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ABSTRACT

In this thesis, the models dealing with the elastic interactions between a moving
electron and a solid were described. The-inelastic interactions between a moving
electron and a solid were studied theoretically.  Based on the elastic-scattering and
inelastic-scattering models, the simulation and analysis of electrons backscattered

from solids surfaces were made.

In the work for the elastic scattering, to calculate the elastic differential cross
section (EDCS) of an electron moving in a solid, the applied non-relativistic and
relativistic models with free-atom and solid-atom potentials were described. The
results calculated using the non-relativistic and the relativistic models were compared.
Through the EDCS, the elastic mean free path (EMFP) of the electron can be
determined.  Since compounds have been widely used in many studies, the methods
adopted to determine the total elastic cross sections and total EMFPs for compounds
were also described. The method for the calculation of the probability of an electron
scattered by each element in a compound was further given. Moreover, the

Rutherford-type recoil energy loss in elastic scattering was discussed.



In the aspect of inelastic scattering of electrons with solids, our purpose was to
derive an inelastic-scattering model that was suitable for electrons incident into and
escaping from solid surfaces in arbitrary moving directions. Based on the dielectric
response theory, the induced electric field can be obtained by solving the Poisson
equation. Through the induced electric field with the adoption of spherical
coordinates in the momentum integration, stopping power, differential inverse
inelastic mean free path (DIIMFP), inelastic mean free path (IMFP) and surface
excitation parameter (SEP) can be determined. The spherical coordinates was
adopted in the momentum integration to satisfy energy and momentum conservations
completely. Using the extended dielectric functions in this derived model, the
crossing-angle-dependent and energy-dependent DIIMFPs and IMFPs and SEPs were
shown. It was found that the calculated results of SEPs followed a simple formula.
The fitted values of parametersin the simple formulafor solid surfaces of Au, Ag and
Cu were aso listed in tables.- Due-to-the-excluson of retardation effect of the
induced electric fields in this derived-inelastic-scattering model, it is inadequate for
high-speed electrons interacting with solids. Hence, we further constructed a model
that can determine the stopping power, DIIMFP and IMFP for high-speed electrons
moving parale to solid surfaces by solving the Maxwell equation instead of Poisson
eguation in the dielectric response theory. The results calculated using the models

without and with the retardation effect were shown and compared.

Applying the results of elastic and inelastic interactions of electrons with solids,
the energy distribution of the elastic peak of electrons backscattered from solid
surfaces can be simulated by recording the recoil energy loss in the Monte Carlo (MC)
method. The effects of the energy distribution of the electron beam, the energy

resolution of the spectrometer and the thermal motion of atoms in solids were aso



included. Comparisons of the calculated energy spectra with the experimental data
were also made. On the other hand, the electron effective IMFP can be extracted

from the electron elastic peak. This method was al so discussed in the present thesis.
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CHAPTER 1
INTRODUCTION

1.1 Background

The interactions between a moving electron and a solid include elastic and
inelastic interactions. The elastic interaction occurs when the electron collides with
an atom in the solid. This elastic collision changes the moving direction of the
electron. The inelastic interaction indicates that the induced electric fields have
influence on the motion of the electron, resulting in the losses of the electron’s kinetic
energy. Much work has been.‘done onjsuch two physica phenomena in many
applications.  For instance, in the'interpretation of the elastic peak intensity mesured
by elastic peak electron spectroscopy. (EPES) (Gergely 1981, 1983, 1986, 1987),
elastic and inelastic scatterings of electrons with solids play important roles (Jablonski
et al. 1989, 1991). Thus, to study solid state physics, the knowledge of the elastic
and inelastic interactions is necessary. Note that the atomic units were adopted

unless otherwise specified in our work.

1.2 Elastic Scattering

For the elastic interaction of electrons in solids, elastic differential cross section
(EDCS) and elastic mean free path (EMFP) are the most important parameters.
EDCS is a distribution of the angle between the electron’s moving directions before

and after elastic scattering. EMFP means the average path length of the electron



between two consecutive elastic-scattering events. EDCS and EMFP can be
calculated using the non-relativistic model (Joachain 1975) and the relativistic model
(Mott 1929). The non-relativistic model was derived through the Schrodinger wave
equation with a potential, and the relativistic model was derived through the Dirac
wave equation with a potential. In our present thesis, we adopted the relativistic
model to calculate the EDCSs and EMFPs for electrons moving in solids since the
relativistic EDCS and EMFP are more accurate for heavy atoms. The formula to
caculate EDCS in this model was depicted in chapter 2. For comparison, the
formula of the non-relativistic EDCS was also described.  Further, we calculated the
total elastic cross section and total EMFP for a compound based on elastic cross
sections and EMFPs of the individual elements. Moreover, the elastic collision of an
electron with an atom can be regarded as the. Rutherford-type scattering. The
Rutherford-type scattering causes.the recoil-energy loss in each elastic scattering
event (Boersch et al. 1967). In theiend-of chapter 2, we added the discussion of the

recoil energy loss for elastic scattering:

1.3 Inelastic Scattering

In the research for the inelastic interaction of low-energy electrons with solids,
much attention has been paid to differential inverse inelastic mean free path (DIIMFP)
and inelastic mean free path (IMFP). DIIMFP is the probability density function of
the energy loss per unit path length of the electron, and IMFP means the average path
length between two consecutive inelastic-scattering events. DIIMFP or IMFP
contains the combined effects arisen from volume and surface plasmon excitations.

Volume excitation occurs only in the interior of the solid, while surface excitation



extends a distance in the order of several angstroms on both sides of the surface.
Inside the solid, the decrease in volume excitations near the surface is compensated by
the increase in surface excitations; accordingly, the total DIIMFPs and IMFPs inside
the solid are roughly equal to the corresponding values for electrons moving in the
infinite solid (Chen and Kwel 1996; Kwel et al. 1998b). Outside the solid, only
surface excitations characterize the inelastic scattering. To evaluate this surface
effect in vacuum, the surface excitation parameter (SEP) was introduced (Kwel et al.
1998b). Previously, based on the dielectric response theory (Tung et al. 1994), Kwei
et al. (1998b) used the developed extended Drude dielectric functions (Kwei et al.
1993) to calculate the depth-dependent DIIMFPs, the depth-dependent IMFPs and
SEPs for electrons normally crossing through solid surfaces. In this model, the SEP

for other crossing angle o was.caculated by multiplying the results of SEP for
normally crossing angle with (cosar)™ (Kwéi et'al.~1998b; Chen 2002). However,

momentum transfer in cylindrical ‘coordinates with no restriction on its normal
component was adopted for performing ‘the momentum integration in the model.
The conservations of energy and momentum were not completely satisfied, and the
derived DIIMFP and IMFP for volume excitations at large depths did not match the
DIIMFP and IMFPin an infinite solid.

In chapter 3, a similar approach as that in the previous work (Chen and Kwei
1996; Kwel et al. 1998b) was followed to derive DIIMFP and IMFP and SEP for
electrons incident into or escaping from solids. Spherical coordinates were
employed in the momentum integration to satisfy the energy and momentum
conservations (Kwel et al. 2003). The dependences of DIIMFP and IMFP on the
crossing angle and the position of electrons were established based on the dielectric

response theory. The angular and energy distributions of SEP were aso investigated.



Calculated results of SEPs for copper were fitted to an analytica formula A
comparison was made for our calculated SEPs with those calculated using other
models (Chen 2002; Oswald 1997). Moreover, we extended the constructed
inelastic-scattering model to include the retardation effect (Jackson 1975) for
high-speed electrons moving parallel to solid surfaces. The calculated results for the

model s without and with retardation effect were compared.

1.4 Electron Quasi-elastic Peak

In many applications of surface sensitive electron spectroscopies, it is important
to analyze the elastic peak spectra of . electrons backscattered from solid surfaces
(Kirschner and Staib 1973, 1975).  Some sighificant information could be extracted
from this analysis. For instance, in the application of elastic peak electron
spectroscopies (EPES), IMFP for eectrons-moving in solids can be determined
(Gergely 1981; Jablonski 1985; Dolinski et 'al. 1988; Gruzza and Pariset 1991; Jardin
et al. 1992; Beilschmidt et al. 1994). The elastic peak spectra can be characterized
by the energy distributions. The energy distribution is due to the Rutherford-type
recoil energy losses as electrons scattered elastically by atomic nuclei. These energy
losses in elastic scattering events are indeed very small but not negligible (Erickson
and Powell 1989), and result in a small energy shift and a width broadening in the
elastic peak spectra. The elastic scattering associated with the slight recoil energy
loss was alternatively called the quasi-elastic scattering (Erickson and Powell et al.
1989). These phenomena can be observed experimentally in the works with electron
spectrometers (Boersch et al. 1967; Erickson and Powell 1989; Laser and Seah 1993;

Goto and Shimizu 1997), especially for electrons backscattered from the solid



composed of the elements of low atomic number. The quantitative interpretations of
experimental results for the energy distributions in elastic peaks were available based
on the ssimple model of the single-electron single-target-atom collision, which was
suggested by Boersch et al. (1967). However, quasi-elasticaly backscattered
electrons would substantially arise from the sum of a few scatterings instead of one
(Chen et al. 1995). Additionally, the single-scattering model cannot interpret the
width broadening and the shape of the elastic peak. Thus, Monte Carlo (MC)
simulation considering multiple scatterings has been utilized to compute the elastic
reflection coefficient and the angular distribution of backscattered electrons (Chen et
al. 1995; Jablonski et al. 1992; Kwei et al. 1999, 2001). Since the Rutherford-type
recoil energy loss was ignored in these previous simulations, the energy shift and the
width broadening of the elastic peak were not attainable.

The aim of our work in chapter 4 was to simulate the energy distribution of
electrons quasi-elasticaly backscattered-from- solid surfaces. We considered the
recoil energy loss in our MC simulations...~The energy distributions of electrons
gquasi-elastically backscattered from solid surfaces were calculated. Computed
results revealed the peak shift and the width broadening of the elastic peak. Based
on the algorithm of MC method, we also derived an analytic formula of the energy
distribution of the elastic peak for backscattered electrons suffering single elastic
scattering in solids.  The calculated results using this formula were compared by the
results computed using MC method. In addition, according to some experimental
studies (Boersch et al. 1967; J. Toth et al. 1998; Gergely et al. 2001; Sulyok et al.
2001), the spectrometer energy resolution, the energy distribution of the primary
electrons and the thermal motion of atoms can aso contribute to the energy spectra of
guasi-elastically-backscattered electrons (Boersch et al. 1967, Toth et al. 1998;

Gergely et al. 2001; Sulyok et al. 2001). The adjustments of the energy spectra of



backscattered electrons for these effects were made in our calculation.
Through the electron elastic peaks, the effective IMFP for electrons moving in a
solid can be extracted. In the final part of chapter 4, we discussed this method with

the use of our MC simulation.



CHAPTER 2
ELASTIC SCATTERING

When an electron moves in a solid, the elastic interaction between the electron
and the atoms in the solid will occurs. Conventionally, the problem of elastic
scattering was regarded as an electron suffering a potential with the scattering center
at the atomic nucleus (Ohanian 1990). This technique simplified the complexity of
the study on the elastic collision between electrons and solids. There are two wave
equations that can describe the behavior of an electron affected by a potential. One
is the non-relativistic Schrodinger wave equation, and the other is the relativistic
Dirac wave equation. The Schrodinger-waveregquation and the Dirac wave eguation
can be solved using partia wave analysis, and,then: the elastic-scattering models for

electrons can be carried out.

2.1 Elastic Differential Cross Section

In the research on elastic scattering, one is usually concerned about the direction

of the electron after each scattering event. The scattering direction can be

do,

determined according to the elastic differential cross section (EDCS), EDCS

isadistribution of the polar scattering angle which is defined as the angle between the
electron’s moving directions before and after each scattering event.  Thus, the EDCS
is the basic physical property in elastic scattering. There are two models can
determine the EDCS. One is the non-relativistic model, and the other is the
relativistic model. The non-relativistic model was derived using the Schrodinger

wave equation with a potential, and the relativistic model was derived using the Dirac



wave equation with a potential. In the non-relativistic model, the formula of the

non-relativistic EDCS with respect to the polar scattering angle 6 is given by

(Joachain 1975)
1 - 2
dQ =27 IZ; (2 +1)[exp(2i5,)-1]R (cos) , (2.1)

where k=+/2E , E is the kinetic energy of the incident electron, | is the orbital
angular momentum quantum number, §, is the Ith phase shift, R(cos6) is the

Legendre polynomials of order | , o, is the e€astic cross section, and

dQ2 =27 sn6dO is the differentia solid angle in the direction of the scattered
electron. On the other hand, the:formula of the'relativistic EDCS in the relativistic

model is given by (Mott 1929; Kwei et al. 1998a)

0 2
d 4&2 IZ;{ (1 +1)exp(2i5, )~ 1]+ 1]exp(2i 5[)—1]}F}(cos€)‘
) , : (2.2
re) Z[—exp(2|5 )+ exp(2i5; )JP( cosQ){
where K :—“ch_cél, W is the relativistic total energy, ¢ is the speed of light, &

are the |th phase shifts for spin-up and spin-down states, and R'(cosf) is the

first-order Legendre polynomial.

To calculate the non-relativistic EDCS or the relativistic EDCS, the static
potential that has influence on the elastic scattering interaction between the electron
and the target atom in a solid must be calculated first. Two kinds of static potentials

can be chosen. One is the free-atom potential, which means that the static potential

8



of the atom is distributed over the whole space. The other is the solid-atom potential,
which means that the static potential of the atom is distributed within a limited range
from the nucleus. After the static potential is determined, then the EDCS for an
electron scattered by an atom in a solid can be obtained.

For a 2000 eV electron interacting elastically with a Cu atom, Fig. 2.1 shows the
comparison of the non-relativistic EDCSs with the relativistic EDCSs. Here the
results were calculated using the Hartree-Fock-Wigner-Seitz (HFWS) solid-atom
static potential (Green and Leckey 1976; Tucker et al. 1969; Kwei 1984; Kwel et al.
1998a). In thisfigure, the difference between the non-relativistic and the relativistic
EDCSs is dlight. For Au, a similar comparison between the non-relativistic EDCS
and the relativistic EDCS with HFWS static potentials was plotted in Fig. 2.2. It can
be found that the difference between the resultsfor the non-relativistic and relativistic
models is obvious. By comparing Fig. 2.1.with Fig. 2.2, it is clear that using the
relativistic model to deal with-the ielastic-scattering problem is more accurate for

heavy atoms.
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Fig. 21 Comparison of the angular dependence of the non-relativistic (solid curve)

and the relativistic (dashed curve) EDCSs with solid-atom potentials for a 2000 eV

electrons scattered by the Cu atom.
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Fig. 22 Comparison of the angular dependence of the non-relativistic (solid curve)

and the relativistic (dashed curve) EDCSs with solid-atom potentials for a 2000 eV

electron scattered by the Au atom.
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2.2 Elastic Mean Free Path

The EDCS has been used to indicate the distribution of the scattering angle 6
after the electron being scattered by the target atom. Based on the EDCS, another
important physical parameter for elastic scattering can be determined. Such
parameter is elastic mean free path (EMFP), which means the average distance

between two consecutive elastic scatterings.  The EMFP 4,(E) of electrons moving

in acondensed medium is defined as

L No,- Nj(daejdgzzmj[d“
2.(E) dQ (L dQ

ejde , (2.3)

where N isthe number of atoms per unit:volume:in the condensed medium. Due

to (j;;; is as a function of the electron‘moving energy E, 4, is aso in terms of

E.

Figure 2.3 shows the relativistic EMFP as a function of the electron’s energy
calculated by employing the HFWS solid-atom static potentials for Au. It can be
seen that EMFP increase with the increasing of the electron’s energy. Higher energy
implies faster speed. Then the probability of the faster electron colliding with the
atom is smaller, which means that the faster electron experiences alonger path length

before a collison. As a consequence, EMFP increase with the increasing of the

electron’s energy.
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Fig. 23 The energy dependence of the relativistic EMFPs for Au calculated using
the solid-atom potential.
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2.3 Elastic Scattering M odel for Compounds

So far, we have concentrated on the theoretical elastic scattering model for
electrons interacting with the medium composed of one kind of elements. Much
research has frequently been devoted to the interaction between electrons and
compound mediums in the experiments of electron energy spectra (Krawczyk et al.
1998; Zommer et al. 1998; Lesiak et al. 1999; Gergely et al. 1999). The eastic
scattering model for one-element medium is no longer suitable for the studies of
compound mediums. Therefore, the elastic scattering model for compounds should
be constructed. Two points of view have been proposed to establish the elastic
scattering model for compounds. These two methods are depicted in the following

two sections.

2.3.1 Total Elastic CrossSection and Total-Elastic Mean Free Path
for a Compound Based onvElastic Cross Section

Consider a compound medium composed of n kinds of elements. The tota

elastic cross section for the compound, o, can be calculated from the sum of the

fractions of the individual element elastic cross sections, o, ., using the following

ej?

formula (Herrmann and Reimer 1984; Gauvin et al. 1992; Murata et al. 1995):
Oor = Zajaelj : (2.4)
=1

Here a; istheatomic fraction, and defined by
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a =—, (2.5)

where N; isthe total number of the jth element per unit volume, and N denotes

the total number of atoms per unit volume. According to Egs. (2.3) and (2.4), the

total EMFP 4., for acompound medium can be obtained by

Na,,; - (2.6)

When the elastic scattering occurs in a compound, the EDCS is necessary for
determining the electron moving direction-after each scattering event. This can be

done based on the probability that decides which'element scatters the electron in each

elastic scattering event. Using Eq. (2.4), the probability, P

(e

(j), for an eectron
being scattered by the jth element in a compound is given by (Howell and Boyde

1998)

P (j)=1%e1 2.7)

OeT

By means of the expression (2.7), the scattering angle can be determined through the

EDCS for electrons being scattered by the j th element in the compounds.
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2.3.2 Total Elastic Cross Section and Total Elastic M ean Free Path
for a Compound Based on Elastic M ean Free Path

On the other hand, the total EMFP, A, ., for electrons moving in a compound

can be determined from the sum of the fractions of the individual eement EMFPs

Z,; according to the idea of the scattering probability, % Then the total EMFPis

e

given by (Shimizu and Ding 1992; Ding and Shimizu 1996)

n 3.
1 > A (2.8)
)“e,T j=1 )“e,j

With the help of Eq. (2.3) and using Eq. (2.8), the total elastic cross section can be

written as
o = 1
eT —
’ Nﬂ“eT
’ 29
—Zn) a (2.9)
“~NA

As mentioned in section 2.3.1, the selection of the elastic EDCS for each scattering
event is according to which element is the scattering center. The probability Pl(j)
of the electron being scattered by the jth element of the compound is given by

(Howell and Boyde 1998)

%'J’ . (2.10)
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This expression is the other probability to decide the scattering angle after the electron

being scattered by the | th element in acompounds.

2.3.3 Comparisonsfor Total Elastic Mean Free Paths between The
Method Based on Elastic Cross Section and The Method
Based on Elastic M ean Free Path

Using Egs. (2.6) and (2.8), the total EMFPs for electrons scattered in a medium
composed of multiple components can be computed. Here we take a binary
compound such as GaAs for the example. In this case, note that we used the
Roothaan-Hartree-Fock free-atom potentials (Clementi and Roetti 1974) to calculate
therelativistic EDCSs and EMFPs of the individual elements, i.e. Gaand As. Figure
2.4 shows the comparison between the elastic mean free path calculated through Eq.
(2.6) (solid curve) and that calculated through Eg. (2.8) (dashed curve). We can see
that the difference can be seen between-the total EMFPs calculated using the method
based on elastic cross section and‘the total EMFPs'cal culated using the method based

on elastic mean free path.
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Fig. 24 Comparison for the energy dependence of the relativistic total elastic mean

free paths for GaAs calculated based on elastic cross section (solid curve) and based
on elastic mean free path (dashed curve).
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24 Energy Lossin Elastic Scattering

While a moving electron colliding with one atom in a solid, the electron loses
someenergy. Thiseffect iscalled the recoil effect. There were studies available on
such energy transfer or energy loss of electrons in elastic scattering (Boersch et al.
1967; Erickson and Powell et al. 1989). This recoil effect can be regarded as the
result of the classica Rutherford-type scattering between two charged particles.
Hence, the remaining energy of the electron after scattering can be found by the
conservations of energy and momentum.

The Rutherford-type elastic scattering between the electron and the atom is
illustrated in Fig. 25. After an elastic scattering event, the energy loss of the

electron, AE, isgiven by (Boersch.et'al."1967)

AE = =" Esin? Z, (2.12)

where m and M arethe masses of the electron and the atom, respectively. Thus,

the remaining energy of the electron after scattering E, can be obtained by
E, =E-AE= E(l—ﬂsinzgj. (2.12)
M 2

In Eq. (2.11), the recail energy loss is dlight due to the fact that % is very small.

The remaining energy of the electron is almost the same asitsinitial energy. Besides,
the energy loss decreases with the increasing of the mass of the atom. Hence, the

energy losses for heavy atoms are smaller.
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Fig. 25 A sketch of the Rutherford-type elastic intefaction between an electron of

mass m and an atom of mass M. " @ isthepolar scattering angle defined as the angel

between the electron’s moving directionsbefore and after scattering. E and E,

are the energy of the electron before and after scattering, respectively.
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CHAPTER 3
INELASTIC SCATTERING

In addition to the elastic interaction, inelastic interaction also occurs when an
electron crossing an solid surface. Many theoretical (Tanuma et al. 1988, 19914,
1991b; Chen and Kwei 1996; Kwe et al. 1998b, 1999, 2003) and experimental
(Krawczyk et al. 1998; Zommer et al. 1998; Gergely et al. 1999; Lesiak et al. 1999;
Tanuma et al. 2000) studies have been concerned about some properties of inelastic
interaction between electrons and solids, such as stopping power, differential inverse
inelastic mean free path (DIIMFP), inelastic mean free path (IMFP) and surface
excitation parameter (SEP). In the theoretical. approaches, these parameters were
calculated based on the dielectric response theory with the use of the extended
dielectric functions (Kwei etzal. 1993).- In this:chapter, aso by applying the
dielectric response theory, we constructed a general model of inelastic scattering for
electrons moving across solid surfaces.  After that, the constructed model was further
modified to include the retardation effect on the inelastic interaction for high-speed or

high-energy electrons moving parallel to solid surfaces.

3.1 TheBasic Knowledge

When a charged particle is located internal or external to a medium, significant
interaction like fields and potentials is induced. Such interactions can be fully
governed by Maxwell equations. The Maxwell equations for time-varying fields in

the presence of matter are given by (Jackson 1975)
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VeB=0, (3.18)

vxE+1%B o, (3.1b)
c ot
VeD=4np, (3.1¢)
and
vxp-1P 475 (3.1d)
c ot c

where ¢ is the speed of light. Esand B ‘are the eectric field and the magnetic
induction, respectively. D and H are-the electric displacement and the magnetic
field, respectively. p and J-are the charge density and the current density. The

Fourier transform of Eqg. (3.1c) is'given by (Dresseland Griner 2002)

iqe D(a,»)= 470(a, ), (32)

where g is the momentum transfer, and @ is the energy transfer,
D(9,0)=¢(0,0)E(0,®), &(g,®) is the dielectric function of the matter of interest,
and E(q,@) and D(g,») are the Fourier component of the electric field and the
electric displacement, respectively. The Fourier components of the electric field

E(d,®) can berelated to the scalar potential @(qg,) by (Dressel and Griiner 2002)

E(0,0)=-iq0(q,®). (33)
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By means of Egs. (3.2) and (3.3), the Poisson equation for the scalar potential

®(g,w) in Fourier transformed form can be written as

9°e(9, 0)@(0, @) = 47p(d, @) (34)

In electrodynamics, we usually want to realize the fields or the potentials for
mediums accompanied by boundary surfaces. To deal with this problem, the
boundary conditions are necessary. Take consideration of an infinite plan boundary
located at z=0 between medium 1 and medium 2.  Then the norma component of
the electric displacement at the interface is continuous, and so are the tangentia
components of the electric field at the interface (Jackson 1975).

In our work, we used the Poisson equation shown in Eq. (3.4) to dea with the
problem of the inelastic scattering 'for electrons. of low and intermediate energies
moving across an infinite intefface.”-Agan, the atomic units are used unless

otherwise specified in this chapter.

3.2 TheDielectric Response Theory

3.2.1 Induced Potential

The problem to be solved isillustrated in Fig. 3.1, in which an electron of charge
eand velocity v moving obliquely across an interface (at timet = 0) from medium 1
of dielectric function &,(g,®) to medium 2 of dielectric function &,(g,») by a
crossing angle. The crossing angle «a is defined as the angle between the interface
normal and the electron moving direction, and =Vt is the instant location of the

electron relative to the crossing point at theinterface. The charge density of the

23



Fig. 3.1 A sketch of the problem studied in this work. An electron of velocity v
moves across the interface at time t = O from medium 1 of dielectric function
£,(g,®) to medium 2 of dielectric function &,(q,w) with crossing angle o. The
instant position of the electron is r=vt, relative to the crossing point at the

interface.
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electron p, (F,t) isgiven by

p; (F,1)==8(x—vtsina)5(y)5(z—vtcosa). (35)

The Fourier components of this electron charge density can be given by

P (0,0) = T Tpf (r’t)eXp{_i(q ° I?_Ct)t)}dtdr

—00—00

(3.6)
=—275(w—qeV)

To solve the boundary-value problem. presented in Fig. 3.1, we applied the
method of images (Jackson 1975). . Byrintreducing image charge densities on both
sides of the interface, then the Fourier components of the scalar potentials in mediuml

and medium 2 can be determinéd from Poisson equation expressed in Eq. (3.4); that

W[pf q, a) +psl(Q )] whent <0, (3.7

and

[pf (@,0)+ po(Q o), whent> 0, (3.8)

where Q is the paralel component of q. psl(‘,a)) and psz(ﬁ,a)) are the

fictitious surface charge densities right on the surface facing to medium 2 and right on
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the surface facing to medium 1, respectively. According to the boundary conditions,

the fictitious surface charge densities be carried out by

By inserting Egs. (3.6) and (3.9) into Egs. (3.7) and (3.8), then the Fourier
components of scaar potentials, ¢®(q,w) and ¢?(q,w), on either side of the
interface are performed.

After that, we need to determine the induced scalar potentials before the later
derivation of our model for inelastic scattefing. The induced scalar potential on
either side is defined as the scalar potential;.on either side removing the scaar
potential for electrons moving.in vacuum. The Fourier component of the scalar
potential for electrons moving in“vacuum can be calculated by letting g(q,co)zl in

Eqg. (3.4),1.e

D (0.0)=—5p;(0.0), (3.10)

Conseguently, the Fourier components of the induced scalar potentials in medium 1

and medium 2 can be given by, respectively,

Vo) b dlslo-aen




and

The first terms in Egs. (3.11) and (3.12) denote the induced scalar potentials for
electrons moving in an infinite solid, which means that the momentum transfer q is
cylindrical symmetric with respect to the moving direction of the electron, i.e. the
direction of v. Accordingly, theiterm 6(co—do\7) in the first term can be
converted into 5(w —qvcosB), where B-listheangle between g and v. Besides,
we apply the assumption of ¢(g, )~ g(Q, a)) (Yubero and Tougaard 1992; Yubero et
al. 1996) in the second terms of Egs. (3.11) and (3:12) for the integration with respect

to dg,. Then the second terms in Egs. (3.11) and (3.12) can be further performed

by

-8 Qv, gl(Q, a))— EZ(Q, a))
¢ (0-Qeyf+Q¥ ¢(QolaQo)+ £ Qo)

, forj=1and2, (3.13)

where v, and v, arethe normal and parallel components of v with respect to the

plane boundary, respectively. After the above mentioned transformations for the
first and second termsin Egs. (3.11) and (3.12), the induced potentialsin real space in
medium 1 and 2 can be presented by means of the inverse Fourier transforms for EQs.

(3.11) and (3.12). Thatis,
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D, (7 1)=—= I I jc? w- qvcosﬂ){ (q 2] 1}ei(q"‘°°sﬂ“"t)sinﬂdﬂdqda)
£(Q.0)-5,(Q,0)
2l g -0 aolbioalaiao]
x exp[l (QeR- wt)] exp(ig,z)sinfdgdodode
whent <0, (3.14)

and

D,y ,( :——” [8(o- qvcosﬁ){ (q a))—l}ei(q"‘msﬁ‘“t)sinﬂdﬂdqdw
£(Q,0)-£,Q.0)
2 Il giiagv ool 0ol
X exp[l (Qo R—a)t)] exp(iq,z)sinedgdododo
whent > 0, (3.15)

where R and z are the paralel and the normal components of r with respect to

the plane boundary. Note that here we use the spherical coordinates for the

integration of momentum transfer q in Egs. (3.14) and (3.15).

3.2.2 Sopping Power

The stopping power means the average energy loss per unit path length of a

charged particle. It is the basic physical parameter for the study of the inelastic
interaction between electrons and solids. The stopping power —O:jﬂ of the
S

electron can be related to the induced potential ¢,,(F,t) as (Flores and

Garcia-Moliner 1979)
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dw 1[8¢nd(r t)} | (3.16)

ds v ot

where the derivative of ¢, ,(r,t) isevauated at the electron’s position r=vt. By

inserting Egs. (3.14) and (3.15) into Eq. (3.16), then the stopping powers for electrons

moving in medium 1 and medium 2 can be obtained by

dW J' j J' w0 (w— QVCOSﬂ){ (q o)
sl(ﬁ,a))—gz(ﬁ,a))
2V7r J-'“-J- Qov") +QWV? sl(Q,a)Igl(d,@)"‘gz(d’w)]

x exp[l (Q eR- a)t)] exp(iq,z)sinfdgdododo
whent <0, (3.17)

—1}ei(q"‘°°sﬂ‘“t)si nBdpdade

and

dW “ I w8 (- qvcosﬂ){ 1}e‘(q"‘°°sﬂ‘“’t)si nBdBdade

Y eaits
T ovr? IIII QOV”) +QW? Z(Q,;Ig;(é,a))ig;(é,a))]

X exp[l (Q eR- wt)] exp(ig,z)sinfdgdodode .
whent >0, (3.18)

For the integration over the energy loss @ in the second integrals of Egs. (3.17)
and (3.18), the contour integration is closed in the upper haf plane (UHP) and the
lower half plane (LHP) for t<0 and t >0, respectively. Meanwhile, in order to
calculate the contour integration in the LHP in Eq. (3.18), it is convenient to convert

the integration into the UHP due to the dielectric function is an anaytic function of

o only in the UHP. In consequence, exp[i(QoR—cot)] in Eg. (3.18) can be
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replaced according to exp[i(QoR—wt)]=2cos(a)t—(§oR)—exp[—i(QoR—wt)] .

After that, the stopping powersin medium 1 and 2 can be further obtained by

E q, _
7IV =0 q q gl(q CO)
9, 7/2 27

qsin®6cos(q, rcosa Jexpl(— |r|Qcosa )

deI d¢ ety
xim 81( ’w)_SZ( "0> O(-r :
' t(qwxgx—,wﬁgz(—,w)]} o e

and

_dW2 _i E a, 1 -1
ds a2 .[Oa)da).[dqqlmLz(q a))}
o sl 7 /B—fipa sin‘expl—r|Qcosa
[ o] g B )
1L

{ {a)- exp<||ocosa>}m{ _81("“’?‘82("@_)@)] }@m,

v Z(Q,a))[sl( "0)"' 52( ,

7T

(3.20)

2

where @ = w—qvsinbcosgsina , Q=qsinf, q,=0qcosf , Vv, =vcosa , Ez\%,

and @(r) is the Heaviside step function. By applying the conservations of energy

and momentum, the upper and the lower limitsof q aregiven by

=V2E+2E-0). (3.21)
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3.2.3 Differential Inverse Inelastic Mean Free Path and Indlastic
Mean Free Path

The DIIMFP is an important physica parameter for the inelastic interaction
between electrons and mediums, and indicates the probability density for an electron
losing energy @ as moving aong a unit path length. The DIIMFP for an electron
of energy E can be determined from the stopping power using the following

relation:
E

——='[wu(a,E,a),r)dw, (3.22)
0

where we can see that the DIIMFP u(a,E,o,t). is as a function of the electron
crossing angle a and the distance r of the electron relative to the crossing point at
the interface. By comparing Egs. (3.19)7and (3.20) to Eq. (3.22), the DIIMFPs for

electrons moving in medium 1 and medium: 2 can be obtained by, respectively,

% 1 -1
(e Ernr)= j i Ll(q,w)}

ZCOSa ‘] gsin®dcos|q,rcosa Jexp(rQeosa )
q-

&+ QN

7/2 21
dqjd@jd¢
$=0

0=0

ami_alQo)eQe) g .
{ Q@ .0)+e.(Q0) }@’( RS

and
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2 % 4 -1
Uz(a, E,w’r):Fqua Im|:52(q’a))j|

2cosa %
|

gsin’dexp(—rQcosa)

+ =
o +QV

/2 2r
dq j do j d¢
¢=0

g 0=0

x{&@(%j—exp(—chosa)}lm{gz £Q0)-2Q.0) ) }@(r).

(Q a)Igl(Q, w)+ gz(Q ®

(3.24)

Another important physical parameter is IMFP, which can be derived by the

integration of DIIMFP over all energy losses, that is,

ﬁ :Tu(a, E,o,rdo, (3.25)

where 2 (a,E,r) isthe IMFP. =By inserting Eqs.%(3.23) and (3.24) into Eq. (3.25),

then the IMFPs for electrons moving in medium 1 and medium 2 can be determined.

3.2.4 Differential Inverse Indglastic Mean Free Path and Indastic
Mean Free Path for an Electron Crossing a Solid Surface

For the case of an electron emitted from a solid to vacuum (i.e. s—>V), let
£(0,0) and &,(G,0) in Egs. (3.23) and (3.24) be replaced by &(q,0) and 1,

respectively. Then the electron DIIMFPin this case is given by
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us(a, E,0,1) =

Smirlaapt

2c05a jdqﬂfdesz gsin?6cos(q,rcosa Jexp(— |r |Qcosoz)I ( (—1 J@(—r)

o®+QV°

zl2 2n in2 _ _
4co§a aq jd9jd¢ gsin 9cos(qzr~czosa)2ex2p( |r|Qcosa)|m( 1 J®(_r)
0 0 w +Q VL S(Q'a))

4COSO£
3

a2 2 qsinzeexp(—|r|Qcosa)|m( -1 J

da {d@ld(ﬁ @’ +Q*° £(Qw)+1

« 200 |- expl-eosa o)

o
!

(3.26)

A similar calculation can be performed: for the case of electrons entering a
semi-infinite solid by taking ei{q,#)=21 and ¢,(q,0)=£(q,0) in Egs. (3.23) and

(3.24). Thenthe DIIMFPfor incident electrons (i.e..v— s) isgiven by

u"%(a E,w, r):

4c05aqj ”jf | % . gsin®fcog(q,rcosa)
9o 0

ajd¢

1
O 51O exp(— |r|Qcosa)I m(s(Q,—w)HJG(_ r)

v Jegin{ i o

2cosa‘]- ”J’-zdezji’d(/)qsnzeexp( ||Qcosa) ( -1 J
e 0 0 +Q E(Q,a)

x{zcos(a?/rj exp(-|r|Qcosa ) |O(r)

2 qf o [0 ag BETOPLL |Q°°S“)|m( J
: . @’ +Q*? (Q,a))+1

| X {Zco{%J —expl-|r|Qcosa )}@(r)
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In Egs. (3.26) and (3.27), the terms involving Im(_—lJ are the contribution
&+

from the surface excitation, whereas the terms involving Im(_—lJ are the
&

contribution from the volume excitation. These two equations revea that only

surface excitation occurs outside the solid, while both volume and surface excitations

occur inside the solid. Since the term exp(—|r|QCOSa) exists in Egs. (3.26) and

(3.27), the contribution of the surface excitation exponentially decreases with the
increasing distance from the surface, whereas the reduction in the contribution of the
volume excitation increases rapidly near the surface. Besides, when r — — in Eq.
(3.26) or r > in Eg. (3.27), i.e. deep inside the solid, it is seen that the forms of
these two equations are consistent with the form for electrons moving in an infinite
solid.

Letting o =0° in Egs. (3:26) ‘and (3.27), formulas for normally escaping and
incident electrons exhibit similariti es:between-present and previous works (Kwei et al.
1998b). The difference between ‘these works is attributed to the application of
momentum-energy conservations. In the previous work, the integration over the
normal component of the momentum transfer, q,, was not restricted by the
conservation relations.  In the present work, however, these relations are completely
satisfied due to the adoption of spherical coordinates in momentum integration.

According to Eqg. (3.25), then the IMFP for escaping and incident electrons can

be derived from Egs. (3.26) and (3.27). They are given by, respectively,

u™(a, E, 00,1 )dw, (3.28)

>
!
=
RF
m
=
Il

Oy

and



1 " VoS
e En U @B, (329)
i 1= 0

Using Egs. (3.26) ~ (3.29) and adopting the extended Drude dielectric function
(Kwei et al. 1993), we can calculate the DIIMFPs and IMFPs for an electron incident
into or escaping from a solid surface. The fitting parameters of the model dielectric
functions were taken from the previous work of Kwel et al. (1993).

Figures 3.2 and 3.3 show the results of electron DIIMFPs outside and inside the
solid at various distances relative to the crossing angle point at the surface,
respectively, for a 500 eV escaping electron moving from Cu to vacuum in severa
directions. It is seen that the DUMFPs vary with the distance in both figures. In
Fig. 3.2, the DIIMFP on the-vacuum side-is entirely contributed by the surface
excitations. As the electron is closer to.the.surface, the DIIMFP curves for fixed
crossing angels are getting wider and-their. peak-values are getting larger due to the
increasing surface excitations. Meanwhile, the surface excitations increase for larger
crossing angles at the fixed distance from the crossing point because of the shorter
distanceto the surface. It isaso found that the characteristic surface plasmon energy,
corresponding to the peak energy loss, is nearly independent of the crossing angle and
the electron distance from the crossing point. In Fig. 3.3, the DIIMFPs inside the
solid vary with the distances from the crossing point. The DIIMFP is a broad
function of the energy loss due to the overlapping between the contributions of
surface and volume excitations. It is seen that the dependence of DIIMFP on the
crossing angle is rather weak inside the solid and is getting weaker as the electron is
farther away from the surface. Slightly inside the solid, the DIIMFP quickly

approaches to the value of the electron moving in an infinite solid, which reveals that
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Fig. 3.2 Caculated results of the DIIMFPin vacuum for a 500 eV escaping electron
from Cu to vacuum with different crossing angles and distances from the crossing

point at the surface.
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surface excitations are restricted to a limited region near the surface. For a 500 eV
incident electron moving from vacuum to Cu, similar results outside and inside the
solid are respectively plotted in Figs. 3.4 and 3.5. Again, surface excitations are
important as the electron moves near the surface.  The DIIMFP on the vacuum side
is enhanced for larger crossing angle, while the angular dependence of DIIMFP inside
the solid is weak.

Using Eq. (3.28), we have calculated the IMFPs for a 500 eV escaping electron
moving from Cu to vacuum as a function of electron position relative to the crossing
point. These results are shown in Fig. 3.6 for several crossing angles. Outside the
solid, the IMFPs do not fall off to zero abruptly. In addition, the IMFP outside the
solid decays more rapidly for smaller crossing angle. This indicates that electrons
have more probability to excite surface plasmons for larger crossing angles at the
same relative distance to the cressing point. _-Insidethe solid, the IMFPs are roughly
independent of relative distance and--crossing  angle due to the approximate
compensation of volume and surface excitations. Therefore, the IMFP inside the
solid can be approximated as a constant equal to the IMFP for electrons moving in an
infinite solid. A similar plot of IMFPs for 500 €V incident electrons moving from
vacuum to Cu in severa directions is shown in Fig. 3.7. Here the IMFP of the
incident electron in vacuum is lowered as compared to the result of the escaping
electron. This is because the attractive force acting on the incident electron by
induced surface charges is parallel to the moving direction of the electron and
accelerates the electron in vacuum. However, the attractive force on escaping
electron in vacuum is antiparallel to the moving direction of the electron and
decelerates the electron. Therefore, the time is spent less for incident electron than

that for escaping electron, and surface excitation is less probable for incident electron.
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Fig. 3.4 Calculated results of the DIIMFP in vacuum for a 500 eV incident electron
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point at the surface.
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3.3 Surface Excitation Parameter

The surface excitation parameter (SEP) was introduced to indicate the mean
number of excited surface plasmons as electrons moving across a solid surface. At
an earlier time, SEP was determined by the integration of the inverse IMFP
contributed by the surface excitation with respect to the whole path length of the
electron moving on both sides of the surface (Chen and Kwei 1996). By this
definition, the excitations inside the solid were separated into individual surface
excitation and volume excitation. However, inside the solid, it is more convenient to
deal with surface and volume excitations together rather than separately due to the
fact that the approximate compensation of surface and volume excitations makes the
IMFPs roughly being constants (Kwei et al:+1998b). Therefore, we applied the
recent calculation of SEP suggested by Kwei &t al.-(1998b), who calculated SEP by
the integration of inverse IMFP.over the whole path length of the electron in vacuum.
By means of Egs. (3.28) and (3.29), the SEPs for-@lectrons escaping from and incident

into a solid surface are obtained by

I dr
PY(a,E)= [——, 3.30
S (a ) J;AIS_)V(a,E,r) ( )
and
9 dr

P%(a, E) = I T Er) (3.31)

-0

Figure 3.8 shows the cross-angle-dependent SEPs calculated using Eq. (3.30) for
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the escaping electrons of 300 eV (solid circles), 500 eV (solid sguares) and 800 eV
(solid triangles) moving from Cu to vacuum. The corresponding fitted values

obtained from Eq. (3.32) are displayed by solid curves.



the escaping electrons of 300 eV (solid circles), 500 eV (solid squares) and 800 eV
(solid triangles) moving from Cu to vacuum. Similar results calculated using Eq.
(3.31) for incident electrons moving from vacuum to Cu are plotted in Fig. 3.9. It
can be seen that the SEPs, for both cases, increase with the increasing of the crossing
angle . When a>70°, the increase of SEP is rapid. Thus, the surface
excitations are more probable for larger crossing angle. Besides, at fixed «a , wecan
see that the SEP values decrease with the increasing energy of electrons. To
investigate this phenomenon, we plotted the calculated SEPs versus various electron’s
energies with a =0° and o =50° in Fig. 3.10 for escaping electrons and in Fig.
3.11 for incident electrons. The reason for larger SEP value at lower energy is that
the electron of lower energy moves in vacuum for moretime. Then surface plasmon
are excited more. By comparing.Figs. 3.8 with 3.9 or Figs. 3.10 with 3.11, the SEP
for the incident electron is lower. than the result for the escaping eectron. This
finding and its explanation are the same-as-the.preceding mention for inverse IMFP.
Thus the surface excitation is more probable for escaping electrons. Examining
these computed results of SEP in Figs. 3.8 ~ 3.11, we found that the SEP follows the

eguation:

aE™"
cos’a

P~"(a,E) or P'7%(a,E)= (3.32)

The best-fitted values of the parameters for electrons moving from Cu to vacuum and
for electrons moving from vacuum to Cu are listed in Table 1 and Table 2,
respectively. The curves versus crossing angle and energy of the fittings are aso
plotted (solid curves) in Figs. 3.8 ~3.11. For Au and Ag, we list the fitted values of

the parametersin Table 3.1 and Table 3.2 for escaping and incident electrons.
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Fig. 3.9 A plot of the crossing-angle-dependent SEPs calculated using Eqg. (3.31) for
the incident electrons of 300 eV (solid circles), 500 eV (solid squares) and 800 eV

(solid triangles) moving from vacuum to Cu. The corresponding fitted values

obtained from Eq. (3.32) are displayed by solid curves.
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Fig. 3.10 A plot of SEPs versus energy calculated using Eg. (3.30) for electrons
escaping from Cu by the crossing angle « =0° (solid triangles) and « =50° (solid

circles). The corresponding fitted values obtained from Eq. (3.32) are displayed by

solid curves.
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PS—)V

a b c
Au 1.8695 0.4052 0.80
Ag 2.1203 0.4260 0.74
Cu 1.9994 0.4166 0.82

Table3.1 Fitted values of parameters a, b and c in Eq. (3.32) for escaping el ectrons

poos
a b c
Au 1.88476 0.50601 1.06
Ag 1.42601 0.48209 1.05
Cu 1.2999 0.4664 1.13

Table3.2 Fitted values of parameters a, b and cin Eq. (3.32) for incident electrons
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Moreover, in Figs. 3.12 ~ 3.15, we compared our fitted values and calculated
results of SEPs versus crossing angel and energy with the results of Oswald’s fitting
formaul (1997) (dotted curves) for incident and escaping electrons and with the results
of Chen’s fitting formula (2002) (dashed curves) using cylindrical coordinates in
momentum integration for escaping electrons. A substantial difference between our
results and Oswald’s results was found, especially for incident electrons. For
escaping electrons, a discrepancy between the crossing-angle-dependent SEP values
of Chen and our results can be seen, and the difference between our and Chen’s
results of SEP versus energy are also seen. The fitted formula of Chen (2002) for the
calculation of SEP is only applicable for escaping electrons, but not for incident

electrons.  Our calculations have been made for both incident and escaping el ectrons.
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Fig. 3.12 A plot of the SEP for a 500 eV escaping electron from Cu to vacuum as a
function of crossing angle. Symbols are the calculated results using Eq. (3.30).
Solid curve is the fitting results using Eq. (3.32). Corresponding data of Chen (2002)

(dashed curve) and Oswald (1997) (dotted curve) are plotted for comparisons.

51



B )

90

o (degree)

Fig. 3.13 A plot of the SEP for a 500 eV incident electron from vacuum to Cu as a
function of crossing angle. Symbols are the calculated results using Eg. (3.31).
Salid curve is the fitting results using Eq. (3.32). Corresponding data of Oswald

(1997) (dotted curve) are plotted for comparisons.
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Fig. 3.14 A plot of the SEP versus energy for an electron escaping from Cu to
vacuum by o =0°. Symbols are the calculated results using Eq. (3.30). Solid
curve is the fitting results using Eqg. (3.32). Corresponding data of Chen (2002)

(dashed curve) and Oswald (1997) (dotted curve) are plotted for comparisons.

53



w3 — - T T T T T T

0.30 .

Cu

0.25 a=0" ]

0.20

(at.E)

&

N --“_”h.””_.”h. -

PV—)S

) SO
010 .

0.05 .

000 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000

E (eV)

Fig. 3.15 A plot of the SEP versus energy for an electron escaping from vacuum to
Cuby o =0°. Symbols are the calculated results using Eq. (3.31). Solid curveis
the fitting results using Eq. (3.32). Corresponding data of Oswald (1997) (dotted

curve) are plotted for comparisons.



34 The Inelastic-Scattering Model with Retardation
Effect

When an electron moves near a solid, the electric field isinduced. The induced
electric field has influence on the election’s motion. Conventionally, the induced
electric field can be calculated by solving the Poisson equation.  In this approach, it
was assumed that the induced electric field propagated to the electron simultaneously.
Actualy, the induced €electric field needs propagation time to influence the motion of
the electron. In other words, the effect observed on the electron is caused by the
action of the induced electric field at earlier or retarded time. This phenomenon is
caled the retardation effect (Jackson 1975). For the electron of low and
intermediate speed, the retardation effect,can be ignored so that the Poisson equation
is applicable in the calculation.of . electric fields. However, if the speed of the
electron is very high, the Poisson equation.is not adequate since the retardation effect
becomes significant (Marks 1982; Cowley-1982a,1982b; Moreau et al. 1997). The
aim of the present study in this sectioniis'to establish a modd with the retardation
effect. By employing the extended Drude dielectric function with spatial dispersion
(Kwe et al. 1993) in the dielectric response theory, we modify the preceding
inelastic-scattering model to include the retardation effect in the derivation for the

inelastic interaction of high-energy electrons moving parallel to solid surfaces.

3.4.1 TheBasic Knowledge

As mentioned in section 3.1, the Maxwell equations, Eq. (3.1), govern the
electromagnetic interaction between a charged particle and a medium. To derive the
inelastic-scattering model with retardation effect, the Maxwell equations are therefore
the starting points in this section. The Maxwell equations in Egs. (3.1a), (3.1b),
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(3.1c) and (3.1d) in Fourier transformed forms are given by (Dressel and Griiner

2002)
qeB(g,»)=0, (3.339)
axE(q, a))—% B(0,0)=0, (3.33b)
ige D(q,»)= 470(0, »), (3.330)
and
axF(a.0)+'2(0,0)= 2 Aa,0) (333

where H(g,») and B(g,w) arethe Fourier components of the magnetic field and
the magnetic induction, respectively. The solutions of B(r,t) and E(r,t) in Egs.
(3.1a) and (3.1b) can be defined in terms of a vector potential A(r,t) and a scalar

potential @(r,t) (Jackson 1975); that is,

B(F,t) = VxA(r,t), (3.34)

and

(3.35)

The Fourier components of Egs. (3.34) and (3.35) are given by (Dressel and Griner
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and

B(q, ):idxA(q,a)), (3.36)

E(q,0)=-iq0(0,0)+i ZA(G,0). (3.37)

Substituting Egs. (3.36) and (3.37) and the relations, D(q,)=&(q,)E(q,») and

B(g,@)= uH(g,w), into Egs. (3.33c) and (3.33d), the Maxwell equations can be

reduced to

and

T*A(G.0)- zﬂgﬁq’”)/&<q,w>+q[—q-/x<~ J el80) g o)

(3.39)
- 30.0)
qZ@(d.w)—%qﬂ(d,w):%, (3.39)

where u is the permeability. However, Egs. (3.38) and (3.39) are still coupled

equations.  To uncouple them, the Lorentz gauge (Jackson 1975)

=0 (3.40)
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is employed. Here the Lorentz gauge in Fourier transformed form can be obtained

by

—q-/i(d,w)+wq>(q,w)=o. (3.41)

A(6.0)- L2 7G0)- 42 g 0), 62
and
070(g,0)- £ H00) g g o) RIT), (343)
C 8(q,a)

These two equations are the Fourier components of the wave equations for A and
O.

As mentioned in section 3.1, boundary conditions must be satisfied to solve the
electromagnetic boundary-value problems. To solve the differential wave equations
of Egs. (3.42) and (3.43), the boundary conditions mentioned in section 3.1 for the
normal component of the electric displacement and for the tangential components of
the electric field are not enough. The other boundary conditions for the normal
components of the magnetic induction and for the tangential components of magnetic
field are necessary (Jackson 1975). That is, the norma component of the magnetic
induction and the tangential components of the magnetic field are continuous on the

boundary.
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342 The Induced Vector and Scalar Potentials for Electrons
Moving Parallel to an Interface

With the help of the boundary conditions and based on the dielectric response
theory, we use the wave equations shown in Eqg. (3.42) to derive the
inelastic-scattering model with retardation effect for high-speed electrons moving
paralld to an infinite interface. This problem to be solved isillustrated in Fig. 3.16,
where an electron of charge e and speed v moving in positive x-direction and
paralld to an interface (at z=0) between medium 1 of dielectric function sl(d,a))
(at z<0) and medium 2 of didectric function ¢,(q,w) (a z>0).  Thedectron
islocated in medium 1 at adistance d from the interface, and its instant position at
time t is expressed as (vt,0,-d). In our work, since we are interested in the
inelastic interaction between electrons and non-magnetic media, both permeabilities
of medium 1 and medium 2 are’equal to 1.

Again, the atomic units are used unless otherwise specified in this section.

Then the charge density of the electron” "p; (f, t) isgiven by

pi(F,t)=-8(x-vt)5(y)s(z+d). (3.44)

Using the principles of Fourier transform, the Fourier component of this electron

charge density can be given by

pi(@®)= [ [ py(r expl-i(ger - ot)dtdr

—00—00

= —T 75(X—Vt)5(y)5(2+ d) exp[-i(Ge T —ot)]dtdr . (3.45)

—00—00

— —275 (e —q,v) explic,d)
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Fig. 3.16 A sketch of an electron of charge € and speed v moving in positive
x -direction and paralel to an interface (at z=0) between medium 1 of dielectric
function &,(0,0) (& z<0) and medium 2 of didectric function &,(g,0) (at
z>0). The permeabilities of medium 1 and medium 2 areequal to 1. The electron
islocated in medium 1 at adistance d from the interface, and its instant position at

time t isexpressedas (vt,0,-d).
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Besides, the moving electron can aso be regarded as a current. Hence the current

density arising from p; (F,t) can be determined by (Cheng 1989)

J. (F,t)=—vs(x-wt)s(y)5(z+d)X, (3.46)

whre X isthe unit vector dlong x-direction. Accordingly, the Fourier components

of J,(F,t) can beobtained by

J.(0,0)= ]O ij (F,t)exp[-i(qeF — wt)|dtdr

= [ [ s tx-vpo(y)o(E¥d)Splei(aer - ot tor (347)

= 25 (- q,v)exp(ig,d )k

=Pf(qia’)\/§(

As mentioned in section 3.2.1, the method of images was applied to solve the
boundary-value problem. Here we use this method again. By introducing image
current densities on both sides of the interface, the Fourier components of the vector
potentials in media 1 and 2, A,(q,@) and A,(d,®),can be determined from the

wave equation for vector potential presented in Eq. (3.42); that is,
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C
47r[J (@,0)+I34(Q.0) , when z<O0, (3.48)
1 2
Cq,
. J; (q'a’)+‘_]sl,x((j a))
- T x 9 2] 3., Qe
qu O
and
A,(G.0)
47r[J qco j Qa)
{ o 82 q ) }
47:[3 (q.0)+I,(Qo) , when z>0, (3.49)
qu
477: ‘]f (q'a))_l_ ‘132 X(Qla))
“erk v 2 3oy Qv
2 = 2 _
where qf:qz—w gz(zqw) q = 2—%, y is the unit vector aong

y -direction, and 2 is the unit vector along z-direction. J4(Q,0) and J_,(Q,)
are the fictitious surface current densities right on the surface facing to medium 2 and

right on the surface facing to medium 1, respectively. Jsl’x(‘,co) and Jsl’y(‘,co)
are the paralel components of Jsl(ﬁ,a)) in x -direction and y -direction,

respectively; the corresponding components of JSZ(‘,a)) are JSZYX(‘,a)) and
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Jsz,y(Q a)) Through the Lorentz gauge shown in Eg. (3.41) with the help of Egs.

(3.48) and (3.49), the Fourier components of the scalar potentialsin media 1 and 2 can

be determined by
q)l(qla))
_ C ~oA (g
B a)gl(q,a)) aq Al(q!a))
-] q q : (3.50)
- wgl(q,a))[qul’X(q’w)+ quLy(q,w)]
4 0 —~ —_
i Wz))qf[% @.0)+6,9,,(Q 0)+9,3,,(Q.0)
and
CDZ(q’a))
C ~ n —
- wgz(q,a))q.AZ(q’w)
= q q (351)
- @2,(0,0) 0420 0)+ 0 AZ 0]
" 43 _ )
 we,(6,0) [qXJf (@,0)+ qusz,x(Q. 60)+ qyJSZ’y(Q, co)]

where qz(qx,qy,qz):(@qz), and g, and g, are the paralel components of g
in x-direction and in vy -direction, respectively. After substituting Egs. (3.48) ~
(3.51) into Egs. (3.36) and (3.37), the Fourier components of the magnetic inductions
and the electric fields on both sides of the boundary, i.e. B,(g,®), B,(q,),

E,(0,0) and E,(q,®), can be carried out. By meeting the boundary conditions,

then the forms of the fictitious surface current densities, J,,(Q.0), Jg,(Q o),

Jo,Q.0) and 3, (Q,), can bewritten as, respectively,
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w* 1 da. + J‘in J. :!'2 dag,
g | Vg2 %" g da. %
cay | g J.qu .
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and

34, Qo) (3.55)

where J, (qw) isgiven by Eq. (3.47). Again, in order to simplify the integrations

in Egs. (3.52) and (3.53), the assumption of ¢(9,®) ~ £(Q,w) (Yubero and Tougaard

1992; Yubero et al. 1996) is applied. Then Egs. (3.52) ~ (3.55) can be re-expressed

as, respectively,
34,(Q.0)=205(c - 0,v)expl= 0@ A, (356)
3uy(Q.0)= 21v5(0 - g,v)expl- Q) (357)
3,,(Q,0)=-3_ (@ .0)-22vé(0 - qv)|expl-dG, )- exgl- 03 ), (3598)
and
J,,(Q0)=-34,Q0), (359)
where
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Here we let Q =\/Q2—%?’w) and Q, =\/Q2—%2Q’w). By inserting
Egs. (3.56) ~ (3.59) into Egs. (3.48) ~ (3.51), then the vector potentials and scalar

potentialsin media 1 and 2 can be obtained.

3.4.3 The Sopping Power and DIIMFP with Retardation Effect
for Electrons Moving Parallel to an Interface

To calculate the stopping power with retardation effect of the electron, we have

to calculate the induced vector and scalar potentials first. The induced vector and
scalar potentials of interest can be obtained by removing the corresponding potentials

for electrons moving in vacuum. The Fourier components of the vector potential in
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vacuum can be determined using Eq. (3.42) with x =1 and &(d,»)=1, and then it

isgiven by
_ 47 J g,
ref(q’a)): f( 2)
¢
4rd (C],a))
=— , (3.62)
Cdy
4 ‘Jf(q’w)
-k oy 2| o
CqO O

2
@ Substituting Eq. (3.62) into Eq. (3.41), the Fourier

where we let oy =q°——.
C

components of the scalar potentia in vacuum can be given by

D (0,0)=—qoA 4 (0)
@ (3.63)

4 . )
= ﬂ?zx Jf(q’w)
wd,

Through Egs. (3.48) and (3.62), thus the Fourier component of the induced vector

potential in medium 1, can be given by

Aind (q,a))

=A,(6,0)-A(d0) . (3.64)
. J@e)+Qo)) 3, (@.0)

= 2 [)A( y 2] ‘Jsl,y Q,ﬁ()) - 2 [)A( y 2] O
qu O CqO O

Likewise, through Egs. (3.50) and (3.63), the induced scalar potential in medium 1

68



can be given by

qud(q’a))
= q)l(q’w)_q)ref (q 0)) . (3.65)
‘—wgl(q T 0.9, (@.0)+4,34,(Q.0)+a,9,,(Q.0)- 47;qoxa @)

Through Egs. (3.64) and (3.65), we can obtain the Fourier component of the

induced electric filed in x-direction according to Eq. (3.37). That is,
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e ”){ g %,(0,0) chf}
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g, ¢,(q,0)

—Ii 4ﬂJﬂ’y(Q, a))

(3.66)

where J,(g,0), Jsllx(‘,w) and Jslvy(‘,co) are given by Egs. (3.47), (3.56) and

(3.57), respectively. In section 3.2.2, we have used Eg. (3.16) to calculate the
stopping power of the moving electron. However, this expression for stopping
power does not consider the contribution of the induced vector potential. Thus we

applied the relation between the induced electric field and the stopping power. That
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is, the stopping power can be determined from the induced electric force, parald to
the electron’s moving direction, acting on the electron (Ritchie 1957; Abril et al. 1998;

GarciaMolinaet al. 1985), i.e.

dw _
5= Enax(T ’t)‘r:(vt,o,—d)’ (3.67)

Then through Egs. (3.66) and (3.67) and the principles of the inverse Fourier
transform, the stopping power with retardation effect for the electron moving in

medium 1 and parallel to theinterfaceis given by

oyt [ B (@ 0)explila-alespltiagJion

- ;_'V [ [ [[wq?sin6 expli(qsin@eosgrw)thlw - avsing cosg)
T

_qzsinzecos%&Jr 1 J_rqzsinzecowsinqﬁ
oo e, @) o 0’0, ¢,(d, @)

X {exp[— iqd cos@]exp(— dél{A(
2 in2 2 2 Gn2 2
_quzacosqﬁJr 212_ 212 qsn29208¢dwdqd0d¢
o°q’e(Gw)  co cq ®° G

(3.68)

where the spherical coordinates are adopted for the integration of the momentum

transfer g, and thus, with Q=qsiné, the forms of A and I" for momentum

transfer in spherical coordinates become
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After the integration with respect to ¢ and some algebra, Eq. (3.68) is further given

by

2 og°sind {
dg do Im? —
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(3.72)
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where A and W areaso further given by, respectively,
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By obeying the mass-energy and momentum conservations (Beiser 2003), the upper

and lower limits of the integration with respect to g in Eq. (3.71) can be obtained by

(3.74)

q, = \/E(E+202) i\/(E_w)(E+2(;2_a))
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Thesymbol E inEgs. (3.71) and (3.74) denotes the relativistic kinetic energy of the

electron. According to the relativistic theory, the relativistic kinetic energy is given

by (Beiser 2003)
c? 5
E= —c2. (3.75)
V2
-2

Here this relation is utilized in Egs. (3.71) and (3.74). After the stopping power

—C;—W being derived, the corresponding DIIMFP with retardation effect can be
S

determined according to EQ. (3.22). Thatis,

u(E,w,d)

v % 2 q°sing { 1 1
= Ims— +

a q—jq 9_51{1“’ Vg2 sin? @~ ? Vg e(00) o

Qv
2
( _ 1 1 \/qzvzsnze—l
+cos(gd cos® )expl—dQ, | A| — + —r+ @ dgdo
qq ) p Ql ( quzgl(q-’a)) CZqu.Zj quizgl(q,w) q

(3.76)

The non-retarded limit of EQ. (3.71) can be determined by letting ¢ —> o . Then the

stopping power without retardation effect for electrons moving parallel to an interface

can be given by
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where g, =v2E+t+V2E-20 and E is given by Eqg. (3.75). This obtained

expression is the same as the formula derived previously for electrons of low and

intermediate energies moving parallel to asolid surface (Kwel et al. 2003; Hsu 2003).

3.4.4 Comparisons between the Model without Retardation Effect
and the Model with Retardation.Effect for Electrons Moving
Parallel to a Solid Surface

Figure 3.17 shows the comparison-ef-the DIIMFPs without retardation effect

(solid curve) and with retardation effect (dashed curve) for electrons of energy 1000

€V moving in vacuum at depth z :—1,& and pardlel to a Cu surface. The same
comparison for electrons of energy 10° eV is plotted in Fig. 3.18. Here these results
were calculated using Egs. (3.76) and (3.77) with the extended dielectric functions of
vacuum and Cu (Kwei et al. 1993) substituted respectively for &(g,0) and
&,(0,w). In Figs. 3.17 and 3.18, it is found that the DIIMFPs without and with
retardation effect for 1000 eV electrons can not be distinguished, whereas the
difference is substantial for 10° eV electrons, which indicates that the model with
retardation effect should be applied to deal with the problem of inelastic interaction

between high-energy electrons and solids.
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Fig. 3.17 A comparison of the DIIMFPs without retardation effect (solid curve) and

with retardation effect (dashed curve) for electrons of energy 1000 €V moving in

vacuum at depth z= —1,& and parallel to a Cu surface.
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Fig. 3.18 A comparison of the DIIMFPs without retardation effect (solid curve) and

with retardation effect (dashed curve) for electrons of energy 10° eV moving in

vacuum at depth z= —1,& and parallel to a Cu surface.
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Through the integration of the DIIMFP with respect to the energy loss o, the
IMFP can be determined. In Fig 3.19, we displayed the calculated IMFPs without

retardation effect (solid curve) and with retardation effect (dashed curve) versus

electron energy for electrons moving in vacuum at depth z = —1,& and parallel to a
Cu surface. It can bee seen that the values of the IMFP with retardation effect are
reduced to the results of the IMFP without retardation effect for smaller electron
energy. The difference between the IMFPs without and with retardation effect
increases with increasing energy. Thus, the retardation effect becomes significant
for high-energy electrons. Moreover, the curves of the IMFPs without and with
retardation effect tend to saturate at very high energy. Thisis due to the fact that the
velocity of the electron is close to the velocity of light. No matter how large the
kinetic energy of the electron is, the velocity of. the electron never exceeds the
velocity of light. As a consequence, the value of IMFP gradually approaches to the
value for electrons moving with'velocity of light.

Using Eg. (3.71), we calculated the stopping powers with retardation effect for

the electron of various energies moving in vacuum at z= —1,& and parallel to a Cu
surface. The calculated results are plotted in Fig. 3.20. For comparison, the
stopping powers without retardation effect are also included in this figure. It can be
found that the stopping powers without and with retardation effect agree with each
other for energy less than 10° eV, while the discrepancy can be seen for larger energy.
Besides, both curves saturates at very high energy, as the same effect seen in Figs.
3.19 for IMFPs. It aso can be found that the stopping powers decrease with the
increasing energy of the electron. This is due to the induced excitations are less

probable for higher energy.
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Fig. 3.19 A comparison of the IMFPs without retardation effect (solid curve) and

with retardation effect (dashed curve) versus energy for electrons moving in vacuum

at depth z= —1,& and paralld to a Cu surface.
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Fig. 3.20 A comparison of the stopping powers without retardation effect (solid

curve) and with retardation effect (dashed curve) versus energy for electrons moving

invacuum at depth z = —1,& and paralld to a Cu surface.
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CHAPTER 4
ELECTRON QUASI-ELASTIC PEAK

Elastic peak electron spectroscopy (EPES) has been frequently used to
investigate the elastic peak spectra of electrons backscattered from solid surfaces.
Some significant information like IMFP of electrons could be extracted from the
analysis of the elastic peaks (Krawczyk et al. 1998; Zommer et al. 1998; Gergely et al.
1981, 1999; Lesiak et al. 1999; Tanuma et al. 2000). The energy distribution of the
elastic peak spectra were also observed experimentally in the work with electron
spectrometers (Boersch et al. 1967; Erickson and Powell 1989; Laser and Seah 1993;
Goto and Shimizu 1997). This energy distribution is due to the fact that the
Rutherford-type recoil energy loss occurs after.each elastic interaction between the
electron and the atom in a solid (Boerschet al. 1967). The aim of this chapter is to
simulate the energy distribution. of the elastic peak spectra of electrons
quasi-elastically backscattered from solid surfaces. For this simulation work, we
modified the previously-constructed Monte Carlo (MC) method (Kwei et al. 19983,
2001) with the inclusion of the recoil energy loss. In addition to the recoil energy
loss, there are three effects can affect the experimentally measured energy
distributions of elastic peaks. The three effects are the spectrometer energy
resolution, the energy distribution of the primary electrons and the thermal motion of
atoms (T6th et al. 1998; Gergely et al. 2001; Sulyok et al. 2001; Varga et al. 2001).
We also include these effects in the simulation for the energy spectra of elastic peaks.

Moreover, through the measured elastic peak of backscattered electrons, the
IMFP of electronsin asolid can be determined experimentally (Krawczyk et al. 1998;

Zommer et al. 1998; Gergely et al. 1981, 1999; Lesiak et al. 1999; Tanuma €t al.
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2000). Inthe present chapter, we aso discussed this experimental approach.

4.1 Simulation for Energy Spectra of Electrons
Quasi-elastically Backscattered from a Semi-infinite
Solid

Recently, the MC method has been frequently employed to determine the angular
distribution for electrons elastically backscattered from solids (Jablonski 1989;
Jablonski et al. 1991, 1992, 1993). Due to the recoil energy losses as eectrons
scattered elastically by atomic nuclei, the energy distribution also characterizes the
features of the elastic peak spectra of backscattered electrons.  Although the energy
loss in each elastic scattering event is very small, the accumulation of each energy
loss can not be negligible (Ericksen and Powell 1989). Thus, this kind of scattering
is called quasi-elastic scattering. «~The recoil energy loss results in a small energy
shift and a width broadening in the elastic-peak spectra. In order to calculate the
energy spectra of electrons quasi-elastically backscattered from solids, we aso

adopted the similar MC method of Kwei et al. (1998a, 2001).

411 TheMonteCarlo Method

The energy distribution of quasi-elastically backscattered electrons is simulated
using the MC method. Backscattered electrons are traced from their impinging
points to emerging points by recording the trgectories only involving elastic
scattering events. Electron trgectories are recorded through azimuthal scattering
angles, polar scattering angles and the path lengths between two consecutive elastic
scattering events. By generating the uniformly-distributed random numbers between

0 and 1, the azimuthal and polar scattering angles and the path lengths can be
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determined. Note that both the azimuthal and polar scattering angles are relative to
the electron direction before elastic scattering. The polar scattering angle 0 after

each elastic collision can be determined from arandom number R, using

R = ©) @.1)

O

@ do
2njs;n0‘( e.jde'
0

e

where 9% isthe EDCS, and
do

o, =2z sine'(difjde' (4.2)
) dQ

isthe elastic cross section. It is assumed that the azimuthal scattering angle ¢ after
each elastic collision is cylindrically-symmetric with respect to the electron moving
direction before elastic scattering (Kwel et al. 1997). As a result, the azimuthal

scattering angle can be obtained from arandom number R, according to

¢=27R,. (4.3)

Applying the Poisson stochastic process for elastic scattering events, the probability
density function of electrons moving along a straight step path length As between

the ith elastic scattering at depth z and the (i +1)th elastic scattering at depth

; Za—4 .. :
- with As = jsgiven by (Reimer 1985
Z|+1 3 COS@ g y( )
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P(AS)= %exp(——'*l_ = ] (4.4)

A, COSO,

where the form of the electron EMFP A, can be calculated according to Eg. (2.3),
and ©, denotes the angle between the inwardly-directed surface normal and the

electron moving direction after the ith elastic scattering. EQ. (4.4) can be related to

arandom number R, asthe following expression (Su 1994):

R, =1- Af P (AS )dAS . (4.5)

0

By means of Egs. (4.4) and (4.5), thelength between z and z_, can be determined

from R, by (Kwei et al. 2001)

Z,,—2z =—-A,.L090,InR;. (4.6)
Therelation between ©, and ©, , isgiven by (Kwei et al. 1997)

Cos®, =cos®, , cosH, —sin®, , SN, cosy, , 4.7)
where 6, and ¢ are the ith polar and azimuthal scattering angles, respectively.
When an elastic interaction occurs, electrons lose some energy. This is because the
electron scattered by an atomic nucleus suffers the Rutherford-type recoil energy loss,
as mentioned in section 2.6.  According to Eq. (2.12), the energy of an electron after

the i th elastic scattering with 6, isgiven by
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am . , 0,
E (Hi)Z(l—VSIH EJEi—l(eil)’ (4.8)

where E, ,(6,,) istheelectron energy after the (i —1)th elastic scattering.

According to the Poisson stochastic process for inelastic scattering events, the

probability density function that an electron travels As path length between the ith

and the (i +1)th elastic scatterings without inelastic scattering is

1 dz
P =exp — , 4,93
=exp - ! (4.9)

or

Z'J'l dz

1 7%
cos®. — '
¥ z,w(ﬂ_@i,ei, 7 J
oS0,

z

where 2%l @ E,— 2| and 2| 7-0,E,— 2|, respectively, are the
cos® Cos®

IMFPs at depth z for electrons of energy E, moving inward and outward inside the
solid, and they can be calculated using Egs. (3.26) ~ (3.29). Besides, the probability
density function of an electron with energy E crossing the surface by a crossing
angle a without surface excitations is determined from the use of the SEPs

expressed in Egs. (3.30) and (3.31) (Chen et al. 1994). Then the probability density

function is given by



exp[— P"(a, ,E, )] , for incident electrons, (4.10a)

or

exp[— P> (ag, Eq )] : for backscattered electrons, (4.10b)

where o, and E, are the incident angle and the incident energy of the electron,
respectively, and o, and E; are the emission angle within the acceptance angles
and the emission energy of the electron, respectively. However, it is difficult using
Egs. (3.26) ~ (3.31) in Egs. (4.9) and (4.10) to determine the probabilities since too
much computing time must be taken. — Thus, we made approximations to reduce the
computing time. In Figs. 3.6:and 3.7, we can see that the inverse IMFP inside the
solid could be roughly regarded as being isotropic. Therefore, to simplify the
calculation for the MC simulation, we assumed that the values of IMFP inside the
solid for all directions are equal to those for normally-incident and normally-escaping
electrons (Kwei et al. 2001). Accordingly, the probability density function in Eq.

(4.9) can be rewritten as

1 % dz
P =exp — , 411
=R oo, I >%(0,E,,2) (4113

Iz 1

or
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P =exp — (4.11b)

1
cos®,; 3 A

Zir dZ
. A7'(0.E ~2)

where 27%(0,E,z) and A7"(0,E ,—z), respectively, are the IMFPs for electrons of
energy E normally moving inward and outward inside the solid, and they can be

calculated through Egs. (3.26) ~ (3.29) by taking « =0° or through the previous

inelastic-scattering model (Kwel et al. 1998b). Besides, the fitting formula shown in

-b

Eq. (3.32) or the previous fitting formula, ak :
cosa

(Kwel et al. 1998b) were applied to
calculate SEPsfor Eq. (4.10).

By tracking the electrons until either they backscattered from the surface within
acceptance angles or their paths in the solid become so large that the contributions to

the intensity can be neglected. =Then, the intensity of quasi-elastically backscattered

electronswith energy E isgiven by
1 n
1(E)==> Al (E), (4.12)
na

where Al (E) is the intensity of quasi-elastically backscattered electrons with

energy E forthe jthtrgectoryand n isthetotal number of sampled trgectories.

4.1.2 TheResults Calculated Using Monte Carlo method

Figures 4.1 and 4.2 show the energy distributions of the elastic peaks contributed
by one, two, three and all elastic scatterings for 5000 eV normally incident electrons
backscattered from Si and Au, respectively. Here, in the MC simulation, the EDCSs
for Si and Au are calculated using the relativistic model with the solid-atom potential
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Fig. 4.1 A plot of the MC simulation results on the energy distribution of electrons
guasi-elastically backscattered from Si for normally incident electrons of 5000 eV.

Individua contributions from one, two, three and all elastic scatterings are plotted

separately.
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Fig. 4.2 A plot of the MC simulation results on the energy distribution of electrons
guasi-elastically backscattered from Au for normally incident electrons of 5000 eV.

Individua contributions from one, two, three and all elastic scatterings are plotted

separately.
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as mentioned in Chapter 2. The depth-dependent IMFPs for normally moving
electrons, 1"7°(0,E,z) and AY(0,E,-z), are caculated using the previous

inelastic-scattering model (Kwel et al. 1998b), in which the extended Drude dielectric

function derived from experimental optical data (Kwel et al. 1993) are adopted. The

aE™"

Cosax

with the fitted values of

SEPs were calculated using the fitting formula of

parameters listed in the article of Kwel et al. (1998b). In these two figures, the small
energy shifts and the width broadenings of the elastic peaks can be seen. In order to
compare the energy spectra accounting for al elastic scatterings in Figs. 4.1 and 4.2,
we plot them again in Fig. 4.3 (Si: dashed curve, Au: solid curve). The left ordinate
isfor Si and the right ordinate is for Au. It reveds that, for Au, the energy shift of
the peak maximum is much smaller;‘and the'recoil width broadening of the peak is
narrower. From this finding, we can canclude that the energy loss is smaller for
solids composed of heavier atoms as discussed in section 2.4. Besides, it can be
found in Figs. 4.1 ~ 4.3 that the exact shapes of the elastic peaks depend strongly on

the elastic scattering cross sections for different solids.
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Fig. 4.3 A plot of the MC simulation results on the energy distribution of electrons
guasi-elastically backscattered from Si and Au for normally incident electrons of 5000

eV. Theleft and right longitudinal axes are for Si and Au, respectively.
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4.1.3 Adjustments to Energy Spectra of Quas-elastically
Backscattered Electrons

There are two experimental factors that affect the height and the width in the
energy distribution of the electron elastic peak detected by a spectrometer (T6th et al.
1998; Gergely et al. 2001; Sulyok et al. 2001). One is the energy distribution of
the primary electron beam emitted from an electron gun. The other is the energy
resolution of the analyzer of a spectrometer. To simulate the experimental results of
elastic peak electron spectra, these two effects were considered in our MC agorithm
for the energy distribution of backscattered electrons.

We assumed that both the energy distribution of the electron beam and the

resolution function are Gaussian distributions. Let G(y;y,,7) be the Gaussian
function of a variable y with the mean value %, and the standard deviation 7 .
Considering the Gaussian energy distribution of the primary electron beam, the
energy distribution of quasi-elastically- backscattered electrons before the measuring

of the spectrometer can be expressed as
h(E)= [1(E-w+Ey)G(w; By 7, o, (4.13)

where E; is the mean energy of the primary electron beam and 7, is the standard

energy deviation of the energy distribution of the electron beam. By taking the
further consideration of the energy resolution of the spectrometer, the energy

distribution becomes
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H(E)= Th(E')G(E; E,7, )dE, (4.14)

where 7, is the standard energy deviation of the resolution function. Using Egs.

(4.13) and (4.14), the simulated quasi-€lastic el ectron peak spectrais comparable with
experimental data.

In Fig. 4.4, we plot the energy distributions of elastic peaks for electron beams
normally incident into Si with 5000 eV mean energy and two different FWHMSs, 0.3
eV and 0.5 eV. It can be seen that the spectra are broadened Gaussian peaks. As
compared to the primary electron beams, the width broadenings in the two Gaussian

peaks are arisen from the recoil width broadening displayed in Fig. 4.1. In addition,

the FWHM of the resulting spectrum is wider when AE, of the electron beam

increases. Here AE, isthe FWHM ofthe energy distribution of the electron beam.

A similar plot is shown in Fig. 4.5 for Au. . The FWHM of the resulting spectrum for
Au is obviously narrower than that for Si. This is because the recoil width
broadening is much smaller for Au. Figures 4.6 and 4.7 show the energy
distributions of the elastic peaks for Si and Au, respectively, using different
spectrometer resolutions but the same Gaussian distributed normally incident electron
beam with 0.3 eV FWHM and 5000 eV mean energy. The spectrometer function
was assumed to be a Gaussian distribution with two different FWHMSs, 0.3 eV and 0.5
eV. The results without the consideration of the energy resolution of the

spectrometer are aso included for comparison. It isfound that all the spectra depend

strongly on the spectrometer functions. The larger AE_., the FWHM of the

S I

spectrometer function, resultsin thelarger AE, , the FWHM of the total spectrum.
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Fig. 4.4 A plot of the MC results on the energy spectra of electrons quasi-elasticaly
backscattered from Si for normally incident electrons of 5000eV mean energy and 0.3

eV (solid curve) and 0.5 eV (dashed curv) FVHM.
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Fig. 45 A plot of the MC results on the energy spectra of electrons quasi-elastically
backscattered from Au for normally incident electrons of 5000eV mean energy and

0.3 eV (solid curve) and 0.5 eV (dashed curv) FWHM.
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Fig. 4.6 A plot of the MC results on the energy spectra of electrons quasi-elasticaly
backscattered from Si for normally incident electrons of 5000eV mean energy and 0.3
eV FWHM. The spectrometer resolutions are 0 eV (solid curve), 0.3 eV (dashed

curve) and 0.5 eV (dotted curve).
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Fig. 4.7 A plot of the MC results on the energy spectra of electrons quasi-elasticaly
backscattered from Au for normally incident electrons of 5000eV mean energy and
0.3eV FWHM. The spectrometer resolutions are 0 eV (solid curve), 0.3 eV (dashed

curve) and 0.5 eV (dotted curve).
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It isseen that AE, of the present calculated spectra are in good agreement with the

approximation (Téth et al. 1998; Gergdly et al. 2001)

AE, = [AE? + AE? + AEZ (4.15)

where AE, isthe FWHM of the recoil width broadening. For our case of 5000 eV

normally incident electrons, AE, is0.18 eV for Si and 0.0048 eV for Au. AE, is

smal in comparison with AE; and AE used in our work. Therefore, al the

spectra are almost Gaussian distributions so that the widths of the quasi-elastic elastic
pesks are dominated by AE;, and AE,. Figure 4.8 shows our calculated spectra
without and with the consideration. of  the thermal. corrections in the recoil losses.
The experimental results (Varga et al. 2001) are included for comparison. Here the

electron beam with 5000 eV mean energy and” AE, =0.4eV was obliquely incident

intoSi. Theincident anglewas50°. The acceptance angles were between 0° and 3°.
The energy resolution of the spectrometer AE, was0.28 eV. The spectrum without

the thermal effect is a Gaussian distribution with its maximum at 4999.69 eV and a

FWHM of 0.5 eV (solid curve). For such narrow acceptance angles, the broadening

is expected to be completely dominated by AE, and AE,. The spectrum

including the thermal effect was calculated by applying the single scattering model
(Varga et al. 2001). In this model, it was assumed that the recoil energy losses
followed a Gaussian distribution with its maximum at the most probable recoil energy
loss for atoms at rest. Here the thermal Gaussian function with its maximum at

4999.69 eV and aFWHM AE; =0.3eV was adopted for Si at room temperature.
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Fig. 4.8 A plot of the MC simulation results on the energy spectra of electrons
quasi-elastically backscattered from Si for normally incident electrons of 5000 eV
mean energy and 0.4 eV FWHM. Here electrons are incident at an angle 500;

acceptance angles are between 0’ and 30; the spectrometer resolution is0.28 eV. The

thermal effect of atoms is neglected (solid curve) and considered (dash-dot) by
applying the single scattering model (Varga et al. 2001) with a FWHM of AEr = 0.3
eV at the room temperature. For comparison, the experimental data (dashed curve)

(Vargaet al. 2001) are also included.
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The resulting spectrum with the thermal effect (dash-dot curve) is a Gaussian function

with a FWHM of 0.58 eV. Then we can find that this FWHM, AE, is in good

agreement with AE = \/AETZ +AE; +AEZ . However, the peak position is associated

with the most probable recoil energy loss for the vibrating atoms, not for atoms at rest.
In addition, the thermal effect in multiple scatterings shifts the peak position and
widens the spectra.  Thus, this smple model is not enough to describe the shift and
the broadening. Owning to the experimental data (Varga et al. 2001) were in
arbitrary units, the experimental data shown in the figure were adjusted in magnitude

to match our expectation of absolute values.

414 Formula  for Energy  Spectra  Contributed by
Single-scattering Event

Based on the above mentioned algorithm of theeM C simulation, we can obtain a
formula that can calculate the energy distribution-of quasi-elasticaly backscattered
electrons suffering a single scattering in solids.  This formulain a differential energy

interval dE around energy E isgiven by

Pa ©
L(EXE =" ") | [eplP(ar, B)IR (0,)F, (2)Fa(z o) i dE.
[ —$ 0

(4.16)

Thevalueof ¢, isgivenby
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Cos_l(cosﬂ+c05alcoselJ for T—a,-p<O0, <r—a +fF when f<aq,

Pp = sing, sing, m—a,-B<6,<rw+a - when B>a,
T, for m+oa,-p<6, <7 when g >q,,
(4.17)

where [ is the largest acceptance angle of escape electrons relative to outwardly
directed surface norma (i.e. O0<ap<f ). F,(z) is the probability density
function for electrons reaching the depth z, at which the elastic scattering occurs,

without any inelastic interaction and is given by

1 z, 1 % dz
F(z)=Lexd — _ , 4.18
(2) Je exp( 4, COSQx, JeX'{ cosy, !l,v”s(O, E, Z)J (4-18)

where 1'7°(0,E,,z) is the injected electron IMFP at depth z'. The factor

Fr(z,az) is the probability density.function for gected electrons at depth z, to

reach the surface without any elastic and inelastic interactionsis written as

A 1 % dz
F.(z,a.)=exp - , 4.19
oz a) exp[ Ay COSaRjexp( cosa, jzﬁ“(o, E ,—z')} (4.19)

0

where 27V(0,E,,~Z) is the gjected electron IMFP a depth z'. Here cosa, can

be denoted by

COSa, = —COS, COSY, + SiNex, SING,COSP, (4.20)
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due to ®,=7r—-ay and ©,=c, substituted into Eq. (4.7) for i=1. Therefore,
the energy distribution of quasi-elastically backscattered electons contributed by a
single elastic scattering can be calculated using Egs. (4.8) and (4.16) ~ (4.20).

For Si, Figs 4.9 presents the calculated energy distributions of the backscattered
electrons contributed by the single scattering event using Eq. (4.16) (dotted curve) and
using MC simulation method (solid curve). It is seen that the calculated results for
Eq. (4.16) are in excellent agreement with the results for MC method. The similar

results for Au can be seenin Fig. 4.10.
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Fig. 4.9 A plot of MC results on the energy distribution of electrons quasi-elasticaly
backscattered from Si for 5000 eV normally incident electrons suffering single elastic
scattering inside the solid (solid curve). The dotted curve represents the results

calculated by Egs. (4.16) and (4.17).
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Fig. 410 A plot of MC results on the energy distribution of electrons

quasi-elastically backscattered from Au for 5000 eV normally incident electrons

suffering single elastic scattering inside the solid (solid curve). The dotted curve

represents the results calculated by Egs. (4.16) and (4.17).
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4.2 Elastic Reflection Coefficient

Moreover, from Eq. (4.12), the elastic reflection coefficient for backscattered

electrons within arange of energy between E, and E, can be calculated using

n(E,.E,) = Tl (E)dE. (4.21)

Ea

Through the elastic reflection coefficients of electrons, significant information
can be extracted from the elastic peak. In the later sections, we used the elastic
reflection coefficients of electrons backscattered from a compound to determine the

electron effective IMFPs.

4.3 Elastic Reflection-Coeffictent for-a Compound

4.3.1 TheMonte Carlo Algorithm-for-a Compound

In Section 4.1.1, a MC agorithm considering the SEPs and depth-dependent
IMFPs was developed to calculate the intensity of electrons quasi-elastically
backscattered from a solid composed of only one element. In this section, the MC
algorithm is modified in order to calculate the elastic peaks of electrons backscattered
from a compound.

The modification is that a new random number R, between O and 1 is
introduced to determine which element in the compound scatters the electron while an
elastic collison occurs. Using Egs. (2.4), (2.5 and (2.7), the probability of an
electron being scattered by the j th element in the compound composed of n kinds of
elementsis given by (Howell and Boyde 1998)
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a0,

= n ’
2.0,
-1

(4.22)

P.(i)

Applying Eq. (4.22), the jth element is collided by the electron in each elastic

scattering event if

P (j)< R4szk:P (j), fork=1,23,..,n (4.23)

Eq. (4.23) can be used to determine the element which is collided by the electron.
Then the EDCS of the element is taken to.find the polar scattering angle 6 after the
scattering through the help of Egs. (4.1)-and(4.2).. In addition, the average EMFP
can be obtained from the individual element EMFPs in the compound according to Eq.
(2.6). Note that we used the rélativistic model with free-atom potentials depicted in
chapter 2 to calculate the total elastic cross sections and the average EMFPs for
compounds. Then the elastic peak spectra of electrons backscattered from a
compound can be carried out using the modified MC algorithm. Also, the elastic

reflection coefficient for electrons backscattered from a compound can be obtained.

4.3.2 Using Elastic Reflection Coefficient to Determine Electron
Inelastic M ean Free Path for a Compound

The method to extract the IMFP from the elastic peak electron spectra is based
on the calculation of the elastic reflection coefficient. To determine the IMFP from
the dastic reflection coefficient, calibration curves are established. The calibration

curves present the relation between IMFP and the ratio of the elastic reflection
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coefficient for a compound sample relative to a Ni reference. In this section, the
SEPs and various values of depth-independent IMFP are first applied in the modified
MC algorithm. Then the calibration curves can be obtained. Besides, using the
extended Drude dielectric function, the calculated depth-dependent IMFPs and SEPs
were applied to determine the electron elastic reflection coefficient for acompound by
means of the modified MC simulations. Subsequently, an effective IMFP for the
compound can be extracted by the intersection of the calibration curve and the
calcul ated elastic reflection coefficient.

Figure 4.11 shows the intensity ratio of electrons backscattered from GaAs to
those from Ni for a50° incident angle and 0’ ~ 90  emission angles (solid circles) and

fora0’ (normally) incident angle and 36.3" ~ 48.3° emission angles (solid triangles).

Corresponding experimental data (open circlesand triangles) (Krawczyk et al. 1998;
Zommer et al. 1998) are plotted for comparisons. | The differences between present
results and experimental data are due-to-the-lack of information on experimental
configurations.

Figure 4.12 shows the same intensity ratio as a function of depth-independent
electron IMFP, or the cdibration curve, caculated using the same simulation
configurations as those applied to Fig. 4.11. The solid and dashed curves are,
respectively, for a 50 incident angle and 0 ~ 90" emission angles and for a 0
incident angle and 36.3° ~ 483" emisson angles. The symbols are the
corresponding results obtained by MC simulations using the depth-dependent electron
IMFPs and SEPs. From the intersection of the calibration curve and the simulated
intensity ratio, the effective IMFP may be determined. These results of the effective
IMFP are plotted in Fig. 4.13 as a function of electron energy for a50 incident angle
and 0’ ~ 90° emission angles (solid circles) and for a 0 incident angle and 36.3" ~

48.3" emission angles (solid triangles). These results are also compared with
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(open triangles) are plotted for comparison.
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Fig. 4.12 Theintensity ratio of electrons backscattered from GaAs to those from Ni
calculated using the depth-independent electron IMFP (abscissa). The solid and
dashed curves are, respectively, for a 50" incident angle and 0’ - 90” emission angles
and for a0’ incident angle and 36.3" - 48.3° emission angles. The symbols are the
corresponding results obtained by MC simulations using the depth-dependent electron

IMFPs and SEPs.
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Fig. 413 The effective IMFP as a function of electron energy for a 50 incident
angle and 0’ - 90° emission angles (solid circles) and for a0’ incident angle and 36.3°
- 48.3° emission angles (solid triangles). Also plotted are experimental data of
Krawczyk et al. (1998) (open circles) and Zommer et al. (open triangles), and

calculated IMFPs for volume excitations (solid curve).
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experimental data (open circles and triangles) (Krawczyk et al. 1998; Zommer et al.
1998), and with calculated IMFPs for volume excitations (solid curve). The
effective IMFPs determined here are in good agreement with electron IMFPs for
volume excitations. This indicates that a depth-independent IMFP is approximately
valid due to the compensation of volume and surface excitations inside the solid
(Chen and Kwei 1996; Kwei et al. 1998b). Since parameters in the extended Drude
dielectric function were fitted mainly for the response of valence electrons (Chen
2002), the lack of inner shell responses caused the deviation between calculated

effective IMFPs and experimental values at high energies.
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CHAPTERS
SUMMARY

In this thesis, the elastic and inelastic interactions between electrons and solids
were studied theoretically.

For elastic interaction, the non-relativistic and the relativistic approximations
with free-atom and solid-atom potentials to determine EDCS and EMFP were
described and compared. The calculated results showed that the relativistic
elastic-scattering model is more redlistic, especialy for the solids composed of heavy
atoms. In addition, the derivation of the electron total elastic cross sections and total
EMFPs for compounds was further made based.on elastic cross sections and based on
elastic mean free paths of individual -:elements. = These two methods also can
determine the probability of each edement in a compound being bumped by an
electron. Besides, the recoil effect was also discussed for the energy loss of the
electron after elastic scattering. It was found that the recoil effect is significant for
atoms of low and intermediate atomic numbers.

In the research about inelastic interaction, a new model was constructed based on
the dielectric response theory. Formulas were derived to calculate the stopping
power, DIIMFP, IMFP and SEP for electrons escaping from and incident into solids.
It was found that the DIIMFPR, IMFP and SEP for electrons near surfaces are
dependent of the electron’s moving direction and position. These results arise from
the number of the surface excitations varying with the electron’s distance to the solid
surface. Deep inside the solid, the DIIMFP and IMFP reduced to the vaues for
electrons moving in the infinite solid since the spherical coordinates were adopted.

With this adoption, the momentum integration limits can completely satisfy the
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conservations of energy and momentum. Moreover, the inelastic-scattering model
with the inclusion of retardation effect was constructed for electrons moving parallel
to solid surfaces. The calculated results for high-speed electrons revealed that the
stopping power and DIIMFP with retardation effect were lower than the stopping
power and DIIMFP without retardation effect.

Based on the theories on the elastic and inelastic interactions of electrons with
solids, we further established a MC method to simulate the energy distribution of
elastic peaks of electrons backscattered from solid surfaces. The energy distribution
is due to the Rutherford-type recoil energy losses occurring in elastic scatterings.
The ssimulated results showed that the recoil energy loss caused the peak energy shift
and width broadening in the idea energy spectrum of an electron elastic peak.
However, the ideal energy spectra did not agree with the experimental data well.
Adjustment of the contributions from spectrometer energy resolution, the energy
distribution of the primary electronsiand-thethermal: motion of atoms were included.
It was found that the width broadenings of the energy spectra of elastic peaks were
mainly contributed by the spectrometer energy resolution, the energy distribution of
the primary electrons and the thermal effect. Regarding the applied mode of the
thermal effect, it was also discussed that the recoil energy loss should be centered at
the most probable value of this loss for vibrating atoms rather than for atoms at rest,
and the thermal effect due to multiple elastic scatterings could shift the peak position
and widen the peak. More information on both phenomena should be given to study
the energy distribution of electron elastic peaks. Besides, the method to extract
effective IMFPs from electron elastic peaks was discussed. We obtained the
effective IMFPs for GaAs using our MC method. The obtained effective IMFPs
were in agreement with the calculated IMFPs for volume excitation due to the

compensation of surface excitation and volume excitation inside the solid.
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