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a b s t r a c t

The advances in electrocardiographic (ECG) technology have facilitated the development of numerous
successful clinical applications and commercial monitoring products for diagnosing disease and moni-
toring health. All of these demand the development of smart algorithms and computational resources
for the real-time, early indication of critical cardiac conditions. This study presents the development
of a Complex Phase Space Difference (CPSD) algorithm with differential method to analyze spatial and
temporal changes in reconstructed phase space matrix, and derives an index for real-time monitoring.
We used total of 5306 data segments from MIT-BIH, CU, and SCDH databases and clinical trial data to
determine the optimal working parameters and verified the classification capability by using a quan-
titative index of this algorithm. With threshold values set to 2.0 and 6.0, this method can successfully
eal-time analysis differentiate normal sinus rhythm (NSR) signals (1.48 ± 0.21), low risk of atrial fibrillation (AF) signals
(3.71 ± 0.99) and high risk of ventricular fibrillation (VF) signals (9.38 ± 2.22). It is the first real-time algo-
rithm that reports the best performance to distinguish AF and VF with sensitivity of 97.9% and specificity
of 98.4%. With self-normalization, the algorithm is not subjected to the inter-variability or sampling size
effects. Its computational scheme only requires matrices addition and subtraction, and thus significantly
reduces the complexity for real-time implementation. It will be able to adopt in different scenarios of

ntab
tele-healthcare and impla

. Introduction

Healthcare services globally are rapidly evolving from provider-
entric to people-centric, with novel technologies to fulfill the
emands of personalized, prevented and home-care services [1].
he goal is to develop better support mechanisms that account for
ndividual differences and satisfy personal needs. The combination
f computation with physiological signals can yield an easy-to-use
eal-time index of health status as well as necessary information
o support decision-making in healthcare. Bio-signal processing

as been an active field of research in biomedical engineering

or many decades. It provides a functional assessment of a target
hysiological system by evaluating acquired biological signals in
ither the time or the frequency domain for diagnosis or treatment.

∗ Corresponding author at: Institute of Biomedical Engineering, National Taiwan
niversity, Taipei, Taiwan. Tel.: +886 2 33665272; fax: +886 2 23620586.

E-mail address: cwlinx@ntu.edu.tw (C.-W. Lin).

350-4533/$ – see front matter © 2010 IPEM. Published by Elsevier Ltd. All rights reserve
oi:10.1016/j.medengphy.2010.04.001
le applications.
© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

Commonly, less accurate indices are adopted in monitoring appli-
cations, such as four of the primary vital signs – temperature, blood
pressure, pulse rate, and respiratory rate. Two of these indices are
related to the functions of the heart, which can also provide an
electrophysiological signal that can be monitored noninvasively
using an electrocardiograph (ECG) and electrodes on the surface
of the body for several clinical applications [2,3]. However, medical
professionals must typically to interpret the recorded signal traces
to diagnose disease and so the application of this approach in the
monitoring of health poses significant challenges.

Many studies have addressed the problem from a perspective
of time–frequency duality [5,6]. The principle of time–frequency
duality is that acquired signals can be viewed in either the time
domain or the frequency domain to identify embedded informa-

tion using proper linear or nonlinear computational algorithms.
For example, Heart-Rate Variability (HRV) analysis can be per-
formed in either the time domain, using the mean and standard
deviation in R-R interval variations or the frequency domain, with
reference to the power spectral density ratio of the low-frequency

d.

http://www.sciencedirect.com/science/journal/13504533
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nd high-frequency bands [7]. This scheme can be used to analyze
ympathetic and parasympathetic neuronal amplitude modula-
ion. VF detection is performed using time-domain methods to
xtract morphological features, such as Threshold Crossing Inter-
als [8], Complexity Measure [9], Phase Space Reconstruction [10]
nd VF Filter [11] algorithms, and frequency-domain algorithms,
uch as Spectral Analysis [12], Generalized Discriminant Analysis
nd Support Vector Machine [13] and High-Order Spectral Tech-
ique algorithms [14], which are applied to the power spectrum
ensity. Gang et al. undertook the VT and VF by multifractal anal-
sis [15]. Lu et al. used R-R intervals with probability density
unction for detecting atrial fibrillation [16]. Recently, many nonlin-
ar methods, based on the Multilayer Perpectron Neural Network,
daptive Neuro-Fuzzy Interference System and the Mixture of
xpert algorithms, have exploited Artificial Neural Network (ANN)
rchitecture to distinguish among various cardiac diseases [17]. For
xample, Kannathal et al. used adaptive neuro-fuzzy technique for
ardiac state diagnosis [18]. Sarkar et al. employed the Lorenz plot
f �RR intervals to classify AT/AF signals [19]. Lemay et al. adopted
hase-rectified signal averaging (PRSA) to estimate the dominant
requency during AF [20]. Climent et al. utilized the Poincare Surface
rofile (PSP) to detect automatically and quantify preferential clus-
ers of RR intervals [21]. Amann et al. summarized the performance
f 10 VF algorithms for AED applications [22]. Übeyli used the
ultilayer perceptron neural network architectures [23], adaptive

euro-fuzzy inference system model [24] and mixture of experts
etwork structure [25] for classification of ECG beats. Table 1 sum-
arizes the performance of above-mentioned algorithms for the

uantitative detection of cardiac arrhythmia.
From this table, most of the frequency-domain algorithms
equire complex Fourier transform (FT) computational processes,
nd the ANN methods need off-line training and extensive mem-
ry resources for feature extraction and prediction, potentially
imiting their ranges of real-time applications. However, either sen-
itivity or specificity of time-domain methods is lower than the

able 1
ardiac arrhythmia detection algorithms for classification.

Algorithm Description

Threshold Crossing Intervals (TCI) The TCI algorithm sets the threshold value
the digitized ECG signal, and analyzes the p
crossing [8].

Complexity Measure (CPLX) The CPLX algorithm selects an appropriate
string, and obtains its asymptotic behavior

Phase Space Reconstruction (PSR) The PSR algorithm translates the ECG signa
analyzes the features of geometrical orbits

VF Filter (VF) The VF algorithm applies a narrow band-st
signal, and computes the “VF filter leakage

Spectral (SPEC) The SPEC algorithm applies fast Fourier tra
frequency domain, and analyzes the energ

Generalized Discriminant Analysis and
Support Vector Machine
(GDA + SVM)

The GDA algorithm maps ECG signals into
Analysis (LDA) algorithm to replace origina
provides effective classification by machin

High-Order Spectral Technique (HOST) The HOST algorithm utilizes the ability of h
the nonlinear activities (phase coupling) o

Multilayer Perpectron Neural Network
(MLPNN)

The MLPNN uses the Lyapunov exponents,
inputs and trained with Levenberg-Marqua

Adaptive Neuro-Fuzzy Interference
System (ANFIS)

The ANFIS trains classifier with back-propa
function by ECG signals and adjusted by th

Mixture of Expert (ME) The ME network structure uses statistical f
from ECG signals as input and implemente

EA and SPA represent sensitivity and specificity in AF/normal discrimination, while SEV an
epresent sensitivity and specificity in VF/AF discrimination. The sensitivity was defined w
nd false negative. The specificity was defined with the number of true negative divided
& Physics 32 (2010) 444–453 445

other methods. Among the time-domain methods, the phase space
reconstruction (PSR) method reports best real-time VF/normal dis-
crimination. It is thus rather interesting to further explore its
feasibility in the AF/VF classification. All the reported phase space
analysis algorithms follow Takens’ theorem [26] to reconstruct a
multi-dimensional phase space matrix (PSM) from a digitized ECG
signal [10,27–30]. The coordination of the projected points on the
PSM is determined with proper time delay constant and varies with
amplitude, time and periodicity of the acquired signals. Amann et
al. calculated the filled area to classify the VF and non-VF signals
with improved performance [10]. Richter et al. discussed the pos-
sibility of using Takens’ method for ECG fluctuation [27]. Cvikl et
al. used plane geometry equation for a planar non-self-intersecting
polygon area calculation for QRS complex detection [28]. Ravelli
et al. [29] and Fojt et al. [30] utilized the correlation dimension to
express complexity of reconstructed PSM under different cardiac
rhythms. However, they did not address how to differentiate AF
and VF in their article.

Atrial fibrillation (AF) and ventricular fibrillation (VF) are two
major cardiac arrhythmias that may occur during the events in
which the rhythm of the heart is disordered, and they have a
serious impact on public health. The prevalence of atrial fibrilla-
tion increases as age increase, patients with AF are at higher risk
for future systemic embolic events, including ischemic stroke and
ischemic bowel disease. Ventricular fibrillation is a life-threatening
disease that may cause sudden cardiac death and emergent elec-
trical cardioversion and resuscitation are mandatory. Therefore,
to carefully identify and discriminate the differences of atrial fib-
rillation and ventricular fibrillation from normal sinus rhythm
are important. Cardiologists can easily identify the differences

between AF and VF using a standardized recording file from an
ECG or a Holter machine. As technology has improved, more
tele-machines or implantable devices have become available for
detecting many physiological signals. Current algorithms for heart-
rate analyses using ECG signals may make errors in discriminating

Performance (%)

(20% of the maximum value with each 1-s segment) to
ulse count and the average time-interval for signal

SEV = 75.1
SPV = 84.4

threshold value to translate the ECG signal to a binary
[9].

SEV = 59.2
SPV = 92.0

l to the multi-dimensional phase space matrix, and
[10].

SEV = 79.0
SPV = 97.8

op filter with the mean frequency of the relevant ECG
” to identify the VF segment [11].

SEV = 18.8
SPV = 100

nsform (FFT) to translate the ECG signal to the
y content of various frequency bands [12].

SEV = 29.1
SPV = 99.9

feature space and performs Linear Discriminant
l space to select discriminating features. The SVM

e-learning technique [13].

SEA = 94.6
SPA = 99.7
SEV = 100
SPV = 100
SEVA = 100
SPVA = 100

igh-order statistic techniques (bispectrum) to analyze
f ECG rhythm [14].

SEA = 83.3
SPA = 100
SEV = 91.7
SPV = 83.3

wavelet coefficients and power spectral density as
rdt algorithm to detect variability [23].

SEA = 95.6
SPA = 98.8

gation gradient descent method in modeling nonlinear
e error criterion [24].

SEA = 96.7
SPA = 98.8

eatures that decomposed by discrete wavelet transform
d for ECG beats classification [25].

SEA = 95.6
SPA = 96.7

d SPV denote sensitivity and specificity in VF/normal discrimination. SEVA and SPVA

ith the number of true positives divided by the sum of the number of true positive
by the sum of the number of true negative and false positive.
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Table 2
Statistical summary of ECG segments used in evaluation of CPSD algorithm.

ECG signal source Segments Total data length (min)

MIT-BIH Database
Normal 1170a 19:30
AF 1186 19:46

CU Database VF 219 3:39

SCDH Database VF 986 16:26

Clinical Measured
Normal 1664 27:44
AF 181 3:01
46 C.-S. Liu et al. / Medical Engine

etween AF and VF when the patient is in extremely tachycar-
ia [4]. If the interpretation is not accurate, the outcome may
e disastrous, as inappropriate therapies may be delivered by
mplantable Cardioverter Defibrillators (ICDs). Irregular periodic-
ty, with the different morphologies associated with AF and VF,
an be observed in ECG waveforms. However, improving discrim-
nation by processing such signals remains a challenging task for
ele-healthcare.

By carefully looking into the different PSM patterns, there are
inor differences between cases of interest, e.g. AF and VF, espe-

ially in the low visited pixel area. In order to take into account such
minor difference, we propose to accumulate the number of visits
f each array element in the PSM and then calculate the difference
etween the subsequent PSM and the reference template. We also
pply self-normalization scheme to minimize the inter-variability
mong different subjects. The normalized values are then tested for
lassification hypothesis by selecting proper threshold value for its
ptimal performance with ROC analysis.

. Materials and methods

This study presents a time-domain analytical algorithm, called
Complex Phase Space Difference (CPSD)”, which correlates the
patial changes with the temporal changes in the phase space
atrix patterns reconstructed with various annotated ECG signals

rom publicly available databases and clinically measured data, to
ndex ECG signals, especially AF/VF, in real time.

.1. Preprocessing and grouping of ECG signals

Since the CPSD algorithm focuses on the spatial changes
etween the projection of PSM from the time-domain waveforms,
he algorithm must allow few artifacts (such as the baseline drifting,
ntra-subject variability and AC power-line noise, among others),
otentially influencing the accuracy of the classification. In most
ases, digital filters can be utilized to reduce or even eliminate
he artifacts – especially baseline drifting and power-line noise.
he intra-subject variability is minimized by normalization and
statistical approach. All of the ECG signals were filtered using
digital band-pass and notch filters in LabVIEW 8.6 (National

nstrument Inc., USA) with a fourth-order Butterworth digital fil-
er function with designated cut-off frequencies of 1–100 and
0 Hz respectively. The high-pass filter (HPF) was employed to
liminate baseline drift, because of the contact between skin and
lectrode.

In this study, the ECG arrhythmia databases of MIT-BIH [31,32],
U [33,34] and Sudden Cardiac Death Holter (SCDH) [32,35] were
sed to evaluate the performance of the proposed CPSD algo-
ithm. We also used the ECG records of outpatient-visit of internal
edicine department at the E-DA hospital (IRB number EMRP-098-

05, I-Shou University, Kaohsiung, Taiwan) for verification. The
otal number of subjects was 45, with demography data of gender
male: 28; female: 17) and age (57.9 ± 15.5 years). All the recruited
ubjects were clinically diagnosed and confirmed by two cardi-
logists to cover the range from NSR (n = 36) to low risks (n = 9)

f AF, premature ventricular contraction (PVC), atrial premature
ontraction (APC), right bundle branch block (RBBB), paroxysmal
upraventricular tachycardia (PSVT), respectively. Table 2 summa-
izes the annotated ECG signals that were applied in this work. We
sed 1170 randomly selected ECG segments from MIT-BIH database
o determine the optimal working parameters and then evaluated
he CPSD performance with the rest of the 4236 segments listed in
able 2.
a These 1170 segments were randomly selected from the MIT-BIH database and
used to determin the optimal parameters in the phase space reconstruction process.

2.2. Definition of working parameters

The performance of proposed CPSD depends on the optimal
selection of working parameters with well-defined objective func-
tions and theoretical assumptions. The proposed CPSD algorithm
includes four important parameters, i.e. the appropriate data length
(L = N × �t, where N is the total number of sampled signal and �t is
the sampling interval), time delay constant (T, where T = k × �t, k is
the index of T), the matrix dimension (d) and the matrix size (MS) of
the PSM. CPSD transforms the one-dimensional time series signal
into a d-dimension matrix to improve the classification. A com-
prehensive discussion of these theorems and selection methods
can be found in the references [36–39]. Briefly, this CPSD method
begins with a segment of a time series of digitalized ECG signal,
s(n), with serial index n. A multi-dimensional matrix, S(n) = (s(n),
s(n + k), s(n + 2k), . . ., s(n + dk)), up to d dimensions can then be con-
structed from s(n) with a suitable delay index, k. The optimal values
of d and k are then determined by minimizing the Euclidian dis-
tance between nearest neighbors in the False Nearest Neighbor
(FNN) method [37,38] and the joint probability density function
in the Average Mutual Information (AMI) method [39], respec-
tively. More details of the derivations are presented in the following
sections.

2.2.1. Time delay constant T or delay index k
The phase space matrix, S(n), can have its maximal classification

with d-dimensional bases of orthogonal or independent time serial
signals, s(n), s(n + k), s(n + 2k), . . ., s(n + dk). The degree of mutual
dependence, Mutual Information (MI), of any two sequences can be
calculated by their probability density functions (pdf). For the sim-
plest case of a two-dimensional S(n), its MI value can be given by
(1), where P(s(n), s(n + k)) denotes the joint pdf of s(n) and s(n + k),
and P(s(n)) and P(s(n + k)) represent the pdfs of s(n) and s(n + k),
respectively. If s(n) and s(n + k) are completely independent of each
other, then P(s(n), s(n + k)) = P(s(n)) × P(s(n + k)), such that the MI
value is zero. The AMI value, I(k), is calculated by (2) and gives the
mean amount of dependencies of s(n) and s(n + k) for various delay
indexes, k. The minimal value of I(k) is corresponding to the highest
independency of two bases and is used to determine the optimal
delay index.

MutualInformation = log2
P(s(n), s(n + k))

P(s(n)) × P(s(n + k))
(1)

I(k) =
∑

s(n),s(n+k)

P(s(n), s(n + k)) × MutualInformation (2)
2.2.2. Dimension d and data length L
The number of dimensions can often be increased, such that

d → d + 1, to distinguish between overlapping functions in lower
dimensions, d. However, this process depends on the optimization
using quantitative measures. The Euclidian distance, R, between
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ny two points in a space can be used as an index to evaluate the
eparation or classification capability under different dimensions
f d and d + 1 as given by (3) and (4) [11]. The FNN value is cal-
ulated by (5) and compared with a threshold, ε, to evaluate the
egree of unfolding that gives the optimal d value (6). Generally,
he threshold was advised to be 10 in the previous related stud-
es [18,37]. When the computed Euclidian distance is less than the
hreshold value ε, the state is set to “False” and the FNN is set to
ne (the initial FNN value is set to zero). Finally, accumulated FNN
s divided by the total number (N) of acquired signal length (L) to
ield the FNN(%) by (7).

2
d(n, r) =

d−1∑
m=0

[s(n + mk) − s(r)(n + mk)]
2

(3)

2
d+1(n, r) = R2

d(n, r) + [s(n + dk) − s(r)(n + dk)]
2

(4)

R2
d+1(n, r) − R2

d
(n, r)

R2
d
(n, r)

]1/2

= |s(n + dk) − s(r)(n + dk)|
Rd(n, r)

(5)

FNN =

⎧⎪⎨
⎪⎩

∣∣s(n + dk) − s(r)(n + dk)
∣∣

Rd(n, r)
> ε, FNN = FNN∣∣s(n + dk) − s(r)(n + dk)

∣∣
Rd(n, r)

≤ ε, FNN = FNN + 1

⎫⎪⎬
⎪⎭ ,

for n = 1 to N (6)

NN(%) = FNN

N
× 100% (7)

Generally, lower FNN(%) means larger unfolding effect. Thus,
ne can use the minimal FNN(%) value to optimally determine the
imensions of PSM and the data length of each ECG segment for the
PSD.

.2.3. Matrix size, MS
Given the optimal matrix dimension determined by above-

entioned FNN method, the size of the matrix, MS, is another
mportant parameter which will affect the performance of CPSD
lgorithm and subject to further elucidation. It will not only deter-
ine the required physical memory space and computational time

o calculate the final CPSD value but also affect the mapping res-
lution between the analyzed ECG segment and its corresponding
ocation on the PSM. The larger MS value indicated better resolu-
ion of the ECG amplitude and yet required larger computational
esources. Therefore, it is a trade-off to determine the optimal MS
alue for practical implementation. The mapping process starts
ith a maximal normalization of the absolute value of the analyzed

ignal segment, |s(n)|, and then shifts to the center of the PSM by
ultiplying a scaling factor of one half of MS to account for the

ipolar output below baseline, which is given in (8).

N(n) = 1
2

(
s(n)

max{|s(n)|} + 1
)

× MS (8)

here sN(n) is the normalized s(n).

.3. Reconstruction of phase space matrix

Based on the above-mentioned method, a two-dimensional
SM, SM, can be constructed from the normalized ECG signal seg-

ent, sN(n), with delay index, k, according to (9). The number

f visited-times on the SM with coordinate of (sN(n), sN(n + k)) is
ounted by (10) from 0 to N − k.

M = (sN(n), sN(n + k)) (9)
& Physics 32 (2010) 444–453 447

SM[sN(nx), sN(nx + k)] = SM[sN(nx), sN(nx + k)] + 1,

for nx = 0 to N − k (10)

where SM[ ] represents the intensity matrix of accumulated visited-
number on the SM.

Following the presentation of the basic method for construct-
ing PSM, the constructed reference template, Reference Phase
Space Matrix (RPSM), the experimental segments, and Experimen-
tal Phase Space Matrix (EPSM) are now used to calculate the CPSD
value in the following section.

2.4. Compute CPSD value

Because the proposed CPSD algorithm focuses on the spatial-
temporal changes of PSM, we use the absolute values of the
differential matrix, DPSM, between EPSM and RPSM to calculate
the complexity value (CV) according to (11) and (12).

SDPSM[x, y] = |SEPSM[x, y] − SRPSM[x, y]|, for x, y = 0 to MS

(11)

The complexity value (CV) of DPSM is then defined as the num-
ber of all array elements that exceed zero.

CV =
{

CV + 1, SDPSM[x, y] /= 0
CV, otherwise

}
, for x, y = 0 to MS (12)

The first CV of each ECG segment is adopted as a normaliza-
tion factor in determining the subsequent CV to obtain the final
CPSD values (13) that minimize the possible intra- and inter-patient
variations. Self-normalization of each individual’s normal ECG pat-
terns enables the establishment of a normal range of baseline CPSD
values. We used 1170 randomly selected NSR segments from the
MIT-BIH database to determine the effects of inter-subject vari-
ability on ECG signals. This hypothesis is tested by curve fitting
Gaussian normal distribution function to CPSD values.

CPSDn = CVn

CV1
, where n ≥ 1 (13)

2.5. Classification flowchart

The important concepts and the computational algorithms
described in the previous sections can now be combined to evaluate
the remaining 4236 ECG signals. Fig. 1 presents the comprehen-
sive flowchart for the classification of ECG by the CPSD algorithm,
which comprises two important phases. The first phase is to choose
the RPSM and EPSM of NSR to obtain the first CV value as a self-
normalization factor. The second phase is the classification of AF
and VF using validated thresholds. The moving window scheme is
applied to extract an ECG segment with a fixed data length (L). In
each moving step (1 s), the CPSD algorithm constructs a new EPSM
and calculates its corresponding CPSD value according to (13). The
first L + 1 s of all recorded ECG signals is employed to construct one
RPSM (0 − L s) and one EPSM (1 − (L + 1) s). Other than the CV value,
we also used the PSR method [10] to calculate a reference value,
DA, which is given by the total number of visited pixels divided
by the total number of pixels of PSM, at the same time to ensure
the classification can start with normal RPSM and EPSM. The cor-
responding RPSM/EPSM is determined to be normal if the DA falls
within the published normal range. When these two values meet

required conditions, the CPSD algorithm moves to second phase to
analyze the subsequent ECG signals. Otherwise, it will return to the
first step and load-in another segment for continuous evaluation.
The threshold values (TH1 and TH2) are utilized to classify AF and
VF cases. All of these selected thresholds values were experimental
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Fig. 1. Flowchart of CPSD algorithm for classification of normal, AF, and V

esults from the remaining 4236 annotated databases and our IRB
ata.

. Results and discussion

Before showing the analysis results by the above-mentioned
ethod and flowchart, we will try to illustrate the example PSM

istributions and their discrimination by traditional method and
roposed CPSD algorithm with three typical ECG segments of NSR,
F, and VF as shown in the Fig. 2. As shown in the Fig. 2(a)–(c), three
istinct patterns result from the ECG waveforms of increasing level
f risks on reconstructed phase space. According to PSR approach
10], the numbers of visited pixels in these three cases are 141, 212,
nd 328, respectively. Notably, many visits are made to the same

ixel because of the data segment exhibits multiple beats with peri-
dicity, especially in normal ECG signals. To account for this fact,
he accumulated numbers of visited pixels are plotted as an inten-
ity map on the PSM and calculated the difference between two
SMs. This approach further amplifies the differences between the

ig. 2. Reconstructed phase space matrices of (a) normal, (b) AF, and (c) VF cases from da
CG signals increases complexity of the distribution pattern. The absolute difference of EP
ormal, (e) AF, and (f) VF cases.
signals under properly selected conditions on TH1 and TH2 for AF and VF.

highly ordered distributed pattern of a normal ECG segment and
an irregular one. Fig. 2(d) shows the results of a DPSM under nor-
mal condition and its reduced total number of visited pixels now
to 76. However, in AF and VF cases, the increases in irregularity
widen the spreading of the visited patterns as shown in Fig. 2(e)
and (f). The total numbers of visited pixels for AF and VF are 212
and 348, respectively. This example demonstrates that CPSD can
improve the discriminatory performance by simple subtraction of
EPSM from RPSM. Table 3 shows the information of selected ECG
segments used in Fig. 2.

In this work, we used 1170 data segments from the MIT-BIH
arrhythmia database to determine the optimal working parameters
and used the remaining 4236 ECG segments to classify the AF and
VF with proper thresholds of CPSD values.
3.1. Optimal working parameters

For the determination of time delay constant in the interval of
0–0.9 s, the minimum value of I(k) is found in between 0.1 and
0.4 s. Since the time delay constant should be shorter than the

tabase based on traditional Takens’ theory, which indicates that the irregularity of
SM and RPSM in the CPSD algorithm yield the resultant differential patterns for (d)
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Table 3
The information of ECG segments used in Fig. 2.

ECG signals Record Time portion (min) Number
of beats

Normal MIT-BIH database
(116.dat)

A: 00:01 to 00:08 9
R:00:00 to 00:07 9

AF MIT-BIH database
(201.dat)

A: 08:05 to 08:12 12
R: 06:52 to 06:59 5

VF
CU database (cu17.dat)

A: 06:23 to 06:30 28
R: 06:12 to 06:19 10
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he A and R represents the analyzed and reference ECG segment used in Fig. 2,
espectively.

nterval between heart beats, the time delay constant T is set to
.2 s, which corresponds to k = 72 at a sampling rate of 360 Hz. If
exceeds 0.5 s, the variation in I(k) will be larger than otherwise
ecause of overlapping with the subsequent ECG cycle. Since a nor-
al heart rhythm can sometimes reach as high as 180 bpm, one can

easonably select T = 0.2, which is well below the average R-R inter-
als of normal ECG segments, without worry about the problem of
verlap.

From the results of FNN(%) calculation, it shows that increasing
he dimension, especially from one to two, substantially reducing
NN(%). Although d = 3 yields a lower FNN(%) than d = 2 and sup-
osedly has better unfolding capability, it is under the price of
xponential increases in the matrix size and computational loads.
herefore, the CPSD algorithm was implemented with d = 2 for the
econstructed PSM in the subsequent calculations. This method is
lso applied to determine the optimal data length for s(n) with d = 2.
enerally, for practical applications of Takens’ method, the ECG seg-
ent with a selected data length must include at least one heart

eat. According to our experimental results, the data length used in
he CPSD algorithm is selected based on a local minimum of FNN(%)
t 7 s.

Finally, the optimal matrix size is set to be 40 × 40, which
ives enough amplitude resolution with reasonable computational
esources for real-time requirement comparing to size of 10, 20,
nd 80.
.2. Evaluation of CPSD performance

Given the procedures for executing the proposed CPSD algo-
ithm and optimally selecting the working parameters, a good
eference template must be found to begin the computations. Even

ig. 4. Histogram of normal, AF, and VF CPSD values, obtained from 4236 collected ECG se
ignals.
Fig. 3. Histogram of CV values calculated from NSR segments. It is best fitted using
a Gaussian curve with its center at 46.2 and an STD of 8.3 (R2 = 0.91).

though it is a kind of “template matching” method, the CPSD algo-
rithm uses a 7 s segment of an ECG signal, which typically has
5–11 QRS complexes under normal conditions. The computation
of the degree of complexity does not depend on an exact match
between each individual template to classify the signals. The degree
of complexity within 7 s provides sufficient statistical variances
to avoid the “template matching” dilemma. However, the criteria
for selecting the reference segment must be justified statistically.
Fig. 3 displays a histogram of CV values calculated from 1170 ran-
domly selected normal ECG segments. It can be best fitted by using
a Gaussian distribution curve with its center (mean value) at 46.2
and a standard deviation (STD) of 8.3 (R2 = 0.91). We also calcu-
lated the DA values by using PSR method and found the values was
0.15 ± 0.043 (R2 = 0.93), which was highly agreed with published
data.

We then used the rest of 4236 the annotated segments in Table 2
to calculate the CPSD values and to validate the proper threshold
values in NSR, AF and VF cases. Various irregular ECG waveforms
represent higher risks and thus correspond to higher CPSD values.

Fig. 4 shows the histogram of the resultant CPSD values for NSR,
AF and VF. By curve fitting the Gaussian distribution function, we
could identify the CPSD values as 1.48 ± 0.21 for NSR, 3.71 ± 0.99
for AF, and 9.38 ± 2.22 for VF, respectively. The ECG morphology
and temporal variations strongly affected the complexity of the

gments, and separated by setting thresholds of 2.0 and 6.0 for AF/normal and VF/AF
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the CPSD values to be calculated in the next stage. With a step size

T
R

ig. 5. The ROC curves of AF/normal, VF/normal and VF/AF, respectively. The inset
as the enlarge area of dash circle.

econstructed phase space. The improved algorithm can magnify
he differences among these signals by taking the absolute value of
PSM. For normal cases, the rhythmic signals yield a “concentrated”
attern, a “narrow” distribution and low CPSD values. In the event
f a disordered heart rhythm, as in AF, the waveforms exhibit some
eatures of regular morphology (P wave blocked) but with various
eriodicities. This increase in complexity increases the CPSD values
nd broadens the distribution range from 2.0 to 6.0. Completely
npredictable VF signals are associated with irregular morphology
nd periodicity, which contribute to the highest CPSD values and
he widest range.

The optimal threshold values for the classification of these
hree levels of risk were selected with ROC method. Fig. 5 showed
he receiver operating characteristic (ROC) curves calculated by
hanging the threshold values for AF/normal, VF/normal and VF/AF
iscrimination, respectively. According to this result, the optimal
hreshold for AF/normal and VF/normal was set to be TH1 = 2.0 and
H2 = 6.0 for VF/AF.

To evaluate the performance of the proposed algorithm, the
rue positive (TP), true negative (TN), false positive (FP) and false
egative (FN) were applied to determine the sensitivity (SE) and
pecificity (SP), respectively. All the classifications made by the
PSD algorithm are then compared to the annotated ECG databases
nd IRB data for the calculation of SE and SP.

Table 2 lists the numbers of normal, AF and VF segments, which
re 1664, 1367 and 1210, respectively. Table 4 presented the clas-
ification results for normal, AF and VF cases with a threshold of
wo to distinguish abnormal ECG signals (AF and VF) from normal
ignals and a threshold of 6.0 to distinguish VF signals from AF sig-
als. In both AF and VF cases, all of the signals were accurately

dentified as true positive, yielding 100% sensitivity. However, 20
ormal cases were classified as false positives, resulting in slightly
ower specificity of 98.8%. The CPSD algorithm herein was adopted
o classify these two abnormal ECG signals using a threshold (TH2)
f 6.0. As presented in the third row of Table 4, the resultant sen-
itivity was 97.9% and the specificity was 98.4%. A comparison

able 4
esults of analysis of ECG signals (unit: segments).

TP FN TN

AF/Normal 1367 0 1644
VF/Normal 1210 0 1644
VF/AF 1185 25 1345
& Physics 32 (2010) 444–453

with the algorithms listed in Table 1 reveals that this VF classifi-
cation performance is only slightly worse than that of GDA + SVM,
but the proposed method has benefit of easily implementation for
real-time application. This algorithm also is the best for all cited
algorithms in AF analysis.

Despite the successful demonstration of CPSD performance with
above-mentioned results, it is also critical to consider several
common problems of intra-subject variability for practical clini-
cal applications. Among these issues, baseline wandering, rhythmic
and QRS amplitude changes are often seen in normal ECG signals.
These may cause by the movement artifacts, changes in electrode
impedance and movement of the cardiac axis caused by respira-
tion. Some of these phenomena have been investigated to ensure
the applicability of the CPSD algorithm under these conditions.
Fig. 6(a) shows a trace of ECG waveforms with accelerating heart
rate from 80 bpm to almost 180 bpm. Its resultant CPSD values (in
Fig. 6(d) with open circles) increase from 1.1 to 1.7, which is still
well below 2.0 and remains in the NSR group. It is rather interest-
ing to further explore the applicability of this algorithm for excise
ECG in the future. Fig. 6(b) shows a stable baseline with chang-
ing amplitude of QRS complex and its CPSD values in the Fig. 6
(d) (filled triangle) remains in the range from 1.1 to 1.5 with ref-
erence to a normal range of 1.1–1.4 (filled circle). Fig. 6(c) shows
a noise trace of ECG waveforms with QRS amplitude changes and
baseline drifting. It is rather interesting to note that the resultant
CPSD values remain in the normal range, too. These three com-
mon ECG variations have minor effects on the CPSD distribution
toward higher values as shown in Fig. 6(d). However, all these
changes are well below the threshold value of 2.0 and so remain
“normal” with acceptable effects. Again, many of these interfer-
ences can be further reduced by using advanced noise reduction
methods, including time-varying digital filter [40], adaptive noise
reduction [41], empirical mode decomposition [42] or wavelet
transform-related algorithms [43] for better input data to begin
with.

Even though, our CPSD method can be used in the above-
mentioned situations, we did come across one particular
interesting case under the extreme condition of VF that might
have different interpretation results. As revealed by the previous VF
example, the progress of effortless contraction degraded the cardiac
muscles and was therefore accompanied by a reduction in ampli-
tude. This would in turn reduce the corresponding CPSD values,
resulting in so-called “VF attenuation”. Once heart entered the VF
stage, it was unlikely to return to the normal (or AF) state without
aid such as drug delivery or electrical shock. These reduced CPSD
values were identified as VF cases and should be ignored during
statistical analysis.

A continuous ECG signal was evaluated by the CPSD algorithm
using an extracted VF segment from the record of CU database
(cu22.dat). Fig. 7 presents the development of continuous ECG sig-
nals into VF. The first 8 s of ECGs were initially used to calculate
RPSM and EPSM. The first calculated CV value, CV1 = 53, satisfied the
specified criteria for the first step in the CPSD algorithm, enabling
of 1 s and a moving window with a length of 7 s, the corresponding
complexity and CPSD values of the normal segments before 13 s are
1.05, 1.21, 1.21 and 1.35 (Fig. 7(b)), respectively. The CPSD values
begin to increase at 12 s because of the presence of VF.

FP SE (%) SP (%) TH

20 100 98.8 2.0
20 100 98.8 2.0
22 97.9 98.4 6.0
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Fig. 6. Effects of intra-variability on CPSD results for three common normal ECG signals. (a) Accelerating heart-rate signal, (b) change in QRS possibly caused by respiration,
(c) baseline drifting with change in QRS for normal ECG signals, and (d) corresponding CPSD histograms in these three cases, with comparison to normal ECG signals.
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ig. 7. Continuous evaluation of VF signals by CPSD algorithm yields updated every s
rtifact. (b) CPSD values that successfully identified VF in 2 s and remained above th

. Conclusions

The proposed CPSD algorithm uses a two-dimensional recon-
tructed phase space matrix (PSM) [26–30] from each time segment
f a digitized ECG signal to compute changes in spatial distribution.
ike the published method by Amann et al. [10], two-dimensional
elayed-time coordinate is used to construct the PSM and to trace
ut the projection of time sequence from ECG signals. The dis-
ributed pattern of the reconstructed phase space varies with the
mplitude, time and periodicity of the acquired signals. Instead
f using the trail of projected orbit [28] and concentrated posi-
ion [29,30] to distinguish ECG signals, the PSR algorithm [10]
alculates the filled area to classify the VF and non-VF signals
ith improved performance. However, all these methods did not

ddress how to differentiate between AF and VF in this article.
y carefully looking into the different PSM patterns, there are
inor differences between cases of interest, e.g. AF and VF, espe-

ially in the low visited pixel area. In order to take into account
uch a minor difference, we propose to accumulate the number
f visits to each array element in the PSM and then calculate the
ifference between the subsequent PSM and the reference tem-
late. We also apply self-normalization scheme to minimize the

nter-variability among different subjects [44]. The obtained nor-
alized CPSD values are then tested for classification hypothesis

y selecting proper threshold value for its optimal performance
ith ROC analysis. In particular, it is the first real-time algo-

ithm that reports the best performance to distinguish AF and
F with sensitivity of 97.9% and specificity of 98.4%. According to

he experiences, the intra-variability will increase “broader” dis-
ribution but still remain in normal range, while the calculated
PSD value of “VF attenuation” phenomena should be ignored. In

his proposed algorithm, the computational scheme only requires

atrices addition and subtraction, and thus significantly reduces
he complexity for real-time implementation and is able to adopt
n different scenarios of tele-healthcare and implantable applica-
ions.
. (a) Normalized ECG signals became VF with envelope modulation and stimulation
hreshold with minor effects of both artifacts.
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