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A Small-World Model for Epidemic Simulation

Student: Ji-Lung Hsieh Advisor: Dr. Chuen-Tsai Sun

Institute of Computer and Information Science

National Chiao-Tung University

Abstract

The author validates a new small world model consisting of cellular automata
with mirror identities of daily-contact social networks for purposes of epidemiological
simulations. The mirror identity concept ‘was established to integrate human
long-distance movement and daily 'visits to.fixed locations into the model. After
showing that the model is capable of displaying small-world effects (i.e., low degree
of separation and relatively high degree of clustering) on a societal level, we offer
proof of its ability to display Ry properties, which are considered central to
epidemiological studies. A simulation of the 2003 SARS outbreak serves as our

primary example of how the proposed model functions.

Keywords: Epidemic network model, Small-world model, Epidemic simulation,

Mobile individual problem, Epidemic model validation
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1. Introduction

Increasingly sophisticated computer and mathematical models are being used to
simulate medical epidemics that result from a broad range of complex factors that
include underlying social networks, contagious disease properties, and public health
policies. The literature is filled with efforts to find a suitable model for simulating
epidemics of various types and sizes and for predicting the movement of new
epidemics as soon as their identification is confirmed. If such a model can be
created and refined, it would make‘it possible for public health authorities to choose
the best policies for containing-the spread of a new virus such as SARS[1, 2], or for
targeting specific human behaviors that affect the spread of sexually transmitted
diseases[3].

Societal and epidemiological knowledge must be gathered before any simulation
of an epidemic can be performed. On a societal level, we know that individuals
come into contact with other neighbors in ways that can be measured geographically.
Neighbor clusters include family members, classmates, fellow commuters (on trains
and buses), and diners in restaurants. They often form triadic closures[4] (See
Appendix1.1)within a dynamic process leading to high levels of local clustering that

increase the speed of epidemic transmission. Furthermore, epidemics are now being



spread via the long-distance movement of individuals via airplanes, trains, and cars.

In their efforts to determine who is most likely to become infected,

epidemiologists focus on target populations (e.g., livestock or the elderly),

transmission routes (e.g., airborne, contact with skin, sexual contact), temporal

properties, and the presence and location of heterogeneous individuals. An example of

temporal segmentation that must be considered when designing a simulation is

incubation—between 4 and 6 days for SARS, up to 10 years for HIV. Individual

heterogeneity is measured in terms of health status, immunity, and recovery rates.

We have found that the compartmental models used in classic epidemiological

research make it very easy to study state transformations and changing numbers of

individuals in various populations [5]. Furthermore, these models can be used to

calculate RO—the basic case reproduction number that is considered a core

epidemiological parameter[6]. However, they fail to accurately assess social

phenomena resulting from human interactions. Many of the network models that use

sites to represent individuals and links to represent their interactions fail to

acknowledge long-distance movement. We established our mirror identity concept to

solve the problem of the mobile individual. A complete description will be offered in

the two sections that follow (See Appendix1.2).

Compartmental epidemiological models such as SIR, SIS, and SEIR focus on the



transformation of global parameters in a society and use stochastic processing and

differential equations[7] to derive RO numbers. Furthermore, they use continuous

segments of populations rather than individuals. Population compartments are needed

if the models are to generate data that correspond to the statistical data collected by

epidemiologists. These models may be suitable for simulating the transmission

dynamics of infectious diseases, but since they consider all individuals with the same

status as a single population, they overlook the fact that social phenomena result from

interactions between individuals. In the case of infectious diseases, epidemics are the

consequences of numerous contacts, interactions, and transmissions. Traditional

models ignore the spatial, interactive, and local properties of social issues, which

makes it difficult to study publie health policies as control measures. On the other

hand, these models are useful for collecting, verifying, and comparing disease

parameters; we therefore considered them useful in terms of improving the accuracy

of our proposed model.

Simple network models emphasize relations, links, and interactions among

individuals and assume that they remain independent of other links or interactions [5].

Several models simulate epidemics on two-dimensional lattices, with lattice points

representing heterogeneous individuals and links representing interactions among

them [8]. Two-dimensional lattices make it easier to describe neighborhoods and their



local properties, but they still fail to address the issue of long-distance movement.

Despite many attempts, researchers have yet to solve this particular problem.

The rest of this paper is organized as follows: in the next section we will define

the mirror identity concept and our overall model in societal and epidemiological

contexts. In the third section we will offer proof that our model is a small world

model by calculating average vertex-vertex distances and clustering coefficients. In

the fourth section we will use a contagious disease example to show how population

size and average number of mirror identities affect the spread of an epidemic. In

Section 4 we will also show how our meodel is capable of displaying the

epidemiological properties of RO'by comparing our- model parameters with the RO

derived by a compartmental statistical ‘model. Tn the fifth section we will simulate the

2003 SARS outbreak to show how our proposed model can be used to simulate the

movement of a contagious disease, and compare our simulation results with actual

data from the SARS outbreaks that occurred in Taiwan and Singapore.



2. Description of cellular automata with mirror

identity model

We created the mirror identity concept in an attempt to accurately portray the
daily activities of people living in modern societies—that is, the movement of
individuals among various geographic locations. The concept treats individuals as
agents with mirror identities that are logically abstracted in the form of places they
regularly visit—for instance, residences, train stations, workplaces, and restaurants.
Small clusters of neighbors consist of family members, coworkers, fellow commuters
on trains and buses, and diners+in restaurants. The mirror identities of any individual
can be viewed as “hyper-links” that'act in the same manner as weakly connected
properties in small-world social networks (Figure 1). We believe that mirror identities
more accurately reflect the low degree of separation that exists among individuals
who travel long distances (See Appendix2.3).

On a societal level, each cell in a cellular automata(See Appendix2.1) can be
viewed as one mirror identity, with the term of links used to describe relations among
individuals or with their mirror identities. Links can represent many types of relations,
including friendships, simple message transmissions, contacts between infected and

healthy people, and sexual relations. Neighborhoods are categorized as either von



Neumann or Moore [9], depending on the social issue being studied (Figure 2). We
will use the Moore concept for our discussion due to its ability to display triadic

closures among neighbors (See Appendix2.2).

B Infectious state
B Incubation state

Susceptible state

Figure 1. Social mirror identity on a two-dimensional lattice model
In terms of epidemiology, the independent status of all cellular automata sites
and links makes it easier to study heterogeneous individuals as well as the interactive
and temporal properties of infectious diseases discussed above. The SEIR model that
we adopted acknowledges four disease statuses: susceptible (S), exposed (E), infected
(), and removed (R). All individuals are assumed as starting with a susceptible
disease status, which changes according to contact history and the temporal

development of the infectious disease in question. Any time an individual’s disease



status changes, so do the statuses of all associated mirror identities.
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Figure 2. Examples of von Neumann and Moore Neighborhoods

In addition to addressing . interactions among. heterogeneous individuals, our
model also makes use of the neighborhood concept and spatial properties to describe
such important geographic locations‘as homes and healthcare centers (Figure 1). This
reflects the reality that an individual not only has a disease status, but also geographic
mobility and social identity during an epidemic outbreak. In the SARS scenario,
isolation in a hospital means that we can disable the geographic mobility of all mirror
identities but one (i.e., as a hospital patient) (See Appendix2.4); this allows for a
restricted research focus on the movement of healthcare workers. A similar example
entails a home quarantine policy involving family members as the only neighbors

having access to the quarantined individual.



3. The small-world phenomenon

In 1998, Watts and Strogatz described the effects of Milgram’s small-world
phenomena on multiple interactions among social individuals [10, 11]. It is now
generally accepted that the topological structure of social networks exerts a strong
influence on the development of social issues [12]. Since individuals move over long
distances and express aggregate behaviors, geographic location and distance are
considered secondary disease transmission factors in societies with small world
properties [13-15].

The two most important factors for measuring small world phenomena are
degree of separation and clustering. Our rapidly increasing tendencies to come into
contact with individuals over long distances by airplane, train, and car reduces the
actual degree of separation among humans—what Milgram has described as “six
degrees of separation.” Most researchers use average vertex-vertex distances and
clustering coefficients (i.e., average pair fractions of neighbors, either with a
designated individual or with each other) in random graph theorems to calculate
separation and clustering. Because real-world neighbors form triadic closures so
easily, their relations tend to produce large clustering coefficients. Accordingly, the

two most important factors in small world networks are low degree of separation

(compared to regular networks) and high degree of clustering (compared to random



networks). A typical small world phenomenon is the logarithmic (instead of geometric)

increase in degree of separation that occurs with the expansion of network size [16]

(See Appendix3.1).

Watts and Strogatz’s B-model is arguably a better fit than other models in terms

of real-world parameters. Although the original B-model is a one-dimensional lattice,

it does reflect a certain degree of randomness—for instance, randomly rewired links

with B probabilities [10]. These networks are still mostly regular when 8 values are

small, but some links are rewired to long-distance vertexes. In contrast, when 3 equals

1, all of the original network linksrare rewired to new vertexes, thus changing the

original network to a random network (Figure 3). Watts and Strogatz believe that a

modified network can be considéred a‘small World network whenever the normalized

average vertex-vertex distance is smaller than the clustering coefficient[10] (See

Appendix3.2).

Figure 3. Creating a small world and random network from a regular

network on a two-dimensional lattice



We used the mirror identity concept in order to utilize cellular automata for

simulating interactions among mobile individuals. The use of mirror identities

preserves the properties of individuals that interact with neighbors within cellular

automata, thus acknowledging both long-distance movement and daily visits to fixed

locations. The most important factor in our proposed model is the average number of

mirror identities; combined with population size, it determines cellular automata size

as follows:

Cellular_Automatasi,e = Populationsi;e < Mirror_ identiti€Saverage_number

We used an average number ofimirror identities to create a normal distribution of

mirror identities per individual,|then allocated each mirror identity to cellular

automata so that each cell contains a“single mirror identity for one individual (See

Appendix3.3.1).

To use our proposed model to analyze small world phenomena, we changed the

values for population size and number of mirror identities to observe changes in

average vertex-vertex distances and clustering coefficients. As shown in Figure 4,

degree of separation increased with population size regardless of the number of mirror

identities used. However, as shown in Figure 5, even when population size increased,

the average clustering coefficient did not change with increased population size. In

this situation, the degree of clustering was affected by the number of neighbors;

10



obviously, the degree of clustering remains constant with a fixed number of neighbors,

as is the case when the first layer of a Moore neighborhood is utilized. On the other

hand, a typical small world effect is noted in Figure 4, due to the logarithmic increase

in degree of separation according to network size[16](See Appendix3.3.2).

S 4

=

g

2

g

5 3

>

>'e

Q

5

>

S 2

£ MI=4

2

< MI=5
L] ——MI=6

—— MI=7
—=— MI=8

0 T T T T T T
2000 34000 66000 98000 130000 162000 194000

Population

Figure 4. Population effect on average vertex-vertex distance (MI: average

number of mirror identities)

11



~ — o - = —o
0.2
=]
k=
o
Y
ol
w
= =
SIS = o " -
01 T e=MI=15 o . - R
- MI=2
MI=2.5
MI=3
S MI=3.5
—=MI=4
——MI=4.5
0 T T T T T 1
2000 8000 Population size 32000 128000

Figure S. Population effect on clustering coefficient (MI: average number of
mirror identities)

When the number of mirror identities' increased; the average vertex-vertex distance
quickly decreased to 6 or 7 steps (Figure 4); this low degree of separation is
considered a small world phenomenon. Furthermore, we observed that the normalized
clustering coefficient was larger than the normalized average vertex-vertex distance
(Figure 6). By comparing the results of the two clustering and separation curves with
increasing B in the B-model[10], we verified that our proposed model could display
the same small world properties. We offer this as evidence that our simulation model

is capable of displaying real-world properties (See Appendix3.3.3).

12
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4. Validating contagious disease simulation and

parameter sensitivity analysis

In this section we will address two issues: a) how to integrate classic
epidemiology with cellular automata and mirror identities to build a simulation
network model for contagious diseases, and b) how mirror identity number and
population size affects contagious disease transmission dynamics. Since contagious
diseases spread through daily contact among individuals, the underlying contagious
disease network is clearly a contact network. A “‘model that incorporates cellular
automata with mirror identities 1s suitablé for analyzing contact networks.

An individual’s state in a society entails a) epidemiological status, for which we
adopted the SEIR model of susceptible, incubation, proper infection, and recovered
periods; and b) geographic mobility, using such categories as ‘“normal,”
“quarantined,” and “isolated.” Transitions are determined by probabilistic causes—for
instance, the probabilities of contact with sick persons (contact rate), of catching a
disease (transmission rate), of being detected as having a fever (detection rate),
recovery rate, or the conditions of neighbors (Figure 7)(See Appendix4.1). If the state
of one mirror identity changes, the states of all mirror identities associated with the

same individual also change. Even though the mirror identities associated with a

14



certain individual share a common infection status and geographic mobility, each
mirror identity is situated in a different location on the lattice. The local properties of
a mirror identity (e.g., whether a location is next to an infected site) have the potential
to change an individual’s disease state. Once a transition is determined, it is
immediately applied to all of the mirror identities of that individual.

Recovered Rate or Dead Rate

Detected
Rate
Catching

IlIness

e

Population Probability of
Interactions Catching Illness

Probability of Contact
with Sick People

Recovered Period

Figure 7. SEIR state transformation and transforming probabilities
In a previous project that used the transmission model to simulate a contagious
disease[1, 5], these projects reduced RO to a simple relational expression such as
c-B-D[17]; when all neighbors of an infected individual are susceptible, RO equals the

contact rate X transmission probability % duration of infection. After integrating

15



mirror identities with cellular automata, we modified the original expression to obtain

RO = (Crateth|me)x(Trateprenod)x(AVg MiI’I’OfX Num Of NeigthFS)

where Crate stands for the rate of contact between an individual and his or her

respective neighbors, Ctimes stands for the number of contacts between individuals

and neighbors in one day, Trate the average transmission rate of infected individuals,

Tperiod the average transmissible period of an infected individual, Avg. Mirror the

average number of mirror identities, and Num. of Neighbors the number of neighbors

for each mirror identity.

Because we adopted the first,layer of the Moore neighborhood for our model,

Num. of Neighbors = 8 and Crate'= 1/8. In addition to adopting RO and transmission

periods derived by epidemiologists, we also adopted the average number of mirror

identities and numbers of neighbors as suggested by sociologists. We then integrated

parameters derived from RO to simulate the contagious disease and to derive a

transmission rate.

To determine how the average number of mirror identities and population size

affect transmission dynamics, we manipulated both factors while simulating the

outbreak of a contagious disease epidemic. Since the average number of mirror

identities exerts a strong influence on degrees of separation and clustering while

population exerts a weak influence, we assumed that the average number of mirror

16



identities would have a greater impact on the course of the epidemic.

For our simulation trigger, we used the number of imported SARS cases

according to a timeline established for the SARS outbreak in Singapore. We found

that increasing population size had a small impact on the spreading of the disease, but

increasing the average number of mirror identities had a large impact (Figures 8, 9).

After comparing this with the considerable impact of average number of mirror

identities on degrees of separation and clustering, we concluded that degrees of

separation and clustering exert very strong influences on epidemic growth.

Furthermore, because the average number of mirror identities has a larger impact than

decreasing the degree of clusteting on shortening the degree of separation, the total

number of infected individuals ineteased in step with an increasing average number of

mirror identities.

In terms of validating our proposed network model, we attempted to replicate an

important RO property—that is, when R0>1, a disease becomes epidemic; if RO=1, the

disease becomes endemic; if RO<I1, the disease is easily suppressed. By

deconstructing RO, it should be possible to choose an appropriate suite of simulation

parameters once a value for the transmissible period of a disease is provided by

epidemiologists. Since parameter sensitivity to an epidemic model varies, it is

possible to use RO properties to find appropriate suites. In Figure 10, the RO properties

17



appear when Tperiod = 6, Avg. Mirror = 4, and Ctime = 4, 3, or 2. We divided the RO
into the six parameters we used to build our model in order to perform a contagious
disease simulation. We believe the model can also be used to display the

epidemiological properties of RO (See Appendix4.2).
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Figure 8. Effects of variable population size (P) on an epidemic curve
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5. SARS application

After verifying our proposed model’s societal and epidemiological properties, we
performed transmission simulations of the 2003 SARS outbreaks in Singapore and
Taiwan, focusing on the effectiveness of those countries’ respective public health
policies. Since SARS 1is a short-distance contagious disease, its underlying
transmission network was identified as a contact network with moving individuals,
making it suitable for a simulation involving cellular automata with mirror identities.
According to the specific epidemiological ‘and social conditions associated with the
SARS outbreak, our simulations began with imported cases acting as triggers. Both
simulations then proceeded using data‘ofipublicthealth policies collected from the two
countries. Results were organized in chart form for analysis and comparison (See
Appendix5.1).

In the Singapore simulation, the epidemic curve was very similar to that
published by the Singaporean health authority in June, 2003 (Figure 11). The curve
reflects the SARS epidemic in that city between March and May of the same year,
during which two major outbreaks occurred. Our simulation took into account several
policies enacted by the health authority on March 24 (e.g., home quarantines, closing

hospitals, and banning hospital patient visitation). Based on our experience with the

20



Singapore simulation, we restricted our Taiwan simulation to cases reported in

metropolitan Taipei and policies enforced by the Taipei city government. Our results

fit well with the epidemic curve published by the Taipei Health Department on

September 28, 2003—that is, one major infection climax followed by several

small-scale outbreaks (Figure 12). The Taipei epidemic curve was more concentrated

than Singapore’s; a likely explanation for this difference is the late discovery of other

imported cases in Taipei—for instance, those involving travelers returning from Hong
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Time (day)

Kong.
161 l Aciual Cases
: o Average Simulated
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|
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' 25 4
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Figure 11. Singapore SARS curve and simulation results
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Figure 12. Taiwan'SARS curve and simulation result

In addition to producing epidemic curves for infected areas, our proposed model

may assist health authorities and researchers better understand the efficacies of public

health policies (See Appendix5.2.1). As part of our simulation, we iteratively tested

various combinations of public health policies in an effort to identify the best suite of

policies for curbing the epidemic (See Appendix5.2.2). The four policies we tested

were the wearing of surgical masks by the general public, the wearing of surgical

masks by healthcare workers, quarantines, and large-scale efforts to measure body

temperature. Reduced public contact and hospital closures served as control measures.

22



According to our simulation results, the combination of mask wearing by the general

public and reduced public contact would be very effective in suppressing the epidemic

(Figure 13).
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6. Conclusion

We used this paper to propose a small world model that integrates cellular
automata with mirror identities, then verified its small world properties in terms of
average vertex-vertex distance and clustering coefficients. Based on an analysis of
individual parameter sensitivities from deconstructed RO, we observed the same RO
properties in our model. We therefore suggest that our model is capable of displaying
the societal and epidemiological properties of epidemics. We then presented and
discussed results from simulationsiof the 2003*.SARS outbreaks in Singapore and
Taiwan.

Since our model is based ‘on social netwotk models with simple geographic
properties, and since it applies the concept of mirror identity, we were able to describe
several special terms associated with epidemic outbreaks—for instance, hospitals,
families, and heterogeneous individuals with varying geographic mobility. Finally, the
results show that our simulation model is very flexible and can be applied to a wide
range of diseases with different transmission routes. It can be used to simulate
influenza, smallpox, HIV, or enterovirus disease epidemics using such parameters as
specific definitions of individuals, special interaction rules between individuals, and

the progress of other epidemics. Since our model can be used to display small world
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properties, it is also suitable for simulating other social issues that involve individual

movement.
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