
國 立 交 通 大 學

資訊科學系

碩 士 論 文

支援無線區域網路服務品質之

改良型公平排程策略

An Enhanced Fair Scheduling for QoS

 in IEEE 802.11e Wireless LANs

 研 究 生：曾昆南

 指導教授：王國禎 博士

中 華 民 國 九 十 三 年 六 月

支援無線區域網路服務品質之改良型公平排程策略

An Enhanced Fair Scheduling for QoS in IEEE 802.11e
Wireless LANs

研 究 生：曾昆南 Student：Kun-Nan Tseng

指導教授：王國禎 Advisor：Kuochen Wang

國 立 交 通 大 學

資 訊 科 學 系

碩 士 論 文

A Thesis

Submitted to Department of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

i

支援無線區域網路服務品質之

改良型公平排程策略

學生：曾昆南 指導教授：王國禎 博士

國立交通大學資訊科學系

摘 要

隨著無線區域網路越來越受歡迎，對於支援多媒體和確保服務品

質的應用程式需求變得比以前更重要。雖然有很多改進原本IEEE

802.11 MAC的機制被提出來，以支援服務品質，但是他們對於高優先

權和低優先權的流量會有頻寬分配不公平的現象。我們提出一個分散

式加強型公平排程策略來解決上述問題。基於在後退計數器遞減狀態

的快速後退機制和依網路負載情況來動態修改後退區間的機制，我們

可以強化加強型公平排程策略的效能。我們經由模擬來評估本加強型

公平排程策略的效能。實驗結果顯示我們所提出的加強型公平排程策

略比分散式公平排程策略高出13%的效能和比分散式公平排程策略低

6%的平均MAC延遲時間，而且兩者有幾乎相等的公平指標。雖然IEEE

ii

802.11e的進階分散式頻道存取機制比加強型公平排程策略和分散式

公平排程策略有較好的效能，但是它非常不公平。進階分散式頻道存

取機制的免競爭機制是導致高效能、低平均MAC延遲時間和低公平性

的主因。我們的加強型公平排程策略非常適合於對頻寬公平分配要求

很高的應用程式，如付費應用服務。

關鍵詞：公平排程策略、IEEE 802.11e、服務品質、無線區域網路。

iii

An Enhanced Fair Scheduling for QoS in
IEEE 802.11e Wireless LANs

Student：Kun-Nan Tseng Advisor：Dr. Kuochen Wang

Department of Computer and Information Science
National Chiao Tung University

Abstract

 As wireless LANs are gaining popularity, the demand for supporting multimedia

and QoS-sensitive applications becomes more important than before. Although

enhancements to the legacy IEEE 802.11 MAC to support QoS mechanisms have

been proposed, they suffer from unfair allocation of bandwidth between high and low

priority traffic. We propose a distributed enhanced fair scheduling (EFS) scheme that

can conquer the above problem. With a fast backoff mechanism in the backoff timer

decrement state and by dynamically adjusting backoff intervals according to the

network load, we can enhance the performance of EFS. We evaluate the performance

of EFS through simulation. Experimental results show that the proposed EFS has

better throughput performance than DFS by 13%, lower average MAC delay than

DFS by 6% and the two have nearly equal fairness. Although the enhanced distributed

channel access (EDCA) in IEEE 802.11e has better throughput and delay

performance than EFS and DFS, it has very poor fairness. The contention free burst

(CFB) mechanism in EDCA is the main factor that results in good throughput

performance, lower average MAC delay and poor fairness. Our EFS is very suitable

for applications that needs strict fair bandwidth allocation, such as pay services.

iv

Keywords：fair scheduling, IEEE 802.11e, quality of service, wireless LAN.

v

Acknowledgements

Many people have helped me with this thesis. I deeply appreciate my thesis

advisor, Dr. Kuochen Wang, for his intensive advice and instruction. I would like to

thank all the classmates in Mobile Computing and Broadband Networking Laboratory

for their invaluable assistance and suggestions. The support by the National Science

Council under Grant NSC92-2213-E-009-078 is also grateful acknowledged.

Finally, I thank my Father and Mother for their endless love and support.

vi

Contents

Abstract (in Chinese) i

Abstract (in English) iii

Acknowledgements v

Contents vi

List of Figures viii

List of Tables ix

Chapter 1 Introduction..1

Chapter 2 Previous Work..4

2.1 The Enhanced Distributed Channel Access (EDCA).......................................4

2.2 The Fast Collision Resolution (FCR) Algorithm ...5

2.3 The Distributed Fair Scheduling (DFS) ...7

2.4 The Distributed Deficit Round-Robin Scheme..11

Chapter 3 Design Approach: Enhanced Fair Scheduling13

3.1 The EFS Design Framework..13

3.2 Dynamically Updating Division_Factor ..21

vii

Chapter 4 Simulation Model and Simulation Results ..24

4.1 Simulation Model...24

4.2 Simulation Results ...26

4.2.1 Aggregate Throughput..26

4.2.2 Fairness Index and Throughput Variance...27

4.2.3 MAC Delay...31

Chapter 5 Conclusions and Future Work..32

5.1 Concluding Remarks..32

5.2 Future Work ...32

Bibliography ...34

viii

List of Figures

Fig. 1. IEEE 802.11e EDCA IFS relationship..5

Fig. 2. Basic operation of CSMA/CA [10]. ...7

Fig. 3. The SCFQ algorithm...10

Fig. 4. The DFS maps the output link in SCFQ to the shared medium and the input

flows to the traffic from wireless nodes; DFS is a distributed version of SCFQ.

..10

Fig. 5. The DDRR mechanism...12

Fig. 6. The state transition of EFS. ..14

Fig. 7. The backoff timer decrement state..16

Fig. 8. The aggregate throughput of high and low priority flows............................27

Fig. 9. The fairness index of different schemes. ..28

Fig. 10. The throughput obtained by each high priority station (flow)....................30

Fig. 11. The throughput obtained by each low priority station (flow).30

Fig. 12. The average MAC delay of different schemes ...31

ix

List of Tables

Table 1：Simulation parameters..25

Table 2：Comparison between various schemes...29

1

Chapter 1
Introduction

The IEEE 802.11 Wireless LAN is gaining a lot of popularity in recent years

because of cost-effectiveness in building a wireless broadband network environment.

Mobile computing devices such as portable computers and personal digital assistants

become indispensable in our daily activities. With the increasing use of wireless local

LANs, there is high demand for supporting multimedia and QoS-sensitive

applications. Because the IEEE 802.11 legacy MAC is only suitable for

QoS-insensitive applications, the enhancements to the legacy MAC to support QoS

mechanisms [14, 15, 16, 17] have been proposed. The enhancements provide service

differentiation by statically assigning priorities to classes. A high priority class is

assigned a shorter interframe space (IFS) and a shorter contention window (CW) than

a low priority class. However, these approaches suffer from unfair allocation of

bandwidth between high and low priority traffic. Fair scheduling [1, 7, 19] was

designed to overcome the above problem by partitioning the bandwidth fairly between

different traffic classes. In the thesis, we propose an enhanced fair scheduling (EFS)

scheme based on the distributed fair scheduling (DFS) [2]. The proposed EFS

integrates the DFS’s idea of calculating backoff interval of packets and the Fast

Collision Resolution’s idea [10] of decreasing backoff timer exponentially. The

proposed EFS can provide better throughput and delay performance than DFS and

maintain nearly equal fairness.

2

Much researches on fair scheduling algorithms for achieving a fair allocation of

bandwidth on a shared wired link [1, 7, 18, 19] have been proposed. All fair

scheduling algorithms are based on the fluid fair scheduling model [18]. In the model,

packet flows are modeled as fluid flows. Fluid fair scheduling guarantees that for an

arbitrary time interval [t1, t2], any two backlogged flows i and j are served in

proportion to their weights, which are represented by the following equation:

j

j

i

i ttWttW
φφ

),(),(2121 = (1)

where Wi(t1,t2) and ψi are the service amount received (bits) by flow i during time

interval [t1, t2] and the weight of flow i, respectively.

However, in the real network world, systems handle flows at the granularity of

packets rather than bits. Therefore, the main objective of packet fair queuing (PFQ)

algorithm is to approximate the Generalized Processor Sharing (GPS) [18] as closely

as possible. The GPS is an ideal fluid fair scheduling model. The most famous PFQ

algorithm is the weighted fair queuing (WFQ) [22], equivalently a packetized

generalized processor sharing (PGPS). However, WFQ has its drawbacks that it is not

easy to implement because the cost of maintaining a priority sorting queue and the

overhead of computing the virtual system time is very high. Self clocked fair queuing

[7] and start time fair queuing [19] reduced implementation complexity of WFQ. The

PFQ algorithms developed for wired networks cannot be directly applied to wireless

networks because of bursty and location-dependent errors in wireless channels. In the

3

next chapter, we will describe classical fair scheduling algorithms that emulated the

PFQ algorithm in wireless networks.

The subsequent chapters of this thesis are organized as follows. In Chapter 2, we

describe previous work in this research area. We describe the proposed EFS in detail

In Chapter 3. In Chapter 4, we evaluate the throughput and delay performance, and

the fairness index of the proposed EFS via simulation. In Chapter 5, we summarize

our current work and address future prospect.

4

Chapter 2

Previous Work
We will review the enhanced distributed channel access (EDCA) [6, 13], the fast

collision resolution (FCR) [10], distributed fair scheduling (DFS) [2], and distributed

deficit round-robin (DDRR) [8] schemes in this chapter. The FCR contributed to

throughput performance improvement. The DFS incorporated fair queuing to wireless

LANs. The DDRR translated user requirements into appropriate IFSs to provide

service differentiation.

2.1 The Enhanced Distributed Channel Access

(EDCA)

The fundamental MAC protocol [3] used in 802.11 can not support

QoS-sensitive applications. Therefore, the 802.11e draft introducing the enhanced

distributed channel access (EDCA) and hybrid coordination function (HCF) to

support QoS are currently under discussion [6]. Service differentiation is achieved

through the introduction of access categories (ACs). Each AC on a station contends

for a transmission opportunity (TXOP) [6] and has its own transmission queue. Each

transmission queue has a different interframe space (called arbitrary interframe

space – AIFS[AC]), and a different set of contention window limits (CWmin[AC] and

CWmax[AC]). Fig. 1 illustrates the detailed IFS relationship. Each AC start its

backoff procedure when the medium is idle for AIFS[AC] time. When an AC start its

5

backoff procedure, it chooses a backoff interval uniformly distributed in [0,

CWmin[AC]]. The AC will transmit its packet immediately when the backoff interval

counts down to zero. Although the 802.11e support better QoS than the legacy 802.11,

it suffers from unfair allocation of bandwidth between high and low priority traffic

and has high throughput variability. Randomness in accessing the medium is the main

factor resulting in high throughput variability.

busy medium

SIFS

PIFS

min AIFS[AC] = DIFS

AIFS[AC]

Contention Window

Slot time

Backoff interval

transmit

Start backoff procedure when medium is
free ≥ AIFS[AC]

Fig. 1. IEEE 802.11e EDCA IFS relationship.

2.2 The Fast Collision Resolution (FCR) Algorithm

The main deficiency of the IEEE 802.11 MAC protocol [3] comes from packet

collisions and wasted idle slots due to backoffs in each contention cycle (as shown in

Fig. 2). For example, when the number of active nodes is very large, there are too

many nodes backed off with small contention windows, hence many retransmission

attempts will most likely collide again in the future. An active node can be in two

modes at each contention cycle, namely, the transmitting mode when it wins a

contention and the deferring mode when it loses a contention. When a node transmits

a packet, the result is either successful or unsuccessful collision. Therefore, a node

6

will be in one of the following three states at each contention cycle: a successful

packet transmission state, a collision state, and a deferring state. The fast collision

resolution (FCR) [10] algorithm aimed to resolve the collisions quickly by increasing

the contention windows sizes of both the colliding nodes and the deferring nodes in

the contention resolution. The FCR regenerates the backoff timers for all potential

transmitting nodes to avoid possible future collisions. The FCR algorithm preserves

the simplicity for implementation, just like the IEEE 802.11 MAC. The FCR

algorithm has following characteristics [10]:

1) Use a much smaller initial (minimum) contention window size CWmin

than that in the IEEE 802.11 MAC [10];

2) Use a much larger maximum contention window size CWmax than that in

the IEEE 802.11 MAC [10];

3) Increase the contention window size of a station when it is in either

collision state and deferring state [10];

4) Reduce the backoff timers exponentially when a prefixed number of

consecutive idle slots are detected [10].

Items 1) and 4) attempt to reduce the average number of idle backoff slots for

each contention cycle [10]. Items 2) and 3) are used to quickly increase the backoff

timers, hence quickly decrease the probability of collisions [10]. Item 3) is the major

difference from that of the IEEE 802.11 MAC. In the IEEE 802.11 MAC, the

contention window of a station is increased only when it experiences a transmission

failure. In the FCR algorithm, the contention window of a station will increase not

only when it experiences a collision but also when it is in the deferring mode and

7

senses the start of a new busy period.

Fig. 2. Basic operation of CSMA/CA [10].

2.3 The Distributed Fair Scheduling (DFS)

Some schemes using fair scheduling were designed to overcome the unfair

problem. This kind of schemes can provide relative differentiation, for example

specifying that one type of traffic should get twice as much bandwidth as some other

type of traffic. For instance, Vaidya et al. [2] proposed Distributed Fair Scheduling

(DFS), attempting to emulate Self-Clocked Fair Queuing (SCFQ) [7]. SCFQ is a

centralized algorithm for packet scheduling on a link shared by multiple flows as

shown in Fig. 3. The central coordinator maintains a virtual clock and at any given

time t, v(t) represents the virtual time. Let Pi
k denote the kth packet arriving on flow i.

Let Ai
k is the real time of arrival for packet Pi

k. Let Li
k denote the size of the packet Pi

k.

A start tag Si
k and a finish tag Fi

k are associated with each packet Pi
k. The algorithm is

as follows [2]:

8

1. iFi ∀= ,00 .

2. On arrival of packet k
iP , the packet is stamped with start tag k

iS using

following equation:

}),(max{ 1−= k
i

k
i

k
i FAvS

3. A finish tag k
iF for each packet k

iP is calculated as:

i

k
ik

i
k

i
LSF
φ

+=

where iφ is the weight of flow i .

4. Initially the virtual clock v(0) is set to 0. The virtual time is updated after a

new packet is transmitted. When a packet begins transmission on the output

link, the virtual clock is set equal to the finish tag of that packet .

5. Packets are selected for transmission in an ascending order of finish tags.

In the SCFQ algorithm, the start and finish tags are calculated when a packet

arrives in a flow. Alternatively, the start tag can be calculated when a packet reaches

the front of its flow. If the packet arrives when the flow is empty, the time fi
k is the

real time when the packet reaches the front of its flow. If the flow is not empty, fi
k is

the real time when packet Pi
k-1 finishes the transmission. Thus the start tag for a

packet can be calculated as

)(k
i

k
i fvS = (2)

Like SCFQ, DFS determines the packet transmission based on the finish tag of

9

each packet and the virtual time is updated in the same way as that in SCFQ. DFS

attempts to map the shared wireless medium to the output link and the input flows

paradigm of SCFQ. As shown in Fig. 4, the output link in Fig. 3 is mapped to the

shared wireless medium and the input flows are mapped to the flows from each node.

In the DFS, a packet with the smallest ratio between its length and weight receives the

highest priority to transmit. The main idea of this scheme is to pick a backoff interval

proportional to the finish tag of the packet. It attempted to emulate the Self-Clocked

Fair Queuing (SCFQ) [7] in a distributed manner so as to transmit the packet with the

minimum finish tag first. A backlogged node i picks a backoff interval Bi as a function

of its weight, iϕ , and packet length Li, as follows:

 ⎣ ⎦⎣ ⎦ρϕ */*_ iii LFactorScalingB = . (3)

Where ρ , a random variable uniformly distributed in [0.9, 1.1], which is introduced to

reduce the possibility of collisions [2].

 Since flows with high weights get shorter backoff interval than flows with low

weights, differentiation will be achieved. Furthermore, the procedure of calculating

backoff interval takes the size of packets into account. This will cause small packets

to get shorter backoff intervals than large packets, allowing a station with small

packets to send more often so that the same amount of data is sent [2]. When a

collision occurs, a new backoff interval is calculated using the backoff procedure of

the IEEE 802.11 standard [3] where the initial contention window is assigned 4 [2].

The reason for choosing such a short contention window although a collision has

occurred is that DFS tried to maintain fairness among nodes, and thus colliding

stations should be able to send packets as soon as possible. However, mapping the

QoS requirement to the weight is complicated.

10

Fig. 3. The SCFQ algorithm.

Fig. 4. The DFS maps the output link in SCFQ to the shared medium and the input

flows to the traffic from wireless nodes; DFS is a distributed version of SCFQ.

11

2.4 The Distributed Deficit Round-Robin Scheme

The distributed deficit round-robin (DDRR [8]) QoS scheme is based on the

concept of DRR scheduling [1] at the MAC layer of IEEE 802.11. As shown in Fig. 5,

the mechanism translates user requirements into appropriate interframe spaces to

provide service differentiation and achieves fairness by making use of deficit

round-robin fair scheduling [1]. Traffic at each mobile station is categorized into

classes with different QoS requirements. A traffic class requiring high throughput

receives a fast service quantum rate [8]. Each traffic class maintains a deficit counter

of accumulated quanta and can transmit only when its deficit counter achieves a

minimum requirement. If the deficit counter of a traffic class falls below a minimum

requirement, the traffic class must wait until its deficit counter becomes higher than

the minimum requirement. The deficit counter is reduced by the length of the

transmitted frame. The deficit counter value is translated into an appropriate

interframe space. A traffic class with a smaller interframe space will access the

medium first than that with a higher interframe space. A mobile station will transmit

its frame immediately after the medium has been free for the interframe space period.

If the medium is busy, the mobile station waits for it to become idle, and then

immediately transmits after the medium has been free for the new interframe space

period. In the DDRR scheme, it eliminates the backoff algorithm because of its

contribution to large variation in throughput and delay [14]. Instead, the interframe

space value resulting from a deficit counter is multiplied by a random number

between 1 and a value β > 1 to reduce collision probability [14]. The DDRR suffers

from high collision probability when the number of mobile stations is large.

12

Fig. 5. The DDRR mechanism.

13

Chapter 3
Design Approach: Enhanced Fair
Scheduling

We first describe our EFS design framework, including the state transition and

the mechanism in each state. Then, we describe how we dynamically update the

Division_Factor.

3.1 The EFS Design Framework

We propose an efficient fair scheduling scheme by integrating some of ideas

from the DFS scheme [2] and the FCR [10]. The proposed EFS borrows the DFS’s

idea of calculating backoff interval of packets and the FCR’s idea of decreasing

backoff timer exponentially. The goal of the proposed EFS is to provide fair

bandwidth allocation and good throughput by reducing idle backoff slot time. The

essential idea of the proposed EFS is to choose a backoff interval that is proportional

to the finish tag of a packet to be transmitted and decrement the backoff timer

exponentially when consecutive idle slots are detected. We now describe the design

approach in detail. We assume that all packets at a node belong to a single flow as

proposed in [2]. In a multiple flows case, when station i needs to select the next

packet that it will attempt to transmit, it selects the packet with the smallest finish tag

among packets at the front of all backlogged flows at station i. When packet Pi
k

reaches the front of its queue, it is tagged with a start tag and a finish tag. Pi
k

represents the kth packet arriving at the flow at station i. Si
k, the start tag of Pi

k, is

14

calculated as Si
k=v(ai

k), where k
ia represents the real time when packet Pi

k reaches the

front of the flow. Finish tag Fi
k is assigned as follows:

i

k
ik

i
k

i
L

FactorScalingSF
φ

×+= _ (4)

where Li
k represents the length of packet Pi

k and iφ represents the weight of station i .

An appropriate choice of the Scaling_Factor allows us to choose a suitable scale for

the virtual time.

Fig. 6. The state transition of EFS.

15

The next step is to choose a backoff interval such that a packet with smaller

finish tag will be assigned a smaller backoff interval. This step will be performs in the

successful packet transmission state. An active station can be in two modes at each

contention cycle, namely, the transmitting mode when it wins a contention and the

deferring mode when it loses a contention. When a station transmits a packet, the

result is either successful or failed. Therefore, a station will be in one of the following

four states at each contention cycle: a successful packet transmission state, a backoff

timer decrement state, a transmission failure state, and a deferring state. Fig. 6 shows

the state transition of the EFS. The operation of the proposed EFS is described as

follows according to the state of a station is in:

1) Backoff timer decrement state: If an active station senses the medium idle for a

slot, then it will start decrementing its backoff timer by aSlotTime, as shown in

equation (5):

aSlotTimeBB oldnew −= . (5)

where Bold means the old backoff interval and Bnew means the new backoff interval.

When the backoff timer reaches to zero, the station will transmit a packet immediately.

If there are BTD (Backoff Threshold) consecutive idle slots being detected, its backoff

timer will be decreased much faster according to equation (6):

16

DFBB oldnew /= (if Bnew ＜ aSlotTime, then 0=newB). (6)

where DF represents Division_Factor.

BTD is a constant parameter which will be clear later and the DF parameter will

be modified dynamically according to the network load condition. The value of DF

can determine the speed of decreasing the backoff interval. The algorithm of

modifying DF will be explained in detail later. A station can maintain a counter

(called BTD Counter) whose default value is equal to BTD. When the station detects

an idle slot time, it decrements its BTD counter by one. When the BTD counter

reaches zero, the station will start decrementing the backoff timer exponentially. That

is, the station enters the fast decreasing stage from the linear decreasing stage (as

shown in Fig. 7).

Fig. 7. The backoff timer decrement state.

For example, consider two flows, flow 1 at station 1 with weight 0.1 and flow 2

at station 2 with weight 0.05. Let the packet size be 1000 bytes, the Division_Factor

(DF) be 1.5, the Backoff Threshold (BTD) be 60, and the Scaling_Factor be 0.02. The

value of Scaling_Factor × PacketSize/weight is the backoff interval (The detail of

17

choosing a backoff interval will be illustrated in “3) successful packet transmission

state” and for simplicity, we assume that ρ is 1). Thus, the backoff interval will be

200 time slots for flow 1, and 400 time slots for flow 2. When an idle slot is detected,

the backoff interval will be 199 time slots for flow 1, and 399 time slots for flow 2,

respectively. Each flow will subtract one slot time from its backoff interval until there

are 60 consecutive idle time slots being detected. Suppose that there are 60

consecutive idle slots being detected. Now the backoff interval is 140 time slots for

flow 1 and 340 time slots for flow 2. Then when an idle slot is detected, the backoff

interval will be 93 (140/1.5) time slots for flow 1 and 226 (340/1.5) time slots for flow

2. When an idle slot is detected again, the backoff interval will be 62 (93/1.5) time

slots for flow 1 and 150 (226/1.5) time slots for flow 2. The rest may be deduced by

analogy. The backoff interval of flow 1 will reach zero first, and then flow 1 will

transmit its packet immediately.

2) Transmission failure (packet collision) state: Each station must maintain a

CollisionCounter that counts the number of successive collisions. If a station notifies

that its packet transmission has failed possibly due to a packet collision, then the

station must react with the following procedure:

(i) It increments CollisionCounter by 1

 (ii) It chooses a new Backoff interval uniformly distributed

 in])11(,1[1
⎥⎦
⎥

⎢⎣
⎢ ×+ − K

DF
ounterCollisionC

where K is a constant parameter.

The station will choose a small backoff interval in the range []K,1 after the first

collision for a packet. The station will choose a backoff interval in the range

18

⎣ ⎦[]KDF ×+)/11(,1 if collision occurs again. To protect against the situation when too

many stations collide, the range for the backoff interval grows exponentially with the

number of consecutive collisions. The station with higher DF than others will access

the medium with a higher probability. The motivation for choosing a small backoff

interval after the first collision is that since the colliding station was a potential winner

of the contention for channel access, it is the colliding station turn to transmit in the

near future. Therefore, the backoff interval is chosen to be small to increase the

probability that the colliding station wins the contention soon. We set K to 8 while in

the DFS K is set to 4. The reason for setting K to 8 is that since the proposed EFS

includes a fast decreasing stage of the backoff interval, we double its value to reduce

the collision probability.

For example, assume that flow 1 with DF 1.4 at station 1 and flow 2 with DF 1.0

at station 2 collide and that K is equal to 8. Then flow 1 and flow 2 will increment

their CollisionCounter’s by 1 and pick a new backoff interval uniformly distributed in

[1, 8]. Suppose that the DF of flow 1 and the DF of flow 2 remain the same and flow

1 and flow 2 will collide again after picking their new backoff intervals. Then flow 1

and flow 2 will increment their CollisionCounter’s by 1, flow 1 will pick a new

backoff interval uniformly distributed in [1, 13] (⎣ ⎦ 1381/1.4)(1 =×+), and flow 2 will

pick a new backoff interval uniformly distributed in [1, 16] (⎣ ⎦ 168)1/11(=×+).

Suppose that unfortunately flow 1 and flow 2 collide again after picking their new

backoff intervals. Flow 1 and flow 2 both increment their CollisionCounter’s by 1

again and now their CollisionCounter’s are equal to 2. Thus, flow 1 will pick a new

backoff interval uniformly distributed in [1, 23] (⎣ ⎦ 238)4.1/11(2 =×+) and flow 2 will

pick a new backoff interval uniformly distributed in [1, 32] (⎣ ⎦ 328)1/11(2 =×+). Thus,

we let a high DF flow get a higher probability to access the medium than a low DF

19

flow.

3) Successful packet transmission (choosing a backoff interval) state: If a station

i successfully transmits a packet with finish tag Z at time t, it will pick a suitable

backoff interval Bi for its next packet as proposed in [2] and it sets its virtual clock vi

equal to max(vi(t), Z). The backoff interval is derived from equation (4). Suppose the

station i will transmit its next packet, Pi
k. The station i will tag the packet with a

finish tag. This step is performed at time ai
k. Thus, station i picks a backoff interval Bi

for packet Pi
k, as a function of Fi

k and the current virtual time vi(ai
k), as follows:

⎣ ⎦)(k
i

k
ii avFB −= (7)

We combine equation (4) with equation (7) and observe that, since)(k
i

k
i avS = ,

equation (7) reduces to:

⎥
⎦

⎥
⎢
⎣

⎢
×=)_(

i

k
i

i
L

FactorScalingB
φ

 (8)

Finally, we will randomize the Bi as shown in equation (9). The meaning of Li
k

and ψi have been described before. ρ is a random variable uniformly distributed in

the range [0.9, 1.1] to reduce the possibility of collisions. After deciding the value of

Bi, we assign Bold the value of Bi to preserve Bi which will be used in the deferring

state. Bold is used in the backoff timer decrement state.

20

⎥
⎦

⎥
⎢
⎣

⎢
××=)_(

i

k
i

i
LFactorScalingB
φ

ρ (9)

In this state, the station must reset its CollisionCounter to zero and the BTD Counter

to BTD.

4) Deferring state: Each transmitted packet is tagged with a finish tag. So when

at time t station i hears a packet with finish tag Z, it calculates the difference

between Z and the current virtual clock vi(t)., i.e.))((tvZ i−=∆ . If station i is in the

fast decreasing stage with 0>∆ , it resets its Bi according to equation (10).

)}B(,Bmax{ iold ∆− (10)

and then resets Bold to Bi. The reason we preserve the value of Bi is clear here. In order

to maintain fairness, this procedure is necessary since we incorporate a fast backoff

mechanism. Finally, the station i sets its virtual clock iv equal to)Z),t(vmax(i .

For example, consider two flows, flow 1 at station 1, and flow 2 at station 2, with

weights 0.2 and 0.1, respectively. Let the packet size be 1000 bytes, the

Division_Factor (DF) be 1.5, the Backoff Threshold (BTD) be 60, and the

Scaling_Factor be 0.02. Then, the backoff interval will be 100 time slots for flow 1,

and 200 time slots for flow 2. For simplicity, we also assume that ρ used for

calculating a backoff interval is 1.0 in this example. Then, flow 1 will choose a

backoff interval of 100 time slots for all its packets and flow 2 will choose a backoff

21

interval of 200 time slots for all its packets. As a result, on average, the number of

packets transmitted by flow 1 is 2 times than the number of packets transmitted by

flow 2. However, since we introduce the fast backoff mechanism, we must

recalculating a backoff interval to maintain fairness. When an idle slot is detected, the

backoff interval will be 99 time slots for flow 1, and 199 time slots for flow 2,

respectively. Each flow will subtract one slot time from its backoff interval until there

are 60 consecutive idle time slots being detected. Suppose that there are 60

consecutive idle time slots being detected. Now the backoff interval is 40 time slots

for flow 1 and 140 time slots for flow 2. Then when an idle slot is detected, the

backoff interval will be 26 (40/1.5) time slots for flow 1 and 93 (140/1.5) time slots

for flow 2. When an idle slot is detected again, the backoff interval will be 17 (26/1.5)

time slots for flow 1 and 62 (93/1.5) time slots for flow 2. The rest may be deduced

similarly. The backoff interval of flow 1 will reach zero first, and transmit its packet

immediately. After flow 1 transmits its packet, the backoff interval of flow 2 is 5. If

we did not incorporate the fast backoff mechanism, the backoff interval of flow 2

should be 100. Thus we must recalculate the backoff interval of flow 2. The new

backoff interval of flow 2 is 100 (max {5, 200－100}). One notable point is why we

select max in equation (10). The consideration is that when a station i receiving a

packet just enters the fast decreasing stage, the Bold of the station may be greater than

Bi－△. At this moment, resetting the backoff interval, Bi, to Bold is more appropriate.

3.2 Dynamically Updating Division_Factor

In order to take into account the network load condition for Division_Factor

adaptation, we use a measurement scheme similar to [11] to get the related network

information. We use the number of collisions as an indicator of the network load

condition. The time domain is divided into continuous measurement periods (MPs)

22

with specified period size. A measurement period (MP) is defined as the number of

time slots. When the kth measurement period, denoted by MPk, expires, the station

summarizes the network load condition indicator)(kδ [11] during MPk as follows:

s

c

n
n

k =)(δ (11)

where nc is the number of collisions which occurred during MPk, and ns is the total

number of packets sent during MPk. Because)(kδ cannot precisely represent the

long-term network load condition, we also use an estimator of Exponentially Weighted

Moving Average [11] to smoothen the estimated value of each measurement period.

The average network load condition indicator during MPk, denoted by)(kavgδ is

computed as follows:

)()1()1()(kkk avgavg δθδθδ ×−+−×= (12)

where 10 <<θ . We set θ to be 0.8, as proposed in AEDCF [11]. The

Division_Factor (DF) will be modified every MP according to the following

condition:

)1()(−−=∆ kk avgavgk δδ (13)

23

If 0>∆k ,)DF))k((,min(DF avg ×−= δ11 (14)

If 0<∆k ,)DF))k((,max(DF avg ×+= δ12 (15)

So when the network load condition becomes better than that in the last MP, we

increase the DF to decrement the backoff timer faster and when the network load

condition becomes worse than that in the last MP, we decrease the DF to decrement

the backoff timer slower. Thus the value of DF is adapted to the network condition.

We let the minimum value of DF be 1 so that the backoff timer decrements just like

the original procedure (i.e., equation (5)). We let the maximum value of DF be 2 so

that the backoff timer will not decrement too fast so as to increase the collision

probability.

24

Chapter 4
Simulation Model and Simulation
Results

We evaluate the performance of the proposed EFS using the network simulator

ns-2 [9] which supports IEEE 802.11 DCF functionality. We extended the simulator to

implement the proposed EFS. We also included the implementations of DFS [2] and

EDCA [13] made by other researchers.

4.1 Simulation Model

In the simulation model, the bandwidth of the wireless LAN is 11 Mbps and the

number of stations in the wireless LAN is n. In a wireless LAN with n stations, we set

up n/4 high priority flows and n/4 low priority flows (n is always chosen to be a

multiple of 4) Flow i is set up from station i to station i+1 (the stations are numbered

0 through n－1). In the simulations of all schemes, the high priority traffic flows

generate packets with a constant bit rate of 1 Mbps and the low priority traffic flows

generate packets with a constant bit rate of 500 Kbps. All flows generate packets with

length of 1000 bytes. Table 1 shows the parameters used in the simulations for

comparison of different schemes.

25

Table 1：Simulation parameters [2, 11, 16].

Scheme Parameter Value
Number of stations n

Timeslot length 20μs
Bandwidth 11 M Bps

CWmin 31
CWmax 1023

Common
parameters

DIFS 50μs
Weighthigh 8/3n
Weightlow 4/3n

CollisionWindow 4

DFS or EFS

Scaling_Factor 0.02
AIFSHigh 30μs

TxopLimithigh 0.003
AIFSlow 50μs

EDCA

TxopLimitlow 0
BTD 60
DF 1.3
K 8

EFS

Measurement period 5000 time slots

The IEEE 802.11 working group has not yet decided on the values of AIFS and

CWmin. When choosing the parameter settings to use for different schemes, we have

tried to use settings specified in the standards or papers where the schemes were

specified [2, 11, 13]. In the simulation of EDCA, We choose queue 2 and queue 3

with default values [13] so that queue 2 can get bandwidth that is close to 2 times the

bandwidth of queue 3. (We test this with 4 stations where 2 flows generate packets

with a constant rate of 11 Mbps.) So we assign the queue 2 with weight 3/8n and the

queue 3 with weight 4/8n. The sum of weights of all flows adds to 1. In the simulation

of EFS, we set BTD to 60 and DF to 1.3. We also set the smoothing factor θ to 0.8

and the Measurement Period with 5000 time slots, as proposed in [11].

26

4.2 Simulation Results

We evaluate the aggregate throughput of high priority flows by summarizing all

the throughput of high priority flows and the aggregate throughput of low priority

flows by summarizing all the throughput of low priority flows. We also evaluate the

fairness index [12]. We compare the proposed EFS with DFS and EDCA.

4.2.1 Aggregate Throughput

Fig. 8 shows the aggregate throughput for low and high priority stations versus

the number of stations. Each high priority flow is assigned a weight of 8/3n and each

low priority flow is assigned a weight of 4/3n. We can see that the EDCA’s aggregate

throughput of high priority flows is higher than EFS and DFS. EDCA can achieve

higher throughput because in the EDCA ns-2 implementation [13], it has implemented

the Contention Free Burst (CFB). The EDCA can achieve much higher aggregate

throughput with CFB than without CFB. We also can see that the throughput

changes between 16 and 24 stations. The throughput degrades because in the case of

16 stations, there are 8 flows whose total offered load are 6 Mbps while in the case of

24 stations, there are 12 flows whose total offered load are 9 Mbps, which are greater

than the real bandwidth limit of 11 Mbps in Wireless LAN. Thus, in the case of 24

stations, some time was wasted due to contention such as collision or choosing larger

backoff intervals. In addition, the high priority flows get more and more throughputs

because the low priority flows get less and less throughputs. EFS and DFS both can

allocate bandwidth to flows in proportion to their weights. The proposed EFS can

achieve higher aggregate throughput than DFS because the EFS effectively reduce

idle slots using Division_Factor (DF) and can dynamically change the DF value

according to the network load condition. Note that, the high priority flows of EDCA

27

get more and more aggregate throughput than the low ones with the increase of the

number of stations. The EDCA results in unfairness between high and low priority

flows.

0.5

1.5

2.5

3.5

4.5

5.5

8 16 24 32 40 48 56 64 72 80 88

Number of nodes

A
g

gr
eg

at
e

th
ro

ug
hp

ut
 (

 1
0

6 b
it

s/
se

c)

EDCA High

EFS High

DFS High

EFS Low

DFS Low

EDCA Low

Fig. 8. The aggregate throughput of High and Low priority flows.

4.2.2 Fairness Index and Throughput Variance

For environments where all flows are always backlogged, we evaluate a fairness

index [12] as follows:

∑
∑

×
=

f ff

f ff

Tflowsofnumber

T
indexfairness 2

2

)/(__

)/(
_

φ

φ
 (16)

28

where Tf denotes the throughput of flow f, and ψf denotes the weight of flow f.

Remind that, the higher the value of the fairness index, the higher is the fairness. Fig.

9 shows that the fairness index achieved by EDCA degrades as the number of stations

in the wireless LAN increases. This is because that as the number of stations increases,

there is an increase of collisions. To be fair, colliding stations should get prior access

over other stations after suffering a collision. However, in EDCA, the colliding nodes

start binary exponential backoff to pick a larger backoff interval and hence do not get

prior access over other stations. This results in unfairness towards the colliding nodes.

On the other hand, the proposed EFS and the DFS achieve a high fairness index even

when the number of stations increases.

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

8 16 24 32 40 48 56 64 72 80 88
Number of nodes

Fa
ir

ne
ss

 in
de

x

DFS

EFS

EDCA

Fig. 9. The fairness index of different schemes.

 Fig. 10 and 11 show the throughput achieved by each high priority flow and

29

each low priority flow. The X-axis represents the receiving station ID of each flow.

We consider a scenario when there are sixty-four stations. We can see that flows with

the same priority in the EDCA suffered from high throughput variance. The reason

leading to this situation is just as the reason leading to unfairness, and randomness in

choosing a backoff interval is also another significant factor. However, in DFS and

EFS, flows with the same priority had low throughput variance. High throughput

variance is undesired for time-sensitive applications. We solve this problem by

assigned flows’ backoff intervals in proportion to their weights. Note that EFS has a

little higher throughput variance than DFS due to the fast backoff mechanism. Table 2

summarizes the evaluation results by comparing various schemes. In the proposed

EFS, high and low priority flows get more aggregate throughput than DFS by 13%.

The EFS and DFS can achieve high fairness. High fairness means low throughput

variance. Low throughput variance is more suitable for QoS-sensitive applications.

Table 2：Comparison between various schemes.

Parameter DCF [3] EDCA [6,
13]

DFS [2] EFS
(proposed)

Fairness Medium Low High High
complexity Low Low Medium Medium
MAC delay High Medium High High (6% less

than DFS)
Aggregate
throughput

Medium High (CFB
enabled)

Medium Medium
(13% better
than DFS)

30

0.1

0.15

0.2

0.25

0.3

0.35

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Station ID

T
h

ro
ug

h
pu

t
(

M
 b

it
s/

s
)

EDCA High

EFS High

DFS High

Fig. 10. The throughput obtained by each high priority station (flow).

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

Station ID

T
h

ro
u

gh
pu

t
(M

 b
it

s/
s)

EFS Low

DFS Low

EDCA Low

Fig. 11. The throughput obtained by each low priority station (flow).

31

4.2.3 MAC Delay

We also evaluate the average MAC delays of the EFS, DFS, and EDCA. The

average MAC delay is computed by summarizing the MAC delay of all the packets

and averaging it. The results are shown in Fig. 12. We can see that EFS slightly

reduce the average MAC delay compared to DFS since we have enhanced the DFS by

reducing idle time slots and enhanced the collision handling of the DFS. As shown in

equation (6), the value of DF can determine the rate of reducing idle time slots. The

EFS and DFS both have higher average MAC delay than the EDCA due to the use of

contention free bursting in EDCA. Since the EFS and DFS choose a backoff interval

for each packet with consideration of fair scheduling, this results in longer average

MAC delay than the EDCA.

0

10

20

30

40

50

60

70

80

8 16 24 32 40 48 56 64 72 80

Number of stations

A
ve

ra
ge

 M
A

C
 d

el
ay

 (
m

s)

DFS

EFS

EDCA

Fig. 12. The average MAC delay of different schemes

32

Chapter 5

Conclusions and Future Work
5.1 Concluding Remarks

We have proposed the Enhanced Fair Scheduling (EFS) for supporting weighted

fair scheduling in IEEE 802.11e wireless LANs. The goal of the EFS is to achieve a

fair allocation of bandwidth and to enhance the throughput performance. In the EFS, a

packet with the smallest ratio between its length and weight receives the highest

priority to transmit. The main idea of this scheme is to pick a backoff interval

proportional to the finish tag of the packet. By picking a right backoff interval and

using appropriate collision resolution in the transmission failure state, we can achieve

fair allocation of bandwidth. With the fast backoff mechanism in the backoff timer

decrement state and by dynamically adjusting the backoff interval according to the

network load, we can enhance the performance of EFS. Simulation results have

shown that the proposed EFS can achieve 13% higher throughput, 6% lower delay

than DFS. Both have nearly equal fairness indexes, which mean both can allocate

bandwidth to the flows in proportion to their weights. However, the EFS suffers from

a little higher throughput variability than DFS due to the fast backoff mechanism.

5.2 Future Work

In the future, we will dynamically modify other parameters for the proposed EFS,

such as Scaling_Factor, according to the network load and application requirements.

33

We can also study the impact of adjusting Backoff Threshold and Division_Factor.

The Contention Free Burst (CFB) mechanism in EDCA is good for throughput

performance but is harmful for fairness. We will research how to incorporate the CFB

mechanism into our EFS to further enhance throughput and delay performance, and

will not sacrifice fairness.

34

Bibliography

[1] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,”

IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 375-385, 1996

[2] N. H. Vaidya, P. Bahl, and S. Gupta, “Distributed fair scheduling in a wireless

LAN,” in Proc. Mobile Computing and Networking Conference, 2000, pp.

167-178.

[3] IEEE standard for wireless LAN medium access control (MAC)

and Physical Layer (PHY) specifications, ISO/IEC 8802-11: 1999 (E),

Aug. 1999.

[4] S. Choi, J. del Prado, N. Sai Shankar, and S. Mangold, “IEEE 802.11e

contention-based channel access (EDCF) performance evaluation,” in Proc. IEEE

International Conference on Communications, May 2003, pp. 1151-1156,.

[5] I. Aad and C. Castelluccia, “Differentiation mechanisms for IEEE 802.11,” in

Proceedings of IEEE INFOCOM, Anchorage, Alaska, April 2001.

[6] IEEE WG, “802.11e draft 3.1,” May 2002.

35

[7] S. J. Golestani, “A self-clocked fair queueing scheme for broadband applications,”

in IEEE INFOCOM, 1994, pp.636-646.

[8] W. Pattara-atikom, S. Banerjee and P. Krishnamurthy, “Starvation prevention and

quality of service in wireless LANs,” in Proc. IEEE Wireless Personal

Multimedia Communication, Oct. 2002, vol. 3, pp.1078-1082.

[9] Network Simulator document. [Online]. Available:

http://www.isi.edu/nsnam/ns 2002.

[10] Y. Kwon, Y. Fang, and H. Latchman, “Fast collision resolution (FCR) MAC

algorithm for wireless local area networks,” in Proc. Global Telecommunications

Conference, Nov. 2002, vol. 3, pp. 2250-2254.

[11] L. Romdhani, Q. Ni and T. Turletti, “Adaptive EDCF: enhanced service

differentiation for IEEE 802.11 wireless ad hoc networks,” in Proc. IEEE

Wireless Communication and Networking, March 2003, vol. 2, pp. 1373-1378.

[12] R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: an explanation,”

ATM Forum/99-0045, Feb. 1999

[13] An IEEE 802.11e EDCF and CFB simulation model for NS-2.26 [Online].

Available: http://www.tkn.tu-berlin.de/research/802.11e_ns2/

36

[14] W. Pattara-Atikom, P. Krishnamurthy, and S. Banerjee, “Distributed

mechanisms for quality of service in wireless LANs, ” IEEE Wireless

Communications vol. 10, no. 3, pp. 26-34, June 2003

[15] A. Lindgren, A. Almquist, and O. Schelen, “Evaluation of quality of service

schemes for IEEE 802.11 wireless LANs,” in Proc. IEEE Local Computer

Networks, Nov. 2001, pp. 348-351.

[16] D. He and C.Q. Shen, “Simulation study of IEEE 802.11e EDCF,” in Proc. IEEE

Vehicular Technology Conference, April 2003, vol. 1, pp. 685-689.

[17] G. W. Wong, and R. W. Donaldson, “Improving the QoS performance of EDCF

in IEEE 802.11e wireless LANs,” in Proc. IEEE Communications, Computers and

Signal Processing Conference, Aug 2003, vol. 1, pp. 392-396.

[18] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to

flow control in integrated services networks: the single-node case,” IEEE/ACM

Transactions on Networking, vol. 1, pp. 344-357, June 1993.

[19] P. Goyal, H. M. Vin, and H. Cheng, “Start-time fair queuing: a scheduling

algorithm for integrated serivces switched networks,” IEEE/ACM Transactions on

Networking, vol. 5, pp. 690–704, October 1997.

37

[20] T. Nandagopal, S. Lu, and V. Bharghavan, “A unified architecture for the design

and evaluation of wireless fair queuing algorithms,” in Proceedings of ACM

MOBICOM, Seattle, WA, August 1999, pp. 132-142.

[21] V. Kanodia, C. Li, B. Sadeghi, A. Sabharwal, and E. Knightly, “Distributed

multi-hop with delay and throughput constraints,” in Proceeding of MOBICOM,

Rome,Italy, July 2001, pp. 200-209.

[22] J. C. R. Bennett and H. Zhang, “Wf2q: worst-case fair weighted fair queueing,”

in Proc. IEEE INFOCOM, March 1996, pp. 120-128.

