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a b s t r a c t

TCP Vegas is a well-known delay-based congestion control mechanism. Studies have indicated that TCP
Vegas outperforms TCP Reno in many aspects. However, Reno currently remains the most widely
deployed TCP variant in the Internet. This is mainly because of the incompatibility of Vegas with Reno.
The performance of Vegas is generally mediocre in environments where it coexists with Reno. Hence,
there exists no incentive for operating systems to adopt Vegas as the default transport layer protocol.
In this study, we propose a new variant of Vegas called COmpetitive DElay-based TCP (CODE TCP). This
variant is compatible with Reno and it can obtain a fair share of network resources. CODE is a sender-
sided modification and hence it can be implemented solely at the end host. Simulations and experiments
confirm that CODE has better fairness characteristics in network environments in which it coexists with
Reno while retaining the good features of Vegas.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Transmission Control Protocol (TCP) is a connection-oriented,
end-to-end, and reliable protocol. Nowadays, a majority of Internet
traffic is carried by TCP. Therefore, the behavior of TCP is tightly cou-
pled with the overall Internet performance. To improve network effi-
ciency, many TCP variants have been proposed. Two of these variants
are noteworthy. One is Reno [1], which has been widely deployed in
the Internet; the other is Vegas [2], which claims to have a through-
put that is 37–71% greater than that of Reno.

TCP Vegas is a delay-based congestion control mechanism. Un-
like TCP Reno which uses a binary congestion signal, packet loss, to
adjust its window size, Vegas adopts a more fine-grained signal,
queuing delay, to avoid congestion. Vegas can detect network con-
gestion in the early stage and successfully prevent periodic packet
loss that usually occurs in Reno. Delay-based congestion control
schemes have attracted considerable attention because of their
innovative control policy [3–10].

As compared to Reno, Vegas generally performs better with re-
spect to overall network utilization [2], stability [11,12], fairness
[11,12], throughput, packet loss [2], and burstiness [13] in homoge-
neous environments. Vegas also outperforms TCP Newreno [14].
However, studies have shown that when Reno and Vegas connec-
tions coexist in the same network, Reno obtains a greater amount
ll rights reserved.
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of bandwidth as compared to Vegas [12,15,16]. Consequently,
although Vegas has been available for a few years, it has not been
adopted widely because of its perceived incompatibility with Reno.

To deal with the fairness problem, we propose a new mecha-
nism called COmpetitive DElay-based TCP (CODE TCP), which is a
variant of Vegas. Most of the operations in CODE TCP are similar
to those in Vegas except that the two thresholds a and b are adap-
tive to the state of the network. When CODE senses the occurrence
of network congestion and it does not consider itself to be respon-
sible for the congestion, it begins to increase a and b instead of
reducing its own rate. This makes CODE behave more similarly to
Reno. Therefore, if the competing source is Reno, CODE reacts
against its aggressiveness and its performance does not decrease.
Conversely, if the competing source is Vegas, after a transition per-
iod, CODE recovers to a stable status as a Vegas source by reducing
a and b. Changing the values of a and b instead of directly altering
the value of its congestion window ðCWNDÞ should allow CODE to
preserve the properties of Vegas in reaching an operating point.

The remainder of this paper is organized as follows. We de-
scribe the related work in Section 2. Section 3 presents a detailed
description of the proposed mechanism, CODE TCP. Section 4 pre-
sents and discusses the results of both NS-2 simulations and exper-
iments on a Linux platform. Finally, the conclusions are presented
in Section 5.
2. Related work

To ensure network efficiency, TCP controls its sending rate
based on feedback from the network. In order to control the
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Fig. 1. State transition diagram of Vegas.
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sending rate, TCP estimates the available network bandwidth via a
bandwidth estimation scheme. In TCP Reno, packet losses are used
to detect network congestion while in TCP Vegas, the queuing de-
lay is used to estimate the network condition. In this section, we
present a summary of these two congestion control mechanisms
and explain why they are incompatible. Then two algorithms,
NewVegas [17] and Vegas-A [18], that attempt to solve the fairness
problem between Vegas and Reno are described.

2.1. TCP reno

TCP Reno uses a congestion window ðCWNDÞ to control the
amount of data transmitted in a round-trip Time ðRTTÞ and a max-
imum window ðMWNDÞ that is set by the receiver to limit the max-
imum value of CWND. The congestion control scheme of Reno can
be divided into three phases: slow-start, congestion avoidance, and
fast retransmission and fast recovery. In the interest of conciseness,
we only describe the congestion avoidance phase since it is most
closely related to our work. The descriptions of the other two
phases can be found in [1].

Since the window size in the slow-start phase expands expo-
nentially, packets sent at this increasing speed would quickly lead
to network congestion. To avoid this, the congestion avoidance
phase begins when CWND exceeds a preset slow-start threshold
ðssthreshÞ. In this phase, CWND is incremented by 1=CWND packet
every time an ACK is received in order to make CWND grow line-
arly. This process continues until a packet loss is detected; subse-
quently the scheme switches to the fast retransmission and fast
recovery phase.

2.2. TCP vegas

TCP Vegas adopts a more sophisticated bandwidth estimation
scheme that attempts to avoid congestion rather than react to it.
It uses the measured RTT to accurately calculate the number of data
packets that a source can send. Vegas features three improvements
as compared to TCP Reno: (1) a modified slow-start mechanism, (2)
an improved congestion avoidance mechanism, and (3) a new
retransmission mechanism. Its window adjustment algorithm also
consists of three phases. The CWND is updated based on the cur-
rently executing phase. Fig. 1 shows the state transition diagram
of TCP Vegas. A connection begins with the slow-start phase. The
window-adjustment phase transition is attributable to specific
events, as depicted along the edges.

2.2.1. Slow-start
During the slow-start phase, Vegas allows a connection to

quickly ramp up to the available bandwidth. However, in order
to detect and avoid congestion during this phase, Vegas doubles
its CWND only every other RTT. In between, the CWND remains
fixed so that a valid comparison of the Expected and Actual sending
rates can be made. Vegas estimates a suitable amount of extra data
to be maintained in the network pipe and controls the CWND
accordingly. It records RTTs and sets the BaseRTT to the minimum
RTT value measured. The amount of extra data ðDÞ is estimated
as follows:

D ¼ ðExpected� ActualÞ � BaseRTT; ð1Þ

where Expected rate is the current CWND size divided by the
BaseRTT, and Actual rate is the CWND divided by the newly mea-
sured smoothed RTT.

This detection mechanism is applied during the slow-start
phase to decide when to switch the phase. If the estimated amount
of extra data is greater than the threshold c, Vegas reduces its
CWND by one-eighth and transitions from the slow-start phase
to the congestion avoidance phase.
2.2.2. Congestion avoidance
During the congestion avoidance phase, Vegas does not contin-

ually increase the CWND. Instead, it attempts to detect incipient
congestion by comparing the Actual rate with the Expected rate.
The CWND is kept constant when D lies between two thresholds
a and b. If D is greater than b, it is considered to indicate incipient
congestion and thus the CWND is reduced. On the other hand, if D
is lesser than a, the connection may be underutilizing the available
bandwidth and thus the CWND is increased. CWND is updated on a
per-RTT basis. The rule for updating CWND can be expressed as
follows:

CWND ¼
CWNDþ 1; if D < a
CWND� 1; if D > b

CWND; if a 6 D 6 b

:

8><
>: ð2Þ
2.2.3. Fast retransmission and fast recovery
TCP Vegas measures the RTT for every packet sent based on fine-

grained timer values. By using fine-grained RTT measurements, a
timeout period is computed for each packet. When a duplicate
ACK is received, Vegas checks whether or not the timeout period
of the oldest unacknowledged packet has expired. If it has, the
packet is retransmitted. This modification leads to packet retrans-
mission after just one or two duplicate ACKs. When a non-duplicate
ACK that is the first or second ACK after a fast retransmission is re-
ceived, Vegas again checks for the expiration of the oldest unac-
knowledged packet following which it may retransmit another
packet.

After a packet retransmission is triggered by a duplicate ACK
and the ACK of the lost packet is received, the CWND will be re-
duced to alleviate the network congestion. Vegas sets the CWND
in two cases. If a lost packet has been transmitted just once, the
CWND will be three-fourth of the previous window size. Otherwise,
it is considered to indicate more serious congestion, and CWND is
set to one half of the previous window size. It should be noted that
if multiple packet losses occur during one round-trip time and trig-
ger more than one fast retransmission, the CWND will be reduced
only for the first retransmission.
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If a loss episode is sufficiently severe for no ACKs to be received,
these triggering the fast retransmission algorithm, the losses will
be eventually identified by a Reno-style coarse-grained timeout.
When this occurs, ssthresh is set to one half of CWND, following
which CWND is reset to two; finally, the connection restarts from
the slow-start phase.

2.3. Incompatibility of TCP vegas with TCP reno

Some previous works have demonstrated that TCP Vegas
outperforms other implementations of TCP in many cases [2].
However, when a Vegas connection competes with other con-
nections that use TCP Reno, it does not receive a fair share of
bandwidth due to its proactive congestion avoidance mecha-
nism [12,20,21].

Reno continues to increase the window size until a packet is
lost. Packet losses mainly occur due to buffer overflows. This
bandwidth estimation mechanism results in a periodic oscillation
of window size and buffer-filling behavior. Thus, while Vegas at-
tempts to maintain a smaller queue length, Reno keeps many
more packets in the buffer on average, thus stealing greater
bandwidth.

The Reno congestion avoidance scheme is aggressive in that it
leaves little room in the buffer for other connections, while Vegas
is conservative and attempts to occupy little buffer space. When a
Vegas connection shares a link with a Reno connection, the Reno
connection uses most of the buffer space; the Vegas connection
interprets this as a sign of network congestion and slows down.
This is the main reason why Vegas is not deployed widely despite
having many desirable properties.

Several schemes have been proposed to deal with this incom-
patibility problem. These can be divided into two categories. The
first type sets a and b to optimized values based on an analysis
and on characteristics of the network environment such as buffer
size at the router and number of connections passing through the
router [15,16,22–24]. However, such schemes could not be de-
ployed widely in the Internet due to certain problems. First, a
connection may pass through a number of routers and thus it
cannot determine which one is the real bottleneck. Second, if
no router provides useful information, such schemes cannot func-
tion properly. The second type attempt to solve the incompatibil-
ity problem by dynamically adjusting a and b based on feedback
from the network [17,18]. Such schemes attempt to detect
whether or not Reno connections exist in the network. If Reno
connections exist, they will compete with Reno in a more aggres-
sive manner. When Reno connections leave the network, they
will behave in a manner similar to Vegas. Such schemes are eas-
ier to deploy because they do not require information from the
router.
Fig. 2. Changes in CWND of Reno and
2.4. TCP NewVegas

The disadvantage of TCP Vegas in heterogeneous network sce-
narios is that when the available bandwidth is fully utilized, it does
not increase its own CWND while TCP Reno does, as shown in Fig. 2.
NewVegas [17] was originally designed to overcome the draw-
backs of Vegas. The changes introduced in NewVegas are confined
to the congestion avoidance mechanism. Initially, NewVegas sets
the thresholds a and b to default values a0 and b0 (set to 1 and
3, respectively). Whenever the target ACK arrives at the source,
NewVegas updates the thresholds as given by the following pseu-
docode, where RTT is the round-trip delay of the target packet and
RTTold is the previous one. W is the current CWND and Wold is the
previous one.
if (receive_dupack)
if (loss_event_is_true)

fast_ retransmission_ and_ recovery
a ¼ a0

b ¼ b0

else
if (D > b)

W=W-1
elseif (D < a)

W=W+1
else

W=W
if (RTT > RTTold and W 6Wold)

a ¼ aþ 1
b ¼ bþ 1

if (RTT 6 RTTold and a > a0)
a ¼ a� 1
b ¼ b� 1
The two thresholds are updated once every RTT. In the first con-
dition, if the congestion is increasing (last RTT greater than the pre-

vious one) but NewVegas has not increased its CWND, it does not

consider itself to be responsible for the network congestion. Then,
the source is allowed to increase the number of packets it can keep
in the bottleneck buffer by increasing the thresholds a and b. The
thresholds a and b are both increased by 1 in order to follow the
behavior of Reno in the congestion avoidance phase and thus insert
an extra packet into the network.

On the other hand, in the second condition, if the RTT begins
decreasing, it implies that either the other sources are also Vegas
or some source has been switched off. Therefore, NewVegas can re-
duce its two thresholds.

When timeout expiration occurs or three duplicate ACKs are
received, the two thresholds are set to the initial values a0

and b0 and NewVegas restarts from the congestion avoidance
phase.
Vegas for the same bottleneck.
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2.5. TCP Vegas-A

TCP Vegas uses fixed values of 1 and 3 for thresholds a and b,
respectively. The strategy of Vegas is to adjust the CWND to keep
a small number of packets buffered at the router. The average
number of packets buffered at the router is to be maintained with-
in a and b. The main idea behind Vegas-A is that rather than fixing
a and b, they can be made dynamically adjustable and more adap-
tive. At the start of a connection, a and b are set to 1 and 3, respec-
tively. These values are then changed dynamically depending on
the network conditions in an attempt to probe the network capac-
ity. The detailed operation and pseudocode of Vegas-A is given
below.
if ðb > D > aÞ
if (Tht > Tht�rtt)

W ¼W þ 1
a ¼ aþ 1
b ¼ bþ 1

else
W ¼W

elseif ðD < aÞ
if (a > 1 and Tht > Tht�rtt)

W ¼W þ 1
elseif (a > 1 and Tht < Tht�rtt)

W ¼W � 1
a ¼ a� 1
b ¼ b� 1

elseif (a ¼ 1)
W ¼W þ 1

elseif (D > b)
if (a > 1)

a ¼ a� 1
b ¼ b� 1

W ¼W � 1
else

W ¼W
The notation Tht is the actual throughput rate at time t and

Tht�rtt is the actual throughput rate measured one RTT before t.
The operation of Vegas-A appears reasonable and it can dynami-

cally adjust its thresholds a and b. However, when Vegas-A and
Reno share the same bottleneck, this may not always be the case.
Consider the following case when one Vegas-A connection and
one Reno connection share the same bottleneck. Assume that D
of Vegas-A lies between a and b. If Reno keeps increasing its
CWND every RTT, the throughput probed by Vegas-A decreases
and thus it will not increase its thresholds a and b. Therefore,
the performance of Vegas-A is limited by its a and b update algo-
rithm. The performance of Vegas-A will be further examined in
Section 4.
Fig. 3. Changes in CWND of NewVegas
3. CODE TCP

The proposed algorithm, CODE TCP, is inspired by the idea of
NewVegas. In this section, we first discuss the drawbacks of New-
Vegas and then describe the operation of CODE TCP. The parameter
analysis is described in the last subsection.

3.1. Drawbacks of NewVegas

TCP NewVegas appears to be compatible with TCP Reno. How-
ever, the simulation results shown in Fig. 3 indicate otherwise. It
is observed that NewVegas sends less packets as compared to Reno
in a repetition cycle (period between two packet loss episodes),
and therefore, the throughput of NewVegas is lower than that of
Reno in this case. There are two drawbacks that lead to NewVegas
having a lower throughput.

First, at the ith second, both NewVegas and Reno detected a
packet loss. After a packet loss, NewVegas sets a and b to the de-
fault values, that is, a0 and b0. Consider the following case: since
NewVegas will adjust its thresholds a and b, assume that the max-
imum values of a and b of NewVegas are 15 and 17 before a packet
loss and a0 and b0 are 1 and 3, respectively. In this case, D will
range from 15 to 17; assume that D is 16. After the packet loss, a
and b were immediately set to the default values 1 and 3, respec-
tively. This will lead to CWND being decreased by 1 packet every
RTT until D lies between a and b while Reno will increase its CWND
1 packet every RTT. This situation occurs during the period be-
tween the ith and jth seconds in Fig. 3. This first drawback prevents
NewVegas from competing with TCP Reno.

The second drawback of NewVegas is that every time it in-
creases the thresholds a and b, it requires another RTT to increase
its CWND. It is impossible to increase CWND and the two thresh-
olds a and b in the same RTT. As shown in Fig. 4., which shows a
flowchart of the operation of NewVegas, if a and b are increased
by one in the current RTT;CWND can be increased by one in the
next RTT. Thus, W 6Wold would not hold at the next RTT, and a
and b will not be increased. Therefore, NewVegas cannot increase
its CWND by 1 packet every RTT while Reno can.

For example, consider the following case shown in Table 1.
Assume D is 5 while a and b are 5 and 7, respectively, in RTTj.
If a and b are increased by one in RTTj, they would be 6 and 8
in RTTjþ1. At RTTjþ1, since W remains the same before the updat-
ing algorithm, and assuming that the variation of RTT is relatively
small, D would remain 5. After the updating algorithm in the con-
gestion avoidance phase at RTTjþ1, W would be increased by one
so that D could be kept between a and b. From Fig. 4., W 6Wold

will not hold at RTTjþ1 because W is increased by one and a and b
will remain the same. Thus, W will not change at RTTjþ2. This is
the second drawback of NewVegas that prevents it from compet-
and Reno for the same bottleneck.



Fig. 4. Flowchart of NewVegas operation.

Table 1
Evolution of the parameters of NewVegas.

RTT RTTj RTTj+1 RTTj+2 RTTj+3 RTTj+4 RTTj+5

Wold 20 20 21 21 22 22
a 5 + 1 6 6 + 1 7 7 + 1 8
b 7 + 1 8 8 + 1 9 9 + 1 10
D 5 5 6 6 7 7
W 20 21 21 22 22 23
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ing with Reno. This situation occurs during the time interval be-
tween the jth and kth seconds in Fig. 3. It is observed that the
CWND of Reno increases at a greater rate than that of NewVegas
during this period.
3.2. Operation of CODE TCP

Since we know the drawbacks of NewVegas when competing
with Reno, we aim to revise NewVegas such that it can compete
with Reno while maintaining the good characteristics of Vegas.
This improved variant is called COmpetitive DElay-based TCP, or
CODE TCP. The main difference between CODE and NewVegas is
that when a packet loss is detected by three duplicate ACKs,
the two thresholds a and b will be multiplied by the factor �,
while NewVegas directly sets a and b to the default values. � is
set to 0:68 based on a numerical analysis shown in the next sub-
section. This modification is used to deal with the first drawback
of NewVegas. The second modification is that when CODE finds
that a Reno connection coexists in the network, a and b are in-
creased by two to mitigate the effect of the second drawback of
NewVegas, and thus, CODE may increase 2 packets every three
RTTs.

These two modifications will make CODE more compatible with
Reno and enable a greater performance improvement as compared
to NewVegas, as shown in Fig. 5. The operation of CODE is given by
the following pseudocode.
if (receive_dupack)
if (loss_event_is_true)

fast_retransmission_and_recovery
a ¼ �� a
b ¼ �� b

else
if (D > b)

W=W-1
elseif (D < a)

W=W + 1
else

W=W
if (RTT > RTTold and W 6Wold)

a ¼ aþ 2
b ¼ bþ 2

if (RTT 6 RTTold and a > a0)
a ¼ a� 1
b ¼ b� 1
3.3. Numerical analysis of �

In this section, we present a numerical analysis of the parame-
ter �. Throughout our analysis, we adopt a dumbbell network
topology. We assume a fluid model and that the sources always
have packets to transmit. There is no congestion in the ACK path,
and therefore, the effect of ACK compression is negligible. One
CODE connection and one Reno connection share the bottleneck.
Both connections have the same round-trip delay.

We try to model CODE’s and Reno’s CWND with respect to a
‘‘round,” or equivalently, a ‘‘window transmission.” A round begins
with the transmission of W packets (back-to-back), where W is the
size of the congestion window in that round. A round ends when
the source receives the ACK of the first packet in that round, and
then, the source starts sending a new packet of the next round.
For the sake of simplicity, we do not consider the fast retransmis-
sion and recovery phase, as shown in Fig. 6. In addition, we also as-
sume that D is a function of CWND [15] so that it would be affected
by the value of thresholds a and b.



Fig. 5. Changes in CWND of CODE and Reno for the same bottleneck.

Fig. 6. Analysis of CWND of CODE and Reno for the same bottleneck.
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From Fig. 6, we know that the ratio of CODE’s throughput ðkV Þ
and Reno’s throughput ðkRÞ can be expressed as the ratio of the
packets sent during a cycle. If we want CODE to get a fair share
with Reno, we can simply set the ratio to 1, implying that CODE
and Reno send the same number of packets during a cycle and have
the same throughput, that is

kV

kR
¼
Pk

n¼iWVnPk
n¼iWRn

¼ 1; ð3Þ

where WVn and WRn are CODE and Reno’s window size in the nth
round. As shown in Fig. 6, if we want CODE to get a fair share with
Reno, the area of CODE and Reno during a cycle (ith round to kth
round) should be the same. For the sack of simplicity, we focus on
how to set the parameter � so that CODE and Reno can have the
same area during a cycle. After a packet loss in NewVegas, the
thresholds a and b are set to the default values; however in CODE,
the thresholds are multiplied by the parameter �, having a value
greater than 0 and lesser than 1.

For CODE, the CWND after a packet loss will be reduced to
three-forth of the largest window size before it, that is

3
4
�WVmax; ð4Þ

where WVmax is the maximum value of CWND before packet loss
during a cycle. Assume that after t rounds, CWND reaches the min-
imum value, which is

� �WVmax ð5Þ

at jth round.
Since the area of CODE during a cycle can be divided into two
parts (ith round to jth round and jth round to kth round), we calcu-
late the areas separately.

Assuming that there are t rounds between ith and jth rounds,
the average CWND through i to j is

3
4 �WVmax þ � �WVmax

2
¼ 3þ 4�

8

� �
WVmax; ð6Þ

and therefore, the area between i and j is

3þ 4�
8

� �
WVmax � t: ð7Þ

For each cycle, CODE and Reno will experience the same number of
rounds. Since Reno adds 1 packet to its CWND every round, the
number of rounds through i to k can be expressed as WRmax

2 . WRmax

is the maximum value of CWND before the packet loss during a cy-
cle. For the remaining area of CODE, the average CWND through j to
k is
� �WVmax þWVmax

2
¼ �þ 1

2

� �
WVmax: ð8Þ

The area between j and k is

�þ 1
2

� �
WVmax �

WRmax

2
� t

� �
: ð9Þ

Therefore, the packets sent by CODE in a cycle can be expressed as
the area between i and k in Fig. 6. The total packets sent by CODE
through i–k is

3þ 4�
8

� �
WVmax � t þ

�þ 1
2

� �
WVmax �

WRmax

2
� t

� �
: ð10Þ

With regard to Reno, the case is much simpler. The rounds between
i and k is WRmax

2 and the average CWND through i–k is

1
2 WRmax þWRmax

2
¼ 3

4
WRmax: ð11Þ

The total packets sent by Reno in a cycle is equal to the area through
i–k, that is,

3
4

WRmax �
WRmax

2
¼ 3

8
W2

Rmax: ð12Þ

Since we know that CODE will decrease its CWND by 1 in each
round between i and j,

3
4
�WVmax ¼ � �WVmax þ t: ð13Þ

Solving (13) for t, we obtain

t ¼ 3
4
� �

� �
WVmax: ð14Þ



Fig. 8. Network topology used for connections with different RTTs.
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Using the second modification of CODE, CWND can increase by two
every three RTTs, while in NewVegas, it can increase by one every
other RTT; the slope of CODE between j and k is around two-thirds
of that of Reno, and therefore, we assume that CODE will increase
its CWND by two every three RTTs between j and k. Substituting
(14) into (10), the total packets sent by CODE in a cycle is

3þ 4�
8

� �
WVmax �

3
4
� �

� �
WVmax þ

�þ 1
2

� �
WVmax �

3
2
ð1� �ÞWVmax:

ð15Þ

Using (3) and (12), the relation between CODE and Reno is

3þ4�
8

� �
WVmax �

3
4
� �

� �
WVmaxþ

�þ1
2

� �
WVmax �

3
2
ð1� �ÞWVmax ¼

3
8

W2
Rmax:

ð16Þ

Since we know the rounds of CODE and Reno during a cycle are the
same,

3
4
� �

� �
WVmax þ

3
2
ð1� �ÞWVmax ¼

1
2

WRmax ð17Þ

Substituting (17) into (16), we obtain

34�2 � 54�þ 21 ¼ 0: ð18Þ

Solving (18), we finally obtain

� � 0:68 or 0:91: ð19Þ

The value of 0.91 is unsuitable because it will make (14) unreason-
able; the value of t cannot be negative. Since we assume that CWND
is a function of D, when a packet loss occurs in CODE, it will not set
thresholds a and b to the default values a0 and b0 directly but mul-
tiply them by 0.68 so that CWND can decrease to a suitable value
and then begin increasing.

4. Performance evaluation

In this section, we present the simulation results obtained using
Network Simulator (NS-2) [25] and the Linux platform to verify the
effectiveness of CODE TCP. The network topologies used in the sim-
ulations are shown in Figs. 7 and 8. A set of real network experi-
ments are also described at the end of this section.

In all of the following simulations, the TCP packet size is set to
1000 bytes, and the TCP congestion window is assumed to be not
limited by the receiver window. Unless stated otherwise, we as-
sume that the sources always have data to send (FTP source
model).

4.1. One reno vs. one vegas/vegas-a/newvegas/CODE

First, we consider the network configuration shown in Fig. 7, in
which one Reno connection competes with either one Vegas,
Fig. 7. Dumbbell network topology used in simulations.
Vegas-A, NewVegas, or CODE connection. Each simulation scenario
is repeated 20 times by randomly changing the start time of the
connections. The connection start time ranges from 0 to 25 s. Since
the start times of two competing connections are probably differ-
ent, we calculate the average throughput of each connection from
second 50 to 200. In Fig. 9, we show the results of two connections
competing in a single bottleneck by varying the bandwidth of the
bottleneck link and setting the buffer size to 100 packets.

Since the two thresholds (a and b) of Vegas are fixed at 1 and 3,
respectively, Vegas will keep a maximum of three packets at the
bottleneck, while Reno can use the rest of the buffer size. Because
of this, Vegas has a considerably small throughput as compared to
that of Reno, as shown in Fig. 9(a).

The results of one Vegas-A connection competing with one Reno
connection are shown in Fig. 9(b). Although Vegas-A can alter its
two thresholds a and b, the throughput that it can achieve is still
considerably smaller than that of Reno.

Fig. 9(c) shows the results for a NewVegas connection that is af-
fected by the two drawbacks described in Section 3; again, the
throughput is found to be smaller than that of Reno. However,
since NewVegas adjusts its thresholds dynamically, it achieves a
noticeable improvement in throughput as compared to Vegas. In
the simulation results shown in Fig. 9(d), we observe that the
throughputs of CODE and Reno are close to each other.

To further study the simulation results, we also calculate the
confidence intervals of the throughput ratio of each set of two
competing connections. The corresponding 95% confidence inter-
vals (CI) can be found in each sub-figure. If the throughput ratio
is 1, then it implies that the two competing connections share
the bottleneck link fairly. From the 95% CI of each sub-figure, we
can find that the throughput ratio of CODE/Reno is closer to 1 than
that of the other combinations.

4.2. Connections with different RTTs

In this subsection, we describe simulations performed for
connections with different RTTs. The network configuration is
shown in Fig. 8. We fix the minimal round-trip delay of one con-
nection and vary the minimal round-trip delay of the other connec-
tion to determine the behavior of connections with different RTTs.
Each simulation scenario is also repeated 20 times by randomly
changing the start time of connections. The average throughputs
of each competing connection between 50 and 200 s are shown
in Figs. 10–13.

Since Vegas is restricted to its fixed thresholds a and b, it can
only queue a maximum of b packets at the bottleneck, thus induc-
ing inefficiency when competing with Reno. Based on the results
shown in Figs. 10(a) and (b), irrespective of whether the RTT of
Vegas is larger or smaller than that of Reno, Vegas always has a
considerably smaller throughput than Reno.

Fig. 11(a) and (b) show the results of Vegas-A competing with
Reno with different RTTs. It is obvious that Vegas-A cannot obtain
a fair share of the bottleneck bandwidth.



Fig. 9. Variation in the achieved throughput of two competing connections with the bottleneck bandwidth.
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The results of NewVegas and Reno with different RTTs are
shown in Fig. 12(a) and (b). Since the throughput of NewVegas re-
mains restricted because of its drawbacks, the performance
improvement is limited. Again, irrespective of whether the RTT of
NewVegas is larger or smaller than that of Reno, NewVegas has a
smaller throughput than Reno. It is notable that some fluctuations



Fig. 10. Achieved throughput of two competing connections, Vegas and Reno.

Fig. 11. Achieved throughput of two competing connections, Vegas-A and Reno.
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Fig. 12. Achieved throughput of two competing connections, NewVegas and Reno.

Fig. 13. Achieved throughput of two competing connections, CODE and Reno.
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Fig. 14. Variation in the achieved throughput of two competing connections with different buffer sizes.
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Fig. 15. Variation in the average throughput with the ratio of connection numbers of two TCP variants.
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exist in the measured throughputs. Although each simulation sce-
nario is repeated 20 times, the random start times of competing
connections induce uncertainty.
The results of CODE and Reno competing with the same bottle-
neck with different RTTs are shown in Fig. 13(a) and (b). It is well
known that when Reno connections compete at the same



Fig. 16. Changes in the CWND of two CODE connections for the same bottleneck.
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bottleneck, a connection with a small RTT would be more favorable
than one with a large RTT. Fig. 13(a) indicates that CODE is prefer-
able. However, the result shows that CODE does not steal too much
bandwidth from Reno and only takes its fair share. In Fig. 13(b), the
RTT of Reno is smaller than that of CODE. Although Reno’s RTT is
smaller and favorable, CODE can maintain a relative fair share with
Reno as compared to the others.

The corresponding 95% confidence intervals of throughput ratio
for the results in Figs. 10–13 are calculated and shown in each sub-
figure. From the 95% CI of each sub-figure, we also find that CODE
is more compatible with Reno as compared to the other Vegas
variants.
4.3. Bottleneck with different buffer sizes

In this subsection, we test the fairness of two connections that
share the same bottleneck under different buffer size settings. The
network configuration is shown in Fig. 7. Each simulation scenario
is repeated 20 times by randomly changing the start time of the
connections. The average throughputs of each competing connec-
tion between 50 and 200 s are shown in Fig. 14.

Vegas uses fixed values of a and b, and therefore, it always at-
tempts to keep the number of packets between a and b at the bot-
tleneck buffer. The values of a and b are set at 1 and 3, respectively,
while Reno uses the remainder of the bottleneck buffer. From the
results shown in Fig. 14(a), it can be concluded that when the buf-
fer size is small, Vegas may maintain a tolerable throughput. How-
ever, when the buffer size is increased, the throughput of Vegas
worsens.

Vegas-A can alter the values of its two thresholds a and b. When
the buffer size is small, Vegas-A outperforms Reno. However, Ve-
gas-A cannot compete well with Reno when the buffer size is large.
The results are shown in Fig. 14(b). It appears that the buffer size is
a key factor influencing the performance of Vegas-A. It is also
worth noting that when the buffer size is 60 packets, the through-
puts of two competing connections are closer than in other circum-
stances. We infer that this may be caused by the random
connection start times. The connection start time affects Vegas-
A’s performance when it competes with Reno.

From the results of NewVegas shown in Fig. 14(c), we can con-
clude that NewVegas outperforms Reno when the buffer size is
small. However, as the buffer size increases, Reno is favored, and
hence, it takes advantage of NewVegas. Therefore, Reno obtains
more bandwidth from NewVegas. In Fig. 14(d), we observe that
CODE achieves a higher throughput than Vegas-A or NewVegas.

The 95% confidence intervals of the throughput ratio for the re-
sults in Fig. 14 are calculated and shown in each sub-figure. It ap-
pears that none of the delay-based TCPs can fairly share the
bottleneck with Reno under different buffer size settings. However,
CODE maintains a more stable behavior and always achieves a
higher throughput than Reno. Although this feature may encourage
network users to adopt CODE TCP, the reasons of leading to this
feature need to be further studied.

4.4. Varied ratio of connection numbers

In this subsection, we describe simulations of 10 connections
sharing the same bottleneck. Some of the sources are Reno and
the others are either Vegas, Vegas-A, NewVegas, or CODE. The net-
work configuration is shown in Fig. 7. In Fig. 15, we show the aver-
age throughput of connections with a varying number of Reno
connections to test the behavior of the other four Vegas variants.
Each simulation scenario is also repeated 20 times by randomly
changing the start time of the connections.

Vegas connections control their window sizes according to the
observed RTTs and calculate the number of packets buffered at
the bottleneck. Each connection attempts to keep the number of
queued packets in the router buffer between a and b. As RTT in-
creases because of the increasing queuing delay, Vegas connections
continue to decrease their window sizes. On the other hand, Reno
connections continue to increase their window sizes irrespective of
the increasing RTT; because of this, the window sizes of the Vegas
connections continue to decrease until a packet loss occurs.

Vegas-A also cannot compete well with Reno in these scenarios.
Although NewVegas can dynamically adjust its thresholds a and b,
as the queuing delay increases, its algorithm may not function
instantaneously. Vegas, Vegas-A, and NewVegas cannot obtain
their fair share even if the number of Reno connections is relatively
small as compared to the number of Vegas/Vegas-A/NewVegas
connections. The respective results are shown in Fig. 15(a)–(c).
On the other hand, the result shown in Fig. 15(d) indicates that
CODE achieves a reasonable fairness irrespective of the number
of Reno connections. The same inference can also be obtained from
the 95% confidence intervals of throughput ratio those are pre-
sented in each sub-figure.

4.5. Fairness feature in homogeneous scenarios

The simulations presented in this subsection are intended to
verify whether or not CODE preserves a good fairness feature in a
manner similar to NewVegas and Vegas when only the same vari-
ant sources exist in the network.

Fig. 16 shows the changes in the CWND of two CODE connec-
tions that share the same bottleneck. It is found that CODE pre-
serves the good characteristics of Vegas and it can be stable in a
homogeneous network environment. When only CODE sources



Table 2
Variation of fairness index value of 10 competing connections with the bottleneck
bandwidth.

Bandwidth (Mb/s) Code NewVegas Vegas

5 0.99 0.99 0.97
10 0.97 0.96 0.97
15 0.98 0.98 0.95
20 0.99 0.98 0.95
25 0.99 0.98 0.97
30 0.99 0.96 0.97
35 0.99 0.98 0.99
40 0.99 0.99 0.99
45 0.99 0.99 0.99
50 0.99 0.97 0.99
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exist in the network, they behave like Vegas. Fig. 16 shows that a
peak exists around second 20. This is because CODE uses the min-
imum of the RTTs measured within the last window of transmitted
packets to update the thresholds and it is thus sensitive to network
variations.

To evaluate the fairness among connections, we use the fairness
index proposed in [26]. Given a set of throughputs ðx1; x2; . . . ; xnÞ,
the fairness index of the set is defined as:

F ¼ ð
Pn

i¼1xiÞ2

n �
Pn

i¼1x2
i

: ð20Þ

The value of the fairness index lies between 0 and 1. If the through-
puts of all connections are the same, the index will be 1.
Fig. 17. Changes in the CWND of two TCP connections for the same bottleneck. A new
connection in equilibrium.
In this simulation, we adopt the network topology shown in
Fig. 7, and the network environment is similar to that described
in the last subsection except that the bandwidth is variable. Ten
connections of the same TCP variant start at the same time and
share the same bottleneck. From the simulation results shown in
Table 2, we observe that CODE maintains the fairness feature and
behaves in a similar manner to NewVegas and Vegas in a homoge-
neous scenario.

Fig. 17 presents the changes in the CWND of two TCP connec-
tions that share the same bottleneck (5 Mb/s). The new connection
arrives at the bottleneck link that is occupied by the previously
started connection in equilibrium. Both Vegas and CODE can
achieve equilibrium and fairly share the bottleneck after a tran-
sient period. The transient period of CODE is longer than that of
Vegas because CODE TCP needs to detect whether or not the new
competition comes from Reno. The bottleneck queue status shown
in Fig. 18 also reveals the same information. After a transient per-
iod, both Vegas and CODE maintain a stable bottleneck queue. It is
notable that CODE attains a buffer utilization that is as low as that
of Vegas.
4.6. Experiments on the Linux platform

In this subsection, we adopt Fedora 6 with kernel 2.6.18.8 to
implement CODE TCP and TCP NewVegas. Since Linux kernel
2.6.18.8 already has a built-in Vegas module, the implementa-
tion is easier. In addition, FreeBSD uses ipfw as a packet filter
and thus we can use it to emulate the router and set the band-
width, delay, and queue length at the bottleneck. We also adopt
connection arrives at the bottleneck link that is occupied by the previously started
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Iperf, a bandwidth measurement tool, to run the simulations.
The network configuration for the experiments is shown in
Fig. 7. One computer is set to be a server (sender) and the other
is a client (receiver). A server and a client represent a traffic
pair. Two traffic pairs share the same bottleneck and start at
the same time.

The experiment results are obtained by varying the bandwidth
of the bottleneck link with a queue length of 100 packets and a link
delay of 23 ms. Fig. 19(a)–(c) show the results of one Reno connec-
tion competing with a Vegas, NewVegas, and CODE connection,
respectively.

The experimental results shown in Fig. 19 are similar to those of
the NS-2 simulation in Section 4.1. In all the experiments, the
throughput of CODE almost equals that of Reno, confirming the
result of the numerical analysis and the good agreement with
the NS-2 simulations. NewVegas was affected by the two drawbacks
described in Section 3, and therefore, its throughput is small as com-
pared to that of Reno and it is difficult to obtain a fair share with
Reno. However, NewVegas can adjust it thresholds dynamically,
and therefore, its throughput can be higher than that of Vegas. The
thresholds of Vegas are fixed and therefore it will keep at most three
packets at the bottleneck while Reno can use the rest of the buffer
size. Therefore, Vegas has a much lower throughput as compared
to that of Reno.

4.7. Results on the Internet

Since we have implemented CODE TCP on a Linux platform,
the measurements of Vegas/CODE competing with Reno can be
Fig. 18. Status of the bottleneck queue. A new connection arrives at the bottlene
performed over the Internet. Specifically, two FTP clients upload
files having sizes of 53,612 kB each to an FTP server. One FTP cli-
ent uses Vegas or CODE as its transport protocol, and the other
uses Reno. The two FTP clients start at the same time and thus
compete for resources of the same network path over the Inter-
net. The FTP server is at National Changhua University of Educa-
tion (NCUE), and the FTP clients are at National Chiao Tung
University (NCTU), as shown in Fig. 20. The two universities are
approximately 100 km apart.

We conduct 10 successive rounds of measurement. Each round
consisted of two independent experiments. In one, Vegas competes
with Reno, while in the other, CODE competes with Reno. Table 3
summaries the results. The throughput of each sample is calculated
dividing the file size (53,612 kB) by the file transfer time. When
competing with Vegas, by using its more aggressive congestion
avoidance scheme, Reno has a considerably higher throughput
than Vegas. It should be noted that although the average through-
put of Reno is 1.59 times that of Vegas, it does not seem to agree
with the simulation results, such as shown in Fig. 9(a). In our real
network experiments, FTP clients with different TCP variants start
at the same time and send files having equal sizes to the FTP server.
The FTP client with Reno completes its transmission first. The FTP
client with Vegas then utilizes the network resources released by
Reno. Therefore, the throughput of Vegas is not very poor. From Ta-
ble 3, we conclude that the average throughputs of Reno and CODE
are almost equal. Furthermore, from the confidence intervals under
different confidence levels, we find that the competing results of
CODE and Reno are quite stable. These results confirm the effec-
tiveness of CODE.
ck link that is occupied by the previously started connection in equilibrium.



Fig. 19. Variation of achieved throughput of two competing connections with the bottleneck bandwidth.
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5. Conclusion

In this study, we propose a new TCP variant, COmpetitive DE-
lay-based TCP (CODE TCP), that is more compatible with Reno
and may get its fair share of network resources. CODE is a sen-
der-sided modification and hence it can be easily implemented at
the end host. Accordingly, CODE can be easily deployed in the
Internet. It provides rather flexible control and also retains the
good features of the original Vegas. Simulations and experiments
confirm that CODE can dynamically adjust Vegas thresholds to
overcome the unfairness problem when coexisting with Reno.
An issue that has not been addressed in the present work is the
behavior of CODE in networks with non-persistent traffic sources.
The slow-start mechanism of CODE is the same as that in Vegas.
It appears that Reno may gain an advantage because of its more
aggressive start-up. Implementing Reno’s slow-start in CODE
would reduce this disadvantage. However, this may affect some
features of CODE, such as its stability and fairness. In addition,
transmission in high bandwidth-delay product networks has be-
come increasingly popular. Quickly adjusting the transmission rate
to the bandwidth on the bottleneck link is an important issue for
any new TCP variant. Therefore, we intend to design a new



Fig. 20. Real test-bed network.

Table 3
Throughput (KB/s) of two competing connections over the internet.

Round Reno vs. Vegas Reno vs. CODE

1 547.23 315.69 546.66 542.51
2 553.59 339.91 548.96 551.91
3 552.21 381.16 535.13 540.28
4 552.14 358.31 544.94 548.57
5 555.34 275.88 546.05 551.51
6 552.82 368.05 546.25 542.45
7 553.80 343.03 545.71 548.23
8 552.98 315.91 546.04 549.97
9 551.96 390.85 546.92 543.66
10 552.39 380.89 546.41 540.12

Avg. 552.45 346.97 545.31 545.92

99% CI 552.45 ± 1.71 346.97 ± 29.59 545.31 ± 3.03 545.92 ± 3.74
95% CI 552.45 ± 1.30 346.97 ± 22.52 545.31 ± 2.31 545.92 ± 2.85
90% CI 552.45 ± 1.09 346.97 ± 18.90 545.31 ± 1.94 545.92 ± 2.39
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slow-start mechanism and adapt CODE to high-speed networks in
the future.
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