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Abstract We establish computationally flexible tools for the analysis of multivariate
skew normal mixtures when missing values occur in data. To facilitate the computation
and simplify the theoretical derivation, two auxiliary permutation matrices are incor-
porated into the model for the determination of observed and missing components of
each observation and are manifestly effective in reducing the computational complex-
ity. We present an analytically feasible EM algorithm for the supervised learning of
parameters as well as missing observations. The proposed mixture analyzer, including
the most commonly used Gaussian mixtures as a special case, allows practitioners to
handle incomplete multivariate data sets in a wide range of considerations. The meth-
odology is illustrated through a real data set with varying proportions of synthetic
missing values generated by MCAR and MAR mechanisms and shown to perform
well on classification tasks.

Keywords Classifier · EM algorithm · Ignorable · Incomplete data · MSN model ·
Multivariate truncated normal

1 Introduction

Finite mixture models have become a flexible and powerful probabilistic learning tool
for heterogeneous multivariate data and been used extensively in classification and
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clustering. During the last two decades, the usefulness of Gaussian mixture (GMIX)
(Pearson 1894) and Student’s t mixture (TMIX) models, see Peel and McLachlan
(2000), Shoham (2002), Shoham et al. (2003) and Lin et al. (2004), are being more
frequently applied in various fields such as pattern recognition, data mining, computer
vision, signal and image processing, machine learning and bioinformatics, etc. For a
comprehensive introduction to mixture models and their applications, see monographs
by Titterington et al. (1985), McLachlan and Basford (1988), McLachlan and Peel
(2000), Frühwirth-Schnatter (2006), and the references therein. Recently, mixtures of
univariate skew normal and skew t distributions as natural extensions of univariate
Gaussian mixtures have been considered by Lin et al. (2007a,b).

In practice data may exhibit highly asymmetric observations and thus statistical
inferences drawn from the ordinary Gaussian assumptions may yield unreliable results.
To reduce unduly skewness encountered in general practice, one commonly adopted
approach is through the best known data-based power transformation proposed by Box
and Cox (1964). Although such a treatment is very convenient to use, the achieve-
ment of joint normality is rarely satisfied and the transformed variables become more
difficult to interpret. Instead of applying transformations, there has been a growing
interest in proposing a wider class of distributions, namely, the multivariate skew nor-
mal (MSN) distribution, which contains an extra vector of parameters in regulating
skewness and includes the Gaussian family as a special case.

The MSN distribution was originally studied by Azzalini and Dalla Valle (1996) and
some further attractive features and applications are given in Azzalini and Capitanio
(1999). Based on this class of distributions, a number of extensions or alternative
proposals have appeared during the last decade. Arellano-Vallea and Genton (2005)
studied the family of fundamental skew normal (FUSN) distributions, giving a uni-
fied scheme to obtain MSN distributions starting from symmetric ones. Subsequently,
Arellano-Valle and Azzalini (2006) provided a survey on some of its extensions and
variants. Sahu et al. (2003) defined a new class of MSN distributions and remarked that
this sort of formulation is more flexible in terms of adjusting the correlation structure
than the MSN of Azzalini and Dalla Valle (1996). Recently, Lin (2009a) introduced
a new mixture modeling framework with component densities using the MSN distri-
bution of Sahu et al. (2003) and showed its great flexibility in modeling asymmetrical
data.

Learning mixture models from incomplete data has become a powerful tool to han-
dle real-world multivariate data sets with complex missing patterns. The work was
pioneered by Ghahramani and Jordan (1994), who applied the expectation maximi-
zation (EM) algorithm (Dempster et al. 1977) to compute maximum likelihood (ML)
estimates of the GMIX model with arbitrary patterns of missingness. Lin et al. (2006)
extended their approach by introducing some efficient learning strategies from both
ML and Bayesian perspectives. Wang et al. (2004) presented an ordinary EM algo-
rithm for ML estimation of TMIX models with missing information. Related work
on using the parameter expanded Expectation Maximization (PX-EM) algorithm (Liu
et al. 1998) for the supervised learning of TMIX models with incomplete data was
done by Lin et al. (2009).

In this paper, we consider the learning of multivariate skew normal mixture (MSN-
MIX) models when missing values may occur in the data. The probability distri-
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bution of a p-dimensional random vector X is MSN with location vector ξ ∈ R
p,

scale covariance matrix � (a p × p positive definite matrix) and skewness matrix �

(a p-dimensional diagonal matrix), denoted as X ∼ SNp(ξ ,�,�). The probability
density function (pdf) of this distribution is

ψp(X | ξ ,�,�) = 2p φp(X | ξ ,�)�p(��−1(X − ξ)|�), (1)

where � = � +�2, � = (I p +��−1�)−1 = I p −��−1� (I p is a p-dimensional
identity matrix) and the notations φp( · | µ,�) and �p( · | �), respectively, stand for
the pdf of Np(µ,�) and cumulative density function (cdf) of Np(0,�).

According to Proposition 1 of Arellano-Valle et al. (2007), the MSN distribution
has the stochastic representation

X = ξ + �| ζ 1| + �1/2 ζ 2,

where ζ 1 and ζ 2 are two independent Np(0, I p) random vectors. Let γ = | ζ 1| =
(|ζ11|, . . . , |ζ1p|)�. Then γ represents a vector consisting of p independent standard
half-normal random variables. A further hierarchical representation of MSN can be
written as

X | γ ∼ Np(ξ + �γ ,�),
(2)

γ ∼ T Np(0, I p; R
p
+),

where R
p
+ denotes the Euclidean vector space of all p-tuples of positive real numbers

and T Np(µ,� ; A) denotes a p-variate truncated normal distribution for Np(µ,�)

lying within the hyperplane A.
In what follows we assume that the missing data are missing at random (MAR)

with an ignorable mechanism (cf. Rubin 1976; Schafer 1997; Little and Rubin 2002).
In this case, the missingness is unrelated to the missing values and likelihood infer-
ence can ignore the missing data mechanism. For computational aspects, we offer
an analytically tractable EM algorithm coupled with some useful model-based tools
to handle data with general missing patterns in the class of MSNMIX model. Note
that the proposed strategy is also valid if mechanism is missing completely at random
(MCAR), which is a special case of MAR. To reduce complications during the EM
procedure, we introduce two permutation matrices for indexing the observed and miss-
ing components of each datum. Under this model, we also offer a conditional predictor
to retrieve the missing components and a classifier for allocating partially observed
vectors.

The outline of the paper is as follows. In Sect. 2, we describe the model, establish
the notation, and study some important statistical properties of the model. In Sect. 3,
a computationally feasible EM algorithm is used to compute the ML estimates from
incomplete data. Statistical principles regarding classification and prediction of incom-
plete features are also investigated. In Sect. 4, the proposed methodologies are applied
to a real data set with varying proportions of synthetic missing values. Some conclud-
ing remarks are given in Sect. 5, and the technical derivation is sketched in Appendix.

123



186 T.-C. Lin, T.-I. Lin

2 Skew normal mixtures with missing information

In the MSNMIX model, we let Y = (Y 1, . . . ,Y n) be a set of p-dimensional random
samples arising from a population with g subclasses C1, . . . , Cg . That is, each Y j has
the density

f (Y j |�) =
g∑

i=1

wiψp(Y j | ξ i ,�i ,�i ), wi ≥ 0,
g∑

i=1

ωi = 1, (3)

where �i = Diag(λi ) with λi = (λi1, . . . , λi p)
� and the unknown parameter vector

� contains the mixing probabilitieswi (i = 1, . . . , g−1), the elements of component
locations ξ i ’s, the distinct elements of component scale covariance matrices �i ’s and
the skewness vectors λi ’s. Note that the notationψp(· | ξ i ,�i ,�i ) is the MSN density
defined in (1) and Diag(·) denotes a diagonal matrix created by extracting the main
diagonal elements from a square matrix or the diagonalization of a vector. The mean
and covariance of Y j are given by

E(Y j ) =
g∑

i=1

wiµi ,

Cov(Y j ) =
g∑

i=1

{
wi (1 − wi )µiµ

�
i + wiϒ i

}
−

g∑

i �= j

wiw jµiµ
�
j ,

where µi = ξ i + √
2/πλi and ϒ i = �i + (1 − 2/π)�2

i are the mean vector and
covariance matrix of SNp(ξ i ,�i ,�i ), respectively.

To pose model (3) into an EM framework, we introduce allocation variables Z j =
(Z1 j , . . . , Zgj )

�, one for each individual Y j , whose role is to encode which com-
ponent has generated Y j . Specifically, the indicators Z j ( j = 1, . . . , n) are a g × 1
vector of binary variables, whose elements are

Zsj =
{

1 if Y j belongs to group s,
0 otherwise,

subject to
∑g

i=1 Zi j = 1. This implies Z j follows a multinomial random vector with
1 trial and cell probabilities w1, . . . , wg , denoted by Z j ∼ M(1;w1, . . . , wg).

A three-level hierarchical representation of (3) can be expressed by

Y j | (γ j , Zi j = 1) ∼ Np(ξ i + �iγ j ,�i ),

γ j | (Zi j = 1) ∼ T Np(0, I p; R
p
+), (4)

Z j ∼ M(1;w1, . . . , wg),

for i = 1, . . . , g and j = 1, . . . , n. From (4), we declare the complete data
vector to be (Y , Z, γ ), where Y = (Y�

1 , . . . ,Y�
n )

�, Z = (Z�
1 , . . . , Z�

n )
� and
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γ = (γ �
1 , . . . , γ

�
n )

�. From (4), the likelihood function for � based on complete
data is

Lc(� | Y , Z, γ ) ∝
g∏

i=1

n∏

j=1

(
wiφp(Y j | ξ i + �iγ j ,�i )

)Zi j . (5)

We are interested in ML estimation of model (3) when Y may be partially observed.
The underlying missingness mechanism is assumed to be MAR.

Following Lin et al. (2006), we partition Y j into two components (Y o�
j ,Y m�

j )�,
where Y o

j (p
o
j × 1) and Y m

j ((p − po
j )× 1) denote the observed and missing compo-

nents of Y j , respectively. To facilitate the computation, we introduce two types of the
binary indicator matrices, denoted by O j (po

j × p) and M j ((p − po
j )× p) such that

Y o
j = O j Y j and Y m

j = M j Y j , which can be extracted from a p-dimensional iden-
tity matrix I p corresponding to row positions of Y o

j and Y m
j in Y j , respectively. It is

straightforward to verify that (a) Y j = O�
j Y o

j + M�
j Y m

j ; (b) O�
j O j + M�

j M j = I p.
Furthermore, we can establish the following results.

Theorem 1 Let Y j ∼ ∑g
i=1wiψp(Y j | ξ i ,�i ,�i ), and let Y o

j and Ym
j be the

observed and the missing components corresponding to Y j , respectively. We have

(a) The marginal density of Y o
j is

∑g
i=1wiψpo

j
(Y o

j |ξo
i j ,�

oo
i j ,�

oo
i j ), where ξo

i j =
O jξ i , �oo

i j = O j�i O�
j and �oo

i j = O j�i O�
j .

(b) The conditional density of Y m
j given Y o

j is

f (Ym
j | Y o

j ) = 2p
g∑

i=1

w̃i jφp−po
j

(
Y m

j | ξm·o
i j ,�

mm·o
i j

)
�p

(
�i�

−1
i (Y j − ξ i ) | �i

)
,

where

w̃i j = wiφpo
j

(
Y o

j | ξo
i j ,�

oo
i j

)
/

g∑

h=1

whψpo
j

(
Yo

j | ξo
h j ,�

oo
h j ,�

oo
h j

)
,

ξm· o
i j = M j

(
ξ i + �i Coo

i j (Y j − ξ i )
)
,

�mm·o
i j = M j (I p − �i Coo

i j )�i M�
j ,

with �oo
i j = O j�i O�

j and Coo
i j = O�

j �oo−1

i j O j .

Theorem 2 Given (4), we have the following conditional distributions:

(a) The conditional distribution of Y o
j given γ j and Zi j = 1 is

Yo
j | (γ j , Zi j = 1) ∼ Npo

j

(
µo

i j ,�
oo
i j

)
,

where µo
i j = O j (ξ i + �iγ j ) and �oo

i j = O j�i O�
j .
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(b) The conditional distribution of Y m
j given Y o

j , γ j , and Zi j = 1 is

Y m
j | (Y o

j , γ j , Zi j = 1) ∼ Np−po
j
(µm·o

i j ,�
mm·o
i j ),

where

µm·o
i j = M j (ξ i + �iγ j + �i Soo

i j (Y j − ξ i − �iγ j )),

�mm·o
i j = M j (I p − �i Soo

i j )�i M�
j ,

and Soo
i j = O�

j (O j�i O�
j )

−1 O j .
(c) The conditional distribution of γ j given Y o

j and Zi j = 1 is

γ j | (Yo
j , Zi j = 1) ∼ T Np

(
�i Coo

i j (Y j − ξ i ), I p − �i Coo
i j �i ; R

p
+
)
.

Let E
(
γ j |Y o

j , Zi j = 1
)

= ηi j and E
(
γ jγ

�
j |Yo

j , Zi j = 1
)

= � i j . Both of which

are implicit functions of parameters ξ i , �i and �i and can easily be evaluated by using
formulas (10) and (11) in Lin (2009a). The following corollary is a direct implication
of Theorem 2.

Corollary 1 Recall that Y j = O�
j Y o

j + M�
j Y m

j and O�
j O j + M�

j M j = I p. These

give rise to O�
j O j (I p − �i Soo

i j ) = 0. Then we can obtain

(a) E(Y j | Y o
j , Zi j = 1) = ξ i + �iηi j + �i Soo

i j (Y j − ξ i − �iηi j ).

(b) Cov(Y j |Y o
j , Zi j =1)=(I p −�i Soo

i j )
(
�i +�i (� i j − ηi jη

�
i j )�i (I p − Soo

i j �i )
)

.

(c) E(Y jγ
�
j | Y o

j , Zi j = 1) = (I p − �i Soo
i j )(ξ iη

�
i j + �i� i j )+ �i Soo

i j Y jη
�
i j .

For a p-dimensional observation with the probability of missingness greater than
or equal to zero for each attribute, there are 2p − 1 unique patterns of missingness.
In general, completely missing pattern does not occur. This indicates that the missing
rate should be smaller than (p − 1)/p. To lessen the computational load, Lin et al.
(2006) have described a simple and feasible procedure by rearranging Y according to
unique missing patterns of data.

3 ML estimation via the EM algorithm

The EM algorithm of Dempster et al. (1977) has been widely used in literature to carry
out ML estimation in a variety of incomplete data problems. We offer an efficient EM
algorithm for learning model (3) from incomplete data. From (5), the log-likelihood
function of � based on complete data, aside from additive constant terms, can be
written by

�c(� | Y o,Y m, Z, γ )

=
g∑

i=1

n∑

j=1

Zi j logwi + 1

2

g∑

i=1

⎛

⎝log |�−1
i |

⎛

⎝
n∑

j=1

Zi j

⎞

⎠ − tr

⎛

⎝�−1
i

n∑

j=1

H i j

⎞

⎠

⎞

⎠, (6)
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where

H i j = Zi j (Y j − ξ i − �iγ j )(Y j − ξ i − �iγ j )
�. (7)

At the kth iteration of the E-step, we need to calculate the Q-function, defined as

Q(� | �̂
(k)
) = E

(
�c(� | Y o,Y m, Z, γ ) | Y o, �̂

(k)
)

which is the conditional expectation of (6) with respect to the distribution of (Y m, Z, γ )

given the observed data Yo and the current estimate �̂
(k)

.
Let Ẑ (k)i j denote the posterior probability that Y j arises from the i th component. By

Bayes’ rule, at the kth iteration, we have

Ẑ (k)i j = Pr(Zi j = 1 | Y o
j , �̂

(k)
) =

ŵ
(k)
i ψpo

j

(
Y o

j | ξ̂
o(k)
i j , �̂

oo(k)
i j , �̂

oo(k)
i j

)

∑g
h=1 ŵ

(k)
h ψpo

j

(
Y o

j | ξ̂
o(k)
h j , �̂

oo(k)
h j , �̂

oo(k)
h j

) , (8)

where ξ̂
o(k)
i j = O j ξ̂

(k)
i , �̂

oo(k)
i j = O j �̂

(k)
i O�

j and �̂
oo(k)
i j = O j �̂

(k)
i O�

j for i =
1, . . . , g and j = 1, . . . , n. Furthermore, it can be shown that the expected value of

(7) conditional on Y o
j and current estimates �̂

(k)
is

Ĥ
(k)
i j (ξ i ,�i )

= Ẑ (k)i j

((
I p − �̂

(k)
i Ŝ

oo(k)
i j

)
�̂
(k)
i +

(
Ŷ
(k)
i j − ξ i − �i η̂

(k)
i j

) (
Ŷ
(k)
i j − ξ i − �i η̂

(k)
i j

)�

+
(

Â
(k)
i j − �i

) (
�̂
(k)
i j − η̂

(k)
i j η̂

(k)�
i j

) (
Â(k)i j − �i

)�)
, (9)

where Ŝ
oo(k)
i j = O�

j

(
O j �̂

(k)
i O�

j

)−1
O j , Â(k)i j =

(
I p − �̂

(k)
i Ŝ

oo(k)
i j

)
�̂
(k)
i and

Ŷ
(k)
i j = E

(
Y j | Zi j = 1,Y o, �̂

(k)
)

= �̂
(k)
i Ŝ

oo(k)
i j Y j +

(
I p − �̂

(k)
i Ŝ

oo(k)
i j

) (
ξ̂
(k)
i + �̂

(k)
i η̂

(k)
i j

)
. (10)

Hence, the Q-function can be written by

Q(� | �̂
(k)
) =

g∑

i=1

n∑

j=1

Ẑ (k)i j logwi

+1

2

g∑

i=1

⎛

⎝log |�−1
i |

⎛

⎝
n∑

j=1

Ẑ (k)i j

⎞

⎠ − tr

⎛

⎝�−1
i

n∑

j=1

Ĥ
(k)
i j (ξ i ,�i )

⎞

⎠

⎞

⎠ .

(11)

123



190 T.-C. Lin, T.-I. Lin

In summary, the EM algorithm can be implemented as follows:

E-step: Given � = �̂
(k)

, compute Ẑ (k)i j , Ĥ
(k)
i j and Ŷ

(k)
i j for i = 1, . . . , g and

j = 1, . . . , n, by using Eqs. 8–10, respectively.
M-step:

1. Update ŵ(k)i by maximizing (11) over wi subject to their sum being unity, which
gives

ŵ
(k+1)
i = n−1

n∑

j=1

Ẑ (k)i j .

2. Update ξ̂
(k)
i by

ξ̂
(k+1)
i =

⎛

⎝
n∑

j=1

Ẑ (k)i j

⎞

⎠
−1 ⎛

⎝
n∑

j=1

Ẑ (k)i j Ŷ
(k)
i j − �̂

(k)
i

n∑

j=1

Ẑ (k)i j η̂
(k)
i j

⎞

⎠ .

3. Update �̂
(k)
i by

�̂
(k+1)
i =

∑n
j=1 Ĥ

(k)
i j (ξ̂

(k+1)
, �̂

(k)
)

∑n
j=1 Ẑ (k)i j

.

4. Update �̂
(k)
i by

�̂
(k+1)
i = Diag

⎧
⎪⎨

⎪⎩

⎛

⎝�̂
(k+1)−1

i �
n∑

j=1

Ẑ (k)i j �̂
(k)
i j

⎞

⎠
−1 ⎛

⎝�̂
(k+1)−1

i �
n∑

j=1

Ẑ (k)i j Ĉ(k)i j

⎞

⎠ 1p

⎫
⎪⎬

⎪⎭
,

where Ĉ(k)i j =
(
�̂
(k)
i j − η̂

(k)
i j η̂

(k)�
i j

)
Â�(k)

i j + η̂
(k)
i j

(
Ŷ
(k)
i j − ξ̂

(k+1)
i

)�
, 1p denotes a

p-dimensional vector of ones and the operator ‘�’ represents the elementwise
product of two matrices with the same dimension.

Since the stability and monotone convergence of EM are maintained, the itera-

tions are repeated until a suitable convergence rule is satisfied, e.g., ‖�̂(k+1) − �̂
(k)‖

is sufficiently small. When the convergence is achieved, the resulting estimates are
denoted by �̂ = (ŵ1, . . . , ŵg−1, ξ̂1, . . . , ξ̂ g, �̂1, . . . , �̂g, �̂1, . . . , �̂g). Therefore,
the posterior probability of the Y j belonging to group i can be estimated by

ŵ∗
i j = P(Zi j = 1|Y o, �̂) =

ŵiψpo
j

(
Yo

j | ξ̂
o
i j , �̂

oo
i j , �̂

oo
i j

)

∑g
i=1 ŵiψpo

j

(
Y o

j | ξ̂
o
i j , �̂

oo
i j , �̂

oo
i j

) . (12)
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According to the ML classification theory of Basford and McLachlan (1985), Y j

is assigned to group s if ŵ∗
s j > ŵ∗

i j for i = 1, . . . , g and i �= s. Consequently, the ML
predictor for the missing component Y m

j is given by

Ŷ
m
j = E

(
Ym

j |Yo
j , �̂

)

= M j

g∑

i=1

ŵ∗
i j

(
ξ̂ i + �̂i η̂i j + �̂i Ŝ

oo
i j (Y j − ξ̂ i − �̂i η̂i j )

)
. (13)

4 Experimental results

For illustration purposes, we apply the techniques presented so far to a subset of the
Australian Institute of Sport (AIS) data, including 13 physical attributes measured on
102 male and 100 female athletes, which are treated as two intrinsic classes. The data
were originally reported by Cook and Weisberg (1994) and have already been ana-
lyzed by Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999) and Azzalini
(2005), among others. They pointed out the AIS data are better suited to the MSN dis-
tribution than Gaussian, but neglected the situation where patterns of multimodality
occur. In this example, we select three attributes: X1: body mass index (BMI), X2 : the
percentage of body fat (Bfat) and X3 : lean body mass (LBM). Detailed explanations
of these variables can be found at http://en.wikipedia.org/wiki/Search.

Figure 1 depicts pairwise bivariate scatter plots of the data with superimposed con-
tours of the fitted 2-component MSNMIX distribution. It can be observed from the
figure that the scatter plots and fitted densities reveal a pattern of asymmetric bimo-
dality for each pair of attributes except that the bimodality of BMI versus LBM is
not apparent because they are highly correlated. The Pearson’s correlation coefficient
between these two attributes is 0.71.

To conduct experimental studies, synthetic missing values are generated according
to both MCAR and MAR mechanisms, as shown in Zio et al. (2007). In the MCAR
experiment, missing items are obtained by deleting at random r% of the experimental
data where each datum retains at least one observed attribute. The missing rates of the
synthetic data range from 0.1 up to 0.4 by increments of 0.1. In the MAR case, missing
items are only drawn form the attributes (X1, X2) depending on the observed values of
X3 under the assumption that the higher the value of X3 the lower is the nonresponse
propensity. Let qi be the i th quartile of the empirical distribution of X3 and xi be the
observed value of Xi . The nonresponse probabilities for (X1, X2) are 0.25 if x3 < q1,
0.2 if x3 ∈ [q1, q2), 0.15 if x3 ∈ [q2, q3) and 0.1 if x3 ≥ q3. Data were simulated with
a total of 500 and 100 replications under the MCAR and MAR settings, respectively.
A relative difference of 10−5 in successive values of the log-likelihood is used as a
stopping guideline for the EM algorithm.

We fit a MSNMIX model with density (1) to 500 synthetic MCAR data sets for
g = 1 and g = 2. Here the number of components g = 1 corresponds to the MSN
model (a special case of MSNMIX model with a single component) of Sahu et al.
(2003), which cannot capture the bimodality and g = 2 corresponds to a 2-component
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BMI

10 20 30 40 70 100

Bfat

20
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30
10

20
30

LBM

Fig. 1 AIS data: bivariate scatter plots and fitted 2-component MSNMIX contours. (Plus sign female,
f illed circle male, B M I body mass index, Bfat the percentage of body fat, LBM lean body mass)

MSNMIX model as written below

f (Y j |�) = w f (Y j |ξ1,�1,�1)+ (1 − w) f (Y j |ξ2,�2,�2) ( j = 1, . . . , 202),

where

ξ i =
⎡

⎣
ξi1
ξi2
ξi3

⎤

⎦ , �i =
⎡

⎣
σi,11 σi,12 σi,13
σi,12 σi,22 σi,23
σi,13 σi,23 σi,33

⎤

⎦ �i =
⎡

⎣
λi,11 0 0

0 λi,22 0
0 0 λi,33

⎤

⎦ (i = 1, 2).

For comparison, we test the null hypothesis H0 : g = 1 (MSN) versus the alterna-
tive hypothesis H1 : g = 2 (MSNMIX). The numbers of free parameters under H0 and
H1 are 12 and 25, respectively. The likelihood ratio test (LRT) statistic, given by the
difference in values of −2 times the log-likelihood between two test models, is used to
judge which of the two models is more suitable for this data set. Figure 2 displays the
histograms of converged log-likelihood values of the null and the alternative models
along with a summarized box plot for their LRT statistics. It is readily seen that the
LRT statistics are highly significant compared with the χ2

13 distribution for all cases.
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                          (d) r=40%
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Fig. 2 A comparison of converged log-likelihood values of the null (g = 1) and the alternative (g = 2)
models and their LRT statistics, where dotted line (= χ2

13(0.99) = 27.69 and dashed line (= χ2
13(0.95) =

22.36, for various proportions of missing values. (Replications=500)

To exemplify the predictive accuracies on the imputation of missing values, we
compare the MSN and MSNMIX predictors; see Eq. 13, together with the traditional
randomization-based mean imputation (MI) predictor, known as a common heuristic
by filling in a single value for each missing value with the observed sample mean of the
associated attribute. As a measure of precision, the mean absolute error (MAE) and the
mean absolute relative error (MARE) are used to evaluate the prediction discrepancy.
They are defined as

MAE = 1

m

n∑

i=1

p∑

j=1

|yi j − ŷi j | and MARE = 1

m

n∑

i=1

p∑

j=1

∣∣∣∣
yi j − ŷi j

yi j

∣∣∣∣ ,

where m is the number of missing entries, yi j is the actual value and ŷi j is the respective
predictive value.

Comparison results for both MCAR and MAR scenarios are listed in Table 1. The
relative improvement percentage (RIP) in Table 1 is defined as the percentage decrease
in the relative prediction error when comparing MSN and MSNMIX predictors. In this

123



194 T.-C. Lin, T.-I. Lin

Ta
bl

e
1

A
co

m
pa

ri
so

n
of

av
er

ag
ed

pr
ed

ic
tio

n
ac

cu
ra

ci
es

an
d

th
e

as
so

ci
at

ed
st

an
da

rd
de

vi
at

io
ns

in
pa

re
nt

he
se

s
fo

r
th

re
e

im
pu

ta
tio

n
m

et
ho

ds
w

ith
va

ry
in

g
pr

op
or

tio
ns

of
m

is
si

ng
va

lu
es

M
ec

ha
ni

sm
M

is
si

ng
ra

te
(%

)
M

A
E

M
A

R
E

M
I

M
SN

M
SN

M
IX

R
IP

(%
)

M
I

M
SN

M
SN

M
IX

R
IP

(%
)

M
C

A
R

10
6.

11
4

(0
.7

33
)

3.
47

6
(0

.4
95

)
3.

32
6

(0
.4

99
)

4.
32

0.
24

3
(0

.0
32

)
0.

15
4

(0
.0

24
)

0.
14

1
(0

.0
23

)
8.

44

20
6.

12
4

(0
.4

93
)

3.
77

7
(0

.3
21

)
3.

63
7

(0
.3

37
)

3.
71

0.
24

6
(0

.0
24

)
0.

16
6

(0
.0

32
)

0.
15

5
(0

.0
18

)
6.

63

30
6.

11
5

(0
.3

80
)

4.
09

6
(0

.3
00

)
3.

96
7

(0
.3

19
)

3.
15

0.
24

4
(0

.0
18

)
0.

17
7

(0
.0

15
)

0.
16

7
(0

.0
15

)
5.

65

40
6.

11
5

(0
.3

02
)

4.
38

2
(0

.2
84

)
4.

27
5

(0
.3

07
)

2.
44

0.
24

5
(0

.0
17

)
0.

19
0

(0
.0

14
)

0.
18

2
(0

.0
15

)
4.

21

M
A

R
3.

84
5

(0
.3

20
)

2.
57

2
(0

.2
52

)
2.

43
6

(0
.2

60
)

5.
29

0.
27

0
(0

.0
29

)
0.

19
1

(0
.0

29
)

0.
17

8
(0

.0
31

)
6.

87

T
he

re
la

tiv
e

im
pr

ov
em

en
tp

er
ce

nt
ag

e
(R

IP
)i

s
m

ea
su

re
d

by
[(

M
SN

-M
SN

M
IX

)/
M

SN
]×

10
0%

M
I

m
ea

n
im

pu
ta

tio
n,

M
A

E
th

e
m

ea
n

ab
so

lu
te

er
ro

r,
M

A
R

E
th

e
m

ea
n

ab
so

lu
te

re
la

tiv
e

er
ro

r

123



Supervised learning of multivariate skew normal mixture models 195

Table 2 A comparison of average misclassification rates (%) between GMIX and MSNMIX models with
standard deviations in parentheses

Mechanism Missing Trivariate case Bivariate case
rate (%)

GMIX MSNMIX RIP (%) GMIX MSNMIX RIP (%)

MCAR 10 5.35 (0.015) 4.77 (0.010) 10.8 27.36 (0.129) 10.93 (0.022) 60.1

20 6.99 (0.024) 6.24 (0.014) 12.0 31.71 (0.136) 14.60 (0.028) 54.0

30 9.84 (0.034) 8.61 (0.018) 12.5 34.75 (0.123) 18.68 (0.036) 46.2

40 13.11 (0.037) 11.63 (0.023) 11.3 36.20 (0.105) 20.52 (0.020) 43.3

MAR 5.33 (0.009) 4.85 (0.009) 9.0 20.55 (0.120) 7.91 (0.013) 61.5

The relative improvement percentage (RIP) is measured by [(GMIX-MSNMIX)/GMIX]×100%
Note: The misclassification rates based on the MSNMIX classifier are all significantly lower than those of
the GMIX classifier as measured by the Wilcoxon rank-sum test

study, we found that both model-based predictors substantially outperform MI for all
cases. Furthermore, the MSNMIX predictor exhibits considerable promising accuracy
in the prediction of missing values when compared with those of MSN imputations
over a wide range of missing rates.

As another illustration, we compare the supervised learning of classification accu-
racies between the GMIX and MSNMIX classifiers; see Eq. 12. Comparisons are
made on the trivariate data and a bivariate sample on attributes BMI and LBM. Ta-
ble 2 shows the average misclassification rates from these models. As seen in the
table, the misclassification rates of the MSNMIX classifier are all smaller than those
of the GMIX classifier, especially for the bivariate sample with RIPs ranging be-
tween 43.3 and 61.5%. Alternatively, the Wilcoxon rank sum procedure (Hollander
and Wolfe 1999) can be performed to test whether misclassification rate of MSN-
MIX classifier, PS , is significantly lower than that of the GMIX classifier, PG . In
other words, the null hypothesis is H0 : PS ≤ PG . If this p-value is less than 0.05,
we can reject the above null hypothesis at the 5% significance level. Once again,
the MSNMIX classifier gave highly significant reduction in misclassification rate
(all p-values are far less than 0.05) as measured by the Wilcoxon rank sum test. These
observations signify the MSNMIX model provides a sound basis for the classification
of partially observed features.

5 Concluding remarks

We establish some properties related to the MSNMIX model in a missing information
framework. The proposed model is very flexible in dealing with heterogeneous data
that involve strong skewness and is robust to the presence of missing observations.
We discuss in detail how the EM algorithm coupled with auxiliary matrices can be
applied on learning models from incomplete data in an efficient manner. Experimen-
tal results indicate that the MSNMIX model performs well for imputations as well as
classification when asymmetric multimodality and missing outcomes simultaneously
occur in the input data.
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There are a number of possible extensions of the current work. We highlight that,
with the growing advances of modern stochastic computing technology and inexpen-
sive high-speed computer power, it is worthwhile to pursue a fully Bayesian treatment
(e.g., Hastings 1970; Tanner and Wong 1987; Diebolt and Robert 1994; Escobar and
West 1995) in this context for enriching up-to-date account of the theory and applica-
bility. Furthermore, it is also of interest to generalize all existing approaches to learning
multivariate skew t mixture models (Lin 2009b; Pyne et al. 2009) from incomplete
data.
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Appendix A: Proof of Theorem 1

(a) Let Y j , ξ i , �i and �i be partitioned as

Y j =
[

Y o
j

Y m
j

]
=

[
O j Y j

M j Y j

]
, ξ i =

[
ξo

i j

ξm
i j

]
=

[
O jξ i

M jξ i

]
,

�i =
[

�oo
i j �om

i j

�mo
i j �mm

i j

]
=

[
O j�i O�

j O j�i M�
j

M j�i O�
j M j�i M�

j

]
, and

�i =
[

�oo
i j 0po

j ×pm
j

0pm
j ×po

j
�mm

i j

]
=

[
O j�i O�

j 0po
j ×pm

j

0pm
j ×po

j
M j�i M�

j

]
.

Thus, we obtain

�i = �i + �2
i =

[
O j

(
�i + �2

i

)
O�

j O j�i M�
j

M j�i O�
j M j

(
�i + �2

i

)
M�

j

]
=

[
�oo

i j �om
i j

�mo
i j �mm

i j

]
.

Note that �i and �i are symmetric matrices. It follows that �i , �oo
i j and �mm

i j are

symmetric matrices and �om�
i j = �mo

i j . Furthermore,

�i �
−1
i =

⎡

⎣
�oo

i j

(
�oo−1

i j �om
i j �mm·o−1

i j �mo
i j �oo−1

i j + �oo−1

i j

)
− �oo

i j �oo−1

i j �om
i j �mm·o−1

i j

−�mm
i j �mm·o−1

i j �mo
i j �oo−1

i j �mm
i j �mm·o−1

i j

⎤

⎦

= [
Bi1 Bi2

]
,

where �mm·o
i j = �mm

i j − �mo
i j �oo−1

i j �om
i j . That is,

Bi1 =
⎡

⎣�oo
i j

(
�oo−1

i j �om
i j �mm·o−1

i j �mo
i j + I po

j

)

−�mm
i j �mm·o−1

i j �mo
i j

⎤

⎦�oo−1

i j
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and

Bi2 =
[

−�oo
i j �oo−1

i j �om
i j

�mm
i j

]
�mm·o−1

i j .

It suffices to show that

Bi1 + Bi2�
mo
i j �oo−1

i j =
[

�oo
i j

0pm
j ×po

j

]
�oo−1

i j .

Moreover, we have the following results:

�i�
−1
i �i = [

Bi1 Bi2
]
[

�oo
i j 0

0 �mm
i j

]
= [

Bi1�
oo
i j Bi2�

mm
i j

]

=
[

�oo
i j

(
�oo−1

i j �om
i j �mm·o−1

i j �mo
i j + I po

j

)
�oo−1

i j �oo
i j −�oo

i j �oo−1

i j �om
i j �mm·o−1

i j �mm
i j

−�mm
i j �mm·o−1

i j �mo
i j �oo−1

i j �oo
i j �mm

i j �mm·o−1

i j �mm
i j

]

(A.1)

and

Bi2�
mm·o
i j B�

i2

=
[

�oo
i j �oo−1

i j �om
i j �mm·o−1

i j �mo
i j �oo−1

i j �oo
i j −�oo

i j �oo−1

i j �om
i j �mm·o−1

i j �mm
i j

−�mm
i j �mm·o−1

i j �mo
i j �oo−1

i j �oo
i j �mm

i j �mm·o−1

i j �mm
i j

]
.

(A.2)

Since

�i + Bi2�
mm·o
i j B�

i2 = I p − �i�
−1
i �i + Bi2�

mm·o
i j B�

i2 , (A.3)

substituting (A.1) and (A.2) into (A.3) leads to

�i + Bi2�
mm·o
i j B�

i2 =
[

I po
j
− �oo

i j �oo−1

i j �oo
i j 0po

j ×pm
j

0pm
j ×po

j
I pm

j

]
.

Thus, we have

f (Yo
j ,Y m

j |Zi j = 1,�) = 2pφpo
j

(
Y o

j |ξo
i j ,�

oo
i j

)
φp−po

j

(
Y m

j |ξm· o
i j ,�mm·o

i j

)

×�p

(
Bi1

(
Y o

j − ξo
i j

)
+ Bi2

(
Ym

j − ξm
i j

)
| �i

)
,

where ξm· o
i j = ξm

i j + �mo
i j �oo−1

i j

(
Y o

j − ξo
i j

)
and �mm·o

i j = �mm
i j − �mo

i j �oo−1

i j �om
i j .
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The marginal density of Y o
j is given by

f (Y o
j |Zi j = 1,�) = 2pφpo

j

(
Y o

j |ξo
i j ,�

oo
i j

) ∫
φpm

j

(
Y m

j |ξm· o
i j ,�mm·o

i j

)

×�p

(
Bi1

(
Yo

j − ξo
i j

)
+ Bi2

(
Y m

j − ξm
i j

)
| �i

)
dY m

j .

Let z = Y m
j −ξm· o

i j , then Y m
j = z+ξm· o

i j = z+ξm
i j +�mo

i j �oo−1

i j

(
Y o

j − ξo
i j

)
. It can be

shown that φpm
j

(
Y m

j |ξm· o
i j ,�mm·o

i j

)
= φpm

j

(
z|0,�mm·o

i j

)
and�p

(
Bi1

(
Y o

j − ξo
i j

)
+

Bi2

(
Y m

j − ξm
i j

)
| �i

)
= �p

((
Bi1 + Bi2�

mo
i j �oo−1

i j

) (
Y o

j − ξo
i j

)
+ Bi2 z | �i

)
.

By Lemma 2.1 of Arellano-Vallea and Genton (2005), we have

f (Y o
j | Zi j = 1,�)

= 2pφpo
j

(
Yo

j |ξo
i j ,�

oo
i j

)

×
∫
φpm

j

(
z|0,�mm·o

i j

)
�p

((
Bi1 + Bi2�

mo
i j �oo−1

i j

) (
Y o

j − ξo
i j

)
+ Bi2 z | �i

)
dz

= 2po
jφpo

j

(
Y o

j |ξo
i j ,�

oo
i j

)
�po

j

(
�oo

i j �oo−1

i j

(
Yo

j − ξo
i j

)
| I po

j
− �oo

i j �oo−1

i j �oo
i j

)
.

Thus, Y o
j | (Zi j = 1,�) ∼ SNpo

j

(
ξo

i j ,�
oo
i j ,�

oo
i j

)
. It implies that

f (Y o
j | �)=

g∑

i=1

f (Yo
j | Zi j = 1,�)p(Zi j = 1)=

g∑

i=1

wiψpo
j

(
Y o

j | ξo
i j ,�

oo
i j ,�

oo
i j

)
.

(b) By virtue ofφp(Y j |ξ i ,�i ) = φpo
j
(Yo

j |ξo
i j ,�

oo
i j )φp−po

j
(Ym

j |ξm·o
i j ,�

mm·o
i j ), see The-

orem 2.5.1 of Anderson (2003), we can deduce that

f (Y m
j | Y o

j ) = 2p
g∑

i=1

w̃i jφp−po
j
(Y m

j | ξm·o
i j ,�

mm·o
i j )�p(�i�

−1
i (Y j − ξ i ) | �i ).

Appendix B

The proofs of part (a) and part (b) are straightforward and hence are omitted. We
only show the proof of part (c). From (4), we have the following densities

f (Y o
j |γ j , Zi j = 1,�) ∝ |�oo

i j |−1/2 exp

{
−1

2

(
Y o

j − µo
i j

)�
�oo−1

i j (Y o
j − µo

i j )

}
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and

f (γ j |Zi j = 1) ∝ exp

{
−1

2
γ �

j γ j

}
I
R

p
+(γ j ).

Multiplying f
(

Y o
j |γ j , Zi j = 1,�

)
by f

(
γ j |Zi j = 1

)
gives

f (Yo
j , γ j |Zi j = 1,�)

∝ |�oo
i j |−1/2 exp

{
−1

2

((
Y o

j − µo
i j

)�
�oo−1

i j

(
Y o

j − µo
i j

)
+ γ �

j γ j

)}
I
R

p
+(γ j )

∝ exp

{
−1

2

(
γ j − �−1

i (Y j − ξ i )
)�

�i Soo
i j �i

(
γ j − �−1

i (Y j − ξ i )
)}

×|�oo
i j |−1/2 exp

{
−1

2
γ �

j γ j

}
I
R

p
+(γ j )

∝ exp

{
−1

2

(
γ j − �i Coo

i j (Y j − ξ i )
)�
(I p − �i Coo

i j �i )
−1

(
γ j − �i Coo

i j (Y j − ξ i )
)}

×|�oo
i j |−1/2 exp

{
−1

2
(Y j − ξ i )

�Coo
i j (Y j − ξ i )

}
I
R

p
+(γ j ),

where the last two equalities follow from

(Y o
j − µo

i j )
��oo−1

i j

(
Y o

j − µo
i j

)
+ γ �

j γ j

= (O j Y j − O j (ξ i + �iγ j ))
��oo−1

i j (O j Y j − O j (ξ i + �iγ j ))+ γ �
j γ j

= (Y j − ξ i − �iγ j )
� O�

j �oo−1

i j O j (Y j − ξ i − �iγ j )+ γ �
j γ j

= (Y j − ξ i − �iγ j )
�Soo

i j (Y j − ξ i − �iγ j )+ γ �
j γ j

=
(
γ j − �−1

i (Y j − ξ i ))
��i Soo

i j �i (γ j − �−1
i (Y j − ξ i )

)
+ γ �

j γ j

=
(
γ j − �i Coo

i j (Y j − ξ i )
)�
(I p − �i Coo

i j �i )
−1

(
γ j − �−1

i (Y j − ξ i )
)

+(Y j − ξ i )
�Coo

i j (Y j − ξ i ).

Moreover, it is not difficult to show the identity |�oo
i j | = |�oo

i j ||I p −�i Coo
i j �i |. By

Bayes’ rule, the conditional density of γ j given Y o
j and Zi j = 1 is

f (γ j |Yo
j , Zi j = 1,�) ∝ |I p − �i Coo

i j �i |−1/2

× exp

{
−1

2

(
γ j − qo

i j )
�(I p − �i Coo

i j �i )
−1(γ j − qo

i j

)}
I
R

p
+(γ j ),
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where qo
i j = �i Coo

i j (Y j − ξ i ). This implies that

γ j |(Yo
j , Zi j = 1,�) ∼ T Np

(
�i Coo

i j (Y j − ξ i ), I p − �i Coo
i j �i ,R

p
+
)
.
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