n−1−F (AQ1

n−1) joining uh
i and vh

i . Thus, 〈ui,u
h
i , Q1,v

h
i ,vi,Pi,ui〉 forms a

hamiltonian cycle in AQn−F . By Property 1, we can find out the necessary set of subpaths

P′

i
= 〈a,P”

i
,b〉 of Pi. We claim that edges (a, ah) and (b,bh) are F-fault free, too. Since

AQn−1 is (2n − 6)-fault hamiltonian connected for n ≥ 5, there is a hamiltonian paths

〈ah ,P2,b
h〉 of AQ1

n−1 − F (AQ1
n−1). Then the cycles 〈a, ah ,P2,b

h ,b,P”
1
, a〉 are cycles of

length from |V (AQ1
n−1)| − f 1

v + 2 to |V (AQn)| − fv − 1 of AQn − F . This completes the

proof of Subcase 3.2.

Subcase 3.3: |F (AQ0
n−1)| ≤ 2n−5. Thus, |F (AQn)−F (AQ0

n−1)| is 2n−3−|F (AQ0
n−1)|.

Since AQn−1 is (2n − 5)-fault hamiltonian, there is a hamiltonian cycle C in AQ0
n−1 −

F (AQ0
n−1). We want to select a path P1 which has lengths from 1 to |V (AQ0

n−1)|− f 0
v − 1
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Figure 4.4: The cycles of lengths from |V (AQ1
n−1)| − f 1

v + 2 to |V (AQn)| − fv − 1.

in AQ0
n−1. We wish that there exists the set of subpath P1 = 〈u,P′

1
,v〉 in C such that

both (u,uh) and (v,vh) are fault free. We can find out b(2n−1 − f 0
v )/2c pairs of vertices

to construct the subpaths of lengths from 1 to |V (AQ0
n−1)| − f 0

v − 1 in this hamiltonian

cycle. Because |F (AQn)−F (AQ0
n−1)| is at most 2n−3−|F (AQ0

n−1)|, we can find out that

b(2n−1 − f 0
v )/2c > 2n− 3−|F (AQ0

n−1)| for n ≥ 5. We decide that there exist two vertices

{u,v} which construct necessary subpaths of lengths from 1 to |V (AQ0
n−1)| − f 0

v − 1

in C such that both (u,uh) and (v,vh) are fault free. Since AQn−1 is (2n − 6)-fault

hamiltonian connected, there is a hamiltonian path 〈uh ,P2,v
h〉 of AQ1

n−1 − F (AQ1
n−1).

Then 〈u,uh ,P2,v
h ,v,P′

1
,u〉 can construct subpaths of lengths from |V (AQ1

n−1)|−f 1
v +2

to |V (AQn)| − fv. This completes the proof of Subcase 3.3(See Fig.4.5).
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Figure 4.5: The example of Subcase 3.3.

This completes the proof of the theorem.

2

Corollary 1 By Theorem 1 and our computer programs, AQn is (2n− 3)-fault pancyclic

for n ≥ 4.
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Chapter 5

Conclusion

There are a lot of good properties in hamiltonian cubes. Various hamiltonian properties

of hypercube-based graphs have been proposed in literature. In addition, fault tolerance

is also considered. The augmented cubes is introduced as an alternative to hypercubes.

In this thesis, we discuss the fault-tolerant pancyclicity of the augmented cubes. We

proved that AQ4 is 5-fault pancyclic for induction base by computer programs, then by

induction, we proved that AQn is (2n − 3)-fault pancyclic for n ≥ 4.
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