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準彈性反射電子模擬與分析

研究生：黎裕群 指導教授：桂正楣

國立交通大學電子工程學系電子研究所

摘要

本論文在探討移動電子對固體做運動時而發生的彈性及非彈性
交互作用，引用或研究相關的理論模式，並對從固體準彈性反射出來
的電子做出模擬與分析。

在彈性交互作用方面，我們利用非相對論性及相對論性彈性交互
作用模式，並配合自由原子位能及固體原子位能，來計算電子的微分
彈性散射截面(elastic differential cross section: EDCS)，計算的結果，
針對非相對論性及相對論性模式做出比較。利用所求得的微分彈性散
射截面，可以得到電子在固體中移動時的彈性平均自由行徑(elastic
mean free path: EMFP)，我們也計算了相對論性模式的彈性平均自由
行徑，並對其做出分析。另外，化合物固體在電子的交互作用研究當
中，也扮演重要角色，故而，我們根據化合物固體裡個別元素的彈性
散射截面或彈性平均自由行徑，演示了化合物固體的總彈性散射截面
及總彈性平均自由行徑的理論計算方法，並且也了解，電子在化合物
固體裡碰撞個別元素的機率，此碰撞機率計算方式對後續的電子彈性
波峰研究有所幫助。除此之外，由於電子在彈性碰撞過程中，還伴隨
著反衝能量損失(recoil energy loss)，此反衝能量損失，可以透過
Rutherford 彈性碰撞模型而求得，我們也演示其理論計算式，此計算
式對於電子準彈性反射能譜的研究有所助益。

在非彈性交互作用方面，我們的目的在推導一個可以適用於電子
以任意方向入射或出射固體的非彈性交互作用模式。我們應用介電理
論(dielectric response theory)，在滿足邊界條件之下，去解 Poisson 方
程式，可以得到電子相對固體做運動時，而產生的感應電場(induced
electric field)，利用作用在電子本身的感應電場，可以求得電子所受
到的阻擋本領(stopping power)，透過此阻擋本領，並在動量積分上採
用球座標系統，從而推導出了電子的非彈性微分倒數平均自由行徑
(differential inverse inelastic mean free path: DIIMFP)、非彈性平均自由
行徑(inelastic mean free path: IMFP)以及表面激發參數的計算式
(surface excitation parameter: SEP)。配合 extended Drude 介電函數的使
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用，我們根據所推式子而計算出，與電子位置、能量及運動方向有關
的非彈性微分倒數平均自由行徑和非彈性平均自由行徑，以及與電子
能量及運動方向有關的表面激發參數；並且發現表面激發參數遵守一
個簡單的通式，在我們的研究當中，也對此通式的相關係數做出模
擬，以適用於電子入射及出射不同固體的表面激發參數。由於所推導
的非彈性交互作用模式，並不能包含電子在極高速運動之下而顯現出
來的延遲效應(retardation effect)，故而，我們另針對極高速電子而推
導一個含延遲效應之非彈性交互作用模式。同樣利用介電理論，去解
Maxwell 方程式，以類似於不含延遲效應之非彈性交互作用模式的推
導過程，推導出了適用於極高速電子平行於固體表面運動時的阻擋本
領、非彈性微分倒數平均自由行徑以及非彈性平均自由行徑，並與用
傳統模式計算出的結果做出比較。

根據對彈性交互作用及非彈性交互作用的理論研究，我們利用
Monte Carlo 方法並記錄反衝能量損失，從而模擬理想狀態下的電子
準彈性反射能譜。另外，我們也考慮電子束能量分佈、電子能譜測量
儀器的能量解析度以及原子受熱能而振盪之三種效應對反彈能譜的
影響，其最後結果與實驗值做出比較，並探討其中的差異。另外，電
子的非彈性平均自由行徑，可以藉由對電子彈性波峰(electron elastic
peak)的分析而得，我們根據自己的 Monte Carlo 方法，去分析 GaAs
的電子準彈性波峰，並藉由其而得出 GaAs 的非彈性電子平均自由行
徑。
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ABSTRACT

In this thesis, the models dealing with the elastic interactions between a moving

electron and a solid were described. The inelastic interactions between a moving

electron and a solid were studied theoretically. Based on the elastic-scattering and

inelastic-scattering models, the simulation and analysis of electrons backscattered

from solids surfaces were made.

In the work for the elastic scattering, to calculate the elastic differential cross

section (EDCS) of an electron moving in a solid, the applied non-relativistic and

relativistic models with free-atom and solid-atom potentials were described. The

results calculated using the non-relativistic and the relativistic models were compared.

Through the EDCS, the elastic mean free path (EMFP) of the electron can be

determined. Since compounds have been widely used in many studies, the methods

adopted to determine the total elastic cross sections and total EMFPs for compounds

were also described. The method for the calculation of the probability of an electron

scattered by each element in a compound was further given. Moreover, the

Rutherford-type recoil energy loss in elastic scattering was discussed.
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In the aspect of inelastic scattering of electrons with solids, our purpose was to

derive an inelastic-scattering model that was suitable for electrons incident into and

escaping from solid surfaces in arbitrary moving directions. Based on the dielectric

response theory, the induced electric field can be obtained by solving the Poisson

equation. Through the induced electric field with the adoption of spherical

coordinates in the momentum integration, stopping power, differential inverse

inelastic mean free path (DIIMFP), inelastic mean free path (IMFP) and surface

excitation parameter (SEP) can be determined. The spherical coordinates was

adopted in the momentum integration to satisfy energy and momentum conservations

completely. Using the extended dielectric functions in this derived model, the

crossing-angle-dependent and energy-dependent DIIMFPs and IMFPs and SEPs were

shown. It was found that the calculated results of SEPs followed a simple formula.

The fitted values of parameters in the simple formula for solid surfaces of Au, Ag and

Cu were also listed in tables. Due to the exclusion of retardation effect of the

induced electric fields in this derived inelastic-scattering model, it is inadequate for

high-speed electrons interacting with solids. Hence, we further constructed a model

that can determine the stopping power, DIIMFP and IMFP for high-speed electrons

moving parallel to solid surfaces by solving the Maxwell equation instead of Poisson

equation in the dielectric response theory. The results calculated using the models

without and with the retardation effect were shown and compared.

Applying the results of elastic and inelastic interactions of electrons with solids,

the energy distribution of the elastic peak of electrons backscattered from solid

surfaces can be simulated by recording the recoil energy loss in the Monte Carlo (MC)

method. The effects of the energy distribution of the electron beam, the energy

resolution of the spectrometer and the thermal motion of atoms in solids were also
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included. Comparisons of the calculated energy spectra with the experimental data

were also made. On the other hand, the electron effective IMFP can be extracted

from the electron elastic peak. This method was also discussed in the present thesis.
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CHAPTER 1

INTRODUCTION

1.1 Background

The interactions between a moving electron and a solid include elastic and

inelastic interactions. The elastic interaction occurs when the electron collides with

an atom in the solid. This elastic collision changes the moving direction of the

electron. The inelastic interaction indicates that the induced electric fields have

influence on the motion of the electron, resulting in the losses of the electron’s kinetic

energy. Much work has been done on such two physical phenomena in many

applications. For instance, in the interpretation of the elastic peak intensity mesured

by elastic peak electron spectroscopy (EPES) (Gergely 1981, 1983, 1986, 1987),

elastic and inelastic scatterings of electrons with solids play important roles (Jablonski

et al. 1989, 1991). Thus, to study solid state physics, the knowledge of the elastic

and inelastic interactions is necessary. Note that the atomic units were adopted

unless otherwise specified in our work.

1.2 Elastic Scattering

For the elastic interaction of electrons in solids, elastic differential cross section

(EDCS) and elastic mean free path (EMFP) are the most important parameters.

EDCS is a distribution of the angle between the electron’s moving directions before

and after elastic scattering. EMFP means the average path length of the electron
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between two consecutive elastic-scattering events. EDCS and EMFP can be

calculated using the non-relativistic model (Joachain 1975) and the relativistic model

(Mott 1929). The non-relativistic model was derived through the Schrodinger wave

equation with a potential, and the relativistic model was derived through the Dirac

wave equation with a potential. In our present thesis, we adopted the relativistic

model to calculate the EDCSs and EMFPs for electrons moving in solids since the

relativistic EDCS and EMFP are more accurate for heavy atoms. The formula to

calculate EDCS in this model was depicted in chapter 2. For comparison, the

formula of the non-relativistic EDCS was also described. Further, we calculated the

total elastic cross section and total EMFP for a compound based on elastic cross

sections and EMFPs of the individual elements. Moreover, the elastic collision of an

electron with an atom can be regarded as the Rutherford-type scattering. The

Rutherford-type scattering causes the recoil energy loss in each elastic scattering

event (Boersch et al. 1967). In the end of chapter 2, we added the discussion of the

recoil energy loss for elastic scattering.

1.3 Inelastic Scattering

In the research for the inelastic interaction of low-energy electrons with solids,

much attention has been paid to differential inverse inelastic mean free path (DIIMFP)

and inelastic mean free path (IMFP). DIIMFP is the probability density function of

the energy loss per unit path length of the electron, and IMFP means the average path

length between two consecutive inelastic-scattering events. DIIMFP or IMFP

contains the combined effects arisen from volume and surface plasmon excitations.

Volume excitation occurs only in the interior of the solid, while surface excitation
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extends a distance in the order of several angstroms on both sides of the surface.

Inside the solid, the decrease in volume excitations near the surface is compensated by

the increase in surface excitations; accordingly, the total DIIMFPs and IMFPs inside

the solid are roughly equal to the corresponding values for electrons moving in the

infinite solid (Chen and Kwei 1996; Kwei et al. 1998b). Outside the solid, only

surface excitations characterize the inelastic scattering. To evaluate this surface

effect in vacuum, the surface excitation parameter (SEP) was introduced (Kwei et al.

1998b). Previously, based on the dielectric response theory (Tung et al. 1994), Kwei

et al. (1998b) used the developed extended Drude dielectric functions (Kwei et al.

1993) to calculate the depth-dependent DIIMFPs, the depth-dependent IMFPs and

SEPs for electrons normally crossing through solid surfaces. In this model, the SEP

for other crossing angle  was calculated by multiplying the results of SEP for

normally crossing angle with  1cos  (Kwei et al. 1998b; Chen 2002). However,

momentum transfer in cylindrical coordinates with no restriction on its normal

component was adopted for performing the momentum integration in the model.

The conservations of energy and momentum were not completely satisfied, and the

derived DIIMFP and IMFP for volume excitations at large depths did not match the

DIIMFP and IMFP in an infinite solid.

In chapter 3, a similar approach as that in the previous work (Chen and Kwei

1996; Kwei et al. 1998b) was followed to derive DIIMFP and IMFP and SEP for

electrons incident into or escaping from solids. Spherical coordinates were

employed in the momentum integration to satisfy the energy and momentum

conservations (Kwei et al. 2003). The dependences of DIIMFP and IMFP on the

crossing angle and the position of electrons were established based on the dielectric

response theory. The angular and energy distributions of SEP were also investigated.
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Calculated results of SEPs for copper were fitted to an analytical formula. A

comparison was made for our calculated SEPs with those calculated using other

models (Chen 2002; Oswald 1997). Moreover, we extended the constructed

inelastic-scattering model to include the retardation effect (Jackson 1975) for

high-speed electrons moving parallel to solid surfaces. The calculated results for the

models without and with retardation effect were compared.

1.4 Electron Quasi-elastic Peak

In many applications of surface sensitive electron spectroscopies, it is important

to analyze the elastic peak spectra of electrons backscattered from solid surfaces

(Kirschner and Staib 1973, 1975). Some significant information could be extracted

from this analysis. For instance, in the application of elastic peak electron

spectroscopies (EPES), IMFP for electrons moving in solids can be determined

(Gergely 1981; Jablonski 1985; Dolinski et al. 1988; Gruzza and Pariset 1991; Jardin

et al. 1992; Beilschmidt et al. 1994). The elastic peak spectra can be characterized

by the energy distributions. The energy distribution is due to the Rutherford-type

recoil energy losses as electrons scattered elastically by atomic nuclei. These energy

losses in elastic scattering events are indeed very small but not negligible (Erickson

and Powell 1989), and result in a small energy shift and a width broadening in the

elastic peak spectra. The elastic scattering associated with the slight recoil energy

loss was alternatively called the quasi-elastic scattering (Erickson and Powell et al.

1989). These phenomena can be observed experimentally in the works with electron

spectrometers (Boersch et al. 1967; Erickson and Powell 1989; Laser and Seah 1993;

Goto and Shimizu 1997), especially for electrons backscattered from the solid
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composed of the elements of low atomic number. The quantitative interpretations of

experimental results for the energy distributions in elastic peaks were available based

on the simple model of the single-electron single-target-atom collision, which was

suggested by Boersch et al. (1967). However, quasi-elastically backscattered

electrons would substantially arise from the sum of a few scatterings instead of one

(Chen et al. 1995). Additionally, the single-scattering model cannot interpret the

width broadening and the shape of the elastic peak. Thus, Monte Carlo (MC)

simulation considering multiple scatterings has been utilized to compute the elastic

reflection coefficient and the angular distribution of backscattered electrons (Chen et

al. 1995; Jablonski et al. 1992; Kwei et al. 1999, 2001). Since the Rutherford-type

recoil energy loss was ignored in these previous simulations, the energy shift and the

width broadening of the elastic peak were not attainable.

The aim of our work in chapter 4 was to simulate the energy distribution of

electrons quasi-elastically backscattered from solid surfaces. We considered the

recoil energy loss in our MC simulations. The energy distributions of electrons

quasi-elastically backscattered from solid surfaces were calculated. Computed

results revealed the peak shift and the width broadening of the elastic peak. Based

on the algorithm of MC method, we also derived an analytic formula of the energy

distribution of the elastic peak for backscattered electrons suffering single elastic

scattering in solids. The calculated results using this formula were compared by the

results computed using MC method. In addition, according to some experimental

studies (Boersch et al. 1967; J. Tóth et al. 1998; Gergely et al. 2001; Sulyok et al.

2001), the spectrometer energy resolution, the energy distribution of the primary

electrons and the thermal motion of atoms can also contribute to the energy spectra of

quasi-elastically-backscattered electrons (Boersch et al. 1967; Tóth et al. 1998;

Gergely et al. 2001; Sulyok et al. 2001). The adjustments of the energy spectra of



6

backscattered electrons for these effects were made in our calculation.

Through the electron elastic peaks, the effective IMFP for electrons moving in a

solid can be extracted. In the final part of chapter 4, we discussed this method with

the use of our MC simulation.
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CHAPTER 2

ELASTIC SCATTERING

When an electron moves in a solid, the elastic interaction between the electron

and the atoms in the solid will occurs. Conventionally, the problem of elastic

scattering was regarded as an electron suffering a potential with the scattering center

at the atomic nucleus (Ohanian 1990). This technique simplified the complexity of

the study on the elastic collision between electrons and solids. There are two wave

equations that can describe the behavior of an electron affected by a potential. One

is the non-relativistic Schrodinger wave equation, and the other is the relativistic

Dirac wave equation. The Schrodinger wave equation and the Dirac wave equation

can be solved using partial wave analysis, and then the elastic-scattering models for

electrons can be carried out.

2.1 Elastic Differential Cross Section

In the research on elastic scattering, one is usually concerned about the direction

of the electron after each scattering event. The scattering direction can be

determined according to the elastic differential cross section (EDCS),
d

d e . EDCS

is a distribution of the polar scattering angle which is defined as the angle between the

electron’s moving directions before and after each scattering event. Thus, the EDCS

is the basic physical property in elastic scattering. There are two models can

determine the EDCS. One is the non-relativistic model, and the other is the

relativistic model. The non-relativistic model was derived using the Schrodinger

wave equation with a potential, and the relativistic model was derived using the Dirac
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wave equation with a potential. In the non-relativistic model, the formula of the

non-relativistic EDCS with respect to the polar scattering angle  is given by

(Joachain 1975)

     
2

0
2 cos12exp12

4
1 






 l

ll
e Pil

kd
d




, (2.1)

where Ek 2 , E is the kinetic energy of the incident electron, l is the orbital

angular momentum quantum number, l is the l th phase shift,  coslP is the

Legendre polynomials of order l , e is the elastic cross section, and

 dd sin2 is the differential solid angle in the direction of the scattered

electron. On the other hand, the formula of the relativistic EDCS in the relativistic

model is given by (Mott 1929; Kwei et al. 1998a)

         

     
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1

1
2

2

0
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



















l
lll

l
lll

e

Pii
K

Pilil
Kd

d






, (2.2)

where
c

cW
K

42 
 , W is the relativistic total energy, c is the speed of light, 

l

are the l th phase shifts for spin-up and spin-down states, and  cos1
lP is the

first-order Legendre polynomial.

To calculate the non-relativistic EDCS or the relativistic EDCS, the static

potential that has influence on the elastic scattering interaction between the electron

and the target atom in a solid must be calculated first. Two kinds of static potentials

can be chosen. One is the free-atom potential, which means that the static potential
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of the atom is distributed over the whole space. The other is the solid-atom potential,

which means that the static potential of the atom is distributed within a limited range

from the nucleus. After the static potential is determined, then the EDCS for an

electron scattered by an atom in a solid can be obtained.

For a 2000 eV electron interacting elastically with a Cu atom, Fig. 2.1 shows the

comparison of the non-relativistic EDCSs with the relativistic EDCSs. Here the

results were calculated using the Hartree-Fock-Wigner-Seitz (HFWS) solid-atom

static potential (Green and Leckey 1976; Tucker et al. 1969; Kwei 1984; Kwei et al.

1998a). In this figure, the difference between the non-relativistic and the relativistic

EDCSs is slight. For Au, a similar comparison between the non-relativistic EDCS

and the relativistic EDCS with HFWS static potentials was plotted in Fig. 2.2. It can

be found that the difference between the results for the non-relativistic and relativistic

models is obvious. By comparing Fig. 2.1 with Fig. 2.2, it is clear that using the

relativistic model to deal with the elastic-scattering problem is more accurate for

heavy atoms.



10

Fig. 2.1 Comparison of the angular dependence of the non-relativistic (solid curve)

and the relativistic (dashed curve) EDCSs with solid-atom potentials for a 2000 eV

electrons scattered by the Cu atom.
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Fig. 2.2 Comparison of the angular dependence of the non-relativistic (solid curve)

and the relativistic (dashed curve) EDCSs with solid-atom potentials for a 2000 eV

electron scattered by the Au atom.
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2.2 Elastic Mean Free Path

The EDCS has been used to indicate the distribution of the scattering angle 

after the electron being scattered by the target atom. Based on the EDCS, another

important physical parameter for elastic scattering can be determined. Such

parameter is elastic mean free path (EMFP), which means the average distance

between two consecutive elastic scatterings. The EMFP Ee of electrons moving

in a condensed medium is defined as

  





























 0

2
1

d
d
d

Nd
d
d

NN
E

ee
e

e

, (2.3)

where N is the number of atoms per unit volume in the condensed medium. Due

to
d

d e is as a function of the electron moving energy E , e is also in terms of

E .

Figure 2.3 shows the relativistic EMFP as a function of the electron’s energy

calculated by employing the HFWS solid-atom static potentials for Au. It can be

seen that EMFP increase with the increasing of the electron’s energy. Higher energy

implies faster speed. Then the probability of the faster electron colliding with the

atom is smaller, which means that the faster electron experiences a longer path length

before a collision. As a consequence, EMFP increase with the increasing of the

electron’s energy.
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Fig. 2.3 The energy dependence of the relativistic EMFPs for Au calculated using

the solid-atom potential.
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2.3 Elastic Scattering Model for Compounds

So far, we have concentrated on the theoretical elastic scattering model for

electrons interacting with the medium composed of one kind of elements. Much

research has frequently been devoted to the interaction between electrons and

compound mediums in the experiments of electron energy spectra (Krawczyk et al.

1998; Zommer et al. 1998; Lesiak et al. 1999; Gergely et al. 1999). The elastic

scattering model for one-element medium is no longer suitable for the studies of

compound mediums. Therefore, the elastic scattering model for compounds should

be constructed. Two points of view have been proposed to establish the elastic

scattering model for compounds. These two methods are depicted in the following

two sections.

2.3.1 Total Elastic Cross Section and Total Elastic Mean Free Path
for a Compound Based on Elastic Cross Section

Consider a compound medium composed of n kinds of elements. The total

elastic cross section for the compound, T,e , can be calculated from the sum of the

fractions of the individual element elastic cross sections, je, , using the following

formula (Herrmann and Reimer 1984; Gauvin et al. 1992; Murata et al. 1995):





n

j
jeje a

1
,T,  . (2.4)

Here ja is the atomic fraction, and defined by
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N

N
a j

j  , (2.5)

where jN is the total number of the j th element per unit volume, and N denotes

the total number of atoms per unit volume. According to Eqs. (2.3) and (2.4), the

total EMFP T,e for a compound medium can be obtained by















n

j
jej

n

j
jej

e
e

N

Na

N

1
,

1
,

T,
T,

1








. (2.6)

When the elastic scattering occurs in a compound, the EDCS is necessary for

determining the electron moving direction after each scattering event. This can be

done based on the probability that decides which element scatters the electron in each

elastic scattering event. Using Eq. (2.4), the probability, jP , for an electron

being scattered by the j th element in a compound is given by (Howell and Boyde

1998)


T,

,

e

jeja
jP

e 


  . (2.7)

By means of the expression (2.7), the scattering angle can be determined through the

EDCS for electrons being scattered by the j th element in the compounds.
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2.3.2 Total Elastic Cross Section and Total Elastic Mean Free Path
for a Compound Based on Elastic Mean Free Path

On the other hand, the total EMFP, T,e , for electrons moving in a compound

can be determined from the sum of the fractions of the individual element EMFPs

je, according to the idea of the scattering probability,
e

1
. Then the total EMFP is

given by (Shimizu and Ding 1992; Ding and Shimizu 1996)





n

j je

j

e

a

1 ,T,

1


. (2.8)

With the help of Eq. (2.3) and using Eq. (2.8), the total elastic cross section can be

written as


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j je
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As mentioned in section 2.3.1, the selection of the elastic EDCS for each scattering

event is according to which element is the scattering center. The probability jP

of the electron being scattered by the j th element of the compound is given by

(Howell and Boyde 1998)


T,

,

1
e

je

ja

jP
e




  . (2.10)
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This expression is the other probability to decide the scattering angle after the electron

being scattered by the j th element in a compounds.

2.3.3 Comparisons for Total Elastic Mean Free Paths between The
Method Based on Elastic Cross Section and The Method
Based on Elastic Mean Free Path

Using Eqs. (2.6) and (2.8), the total EMFPs for electrons scattered in a medium

composed of multiple components can be computed. Here we take a binary

compound such as GaAs for the example. In this case, note that we used the

Roothaan-Hartree-Fock free-atom potentials (Clementi and Roetti 1974) to calculate

the relativistic EDCSs and EMFPs of the individual elements, i.e. Ga and As. Figure

2.4 shows the comparison between the elastic mean free path calculated through Eq.

(2.6) (solid curve) and that calculated through Eq. (2.8) (dashed curve). We can see

that the difference can be seen between the total EMFPs calculated using the method

based on elastic cross section and the total EMFPs calculated using the method based

on elastic mean free path.
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Fig. 2.4 Comparison for the energy dependence of the relativistic total elastic mean

free paths for GaAs calculated based on elastic cross section (solid curve) and based

on elastic mean free path (dashed curve).
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2.4 Energy Loss in Elastic Scattering

While a moving electron colliding with one atom in a solid, the electron loses

some energy. This effect is called the recoil effect. There were studies available on

such energy transfer or energy loss of electrons in elastic scattering (Boersch et al.

1967; Erickson and Powell et al. 1989). This recoil effect can be regarded as the

result of the classical Rutherford-type scattering between two charged particles.

Hence, the remaining energy of the electron after scattering can be found by the

conservations of energy and momentum.

The Rutherford-type elastic scattering between the electron and the atom is

illustrated in Fig. 2.5. After an elastic scattering event, the energy loss of the

electron, E , is given by (Boersch et al. 1967)

2
sin

4 2 E
M
m

E  , (2.11)

where m and M are the masses of the electron and the atom, respectively. Thus,

the remaining energy of the electron after scattering fE can be obtained by









2
sin

4
1 2 

M
m

EEEE f . (2.12)

In Eq. (2.11), the recoil energy loss is slight due to the fact that
M
m

is very small.

The remaining energy of the electron is almost the same as its initial energy. Besides,

the energy loss decreases with the increasing of the mass of the atom. Hence, the

energy losses for heavy atoms are smaller.
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Fig. 2.5 A sketch of the Rutherford-type elastic interaction between an electron of

mass m and an atom of mass M.  is the polar scattering angle defined as the angel

between the electron’s moving directions before and after scattering. E and fE

are the energy of the electron before and after scattering, respectively.

m

E

M

Ef

m


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CHAPTER 3

INELASTIC SCATTERING

In addition to the elastic interaction, inelastic interaction also occurs when an

electron crossing an solid surface. Many theoretical (Tanuma et al. 1988, 1991a,

1991b; Chen and Kwei 1996; Kwei et al. 1998b, 1999, 2003) and experimental

(Krawczyk et al. 1998; Zommer et al. 1998; Gergely et al. 1999; Lesiak et al. 1999;

Tanuma et al. 2000) studies have been concerned about some properties of inelastic

interaction between electrons and solids, such as stopping power, differential inverse

inelastic mean free path (DIIMFP), inelastic mean free path (IMFP) and surface

excitation parameter (SEP). In the theoretical approaches, these parameters were

calculated based on the dielectric response theory with the use of the extended

dielectric functions (Kwei et al. 1993). In this chapter, also by applying the

dielectric response theory, we constructed a general model of inelastic scattering for

electrons moving across solid surfaces. After that, the constructed model was further

modified to include the retardation effect on the inelastic interaction for high-speed or

high-energy electrons moving parallel to solid surfaces.

3.1 The Basic Knowledge

When a charged particle is located internal or external to a medium, significant

interaction like fields and potentials is induced. Such interactions can be fully

governed by Maxwell equations. The Maxwell equations for time-varying fields in

the presence of matter are given by (Jackson 1975)
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where c is the speed of light. E


and B


are the electric field and the magnetic

induction, respectively. D


and H


are the electric displacement and the magnetic

field, respectively.  and J


are the charge density and the current density. The

Fourier transform of Eq. (3.1c) is given by (Dressel and Grüner 2002)

    ,4,D qqqi   , (3.2)

where q is the momentum transfer, and  is the energy transfer,

     ,E,,D qqq 
 ,   ,q is the dielectric function of the matter of interest,

and  ,E q


and  ,D q


are the Fourier component of the electric field and the

electric displacement, respectively. The Fourier components of the electric field

 ,E q


can be related to the scalar potential  ,q by (Dressel and Grüner 2002)

    ,,E qqiq 
 . (3.3)
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By means of Eqs. (3.2) and (3.3), the Poisson equation for the scalar potential

 ,q in Fourier transformed form can be written as

),(4),(),(q2  qqq   . (3.4)

In electrodynamics, we usually want to realize the fields or the potentials for

mediums accompanied by boundary surfaces. To deal with this problem, the

boundary conditions are necessary. Take consideration of an infinite plan boundary

located at 0z between medium 1 and medium 2. Then the normal component of

the electric displacement at the interface is continuous, and so are the tangential

components of the electric field at the interface (Jackson 1975).

In our work, we used the Poisson equation shown in Eq. (3.4) to deal with the

problem of the inelastic scattering for electrons of low and intermediate energies

moving across an infinite interface. Again, the atomic units are used unless

otherwise specified in this chapter.

3.2 The Dielectric Response Theory

3.2.1 Induced Potential

The problem to be solved is illustrated in Fig. 3.1, in which an electron of charge

e and velocity vmoving obliquely across an interface (at time t = 0) from medium 1

of dielectric function   ,1 q to medium 2 of dielectric function   ,2 q by a

crossing angle. The crossing angle  is defined as the angle between the interface

normal and the electron moving direction, and tvr  is the instant location of the

electron relative to the crossing point at the interface. The charge density of the
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Fig. 3.1 A sketch of the problem studied in this work. An electron of velocity v

moves across the interface at time t = 0 from medium 1 of dielectric function

  ,1 q to medium 2 of dielectric function   ,2 q with crossing angle . The

instant position of the electron is tvr  , relative to the crossing point at the

interface.

v
e

r

0
 2 ,q 

 1 ,q 
t = 0

t < 0

t > 0


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electron ),( trf
 is given by
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The Fourier components of this electron charge density can be given by
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To solve the boundary-value problem presented in Fig. 3.1, we applied the

method of images (Jackson 1975). By introducing image charge densities on both

sides of the interface, then the Fourier components of the scalar potentials in medium1

and medium 2 can be determined from Poisson equation expressed in Eq. (3.4); that

is,
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where Q


is the parallel component of q.   ,1 Qs


and   ,2 Qs


are the

fictitious surface charge densities right on the surface facing to medium 2 and right on
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the surface facing to medium 1, respectively. According to the boundary conditions,

the fictitious surface charge densities be carried out by
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By inserting Eqs. (3.6) and (3.9) into Eqs. (3.7) and (3.8), then the Fourier

components of scalar potentials,   ,(1) q and   ,(2) q , on either side of the

interface are performed.

After that, we need to determine the induced scalar potentials before the later

derivation of our model for inelastic scattering. The induced scalar potential on

either side is defined as the scalar potential on either side removing the scalar

potential for electrons moving in vacuum. The Fourier component of the scalar

potential for electrons moving in vacuum can be calculated by letting   1, q in

Eq. (3.4), i.e.

   


 ,
q
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, 2 qq fref
  , (3.10)

Consequently, the Fourier components of the induced scalar potentials in medium 1

and medium 2 can be given by, respectively,
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and
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The first terms in Eqs. (3.11) and (3.12) denote the induced scalar potentials for

electrons moving in an infinite solid, which means that the momentum transfer qis

cylindrical symmetric with respect to the moving direction of the electron, i.e. the

direction of v. Accordingly, the term  vq  in the first term can be

converted into   cosqv , where  is the angle between qand v. Besides,

we apply the assumption of     ,, Qq
  (Yubero and Tougaard 1992; Yubero et

al. 1996) in the second terms of Eqs. (3.11) and (3.12) for the integration with respect

to zdq . Then the second terms in Eqs. (3.11) and (3.12) can be further performed

by
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 , for j = 1 and 2, (3.13)

where v and ||v are the normal and parallel components of vwith respect to the

plane boundary, respectively. After the above mentioned transformations for the

first and second terms in Eqs. (3.11) and (3.12), the induced potentials in real space in

medium 1 and 2 can be presented by means of the inverse Fourier transforms for Eqs.

(3.11) and (3.12). That is,
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when t < 0, (3.14)

and
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,

when t > 0, (3.15)

where R and z are the parallel and the normal components of r with respect to

the plane boundary. Note that here we use the spherical coordinates for the

integration of momentum transfer q in Eqs. (3.14) and (3.15).

3.2.2 Stopping Power

The stopping power means the average energy loss per unit path length of a

charged particle. It is the basic physical parameter for the study of the inelastic

interaction between electrons and solids. The stopping power
ds

dW
 of the

electron can be related to the induced potential  trind , as (Flores and

García-Moliner 1979)
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where the derivative of  trind , is evaluated at the electron’s position tvr  . By

inserting Eqs. (3.14) and (3.15) into Eq. (3.16), then the stopping powers for electrons

moving in medium 1 and medium 2 can be obtained by
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when t > 0. (3.18)

For the integration over the energy loss  in the second integrals of Eqs. (3.17)

and (3.18), the contour integration is closed in the upper half plane (UHP) and the

lower half plane (LHP) for 0t and 0t , respectively. Meanwhile, in order to

calculate the contour integration in the LHP in Eq. (3.18), it is convenient to convert

the integration into the UHP due to the dielectric function is an analytic function of

 only in the UHP. In consequence,   tRQi 


exp in Eq. (3.18) can be
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replaced according to        tRQiRQttRQi  


expcos2exp .

After that, the stopping powers in medium 1 and 2 can be further obtained by
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where  sincossin~ qv , sinqQ  , cosqqz  , cosvv  ,
2

2v
E  ,

and r is the Heaviside step function. By applying the conservations of energy

and momentum, the upper and the lower limits of q are given by

  EEq 22 . (3.21)
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3.2.3 Differential Inverse Inelastic Mean Free Path and Inelastic
Mean Free Path

The DIIMFP is an important physical parameter for the inelastic interaction

between electrons and mediums, and indicates the probability density for an electron

losing energy  as moving along a unit path length. The DIIMFP for an electron

of energy E can be determined from the stopping power using the following

relation:

 
E

drEu
ds

dW

0

,,,  , (3.22)

where we can see that the DIIMFP  rEu ,,,  is as a function of the electron

crossing angle  and the distance r of the electron relative to the crossing point at

the interface. By comparing Eqs. (3.19) and (3.20) to Eq. (3.22), the DIIMFPs for

electrons moving in medium 1 and medium 2 can be obtained by, respectively,
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and
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Another important physical parameter is IMFP, which can be derived by the

integration of DIIMFP over all energy losses, that is,

   
E

i

drEu
rE 0

,,,
,,

1



, (3.25)

where  rEi ,, is the IMFP. By inserting Eqs. (3.23) and (3.24) into Eq. (3.25),

then the IMFPs for electrons moving in medium 1 and medium 2 can be determined.

3.2.4 Differential Inverse Inelastic Mean Free Path and Inelastic
Mean Free Path for an Electron Crossing a Solid Surface

For the case of an electron emitted from a solid to vacuum (i.e. sv), let

  ,q1 and   ,q2 in Eqs. (3.23) and (3.24) be replaced by   ,q and 1,

respectively. Then the electron DIIMFP in this case is given by
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A similar calculation can be performed for the case of electrons entering a

semi-infinite solid by taking   11  ,q and     ,, qq  2 in Eqs. (3.23) and

(3.24). Then the DIIMFP for incident electrons (i.e. vs) is given by
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In Eqs. (3.26) and (3.27), the terms involving 










1
1

Im


are the contribution

from the surface excitation, whereas the terms involving 







1

Im are the

contribution from the volume excitation. These two equations reveal that only

surface excitation occurs outside the solid, while both volume and surface excitations

occur inside the solid. Since the term  cosexp Qr exists in Eqs. (3.26) and

(3.27), the contribution of the surface excitation exponentially decreases with the

increasing distance from the surface, whereas the reduction in the contribution of the

volume excitation increases rapidly near the surface. Besides, when r in Eq.

(3.26) or r in Eq. (3.27), i.e. deep inside the solid, it is seen that the forms of

these two equations are consistent with the form for electrons moving in an infinite

solid.

Letting 00 in Eqs. (3.26) and (3.27), formulas for normally escaping and

incident electrons exhibit similarities between present and previous works (Kwei et al.

1998b). The difference between these works is attributed to the application of

momentum-energy conservations. In the previous work, the integration over the

normal component of the momentum transfer, zq , was not restricted by the

conservation relations. In the present work, however, these relations are completely

satisfied due to the adoption of spherical coordinates in momentum integration.

According to Eq. (3.25), then the IMFP for escaping and incident electrons can

be derived from Eqs. (3.26) and (3.27). They are given by, respectively,

   
 

E

i

drEu
rE 0

vs
vs ,,,

,,
1


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, (3.28)

and
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   
 
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drEu
rE 0

sv
sv ,,,

,,
1




. (3.29)

Using Eqs. (3.26) ~ (3.29) and adopting the extended Drude dielectric function

(Kwei et al. 1993), we can calculate the DIIMFPs and IMFPs for an electron incident

into or escaping from a solid surface. The fitting parameters of the model dielectric

functions were taken from the previous work of Kwei et al. (1993).

Figures 3.2 and 3.3 show the results of electron DIIMFPs outside and inside the

solid at various distances relative to the crossing angle point at the surface,

respectively, for a 500 eV escaping electron moving from Cu to vacuum in several

directions. It is seen that the DIIMFPs vary with the distance in both figures. In

Fig. 3.2, the DIIMFP on the vacuum side is entirely contributed by the surface

excitations. As the electron is closer to the surface, the DIIMFP curves for fixed

crossing angels are getting wider and their peak values are getting larger due to the

increasing surface excitations. Meanwhile, the surface excitations increase for larger

crossing angles at the fixed distance from the crossing point because of the shorter

distance to the surface. It is also found that the characteristic surface plasmon energy,

corresponding to the peak energy loss, is nearly independent of the crossing angle and

the electron distance from the crossing point. In Fig. 3.3, the DIIMFPs inside the

solid vary with the distances from the crossing point. The DIIMFP is a broad

function of the energy loss due to the overlapping between the contributions of

surface and volume excitations. It is seen that the dependence of DIIMFP on the

crossing angle is rather weak inside the solid and is getting weaker as the electron is

farther away from the surface. Slightly inside the solid, the DIIMFP quickly

approaches to the value of the electron moving in an infinite solid, which reveals that
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Fig. 3.2 Calculated results of the DIIMFP in vacuum for a 500 eV escaping electron

from Cu to vacuum with different crossing angles and distances from the crossing

point at the surface.
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Fig. 3.3 Calculated results of the DIIMFP in Cu for a 500 eV escaping electron from

Cu to vacuum with different crossing angles and distances from the crossing point at

the surface.
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surface excitations are restricted to a limited region near the surface. For a 500 eV

incident electron moving from vacuum to Cu, similar results outside and inside the

solid are respectively plotted in Figs. 3.4 and 3.5. Again, surface excitations are

important as the electron moves near the surface. The DIIMFP on the vacuum side

is enhanced for larger crossing angle, while the angular dependence of DIIMFP inside

the solid is weak.

Using Eq. (3.28), we have calculated the IMFPs for a 500 eV escaping electron

moving from Cu to vacuum as a function of electron position relative to the crossing

point. These results are shown in Fig. 3.6 for several crossing angles. Outside the

solid, the IMFPs do not fall off to zero abruptly. In addition, the IMFP outside the

solid decays more rapidly for smaller crossing angle. This indicates that electrons

have more probability to excite surface plasmons for larger crossing angles at the

same relative distance to the crossing point. Inside the solid, the IMFPs are roughly

independent of relative distance and crossing angle due to the approximate

compensation of volume and surface excitations. Therefore, the IMFP inside the

solid can be approximated as a constant equal to the IMFP for electrons moving in an

infinite solid. A similar plot of IMFPs for 500 eV incident electrons moving from

vacuum to Cu in several directions is shown in Fig. 3.7. Here the IMFP of the

incident electron in vacuum is lowered as compared to the result of the escaping

electron. This is because the attractive force acting on the incident electron by

induced surface charges is parallel to the moving direction of the electron and

accelerates the electron in vacuum. However, the attractive force on escaping

electron in vacuum is antiparallel to the moving direction of the electron and

decelerates the electron. Therefore, the time is spent less for incident electron than

that for escaping electron, and surface excitation is less probable for incident electron.
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Fig. 3.4 Calculated results of the DIIMFP in vacuum for a 500 eV incident electron

from vacuum to Cu with different crossing angles and distances from the crossing

point at the surface.
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Fig. 3.5 Calculated results of the DIIMFP in Cu for a 500 eV incident electron from

vacuum to Cu with different crossing angles and distances from the crossing point at

the surface.
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Fig. 3.6 A plot of the inverse IMFP for a 500 eV escaping electron from Cu to

vacuum with different crossing angles as a function of electron distance from the

crossing point at the surface.
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Fig. 3.7 A plot of the inverse IMFP for a 500 eV incident electron from vacuum to

Cu with different crossing angles as a function of electron distance from the crossing

point at the surface.
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3.3 Surface Excitation Parameter

The surface excitation parameter (SEP) was introduced to indicate the mean

number of excited surface plasmons as electrons moving across a solid surface. At

an earlier time, SEP was determined by the integration of the inverse IMFP

contributed by the surface excitation with respect to the whole path length of the

electron moving on both sides of the surface (Chen and Kwei 1996). By this

definition, the excitations inside the solid were separated into individual surface

excitation and volume excitation. However, inside the solid, it is more convenient to

deal with surface and volume excitations together rather than separately due to the

fact that the approximate compensation of surface and volume excitations makes the

IMFPs roughly being constants (Kwei et al. 1998b). Therefore, we applied the

recent calculation of SEP suggested by Kwei et al. (1998b), who calculated SEP by

the integration of inverse IMFP over the whole path length of the electron in vacuum.

By means of Eqs. (3.28) and (3.29), the SEPs for electrons escaping from and incident

into a solid surface are obtained by

   



 

0
vs
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,,
,

rE
dr

EP
i

s 
 , (3.30)

and

   



 

0

sv
sv

,,
,

rE
dr

EP
i

s 
 . (3.31)

Figure 3.8 shows the cross-angle-dependent SEPs calculated using Eq. (3.30) for
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Fig. 3.8 A plot of the crossing-angle-dependent SEPs calculated using Eq. (3.30) for

the escaping electrons of 300 eV (solid circles), 500 eV (solid squares) and 800 eV

(solid triangles) moving from Cu to vacuum. The corresponding fitted values

obtained from Eq. (3.32) are displayed by solid curves.
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the escaping electrons of 300 eV (solid circles), 500 eV (solid squares) and 800 eV

(solid triangles) moving from Cu to vacuum. Similar results calculated using Eq.

(3.31) for incident electrons moving from vacuum to Cu are plotted in Fig. 3.9. It

can be seen that the SEPs, for both cases, increase with the increasing of the crossing

angle . When 070 , the increase of SEP is rapid. Thus, the surface

excitations are more probable for larger crossing angle. Besides, at fixed , we can

see that the SEP values decrease with the increasing energy of electrons. To

investigate this phenomenon, we plotted the calculated SEPs versus various electron’s

energies with 00 and 050 in Fig. 3.10 for escaping electrons and in Fig.

3.11 for incident electrons. The reason for larger SEP value at lower energy is that

the electron of lower energy moves in vacuum for more time. Then surface plasmon

are excited more. By comparing Figs. 3.8 with 3.9 or Figs. 3.10 with 3.11, the SEP

for the incident electron is lower than the result for the escaping electron. This

finding and its explanation are the same as the preceding mention for inverse IMFP.

Thus the surface excitation is more probable for escaping electrons. Examining

these computed results of SEP in Figs. 3.8 ~ 3.11, we found that the SEP follows the

equation:

 EPs ,vs  or  


 c

b

s
aE

EP
cos

,sv


  . (3.32)

The best-fitted values of the parameters for electrons moving from Cu to vacuum and

for electrons moving from vacuum to Cu are listed in Table 1 and Table 2,

respectively. The curves versus crossing angle and energy of the fittings are also

plotted (solid curves) in Figs. 3.8 ~ 3.11. For Au and Ag, we list the fitted values of

the parameters in Table 3.1 and Table 3.2 for escaping and incident electrons.
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Fig. 3.9 A plot of the crossing-angle-dependent SEPs calculated using Eq. (3.31) for

the incident electrons of 300 eV (solid circles), 500 eV (solid squares) and 800 eV

(solid triangles) moving from vacuum to Cu. The corresponding fitted values

obtained from Eq. (3.32) are displayed by solid curves.
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Fig. 3.10 A plot of SEPs versus energy calculated using Eq. (3.30) for electrons

escaping from Cu by the crossing angle 00 (solid triangles) and 050 (solid

circles). The corresponding fitted values obtained from Eq. (3.32) are displayed by

solid curves.
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Fig. 3.11 A plot of SEPs versus energy calculated using Eq. (3.31) for electrons

incident into Cu by the crossing angle 00 (solid triangles) and 050 (solid

circles). The corresponding fitted values obtained from Eq. (3.32) are displayed by

solid curves.
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vs
sP

a b c

Au 1.8695 0.4052 0.80

Ag 2.1203 0.4260 0.74

Cu 1.9994 0.4166 0.82

Table 3.1 Fitted values of parameters a, b and c in Eq. (3.32) for escaping electrons

sv
sP

a b c

Au 1.88476 0.50601 1.06

Ag 1.42601 0.48209 1.05

Cu 1.2999 0.4664 1.13

Table 3.2 Fitted values of parameters a, b and c in Eq. (3.32) for incident electrons
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Moreover, in Figs. 3.12 ~ 3.15, we compared our fitted values and calculated

results of SEPs versus crossing angel and energy with the results of Oswald’s fitting

formaul (1997) (dotted curves) for incident and escaping electrons and with the results

of Chen’s fitting formula (2002) (dashed curves) using cylindrical coordinates in

momentum integration for escaping electrons. A substantial difference between our

results and Oswald’s results was found, especially for incident electrons. For

escaping electrons, a discrepancy between the crossing-angle-dependent SEP values

of Chen and our results can be seen, and the difference between our and Chen’s

results of SEP versus energy are also seen. The fitted formula of Chen (2002) for the

calculation of SEP is only applicable for escaping electrons, but not for incident

electrons. Our calculations have been made for both incident and escaping electrons.
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Fig. 3.12 A plot of the SEP for a 500 eV escaping electron from Cu to vacuum as a

function of crossing angle. Symbols are the calculated results using Eq. (3.30).

Solid curve is the fitting results using Eq. (3.32). Corresponding data of Chen (2002)

(dashed curve) and Oswald (1997) (dotted curve) are plotted for comparisons.
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Fig. 3.13 A plot of the SEP for a 500 eV incident electron from vacuum to Cu as a

function of crossing angle. Symbols are the calculated results using Eq. (3.31).

Solid curve is the fitting results using Eq. (3.32). Corresponding data of Oswald

(1997) (dotted curve) are plotted for comparisons.
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Fig. 3.14 A plot of the SEP versus energy for an electron escaping from Cu to

vacuum by 00 . Symbols are the calculated results using Eq. (3.30). Solid

curve is the fitting results using Eq. (3.32). Corresponding data of Chen (2002)

(dashed curve) and Oswald (1997) (dotted curve) are plotted for comparisons.
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Fig. 3.15 A plot of the SEP versus energy for an electron escaping from vacuum to

Cu by 00 . Symbols are the calculated results using Eq. (3.31). Solid curve is

the fitting results using Eq. (3.32). Corresponding data of Oswald (1997) (dotted

curve) are plotted for comparisons.
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3.4 The Inelastic-Scattering Model with Retardation
Effect

When an electron moves near a solid, the electric field is induced. The induced

electric field has influence on the election’s motion. Conventionally, the induced

electric field can be calculated by solving the Poisson equation. In this approach, it

was assumed that the induced electric field propagated to the electron simultaneously.

Actually, the induced electric field needs propagation time to influence the motion of

the electron. In other words, the effect observed on the electron is caused by the

action of the induced electric field at earlier or retarded time. This phenomenon is

called the retardation effect (Jackson 1975). For the electron of low and

intermediate speed, the retardation effect can be ignored so that the Poisson equation

is applicable in the calculation of electric fields. However, if the speed of the

electron is very high, the Poisson equation is not adequate since the retardation effect

becomes significant (Marks 1982; Cowley 1982a, 1982b; Moreau et al. 1997). The

aim of the present study in this section is to establish a model with the retardation

effect. By employing the extended Drude dielectric function with spatial dispersion

(Kwei et al. 1993) in the dielectric response theory, we modify the preceding

inelastic-scattering model to include the retardation effect in the derivation for the

inelastic interaction of high-energy electrons moving parallel to solid surfaces.

3.4.1 The Basic Knowledge

As mentioned in section 3.1, the Maxwell equations, Eq. (3.1), govern the

electromagnetic interaction between a charged particle and a medium. To derive the

inelastic-scattering model with retardation effect, the Maxwell equations are therefore

the starting points in this section. The Maxwell equations in Eqs. (3.1a), (3.1b),
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(3.1c) and (3.1d) in Fourier transformed forms are given by (Dressel and Grüner

2002)

  0,B  qq  , (3.33a)

    0,B,E  


 q
c

qq  , (3.33b)

    ,4,D qqqi   , (3.33c)

and

     



 ,J

4
,D,H q

c
q

c
i

qqi   , (3.33d)

where  ,H q


and  ,B q


are the Fourier components of the magnetic field and

the magnetic induction, respectively. The solutions of  tr ,B 
and  tr ,E 

in Eqs.

(3.1a) and (3.1b) can be defined in terms of a vector potential  tr ,A 
and a scalar

potential  tr , (Jackson 1975); that is,

 trtr ,A),(B 
 , (3.34)

and

     
t

tr
c

trtr





,A1
,,E




. (3.35)

The Fourier components of Eqs. (3.34) and (3.35) are given by (Dressel and Grüner
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2002)

    ,A,B qqiq 
 , (3.36)

and

     
 ,A,,E q

c
iqqiq 

 . (3.37)

Substituting Eqs. (3.36) and (3.37) and the relations,      ,E,,qD qq 
 and

    ,H,B qq 
 , into Eqs. (3.33c) and (3.33d), the Maxwell equations can be

reduced to
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and
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  , (3.39)

where  is the permeability. However, Eqs. (3.38) and (3.39) are still coupled

equations. To uncouple them, the Lorentz gauge (Jackson 1975)

   
0

,
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t

tr
c

tr

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(3.40)
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is employed. Here the Lorentz gauge in Fourier transformed form can be obtained

by

      0,
,

,A  


 q
c
q

qq 


 . (3.41)

Using Eq. (3.41), then Eqs. (3.38) and (3.39) can be uncoupled and become
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 , (3.42)

and
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


  . (3.43)

These two equations are the Fourier components of the wave equations for A


and

.

As mentioned in section 3.1, boundary conditions must be satisfied to solve the

electromagnetic boundary-value problems. To solve the differential wave equations

of Eqs. (3.42) and (3.43), the boundary conditions mentioned in section 3.1 for the

normal component of the electric displacement and for the tangential components of

the electric field are not enough. The other boundary conditions for the normal

components of the magnetic induction and for the tangential components of magnetic

field are necessary (Jackson 1975). That is, the normal component of the magnetic

induction and the tangential components of the magnetic field are continuous on the

boundary.
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3.4.2 The Induced Vector and Scalar Potentials for Electrons
Moving Parallel to an Interface

With the help of the boundary conditions and based on the dielectric response

theory, we use the wave equations shown in Eq. (3.42) to derive the

inelastic-scattering model with retardation effect for high-speed electrons moving

parallel to an infinite interface. This problem to be solved is illustrated in Fig. 3.16,

where an electron of charge e and speed v moving in positive x -direction and

parallel to an interface (at 0z ) between medium 1 of dielectric function   ,1 q

(at 0z ) and medium 2 of dielectric function   ,2 q (at 0z ). The electron

is located in medium 1 at a distance d from the interface, and its instant position at

time t is expressed as  dvt ,0, . In our work, since we are interested in the

inelastic interaction between electrons and non-magnetic media, both permeabilities

of medium 1 and medium 2 are equal to 1.

Again, the atomic units are used unless otherwise specified in this section.

Then the charge density of the electron  trf , is given by

    dzyvtxtrf   , . (3.44)

Using the principles of Fourier transform, the Fourier component of this electron

charge density can be given by

 

 
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
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















. (3.45)
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Fig. 3.16 A sketch of an electron of charge e and speed v moving in positive

x -direction and parallel to an interface (at 0z ) between medium 1 of dielectric

function   ,1 q (at 0z ) and medium 2 of dielectric function   ,2 q (at

0z ). The permeabilities of medium 1 and medium 2 are equal to 1. The electron

is located in medium 1 at a distance d from the interface, and its instant position at

time t is expressed as  dvt ,0, .

xvˆ

 dvt ,0,

ẑ

x̂

xevJ f ˆ


e

  ,2 q  ,1 q
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Besides, the moving electron can also be regarded as a current. Hence the current

density arising from  trf , can be determined by (Cheng 1989)

    xdzyvtxvtrJ f ˆ,  
, (3.46)

whre x̂ is the unit vector along x -direction. Accordingly, the Fourier components

of  trJ f ,


can be obtained by

      

     
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

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
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







. (3.47)

As mentioned in section 3.2.1, the method of images was applied to solve the

boundary-value problem. Here we use this method again. By introducing image

current densities on both sides of the interface, the Fourier components of the vector

potentials in media 1 and 2,  ,A1 q


and  ,A2 q


,can be determined from the

wave equation for vector potential presented in Eq. (3.42); that is,
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,ωqεω
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
 ,

 
2

2
2

22
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
 , ŷ is the unit vector along

y -direction, and ẑ is the unit vector along z -direction.  ,1 QJ s


and  ,2 QJ s



are the fictitious surface current densities right on the surface facing to medium 2 and

right on the surface facing to medium 1, respectively.  ,Q,1


xsJ and  ,Q,1


ysJ

are the parallel components of  ,1 QJ s


in x -direction and y -direction,

respectively; the corresponding components of  ,2 QJ s


are  ,,2 QJ xs


and
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 ,Q,2


ysJ . Through the Lorentz gauge shown in Eq. (3.41) with the help of Eqs.

(3.48) and (3.49), the Fourier components of the scalar potentials in media 1 and 2 can

be determined by
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where   zzyx qQqqqq ,,,
  , and xq and yq are the parallel components of q

in x -direction and in y -direction, respectively. After substituting Eqs. (3.48) ~

(3.51) into Eqs. (3.36) and (3.37), the Fourier components of the magnetic inductions

and the electric fields on both sides of the boundary, i.e.  ,B1 q


,  ,B2 q


,

 ,E1 q


and  ,E2 q


, can be carried out. By meeting the boundary conditions,

then the forms of the fictitious surface current densities,  ,,1 QJ xs


,  ,,1 QJ ys


,

 ,,2 QJ xs


and  ,,2 QJ ys


, can be written as, respectively,
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where  ,qJ f
 is given by Eq. (3.47). Again, in order to simplify the integrations

in Eqs. (3.52) and (3.53), the assumption of ),Q(),q( 
  (Yubero and Tougaard

1992; Yubero et al. 1996) is applied. Then Eqs. (3.52) ~ (3.55) can be re-expressed

as, respectively,
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and
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 , (3.59)

where
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and
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Here we let
 
2

1
2

2
1

,~
c
Q

QQ



 and

 
2

2
2

2
2

,~
c

Q
QQ




 . By inserting

Eqs. (3.56) ~ (3.59) into Eqs. (3.48) ~ (3.51), then the vector potentials and scalar

potentials in media 1 and 2 can be obtained.

3.4.3 The Stopping Power and DIIMFP with Retardation Effect
for Electrons Moving Parallel to an Interface

To calculate the stopping power with retardation effect of the electron, we have

to calculate the induced vector and scalar potentials first. The induced vector and

scalar potentials of interest can be obtained by removing the corresponding potentials

for electrons moving in vacuum. The Fourier components of the vector potential in
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vacuum can be determined using Eq. (3.42) with 1 and   1, q , and then it

is given by

   

 

 
 



































0
0

,
ˆˆˆ4

,4

,4
,A

2
0

2
0

2

2
2











qJ
zyx

qc

qc

qJ

c
qc

qJ
q

f

f

f
ref








, (3.62)

where we let 2

2
22

0 c
qq


 . Substituting Eq. (3.62) into Eq. (3.41), the Fourier

components of the scalar potential in vacuum can be given by
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Through Eqs. (3.48) and (3.62), thus the Fourier component of the induced vector

potential in medium 1, can be given by
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Likewise, through Eqs. (3.50) and (3.63), the induced scalar potential in medium 1
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can be given by
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Through Eqs. (3.64) and (3.65), we can obtain the Fourier component of the

induced electric filed in x -direction according to Eq. (3.37). That is,
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(3.66)

where  ,qJ f
 ,  ,,1 QJ xs


and  ,,1 QJ ys


are given by Eqs. (3.47), (3.56) and

(3.57), respectively. In section 3.2.2, we have used Eq. (3.16) to calculate the

stopping power of the moving electron. However, this expression for stopping

power does not consider the contribution of the induced vector potential. Thus we

applied the relation between the induced electric field and the stopping power. That
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is, the stopping power can be determined from the induced electric force, parallel to

the electron’s moving direction, acting on the electron (Ritchie 1957; Abril et al. 1998;

García-Molína et al. 1985), i.e.

 
 dvtrxind tr

ds
dW




,0,, ,E 
 , (3.67)

Then through Eqs. (3.66) and (3.67) and the principles of the inverse Fourier

transform, the stopping power with retardation effect for the electron moving in

medium 1 and parallel to the interface is given by
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where the spherical coordinates are adopted for the integration of the momentum

transfer q, and thus, with sinqQ  , the forms of  and  for momentum

transfer in spherical coordinates become
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After the integration with respect to  and some algebra, Eq. (3.68) is further given

by
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where  and  are also further given by, respectively,
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(3.73)

By obeying the mass-energy and momentum conservations (Beiser 2003), the upper

and lower limits of the integration with respect to q in Eq. (3.71) can be obtained by
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22 22
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The symbol E in Eqs. (3.71) and (3.74) denotes the relativistic kinetic energy of the

electron. According to the relativistic theory, the relativistic kinetic energy is given

by (Beiser 2003)

2

2

2

2

1

c

c
v

c
E 



 . (3.75)

Here this relation is utilized in Eqs. (3.71) and (3.74). After the stopping power

ds
dW

 being derived, the corresponding DIIMFP with retardation effect can be

determined according to Eq. (3.22). That is,
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The non-retarded limit of Eq. (3.71) can be determined by letting c . Then the

stopping power without retardation effect for electrons moving parallel to an interface

can be given by
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where 222  EEq and E is given by Eq. (3.75). This obtained

expression is the same as the formula derived previously for electrons of low and

intermediate energies moving parallel to a solid surface (Kwei et al. 2003; Hsu 2003).

3.4.4 Comparisons between the Model without Retardation Effect
and the Model with Retardation Effect for Electrons Moving
Parallel to a Solid Surface

Figure 3.17 shows the comparison of the DIIMFPs without retardation effect

(solid curve) and with retardation effect (dashed curve) for electrons of energy 1000

eV moving in vacuum at depth
o

A1z and parallel to a Cu surface. The same

comparison for electrons of energy 106 eV is plotted in Fig. 3.18. Here these results

were calculated using Eqs. (3.76) and (3.77) with the extended dielectric functions of

vacuum and Cu (Kwei et al. 1993) substituted respectively for   ,1 q and

  ,2 q . In Figs. 3.17 and 3.18, it is found that the DIIMFPs without and with

retardation effect for 1000 eV electrons can not be distinguished, whereas the

difference is substantial for 106 eV electrons, which indicates that the model with

retardation effect should be applied to deal with the problem of inelastic interaction

between high-energy electrons and solids.
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Fig. 3.17 A comparison of the DIIMFPs without retardation effect (solid curve) and

with retardation effect (dashed curve) for electrons of energy 1000 eV moving in

vacuum at depth
o

A1z and parallel to a Cu surface.
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Fig. 3.18 A comparison of the DIIMFPs without retardation effect (solid curve) and

with retardation effect (dashed curve) for electrons of energy 106 eV moving in

vacuum at depth
o

A1z and parallel to a Cu surface.



77

Through the integration of the DIIMFP with respect to the energy loss , the

IMFP can be determined. In Fig 3.19, we displayed the calculated IMFPs without

retardation effect (solid curve) and with retardation effect (dashed curve) versus

electron energy for electrons moving in vacuum at depth
o

A1z and parallel to a

Cu surface. It can bee seen that the values of the IMFP with retardation effect are

reduced to the results of the IMFP without retardation effect for smaller electron

energy. The difference between the IMFPs without and with retardation effect

increases with increasing energy. Thus, the retardation effect becomes significant

for high-energy electrons. Moreover, the curves of the IMFPs without and with

retardation effect tend to saturate at very high energy. This is due to the fact that the

velocity of the electron is close to the velocity of light. No matter how large the

kinetic energy of the electron is, the velocity of the electron never exceeds the

velocity of light. As a consequence, the value of IMFP gradually approaches to the

value for electrons moving with velocity of light.

Using Eq. (3.71), we calculated the stopping powers with retardation effect for

the electron of various energies moving in vacuum at
o

A1z and parallel to a Cu

surface. The calculated results are plotted in Fig. 3.20. For comparison, the

stopping powers without retardation effect are also included in this figure. It can be

found that the stopping powers without and with retardation effect agree with each

other for energy less than 105 eV, while the discrepancy can be seen for larger energy.

Besides, both curves saturates at very high energy, as the same effect seen in Figs.

3.19 for IMFPs. It also can be found that the stopping powers decrease with the

increasing energy of the electron. This is due to the induced excitations are less

probable for higher energy.
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Fig. 3.19 A comparison of the IMFPs without retardation effect (solid curve) and

with retardation effect (dashed curve) versus energy for electrons moving in vacuum

at depth
o

A1z and parallel to a Cu surface.
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Fig. 3.20 A comparison of the stopping powers without retardation effect (solid

curve) and with retardation effect (dashed curve) versus energy for electrons moving

in vacuum at depth
o

A1z and parallel to a Cu surface.
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CHAPTER 4

ELECTRON QUASI-ELASTIC PEAK

Elastic peak electron spectroscopy (EPES) has been frequently used to

investigate the elastic peak spectra of electrons backscattered from solid surfaces.

Some significant information like IMFP of electrons could be extracted from the

analysis of the elastic peaks (Krawczyk et al. 1998; Zommer et al. 1998; Gergely et al.

1981, 1999; Lesiak et al. 1999; Tanuma et al. 2000). The energy distribution of the

elastic peak spectra were also observed experimentally in the work with electron

spectrometers (Boersch et al. 1967; Erickson and Powell 1989; Laser and Seah 1993;

Goto and Shimizu 1997). This energy distribution is due to the fact that the

Rutherford-type recoil energy loss occurs after each elastic interaction between the

electron and the atom in a solid (Boersch et al. 1967). The aim of this chapter is to

simulate the energy distribution of the elastic peak spectra of electrons

quasi-elastically backscattered from solid surfaces. For this simulation work, we

modified the previously-constructed Monte Carlo (MC) method (Kwei et al. 1998a,

2001) with the inclusion of the recoil energy loss. In addition to the recoil energy

loss, there are three effects can affect the experimentally measured energy

distributions of elastic peaks. The three effects are the spectrometer energy

resolution, the energy distribution of the primary electrons and the thermal motion of

atoms (Tóth et al. 1998; Gergely et al. 2001; Sulyok et al. 2001; Varga et al. 2001).

We also include these effects in the simulation for the energy spectra of elastic peaks.

Moreover, through the measured elastic peak of backscattered electrons, the

IMFP of electrons in a solid can be determined experimentally (Krawczyk et al. 1998;

Zommer et al. 1998; Gergely et al. 1981, 1999; Lesiak et al. 1999; Tanuma et al.
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2000). In the present chapter, we also discussed this experimental approach.

4.1 Simulation for Energy Spectra of Electrons
Quasi-elastically Backscattered from a Semi-infinite
Solid

Recently, the MC method has been frequently employed to determine the angular

distribution for electrons elastically backscattered from solids (Jablonski 1989;

Jablonski et al. 1991, 1992, 1993). Due to the recoil energy losses as electrons

scattered elastically by atomic nuclei, the energy distribution also characterizes the

features of the elastic peak spectra of backscattered electrons. Although the energy

loss in each elastic scattering event is very small, the accumulation of each energy

loss can not be negligible (Erickson and Powell 1989). Thus, this kind of scattering

is called quasi-elastic scattering. The recoil energy loss results in a small energy

shift and a width broadening in the elastic peak spectra. In order to calculate the

energy spectra of electrons quasi-elastically backscattered from solids, we also

adopted the similar MC method of Kwei et al. (1998a, 2001).

4.1.1 The Monte Carlo Method

The energy distribution of quasi-elastically backscattered electrons is simulated

using the MC method. Backscattered electrons are traced from their impinging

points to emerging points by recording the trajectories only involving elastic

scattering events. Electron trajectories are recorded through azimuthal scattering

angles, polar scattering angles and the path lengths between two consecutive elastic

scattering events. By generating the uniformly-distributed random numbers between

0 and 1, the azimuthal and polar scattering angles and the path lengths can be
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determined. Note that both the azimuthal and polar scattering angles are relative to

the electron direction before elastic scattering. The polar scattering angle  after

each elastic collision can be determined from a random number 1R using

e

e d
d
d
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
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where 'd
d e is the EDCS, and
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is the elastic cross section. It is assumed that the azimuthal scattering angle  after

each elastic collision is cylindrically symmetric with respect to the electron moving

direction before elastic scattering (Kwei et al. 1997). As a result, the azimuthal

scattering angle can be obtained from a random number 2R according to

22 R . (4.3)

Applying the Poisson stochastic process for elastic scattering events, the probability

density function of electrons moving along a straight step path length is between

the i th elastic scattering at depth iz and the )1( i th elastic scattering at depth

1iz with
i

ii
i

zz
s




 

cos
1 is given by (Reimer 1985)
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where the form of the electron EMFP e can be calculated according to Eq. (2.3),

and i denotes the angle between the inwardly-directed surface normal and the

electron moving direction after the i th elastic scattering. Eq. (4.4) can be related to

a random number 3R as the following expression (Su 1994):

  '' sdsPR
is

 


0
3 1 . (4.5)

By means of Eqs. (4.4) and (4.5), the length between iz and 1iz can be determined

from 3R by (Kwei et al. 2001)

31 lncos Rzz ieii   . (4.6)

The relation between i and 1i is given by (Kwei et al. 1997)

iiiiii  cossinsincoscoscos 11   , (4.7)

where i and i are the i th polar and azimuthal scattering angles, respectively.

When an elastic interaction occurs, electrons lose some energy. This is because the

electron scattered by an atomic nucleus suffers the Rutherford-type recoil energy loss,

as mentioned in section 2.6. According to Eq. (2.12), the energy of an electron after

the i th elastic scattering with i is given by
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where )( 11  ii θE is the electron energy after the )1( i th elastic scattering.

According to the Poisson stochastic process for inelastic scattering events, the

probability density function that an electron travels is path length between the i th

and the ( 1i )th elastic scatterings without inelastic scattering is
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,,vs  , respectively, are the

IMFPs at depth z for electrons of energy iE moving inward and outward inside the

solid, and they can be calculated using Eqs. (3.26) ~ (3.29). Besides, the probability

density function of an electron with energy E crossing the surface by a crossing

angle  without surface excitations is determined from the use of the SEPs

expressed in Eqs. (3.30) and (3.31) (Chen et al. 1994). Then the probability density

function is given by
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  II
svexp EPs , , for incident electrons, (4.10a)

or

  RR
vs ,exp EPs  , for backscattered electrons, (4.10b)

where I and IE are the incident angle and the incident energy of the electron,

respectively, and R and RE are the emission angle within the acceptance angles

and the emission energy of the electron, respectively. However, it is difficult using

Eqs. (3.26) ~ (3.31) in Eqs. (4.9) and (4.10) to determine the probabilities since too

much computing time must be taken. Thus, we made approximations to reduce the

computing time. In Figs. 3.6 and 3.7, we can see that the inverse IMFP inside the

solid could be roughly regarded as being isotropic. Therefore, to simplify the

calculation for the MC simulation, we assumed that the values of IMFP inside the

solid for all directions are equal to those for normally-incident and normally-escaping

electrons (Kwei et al. 2001). Accordingly, the probability density function in Eq.

(4.9) can be rewritten as
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or
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where  zEii ,,0sv and  zEii  ,,0vs , respectively, are the IMFPs for electrons of

energy iE normally moving inward and outward inside the solid, and they can be

calculated through Eqs. (3.26) ~ (3.29) by taking 00 or through the previous

inelastic-scattering model (Kwei et al. 1998b). Besides, the fitting formula shown in

Eq. (3.32) or the previous fitting formula,
cos

baE

, (Kwei et al. 1998b) were applied to

calculate SEPs for Eq. (4.10).

By tracking the electrons until either they backscattered from the surface within

acceptance angles or their paths in the solid become so large that the contributions to

the intensity can be neglected. Then, the intensity of quasi-elastically backscattered

electrons with energy E is given by





n

j
j EI

n
EI

1

)(
1

)( , (4.12)

where )(EI j is the intensity of quasi-elastically backscattered electrons with

energy E for the j th trajectory and n is the total number of sampled trajectories.

4.1.2 The Results Calculated Using Monte Carlo method

Figures 4.1 and 4.2 show the energy distributions of the elastic peaks contributed

by one, two, three and all elastic scatterings for 5000 eV normally incident electrons

backscattered from Si and Au, respectively. Here, in the MC simulation, the EDCSs

for Si and Au are calculated using the relativistic model with the solid-atom potential
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Fig. 4.1 A plot of the MC simulation results on the energy distribution of electrons

quasi-elastically backscattered from Si for normally incident electrons of 5000 eV.

Individual contributions from one, two, three and all elastic scatterings are plotted

separately.
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Fig. 4.2 A plot of the MC simulation results on the energy distribution of electrons

quasi-elastically backscattered from Au for normally incident electrons of 5000 eV.

Individual contributions from one, two, three and all elastic scatterings are plotted

separately.
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as mentioned in Chapter 2. The depth-dependent IMFPs for normally moving

electrons,  zEii ,,0sv and  zEii  ,,0vs , are calculated using the previous

inelastic-scattering model (Kwei et al. 1998b), in which the extended Drude dielectric

function derived from experimental optical data (Kwei et al. 1993) are adopted. The

SEPs were calculated using the fitting formula of
cos

baE

with the fitted values of

parameters listed in the article of Kwei et al. (1998b). In these two figures, the small

energy shifts and the width broadenings of the elastic peaks can be seen. In order to

compare the energy spectra accounting for all elastic scatterings in Figs. 4.1 and 4.2,

we plot them again in Fig. 4.3 (Si: dashed curve, Au: solid curve). The left ordinate

is for Si and the right ordinate is for Au. It reveals that, for Au, the energy shift of

the peak maximum is much smaller, and the recoil width broadening of the peak is

narrower. From this finding, we can conclude that the energy loss is smaller for

solids composed of heavier atoms as discussed in section 2.4. Besides, it can be

found in Figs. 4.1 ~ 4.3 that the exact shapes of the elastic peaks depend strongly on

the elastic scattering cross sections for different solids.
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Fig. 4.3 A plot of the MC simulation results on the energy distribution of electrons

quasi-elastically backscattered from Si and Au for normally incident electrons of 5000

eV. The left and right longitudinal axes are for Si and Au, respectively.
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4.1.3 Adjustments to Energy Spectra of Quasi-elastically
Backscattered Electrons

There are two experimental factors that affect the height and the width in the

energy distribution of the electron elastic peak detected by a spectrometer (Tóth et al.

1998; Gergely et al. 2001; Sulyok et al. 2001). One is the energy distribution of

the primary electron beam emitted from an electron gun. The other is the energy

resolution of the analyzer of a spectrometer. To simulate the experimental results of

elastic peak electron spectra, these two effects were considered in our MC algorithm

for the energy distribution of backscattered electrons.

We assumed that both the energy distribution of the electron beam and the

resolution function are Gaussian distributions. Let   ,; 0G be the Gaussian

function of a variable  with the mean value 0 and the standard deviation .

Considering the Gaussian energy distribution of the primary electron beam, the

energy distribution of quasi-elastically backscattered electrons before the measuring

of the spectrometer can be expressed as

   dωEωGEωEIEh g,; 00




 , (4.13)

where 0E is the mean energy of the primary electron beam and g is the standard

energy deviation of the energy distribution of the electron beam. By taking the

further consideration of the energy resolution of the spectrometer, the energy

distribution becomes
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   dE'E'EGE'hEH r,;




 , (4.14)

where r is the standard energy deviation of the resolution function. Using Eqs.

(4.13) and (4.14), the simulated quasi-elastic electron peak spectra is comparable with

experimental data.

In Fig. 4.4, we plot the energy distributions of elastic peaks for electron beams

normally incident into Si with 5000 eV mean energy and two different FWHMs, 0.3

eV and 0.5 eV. It can be seen that the spectra are broadened Gaussian peaks. As

compared to the primary electron beams, the width broadenings in the two Gaussian

peaks are arisen from the recoil width broadening displayed in Fig. 4.1. In addition,

the FWHM of the resulting spectrum is wider when gE of the electron beam

increases. Here gE is the FWHM of the energy distribution of the electron beam.

A similar plot is shown in Fig. 4.5 for Au. The FWHM of the resulting spectrum for

Au is obviously narrower than that for Si. This is because the recoil width

broadening is much smaller for Au. Figures 4.6 and 4.7 show the energy

distributions of the elastic peaks for Si and Au, respectively, using different

spectrometer resolutions but the same Gaussian distributed normally incident electron

beam with 0.3 eV FWHM and 5000 eV mean energy. The spectrometer function

was assumed to be a Gaussian distribution with two different FWHMs, 0.3 eV and 0.5

eV. The results without the consideration of the energy resolution of the

spectrometer are also included for comparison. It is found that all the spectra depend

strongly on the spectrometer functions. The larger sE , the FWHM of the

spectrometer function, results in the larger tE , the FWHM of the total spectrum.
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Fig. 4.4 A plot of the MC results on the energy spectra of electrons quasi-elastically

backscattered from Si for normally incident electrons of 5000eV mean energy and 0.3

eV (solid curve) and 0.5 eV (dashed curv) FWHM.
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Fig. 4.5 A plot of the MC results on the energy spectra of electrons quasi-elastically

backscattered from Au for normally incident electrons of 5000eV mean energy and

0.3 eV (solid curve) and 0.5 eV (dashed curv) FWHM.
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Fig. 4.6 A plot of the MC results on the energy spectra of electrons quasi-elastically

backscattered from Si for normally incident electrons of 5000eV mean energy and 0.3

eV FWHM. The spectrometer resolutions are 0 eV (solid curve), 0.3 eV (dashed

curve) and 0.5 eV (dotted curve).
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Fig. 4.7 A plot of the MC results on the energy spectra of electrons quasi-elastically

backscattered from Au for normally incident electrons of 5000eV mean energy and

0.3 eV FWHM. The spectrometer resolutions are 0 eV (solid curve), 0.3 eV (dashed

curve) and 0.5 eV (dotted curve).
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It is seen that tE of the present calculated spectra are in good agreement with the

approximation (Tóth et al. 1998; Gergely et al. 2001)

222
sgrt EEEE  , (4.15)

where rE is the FWHM of the recoil width broadening. For our case of 5000 eV

normally incident electrons, rE is 0.18 eV for Si and 0.0048 eV for Au. rE is

small in comparison with gE and sE used in our work. Therefore, all the

spectra are almost Gaussian distributions so that the widths of the quasi-elastic elastic

peaks are dominated by gE and sE . Figure 4.8 shows our calculated spectra

without and with the consideration of the thermal corrections in the recoil losses.

The experimental results (Varga et al. 2001) are included for comparison. Here the

electron beam with 5000 eV mean energy and eV4.0 gE was obliquely incident

into Si. The incident angle was 500. The acceptance angles were between 00 and 30.

The energy resolution of the spectrometer sE was 0.28 eV. The spectrum without

the thermal effect is a Gaussian distribution with its maximum at 4999.69 eV and a

FWHM of 0.5 eV (solid curve). For such narrow acceptance angles, the broadening

is expected to be completely dominated by gE and sE . The spectrum

including the thermal effect was calculated by applying the single scattering model

(Varga et al. 2001). In this model, it was assumed that the recoil energy losses

followed a Gaussian distribution with its maximum at the most probable recoil energy

loss for atoms at rest. Here the thermal Gaussian function with its maximum at

4999.69 eV and a FWHM eV3.0 TE was adopted for Si at room temperature.
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Fig. 4.8 A plot of the MC simulation results on the energy spectra of electrons

quasi-elastically backscattered from Si for normally incident electrons of 5000 eV

mean energy and 0.4 eV FWHM. Here electrons are incident at an angle 50
o
;

acceptance angles are between 0
o

and 3
o
; the spectrometer resolution is 0.28 eV. The

thermal effect of atoms is neglected (solid curve) and considered (dash-dot) by

applying the single scattering model (Varga et al. 2001) with a FWHM of ET = 0.3

eV at the room temperature. For comparison, the experimental data (dashed curve)

(Varga et al. 2001) are also included.
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The resulting spectrum with the thermal effect (dash-dot curve) is a Gaussian function

with a FWHM of 0.58 eV. Then we can find that this FWHM, E , is in good

agreement with 222
sgT EEEE  . However, the peak position is associated

with the most probable recoil energy loss for the vibrating atoms, not for atoms at rest.

In addition, the thermal effect in multiple scatterings shifts the peak position and

widens the spectra. Thus, this simple model is not enough to describe the shift and

the broadening. Owning to the experimental data (Varga et al. 2001) were in

arbitrary units, the experimental data shown in the figure were adjusted in magnitude

to match our expectation of absolute values.

4.1.4 Formula for Energy Spectra Contributed by
Single-scattering Event

Based on the above mentioned algorithm of the MC simulation, we can obtain a

formula that can calculate the energy distribution of quasi-elastically backscattered

electrons suffering a single scattering in solids. This formula in a differential energy

interval dE around energy E is given by
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The value of A is given by
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where  is the largest acceptance angle of escape electrons relative to outwardly

directed surface normal (i.e.   R0 ). )( 1zFI is the probability density

function for electrons reaching the depth 1z , at which the elastic scattering occurs,

without any inelastic interaction and is given by
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where  ',,0sv zEii
 is the injected electron IMFP at depth 'z . The factor

),( 1 RR zF  is the probability density function for ejected electrons at depth 1z to

reach the surface without any elastic and inelastic interactions is written as
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where  ',,0vs zEii  is the ejected electron IMFP at depth 'z . Here Rcos can

be denoted by

111 cossinsincoscoscos  IIR  (4.20)
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due to R1 and I0 substituted into Eq. (4.7) for 1i . Therefore,

the energy distribution of quasi-elastically backscattered electons contributed by a

single elastic scattering can be calculated using Eqs. (4.8) and (4.16) ~ (4.20).

For Si, Figs 4.9 presents the calculated energy distributions of the backscattered

electrons contributed by the single scattering event using Eq. (4.16) (dotted curve) and

using MC simulation method (solid curve). It is seen that the calculated results for

Eq. (4.16) are in excellent agreement with the results for MC method. The similar

results for Au can be seen in Fig. 4.10.
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Fig. 4.9 A plot of MC results on the energy distribution of electrons quasi-elastically

backscattered from Si for 5000 eV normally incident electrons suffering single elastic

scattering inside the solid (solid curve). The dotted curve represents the results

calculated by Eqs. (4.16) and (4.17).
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Fig. 4.10 A plot of MC results on the energy distribution of electrons

quasi-elastically backscattered from Au for 5000 eV normally incident electrons

suffering single elastic scattering inside the solid (solid curve). The dotted curve

represents the results calculated by Eqs. (4.16) and (4.17).
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4.2 Elastic Reflection Coefficient

Moreover, from Eq. (4.12), the elastic reflection coefficient for backscattered

electrons within a range of energy between aE and bE can be calculated using


b

a

)(),( ba

E

E

dEEIEE . (4.21)

Through the elastic reflection coefficients of electrons, significant information

can be extracted from the elastic peak. In the later sections, we used the elastic

reflection coefficients of electrons backscattered from a compound to determine the

electron effective IMFPs.

4.3 Elastic Reflection Coefficient for a Compound

4.3.1 The Monte Carlo Algorithm for a Compound

In Section 4.1.1, a MC algorithm considering the SEPs and depth-dependent

IMFPs was developed to calculate the intensity of electrons quasi-elastically

backscattered from a solid composed of only one element. In this section, the MC

algorithm is modified in order to calculate the elastic peaks of electrons backscattered

from a compound.

The modification is that a new random number 4R between 0 and 1 is

introduced to determine which element in the compound scatters the electron while an

elastic collision occurs. Using Eqs. (2.4), (2.5) and (2.7), the probability of an

electron being scattered by the j th element in the compound composed of n kinds of

elements is given by (Howell and Boyde 1998)
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Applying Eq. (4.22), the j th element is collided by the electron in each elastic

scattering event if
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ee

1
4

1

1
 , for k = 1, 2, 3,…, n. (4.23)

Eq. (4.23) can be used to determine the element which is collided by the electron.

Then the EDCS of the element is taken to find the polar scattering angle  after the

scattering through the help of Eqs. (4.1) and (4.2). In addition, the average EMFP

can be obtained from the individual element EMFPs in the compound according to Eq.

(2.6). Note that we used the relativistic model with free-atom potentials depicted in

chapter 2 to calculate the total elastic cross sections and the average EMFPs for

compounds. Then the elastic peak spectra of electrons backscattered from a

compound can be carried out using the modified MC algorithm. Also, the elastic

reflection coefficient for electrons backscattered from a compound can be obtained.

4.3.2 Using Elastic Reflection Coefficient to Determine Electron
Inelastic Mean Free Path for a Compound

The method to extract the IMFP from the elastic peak electron spectra is based

on the calculation of the elastic reflection coefficient. To determine the IMFP from

the elastic reflection coefficient, calibration curves are established. The calibration

curves present the relation between IMFP and the ratio of the elastic reflection
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coefficient for a compound sample relative to a Ni reference. In this section, the

SEPs and various values of depth-independent IMFP are first applied in the modified

MC algorithm. Then the calibration curves can be obtained. Besides, using the

extended Drude dielectric function, the calculated depth-dependent IMFPs and SEPs

were applied to determine the electron elastic reflection coefficient for a compound by

means of the modified MC simulations. Subsequently, an effective IMFP for the

compound can be extracted by the intersection of the calibration curve and the

calculated elastic reflection coefficient.

Figure 4.11 shows the intensity ratio of electrons backscattered from GaAs to

those from Ni for a 50
o

incident angle and 0
o

~ 90
o

emission angles (solid circles) and

for a 0
o

(normally) incident angle and 36.3
o

~ 48.3
o

emission angles (solid triangles).

Corresponding experimental data (open circles and triangles) (Krawczyk et al. 1998;

Zommer et al. 1998) are plotted for comparisons. The differences between present

results and experimental data are due to the lack of information on experimental

configurations.

Figure 4.12 shows the same intensity ratio as a function of depth-independent

electron IMFP, or the calibration curve, calculated using the same simulation

configurations as those applied to Fig. 4.11. The solid and dashed curves are,

respectively, for a 50
o

incident angle and 0
o

~ 90
o

emission angles and for a 0
o

incident angle and 36.3
o

~ 48.3
o

emission angles. The symbols are the

corresponding results obtained by MC simulations using the depth-dependent electron

IMFPs and SEPs. From the intersection of the calibration curve and the simulated

intensity ratio, the effective IMFP may be determined. These results of the effective

IMFP are plotted in Fig. 4.13 as a function of electron energy for a 50
o

incident angle

and 0
o

~ 90
o

emission angles (solid circles) and for a 0
o

incident angle and 36.3
o

~

48.3
o

emission angles (solid triangles). These results are also compared with
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Fig. 4.11 The intensity ratio of electrons backscattered from GaAs to those from Ni

for a 50
o

incident angle and 0
o

- 90
o

emission angles (solid circles) and for a 0
o

(normally) incident angle and 36.3
o

- 48.3
o

emission angles (solid triangles).

Experimental data of Krawczyk et al. (1998) (open circles) and Zommer et al. (1998)

(open triangles) are plotted for comparison.
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Fig. 4.12 The intensity ratio of electrons backscattered from GaAs to those from Ni

calculated using the depth-independent electron IMFP (abscissa). The solid and

dashed curves are, respectively, for a 50
o

incident angle and 0
o

- 90
o

emission angles

and for a 0
o

incident angle and 36.3
o

- 48.3
o

emission angles. The symbols are the

corresponding results obtained by MC simulations using the depth-dependent electron

IMFPs and SEPs.
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Fig. 4.13 The effective IMFP as a function of electron energy for a 50
o

incident

angle and 0
o

- 90
o

emission angles (solid circles) and for a 0
o

incident angle and 36.3
o

- 48.3
o

emission angles (solid triangles). Also plotted are experimental data of

Krawczyk et al. (1998) (open circles) and Zommer et al. (open triangles), and

calculated IMFPs for volume excitations (solid curve).
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experimental data (open circles and triangles) (Krawczyk et al. 1998; Zommer et al.

1998), and with calculated IMFPs for volume excitations (solid curve). The

effective IMFPs determined here are in good agreement with electron IMFPs for

volume excitations. This indicates that a depth-independent IMFP is approximately

valid due to the compensation of volume and surface excitations inside the solid

(Chen and Kwei 1996; Kwei et al. 1998b). Since parameters in the extended Drude

dielectric function were fitted mainly for the response of valence electrons (Chen

2002), the lack of inner shell responses caused the deviation between calculated

effective IMFPs and experimental values at high energies.
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CHAPTER 5

SUMMARY

In this thesis, the elastic and inelastic interactions between electrons and solids

were studied theoretically.

For elastic interaction, the non-relativistic and the relativistic approximations

with free-atom and solid-atom potentials to determine EDCS and EMFP were

described and compared. The calculated results showed that the relativistic

elastic-scattering model is more realistic, especially for the solids composed of heavy

atoms. In addition, the derivation of the electron total elastic cross sections and total

EMFPs for compounds was further made based on elastic cross sections and based on

elastic mean free paths of individual elements. These two methods also can

determine the probability of each element in a compound being bumped by an

electron. Besides, the recoil effect was also discussed for the energy loss of the

electron after elastic scattering. It was found that the recoil effect is significant for

atoms of low and intermediate atomic numbers.

In the research about inelastic interaction, a new model was constructed based on

the dielectric response theory. Formulas were derived to calculate the stopping

power, DIIMFP, IMFP and SEP for electrons escaping from and incident into solids.

It was found that the DIIMFP, IMFP and SEP for electrons near surfaces are

dependent of the electron’s moving direction and position. These results arise from

the number of the surface excitations varying with the electron’s distance to the solid

surface. Deep inside the solid, the DIIMFP and IMFP reduced to the values for

electrons moving in the infinite solid since the spherical coordinates were adopted.

With this adoption, the momentum integration limits can completely satisfy the
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conservations of energy and momentum. Moreover, the inelastic-scattering model

with the inclusion of retardation effect was constructed for electrons moving parallel

to solid surfaces. The calculated results for high-speed electrons revealed that the

stopping power and DIIMFP with retardation effect were lower than the stopping

power and DIIMFP without retardation effect.

Based on the theories on the elastic and inelastic interactions of electrons with

solids, we further established a MC method to simulate the energy distribution of

elastic peaks of electrons backscattered from solid surfaces. The energy distribution

is due to the Rutherford-type recoil energy losses occurring in elastic scatterings.

The simulated results showed that the recoil energy loss caused the peak energy shift

and width broadening in the ideal energy spectrum of an electron elastic peak.

However, the ideal energy spectra did not agree with the experimental data well.

Adjustment of the contributions from spectrometer energy resolution, the energy

distribution of the primary electrons and the thermal motion of atoms were included.

It was found that the width broadenings of the energy spectra of elastic peaks were

mainly contributed by the spectrometer energy resolution, the energy distribution of

the primary electrons and the thermal effect. Regarding the applied model of the

thermal effect, it was also discussed that the recoil energy loss should be centered at

the most probable value of this loss for vibrating atoms rather than for atoms at rest,

and the thermal effect due to multiple elastic scatterings could shift the peak position

and widen the peak. More information on both phenomena should be given to study

the energy distribution of electron elastic peaks. Besides, the method to extract

effective IMFPs from electron elastic peaks was discussed. We obtained the

effective IMFPs for GaAs using our MC method. The obtained effective IMFPs

were in agreement with the calculated IMFPs for volume excitation due to the

compensation of surface excitation and volume excitation inside the solid.



113

References

Abril I, García-Molina R, Denton C D, Pérez-Pérez F J and Arista N R (1998)

Phys. Rev. A 58 357.

Beilschmidt H, Tilinin I S and Werner W S M (1994) Surf. Interf. Anal. 22 120.

Beiser A (2003) Consepts of Modern Physics 6th ed. New York: The McGraw-Hill

Companies, Inc.

Boersch H, Wolter R and Schoenebneck H (1967) Z. Phys. 199 124.

Bonham R A and Strand T G (1963) J. Chem. Phys. 39 2200.

Chen Y F, Su P, Kwei C M and Tung C J (1994) Phys. Rev. B 50 17547.

Chen Y F, Kwei C M and Su P (1995) J. Phys. D: Appl. Phys. 28 2163.

Chen Y F and Kwei C M (1996) Surf. Sci. 364 131.

Chen Y F (2002) Surf. Sci. 519 115.

Cheng D K (1989) Field and Wave Electromagnetics, 2nd ed. New York:

Addison-Wesley.

Chiou S Y (1998) Thesis of Master, Hsinchu, Taiwan: National Chiao Tung

University.

Clementi E and Roetti C (1974) Atomic Data and Nuclear Data Tables 14 177.

Cowley J M (1982a) Phys. Rev. B 25 1401.

Cowley J M (1982b) Surf. Sci. 114 587.

Ding Z-J and Shimizu R (1996) Scanning 18 92.

Dolinski W, Mröz S and Zagórski M (1988) Surf. Sci. 200 361.

Dressel M and Grüner G (2002) Electrodynamics of solids: Optical Properties of

Electrons in Matter, 1st ed. United Kingdom: Cambridge University Press.

Egerton R F (1986) Electron Energy-Loss Spectroscopy in the Electron Microscope



114

New York: Plenum.

Erickson N E and Powell C J (1989) Phys. Rev. B 40 7284.

Flores F and García-Moliner F (1979) J. Phys. C. 12 907.

García-Molina R, Gras-Martí A, Howie A and Ritchie R H (1985) J. Phys. C 18

5335.

Gauvin R, L’Espérence G. and St Laurent S. (1992) Scanning 14 37.

Gergely G (1981) Surf. Interf. Anal. 3 201.

Gergely G, Sulyok A, Menyhard M, Tóth J, Varga D, Jablonski A, Krawczyk M,

Gruzza B, Bideux L and Robert C (1999) Appl. Surf. Sci. 144-145 173.

Gergely G, Menyhard M, Benedek Zs, Sulyok A, Kövér L, Tóth J, Varga D, Berényi Z

and Tőkesi K. (2001) Vacuum 61 107.

Goto K and Shimizu R (1997) Proc. Inter. Symp. Atomic Level Characterization for

Materials and Devices ’97 (Maui, Hawaii) The Microbeam Anal. vol 141 Comp.

Japan. Soc. Promotion Science, p 403.

Gruzza B and Pariset C (1991) Surf. Sci. 247 408.

Green A J and Leckey R C G (1976) J. Phys. D: Appl. Phys. 9 2123.

Howell P G T and Boyde A (1998) Scanning 20 45.

Hsu Y. H. (2003) Thesis of Master, Hsinchu, Taiwan: National Chiao Tung University.

Jablonski A (1985) Surf. Sci. 151 166.

Jablonski A, Gryko J, Kraaer J and Tougaard S (1989) Phys. Rev. B 39 61.

Jablonski A (1991) Phys. Rev. B 43 7546.

Jablonski A, Hansen H S, Jansson C and Touggard S (1992) Phys. Rev. B 45 3694.

Jablonski A, Jansson C and Touggard S (1993) Phys. Rev. B 47 7420.

Jackson J D (1975) Classical Electrodynamics, 2nd ed. New York: Wiley.

Jardin C, Gergely G and Gruzza B (1992) Surf. Interf. Anal. 19 5.

Joachain C J (1975) Quantum Collision Theory, North-Holland, Amsterdam.



115

Kirschner J and Staib P (1973) Phys. Lett. 42 335.

Kirschner J and Staib P (1975) Appl. Phys. 6 99.

Krawczyk M, Jablonski A, Tougaard S, Tóth J, Varga D and Gergely G (1998) Surf.

Sci. 402 491.

Kwei C M (1984) Thin Solid Films 111 83.

Kwei C M, Chen Y F, Tung C J and Wang J P (1993) Surf. Sci. 293 202.

Kwei C M, Su P, Chen Y F and Tung C J (1997) J. Phys. D: Appl. Phys. 30 13.

Kwei C M, Chen Y F and Tung C J (1998a) J. Phys. D: Appl. Phys. 31 36.

Kwei C M, Wang C Y and Tung C J (1998b) Surf. Interface Anal. 26 682.

Kwei C M, Chiou S Y and Li Y C (1999) J. Appl. Phys. 85 8247.

Kwei C M, S S Tsai and Tung C J (2001) Surf. Sci. 473 50.

Kwei C M, Hwang S J, Li Y C and Tung C J (2003) J. Appl. Phys. 93 9130.

Laser D and Seah M P (1993) Phys. Rev. B 47 9836.

Lesiak B, Kosinski A, Krawczyk M, Zommer L, Jablonski A, Zemek J, Jiricek P,

Kővér L, Tóth J, Varga D and Cserny I (1999) Appl. Surf. Sci. 144-145 168.

Marks L D (1982) Solid State Commun. 43 727.

Mott N F (1929) Proc. R. Soc. A 124 425.

Murata K, Yasuda K and Kawata H (1995) Scanning 17 228.

Moreau P, Brun N, Walsh C A, Colliex C and Howie A (1997) Phys. Rev. B 56 6774.

Ohanian H. C. Principles of Quantum Mechanics, New Jersey: Prentice-Hall.

Oswald R (1997) Ph.D. thesis, University of Tubingen.

Reimer L (1985) Scanning Electron Microscopy, New York: Springer.

Ritchie R H (1957) Phys. Rev. 106 874.

Shimizu R and Ding Z-J (1992) Repors Progr. Phys. 487.

Su P, (1994) Thesis of Master, Hsinchu, Taiwan: National Chiao Tung University.

Sulyok A, Gergely G, Menyhard M., Tóth J, Varga D, Kővér L, Berényi Z, Lesiak B



116

and Kosinski A (2001) Vacuum 63 371.

Tanuma S, Powell C J and Penn D R (1988) Surf. Interf. Anal. 11 577.

Tanuma S, Powell C J and Penn D R (1991a) Surf. Interf. Anal. 17 911.

Tanuma S, Powell C J and Penn D R (1991b) Surf. Interf. Anal. 17 927.

Tanuma S, Ichimura S and Goto K (2000) Surf. Interf. Anal. 30 212.

Tóth J, Varga D, Cserny I,KővérL, Gruzza B, Zeze D, Jardin C and Gergely G (1998)

Vacuum 50 473.

Tucker T C, Roberts L D, Nestor C W and Carson T A (1969) Phys. Rev. 178 998.

Tung C J, Chen Y F, Kwei C M and Chou T L (1994) Phys. Rev. B 49 16684.

Tung C J and Ritchie R H (1977) Phys. Rev. B 16 4302.

Varga D, Tőkési K, Berényi Z, Tóth J, Kővér L, Gergely G and Sulyok A (2001) Surf.

Interf. Anal. 31 1019.

Yubero F and Tougaard S (1992) Phys. Rev. B 46 2486.

Yubero F, Sanz J M, Ramskov B and Tougaard S (1996) Phys. Rev. B 53 9719.

Zommer L, Lesiak B, Jablonski A, Gergely G, Menyhard M, Sulyok A and Gurban S

(1998) J. Elect. Spectrosc. Rel. Phenomen. 87 177.



117

簡 歷

姓 名：黎 裕 群

性 別：男

出生日期：民國 66 年 10 月 12 日

出 生 地：台灣省花蓮縣

學 歷：

國立交通大學電子工程學系畢業（85 年 6月～89 年 2月）

國立交通大學電子研究所碩士班（89年 2月～90 年 2月）

國立交通大學電子研究所博士班（90年 2月入學）

論文名稱：準彈性反射電子模擬與分析

The Simulation and Analysis of Quasi-elastically Backscattered
Electrons



118

PUBLICATION LIST

Referred Journal Papers:

1. Y. C. Li, Y. H. Tu, C. M. Kwei and C. J. Tung, “Influence of the Direction of
Motion on the Inelastic Interaction between Electrons and Solid Surfaces,”
Surf. Sci. (accepted)

2. C. M. Kwei and Y. C. Li, “Electron inelastic mean free paths and surface
excitation parameters for GaAs,”Appl. Surf. Sci. 238, 151 (2004).

3. C. M. Kwei, Y. C. Li and C. J. Tung, “Energy Spectra of Electrons
Quasi-elastically Backscattered from Solid Surfaces,” J. Phys. D: Appl. Phys.
37, 1394 (2004).

4. C. M. Kwei, S. J. Hwung, Y. C. Li, and C. J. Tung, “Energy Losses of Charged
Particles Moving Parallel to the Surface of an Overlayer System,” J. Appl.
Phys. 93, 9130 (2003).

5 C. M. Kwei, S. Y. Chiou and Y. C. Li, “Electron Inelastic Interaction with
Overlayer Systems,”J. Appl. Phys. 85, 8247 (1999).

International Conference Papers:

1. C. M. Kwei, Y. C. Li and C. J. Tung,“Angular and Energy Dependences of the
Surface Excitation Parameter for Electrons Crossing a Solid Surface,”in 23rd
European Conference on Surface Science (ECOSS 23). (accepted)

2. C. M. Kwei and Y. C. Li,“Electron inelastic mean free paths and surface
excitation parameters for GaAs,”in 1st International Meeting on Applied
Physics (APHYS 2003), pp. 314 (2003)


