
國 立 交 通 大 學 
 

資訊科學系 

 

碩 士 論 文 
 
 
 
 

支援無線區域網路服務品質之 

改良型公平排程策略 

 

An Enhanced Fair Scheduling for QoS 

 in IEEE 802.11e Wireless LANs 
 
 

     研 究 生：曾昆南 

           指導教授：王國禎  博士 

 
 

中 華 民 國 九 十 三 年 六 月



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

支援無線區域網路服務品質之改良型公平排程策略 

 

An Enhanced Fair Scheduling for QoS in IEEE 802.11e  
Wireless LANs  

 

研 究 生：曾昆南          Student：Kun-Nan Tseng 

指導教授：王國禎          Advisor：Kuochen Wang 

 

國 立 交 通 大 學 

資 訊 科 學 系 

碩 士 論 文 

A Thesis 

Submitted to Department of Computer and Information Science 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of 

Master 

in 

 
Computer and Information Science 

 
June 2004 

 
Hsinchu, Taiwan, Republic of China 

 

中華民國九十三年六月



 



i 

支援無線區域網路服務品質之 

改良型公平排程策略 

學生：曾昆南     指導教授：王國禎 博士 

 
國立交通大學資訊科學系 

 

摘 要 

隨著無線區域網路越來越受歡迎，對於支援多媒體和確保服務品

質的應用程式需求變得比以前更重要。雖然有很多改進原本IEEE 

802.11 MAC的機制被提出來，以支援服務品質，但是他們對於高優先

權和低優先權的流量會有頻寬分配不公平的現象。我們提出一個分散

式加強型公平排程策略來解決上述問題。基於在後退計數器遞減狀態

的快速後退機制和依網路負載情況來動態修改後退區間的機制，我們

可以強化加強型公平排程策略的效能。我們經由模擬來評估本加強型

公平排程策略的效能。實驗結果顯示我們所提出的加強型公平排程策

略比分散式公平排程策略高出13%的效能和比分散式公平排程策略低

6%的平均MAC延遲時間，而且兩者有幾乎相等的公平指標。雖然IEEE 
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802.11e的進階分散式頻道存取機制比加強型公平排程策略和分散式

公平排程策略有較好的效能，但是它非常不公平。進階分散式頻道存

取機制的免競爭機制是導致高效能、低平均MAC延遲時間和低公平性

的主因。我們的加強型公平排程策略非常適合於對頻寬公平分配要求

很高的應用程式，如付費應用服務。 

 

關鍵詞：公平排程策略、IEEE 802.11e、服務品質、無線區域網路。 
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An Enhanced Fair Scheduling for QoS in 
IEEE 802.11e Wireless LANs 

Student：Kun-Nan Tseng Advisor：Dr. Kuochen Wang 

Department of Computer and Information Science 
National Chiao Tung University 

Abstract 

 As wireless LANs are gaining popularity, the demand for supporting multimedia 

and QoS-sensitive applications becomes more important than before. Although 

enhancements to the legacy IEEE 802.11 MAC to support QoS mechanisms have 

been proposed, they suffer from unfair allocation of bandwidth between high and low 

priority traffic. We propose a distributed enhanced fair scheduling (EFS) scheme that 

can conquer the above problem. With a fast backoff mechanism in the backoff timer 

decrement state and by dynamically adjusting backoff intervals according to the 

network load, we can enhance the performance of EFS. We evaluate the performance 

of EFS through simulation. Experimental results show that the proposed EFS has 

better throughput performance than DFS by 13%, lower average MAC delay than 

DFS by 6% and the two have nearly equal fairness. Although the enhanced distributed 

channel access (EDCA) in IEEE 802.11e has better throughput  and delay 

performance than EFS and DFS, it has very poor fairness. The contention free burst 

(CFB) mechanism in EDCA is the main factor that results in good throughput 

performance, lower average MAC delay and poor fairness. Our EFS is very suitable 

for applications that needs strict fair bandwidth allocation, such as pay services. 
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Chapter 1  
Introduction 

The IEEE 802.11 Wireless LAN is gaining a lot of popularity in recent years 

because of cost-effectiveness in building a wireless broadband network environment. 

Mobile computing devices such as portable computers and personal digital assistants 

become indispensable in our daily activities. With the increasing use of wireless local 

LANs, there is high demand for supporting multimedia and QoS-sensitive 

applications. Because the IEEE 802.11 legacy MAC is only suitable for 

QoS-insensitive applications, the enhancements to the legacy MAC to support QoS 

mechanisms [14, 15, 16, 17] have been proposed. The enhancements provide service 

differentiation by statically assigning priorities to classes. A high priority class is 

assigned a shorter interframe space (IFS) and a shorter contention window (CW) than 

a low priority class. However, these approaches suffer from unfair allocation of 

bandwidth between high and low priority traffic. Fair scheduling [1, 7, 19] was 

designed to overcome the above problem by partitioning the bandwidth fairly between 

different traffic classes. In the thesis, we propose an enhanced fair scheduling (EFS) 

scheme based on the distributed fair scheduling (DFS) [2]. The proposed EFS 

integrates the DFS’s idea of calculating backoff interval of packets and the Fast 

Collision Resolution’s idea [10] of decreasing backoff timer exponentially. The 

proposed EFS can provide better throughput and delay performance than DFS and 

maintain nearly equal fairness.  
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Much researches on fair scheduling algorithms for achieving a fair allocation of 

bandwidth on a shared wired link [1, 7, 18, 19] have been proposed. All fair 

scheduling algorithms are based on the fluid fair scheduling model [18]. In the model, 

packet flows are modeled as fluid flows. Fluid fair scheduling guarantees that for an 

arbitrary time interval [t1, t2], any two backlogged flows i and j are served in 

proportion to their weights, which are represented by the following equation: 

 

     
j

j

i

i ttWttW
φφ

),(),( 2121 =          (1) 

 

where Wi(t1,t2) and ψi are the service amount received (bits) by flow i during time 

interval [t1, t2] and the weight of flow i, respectively.  

However, in the real network world, systems handle flows at the granularity of 

packets rather than bits. Therefore, the main objective of packet fair queuing (PFQ) 

algorithm is to approximate the Generalized Processor Sharing (GPS) [18] as closely 

as possible. The GPS is an ideal fluid fair scheduling model. The most famous PFQ 

algorithm is the weighted fair queuing (WFQ) [22], equivalently a packetized 

generalized processor sharing (PGPS). However, WFQ has its drawbacks that it is not 

easy to implement because the cost of maintaining a priority sorting queue and the 

overhead of computing the virtual system time is very high. Self clocked fair queuing 

[7] and start time fair queuing [19] reduced implementation complexity of WFQ. The 

PFQ algorithms developed for wired networks cannot be directly applied to wireless 

networks because of bursty and location-dependent errors in wireless channels. In the 
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next chapter, we will describe classical fair scheduling algorithms that emulated the 

PFQ algorithm in wireless networks. 

The subsequent chapters of this thesis are organized as follows. In Chapter 2, we 

describe previous work in this research area. We describe the proposed EFS in detail 

In Chapter 3. In Chapter 4, we evaluate the throughput and delay performance, and 

the fairness index of the proposed EFS via simulation. In Chapter 5, we summarize 

our current work and address future prospect. 
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Chapter 2  

Previous Work 
We will review the enhanced distributed channel access (EDCA) [6, 13], the fast 

collision resolution (FCR) [10], distributed fair scheduling (DFS) [2], and distributed 

deficit round-robin (DDRR) [8] schemes in this chapter. The FCR contributed to 

throughput performance improvement. The DFS incorporated fair queuing to wireless 

LANs. The DDRR translated user requirements into appropriate IFSs to provide 

service differentiation. 

2.1 The Enhanced Distributed Channel Access 

(EDCA) 

The fundamental MAC protocol [3] used in 802.11 can not support 

QoS-sensitive applications. Therefore, the 802.11e draft introducing the enhanced 

distributed channel access (EDCA) and hybrid coordination function (HCF) to 

support QoS are currently under discussion [6]. Service differentiation is achieved 

through the introduction of access categories (ACs). Each AC on a station contends 

for a transmission opportunity (TXOP) [6] and has its own transmission queue. Each 

transmission queue has a different interframe space (called arbitrary interframe 

space – AIFS[AC]), and a different set of contention window limits (CWmin[AC] and 

CWmax[AC]). Fig. 1 illustrates the detailed IFS relationship. Each AC start its 

backoff procedure when the medium is idle for AIFS[AC] time. When an AC start its 
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backoff procedure, it chooses a backoff interval uniformly distributed in [0, 

CWmin[AC]]. The AC will transmit its packet immediately when the backoff interval 

counts down to zero. Although the 802.11e support better QoS than the legacy 802.11, 

it suffers from unfair allocation of bandwidth between high and low priority traffic 

and has high throughput variability. Randomness in accessing the medium is the main 

factor resulting in high throughput variability. 

busy medium

SIFS

PIFS

min AIFS[AC] = DIFS

AIFS[AC]

Contention Window

Slot time

Backoff interval

transmit

Start backoff procedure when medium is 
free ≥ AIFS[AC]

 

Fig. 1. IEEE 802.11e EDCA IFS relationship. 

 

2.2 The Fast Collision Resolution (FCR) Algorithm 

The main deficiency of the IEEE 802.11 MAC protocol [3] comes from packet 

collisions and wasted idle slots due to backoffs in each contention cycle (as shown in 

Fig. 2). For example, when the number of active nodes is very large, there are too 

many nodes backed off with small contention windows, hence many retransmission 

attempts will most likely collide again in the future. An active node can be in two 

modes at each contention cycle, namely, the transmitting mode when it wins a 

contention and the deferring mode when it loses a contention. When a node transmits 

a packet, the result is either successful or unsuccessful collision. Therefore, a node 
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will be in one of the following three states at each contention cycle: a successful 

packet transmission state, a collision state, and a deferring state.  The fast collision 

resolution (FCR) [10] algorithm aimed to resolve the collisions quickly by increasing 

the contention windows sizes of both the colliding nodes and the deferring nodes in 

the contention resolution. The FCR regenerates the backoff timers for all potential 

transmitting nodes to avoid possible future collisions. The FCR algorithm preserves 

the simplicity for implementation, just like the IEEE 802.11 MAC. The FCR 

algorithm has following characteristics [10]:  

1) Use a much smaller initial (minimum) contention window size CWmin 

than that in the IEEE 802.11 MAC [10]; 

2) Use a much larger maximum contention window size CWmax than that in 

the IEEE 802.11 MAC [10]; 

3) Increase the contention window size of a station when it is in either 

collision state and deferring state [10]; 

4) Reduce the backoff timers exponentially when a prefixed number of 

consecutive idle slots are detected [10].  

Items 1) and 4) attempt to reduce the average number of idle backoff slots for 

each contention cycle [10]. Items 2) and 3) are used to quickly increase the backoff 

timers, hence quickly decrease the probability of collisions [10]. Item 3) is the major 

difference from that of the IEEE 802.11 MAC. In the IEEE 802.11 MAC, the 

contention window of a station is increased only when it experiences a transmission 

failure. In the FCR algorithm, the contention window of a station will increase not 

only when it experiences a collision but also when it is in the deferring mode and 
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senses the start of a new busy period. 

 

Fig. 2. Basic operation of CSMA/CA [10]. 

 

2.3 The Distributed Fair Scheduling (DFS) 

Some schemes using fair scheduling were designed to overcome the unfair 

problem. This kind of schemes can provide relative differentiation, for example 

specifying that one type of traffic should get twice as much bandwidth as some other 

type of traffic. For instance, Vaidya et al. [2] proposed Distributed Fair Scheduling 

(DFS), attempting to emulate Self-Clocked Fair Queuing (SCFQ) [7]. SCFQ is a 

centralized algorithm for packet scheduling on a link shared by multiple flows as 

shown in Fig. 3. The central coordinator maintains a virtual clock and at any given 

time t, v(t) represents the virtual time. Let Pi
k denote the kth packet arriving on flow i. 

Let Ai
k is the real time of arrival for packet Pi

k. Let Li
k denote the size of the packet Pi

k. 

A start tag Si
k and a finish tag Fi

k are associated with each packet Pi
k. The algorithm is 

as follows [2]: 
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1. iFi ∀= ,00 . 

2. On arrival of packet k
iP , the packet is stamped with start tag k

iS using 

following equation:  

}),(max{ 1−= k
i

k
i

k
i FAvS   

3.  A finish tag k
iF for each packet k

iP is calculated as: 

i

k
ik

i
k

i
LSF
φ

+=  

where iφ is the weight of flow i . 

4. Initially the virtual clock v(0) is set to 0. The virtual time is updated after a 

new packet is transmitted. When a packet begins transmission on the output 

link, the virtual clock is set equal to the finish tag of that packet . 

5. Packets are selected for transmission in an ascending order of finish tags. 

In the SCFQ algorithm, the start and finish tags are calculated when a packet 

arrives in a flow. Alternatively, the start tag can be calculated when a packet reaches 

the front of its flow. If the packet arrives when the flow is empty, the time fi
k is the 

real time when the packet reaches the front of its flow. If the flow is not empty, fi
k is 

the real time when packet Pi
k-1 finishes the transmission. Thus the start tag for a 

packet can be calculated as 

 

)( k
i

k
i fvS =               (2) 

 

Like SCFQ, DFS determines the packet transmission based on the finish tag of 
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each packet and the virtual time is updated in the same way as that in SCFQ. DFS 

attempts to map the shared wireless medium to the output link and the input flows 

paradigm of SCFQ. As shown in Fig. 4, the output link in Fig. 3 is mapped to the 

shared wireless medium and the input flows are mapped to the flows from each node. 

In the DFS, a packet with the smallest ratio between its length and weight receives the 

highest priority to transmit. The main idea of this scheme is to pick a backoff interval 

proportional to the finish tag of the packet. It attempted to emulate the Self-Clocked 

Fair Queuing (SCFQ) [7] in a distributed manner so as to transmit the packet with the 

minimum finish tag first. A backlogged node i picks a backoff interval Bi as a function 

of its weight, iϕ , and packet length Li, as follows: 

     ⎣ ⎦⎣ ⎦ρϕ */*_ iii LFactorScalingB = .                (3) 

Where ρ , a random variable uniformly distributed in [0.9, 1.1], which is introduced to 

reduce the possibility of collisions [2].  

     Since flows with high weights get shorter backoff interval than flows with low 

weights, differentiation will be achieved. Furthermore, the procedure of calculating 

backoff interval takes the size of packets into account. This will cause small packets 

to get shorter backoff intervals than large packets, allowing a station with small 

packets to send more often so that the same amount of data is sent [2]. When a 

collision occurs, a new backoff interval is calculated using the backoff procedure of 

the IEEE 802.11 standard [3] where the initial contention window is assigned 4 [2]. 

The reason for choosing such a short contention window although a collision has 

occurred is that DFS tried to maintain fairness among nodes, and thus colliding 

stations should be able to send packets as soon as possible. However, mapping the 

QoS requirement to the weight is complicated. 
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Fig. 3. The SCFQ algorithm.  

 

Fig. 4. The DFS maps the output link in SCFQ to the shared medium and the input 

flows to the traffic from wireless nodes; DFS is a distributed version of SCFQ. 
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2.4 The Distributed Deficit Round-Robin Scheme 

The distributed deficit round-robin (DDRR [8]) QoS scheme is based on the 

concept of DRR scheduling [1] at the MAC layer of IEEE 802.11. As shown in Fig. 5, 

the mechanism translates user requirements into appropriate interframe spaces to 

provide service differentiation and achieves fairness by making use of deficit 

round-robin fair scheduling [1]. Traffic at each mobile station is categorized into 

classes with different QoS requirements. A traffic class requiring high throughput 

receives a fast service quantum rate [8]. Each traffic class maintains a deficit counter 

of accumulated quanta and can transmit only when its deficit counter achieves a 

minimum requirement. If the deficit counter of a traffic class falls below a minimum 

requirement, the traffic class must wait until its deficit counter becomes higher than 

the minimum requirement. The deficit counter is reduced by the length of the 

transmitted frame. The deficit counter value is translated into an appropriate 

interframe space. A traffic class with a smaller interframe space will access the 

medium first than that with a higher interframe space. A mobile station will transmit 

its frame immediately after the medium has been free for the interframe space period. 

If the medium is busy, the mobile station waits for it to become idle, and then 

immediately transmits after the medium has been free for the new interframe space 

period. In the DDRR scheme, it eliminates the backoff algorithm because of its 

contribution to large variation in throughput and delay [14]. Instead, the interframe 

space value resulting from a deficit counter is multiplied by a random number 

between 1 and a value β > 1 to reduce collision probability [14]. The DDRR suffers 

from high collision probability when the number of mobile stations is large. 
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Fig. 5. The DDRR mechanism.  
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Chapter 3  
Design Approach: Enhanced Fair 
Scheduling 

We first describe our EFS design framework, including the state transition and 

the mechanism in each state. Then, we describe how we dynamically update the 

Division_Factor. 

3.1 The EFS Design Framework 

We propose an efficient fair scheduling scheme by integrating some of ideas 

from the DFS scheme [2] and the FCR [10]. The proposed EFS borrows the DFS’s 

idea of calculating backoff interval of packets and the FCR’s idea of decreasing 

backoff timer exponentially. The goal of the proposed EFS is to provide fair 

bandwidth allocation and good throughput by reducing idle backoff slot time. The 

essential idea of the proposed EFS is to choose a backoff interval that is proportional 

to the finish tag of a packet to be transmitted and decrement the backoff timer 

exponentially when consecutive idle slots are detected. We now describe the design 

approach in detail. We assume that all packets at a node belong to a single flow as 

proposed in [2]. In a multiple flows case, when station i needs to select the next 

packet that it will attempt to transmit, it selects the packet with the smallest finish tag 

among packets at the front of all backlogged flows at station i. When packet Pi
k 

reaches the front of its queue, it is tagged with a start tag and a finish tag. Pi
k 

represents the kth packet arriving at the flow at station i. Si
k, the start tag of Pi

k, is 
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calculated as Si
k=v(ai

k), where k
ia represents the real time when packet Pi

k reaches the 

front of the flow. Finish tag Fi
k is assigned as follows: 

 

i

k
ik

i
k

i
L

FactorScalingSF
φ

×+= _                    (4) 

 

where Li
k represents the length of packet Pi

k and iφ  represents the weight of station i . 

An appropriate choice of the Scaling_Factor allows us to choose a suitable scale for 

the virtual time. 

 

Fig. 6. The state transition of EFS.  
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The next step is to choose a backoff interval such that a packet with smaller 

finish tag will be assigned a smaller backoff interval. This step will be performs in the 

successful packet transmission state. An active station can be in two modes at each 

contention cycle, namely, the transmitting mode when it wins a contention and the 

deferring mode when it loses a contention. When a station transmits a packet, the 

result is either successful or failed. Therefore, a station will be in one of the following 

four states at each contention cycle: a successful packet transmission state, a backoff 

timer decrement state, a transmission failure state, and a deferring state. Fig. 6 shows 

the state transition of the EFS. The operation of the proposed EFS is described as 

follows according to the state of a station is in: 

1) Backoff timer decrement state: If an active station senses the medium idle for a 

slot, then it will start decrementing its backoff timer by aSlotTime, as shown in 

equation (5):  

 

aSlotTimeBB oldnew −= .                   (5) 

 

where Bold means the old backoff interval and Bnew means the new backoff interval. 

When the backoff timer reaches to zero, the station will transmit a packet immediately. 

If there are BTD (Backoff Threshold) consecutive idle slots being detected, its backoff 

timer will be decreased much faster according to equation (6):  
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DFBB oldnew /=   (if Bnew ＜ aSlotTime, then 0=newB ).          (6) 

 

where DF represents Division_Factor.  

BTD is a constant parameter which will be clear later and the DF parameter will 

be modified dynamically according to the network load condition. The value of DF 

can determine the speed of decreasing the backoff interval. The algorithm of 

modifying DF will be explained in detail later. A station can maintain a counter 

(called BTD Counter) whose default value is equal to BTD. When the station detects 

an idle slot time, it decrements its BTD counter by one. When the BTD counter 

reaches zero, the station will start decrementing the backoff timer exponentially. That 

is, the station enters the fast decreasing stage from the linear decreasing stage (as 

shown in Fig. 7). 

 

Fig. 7. The backoff timer decrement state. 

For example, consider two flows, flow 1 at station 1 with weight 0.1 and flow 2 

at station 2 with weight 0.05. Let the packet size be 1000 bytes, the Division_Factor 

(DF) be 1.5, the Backoff Threshold (BTD) be 60, and the Scaling_Factor be 0.02. The 

value of Scaling_Factor × PacketSize/weight is the backoff interval (The detail of 
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choosing a backoff interval will be illustrated in “3) successful packet transmission 

state” and for simplicity, we assume that ρ  is 1). Thus, the backoff interval will be 

200 time slots for flow 1, and 400 time slots for flow 2. When an idle slot is detected, 

the backoff interval will be 199 time slots for flow 1, and 399 time slots for flow 2, 

respectively. Each flow will subtract one slot time from its backoff interval until there 

are 60 consecutive idle time slots being detected. Suppose that there are 60 

consecutive idle slots being detected. Now the backoff interval is 140 time slots for 

flow 1 and 340 time slots for flow 2. Then when an idle slot is detected, the backoff 

interval will be 93 (140/1.5) time slots for flow 1 and 226 (340/1.5) time slots for flow 

2. When an idle slot is detected again, the backoff interval will be 62 (93/1.5) time 

slots for flow 1 and 150 (226/1.5) time slots for flow 2. The rest may be deduced by 

analogy. The backoff interval of flow 1 will reach zero first, and then flow 1 will 

transmit its packet immediately. 

2) Transmission failure (packet collision) state: Each station must maintain a 

CollisionCounter that counts the number of successive collisions. If a station notifies 

that its packet transmission has failed possibly due to a packet collision, then the 

station must react with the following procedure:  

(i) It increments CollisionCounter by 1  

   (ii) It chooses a new Backoff interval uniformly distributed  

        in     ])11(,1[ 1
⎥⎦
⎥

⎢⎣
⎢ ×+ − K

DF
ounterCollisionC  

where K is a constant parameter.  

The station will choose a small backoff interval in the range [ ]K,1  after the first 

collision for a packet. The station will choose a backoff interval in the range 
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⎣ ⎦[ ]KDF ×+ )/11(,1  if collision occurs again. To protect against the situation when too 

many stations collide, the range for the backoff interval grows exponentially with the 

number of consecutive collisions. The station with higher DF than others will access 

the medium with a higher probability. The motivation for choosing a small backoff 

interval after the first collision is that since the colliding station was a potential winner 

of the contention for channel access, it is the colliding station turn to transmit in the 

near future. Therefore, the backoff interval is chosen to be small to increase the 

probability that the colliding station wins the contention soon. We set K to 8 while in 

the DFS K is set to 4. The reason for setting K to 8 is that since the proposed EFS 

includes a fast decreasing stage of the backoff interval, we double its value to reduce 

the collision probability. 

For example, assume that flow 1 with DF 1.4 at station 1 and flow 2 with DF 1.0 

at station 2 collide and that K is equal to 8. Then flow 1 and flow 2 will increment 

their CollisionCounter’s by 1 and pick a new backoff interval uniformly distributed in 

[1, 8]. Suppose that the DF of flow 1 and the DF of flow 2 remain the same and flow 

1 and flow 2 will collide again after picking their new backoff intervals. Then flow 1 

and flow 2 will increment their CollisionCounter’s by 1, flow 1 will pick a new 

backoff interval uniformly distributed in [1, 13] ( ⎣ ⎦ 1381/1.4)(1 =×+ ), and flow 2 will 

pick a new backoff interval uniformly distributed in [1, 16] ( ⎣ ⎦ 168)1/11( =×+ ). 

Suppose that unfortunately flow 1 and flow 2 collide again after picking their new 

backoff intervals. Flow 1 and flow 2 both increment their CollisionCounter’s by 1 

again and now their CollisionCounter’s are equal to 2. Thus, flow 1 will pick a new 

backoff interval uniformly distributed in [1, 23] ( ⎣ ⎦ 238)4.1/11( 2 =×+ ) and flow 2 will 

pick a new backoff interval uniformly distributed in [1, 32] ( ⎣ ⎦ 328)1/11( 2 =×+ ). Thus, 

we let a high DF flow get a higher probability to access the medium than a low DF 
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flow. 

3) Successful packet transmission (choosing a backoff interval) state: If a station 

i successfully transmits a packet with finish tag Z at time t, it will pick a suitable 

backoff interval Bi for its next packet as proposed in [2] and it sets its virtual clock vi 

equal to max(vi(t), Z). The backoff interval is derived from equation (4). Suppose the 

station i will transmit its next packet, Pi
k.  The station i will tag the packet with a 

finish tag. This step is performed at time ai
k. Thus, station i picks a backoff interval Bi 

for packet Pi
k, as a function of Fi

k and the current virtual time vi(ai
k), as follows: 

 

⎣ ⎦)( k
i

k
ii avFB −=                            (7) 

 

We combine equation (4) with equation (7) and observe that, since )( k
i

k
i avS = , 

equation (7) reduces to:  
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               (8) 

 

Finally, we will randomize the Bi as shown in equation (9). The meaning of Li
k 

and ψi have been described before. ρ  is a random variable uniformly distributed in 

the range [0.9, 1.1] to reduce the possibility of collisions. After deciding the value of 

Bi, we assign Bold the value of Bi to preserve Bi which will be used in the deferring 

state. Bold is used in the backoff timer decrement state. 
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In this state, the station must reset its CollisionCounter to zero and the BTD Counter 

to BTD. 

4) Deferring state: Each transmitted packet is tagged with a finish tag. So when 

at time t station i  hears a packet with finish tag Z, it calculates the difference 

between Z and the current virtual clock vi(t)., i.e. ))(( tvZ i−=∆ . If station i  is in the 

fast decreasing stage with 0>∆ , it resets its Bi according to equation (10). 

 

)}B(,Bmax{ iold ∆−                        (10) 

 

and then resets Bold to Bi. The reason we preserve the value of Bi is clear here. In order 

to maintain fairness, this procedure is necessary since we incorporate a fast backoff 

mechanism. Finally, the station i  sets its virtual clock iv equal to )Z),t(vmax( i .  

For example, consider two flows, flow 1 at station 1, and flow 2 at station 2, with 

weights 0.2 and 0.1, respectively. Let the packet size be 1000 bytes, the 

Division_Factor (DF) be 1.5, the Backoff Threshold (BTD) be 60, and the 

Scaling_Factor be 0.02. Then, the backoff interval will be 100 time slots for flow 1, 

and 200 time slots for flow 2. For simplicity, we also assume that ρ used for 

calculating a backoff interval is 1.0 in this example. Then, flow 1 will choose a 

backoff interval of 100 time slots for all its packets and flow 2 will choose a backoff 



21 

interval of 200 time slots for all its packets. As a result, on average, the number of 

packets transmitted by flow 1 is 2 times than the number of packets transmitted by 

flow 2. However, since we introduce the fast backoff mechanism, we must 

recalculating a backoff interval to maintain fairness. When an idle slot is detected, the 

backoff interval will be 99 time slots for flow 1, and 199 time slots for flow 2, 

respectively. Each flow will subtract one slot time from its backoff interval until there 

are 60 consecutive idle time slots being detected. Suppose that there are 60 

consecutive idle time slots being detected. Now the backoff interval is 40 time slots 

for flow 1 and 140 time slots for flow 2. Then when an idle slot is detected, the 

backoff interval will be 26 (40/1.5) time slots for flow 1 and 93 (140/1.5) time slots 

for flow 2. When an idle slot is detected again, the backoff interval will be 17 (26/1.5) 

time slots for flow 1 and 62 (93/1.5) time slots for flow 2. The rest may be deduced 

similarly. The backoff interval of flow 1 will reach zero first, and transmit its packet 

immediately. After flow 1 transmits its packet, the backoff interval of flow 2 is 5. If 

we did not incorporate the fast backoff mechanism, the backoff interval of flow 2 

should be 100. Thus we must recalculate the backoff interval of flow 2. The new 

backoff interval of flow 2 is 100 (max {5, 200－100}). One notable point is why we 

select max in equation (10). The consideration is that when a station i receiving a 

packet just enters the fast decreasing stage, the Bold of the station may be greater than 

Bi－△. At this moment, resetting the backoff interval, Bi, to Bold is more appropriate. 

3.2 Dynamically Updating Division_Factor 

In order to take into account the network load condition for Division_Factor 

adaptation, we use a measurement scheme similar to [11] to get the related network 

information. We use the number of collisions as an indicator of the network load 

condition. The time domain is divided into continuous measurement periods (MPs) 
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with specified period size. A measurement period (MP) is defined as the number of 

time slots. When the kth measurement period, denoted by MPk, expires, the station 

summarizes the network load condition indicator )(kδ [11] during MPk as follows: 

 

 
s

c

n
n

k =)(δ                  (11) 

 

where nc is the number of collisions which occurred during MPk, and ns is the total 

number of packets sent during MPk. Because )(kδ cannot precisely represent the 

long-term network load condition, we also use an estimator of Exponentially Weighted 

Moving Average [11] to smoothen the estimated value of each measurement period. 

The average network load condition indicator during MPk, denoted by )(kavgδ is 

computed as follows: 

 

)()1()1()( kkk avgavg δθδθδ ×−+−×=          (12) 

 

where 10 <<θ . We set θ  to be 0.8, as proposed in AEDCF [11]. The 

Division_Factor (DF) will be modified every MP according to the following 

condition:  

 

)1()( −−=∆ kk avgavgk δδ                     (13) 
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If 0>∆k , )DF))k((,min(DF avg ×−= δ11          (14) 

If 0<∆k , )DF))k((,max(DF avg ×+= δ12          (15) 

 

So when the network load condition becomes better than that in the last MP, we 

increase the DF to decrement the backoff timer faster and when the network load 

condition becomes worse than that in the last MP, we decrease the DF to decrement 

the backoff timer slower. Thus the value of DF is adapted to the network condition. 

We let the minimum value of DF be 1 so that the backoff timer decrements just like 

the original procedure (i.e., equation (5)). We let the maximum value of DF be 2 so 

that the backoff timer will not decrement too fast so as to increase the collision 

probability. 
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Chapter 4  
Simulation Model and Simulation 
Results 

We evaluate the performance of the proposed EFS using the network simulator 

ns-2 [9] which supports IEEE 802.11 DCF functionality. We extended the simulator to 

implement the proposed EFS. We also included the implementations of DFS [2] and 

EDCA [13] made by other researchers. 

4.1 Simulation Model 

In the simulation model, the bandwidth of the wireless LAN is 11 Mbps and the 

number of stations in the wireless LAN is n. In a wireless LAN with n stations, we set 

up n/4 high priority flows and n/4 low priority flows (n is always chosen to be a 

multiple of 4) Flow i is set up from station i to station i+1 (the stations are numbered 

0 through n－1). In the simulations of all schemes, the high priority traffic flows 

generate packets with a constant bit rate of 1 Mbps and the low priority traffic flows 

generate packets with a constant bit rate of 500 Kbps. All flows generate packets with 

length of 1000 bytes. Table 1 shows the parameters used in the simulations for 

comparison of different schemes.  
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Table 1：Simulation parameters [2, 11, 16]. 

Scheme Parameter Value 
Number of stations n 

Timeslot length 20μs 
Bandwidth 11 M Bps 

CWmin 31 
CWmax 1023 

 
 

Common 
parameters 

DIFS 50μs 
Weighthigh 8/3n 
Weightlow 4/3n 

CollisionWindow 4 

 
DFS or EFS 

Scaling_Factor 0.02 
AIFSHigh 30μs 

TxopLimithigh 0.003 
AIFSlow 50μs 

 
EDCA 

TxopLimitlow 0 
BTD 60 
DF 1.3 
K 8 

 
EFS 

Measurement period 5000 time slots 

 

The IEEE 802.11 working group has not yet decided on the values of AIFS and 

CWmin. When choosing the parameter settings to use for different schemes, we have 

tried to use settings specified in the standards or papers where the schemes were 

specified [2, 11, 13]. In the simulation of EDCA, We choose queue 2 and queue 3 

with default values [13] so that queue 2 can get bandwidth that is close to 2 times the 

bandwidth of queue 3. (We test this with 4 stations where 2 flows generate packets 

with a constant rate of 11 Mbps.) So we assign the queue 2 with weight 3/8n and the 

queue 3 with weight 4/8n. The sum of weights of all flows adds to 1. In the simulation 

of EFS, we set BTD to 60 and DF to 1.3. We also set the smoothing factor θ  to 0.8 

and the Measurement Period with 5000 time slots, as proposed in [11].  
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4.2 Simulation Results 

We evaluate the aggregate throughput of high priority flows by summarizing all 

the throughput of high priority flows and the aggregate throughput of low priority 

flows by summarizing all the throughput of low priority flows. We also evaluate the 

fairness index [12]. We compare the proposed EFS with DFS and EDCA. 

4.2.1 Aggregate Throughput 

Fig. 8 shows the aggregate throughput for low and high priority stations versus 

the number of stations. Each high priority flow is assigned a weight of 8/3n and each 

low priority flow is assigned a weight of 4/3n. We can see that the EDCA’s aggregate 

throughput of high priority flows is higher than EFS and DFS. EDCA can achieve 

higher throughput because in the EDCA ns-2 implementation [13], it has implemented 

the Contention Free Burst (CFB). The EDCA can achieve much higher aggregate 

throughput with CFB than without CFB. We also can see that  the throughput 

changes between 16 and 24 stations. The throughput degrades because in the case of 

16 stations, there are 8 flows whose total offered load are 6 Mbps while in the case of 

24 stations, there are 12 flows whose total offered load are 9 Mbps, which are greater 

than the real bandwidth limit of 11 Mbps in Wireless LAN. Thus, in the case of 24 

stations, some time was wasted due to contention such as collision or choosing larger 

backoff intervals. In addition, the high priority flows get more and more throughputs 

because the low priority flows get less and less throughputs. EFS and DFS both can 

allocate bandwidth to flows in proportion to their weights. The proposed EFS can 

achieve higher aggregate throughput than DFS because the EFS effectively reduce 

idle slots using Division_Factor (DF) and can dynamically change the DF value 

according to the network load condition. Note that, the high priority flows of EDCA 
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get more and more aggregate throughput than the low ones with the increase of the 

number of stations. The EDCA results in unfairness between high and low priority 

flows. 
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Fig. 8. The aggregate throughput of High and Low priority flows.  

 

4.2.2 Fairness Index and Throughput Variance 

For environments where all flows are always backlogged, we evaluate a fairness 

index [12] as follows:  

∑
∑

×
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          (16) 
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where Tf denotes the throughput of flow f, and ψf denotes the weight of flow f. 

Remind that, the higher the value of the fairness index, the higher is the fairness. Fig. 

9 shows that the fairness index achieved by EDCA degrades as the number of stations 

in the wireless LAN increases. This is because that as the number of stations increases, 

there is an increase of collisions. To be fair, colliding stations should get prior access 

over other stations after suffering a collision. However, in EDCA, the colliding nodes 

start binary exponential backoff to pick a larger backoff interval and hence do not get 

prior access over other stations. This results in unfairness towards the colliding nodes. 

On the other hand, the proposed EFS and the DFS achieve a high fairness index even 

when the number of stations increases. 
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Fig. 9. The fairness index of different schemes.  

 

  Fig. 10 and 11 show the throughput achieved by each high priority flow and 
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each low priority flow. The X-axis represents the receiving station ID of each flow. 

We consider a scenario when there are sixty-four stations. We can see that flows with 

the same priority in the EDCA suffered from high throughput variance. The reason 

leading to this situation is just as the reason leading to unfairness, and randomness in 

choosing a backoff interval is also another significant factor. However, in DFS and 

EFS, flows with the same priority had low throughput variance. High throughput 

variance is undesired for time-sensitive applications. We solve this problem by 

assigned flows’ backoff intervals in proportion to their weights. Note that EFS has a 

little higher throughput variance than DFS due to the fast backoff mechanism. Table 2 

summarizes the evaluation results by comparing various schemes. In the proposed 

EFS, high and low priority flows get more aggregate throughput than DFS by 13%. 

The EFS and DFS can achieve high fairness. High fairness means low throughput 

variance. Low throughput variance is more suitable for QoS-sensitive applications. 

Table 2：Comparison between various schemes. 

Parameter DCF [3] EDCA [6, 
13] 

DFS [2] EFS 
(proposed) 

Fairness Medium Low High High 
complexity Low Low Medium Medium 
MAC delay High Medium High High (6% less 

than DFS) 
Aggregate 
throughput 

Medium High (CFB 
enabled ) 

Medium Medium 
(13% better 
than DFS ) 
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Fig. 10. The throughput obtained by each high priority station (flow).  
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Fig. 11. The throughput obtained by each low priority station (flow).  
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4.2.3 MAC Delay 

We also evaluate the average MAC delays of the EFS, DFS, and EDCA. The 

average MAC delay is computed by summarizing the MAC delay of all the packets 

and averaging it. The results are shown in Fig. 12. We can see that EFS slightly 

reduce the average MAC delay compared to DFS since we have enhanced the DFS by 

reducing idle time slots and enhanced the collision handling of the DFS. As shown in 

equation (6), the value of DF can determine the rate of reducing idle time slots. The 

EFS and DFS both have higher average MAC delay than the EDCA due to the use of 

contention free bursting in EDCA. Since the EFS and DFS choose a backoff interval 

for each packet with consideration of fair scheduling, this results in longer average 

MAC delay than the EDCA. 
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Fig. 12. The average MAC delay of different schemes  
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Chapter 5  

Conclusions and Future Work 
5.1 Concluding Remarks 

We have proposed the Enhanced Fair Scheduling (EFS) for supporting weighted 

fair scheduling in IEEE 802.11e wireless LANs. The goal of the EFS is to achieve a 

fair allocation of bandwidth and to enhance the throughput performance. In the EFS, a 

packet with the smallest ratio between its length and weight receives the highest 

priority to transmit. The main idea of this scheme is to pick a backoff interval 

proportional to the finish tag of the packet. By picking a right backoff interval and 

using appropriate collision resolution in the transmission failure state, we can achieve 

fair allocation of bandwidth. With the fast backoff mechanism in the backoff timer 

decrement state and by dynamically adjusting the backoff interval according to the 

network load, we can enhance the performance of EFS. Simulation results have 

shown that the proposed EFS can achieve 13% higher throughput, 6% lower delay 

than DFS. Both have nearly equal fairness indexes, which mean both can allocate 

bandwidth to the flows in proportion to their weights. However, the EFS suffers from 

a little higher throughput variability than DFS due to the fast backoff mechanism. 

5.2 Future Work 

In the future, we will dynamically modify other parameters for the proposed EFS, 

such as Scaling_Factor, according to the network load and application requirements. 
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We can also study the impact of adjusting Backoff Threshold and Division_Factor. 

The Contention Free Burst (CFB) mechanism in EDCA is good for throughput 

performance but is harmful for fairness. We will research how to incorporate the CFB 

mechanism into our EFS to further enhance throughput and delay performance, and 

will not sacrifice fairness. 
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