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This paper examines an M½x�=G=1 queueing system with a randomized vacation policy and
at most J vacations. Whenever the system is empty, the server immediately takes a vaca-
tion. If there is at least one customer found waiting in the queue upon returning from a
vacation, the server will be immediately activated for service. Otherwise, if no customers
are waiting for service at the end of a vacation, the server either remains idle with proba-
bility p or leaves for another vacation with probability 1� p. This pattern continues until
the number of vacations taken reaches J. If the system is empty by the end of the Jth vaca-
tion, the server is dormant idly in the system. If there is one or more customers arrive at
server idle state, the server immediately starts his services for the arrivals. For such a sys-
tem, we derive the distributions of important characteristics, such as system size distribu-
tion at a random epoch and at a departure epoch, system size distribution at busy period
initiation epoch, idle period and busy period, etc. Finally, a cost model is developed to
determine the joint suitable parameters ðp�; J�Þ at a minimum cost, and some numerical
examples are presented for illustrative purpose.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

We consider an M½x�=G=1 queueing system in which the server operates a randomized vacation policy with at most J vaca-
tions. The server leaves for a vacation when the system becomes empty. When the server returns from the vacation, he ap-
plies a randomized vacation policy and decides to take another vacation, to remain dormant in the system or to provide
service for the waiting customers. The randomized vacation policy presented in this paper is described as follows: when
the system is empty, the server immediately takes for a vacation. If there is at least one customer found waiting in the queue
upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting
for service at the end of a vacation, the server remains idle in the system with probability p and leaves for another vacation
with probability 1� p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the
end of the Jth vacation, the server becomes idle in the system. If there is one or more customers arrive at server idle state, the
server immediately starts his services.

The modeling analysis for the vacation queueing models has been done by a considerable amount of work in the past and
successfully used in various applied problems such as production/inventory systems, communication systems, computer
networks and etc. (see survey paper by Doshi [1]). A comprehensive and excellent study on the vacation models can be found
in Levy and Yechiali [2] and Takagi [3]. Baba [4] studied the M½x�=G=1 queueing model with multiple vacations. The first study
of vacation models with control policy was done by Kella [5]. The variations and extensions of these vacation models with
control policy can be referred to Lee et al. [6,7], Choudhury and Madan [8], Ke [9], Choudhury and Paul [10], Yang et al. [11],
. All rights reserved.
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Ke [12] and others. Recently, Yang et al. [11] analyzed the optimal randomized control policy of an unreliable server M/G/1
system with second optional service and startup. Ke [12] examined the two thresholds of a batch arrival M½x�=G=1 queueing
system under modified T vacation policy with startup and closedown. The developments and applications on the optimal
control of queueing systems are rich and varied (see Tadj and Choudhury [13]). Moreover, Takagi [3] first proposed the con-
cept of a variant vacation (a generalization of the multiple and single vacation) for the single arrival M/G/1 regular system.
Zhang and Tian [14] treated the discrete time Geo/G/1 system with variant vacations, where the server will take a random
maximum number of vacations after serving all customers in the system. Ke and Chu [15] examined the variant policy for an
M½x�=G=1 queueing system by stochastic decomposition property. Recently, Ke [16] used supplementary variable technique
to study an M½x�=G=1 queueing system with balking under a variant vacation. Some important distributions of system per-
formance measures were also derived in [16].

Existing literature focused on vacation policy depending on queue size or timer, so far very few authors have studied the
comparable work on the vacation queueing problems with randomized control policy, in which the server may take a sequence
of finite vacations in the idle time and apply a randomized vacation policy. This motivates us to develop the variant vacation
policy for an M½x�=G=1 queueing system, where the server operates a randomized vacation policy and takes at most J vacations
when the system is empty. Conveniently, we represent this variant vacation system as M½x�=G=1=VACðJÞ queueing system.

The objectives of this paper are as follows: Firstly, we develop differential equations governing the variant vacation sys-
tem and derive the probability generating functions of system size in various server states. Secondly, we also derive other
system characteristics such as the system size distribution at busy period initiation epoch, the busy and idle period distri-
butions, etc. Thirdly, a long-run expected cost function per unit time is constructed to determine the optimal control policy.
Fourthly, we provide a decision criterion to find the joint suitable value of ðp; JÞ, and some numerical examples are presented
for illustrative purpose. Finally, some conclusions are drawn.
2. The system

We consider an M½x�=G=1 system in which the server operates a randomized vacation policy and takes at most J vacations
when he serves all customers exhaustively. The detailed description of the model is given as follows:

Customers arrive in batches occurring according to a compound Poisson process with mean arrival rate k. Let Xk denote
the number of customers belonging to the kth arrival batch, where Xk, k ¼ 1;2;3; . . ., are with a common distribution
PrðXk ¼ nÞ ¼ vn; n ¼ 1;2;3; . . .
The service time provided by a single server is an independent and identically distributed random variable S with distri-
bution function SðxÞ and Laplace-Stieltjes transform (LST) S�ðhÞ. Arriving customers who join the system form a single wait-
ing line based on the order of their arrivals; that is, they are queued according to the first-come, first-served (FCFS) discipline.
The server can serve only one customer at a time, and that the service is independent of the arrival of the customers. If the
server is busy or on vacation, arrivals in the queue must wait until the server is available. When the system becomes empty,
the server leaves for a vacation with random length V having distribution function VðxÞ and LST V�ðhÞ. If at least one customer
is found waiting in the queue upon returning from the vacation, the server is immediately activated for service. Alternatively,
if no customers are found in the queue at the end of a vacation, the server remains idle in the system with probability
pð0 6 p 6 1Þ and leaves for another vacation with probability �p ð¼ 1� pÞ. This pattern continues until the number of vaca-
tions taken reaches J. If the system is still empty by the end of the Jth vacation, the server remains idle in the system. If there
is at least one customer arrives at server idle state, the server immediately starts providing his services for the arrivals. It is
assumed that various stochastic processes involved in the system are independent of each other.

Our model can be applied to model many real world systems. In particular, some stochastic production and inventory
control systems with a multi-purpose production facility can be effectively studied using such a vacation queueing model.
In such systems, the demand for the product is random and can be modeled as a compound Poisson process. The production
time of each unit of the product is a random variable with general distribution. An application example is considered for
illustrative purpose: Production-to-Order is a production policy in production planning and management. It is assumed that
customer orders for this product arrive according to a compound Poisson process. Whenever all orders are completed and no
new orders arrive, the production will be stopped and the facility is performed a closedown task before closing (can be re-
ferred to an essential vacation). After the production facility is completely closed, it may be available to perform some op-
tional jobs. The optional jobs can be referred to other second tasks or a sequence of finite maintenances. Upon completion of
each optional job, the manager check the orders and decides whether or not to resume the major production. If at this mo-
ment the major orders are empty, a decision may be made for taking other optional jobs to be performed. The
M½x�=G=1=VACðJÞ queueing system presented in this paper is a good approximation of such a production system.
3. The analysis

We first develop the steady-state differential-difference equations for the M½x�=G=1=VACðJÞ queueing system by treating
the elapsed service time and the elapsed vacation time as supplementary variables. Then we solve these system equations
and derive the probability generating functions of various server states at a random epoch.
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3.1. System size distribution at a random epoch

In steady-state, let us assume that SðxÞ ¼ 0, for x 6 0, Sð1Þ ¼ 1, VðxÞ ¼ 0, for x 6 0, Vð1Þ ¼ 1 and these two distribution
functions are continuous at x ¼ 0, so that lðxÞdx ¼ dSðxÞ

1�SðxÞ and xðxÞdx ¼ dVðxÞ
1�VðxÞ, where lðxÞdx and xðxÞdx are the first order dif-

ferential (hazard rate) functions of S and V, respectively.
We define the state of the system at time t as follows:

QðtÞ � number of customers in the system,
S�ðtÞ � the elapsed service time, and
V�j ðtÞ � the elapsed time of the jth vacation.

The following random variables are used for the development of M½x�=G=1=VACðJÞ queueing system:
DðtÞ ¼

0; if the server is idle in the system at time t;

1; if the server is busy at time t;

2; if the server is on the 1th vacation at time t;

..

.

jþ 1; if the server is on the jth vacation at time t;

..

.

J þ 1; if the server is on the Jth vacation at time t;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
Thus the supplementary variables S�ðtÞ and V�j ðtÞ are introduced in order to obtain a tri-variate Markov process
fQðtÞ;DðtÞ; dðtÞg, where dðtÞ ¼ 0 if DðtÞ ¼ 0; dðtÞ ¼ S�ðtÞifDðtÞ ¼ 1, and dðtÞ ¼ V�j ðtÞ if DðtÞ ¼ jþ 1ðj ¼ 1;2; . . . ; JÞ.

Furthermore, let us define the following probabilities:
R0ðtÞ ¼ PrfQðtÞ ¼ 0; dðtÞ ¼ 0g;
Pnðx; tÞdx ¼ PrfQðtÞ ¼ n; dðtÞ ¼ S�ðtÞ; x < S�ðtÞ 6 xþ dxg; x > 0; n P 1;
Xj;nðx; tÞdx ¼ PrfQðtÞ ¼ n; dðtÞ ¼ V�ðtÞ; x < V�j ðtÞ 6 xþ dxg; x > 0; n P 0; 1 6 j 6 J:
In steady-state, we can set R0 ¼ limt!1R0ðtÞ and limiting densities PnðxÞ ¼ limt!1Pnðx; tÞ and Xj;nðxÞ ¼ limt!1Xj;nðx; tÞ.
According to Cox [17], the steady-state Kolmogorov forward equations that govern the system can be written as follows:
kR0 ¼
Z 1

0
XJ;0ðxÞxðxÞdxþ p

XJ�1

j¼1

Z 1

0
Xj;0ðxÞxðxÞdx; ð1Þ

d
dx

PnðxÞ þ ½kþ lðxÞ�PnðxÞ ¼ k
Xn�1

k¼1

vkPn�kðxÞ; x > 0; n P 1; ð2Þ

d
dx

Xj;0ðxÞ þ ½kþxðxÞ�Xj;0ðxÞ ¼ 0; x > 0; 1 6 j 6 J; ð3Þ

d
dx

Xj;nðxÞ þ ½kþxðxÞ�Xj;nðxÞ ¼ k
Xn

k¼1

vkXj;n�kðxÞ; x > 0; n P 1; 1 6 j 6 J: ð4Þ
We solve the above equations by means of the following boundary conditions at x ¼ 0
Pnð0Þ ¼
XJ

j¼1

Z 1

0
Xj;nðxÞxðxÞdxþ

Z 1

0
Pnþ1ðxÞlðxÞdxþ kvnR0; n P 1; ð5Þ

X1;nð0Þ ¼
R1

0 P1ðxÞlðxÞdx; n ¼ 0;
0; n P 1:

�
ð6Þ

Xj;nð0Þ ¼
�p
R1

0 Xj�1;nðxÞxðxÞdx; n ¼ 0; j ¼ 2;3; . . . ; J

0; n P 1; j ¼ 2;3; . . . ; J

�
ð7Þ
and the normalization condition
R0 þ
X1
n¼1

Z 1

0
PnðxÞdxþ

XJ

j¼1

X1
n¼0

Z 1

0
Xj;nðxÞdx

" #
¼ 1: ð8Þ
Let us define the probability generating functions for fvngfPnð�Þg and fXj;nð�Þg as follows:
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XðzÞ ¼
X1
n¼1

znvn; jzj 6 1;

Pðx; zÞ ¼
X1
n¼1

znPnðxÞ; jzj 6 1;

Xjðx; zÞ ¼
X1
n¼0

znXj;nðxÞ; jzj 6 1; 1 6 j 6 J:
Now multiplying (2) by zn ðn ¼ 1;2;3; . . .Þ and then adding the equations up term by term, it gives
@Pðx; zÞ
@x

þ ½aðzÞ þ lðxÞ�Pðx; zÞ ¼ 0; ð9Þ
where aðzÞ ¼ kð1� XðzÞÞ.
Similar proceeding in the usual manner with (3)–(5), we have
@Xjðx; zÞ
@x

þ ½aðzÞ þxðxÞ�Xjðx; zÞ ¼ 0 ð10Þ
and
Pð0; zÞ ¼
XJ

j¼1

Z 1

0
Xjðx; zÞxðxÞdxþ 1

z

Z 1

0
Pðx; zÞlðxÞdxþ kXðzÞR0 �

XJ

j¼1

Xjð0; zÞ � kR0; ð11Þ
where x > 0.
Solving the partial differential Eqs. (9) and (10), we obtain
Pðx; zÞ ¼ Pð0; zÞ½1� SðxÞ�e�aðzÞx; ð12Þ
and
Xjðx; zÞ ¼ Xjð0; zÞ½1� VðxÞ�e�aðzÞx; j ¼ 1;2; . . . ; J: ð13Þ
Solving the differential Eq. (3) yields
Xj;0ðxÞ ¼ Xj;0ð0Þð1� VðxÞÞe�kx; j ¼ 1;2; . . . ; J: ð14Þ
Now Eq. (14) is multiplied by xðxÞ on both sides for and integrating with x from 0 to 1, we then have
Z 1

0
Xj;0ðxÞxðxÞdx ¼ Xj;0ð0Þa0; ð15Þ
where a0 ¼ V�ðkÞ. Inserting (15) in (7), we can recursively obtain
Xj;0ð0Þ ¼
XJ;0ð0Þ
ð�pa0ÞJ�j

; j ¼ 1;2; . . . ; J � 1: ð16Þ
Substituting (15) and (16) into (1) and after some algebraic manipulation, we have
XJ;0ð0Þ ¼
kR0

a0 1þ pð1�ð�pa0ÞJ�1Þ
ð�pa0ÞJ�1ð1��pa0Þ

h i : ð17Þ
From (16) and (17) we finally obtain
Xjð0; zÞ ¼ Xj;0ð0Þ ¼
kR0

ð�pa0ÞJ�ja0 1þ pð1�ð�pa0ÞJ�1Þ
ð�pa0ÞJ�1ð1��pa0ÞÞ

h i ; j ¼ 1;2; . . . ; J: ð18Þ
Integrating (14) with respect to x from 0 to 1 we have
Xj;0 ¼ Xj;0ð0Þ
Z 1

0
½1� VðxÞ�e�kx dx ¼ 1

k
Xj;0ð0Þð1� a0Þ: ð19Þ
From (18) and (19), it finally yields
Xj;0 ¼
R0ð1� a0Þ

ð�pa0ÞJ�ja0 1þ pð1�ð�pa0ÞJ�1Þ
ð�pa0ÞJ�1ð1��pa0Þ

h i ; j ¼ 1;2; . . . ; J: ð20Þ
Noting that Xj;0 represents the steady-state probability that there are no customers in the system when the server is on
the jth vacation. Let us define X0 the probability that no customers appear in the system when the server is on vacation. Then
we have
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X0 ¼
XJ

j¼1

Xj;0 ¼
R0ð1� a0Þ

a0 1þ p 1�ð�pa0ÞJ�1ð Þ
ð�pa0ÞJ�1ð1��pa0Þ

� �� 1� ð�pa0ÞJ

ð�pa0ÞJ�1ð1� �pa0Þ
: ð21Þ
Inserting (12), (13) and (18) into (11) we get on simplification
Pð0; zÞ ¼
kR0 1� ð�pa0ÞJ
� �

V�ðaðzÞÞ

a0 ð�pa0ÞJ�1ð1� �pa0Þ þ p 1� ð�pa0ÞJ�1
� �h iþ Pð0; zÞS�ðaðzÞÞ

z
þ kXðzÞR0 �

XJ

j¼1

Xj;0ð0Þ � kR0: ð22Þ
Solving Pð0; zÞ from (22) and using (18) yields
Pð0; zÞ ¼
kR0z

1�ð�pa0ÞJð ÞðV�ðaðzÞÞ�1Þ
ða0Þ ð�pa0ÞJ�1ð1��pa0Þþpð1�ð�pa0ÞJ�1Þ½ � � 1þ XðzÞ
� �

z� S�ðaðzÞÞ : ð23Þ
It follows from (12) and (23) that
Pðx; zÞ ¼
kR0z

1�ð�pa0ÞJð ÞðV�ðaðzÞÞ�1Þ
a0 ð�pa0ÞJ�1ð1��pa0Þþpð1�ð�pa0ÞJ�1Þ½ � � 1þ XðzÞ
� �

z� S�ðkð1� XðzÞÞÞ � ½1� SðxÞ�e�aðzÞx; ð24Þ
which leads to
PðzÞ ¼
Z 1

0
Pðx; zÞdx ¼

R0z
1�ð�pa0ÞJð ÞðV�ðaðzÞÞ�1Þ

a0 ð�pa0ÞJ�1ð1��pa0Þþpð1�ð�pa0ÞJ�1Þ½ � � 1þ XðzÞ
� �

z� S�ðaðzÞÞ � S�ðaðzÞÞ � 1
XðzÞ � 1

: ð25Þ
Using (13) and (18) and the well-known result of renewal theory
Z 1

0
e�kxð1� VðxÞÞdx ¼ 1� a0

k
;

we have
XjðzÞ ¼
R0ðV�ðaðzÞÞ � 1Þ

ð�pa0ÞJ�ja0 XðzÞ � 1½ � 1þ pð1�ð�pa0ÞJ�1Þ
ð�pa0ÞJ�1ð1��pa0Þ

h i ; j ¼ 1;2;3; . . . ; J: ð26Þ
The unknown constant R0 can be determined by using the normalization condition (8), which is equivalent to
R0 þ Pð1Þ þ

PJ
j¼1Xjð1Þ ¼ 1. Thus we obtain
R0 ¼
1� q

1þ kE½V � 1�ð�pa0ÞJð Þ
a0 �pa0ð ÞJ�1 1��pa0ð Þþp 1�ð�pa0ÞJ�1ð Þ½ �

; ð27Þ
where q ¼ kE½X�E½S�.
Note that Eq. (27) represents the steady state probability that the server is idle but available in the system. Also from Eq.

(27), we have q < 1 which is the necessary and sufficient condition under which steady state solution exists.
Let UðzÞ ¼ R0 þ PðzÞ þ

PJ
j¼1XjðzÞ be the probability generating function of the system size distribution at stationary point

of time, we then have
UðzÞ ¼ ð1� qÞS�ðaðzÞÞðz� 1Þ
z� S�ðaðzÞÞ �

ð1� ð�pa0ÞJÞðV�ðaðzÞÞ � 1Þ þ a0 XðzÞ � 1½ � ð�pa0ÞJ�1ð1� �pa0Þ þ pð1� ð�pa0ÞJ�1Þ
h i

kE½V �ð1� ð�pa0ÞJÞ þ a0 ð�pa0ÞJ�1ð1� �pa0Þ þ pð1� ð�pa0ÞJ�1Þ
h i� �

XðzÞ � 1½ �
: ð28Þ
Remark 1. Special one of our model is the ordinary M½x�= G=1 queueing system with at most J vacations. That is, if we let
p ¼ 0 in our model, then R0 can be reduced to
1� q
kE½V �
aJ

0

� 1�aJ
0

1�a0
þ 1

;

which agrees with Ke and Chu [15].

Remark 2. Letting p ¼ 0 and J ¼ 1, our model can be simplified to the ordinary M=G=1 queueing system with single vacation.
UðzÞ can be rewritten as
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ð1� qÞð1� zÞS�ðaðzÞÞ
S�ðaðzÞÞ � z

� �
1� V�ðaðzÞÞ þ a0ð1� XðzÞÞ

1� XðzÞ½ �½kE½V � þ a0�

� �
;

which confirms the result in Section 6 of Choudhury’s system [18]. It should be noted that if we let p ¼ 1, our model can be
also reduced to the ordinary M=G=1 queueing system with single vacation. That is, when p ¼ 1, the results are in accordance
with those of letting p ¼ 0 and J ¼ 1.

Remark 3. Letting p ¼ 0 and J ¼ 1, our model becomes the ordinary M=G=1 queueing system with miltiple vacations. UðzÞ
can be rewritten as
ð1� qÞð1� zÞS�ðaðzÞÞ
S�ðaðzÞÞ � z

� �
1� V�ðaðzÞÞ

kE½V � 1� XðzÞ½ �

� �
and the result in in accordance with Takagi [3].
3.2. The expected number of customers in the system and the expected waiting time

In (28), we evaluate d
dz UðzÞjz¼1 by using L’hopital rule which leads to the expected number of customers, Ls, in the system

given by
Ls ¼ qþ kE½XðX � 1Þ�E½S� þ ðkE½X�Þ2E½S2�
2ð1� qÞ þ k2E½X�ð1� ð�pa0ÞJÞE½V2�

2 kE½V �ð1� ð�pa0ÞJÞ þ a0 ð�pa0ÞJ�1ð1� �pa0Þ þ pð1� ð�pa0ÞJ�1Þ
h i� � : ð29Þ
Noting that, the first and second terms in (29) represent the expected number of customers in the system for the ordinary
M½x�=G=1 queueing system.

By using Little’s formula, we obtain the expected waiting time in the queue, Wq, given by
Wq ¼
E½XðX � 1Þ�E½S� þ kðE½X�Þ2E½S2�

2E½X�ð1� qÞ þ kð1� ð�pa0ÞJÞE½V2�
2 kE½V �ð1� ð�pa0ÞJÞ þ a0 ð�pa0ÞJ�1ð1� �pa0Þ þ pð1� ð�pa0ÞJ�1Þ

h i� � : ð30Þ
The expected waiting time in the system Ws can be obtained by Ws ¼Wq þ E½S�.

Remark 4. Suppose that we have p ¼ 0 and J ¼ 1, then if we put Pr½X ¼ 1� ¼ 1, our model can be reduced to the ordinary M/
G/1 queueing system with single vacation. It follows from (30) that the expected waiting time in the system is given by
Ws ¼
kE½V2�

2ðkE½V � þ a0Þ
þ kE½S2�

2ð1� qÞ ;
which is in accordance with Takagi’s system [3, Section 2.2, p.126].

Remark 5. Letting p ¼ 0, our model can be recovered to the M½x�=G=1 queueing system with at most J vacations. Using (30)
we have the expected waiting time in the system as:
Ws ¼
ð1� aJ

0ÞkE½V2�
2ðð1� aJ

0ÞkE½V � þ ð1� a0ÞaJ
0Þ
þ kE½X�E½S2�

2ð1� qÞ þ
E½XðX � 1Þ�E½S�
2E½X�ð1� qÞ ;
which is in accordance with Ke and Chu [15].
3.3. Queue size distribution at a departure epoch

In this section, we derived the probability generating function of queue size distribution for the M½x�=G=1=VACðJÞ queueing
system. Following the arguments by Wolff [19], we state that a departing customer will see l customers in the queue just
after a departure if and only if there are ðlþ 1Þ customers in the queue just before the departure. Thus we can write the
following:
Uþl ¼ C0

Z 1

0
lðxÞPlþ1ðxÞdx; l ¼ 0;1; . . . ð31Þ
where Uþl ¼ PrfA departing customer will seel customers in the systemg, and C0 is the normalizing constant.
Let UþðzÞ be the probability generating function of Uþl ; l ¼ 0;1;2; . . .

	 

. Using (12) yields
UþðzÞ ¼ C0 �
kR0

ð1�ð�pa0ÞJÞðV�ðaðzÞÞ�1Þ
a0 ð�pa0ÞJ�1ð1��pa0Þþpð1�ð�pa0ÞJ�1Þ½ � � 1þ XðzÞ
� �

S�ðaðzÞÞ

z� S�ðaðzÞÞ : ð32Þ
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Using the normalization condition Uþð1Þ ¼ 1, it gives
C0 ¼
1� q

kR0E½X� 1þ kE½V �ð1�ð�pa0ÞJÞ
a0 ð�pa0ÞJ�1ð1��pa0Þþpð1�ð�pa0ÞJ�1Þ½ �

� � ; ð33Þ
which leads to the probability generating function of the departure point queue size distribution as
UþðzÞ ¼
ð1� qÞ ð1�ð�pa0ÞJÞðV�ðaðzÞÞ�1Þ

a0 ð�pa0ÞJ�1ð1��pa0Þþpð1�ð�pa0ÞJ�1Þ½ � � 1þ XðzÞ
� �

S�ðaðzÞÞ

E½X� 1þ kE½V �ð1�ð�pa0ÞJÞ
a0 ð�pa0ÞJ�1ð1��pa0Þþpð1�ð�pa0ÞJ�1Þ½ �

� �
ðz� S�ðaðzÞÞÞ

: ð34Þ
From (34), one see that UþðzÞ can be decomposed into two independent terms:
UþðzÞ ¼ 1� XðzÞ
E½X�ð1� zÞ �UðzÞ: ð35Þ
It should be noted that the departure point queue size distribution given by Eq. (35) can be decomposed into two inde-
pendent random variables: one (the first term) is the number of customers placed before a tagged customer in a batch in
which the tagged customer arrives and the other (the second term) is the stationary system size of the M½x�=G=1=VACðJÞ
queueing system.

Remark 6. Substituting p ¼ 0 and J ¼ 1 into (35), our system can be reduced to the ordinary M½x�=G=1 single vacation policy
queue. UþðzÞ can be rewritten as
1� V�ðaðzÞÞ þ a0ð1� XðzÞÞ
E½X�ðkE½V � þ a0Þð1� zÞ

� �
ð1� qÞð1� zÞS�ðaðzÞÞ

S�ðaðzÞÞ � z

� �
¼ bðzÞUþðz; M½x�=G=1Þ;
where bðzÞ ¼ 1�V�ðaðzÞÞþa0ð1�XðzÞÞ
E½X�ðkE½V �þa0Þð1�zÞ , and Uþðz; M½x�=G=1Þ ¼ ð1�qÞð1�zÞS�ðaðzÞÞ

S�ðaðzÞÞ�z is the p.g.f. of the stationary queue size distribution of an

ordinary M½x�=G=1 queue, which is accordance with the stochastic decomposition property demonstrated in Choudhury’s sys-
tem [18].
3.4. System size distribution at busy period initiation epoch

First, we define /n ðn ¼ 1;2; . . .Þ as the steady-state probability that an arbitrary (tagged) customer finds n customers in
the system at the busy initiation epoch (or completion epoch of the idle period). This implies that tl ðl ¼ 0;1;2; . . .Þ are the
initiation epochs of the busy period and QðtlÞ is the number of customers in the system at the time instant tl, then we
have
/n ¼ liml!1PrðNðtlÞ ¼ nÞ; n ¼ 1;2; . . . :
Conditioning on the number of customers which arrive during the first vacation, from the concept of Poisson Arrivals See
Time Average (PASTA) [19], we have the following steady-state equation
/n ¼ 1þ �pa0 þ �p2a2
0 þ � � � þ �pJ�1aJ�1

0

� �Xn

k¼1

akvðkÞ�n þ p a0 þ �pa2
0 þ . . .þ �pJ�2aJ�1

0

� �
þ �pJ�1aJ

0

� �
vn

¼
XJ�1

m¼0
�pa0ð Þm

Xn

k¼1

akvðkÞ�n þ p
XJ�2

m¼0

�pmamþ1
0 þ �pJ�1aJ

0

 !
vn; ð36Þ
where vðkÞ�n ¼ PrðX1 þ X2 þ � � � þ Xk ¼ nÞ is the k-fold convolution of vn, and vð0Þn is defined to be 1, and ak ¼ Pr (k batches ar-
rive during a vacation time).

Now multiplying (36) by appropriate powers of z and then taking summation over all possible values of n, we get the p.g.f.
of ½/n� given by
/ðzÞ ¼ 1� ð�pa0ÞJ

1� �pa0
V�ðaðzÞÞ � a0ð Þ þ

p a0 � �pJ�1aJ
0

� �
1� �pa0

þ �pJ�1aJ
0

0
@

1
AXðzÞ; ð37Þ
which leads to
E½/� ¼ ð1� ð
�pa0ÞJÞkE½X�E½V �
1� �pa0

þ pða0 � �pJ�1aJ
0Þ

1� �pa0
þ �pJ�1aJ

0

 !
E½X�: ð38Þ
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Noting that (37) represents the p.g.f. of the number of customers in the system at the completion epoch of the idle period
and this is equivalent to the p.g.f. of the system size distribution at busy period initiation epoch.

Remark 7. Substituting p ¼ 0 and J ¼ 1 into (37), our system can be reduced to the ordinary M½x�=G=1 single vacation policy
queue and it gives
/ðzÞ ¼ V�ðaðzÞÞ þ a0ðXðzÞ � 1Þ;
which is in accordance with Choudhury’s system [18].

Remark 8. As p ¼ 0, our system can be simplified to the ordinary M½x�=G=1 vacation policy queue and with at most J vaca-
tions. Eq. (37) can be rewritten as
/ðzÞ ¼ 1� aJ
0

1� a0
ðV�ðaðzÞÞ � a0Þ þ aJ

0XðzÞ;
which is in accordance with Ke and Chu [15].
3.5. System size distribution due to idle period

Let us define nn ðn ¼ 0;1;2 . . .Þ as the probability that a batch of n customers arrived before a tagged customer during the
forward recurrence time (residual life) of the idle period where the tagged customer arrived. The batch of arriving customers
associated with the tagged customer is randomly chosen from the arriving batch that occurs at the completion epoch of the
idle period (busy period initiation epoch). Following arguments of Burke [20] and applying renewal theory, we obtain the
p.g.f of the number of customers that arrive during the residual life of the idle period given by
nðzÞ ¼ 1� /ðzÞð Þ
ð1� zÞE½/� : ð39Þ
From (37), nðzÞ can be expressed as
nðzÞ ¼
1� �pa0 � ð1� ð�pa0ÞJÞðV�ðaðzÞÞ � a0Þ � ð1� �pa0Þ

pða0��pJ�1aJ
0Þ

1��pa0
þ �pJ�1aJ

0

� �
XðzÞ

E½X� ð1� ð�pa0ÞJÞkE½V � þ ð1� �pa0Þ
pða0��pJ�1aJ

0Þ
1��pa0

þ �pJ�1aJ
0

� �� �
ð1� zÞ

: ð40Þ
Noting that Eq. (40) is the p.g.f. of the number of customers that arrive during a time interval from the beginning of the
idle period to a random point in the idle period. We may view it as the system size distribution due to the idle period includ-
ing vacation times.

3.6. Busy period and idle period distribution

Let B�ðhÞ and I�ðhÞ represent the LST of the busy period and idle period for the M½x�=G=1=VACðJÞ queueing system. Utilizing
the arguments by Takagi [3, Section 2.2] and system definition, B�ðhÞ and I�ðhÞ can be expressed as
B�ðhÞ ¼ 1� ð�pa0ÞJ

1� �pa0
ðV�ðkð1� XðB�0ðhÞÞÞÞ � a0Þ þ

pða0 � �pJ�1aJ
0Þ

1� �pa0
þ �pJ�1aJ

0

 !
XðB�0ðhÞÞ ð41Þ
and
I�ðhÞ ¼ 1� ð�pV�ðhþ kÞÞJ

1� �pV�ðhþ kÞ ðV
�ðhÞ � V�ðhþ kÞÞ þ pðV�ðhþ kÞ � �pJ�1ðV�ðhþ kÞÞJÞ

1� �pV�ðhþ kÞ þ �pJ�1ðV�ðhþ kÞÞJ
 !

k
kþ h

� �
; ð42Þ
where B�0ðhÞ ¼ S�ðhþ k� kXðB�0ðhÞÞÞ is the LST of the busy period initiated by a single customer in the ordinary M½x�=G=1
queueing model.

Now, we further define the following:

E½B� � the expected length of busy period,
E½I� � the expected length of idle period,
E½C� � the expected length of busy cycle.

Employing (41) and (42), we obtain
E½B� ¼ ð1� ð�pa0ÞJÞkE½V �
1� �pa0

þ pða0 � �pJ�1aJ
0Þ

1� �pa0
þ �pJ�1aJ

0

 !
E½X�E½S�
1� q

� �
; ð43Þ
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E½I� ¼ 1

ð1� �pa0Þ2
�Jð�pa0ÞJ�1xa0ð1� �pa0Þ þ ½1� ð�pa0ÞJ �ð�pxa0Þ
n o

ð1� a0Þ þ
1� ð�pa0ÞJ

1� ð�pa0Þ
ðE½V � � xa0Þ

þ 1

ð1� �pa0Þ2
p½xa0ð1� �pJ�1JaJ�1

0 Þ�ð1� �pa0Þ þ pða0 � �pJ�1aJ
0Þð�pxa0Þ

� �
þ 1

k
�pJ�1JaJ�1

0 xa0

þ 1
k

p a0 � �pJ�1aJ
0

� �
1� �pa0

þ �pJ�1aJ
0

8<
:

9=
;; ð44Þ
and
E½C� ¼ E½B� þ E½I�: ð45Þ
Remark 9. In Eq. (42), if we let p ¼ 0 and J !1, can be reduced to
V�ðhÞ � V�ðhþ kÞ
1� V�ðhþ kÞ ;
which is in accordance with Takagi [3].

Remark 10. In Eq. (42), if we let p ¼ 0 and J ¼ 1, can be simplified to
V�ðhÞ � hV�ðhþ kÞ
hþ k

;

which is in accordance with Takagi [3].
4. Optimal randomized control policy

In this section, we develop the long-run expected cost function per unit time for the M½x�=G=1=VACðJÞ queueing system, in
which p and J are the decision variables. Our objective is to determine the suitable values of the control variables p and J, say
p� and J�, so as to minimize the cost function. Let us define the following cost elements:

Ch � holding cost per unit time per customer present in the system;
Cs � set-up cost per busy cycle.

By using the renewal reward theory, we know that the long-run expected cost per unit time is given by
Fðp; JÞ ¼ ChLs þ
Cs

E½C� ¼ A1 þ
A2ð1� ð�pa0ÞJÞ þ A3ð1� �pa0Þ

B1ð1� ð�pa0ÞJÞ þ a0 pð1� ð�pa0ÞJ�1Þ þ ð�pa0ÞJ�1B2

� � ; ð46Þ
where
A1 ¼ Ch � LM½x�=G=1;

A2 ¼
Chk

2E½X�E½V2�
2

;

A3 ¼ Cskð1� qÞ;
B1 ¼ kE½V �; and
B2 ¼ ð1� �pa0Þ
with LM½x�=G=1 ¼ qþ kE½XðX�1Þ�E½S�þðkE½X�Þ2E½S2 �
2ð1�qÞ .

For analysis, J may be treated as a continuous variable greater than zero. Noting that that if J� is not an integer, the best
positive integer value of J is one of the integers surrounding J�. Differentiating Fðp; JÞ (in Eq. (46)) with respect to p and J,
respectively, it gives
@Fðp; JÞ
@p

¼ D1

B1ð1� ð�pa0ÞJÞ þ a0 pð1� ð�pa0ÞJ�1Þ þ ð�pa0ÞJ�1B2

� � ð47Þ
and
@Fðp; JÞ
@J

¼ �ðlnð�pa0ÞÞð�pa0ÞJ �
D2

B1ð1� ð�pa0ÞJÞ þ a0 pð1� ð�pa0ÞJ�1Þ þ ð�pa0ÞJ�1B2

� � ; ð48Þ
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where
D1 ¼ A2aJ
0J�pJ�1 þ A3a0

� �
B1ð1� ð�pa0ÞJÞ þ a0 pð1� ð�pa0ÞJ�1Þ þ ð�pa0ÞJ�1ð1� �pa0Þ

� �� �
� A2ð1� ð�pa0ÞJÞ þ A3ð1� �pa0Þ
� �

� �B1aJ
0J�pJ�1 þ a0 ð1� ð�pa0ÞJ�1Þ þ pðJ � 1ÞaJ�1

0
�pJ�2

� ��
þa0 �aJ�1

0 ðJ � 1Þ�pJ�2ð1� �pa0Þ þ ð�pa0ÞJ�1a0

� ��

and
D2 ¼ A2B2a0 ð�pa0ÞJ�1 þ 1� ð�pa0ÞJ
�pa0

 !
þ A2a0p ð1� ð�pa0ÞJ�1Þ � 1� ð�pa0ÞJ

�pa0

 !
� A3ð1� �pa0Þ ðB1 � B2Þ � ðB1 � 1Þpð Þ:

ð49Þ
For any given J, we know that:

1a. If D1 > 0 in p 2 ð0;1Þ, by using (47) yields @Fðp;JÞ
@p > 0 which means Fðp; JÞ is an increasing function of p in p 2 ð0;1Þ,

2a. If D1 < 0 in p 2 ð0;1Þ, by using (47) yields @Fðp;JÞ
@p < 0 which implies Fðp; JÞ is a decreasing function of p in p 2 ð0;1Þ.

3a. Noting that @Fðp;JÞ
@p ¼ 0 iff D1 ¼ 0 (in this case, p� is arbitrary value between 0 and 1). This case is a rare event (see the

structure of D1). That is, the occurrence of D1 is very small.

For any given p, we also know that:

1b. If D2 > 0, by using (48) yields @Fðp;JÞ
@J > 0 which means Fðp; JÞ is an increasing function of J,

2b. If D2 < 0, by using (48) yields @Fðp;JÞ
@J < 0 which implies Fðp; JÞ is a decreasing function of J.

3b. Noting that @Fðp;JÞ
@J ¼ 0 iff D2 ¼ 0 (in this case, J� is arbitrary positive integer or J ¼ 1). Noting that the occurrence of the

case D2 ¼ 0 is very small.

In order to find the joint optimal values of p and J, say p� and J�, we should solve the following equations:
@Fðp; JÞ
@p

¼ 0 and
@Fðp; JÞ
@J

¼ 0: ð50Þ
The solutions ðp; JÞ ¼ ðp�; J�Þ attain a local minimum if it satisfies the following:
@2Fðp; JÞ
@p2 > 0; ð51Þ

@2Fðp; JÞ
@J2 > 0 ð52Þ
and the determinant of the Hessian matrix is positive definite, that is,
detðHÞ ¼ @
2Fðp; JÞ
@p2 � @

2Fðp; JÞ
@J2 � @2Fðp; JÞ

@p@J

 !2

> 0: ð53Þ
Noting that (50) is just necessary conditions for Fðp; JÞ to attain it’s minimum. Although we cannot analytically prove that
Fðp; JÞ is a convex function of ðp; JÞ indeed, one heuristic approach is provided to search the joint optimum values of p and J.
By the inferences listed above we know that for a given p, the optimal values J� of J is J� ¼ 1, arbitrary positive integer or
J� ¼ 1 (say M, where M is a sufficiently large number in practice). A heuristic decision is summarized in the following that
makes it possible to determine the joint suitable values ðp�; J�Þ as follows:

The criterion to search the joint suitable values p� and J�:
Case 1 If D1 > 0 and

i. D2 > 0 then ðp�; J�Þ ¼ ð0;1Þ
ii. D2 < 0 then ðp�; J�Þ ¼ ð0;1Þ

iii. D2 ¼ 0 then (p�; J�Þ ¼ ð0, any positive integer)

Case 2 If D1 < 0 and
i. D2 > 0 then ðp�; J�Þ ¼ ð1;1Þ

ii. D2 < 0 then ðp�; J�Þ ¼ ð1;1Þ
iii. D2 ¼ 0 then (p�; J�Þ ¼ ð1, any positive integer)



Case 3 If D1 ¼ 0 and

i. D2 > 0 then ðp�; J�Þ ¼(any value between 0 and 1, 1)

ii. D2 < 0 then ðp�; J�Þ ¼(any value between 0 and 1, 1)
iii. D2 ¼ 0 then (p�; J�)=(any value between 0 and 1, any positive integer)
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Remark 11. It should be noted that it is a rare event for the case D1 ¼ 0 or D2 ¼ 0.
5. Numerical Illustration

The first purpose of this section is to study the effects of some parameters on the expected number of customers in the
system (Ls) and the expected waiting time of customers in the system (Ws).

For convenience, we first let

1. p ¼ 0:5;
2. k ¼ 0:4;
3. X � geometric distribution with parameter 0.5 (i.e., Geoð0:5Þ);
4. S � 4-stage Erlang distribution with a mean E½S� ¼ 0:5.

Our first set of numerical example performs the above specific parameters by varying J from 1 to 100 and various vacation
time distributions with E½V � ¼ 1. The vacation times are considered to be exponential ðMÞ, 2-stage Erlang ðE2Þ and hyper-
exponential ðH2Þ, respectively. The effects of different values of J and three vacation distributions on Ls are shown in
Fig. 1. Fig. 1 reports that Ls first increases as J increases and then becomes stably as J becomes large. One also observes that
the three vacation distributions by their relative magnitudes on Ls produce H2 > M > E2.

A second set of numerical example performs the above specific parameters by varying p from 0.0 to 1.0 and choosing
J ¼ 10. The setting of vacation parameters are the same as preceding one. From Fig. 2, one sees that Ls decreases as p in-
creases. Also, we observe that the three vacation distributions by their relative magnitudes on Ls produce H2 > M > E2.

The third set of numerical example is to investigate the cases that the effect of different values of p and different vacation
time distributions on Ls and Ws. Three vacation time distributions with E½V � ¼ 2 are considered at J ¼ 10. Table 1 clearly
shows that Ls and Ws decrease as p increases for various vacation time distributions. It also reveals that when p changes from
0.0 to 1.0, the three vacation time distributions by their relative magnitudes on Ls and Ws produce H2 > M P E2.

For the fourth set of numerical example, we deal with the cases that the effect of various service time distributions and
different service rates on Ls and Ws. The service time distributions are consider to be exponential, 2-stage Erlang and hyper-
exponential with vacation rate is 0.5, respectively, at J ¼ 10. The effect of the service time distributions and different service
rates on Ls and Ws are listed in Table 2. From Table 2, the comparison of Ls for the three service time distributions M, E2 and
H2, showed the results when service rate changes from 1 to 10 and we observe that the three service distributions by their
relative magnitudes on Ls and Ws produce H2 > M P E2.

For the last set of numerical example, we study the effect of the vacation time distributions and different vacation rates on
Ls and Ws, which are summarized in Table 3. The comparison of Ls and Ws for the three vacation time distributions M, E2 and
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Fig. 1. The expected system sizes Ls for different values of J and three vacation distributions (exponential (M), 2-stage Erlang (E2) and hyper-exponential
(H2)).
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Fig. 2. The expected system sizes Ltextsubscripts for different values of p and three vacation distributions (exponential (M), 2-stage Erlang (E2) and hyper-
exponential (H2)).

Table 1
The expected system sizes Ls and expected waiting time Ws for different p and different vacation distributions (k ¼ 0:4, X � Geoð0:5Þ, J ¼ 10, S � E4 with
E½S� ¼ 0:5).

p V � M V � E2 V � H2

0.0 Ls 2.83 1.83 4.43
Ws 3.54 2.29 5.54

0.1 Ls 2.73 1.80 4.33
Ws 3.41 2.25 5.41

0.2 Ls 2.64 1.77 4.24
Ws 3.30 2.21 5.30

0.3 Ls 2.56 1.74 4.15
Ws 3.20 2.18 5.19

0.4 Ls 2.49 1.71 4.07
Ws 3.11 2.14 5.09

0.5 Ls 2.42 1.69 3.99
Ws 3.03 2.11 4.99

0.6 Ls 2.36 1.67 3.92
Ws 2.95 2.09 4.90

0.7 Ls 2.31 1.65 3.85
Ws 2.89 2.06 4.81

0.8 Ls 2.26 1.63 3.78
Ws 2.83 2.04 4.73

0.9 Ls 2.22 1.61 3.72
Ws 2.78 2.01 4.65

1.0 Ls 2.18 1.60 3.66
Ws 2.73 2.00 4.58
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H2, showed the results when vacation rate changes from 1.0 to 10.0 and we observe that the three service distributions by
their relative magnitudes on Ls and Ws produce H2 > M P E2.

The above numerical investigations indicate that (i) the vacation times have a significant effect on the expected number of
customers (or waiting time of customers) than J or p; and (ii) when all parameters are given, the impacts of the service (or
vacation) distributions on system characteristics are not significantly for larger service (vacation) rate.

The second purpose of this section is to perform two extensive examples to illustrate the joint optimum randomized
behavior as discussed in Section 4.

We first consider the case of D1 > 0 and D2 < 0 with the setting system’s parameters as follows:

1. p ¼ 0:5;
2. Batch size distribution of the arrival is geometric with mean E½X� ¼ 2;



Table 2
The expected system sizes Ls and expected waiting time Ws for different service distributions (p ¼ 0:5, k ¼ 0:4, X � Geoð0:5Þ, J ¼ 10, V � M with E½V � ¼ 1Þ.

1
E½S� S � M S � E2 S � H2

1.0 Ls 8.42 7.62 22.02
Ws 10.53 9.53 27.53

2.0 Ls 1.76 1.69 3.22
Ws 2.20 2.11 4.03

3.0 Ls 1.15 1.13 1.80
Ws 1.44 1.41 2.25

4.0 Ls 0.92 0.91 1.32
Ws 1.15 1.14 1.65

5.0 Ls 0.80 0.80 1.09
Ws 1.00 1.00 1.36

6.0 Ls 0.73 0.73 0.95
Ws 0.91 0.91 1.19

7.0 Ls 0.68 0.68 0.85
Ws 0.85 0.85 1.06

8.0 Ls 0.64 0.64 0.79
Ws 0.80 0.80 0.99

9.0 Ls 0.62 0.62 0.74
Ws 0.78 0.78 0.93

10.0 Ls 0.60 0.59 0.70
Ws 0.75 0.74 0.88

Table 3
The expected system sizes Ls and expected waiting time Ws for different vacation distributions (p ¼ 0:5, k ¼ 0:4, X � Geoð0:5Þ, J ¼ 10, S � E4 with E½S� ¼ 0:5Þ.

1
E½V � V � M V � E2 V � H2

1.0 Ls 1.66 1.39 2.42
Ws 2.08 1.74 3.03

2.0 Ls 1.36 1.28 1.66
Ws 1.70 1.60 2.08

3.0 Ls 1.30 1.26 1.45
Ws 1.63 1.58 1.81

4.0 Ls 1.27 1.25 1.36
Ws 1.59 1.56 1.70

5.0 Ls 1.26 1.24 1.32
Ws 1.58 1.55 1.65

6.0 Ls 1.25 1.24 1.30
Ws 1.56 1.55 1.63

7.0 Ls 1.25 1.24 1.28
Ws 1.56 1.55 1.60

8.0 Ls 1.24 1.24 1.27
Ws 1.55 1.55 1.59

9.0 Ls 1.24 1.24 1.26
Ws 1.55 1.55 1.58

10.0 Ls 1.24 1.24 1.26
Ws 1.55 1.55 1.58
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3. k ¼ 0:6;
4. V � exponential distribution with a mean E½V � ¼ 1;
5. S � 2-stage Erlang distribution with a mean E½S� ¼ 0:5;
6. the holding cost Ch ¼ 10;
7. the set-up cost Cs ¼ 1000.

The expected cost Fðp; JÞ for this case is shown in Fig. 3. Noting that the minimum cost per unit time of $188.6047 is
achieved at p� ¼ 0 and J� is 6. The results also make it obvious that (i) the expected cost increases as p increases; and (ii)
J decreases as p increases.
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The second example is the case of D1 > 0 and D2 > 0 with the following system’s parameters:

1. p ¼ 0:5;
2. Batch size distribution of the arrival is geometric with mean E½X� ¼ 3;
3. k ¼ 0:6;
4. V � exponential distribution with a mean E½V � ¼ 0:5;
5. S � 2-stage Erlang distribution with a mean E½S� ¼ 0:5;
6. the holding cost Ch ¼ 10;
7. the set-up cost Cs ¼ 1000.

It is seen from Fig. 4, for the D1 > 0 and D2 > 0 case, that a minimum cost value per unit time of $314.8901 is achieved at
p� ¼ 0 and J� ¼ 1.

The numerical results agree with the conclusion in preceding section (i.e., the joint optimal values is (0,1)-single vacation,
ð0;MÞ-multiple vacation, (1,1)-single vacation, or (1,M)-single vacation, where M is a sufficiently large number for practice
use). These special policies can be also referred to Remarks 2 and 3 This implies the optimal vacation policy is exactly as
single vacation or multiple vacation policy.
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6. Conclusions

This paper we address an M½x�=G=1=VACðJÞ queueing system, in which the server applies a randomized vacation policy
with at most J vacations in his idle period. Some important system characteristics are derived. A cost model is developed
to determine the optimum vacation policy. By using the analytic properties of the cost function, we develop an efficient deci-
sion criterion for searching the joint suitable value of ðp; JÞ. Some numerical examples are performed to investigate the ef-
fects of some parameters on the expected number of customers in the system and the expected waiting time of customers in
the system. We also perform two extensive numerical examples to illustrate the optimization approach. This research pre-
sents an extension of the vacation model theory and the analysis of the model will provide a useful performance evaluation
tool for more general situations arising in practical applications.
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