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Abstract

Multi-agent systems (MAS) offer promising solutions to complex problems

in distributed, open environments. Each MAS agent uses limited resources,

incomplete knowledge, and limited capabilities to solve complex problems

via agent interactions. For this reason, how to perform efficient searches

for compatible agents is currently an important research topic. The author

describes a proposed decentralized service lookup (DSL) mechanism that

constructs service directories that are distributed among agents, who use

keywords to find resources, capabilities, and knowledge held by other agents.

The proposed DSL avoids three common problems in this area: broadcast

queries, single point failures, and performance bottlenecks.
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Chapter 1

Introduction

Multi-agent systems (MAS) offer promising solutions to complex problems

in distributed, open environments. Each MAS agent uses limited resources,

incomplete knowledge, and limited capabilities to solve complex problems

via agent interactions. This makes efficient searches for compatible agents

an important research topic in Information Science. In this thesis, I will give

a detailed description of a decentralized service lookup (DSL) mechanism

that prompts agents to use keywords for looking up services provided by

other agents. The DSL serves as a means for finding compatible agents for

purposes of receiving larger rewards and managing resources, capabilities,

and knowledge more efficiently.

MASs consist of agents with limited capabilities and incomplete environ-

mental knowledge; the agents solve problems by interacting with each other

within loosely-coupled networks. Currently, computer science researchers

tend to solve complex problems in distributed, open environments using sys-

tems (e.g., RoboCup Rescue [8]) and architectures (e.g., Open Agent Archi-

tecture [10]) that view agents as modular components. Individually, agents

in a MAS do not have sufficient information for problem-solving.

Research on agent interaction for increasing rewards can be categorized
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as a) efficient searches for compatible agents, and b) means for multi-agent

operations. In the first category, proposed methods include market-based

mechanisms [14], middle agents [3], recommendation and request forward-

ing [5, 7], coalition formation [13, 2], and center agents [8]. Research in the

second category is primarily focused on the communication languages (e.g.,

KQML [4]) used by agents for expressing their needs after they find compat-

ible agents.

There are at least three important challenges to finding compatible agents.

The first is referred to as broadcast queries—the means by which agents in-

teract. Since messages are broadcast to all agents in a MAS, this method

is considered inefficient because it increases both computing and commu-

nication overhead. In Matchmakers [17], RoboCup Rescue [8], and similar

programs, middle agents must be able to communicate/interact with all other

agents. If this task requires excessive amounts of computation and commu-

nication resources, it can lead to the second important challenge, referred to

as performance bottlenecks. If middle agents fail, then all other MAS agents

will not be able to find compatible agents—a situation known as single point

failure, the third challenge.

The DSL described in this thesis avoids these challenges by means of

careful information management—that is, by building decentralized service

directories. The DSL also provides a keyword system for agents to use when

searching for compatible agents. To address the issue of communication effi-

ciency, I will use RoboCup Rescue without center agents as an experimental

platform for verifying the proposed DSL’s ability to avoid the three chal-

lenges.

The outline for the rest of this thesis is as follows: in Section 2 I will

discuss research on efficient searches for compatible agents and the current

2



literature on broadcast queries, single point failures, and performance bot-

tlenecks. The proposed DSL mechanism is described in Section 3; the de-

scription includes an overview, specific information on the Chord protocol,

and DSL operations. In Section 4 I will present the experimental design

for testing the proposed DSL and discuss the results of the experiments. A

conclusion is offered in Section 5.
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Chapter 2

Related Work

2.1 Middle Agent

Middle agents have different names in different systems. In Open Agent Ar-

chitecture they are known as facilitators [10], in InfoSleuth they are called

brokers [12], and in RETSINA they are referred to as matchmakers [17].

Middle-agent MASs also have provider and requester agents. In a typical

interaction, providers send advertisements describing their services and re-

questers send their service requests to middle agents. The middle agents

then return matching advertisements to the requesters. Single point failures

and performance bottlenecks occur when all agents in a system send their

requests and/or post their advertisements to middle agents within a narrow

time frame (A.1). The proposed DSL uses a keyword system to manage these

interactions.

2.2 Market-based Mechanisms

Another approach makes use of market-based mechanisms to manage agent

actions—for instance, bidding for services in auctions using contract net pro-

tocols [14]. However, it is still possible for large numbers of agent messages
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to cause performance bottlenecks, or for unexpected auction breakdowns to

cause single point failures.

2.3 Forwarding Recommendations and Requests

In systems based on these two methods, agents send requests to other agents,

who either respond with recommendations or forward them to other agents.

For example, Iamnitchi and Foster [7] proposed a resource discovery system

based on a grid. If A sends a request to B for resource x and B does not have

the resource, B uses different request forwarding strategies with C, D, E, etc.

until it locates an agent that has the resource. According to an experiment

they conducted using different scenarios to test several request-forwarding

strategies, the strategy of forwarding requests to agents who have the best

track records of satisfying past requests is most successful in environments

with unbalanced resource distributions. Forwarding requests to a randomly

chosen agent was also identified as a satisfactory strategy, especially when

resource distribution is balanced.

2.4 Coalition Formations

In systems based on this method, agents organize coalitions among groups

according to agent interests [13, 2]. This allows for quick identification of

other agents for interactions based on need. An example is Foner’s [5] Yenta

Lite system, in which agents use a recommendation system to find other

agents who share common interests.
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2.5 RoboCup Rescue

RoboCup Rescue [8] is a MAS used to simulate large-scale urban disasters. It

utilizes three types of platoon agents and three corresponding types of center

agents; these are described in detail in section 4.1. A platoon agent must use

a corresponding center agent in order to interact with other types of platoon

agents (C.2). If a center agent fails, its corresponding platoon agents will

be blocked from interacting with other types of platoon agents, resulting in

a single point failure. Performance bottleneck problems arise if all platoon

agents of the same type move to interact with other agent types within a

short time frame. As I will show in Section 4, the proposed DSL allows

platoon agents of different types to communicate with each other without

having to rely on center agents, thus avoiding both of these problems.

2.6 Multiple Middle Agents Architectures

Another strategy for avoiding performance bottlenecks and single point fail-

ures is to incorporate multiple middle agents into a MAS architecture. Three

examples of this approach are Open Agent Architecture [10], RETSINA [18]

and DECAF [6]. In RETSINA, after a matchmaker organizes a list contain-

ing the IDs of agents whose capabilities match incoming requests, it uses an

agent name server (ANS) to find them. RETSINA uses a large number of

these servers. An ANS can provide a multicast-based discovery service in

order to respond to the needs of dynamic environments, and uses a flexible

updating method to map agent names to their locations. The availability of

more than one middle agent and ANS to serve the needs of individual agents

allows this system to avoid single point failure and performance bottleneck

problems.

6



The discovery service [9] provided by an ANS is built using a multicast-

based protocol such as Gnutella (global discovery) or UPnP (local discovery).

When an ANS performs a search, it sends a multicast message to an entire

network in order to contact all other ANSs; this can result in a broadcast

query problem (A.2). By avoiding the use of extra agents, the proposed DSL

system is better able to respond to changing agent behaviors with much fewer

messages being exchanged.
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Chapter 3

Decentralized Service Lookup

3.1 Chord Protocol and Chord API

The Chord protocol addresses object location problems using a peer-to-peer

network environment without centralized or hierarchical control organiza-

tions. Chord supports one simple operation, expressed as “given a key, Chord

maps the key onto a node” [15]. Assuming n number of nodes, Chord proto-

col takes O(log(n)) messages to look up the location of a key with O(log(n))

nodes, with each node having O(log(n)) amount of information stored in it.

Chord protocol maintains information even when nodes join and leave the

system; at a high level of probability, each event results in no more than

O(log2(n)) messages. The Chord protocol uses load-balanced, decentralized,

scalable, and flexible naming properties, all of which are common charac-

Decentralized
Service Lookup

Chord API

Agent

Service Directory

Figure 3.1: Agent architecture with DSL
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teristics of large-scale, dynamic, and open peer-to-peer environments. Other

decentralized protocols that have been suggested for locating objects in peer-

to-peer systems include Pastry, Tapestry, and Freenet. Chord is considered

more simple and reliable [15].

Chord’s key-mapping feature provides a method for MAS agents to build

decentralized service directories in the absence of global information or cen-

tralized control. Chord defines the means for a) locating a key, b) finding

new nodes to enter a system, and c) handling and recovering local node

information if an agent fails unexpectedly.

The agent architecture in the proposed DSL MAS is shown in Figure 3.1.

Using Chord API (Appendix B), agents build and maintain local information

in the form of finger tables, successor lists, and service directories. They use

DSL operations and local information to locate services and to find agents

that provide them.

3.1.1 Consistent Hashing

Using a hash function (e.g., SHA), Chord assigns an ID to each node and

assigns a key to each object; in both cases, the range is from 0 to 2m − 1.

9
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(b) Key lookup with finger ta-
ble

Figure 3.3: Chord protocol

Chord also organizes system nodes into Chord rings. X is said to be the

successor of Y (either an object or node) if it is next to Y in clockwise order

in a Chord ring. A example of a Chord ring containing 10 nodes and 5 keys

with identifiers ranging from 0 to 63 is shown in Figure 3.2.

3.1.2 Scalable Key Location

Chord ring nodes maintain their successors’ locations as part of their local

information. The nodes also maintain finger tables that contain m entries.

The ith entry in the finger table of node X (called the ith finger of X) stores

the successor of (x + 2i−1), where 1 ≤ i ≤ m. The complete finger table

of a node (named node 8) is presented in Figure 3.3(a). This scheme has

two characteristics: a) each node only stores information on a small number

of other nodes, and b) the information stored in one node is insufficient for

finding a key’s successor. In other words, finding a key’s successor requires

several steps involving several nodes.

In Figure 3.3(b), for instance, node 8 wants to look up an object with

key 54. First, node 8 searches its finger table and learns that it must contact

10



node 42. According to its local information, it knows that node 52 is node

42’s successor. Then node 42 addresses node 56 by finding key 54’s successor

in its local information. Finally, key 54 is located as part of node 56’s local

information. This operation takes O(log(n)) steps involving O(log(n)) nodes.

Detailed proofs and pseudo codes are presented in [15, 16].

3.1.3 Dynamic Operations and Failures

In dynamic and open network environments, Chord has two responsibilities:

a) maintaining correct local information when nodes join, leave, or fail unex-

pectedly; and b) ensuring that finger tables and node successors are updated

by periodically calling the stabilize and fix fingers functions of Chord API.

Furthermore, nodes maintain successor lists of size r in order to store their

first r successors, thus ensuring that Chord will succeed even if r succes-

sors fail. However, if a node fails with probability p, the probability that r

successors will fail at the same time is only pr.

3.2 Agent Local Information

The proposed DSL provides a method for MAS agents to look up services

using local information instead of a combination of global information and

centralized control. As part of their local information, agents store a) Chord-

required finger tables and successor lists and b) service directories (Fig. 3.4)

that maintain service-location pairs using the format<service keyword, agent’s

name>. Service keywords can be defined as names, descriptions, or any other

parameter as determined by the application.

11



Service Keyword Agent’s Location
“gcd” “140.113.88.55”

Figure 3.4: Service directory

Table 3.1: DSL operations
Operation Description

n.Join(n′) agent n joins Chord ring which has agent n′ already
n.Update(keyword) agent n updates its service
n.Lookup(keyword) agent n looks up service by keyword
n.Recovery() agent n recovers local information periodically

3.3 Decentralized Service Lookup (DSL) Op-

erations

3.3.1 Join Operation

Initially, a MAS agent must call a join operation in order to become part of

a Chord ring. The join operation triggers the construction of an agent’s local

information and updates the appropriate Chord ring. As a join operation

parameter, the agent must then pass another agent that is already in the

Chord ring. The join operation also performs the stabilize, fix fingers, and

check predecessor functions of Chord API before building the Chord-required

finger tables and successor lists. Join operation steps for agent a1 with service

key s1 and a second agent (a2) that is already in the Chord ring can be

illustrated as

Steps of Join Operation
a1.join(a2)
a1.stabilize()
a1.f ix fingers()
a1.check predecessor()

12
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N8

N21
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(a) DSL update operation

N56

N8

N21

(2) response agent’s location

(3) agents interact with each other

(1) lookup by service keyword K52

(b) DSL lookup operation

Figure 3.5: DSL operations

3.3.2 Update Operation

This operation updates information on the service provided by an agent to

the directory. The agent must first identify the service key through consis-

tent hashing, then look for the key in the Chord ring using the Chord API

find successor function. The agent finds the key’s successor agent, which is

responsible for maintaining the service location in its service directory. After

the agent locates the key’s successor, the agent sends that successor an up-

date message that contains a service directory entry in the format <service

keyword, agent’s location>. After the successor receives the message, it up-

dates the corresponding entry in its service directory.

An example of this operation is presented in Figure 3.5(a). In the figure,

N21 looks for K52’s successor using the Chord API find successor function.

After several steps, K52’s successor—N56—receives the update message and

updates its service directory.

13



3.3.3 Lookup Operation

In order to find a specific service, agents must know the service keyword be-

fore using the lookup operation to locate the service. This operation returns

the service locations found in the directories of key successors. After receiv-

ing these locations, agents interact directly with the agents that provide the

services. An example is given in Figure 3.5(b). In the example, N8 wants to

find the agent that provides the service gcd with the hash value K52. First,

the lookup operation calls find successor several times to find K52’s succes-

sor, N56. After querying the service directory of N56, the lookup operation

returns the location of N21 (which provides service gcd) to N8. N8 then

interacts directly with N21.

3.3.4 Recovery Operation

In a dynamic, open MAS, agents regularly join, leave, and fail. These events

often result in outdated local information. The DSL recovery operation helps

agents handle these ongoing events. Chord API defines several methods (in-

cluding stabilize, fix fingers, and check predecessor) to recover finger tables

and successor lists. The recovery operation also triggers the update opera-

tion to update service directories using data from finger tables and successor

lists.

14



Chapter 4

Experiments and Evaluations

To verify that the proposed DSL helps in the search for compatible agents, an

attempt was made to improve the efficiency of platoon agent interactions in

RoboCup Rescue without the benefit of center agents. Experimental results

(e.g., fire spreading, message distribution, hops for finding successors) were

analyzed in order to prove that the DSL avoids broadcast queries, single

point failures, and performance bottlenecks.

4.1 RoboCup Rescue

The various agent categories in RoboCup Rescue are shown in Figure 4.1.

Ambulance teams are responsible for rescuing injured civilians in disaster

areas, fire crews are responsible for extinguishing fires, and police units are

responsible for clearing roads that are blocked by collapsed buildings. These

Ambulance center Fire station Police office

Ambulance team Fire brigade Police force

Figure 4.1: RoboCup Rescue telecommunication
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three agent types come under the category of platoon agents. They have the

ability to interact with each other over long distances using a) telecommuni-

cation via center agents, or b) in-person oral communication. For instance, if

a fire crew cannot move through a blocked area, it can orally communicate its

needs to any police units within 30 meters. RoboCup Rescue also has three

corresponding center agents: ambulance centers, fire stations, and police sta-

tions. As shown in Figure 4.1, fire crews located in fire stations must use

telecommunications to contact police units located in police stations. The

respective stations are responsible for forwarding information from individual

units in the field (C.2).

The main task of fire crews—extinguishing fires—is dependent on two

key points: cooperation with and between crews, and the ability to quickly

determine where fires or other disasters are occurring. They cannot get to

fires or other emergencies if access roads are blocked. In such situations, they

must inform police units of the blockages; in other situations, police units

must inform fire units of the locations of burning buildings. If fire crews

and police units are limited to oral communications, then the efficiency of

firefighting crews will be severely restricted. In sections 4.3 and 4.4 I will

describe simulations of these types of scenarios using RoboCup Rescue with

and without center agents.

4.2 Rescue without Center Agents using DSL

Without the benefit of center agents, platoon agents in RoboCup Rescue

are only able to telecommunicate with other platoon agents of the same

type; in contrast, they can use oral communication with all types of platoon

agents. Oral communication is limited to platoon agents who are within 30

meters of each other. For example, if fire crew B and police units C and

16



D are within 30 meters of fire crew A, then any communication sent by A

will be immediately received by B, C, and D. In the real world, this is a

very unusual situation. In order to facilitate communication between platoon

agents of different types within 30 meters of each other, the proposed DSL

system creates directories for service sharing—meaning that platoon agents

of different types can interact without having to go through center agents.

In the example presented as Figure 4.2,

1. Platoon agents of the same type are organized into a Chord ring by a

join operation.

2. Fire crew N1 needs help from police unit N8, whose service is repre-

sented by key K8.

3. N1 looks for K8’s successor via the lookup operation and learns that

the successor is N14 (Fig. 4.2 (a)).

4. N14 queries its service directory and learns that agent N7 provides

service K8.

5. N14 forwards a request to N7 (Fig. 4.2 (b)).

6. N7 receives the request and performs the service for N1—that is, it

forwards the request to N8 via oral communication (Fig. 4.2 (c)).

4.3 Scenario Design

Morimoto [11] developed a Java API named Yab API to help speed up the

process of designing agent AIs in RoboCup Rescue. Ako [1] et al. used

it to design an agent AI named YowAI that won second place in the 2003

17
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Figure 4.2: DSL lookup operation in RoboCup Rescue

RoboCup Rescue Contest. These YowAI agents were used in the experiments

described in this section.

Three RoboCup Rescue scenarios were designed using different condi-

tions; ambulance teams and the ambulance center were deleted for purposes

of simplification and to enhance the focus on interactions between fire crews

and police units (C.1,C.3,C.4). The scenarios used the default configuration

of RoboCup Rescue: a Kobe City location with four initial burning build-

ings, a 300-second simulation period, and the number of agents shown in

Table 4.1. The three scenarios were as follows:

YowAI with center agents showing a normal (i.e., non-DSL) result and

a performance bottleneck problem.

YowAI without center agents showing that single point failures can cause

agents to perform their jobs poorly.

YowAI+DSL without center agents showing that the proposed DSL im-

proves agent performance, and highlighting the performance character-

istics of the DSL system.
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Table 4.1: Number of agents in different scenarios

Police Fire Police Fire
Office Station Force Brigade

YowAI with center agents 1 1 10 10
YowAI without center agents 0 0 10 10
YowAI+DSL without center agents 0 0 10 10
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Figure 4.3: Number of burning buildings in the three scenarios

4.4 Results

4.4.1 Spread of Fire

Statistics from a number of burning buildings were used to verify if the fires

in the scenarios spread or were extinguished. In each of the three scenarios,

four buildings are burning as the simulation starts. The fires spread through

the buildings very quickly, and become more and more difficult to control. If

the fire crews and police units can work together quickly to locate and reach

the fires, there is greater potential for extinguishing them before they spread.

The number of burning buildings during single fires in different scenarios

(average numbers of simulations= 5) are shown in Figure 4.3. In the YowAI

scenario with center agents, the number of burning buildings= 4; the fire
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Figure 4.4: Number of messages received by agents in YowAI with center
agents

is completely extinguished by the end of the 100-second simulation. In the

YowAI scenario without center agents, the fire crews are not able to extin-

guish the fire quickly, and it spreads through more than 40 buildings by the

time the simulation ends at 300 seconds. This result is due to a single point

failure problem, since different types of platoon agents could not interact

with each other without the assistance of center agents.

Finally, in the YowAI+DSL scenario without center agents, the fire crews

extinguish the fire in 100 seconds, after it spreads through only 10 buildings.

The proposed DSL system apparently offers an efficient way for different

types of platoon agents to find each other and achieve a common goal without

having to address a single point failure problem.

4.4.2 Message Distribution

A comparison was made between messages received by agents in the YowAI

scenario with center agents and the YowAI+DSL scenario without center

agents to analyze bottleneck problems and the load balance property of the

proposed DSL system. As shown in Figure 4.4, in the YowAI scenario with
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Figure 4.5: Number of messages received

center agents, the number of messages received by platoon agents (359 by

police units and 374 by firefighting crews) was much greater than the number

of messages received by center agents (1, 125 police-related messages and

1, 100 firefighter-related messages). According to these results, performance

bottleneck problems occurred because the center agents had to handle a

much larger number of messages than the platoon agents, thus increasing

computation and communication overhead.

In the YowAI+DSL scenario without center agents, the biggest difference

in the percentages of messages received by police units (Fig. 4.5(a)) and

firefighters (Fig. 4.5(b)) was no more than 7 percent. It is therefore suggested

that the reduced number of bottleneck problems associated with the proposed

DSL is due to its balanced load characteristic.

4.4.3 Hops of Finding Successors

The term hops for finding successors refers to the number of messages that

are used to look up a service location by its keyword. The term can be used

to discuss system efficiency—that is, the fewer the number of messages, the

fewer the number of agents involved, the less time required, and the more ef-
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ficient the system. The proposed DSL system maps the hash values of service

keywords onto a Chord ring agent. After five simulations, the average number

of hops was 2.63 over 2, 176 lookup operations. In the YowAI scenario with

center agents, 3 messages are required for a platoon agent to send a request to

another type of platoon agent. In comparison, the DSL system requires 2.63

messages to look up a service location, plus one oral communication message

and one telecommunication message to forward the request—in other words,

it needs 4.63 messages for a platoon agent to send a request to another type of

platoon agent within a 10-agent Chord ring. As the number of agents grows,

the number of required hops increases at a rate of log(number of agents).

The DSL system requires O(log(number of one type platoon agents)) hops

for a platoon agent to look up a service location. The proposed DSL system

thus uses more messages, but avoids the problems that are associated with

a system that uses center agents, and is therefore considered more efficient.
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Chapter 5

Conclusion

The proposed DSL system allows for a decentralized method of service lookup

in a MAS by building service directories that are distributed among agents.

The system offers an efficient lookup operation for one agent to find com-

patible agents for service provision and goal-oriented interactions. Most im-

portantly, the proposed DSL system avoids three problems that are very

common in systems designed to bring together compatible agents: broadcast

queries, performance bottlenecks, and single point failures. By simulating

three firefighting scenarios with RoboCup Rescue, it was possible to show

that the DSL system can avoid the single point failures and performance

bottlenecks that are associated with the use of center agents.

Data on message distribution in the three scenarios shows that the pro-

posed DSL system is capable of balancing message loads and improving in-

teraction efficiency among different types of platoon agents without the use

of center agents, while avoiding single point failures and performance bottle-

necks. Each DSL operation requires only a few messages among a small num-

ber of agents—a significant improvement over the broadcast query method

used by other systems. In addition, the proposed DSL system has a recovery

operation feature for handling changing behaviors and situations associated
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with agents joining, leaving, or failing in a scenario. The proposed system is

built on a Chord protocol that makes use of peer-to-peer methodology—in

other words, no agent is considered more important than others in a Chord

ring. The DSL system described in this paper is clearly decentralized.
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Appendix A

Related Work

A.1 Middle Agents

Agents in MAS with middle agents can be categorized into three types:

providers, requesters, and the middle agent. Providers are agents who pro-

vide services to others, and requesters are agents who need services. The

interactions between these tree types of agents can be described as follows:

1. Providers advertise their services to the middle agent.

2. The middle agent stores these advertisements.

3. Requesters request services from the middle agent.

4. The middle agent finds if there are well-matched services and return

an agent name list.

For example, matchmakers and brokers are two kinds of middle agents. In

fact, the interaction between agents and the matchmaker is a little different

from the interaction between agents and the broker. Figure A.1 shows the

interaction between a single agent and the matchmaker.

(a) The provider advertises/unadvertises its service to the match-

maker.
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Figure A.1: Interaction between a single agent and the matchmaker
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Figure A.2: Interaction between a single agent and the broker

26



(b) The requester requests service it needs to the matchmaker.

(c) The matchmaker replies the provider well-matched agent names.

(d) The requester requests service it needs from the provider who

advertises the service.

(e) The provider replies results of service.

After the requester receives the agent names from the matchmaker, it

interacts with the provider directly. Instead of interacting with the provider

directly, the requester delegates request to the broker as follows (Figure A.2).

(a) The provider advertises/unadvertises its service to the broker.

(b) The requester requests service it needs to the broker.

(c) The broker requests service the requester needs from the provider

who advertises the service.

(d) The provider replies results of service to the broker.

(e) The broker forwards results of service to the requester.

However, middle agents, such as matchmakers and brokers, may cause

performance bottleneck because all agents (e.g., providers and requesters) in

MAS have to interact with it. Moreover, single point failure occurs when the

middle agent fails unexpectedly.

For instance, the interaction between the matchmaker and agents can be

shown in Figure A.3

Both providers and requesters need to interact with the matchmaker di-

rectly. There could be heavy computation and communication overhead on

the matchmaker. Thus, it may cause performance bottleneck, which makes
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Figure A.3: Interaction between a single agent and the matchmaker

MAS have low performance because a few agents have heavy computation

and communication overhead. Furthermore, when the matchmaker fails un-

expectedly, providers cannot advertise their services, and requesters cannot

find well-matched providers either. Single point failure occurs.

A.2 Agent Name Server

Agent name servers (ANSs) are special agents who map agent names to their

locations in RETSINA [18]. ANSs must have ability to ask other ANSs

when agents ask the mappings it does not know. Therefore, a mechanism

is needed for ANSs to locate all the other ANSs in the system. Langley [9]

et al. provide a discovery mechanism to ANSs, and the mechanism could

be divided into two parts: locating ANSs in the same LAN and in WAN.

When ANSs want to locate other ANSs in the same LAN, they use UPnP

protocol, which is broadcast-based. Although broadcast-based protocol may

cause broadcast query problem, it is reasonable because ANSs are in the same

LAN. On the other hand, when ANSs want to locate other ANSs in WAN,
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Figure A.4: The interaction between ANSs in WAN

they use Gnutella protocol. By Gnutella protocol, besides the mappings from

agent names to their locations, each ANS keeps a few locations of other ANSs.

When an ANS receives requests, the ANS asks other ANSs if it cannot satisfy

the requests (Figure A.4). When an ANS wants to answer agent names it

does not know, it asks the ANSs it knows. If the successive ANSs do not know

the agent names either, they will ask other ANSs they know until the agent

names are known by some ANS. Gnutella protocol takes lots of messages

and involves lots of ANSs while performing such an operation. It may cause

broadcast query problem.
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Appendix B

Chord API

Chord API assists in the development of Chord-based applications. Chord

API contains several methods for a node n to perform operations as the

following:

Operation Description
n.create() construct a new Chord ring
n.join(n′) join Chord ring which has node n′ already
n.stabilize() update successor list and notify predecessor
n.notify(n′) notify n′ to check predecessor
n.fix fingers() check finger table entries if they are up-to-date
n.check predecessor() check predecessor if it is up-to-date
n.find successor(key) lookup key’s successor
n.closest preceding node(id) lookup key’s successor from local information
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Appendix C

Experiment Details

C.1 RoboCup Rescue Simulation Platform

This chapter will introduce the RoboCup Rescue simulation platform used

in this paper, in which ambulance teams and the ambulance center were

deleted for purposes of simplification and to enhance the focus on interactions

between fire crews and police units. There are several components in this

RoboCup Rescue simulation platform1:

1. RoboCup Rescue Agents (RCRAgents)

2. Sub-simulators

3. Geographical Information System (GIS)

4. Viewer

5. Kernel

In these components, platoon agents and center agents are called RCRA-

gents, sub-simulators simulate phenomenon in disaster area, such as spread

1All the components, such as GIS, kernel, and all sub-simulators can be executed at
different computers, which are connected by network.
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Figure C.1: Graphical view of disaster area provided by viewer

of fire and collapse of buildings, and GIS provides initial conditions of dis-

aster area as simulation starts. Kernel manages network connections among

these components, including inter-communication between RCRAgents, and

viewer provides graphical view of disaster area during runtime (Figure C.1).

RCRAgents in the disaster area are shown as color circles: fire brigades

are in red, police forces are in yellow, and civilians are in green. The colors

of RCRAgents become dark when they get hurt, and the colors turn to black

if they die. Besides, square blocks are buildings, and there are in several

colors, which mean the burning time of buildings:

• Gray The buildings are in normal state without fire.

• Yellow and Red The buildings are burning, and the color turns yellow

to red if the burning time of buildings becomes longer.

32



Fire Station Police Office

Say Communication

Telecommunication

Fire Brigade

Police Force

Disaster Area

30m

(1)

(2)

(3)

Figure C.2: Agent communication in RoboCup Rescue

• Blue The buildings were burning before, but the fire is put out before

they are burnt out.

• Dark Gray The buildings are burnt out.

There are some buildings are inflammable, such as refuges which are in

green on the map, and “x”’s are blockages which are caused by collapses of

buildings.

C.2 RCRAgent Communication

There are two ways for RCRAgents to inter-communicate (Figure C.2).

1. Say Communication platoon agents talk via natural voice.

2. Telecommunication platoon agents talk via telecommunication de-

vices.

Say communication prompts platoon agents to communicate with all

types of platoon agents within 30 meters of disaster area. When kernel re-
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ceives a message of say communication sent by a platoon agent, it duplicates

the message and forwards duplicate messages to other platoon agents within

30 meters.

On the other hand, telecommunication prompts platoon agents to com-

municate with same type of platoon agent and the corresponding center

agent. In addition, telecommunication prompts center agents to communi-

cate with corresponding type of platoon agents and all other center agents.

Therefore, when kernel receives a message of telecommunication sent by a fire

brigade, it duplicates the message and forwards duplicate messages to all fire

brigades and fire station. When kernel receives a message of telecommunica-

tion sent by a police office, it duplicates the message and forward duplicate

messages to all police forces and fire station.

Thus, when a RCRAgent sends one messages to some type of platoon

agents, and platoon agents of that type receive the same message. In order

to implement DSL and verify its properties, it makes no sense because it

is difficult to verify that DSL avoids broadcast query. For example, when

DSL calls lookup operation, DSL searches successor of the key among the

agents in a Chord ring, which consists of platoon agents in one type (e.g., fire

brigades). DSL prefers that if a RCRAgent sends one message, then there will

be only one RCRAgent that can receive it. So, I make small modifications

to the kernel. The new kernel receives a message of telecommunication sent

by a fire brigade, it forwards the message to a specified fire brigade or fire

station instead of duplicating the message. With the new kernel, when a

platoon agent sends a message of telecommunication, it has to specify which

one it would like to send to. The new kernel makes it possible to observe the

number of messages received/sent by platoon agents in the same type (e.g.,

fire brigades) and verify that DSL is load-balanced and decentralized.
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Figure C.3: RCRAgent life cycle

C.3 RCRAgent Life Cycle with DSL

DSL provides four operation: join, update, lookup, and recovery for agents

to find other suitable agents to interact with by sharing services.

In RoboCup Rescue, RCRAgents sense information from the environment

and take actions continuously during the simulation. Figure C.3 shows the

life cycle of RCRAgents. After the simulation starts, RCRAgents establish

connections to the kernel. Then, RCRAgents perform their jobs by sensing

information from the environment and taking actions continuously. After the

simulation ends, kernel disconnects all RCRAgents.

On the other hand, when RCRAgents interact with each other with DSL,

they need some extra steps to maintain their local information needed by

DSL. After establishing connections to the kernel, RCRAgents have to invoke

join operation to initialize their local information and inform their successors
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Figure C.4: RCRAgent life cycle with DSL

that they join the system. Besides, after RCRAgents sense information from

environment, they have to decide if they have to update service they pro-

vide (update operation) and local information (recovery operation) or take

actions as Figure C.4. In experiments of this paper, RCRAgents call update

operation every 10 simulation cycle.

C.4 Parameter Configuration

In Section C.3, DSL makes RCRAgents perform additional operations in their

lift cycles in order to interact with others without center agents. In fact, there

are some constraints in RoboCup Rescue, which is a real-time system. For

example, RCRAgent communication is asynchronous, and RCRAgents can

take only one action in one simulation cycle. It means RCRAgents can send

as many messages as they want no matter how many cycles does it take.

As a result, RCRAgents take no action if they sends too many messages in
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Figure C.5: Result in YowAI with center agents

one cycle. Therefore, when RCRAgents use DSL to interact with each other,

they must not perform too many DSL operations. Although DSL operations

need only a few messages to complete the job, these messages are too many

for such a real-time system.

This paper uses several parameters to control RCRAgent behaviors to

keep a balance between performing DSL operations and doing their jobs.

• NumDiff The number of messages which have to be sent if platoon

agents want to communicate another type of platoon agents is limited,

and other messages will be discarded.

• DSLLimit The number of DSL messages that are allowed to be han-

dled in one simulation cycle is limited, because considering too many

messages causes platoon agents not to take at least one action in a

simulation cycle.
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Figure C.6: Result in YowAI without center agents

• NonDSLLimit The number of non-DSL messages allowed to sent by

a platoon agent in one simulation cycle is limited, and it can make sure

that platoon agents have time to take their actions.

• DSLUpdate Finally, the period for platoon agents to do update or

recovery operations of DSL is controlled, because doing these operations

too frequently not only does not improve the efficiency of platoon agents

but causes platoon agents to have no time doing their jobs.

After we simulate different combinations of parameter configurations and

find out the best one. It is (NumDiff,DSLLimit, NonDSLLimit,DSLUpdate) =

(1, 4, 2, 10). We use this parameter configuration in all simulations of this pa-

per.
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Figure C.7: Result in YowAI+DSL without center agents

C.5 Spread of Fire Screenshots

Figure C.5 shows the result of YowAI with center agents scenario. After 67

seconds, the 4 initial fires are all put out without spreading through other

buildings. This shows that platoon agents have very good performance with

the benefit of center agents.

In the scenario of YowAI without center agents, the fires are not put out,

and spread through many other buildings. A lot of buildings are burnt out.

The result is shown in Figure C.6. Platoon agents cannot perform their jobs

well without center agents.

In the scenario of YowAI+DSL without center agents, platoon agents

can use DSL to help them find others to interact with. The result is shown

in Figure C.7. Although the fires spread through a few buildings, platoon

agents put out the fires after 98 seconds. It shows that DSL provides an

efficient way for platoon agents to find others to interact with even if there

39



are no center agents.
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