
792 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 6, JUNE 2010

Algorithm and Architecture of Disparity Estimation
With Mini-Census Adaptive Support Weight

Nelson Yen-Chung Chang, Tsung-Hsien Tsai, Bo-Hsiung Hsu, Yi-Chun Chen,
and Tian-Sheuan Chang, Senior Member, IEEE

Abstract—High-performance real-time stereo vision system is
crucial to various stereo vision applications, such as robotics,
autonomous vehicles, multiview video coding, freeview TV, and
3-D video conferencing. In this paper, we proposed a high-
performance hardware-friendly disparity estimation algorithm
called mini-census adaptive support weight (MCADSW) and also
proposed its corresponding real-time very large scale integration
(VLSI) architecture. To make the proposed MCADSW algorithm
hardware-friendly, we proposed simplification techniques such
as using mini-census, removing proximity weight, using YUV
color representation, using Manhattan color distance, and using
scaled-and-truncate weight approximation. After applied these
simplifications, the MCADSW algorithm was not only hardware-
friendly, but was also 1.63 times faster. In the corresponding real-
time VLSI architecture, we proposed partial column reuse and
access reduction with expanded window to significantly reduce
the bandwidth requirement. The proposed architecture was
implemented using United Microelectronics Corporation (UMC)
90 nm complementary metal-oxide-semiconductor technology and
can achieve a disparity estimation frame rate of 42 frames/s
for common intermediate format size images when clocked at
95 MHz. The synthesized gate-count and memory size is 563k
and 21.3 kB, respectively.

Index Terms—Application-specific integrated circuits (ASIC),
computer vision, digital circuits, digital integrated circuits, very
large scale integration (VLSI).

I. Introduction

STEREO VISION is an important early vision tool that has
been widely adopted by applications such as multiview

video coding, freeview TV, 3-D video conferencing, intelligent
surveillance, autonomous vehicles, and mobile robots. Stereo
vision finds the depth in a scene based on the stereo image
pair of the scene. The depth of a pixel is inversely proportional

Manuscript received November 23, 2008; revised April 30, 2009 and
September 20, 2009. Date of publication March 15, 2010; date of current
version June 3, 2010. This research was sponsored by the National Science
Committee, Taiwan, under Grant NSC-96-2220-E-009-038. This paper was
recommended by Associate Editor C. N. Taylor.

N. Y.-C. Chang is with the Division of Intelligent Robotics Technology,
Mechanical and Systems Research Laboratories, Industrial Technology Re-
search Institute, Hsinchu 31040, Taiwan (e-mail: ycchang.twins@ gmail.com).

T.-H. Tsai is with MediaTek, Inc., Hsinchu 30078, Taiwan (e-mail:
roy.tsai@gmail.com).

B.-H. Hsu, Y.-C. Chen, and T.-S. Chang are with the Institute of Electronics,
National Chiao-Tung University (NCTU), Hsinchu 300, Taiwan (e-mail:
sadeibear@gmail.com; leftivan.ee93@nctu.edu.tw; tschang@twins.ee.nctu.
edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2010.2045814

to the disparity of this pixel. The disparity of a pixel is the
distance between this pixel and its corresponding pixel in the
other image when both images are overlapped. The process of
finding the corresponding pixel is often referred as disparity
estimation or stereo matching. The resulting disparity of each
pixel in an image forms a disparity image or disparity map.
For more detail on stereo vision, please refer to [1].

The applications that adopt stereo vision often require high-
performance and real-time processing speed. The performance
is usually evaluated by the error rate of a disparity map when
compared to a ground truth disparity map [2]. Lower error
rate implies higher performance. Complex disparity estimation
algorithms usually achieve much better performance than
simple algorithms. However, simple algorithms are usually
much faster than complex algorithms. As a result, most real-
time applications have adopted simple algorithms to trade the
performance for speed. For applications that cannot accept
trading performance for speed, complex algorithms have been
adopted and implemented using powerful computation devices
such as digital signal processors (DSPs), graphic processing
units (GPUs), and dedicated hardware. However, the compu-
tation power of DSPs is not high enough to enable complex
disparity estimation algorithms to support real-time process-
ing. The GPUs can support real-time disparity estimation, but
is too expensive in terms of cost and power consumption
for embedded real-time vision applications, such as mobile
robotics and intelligent autonomous vehicles. The dedicated
hardware approach that uses field programmable gate array
(FPGAs)/application-specific integrated circuits (ASICs) can
provide high-computation power with relatively less expensive
hardware cost. This makes the dedicated hardware approach
suitable for implementing complex disparity estimation algo-
rithms for real-time applications. However, complex disparity
estimation algorithms are often not hardware-friendly and are
bandwidth hungry.

Being aware of the need for high-performance real-time
disparity estimation and the abovementioned problems, this
paper proposes a hardware-friendly high-performance mini-
census adaptive support weight (MCADSW) disparity estima-
tion algorithm and its corresponding real-time very large scale
integration (VLSI) hardware architecture.

The proposed MCADSW, which was based on the adaptive
support weight (ADSW) [3], adopted the mini-census trans-
form to improve the performance and robustness to radiometric
distortion. In addition, we also proposed hardware-friendly

1051-8215/$26.00 c© 2010 IEEE

CHANG et al.: ALGORITHM AND ARCHITECTURE OF DISPARITY ESTIMATION WITH MINI-CENSUS ADAPTIVE SUPPORT WEIGHT 793

simplifications to make the MCADSW more hardware-
friendly. These simplifications includes using YUV color
representation instead of L∗a∗b∗ color representation, using
Manhattan color distance instead of Euclidian color distance,
eliminating proximity weight, using scale-and-truncate weight
approximation. These simplifications also reduced the execu-
tion time of the software implementation by 61.3%.

The proposed architecture of the MCADSW addressed the
bandwidth requirement issue by applying the proposed partial
column reuse (PCR) and access reduction with expanded
window (AREW) techniques. These techniques reduce the
bandwidth requirement by two orders compared to a direct
implementation without data reuse when processing common
intermediate format (CIF) stereo image pairs at 30 frames/s.
The proposed architecture computes 42 CIF size disparity
maps with 64 disparity levels per second. The equivalent
gate-count and total memory size was 562k and 21.3 kB,
respectively.

There are three main contributions in this paper. First, a
hardware-friendly high-performance algorithm and the corre-
sponding simplification techniques are proposed. Second, the
bottleneck that limits the disparity estimation speed, which is
the large bandwidth requirement issue, is solved by apply-
ing the proposed bandwidth reduction techniques. Both the
presented simplification and bandwidth reduction techniques
can be extended and applied to other weighted aggregation-
based vision algorithms, such as outlier rejection [4] and
segment support [5] algorithms. Third, a VLSI architecture
of the proposed MCADSW that enables real-time disparity
estimation is presented. This architecture can also be extended
to support other algorithms based on ADSW algorithm.

The rest of this paper is organized as follows. Section II
reviews related work on disparity estimation algorithms and
real-time implementations. Section III describes the proposed
MCADSW algorithm. Section IV presents the bandwidth
reduction techniques. Section V presents the architecture of
the MCADSW. Section VI presents the implementation result.
Finally, Section VII concludes this paper.

II. Related Works

A. Stereo Matching Algorithm

Disparity estimation algorithms can be categorized into
local and global approaches [2]. Local approach determines
the disparity of a pixel based on the support window similarity.
The local approach usually has low-computation complexity
and storage requirement, and has been frequently adopted
by real-time implementations [6]–[16]. Global approach de-
termines the disparity of all the pixels in an image as a
whole by optimizing a global energy function. However, the
optimization is usually complex and extremely computation
intensive. Hence, we will focus on local approaches.

Early works on local approach studied the impact of dif-
ferent similarity measures [17], [18]. Their work pointed out
that census, rank [19], and mutual information [20] achieved
better disparity estimation performance and are more robust
to radiometric distortion. Later, [21] investigated the perfor-
mance of using different color representation. Recently, [22]

investigated the performance and speed jointly of different
similarity measure and color representation combinations. The
result showed that census-based combination achieved better
performance, but also takes more time to compute.

Another important research topic that has been studied is the
support window size. The simple fixed size rectangular win-
dow adopted in early local approaches suffered from incorrect
disparity estimation in depth-discontinuity, textureless, and
repeating pattern regions. To remedy this, [23], [24] proposed
variable window size algorithms. Later, [25] also proposed a
variable window size algorithm that adaptively adjusted the
window size based on a reliability measure. The variable
window size could effectively improve the disparity estimation
performance in textureless and repeating pattern regions, but
not in depth-discontinuity regions. Being aware of this, [26],
[27] proposed shiftable windows algorithms to improve the
performance. Kang et al. [28] combined both the concept of
variable window size and shiftable window together. However,
the qualitative result of their work still showed great room for
improvement.

The reason for not being able to completely improve the
performance in the depth-discontinuity region is because the
assumption of having the same disparity in a window does
not hold in depth-discontinuity and slanted surface regions.
Understanding this, Veksler [29] proposed a compact window
class method which could model nonrectangular support win-
dows. Although their result showed significant performance
improvement compared to previous algorithms, the perfor-
mance near the boundary region was still inferior to complex
global approaches. Yoon et al. proposed an adaptive support
weight (ADSW) [3] algorithm that assigned different weights
to the pixels in a support window based on the proximity and
color distances to the center pixel. As a result, the ADSW
could achieve the effect of using a support window of arbitrary
size and shape. As a result, the performance of ADSW was
comparable to some of the complex global algorithms. Later,
segmentation-based support methods were also proposed [4],
[5]. The outlier rejection [4] used a binary weight based on the
segmentation region instead of the weight used in the ADSW.
Tombari et al.’s segment support algorithm [5] assigned fixed
weight of one to the pixels in the same segment as the
center pixel is in, and assigned weight to the pixels outside
the center pixel’s segment according to the color similarity
between the outside pixel and the center pixel. Recently,
[30] conducted a detailed comparison on the performance
and processing speed of local algorithms. Their result showed
that the segment support has the highest performance but
was two times slower than the ADSW. The performance of
the ADSW was only slightly inferior to the segment support
algorithm.

B. Real-Time Implementations

Real-time stereo matching implementations can be catego-
rized into general purpose processor solutions, DSP solutions,
GPU solutions, and dedicated hardware solutions.

The general purpose processor solutions rely on the great
computation power in state-of-the-art processors to accom-
modate the high-computation complexity of stereo matching

794 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 6, JUNE 2010

algorithms. Early works [8], [31] tried to implement real-
time stereo matching on general purpose processors, however
they could only achieve nonvideo rate performance due to
limited computing power at their times. As the processor
technology advances, [32]–[34] implemented real-time stereo
matching algorithms on general purpose processors. They
managed to achieve real-time processing, but the perfor-
mance of their disparity map was not very high because of
using simple local algorithms. Although simple local algo-
rithms have been adopted by most general purpose solutions,
Forstmann et al. [35] proposed a real-time implementation of
the less complex global algorithm, the dynamic programming,
on general purpose processors. Their performance is higher
than most of the previous local algorithms, but their real-
time processing speed is limited to images smaller than
VGA.

The DSPs have better processing speed on signal processing
algorithms because of the single instruction multiple data
(SIMD) and multiple instruction multiple data (MIMD)
architectures than general purpose processors. In addition,
they are often less expensive and less power consuming
than the state-of-the-art general purpose processors. Hence,
DSP solutions are more favorable in embedded stereo vision
applications. Konolige’s small vision system [8] is one of the
most famous early real-time DSP solutions. Recently, [16]
also proposed a real-time DSP implementation with jigsaw
matching templates. Although the DSP solutions may have
more computation power than general purpose processors,
the data word alignment and bandwidth issue often limit their
capability. As a result, the DSP solutions are usually limited
to local algorithms and could not provide high-performance
stereo matching result in real-time.

Another powerful solution is the GPU solutions. The GPUs
have extremely high-memory bandwidth that ranges from
6.5 GB/s to 128 GB/s and can have up to 256 stream pro-
cessors. With so much hardware resource, the GPU solutions
[36]–[39] could implement high-performance complex stereo
matching algorithms. However, GPUs are too expensive and
power consuming to be used in embedded vision applications
currently.

The dedicated hardware solutions can also provide great
computation power while allowing the computation resource
to be optimized for utilization by designing the architecture
in a customized way. This enables the dedicated hardware
solutions to be more cost efficient than the GPU solutions.
The dedicated hardware includes both FPGA/programmable
logic device (PLD) and ASIC. Faugeras et al.’s PeRLe-1 board
[40] and Nishihara’s PRISM-3 based stereo system [41] were
two of the earliest dedicated hardware solutions. Later, other
early dedicated hardware solutions [7], [9], [10], [25] have
also been proposed. Among these works, [9] and [10] were
two of the first real-time implementation adopting the census
matching. However, these early solutions only implemented
simple local algorithms. Consequently, their performance was
not high. Being aware of the performance limitation of local
algorithms, hardware architectures have been proposed for
dynamic programming [42] and hierarchical belief propagation
(HBP) [43], [44] algorithms. Their performance was very high

Fig. 1. Overall flow of the proposed mini-census ADSW algorithm.

Fig. 2. Census transform and matching.

since they were based on high-performance global methods.
However, their hardware cost was also very high compared
to other dedicated hardware implementations. Recently, Tsai
et al. [45] studied data reuse techniques in aggregation-based
algorithms to reduce the internal storage size, computation
resource, and bandwidth requirement.

III. Proposed Mini-Census ADSW Algorithm

A. Algorithm Overview

Fig. 1 shows the overall flow of the proposed mini-
census adaptive support weight (MCADSW) algorithm. The
MCADSW algorithm consists of four major steps. First,
the mini-census transform and matching step performs mini-
census transform on the left and right images and computes
the initial matching cost of each pixel. The second step is
the weight generation which generates the weight coefficients
needed in the cost aggregation step. Once both the initial
matching costs and weight coefficients are available, the
matching cost will be aggregated through a two-pass cost
aggregation step. Finally, the best disparity can be obtained by
finding the disparity with the minimum aggregated matching
cost through a winner-takes-all (WTA) method.

B. Mini-Census Transform and Matching

The mini-census transform, a modified and simplified ver-
sion of census transform [19], compares the luminance of the
6 pixels within a support window with the center pixel. The
6-pixel template is shown in Fig. 2. If a pixel’s luminance is
larger than the center pixel’s luminance, it is given the label 0,
otherwise the label 1. After the comparison of the 6 pixels, a
binary bitstream is obtained which characterizes the luminance

CHANG et al.: ALGORITHM AND ARCHITECTURE OF DISPARITY ESTIMATION WITH MINI-CENSUS ADAPTIVE SUPPORT WEIGHT 795

Fig. 3. Probability of correct disparity versus different matching cost in
Teddy. (a) Census matching cost. (b) SAD matching cost.

relation between the center pixel and its surrounding 6 pixels.
With the mini-census bitstream, we can represent each pixel
using only 6 bits.

The mini-census matching cost between 2 pixels is defined
as the hamming distance between the mini-census bitstreams.
We would refer the mini-census matching cost as the census
cost hereon for brevity, which is defined as

Ei,d = H(bL,i, bR,i,d) (1)

where Ei,d is the census cost of pixel i at disparity d; bL,i

is the bitstream of pixel i in the left image and bR,i,d is the
bitstream of pixel i at disparity d in the right image; H() is
the hamming distance function.

Fig. 2 also illustrates an example of the mini-census trans-
form and census cost. After the transform, the mini-census
bitstreams of the 2 pixels in the figure are 111 000 and 111 011,
respectively. The hamming distance between the bitstreams
is 2; hence, the census cost is 2.

Since the bitstream represents relative information, the
census cost is therefore much less sensitive to brightness bias
and exposure gain. In addition, the census cost better reflects
the probability of finding the correct match when compared to
the sum of absolute difference. Fig. 3 illustrates the probability
of finding a correct disparity given a matching cost for the
Middleburry stereo image pair Teddy. Fig. 3(a) illustrates the
9×9 census cost case and Fig. 3(b) illustrates the 15×15 sum
of absolute differences (SAD) case. The probability decreased
as the census cost increased. However, the probability did not
always decrease as the SAD cost increase, especially when the
cost is large. This implies sometimes the SAD cost of a correct
disparity may be larger than other disparities. Similar result
could also be observed in other stereo image pairs. The main
reason for this is because the relative information encoded in
the census resulted in better matching performance in occluded

Fig. 4. Disparity estimation error rate of using different color spaces.

region than SAD did. Despite the benefits of the census cost,
census cost is very sensitive to image noise and hence should
be used with care.

C. Weight Generation

The adaptive weight generation was based on the proximity
and color distances in the original ADSW algorithm. However,
we removed the proximity weight based on our observation
that it mainly benefits the performance when the support
window is larger than 19×19. We have compared the average
disparity error rate of MCADSW with and without the prox-
imity weight. The average disparity error rate was averaged
over the overall error rate of Tsukuba, Venus, Teddy, and
Cones stereo image pairs from the Middlebury stereo vision
evaluation website [2]. Note that we have decided to use the
overall error rate instead of the nonocclusion error rate because
in most applications, such as robotics, freeview TV, and
3-D modeling, prefer overall error rate over nonocclusion error
rate. This is due to the fact these applications do not just rely
the depth at nonocclusion, the depth at depth discontinuities
is also critical to the performance of these applications. From
our experiment result, the difference of the disparity estimation
error rate between using and not using the proximity weight
was less than 3% for window size of 31 × 31. Therefore,
we decided to trade the very small performance loss for the
computation complexity reduction.

The color weight was originally defined as a Gaussian
function of the color distance between a pixel i in the support
window and the center pixel c of the window. The color weight
wi,c of pixel i with respect to pixel c is

wi,c = exp

(
−�Ci,c

γc

)
(2)

where �Ci,c is the color distance between pixel i and c; γc

is a tuning constant. This weight allows the pixel with color
similar to the center pixel to have more influence on the final
matching cost. Note that since we use two-pass aggregation,
the weight for vertical and horizontal aggregations are gener-
ated separately. The vertical weight is generated with respect
to the center pixel of each column in the support window,
whereas the horizontal weight is generated from the center
row with respect to the center pixel of the support window.

To reduce computation complexity and make the algorithm
more hardware-friendly, we proposed three simplifications to
the weight generation.

First, we adopted the YUV color representation instead
of the L∗a∗b∗ color representation, which was originally

796 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 6, JUNE 2010

TABLE I

Performance Comparison Between Using Euclidean and Manhattan Color Distances

Method Average Error Rate (%)
Error Rate (%) Tsukuba Execution Time (seconds)

Tsukuba Venus Teddy Cones
Euclidean 7.47 3.47 0.91 14.3 11.2 4.75
Manhattan 6.94 3.08 0.59 14.0 10.1 3.12

adopted by the ADSW, in our MCADSW. Using YUV color
representation allowed us to use hardware-friendly positive
integer numbers instead of complex hardware-unfriendly
signed floating-point numbers during the weight generation.
Fig. 4 shows the average error rate of MCADSW using
different color representations. The error rate was averaged
over the overall error rates of the four stereo image pairs
from the Middleburry stereo vision evaluation website. Note
that the error tolerance used to evaluate the error rate in this
paper is one disparity level unless otherwise specified. From
Fig. 4 we noticed that the error rate difference between using
YUV and L∗a∗b∗ color representations was insignificant
since both error curves were almost overlapped. The error
rate in the case of using Y-only color representations was
significantly larger than using L∗a∗b∗. Therefore, we have
decided to adopt YUV color representation in MCADSW.

Second, we used Manhattan color distance instead of
Euclidean color distance to eliminate the three square and
one square root computations that was necessary for comput-
ing Euclidean distance. Table I lists the disparity estimation
error rate and execution time on a Pentium IV 2.8 GHz
machine when Euclidean and Manhattan distances were used
in MCADSW. Interestingly, the result using Manhattan color
distance slightly outperformed using Euclidean color distance.
One possible explanation is that YUV color representation
is not perceptually uniform and linear like L∗a∗b∗ color
representation is. Therefore, Euclidean color distance could no
longer reflect the actual color distance. After using Manhattan
color distance, the execution time of the MCADSW was
reduced by 34.3%.

Third, we proposed a scale-and-truncate approximation of
the color weight function. The scale-and-truncate approxima-
tion approximated the exponential function by scaling it up by
64 then truncate it to leave only one nonzero most significant
bit (MSB). The reason for scaling up by 64 is because the error
rate stopped decreasing after the scale factor exceeds 64. The
reason for preserving only one nonzero MSB is because the
error rate difference between preserving one bit and two bits
was less than 0.5%. With only one bit in the color weight
being one, the multiplication between the color weight and
the initial cost can be implemented with only one simple shift
operation. The curve of the final scale-and-truncated weight is
shown in Fig. 5. After applying the proposed approximation,
the execution time could be reduced by 41.0%.

D. Vertical and Horizontal Cost Aggregation

The final matching cost was aggregated from the weighted
cost within the support window using a two-pass approach
proposed by Wang et al. [39]. The two pass approach first

Fig. 5. Curve of the scaled-and-truncated weight function.

aggregates vertically to give a vertical aggregated cost of
each column, then the vertical aggregated costs are aggregated
horizontally together to give the final matching cost. The
vertical aggregated cost Ev,col,d of a column “col” within the
support window at disparity d can be defined as

Ev,col,d =
∑
i∈col

Ei,dwv,i,c (3)

where Ei,d is the initial census cost of the pixel i in the column,
wv,i,c is the vertical weight of pixel i with respect to the center
pixel c of the column. The horizontal aggregated cost Eh,row,d

at disparity d, which is also the final matching cost Efinal,d , is
defined as

Efinal,d = Eh,row,d =
∑

col∈W

Ev,col,dwh,j,c (4)

where Ev,col,d is the vertical aggregated cost of the column
“col” within the aggregation window W ; wh,col,c is the hori-
zontal weight of column col’s center pixel j with respect to
the center pixel c of the window.

The two-pass approach reduces computation complexity
when compared to the direct approach. If the window size
is (r + 1) × (r + 1) and the disparity range is D, the complexity
of the two-pass approach is O(2rD), whereas the complexity of
the direct approach is O(r2D). In addition to the computation
complexity reduction, the two-pass approach also reduces the
internal bandwidth of the hardware design. However, [39] have
reported observable quality drop of the disparity map after
applying the two-pass approach to the original ADSW. Our
own experimental result on the ADSW showed approximately
less than 3% average error rate increase after applying the
two-pass approach.

E. Performance Evaluation

Table II lists the error rate and desktop PC execution time
of the proposed MCADSW and other state-of-the-art algo-
rithms. The error rate evaluates the performance of a disparity

CHANG et al.: ALGORITHM AND ARCHITECTURE OF DISPARITY ESTIMATION WITH MINI-CENSUS ADAPTIVE SUPPORT WEIGHT 797

TABLE II

Performance Comparison of the MCADSW and Other Algorithms

Method
Error Rate % PC Spec.

(Brand, processor, clock rate)
Tsukuba Exec.
Time (seconds)Tsukuba Venus Teddy Cones Average

SSD + MF [2] 7.07 5.16 24.8 19.8 14.2 Intel CoreDuo 2.99 GHz 0.64
EffectiveAggr[46] 2.11 4.75 15.2 12.6 8.7 Intel CoreDuo 2.14 GHz 0.20
RealDP [35] 2.85 6.42 N.A. N.A. N.A. AMD AthlonXP 2800+ 0.02
RealTimeBP[43] 3.40 1.90 13.2 11.6 7.5 Intel Pentium IV 3.0G 3.39
RealTimeGPU [39] 4.22 2.98 14.4 13.7 8.8 Intel Pentium IV 3.0G 4.91
CoopRegion [48] 1.13 0.18 9.03 7.80 4.5 Intel Pentium M 1.6G ∼20.00
Original ADSW [3] 1.85 1.19 13.3 9.79 6.5 AMD AthlonXP 2700+ ∼60.00
Our ADSW 4.18 3.41 20.6 16.0 11.1 Intel Pentium IV 2.8 GHz 95.65
MCADSW 2.80 0.64 13.70 10.1 6.8 Intel Pentium IV 2.8 GHz 1.84

Fig. 6. Partial column reuse in mini-census transform.

estimation algorithm and is independent of which computing
platform an algorithm is being implemented. The execution
time evaluates the computing complexity of an algorithm
based on desktop PC-based implementations. Although the
execution time of an algorithm depends on the clock rate
of the target processor and code optimization, comparing the
execution time of different algorithms gives a rough figure of
their computation complexity. The error rate and the execution
time of other algorithms in the table were acquired from
their published works. For ADSW, we have included the
execution time provided from their published work as well as
the execution time acquired from us running their software.
The error rate and execution time we gathered is labeled
as “Our ADSW.” For algorithms that did not provide the
execution time of the Tsukuba stereo image pair, such as
RealTimeBP and RealTimeGPU, we estimated their execution
time based on their best disparity estimation speed, which is
usually represented in terms of million disparity estimation
per second (MDE/s). For instance, RealTimeGPU reported a
disparity estimation speed of 0.36 MDE/s on an Intel Pentium
IV 3 GHz machine in their work; by dividing the number
of disparity estimations needed in the Tsukuba stereo image
pair, which is 384 × 288 × 16 = 1.77 MDE, by the disparity
estimation speed, we get an estimated execution time of 4.91 s.

The average error rate of the proposed MCADSW was com-
parable to RealTimeBP and was slightly inferior to the original
ADSW. When compared to the state-of-the-art CoopRegion
[48] method, the average error rate of the MCADSW was
2.3% higher. However, the execution speed of the MCADSW

Fig. 7. Partial column reuse in cost aggregation.

was at least 10 times faster than CoopRegion, 30 times faster
than the original ADSW, and near two times faster than
the RealTimeBP. This implies the MCADSW is likely to
have a much lower computation complexity than the com-
pared high-performance disparity estimation algorithms. Only
SSF + MF, EffectiveAggr, and RealDP were faster than the
MCADSW. However, SSF + MF and, EffectiveAggr had sig-
nificantly higher average error rate than the MCADSW as well.

IV. Bandwidth Reduction Techniques

for MCADSW Architecture

Reducing bandwidth requirement is important because
available bandwidth is limited. We proposed PCR and AREW
techniques to reduce the bandwidth requirement.

798 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 6, JUNE 2010

Fig. 8. Example of access count reduction with expanded window. (a) Without expanded rows. (b) With three expanded rows.

A. Partial Column Reuse

The PCR reuses the data in each column to reduce the
memory bandwidth and computation requirements. A column
is usually a part of multiple horizontally overlapped windows.
Therefore, the data of each column can be shared by the
computation of the final result for these windows. The data
could be original pixel data or temporary intermediate results.
By storing these data, memory accesses and computations
can be reduced. As a result, each column is only read and
computed once.

Fig. 6 illustrates how the PCR is applied to the mini-
census generation. The pixels in column x = n contribute
to the generation of three mini-censuses. Fig. 7 illustrates
how a vertical aggregated cost is shared by 18 horizontally
overlapped aggregation windows. This reduced the read count
of a pixel column from 18 to 1 for these 18 windows.
Since PCR can reuse computation as well, PCR may also be
applied to other types of implementations, such as processor-
based, DSP-based, GPU-based, and FPGA-based, to reduce
computation requirement.

B. Access Reduction With Expanded Window

The AREW reduces the bandwidth requirement by deliber-
ately expanding the size of the read window. The expanded
window reduces the read count of a pixel by reducing the
number of overlapping windows containing this pixel. We will
explain this by using an example of vertically expanded win-
dow shown in Fig. 8. Note that we have ignored considering
horizontal overlap for the sake of clarity. In this example, the
original window size is 5×5 pixels and the number of vertical
expanded row is 3.

Fig. 8(a) illustrates how windows are overlapped vertically
without expanding rows. The first window is located at row
n and column k. When the window changes the row position
at the end of a horizontal scan, the new window would be
vertically overlapped with the old window. As a result, the
second window is located at row n + 1 and column k. The
position of the first window is shown by the box with dashed
line. The overlapped region is marked by darker color. Since
we only buffer the pixel data within the read window due
to cost consideration, the vertically overlapped region must
be re-accessed. Consequently, the access count of a pixel is
determined by the number of overlapping window containing
this pixel. The maximal access count of a pixel in this case is
five as shown in the figure.

Fig. 8(b) illustrates the case with expanded window. With
the expanded rows, the vertically enlarged window would
result in farther vertical jump distance when a row change
happens. As a result, the second window is located at n + 4.
The maximal access count of each pixel is only 2, which
is much smaller than in the case without expanded window.
Horizontal expansion also reduces the access count in the
same way as the vertical expansion. If we could enlarge the
window to the size of the image, the read count of each pixel
would be only one. However, expanding the window would
also require larger internal storage size and more hardware
resource. Therefore, the number of expanded row and column
should be carefully selected. In our case, the number of
expanded row and the number of expanded column are both
17. The AREW is applied to the mini-census generation and
weight generation.

The bandwidth requirement to external frame memory
can be estimated based on the read count of each pixel.

CHANG et al.: ALGORITHM AND ARCHITECTURE OF DISPARITY ESTIMATION WITH MINI-CENSUS ADAPTIVE SUPPORT WEIGHT 799

Fig. 9. Block diagram of the MCADSW.

The read count of a pixel is determined by the number of
times it is overlapped by mini-census transform windows and
aggregation windows. In a direct implementation without any
data reuse, a pixel is overlapped by 3 mini-census transform
windows in the horizontal direction, 4 mini-census transform
windows in the vertical direction, 31 aggregation windows
in the horizontal direction and 31 aggregation windows in
the vertical direction. The read data width of a pixel in the
mini-census transform is one byte, whereas the read data
width of a pixel in the aggregation is three bytes. As a result,
the total bandwidth requirement for a CIF size base image at
30 frames/s is about ((7×31×31)×1 byte+31×31×3 byte)×
(352 × 288) × 30 frames/s = 27.22 GB/s. neglecting the
boundary case. If we assume the pixel data read for the weight
generation already included the pixel data read for the mini-
census transform, the total bandwidth can be reduced to (31×
31 × 3 byte) × (352 × 288) × 30 frames/s = 8.17 GB/s. After
applying the PCR and AREW bandwidth reduction techniques,
the average read count of a pixel can be reduced to 5.17 times.
The bandwidth requirement can therefore be reduced to
5.17 × 3 byte × (352 × 288) × 30 frames/s = 44.99 MB/s. The
proposed bandwidth reduction can also be applied to other
aggregation-based stereo matching architectures to reduce their
bandwidth requirement.

V. Proposed Real-Time Architecture for MCADSW

A. Architecture Overview

Fig. 9 shows the architecture of the MCADSW. The archi-
tecture consists of a memory controller, mini-census trans-
former, weight generator, and a cost aggregator and WTA
module. The details of each module are explained in the
following subsections.

B. Mini-Census Transformer

Fig. 10 shows the architecture of one of the two (left and
right) identical mini-census transform units. Each unit consists
of an input buffer, a mini-census kernel, and a mini-census
buffer. The input buffer stores the input image data read from

Fig. 10. Architecture of the mini-census transformer.

the external image. The input data are first packed into data
words and stored into the word buffers. Once the data are ready
for mini-census transform, the data in the input buffer are
read into the mini-census kernel. The center pixel is stored in
the register and compared with its surrounding 6 pixels in the
mini-census template. The comparison result, the 6-bit mini-
census bitstream, is then written into the mini-census buffer.

C. Weight Generator

Fig. 11 shows the architecture of the weight generator.
The architecture is similar to the mini-census transformer.
However, there are three sets of input buffer because the
weight generation needs all three color components. The mini-
census kernel is replaced by a weight generation kernel which
reads the input pixels column by column to generate the
vertical weight. The color distances between the center pixel
and others are computed in the Manhattan color distance
computer. Once the color distance is available, it is used
to look up the corresponding weight from the weight table.
During the column by column read from the input buffer, the
center pixel of each column is also stored in the horizontal row
buffer. After the vertical weight is generated, the horizontal
weight is generated from the pixel data in the horizontal
row buffer. This avoids reading the input buffer again during
the horizontal weight generation. The vertical weight buffer

800 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 6, JUNE 2010

Fig. 11. Architecture of the weight generator.

Fig. 12. Architecture of the cost aggregator and WTA.

and horizontal weight buffer store the resulting vertical and
horizontal weight.

D. Cost Aggregator and WTA

Fig. 12 shows the architecture of the cost aggregator and
WTA. The mini-census cost computation and vertical cost
aggregation are shown to the left of the ping-pong buffer,
whereas the horizontal cost aggregation and WTA are shown
to the right. The census costs between the left and right mini-
census bitstreams are computed by the hamming distance
computation unit. To increase processing speed, each unit
computes the census cost of all the pixels within a column
in parallel. After the census costs are available, they are
multiplied by the vertical weights and summed together to

give the vertical aggregated cost. The vertical aggregated costs
are stored in the ping-pong buffer. The ping-pong buffer is
scheduled as shown in Fig. 13 to ensure that the aggregation
can be performed continuously without any pause. The ping-
pong buffer outputs 33 vertical aggregated costs to the three
shifters used for horizontal aggregation. We have applied the
PCR technique so that the first 31 costs in the 33 costs are sent
to the first shifter, the second 31 costs are sent to the second
shifter, and the third 31 costs are sent to the third shifter.
This reduces the output bandwidth requirement of the ping-
pong buffer. Once the final matching costs are available, they
are compared with the current minimal final costs in the WTA
modules. After the cost of all the disparities are compared, the
disparity with the minimal cost is the final output disparity.

CHANG et al.: ALGORITHM AND ARCHITECTURE OF DISPARITY ESTIMATION WITH MINI-CENSUS ADAPTIVE SUPPORT WEIGHT 801

Fig. 13. Schedule of the ping-pong buffer.

Fig. 14. Processing schedule of the cost aggregator.

Fig. 15. Schedule of the MCADSW architecture.

Fig. 14 illustrates the processing order of the cost aggrega-
tor. The cost aggregator is capable of processing eight columns
of 31 pixels simultaneously. The initial pipeline delay is
7 cycles. After the initial pipeline delay, it takes 6 cycles to
process all 31 × 48 pixels to give 18 final matching costs.
These 18 matching costs are of the same disparity. After the
final matching costs of a disparity are computed and compared,
the final matching costs of the next disparity are computed
and compared. Once the final disparity of an 18-pixel row
is determined, the cost aggregator and WTA start processing
the next 18-pixel row. For example, the disparity of y = 0 is
estimated first, then the disparity of y = 1 is estimated. After
(7 + 6 × 64) × 18 = 7038 cycles, the disparity of an 18 × 18
block are determined.

E. Memory Controller

The memory controller interfaces to external memory and
arbitrates the external memory access requests from the mini-
census transformer, weight generator, and cost aggregator and
WTA. The data port width between the image memory and

TABLE III

Core Characteristics of the Proposed MCADSW

Technology UMC 90 nm
Max Clock Rate 95 MHz
Equivalent Gate-Count
(Excluding Memories)

562 642

Memory Size 21.3 kB
Image Size 352 × 288 (CIF)
Disparity Range 64
Maximal Frame Rate 42 frames/s @ 95 MHz

Fig. 16. Percentage of the combinational gate count and memory area.

the memory interface is 32-bit. The arbitration is a hybrid
of round-robin and fixed priority strategy. The depth first-
in-first-out always has the highest priority due to the high
penalty of suspending of the cost aggregator and WTA. The
priority of the mini-census transformer and weight generator
are determined by round-robin.

F. Scheduling

Fig. 15 illustrates the scheduling of the MCADSW archi-
tecture. The cost aggregator starts processing data after all
the 31 × 48 mini-censuses and weights are available. This
takes 470 cycles to prepare the censuses and 1536 cycles to
prepare the weights. Since the cost aggregator and WTA take
7038 cycles to finish, the mini-census transform and weight
generation of the next 18 × 18 block can be performed at the
same time. Based on this scheduling, it takes approximately
2.25 million cycles to complete the disparity estimation of all
the 320 18 × 18 blocks in a CIF sized stereo image pair.

VI. Implementation Result

A. Gate Count and Memory Size

The proposed MCADSW architecture was synthesized using
United Microelectronics Corporation (UMC) 90 nm standard
cells. Table III lists the core characteristics of the synthe-
sized design. The total equivalent gate-count is about 563k
excluding the memories and the maximum operation frequency
is 95 MHz. The equivalent gate-count and the memory area
distributions are shown in Fig. 16. The total gate-count was
dominated by the cost aggregator and WTA, census left buffer,
and census right buffer. This was due to the high-computation
resource requirement and complex demultiplexing circuits.
The memory area was dominated by the weight generation,
weight buffer, census left buffer, and census right buffer.

802 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 6, JUNE 2010

TABLE IV

Speed Comparison of Different Implementations

Design Implementation Image Size Disparity
Range

frames/s MDE/s

Proposed MCADSW UMC 90 nm Std. Cell 352 × 288 64 42 272.5
TrellisDP [41] Xilinx Virtex II Pro-100 320 × 240 128 30 294
HBP [43] Xilinx Virtex II Pro-100 × 2 320 × 240 32 30 73.7
EffectAggr [45] Intel Core 2 Duo 2.14 GHz 463 × 370 75 1.67 18.9
RealDP [34] AMD AthlonXP 2800 384 × 288 100 18.9 209
CBiased [36] Nvidia Geforce 7900 512 × 512 96 24 605
SepLaplacian [37] Nvidia Geforce 7900 256 × 256 96 87 547
RealTimeBP [42] Nvidia Geforce 7900 320 × 240 16 16 19.6
RealTimeGPU [38] ATI Radeon 9800 320 × 240 32 22 53.0
ReliableGPU [35] ATI Radeon 9800 N.A. N.A. 16.6 N.A.
GradientGuided [46] ATI Radeon 9800XT 512 × 384 40 14.7 117

Fig. 17. Disparity map of different implementations.

CHANG et al.: ALGORITHM AND ARCHITECTURE OF DISPARITY ESTIMATION WITH MINI-CENSUS ADAPTIVE SUPPORT WEIGHT 803

TABLE V

Performance Comparison of Different Implementations

Design Tsukuba Venus Teddy Cones Saw Tooth Map
Proposed 2.80 0.64 13.7 10.1 2.11 3.21
TrellisDP [41] 2.63 3.44 N.A. N.A. 1.88 0.91
HBP [43] 2.85 1.92 N.A. N.A. 6.25 6.45
EffectAggr [45] 2.11 4.75 15.2 12.6 N.A. N.A.
RealDP [34] 2.85 6.42 N.A. N.A. 6.25 6.45
CBiased [36] 4.77 10.2 N.A. N.A. 0.82 0.65
SepLaplacian [37] 13.0 19.4 N.A. N.A. N.A. N.A.
RealTimeBP [42] 3.40 1.90 13.2 11.6 N.A. N.A.
RealTimeGPU [38] 4.22 2.98 14.4 13.7 N.A. N.A.
ReliableGPU [35] 1.36 1.09 N.A. N.A. 2.35 0.55
GradientGuided [46] 2.48 3.91 N.A. N.A. 1.63 0.73

B. Performance Comparison

Tables IV and V compare the disparity estimation speed and
performance of the MCADSW architecture with other existing
high-performance real-time implementations quantitatively. In
Table V, the performance was evaluated using Middleburry’s
stereo image pairs and their evaluation method [2]. The error
rate is the overall error rate with the tolerance of one disparity
level. In addition to the quantitative performance evaluation,
we also included the disparity maps generated by different
implementations in Fig. 17 for qualitative performance com-
parison.

From the speed perspective, the TrellisDP, CBiased, and
SepLaplacian outperformed the MCADSW architecture in
terms of the MDE/s. The TrellisDP was faster because
it adopted a fully parallel systolic array architecture with
128 processing elements (PEs). Their systolic architecture
maximized the utilization of the PEs to achieve a processing
speed of 294 MDE/s. However, the systolic architecture would
require very high bandwidth and large storage to keep the
128 PEs working without idling. The CBiased and SepLapla-
cian were at least two times faster than the MCADSW because
they were implemented using high-performance programmable
GPUs. These high-performance GPU had extremely high
bandwidth and computation hardware resource available. For
instance, Nvidia’s Geforce 7800GTX GPU had 256 MB of
GDDR3 dynamic random access memory (DRAM) clocked at
600 MHz, with a data port of 256-bit, the maximum available
peak bandwidth can reach up to 38.4 GB/s [49]. Together
with an operating clock of 430 MHz and 8 vertex and 16-
pixel shaders, it is reasonable for GPU-based implemen-
tation to achieve such high-processing speeds. In contrast,
the MCADSW architecture required much lower clock rate,
less bandwidth, and smaller silicon area. This makes the
MCADSW more applicable to embedded vision applications.
As to the disparity estimation performance, only the TrellisDP
was comparable to the MCADSW in terms of average error
rate. The average error rate excluding Teddy and Cones stereo
image pairs was 2.19% and 2.21% for the MCADSW and
TrellisDP, respectively. The performances of the Cbiased and
SepLaplacian were both inferior. This can also be observed
in the disparity maps shown in Fig. 17. The disparity map
of the MCADSW had more accurate depth-discontinuity than
others in most regions except in the camera region. The reason

for the camera region being blurry was probably due to the
removal of the proximity weight. The MCADSW provided
high-disparity estimation speed and performance that was
comparable to other high-performance real-time implementa-
tions. In addition, the MCADSW required less bandwidth and
would therefore be more suitable for embedded vision systems.

VII. Conclusion

This paper presented a hardware-friendly high-performance
disparity estimation algorithm, the MCADSW, and its cor-
responding architecture for real-time stereo matching. The
proposed hardware-friendly simplifications not only made
the MCADSW more hardware-friendly, but also reduced the
execution time of the MCADSW algorithm by 61.3%. In
the design of the MCADSW architecture, we proposed the
PCR and AREW techniques to significantly reduce bandwidth
requirement. The proposed architecture was synthesized using
UMC 90 nm standard cells. At the operation frequency of
95 MHz, the proposed architecture can achieve 42 frames/s of
CIF size disparity map with 64 disparity levels. The equivalent
gate-count and total memory size are 562k and 21.3 kB,
respectively.

References

[1] M. Brown, D. Burschka, and G. Hager, “Advances in computational
stereo,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 8,
pp. 993–1008, Aug. 2003.

[2] D. Scharstein and R. Szeliski, “A Taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” Int. J. Comput. Vision,
vol. 47, nos. 1–3, pp. 7–42, Apr. 2002.

[3] K.-J. Yoon and I.-S. Kweon, “Adaptive support-weight approach for
correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 4, pp. 650–656, Apr. 2006.

[4] M. Gerrits and P. Bekaert, “Local stereo matching with segmentation-
based outlier rejection,” in Proc. 3rd Canadian Conf. Comput. Robot
Vision, Jun. 2006, p. 66.

[5] F. Tombari, S. Mattoccia, and L. Di Stefano, “Segmentation-based
adaptive support for accurate stereo correspondence,” in Lecture Notes
in Computer Science, vol. 4872, Berlin, Germany: Springer, Dec. 2007,
pp. 427–438.

[6] T. Kanade, M. Okutomi, and T. Nakahara, “A multiple-baseline stereo
method,” in Proc. Defense Advanced Research Projects Agency (DARPA)
Image Understanding Workshop, 1992, pp. 409–426.

[7] S. Kimura, T. Kanade, H. Kano, A. Yoshida, E. Kawamura, and K. Oda,
“CMU video-rate stereo machine,” in Proc. Mobile Mapping Symp.,
1995, pp. 9–12.

804 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 6, JUNE 2010

[8] K. Konolige, “Small vision systems: Hardware and implementation,” in
Proc. 8th Int. Symp. Robotics Res., Oct. 1997, pp. 203–212.

[9] J. Woodfill and B. Von Herzen, “Real-time stereo vision on the PARTS
reconfigurable computer,” in Proc. IEEE Workshop FPGAs Custom
Comput. Mach., 1997, pp. 240–250.

[10] P. Corke and P. Dunn, “Real-time stereopsis using FPGAs,” in Proc.
IEEE Region Ten Annu. Conf. (TENCON): Speech Image Tech. Comput.
Telecommun., Apr. 1997, pp. 235–238.

[11] S. Kimura, T. Shinbo, H. Yamaguchi, E. Kawamura, and K.
Nakano, “A convolver-based real-time stereo machine (SAZAN),”
in Proc. Conf. Comput. Vision Pattern Recognit., vol. 1. 1999,
pp. 457–463.

[12] M. Hariyama, N. Yokoyama, M. Kameyama, and Y. Kobayashi, “FPGA
implementation of a stereo matching processor based on window-
parallel-and-pixel-parallel architecture,” in Proc. 48th Midwest Symp.
Circuit Syst., vol. 2. Aug. 2005, pp. 1219–1222.

[13] M. Gong and Y.-H. Yang, “Near real-time reliable stereo matching using
programmable graphics hardware,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit., vol. 1. Jun. 2005, pp. 924–931.

[14] M. Hariyama, H. Sasaki, and M. Kameyama, “Architecture of a stereo
matching VLSI processor based on hierarchically parallel memory
access,” Inst. Electron., Informat. Commun. Eng. (IEICE) Trans. Info.
Syst., vol. E88-D, no. 7, pp. 1486–1491, 2005.

[15] D. Masrani and W. MacLean, “A real-time large disparity range stereo-
system using FPGAs,” in Proc. IEEE Conf. Comput. Vision Syst., Jan.
2006, p. 13.

[16] N. Chang, T.-M. Lin, T.-H. Tsai, Y.-C. Tseng, “Real-time DSP imple-
mentation on local stereo matching,” in Proc. IEEE Conf. Multimedia
Expo, Jul. 2007, pp. 2090–2093.

[17] J. Banks and P. Corke, “Quantitative evaluation of matching methods
and validity measures for stereo vision,” Int. J. Robot. Res., vol. 20,
no. 7, pp. 512–532, Jul. 2001.

[18] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for
stereo matching,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
Jun. 2007, pp. 1–8.

[19] R. Zabih and J. Woodfill, “Non-parametric local transforms for com-
puting visual correspondence,” in Proc. 3rd Eur. Conf. Comput. Vision,
1994, pp. 150–158.

[20] H. Hirschmuller, “Accurate and efficient stereo processing by semi-
global matching and mutual information,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognit., vol. 2. Jun. 2005, pp. 807–814.

[21] M. Bleyer, S. Chambon, U. Poppe, and M. Gelautz, “Evaluation of
different methods for using color information in global stereo matching
approaches,” in Proc. Congr. Int. Soc. Photogrammetry Remote Sensing,
Jul. 2008, pp. 63–68.

[22] N. Chang, Y.-C. Tseng, and T.-S. Chang, “Analysis of color space and
similarity measure impact on stereo block matching,” in Proc. IEEE
Asia Pacific Conf. Circuits Syst., Dec. 2008, pp. 926–929.

[23] M. Okutomi and T. Kanade, “A locally adaptive window for
signal matching,” Int. J. Comput. Vision, vol. 7, pp. 143–162,
Jan. 1992.

[24] T. Kanade and M. Okutomi, “A stereo matching algorithm with an
adaptive window: Theory and experiment,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 16, no. 9, pp. 920–930, Sep. 1994.

[25] M. Hariyama, T. Takeuchi, and M. Kameyama, “Reliable stereo match-
ing for highly-safe intelligent vehicles and its VLSI implementation,” in
Proc. IEEE Intell. Vehicles Symp., Oct. 2000, pp. 128–133.

[26] R. Arnold, “Automated stereo perception,” Artif. Intell. Laboratory,
Stanford Univ., Stanford, CA, Tech. Rep. AIM-351, 1983.

[27] A. F. Bobick and S. S. Intille, “Large occlusion stereo,” Int. J. Comput.
Vision, vol. 33, no. 3, pp. 181–200, Sep. 1999.

[28] S.-B. Kang, R. Szeliski, and J. Chai, “Handling occlusions in dense
multi-view Stereo,” in Proc. IEEE Conf. Comput. Vision Pattern Recog-
nit., vol. 1. 2001, pp. 103–110.

[29] O. Veksler, “Stereo matching by compact windows via minimum ratio
cycle,” in Proc. IEEE Int. Conf. Comput. Vision, vol. 1. Jul. 2001,
pp. 540–547.

[30] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda, “Classifi-
cation and evaluation of cost aggregation methods for stereo correspon-
dence,” in Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit., Jun.
2008, pp. 1–8.

[31] Digiclops Product Datasheets, Point Grey Research Inc.,
Richmond, BC, Canada, 1997 [Online]. Available: http://www.ptgrey.
com/products/digiclops/Digiclops.pdf

[32] Triclops SDK , Point Grey Research Inc., Richmond, BC,
Canada, 2001 [Online]. Available: http://www.ptgrey.com/
products/triclopsSDK/index.asp

[33] H. Hirschmuller, “Improvements in real-time correlation-based stereo
vision,” in Proc. IEEE Workshop Stereo Multi-Baseline Vision, Dec.
2001, pp. 141–148.

[34] H. Hirschmuller, P. R. Innocent, and J. Garibaldi, “Real-time correlation-
based stereo vision with reduced border errors,” Int. J. Comput. Vision,
vol. 47, nos. 1–3, pp. 229–246, Nov. 2004.

[35] S. Forstmann, Y. Kanou, O. Jun, S. Thuering, and A. Schmitt, “Real-
time stereo by using dynamic programming,” in Proc. Comput. Vision
Pattern Recognit. Workshop Real-Time 3-D Sensor Their Use, Jun. 2004,
p. 29.

[36] G. Minglun and Y. Yee-Hong, “Near real-time reliable stereo matching
using programmable graphics hardware,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognit., vol. 1. Jun. 2005, pp. 924–931.

[37] L. Jiangbo, G. Lafruit, and F. Catthoor, “Fast variable center-biased
windowing for high-speed stereo on programmable graphics hardware,”
in Proc. IEEE Int. Conf. Image Process., vol. 6. Oct. 2007, pp. 568–571.

[38] L. Jiangbo, S. Rogmans, G. Lafruit, and F. Catthoor, “Real-time stereo
correspondence using a truncated separable Laplacian kernel approxima-
tion on graphics hardware,” in Proc. IEEE Int. Conf. Multimedia Expo,
Jul. 2007, pp. 1946–1949.

[39] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, “High-quality real-
time stereo using adaptive cost aggregation and dynamic programming,”
in Proc. 3rd Int. Symp. 3-D Data Process., Vis., Transmission, Jun. 2006,
pp. 798–805.

[40] O. Faugeras, B. Hotz, H. Matthieu, T. Vieville, Z. Zhang, P. Fua, E.
Theron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy, “Real
time correlation-based stereo: Algorithm, implementations and applica-
tions,” Institut National de Recherche en Informatique et Automatique
(INRIA), Tech. Rep. 2013, 1993.

[41] H. K. Nishihara, “Real-time stereo and motion-based figure-ground
discrimination and tracking using LOG sign-Correlation,” in Proc. 27th
Asilomar Conf. Signals, Syst., Comput., 1993, pp. 95–100.

[42] S. Park, H. Jeong, “Real-time stereo vision FPGA chip with low-
error rate,” in Proc. Int. Conf. Multimedia Ubiquitous Eng., Apr. 2007,
pp. 751–756.

[43] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-
time global stereo matching using hierarchical belief propagation,” in
Proc. Brit. Mach. Vision Conf., 2006, pp. 989–998.

[44] S. Park, C. Chen, and H. Jeong, “VLSI architecture for MRF-based
stereo matching,” Lecture Notes in Computer Science, vol. 4599, Berlin,
Germany: Springer, Aug. 2007, pp. 55–64.

[45] T.-H. Tsai, N. Chang, and T.-S. Chang, “Data reuse analysis of local
stereo matching,” in Proc. Int. Symp. Circuits Syst., May 2008, pp. 812–
815.

[46] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda, “Near real-
time stereo based on effective cost aggregation,” in Proc. Int. Conf.
Comput. Vision Pattern Recognit., 2008, pp. 1–4.

[47] M. Gong and R. Yang, “Image-gradient-guided real-time stereo on
graphics hardware,” in Proc. 5th Int. Conf. 3-D Digital Imaging Mod-
eling, 2005, pp. 548–555.

[48] Z. Wang and Z. Zheng, “A region-based stereo matching algorithm using
cooperative optimization,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., 2008, pp. 1–8.

[49] S. Wattson. (2005 June 22). “NVIDIAs GeForce 7800 GTX
graphics processor,” in The Tech Report (Online). Available:
http://techreport.com/articles.x/8466/5

Nelson Yen-Chung Chang (S’06) received the
B.S. degree in electrical engineering from National
Tsing-Hua University, Hsinchu, Taiwan, in 2000,
and the M.S. and Ph.D. degrees in electronic
engineering from National Chiao-Tung University,
Hsinchu, Taiwan, in 2002 and 2009, respectively.

He is currently an Engineer with the Division
of Intelligent Robotics Technology, Mechanical and
Systems Research Laboratories, Industrial Technol-
ogy Research Institute, Hsinchu, Taiwan. His current
research interests include real-time vision system,

robot vision, advanced robotic embedded systems, and vision algorithms.

CHANG et al.: ALGORITHM AND ARCHITECTURE OF DISPARITY ESTIMATION WITH MINI-CENSUS ADAPTIVE SUPPORT WEIGHT 805

Tsung-Hsien Tsai (S’08) received the B.S. de-
gree in electrical engineering from National Tsing-
Hua University, Hsinchu, Taiwan, in 2006, and the
M.S. degree in electronic engineering from National
Chiao-Tung University, Hsinchu, Taiwan, in 2008.

He is currently an Engineer with the Wireless
Communication Technology/Chip Design Division,
MediaTek, Hsinchu, Taiwan. His current research
interests includes WiMAX and system intregration.

Bo-Hsiung Hsu was born in Taiwan, in 1985. He re-
ceived the B.S. degree in electrical engineering from
National Chiao-Tung University, Hsinchu, Taiwan,
in 2008, where he is currently pursuing the M.S.
degree.

His current research interests include high-
resolution depth estimation for stereo, image pro-
cessing, and very large scale integration design.

Yi-Chun Chen was born in Taiwan, in 1986. He re-
ceived the B.S. degree in electrical engineering from
National Chiao-Tung University, Hsinchu, Taiwan,
in 2008, where he is currently pursuing the M.S.
degree.

His current research interests include 2-D video to
3-D video conversion for stereo, image processing,
and very large scale integration design.

Tian-Sheuan Chang (S’93–M’06–SM’07) received
the B.S., M.S., and Ph.D. degrees in electronic
engineering from National Chiao-Tung University
(NCTU), Hsinchu, Taiwan, in 1993, 1995, and 1999,
respectively.

He is currently an Associate Professor with the De-
partment of Electronics Engineering, NCTU. From
2000 to 2004, he was a Deputy Manager with Global
Unichip Corporation, Hsinchu, Taiwan. His current
research interests include (silicon) intellectual prop-
erty (IP) and system-on-a-chip design, very large

scale integration signal processing, and computer architecture.

