b PMC H5 & T 4si 8 & B2 BT g

Strongly t-Diagnosable System Under the PMC Model

o4 AR

TES R SR 2

1L
Il
\H-_I
g
o=l
+
L1
I}
P



e PMC 558 T 5 247k sz 3
Strongly t-Diagnosable System Under the PMC Model

Moyod L HhRk Student : Guo-Huang Hsu
R e A REN Advisor : Jimmy J.M. Tan

T o
ML AR

Bl + F
A Thesis
Submitted to Institute of Computer and-Information Science
College of Electrical Engineering'and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of

Master

in
Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

o
L
gt

E
o~

I
i
i
N



f PMC 05 ™ #3285 4 2 A7 3

it
o+
~
{“—\'}\7\
=
g:m

hEFE e Ho

M:d g Fapgsqs

I fe/

RIFep sl s > (i~ o onip i e 1 & & 2 - L RER
EARFVR S o AR CE SAATOREEIRSR - 2 PR R R RS
SRR RGNS (iR IR i [ﬁfﬁlgﬁ';l{%lpw"] & o —J Gy 71 G Eb [ et t-72 %
7 2 ARSI = 7 G Gp Il b 2 PISsh » 7~ TR g
£5 G =61 ®u Goe it R R H1 25 FIEH +° G PMC 5L T ERL(t+1)-
W BT AT S RLE (L) -2 EE AR o AT S RS AR (- (W n RER P
&P PMC R HIELIE N 8iik - n24-

BT LR PSS 0 L



Strongly t-Diagnosable System
Under the PMC Model

Student : Guo-Huang Hsu Advisor : Dr. Jimmy J.M. Tan

Institute of Computer and Information Science

National Chiao Tung University

Abstract

The rapid development in digital technology has resulted in developing systems
including a very large number-0f processors: In-order to maintain the reliability
of a multiprocessors system,-the faulty processors in the system have to be
replaced by fault-free processors, hence- the. diagnosability has played an
important role. Let G; and G, be two: t=diagnosable systems with the same
number of vertices. A family of interconnection network, called the Matching
Composition Network (MCN), which can be constructed from G; and G,, by
adding a perfect matching M between the vertices of G; and G,. We use the
notation G = G; ®y G, to denote a MCN, which has vertex set V (G) = V (G,)
u V (Gy) and edge set E(G) = E(G;) w E(G,) U M. In this thesis, we prove that
the MCN G is not only (t+1)-diagnosable but also strongly (t+1)-diagnosable
under the PMC model. According to the result, we can know that the cube
family with n-dimensional are all strongly n-diagnosable for n > 4.

Keywords : t-diagnosable - PMC Model - hypercube - strongly t-diagnosable
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Chapter 1

Introduction

The rapid development in digital technology has resulted in developing systems including
a very large number of processors. The processors work on a problem simultaneously at
very high speeds. Thus, it is inevitable that the processors in the system become faulty.
In order to maintain the reliability of a multiprocessors system, the faulty processors in
the system have to be replaced by fault-free processors. Before being replaced, the faulty
processor in the multiprocessors system must be diagnosed. The process of identifying
these faulty processors is called the fault diagnosis. The maximum number of faulty

processors that the system can guarantee to identify is called the diagnosability.

For convenience, the architecture of a multiprocessor system is usually represented as a
graph. The vertices and edges in a graph correspond to the processors and communication
links in a multiprocessor system, respectively. For the graph definition we follow [2]. Let
G = (V, E) represents a graph, where V represents the verter set of G and E the edge

set of G. The degree of vertex v in a graph G, written as dg(v) or deg(v), is the number



of edges incident to v. The maximum degree is denoted by A(G), the minimum degree
is 0(G), and G is regular if A(G) = 0(G). It is k-regular if the common degree is k.
The neighborhood of v, written Ng(v) or N(v), is the set of vertices adjacent to v. The
connectivity k(@) of a graph G(V, E) is the minimum number of vertices whose removal
results in a disconnected or a trivial graph. A graph G is k-connected if its connectivity

is at least k.

In recent years, researchers have considered a large number of strategies for self-
diagnosis in multiprocessor systems [11], [10], [12], [9], [4]. Much of the work is based on
the PMC model proposed by Prepaarata et al. [21]. In this thesis, we use the widely-
adopted PMC model as fault diagnosis modelyand present a new concept that is called

the strongly t-diagnosable.

Firstly, we introduce the hypercube [22}.-The hypercube is a famous interconnection
network. The n-dimensional hypercubeis denoted by @, is an undirected graph consist-
ing of 2" vertices and n2" ! edges. we usually use n-bit binary strings to represent the
vertices of the hypercube. Using notation {0, 1}" to denote the set {u,_1up—2...up | u; €
{0,1} for 0 <i <n—1} and h(u,v) to denote the number of different bits between two
given vertices u and v in {0, 1}". h(u,v) is called the Hamming distance of u and v. The

following definition 1 is more formally for hypercube.

Definition 1 An n-dimensional hypercube Q,, = (V, E), where

1|V |=2



2. E={(u,v) |u,v €V and h(u,v) =1}

Let e = (u,v) is an edge in @,. The edge e is called dimension d if u and v differ in
bit position d. Thus, each vertex connects to n neighbors. For example, vertex 0000 in

(4 connects to 0001, 0010, 0100 and 1000. Figure 1.1 shows the Qo, @1, @2 and Q5.

Q Q, Q;

Figure 1.1:+The structure of Qy, @1, Q2 and Q3.

Let G and G5 be two t-diagnosable systems with the same number of vertices. A fam-
ily of interconnection network, called the Matching Composition Network (MCN)[15],
which can be constructed from (G; and G, by adding a perfect matching M between the
vertices of G; and G2. We use the notation G = G; @,, G2 to denote a M C'N, which has
vertex set V(G) = V(G1)|JV(G2) and edge set E(G) = E(G1)|J E(G2) | M. Figure 1.2
shows the MCN G = G @,,; G>. In this thesis, we prove that the MCN G is not only
(t + 1)-diagnosable but also strongly (¢ + 1)-diagnosable under the PMC model. Accord-
ing to the result, we can know that the cube family with n-dimensional are all strongly

n-diagnosable for n > 4. The M CN includes many famous interconnection network, such
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as the Hypercube @Q,, [22], the Crossed cube C'Q,, [6], the Twisted cube T'Q),, [13] and the

Mébius cube M@, [3].

a perfect
mat chi ng
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l

00000
0O 0O

\

Figure 1.2: Graph G = G @, G».

The rest of this thesis is organiged.as follow: In chapter 2, we describe backgrounds
and definitions for diagnosable:system and some preliminaries. In chapter 3, The strongly
t-diagnosable system is formally defined. Bésides, we will prove that the cube family with
n-dimensional are all strongly n-diagnosable for n > 4. Finally, we discuss some problems

in chapter4.



Chapter 2

The PMC Model and Some

Preliminaries

Definition 2 The components of a graph:&, are its mazximal connected subgraph. A com-

ponent is trivial if it has no edges; otherwise it isnontrivial.

Let G = (V, E). For a set F"C Vi theinotation G — F represents the graph obtained by
removing the vertices in F' from G and deleting those edges with at least one end vertex
in F' simultaneously. If G — F' is disconnected, then F'is called a vertex cut or a separating
set. Let GG, G5 be two subgraph of G, if there are ambiguities, we shall write the vertex
set of G1 as Vg, or V(G1). The neighborhood set of the vertex set Vi, is defined as
N(Vg,) = {y € V(G) | there exists a vertex = € Vg, such that (z,y) € E(G)} — Vg,.
The restricted neighborhood set of Vi, in Go, is defined as N(Vg,,Gs) = {y € V(G3) |
there exists a vertex x € Vi, such that (z,y) € E(G)} — Vg,. Forv e V, let I'(v) = {v; |
(v,v;) € E} and T'(X) = {U,ex ['(v) — X}, X C V. The number of edge directed toward

vertex v in G is denoted by d;,(v). We use | X | to denote the cardinality of set X.



The PMC model is presented by Preparata, Metze and Chien. In this model, a system
is decomposed into n units uq, us,...,u,. Each unit u is test a subset of system that is

connection with w.

(a) (b)

Figure 2.1: (a) A systempwith four‘units. {b) The testing graph of (a).

In Figure 2.1(a), each unit u;‘of the system will be a vertex of the graph. The Figure
2.1(b) is the testing graph of Figure 2.1(a). A testing link b;; is presented that vertex u;
evaluates vertex wu;. In this situation, u; is called the tester and wu; is called the tested
vertex. The weight associated with b;; will be 0, 1 or . We noted the weight of b;; is
w(bij). w(bij) is zero if under the hypothesis that v, is fault-free, u; is also fault-free; w(b;;)
is one if under the same hypothesis that u; is fault-free, u; is faulty; w(b;;) is « if that u;
is faulty. i.e. x can be 0 or 1. The PMC model assumes that a fault-free should always

give correct test-result, whereas the test-result given by a faulty node is unreliable.

Definition 3 A syndrome o of the system is represented by the set of test outcomes



w(bij).

Example 1 Let us consider a system with four units uy, us, ug and uyg. The testing link

18 bio, big, ba1, Doz, b3s, b3s, bag and by as shown in Figure 2.2.

Figure 2:2:.A testing.graph with four nodes

The syndromes of the system will"be represented as the 8-bits vector.

(W(bi2),w(b1a),w(b21), w(bas), w(bsa),w(b3a), w(baz), w(bar))

Assume exactly two of the units, say u; and uy are faulty. Then

w<b23) = W(b32) =0

w(bgl) = W(b34) =1

i.e. up and ug correctly identifies u; and uy as the faulty, respectively.

w(bia) = w(bis) = w(bsz) = w(by) =z ie. Oorl

9



Since u; and w4 are faulty, may or may not diagnose us and ug properly. Thus the

syndrome for exactly one of the four units being faulty can only be of the form

(r,2,1,0,0,1, 2z, x)

In other words, there are sixteen syndromes can be produced by the testing graph of

Figure 2.2 under the PMC model.

Definition 4 Let G = (V, E) is a testing graph, and S C V. We use the symbol o, to

represent the set of all syndromes which could be produced if S is the set of faulty vertices.

Definition 5 Given a multiprocéssor system. and one syndrome o. If we can indicate an
only vertex set S such that o €-ay. Then the system: is called diagnosable. In other words,
a system G = (V, E) is not diagnosable if-and only if exist two distinct sets of vertex Sy

and Sy such that s, Nog, # .

Definition 6 Let G=(V,E) is a testing graph. Two distinct sets of vertex Sy1,S, C V
are said to be indistinguishable if and only if og, N os, # ¢; otherwise, Sy, So are said
distinguishable. Besides, we say (S1,S2) is an indistinguishable-pair if og, Nog, # ¢, else

(S1,52) is a distinguishable-pair.

We know that for any two distinct sets of vertex Sy, Sy C V are distinguishable iff
they have no same syndrome(s). By the method of diagnosing a system, for any two

distinct sets of vertex S1,S52 C V, g5, Nog, = O if and only if there exists at least one

10



edge connecting the two disjoint vertex sets, V' — (57 J S2) and (S; — S2) |J(S2 — S1). Let
X =V —(51JS2) and the symmetric difference S;ASy = (S; — S2) [J(S2 —S1). We state

the method as follows:

Lemma 1 Let G=(V,E) is a testing graph. For any two distinct sets of vertex Sy, Se C V,
(S1,52) is a distinguishable-pair if and only if 3a € X and b € S1ASy such that (a,b) € E

(see Figure 2.3)

Figure 2.3: Illustrations of a distinguishable pair (.S, S5)

Inversely, the two kinds of sitiation are not exist if and only if (57, S3) is indistinguishable-

pair. The definition of t-diagnosable system and related concepts are listed as follows:

Definition 7 Given a system G=(V,E). If any two distinct sets of vertex Sy, Sy C V are

distinguishable, then the system s diagnosable.

Now, we have a problem. How many faulty vertices can causing that the indistin-

guishable situation in always. The maximum number is noted by t.

Definition 8 [21] A system of n units is t-diagnosable if all faulty units can be identified

without replacement provided that the number of faults present does not exceed t.

11



By the above definition, we obtain the following lemma.

Lemma 2 A system is t-diagnosable if and only if for each distinct pair of sets S1,Sy C V.

such that | Sy |<t and | Sy |< t, then S and Sy are distinguishable.

An equivalent way of stating the above lemma is the following:

Lemma 3 A system is t-diagnosable if and only if for each indistinguishable pair Sy, Sy C

V,’Sly>t07"32’>t.

The following two lemmas are presented by Hakimi et al. [10], and Preparata et al.

[21], respectively.

Lemma 4 [21] Let G=(V,E) be. the -graphrrepresentation of a system. Two necessary

conditions for G to be t-diagnosable 1s:

1. |V]|=n>2t+1, and

2. each processor in G is tested by at least t other processors.

Lemma 5 [10] Let G=(V,E) be the graph representation of a system. Two sufficient

conditions for G to be t-diagnosable is:

1. |V]|=n>2t+1, and

2. k(G) >t

12



where k(G) is the connectivity of the graph G.

Hakimi and Amin presented a necessary and sufficient condition for a system to be

t-diagnosable as follows:

Lemma 6 Let G=(V,E) be the graph representation of a system with | V | = n. Then G

18 t-diagnosable if and only if

1. n>2t+1
2. din(v) Zt, YvoeV

3. for each integer p with 0 £ p < £=: 15 and-each X CV with | X | =n - 2t + p,

| T(X) [> p.

In this paper, we will focus on undirected graph without loop, and we assume that
each vertex tests the other whenever there is an edge between them. We first propose a
new necessary and sufficient condition to determine whether a system is t-diagnosable.

This is useful for our discussion later.

Theorem 1 Let G=(V,E) be the graph representation of a system. We say that G is
t-diagnosable if and only if for each vertex set P CV with | P |=p, 0 <p <t —1, each

component C of G — P satisfies | Vo |> 2(t — p) + 1.

Proof.

13



To prove the necessity, assume that the graph G is t-diagnosable. If the necessary
condition is not true. Then there exists a set of vertex P C V with | P |=p,0 <p <t—1,
such that one of the components G — P has strictly less than 2(¢ — p) + 1 vertices. Let C
be such a component with | Vo [< 2(t — p). We can easily partition Vi into two disjoint
subsets S7 and Sy with | Sy |[< ¢t —p and | Sy |< ¢t — p. Since there hasn’t one vertex
w €V — {51 U Sy}, such that 3z € Sy, (w,z1) € E or Jzy € Sy, (w,x5) € E. Hence by
lemma 1, (S1J P, S2|J P) is indistinguishable-pair. But | S;|JP |< (t —p) +p =t and

| SolJ P |< (t—p)+p =t. This contradicts with the assumption that G is t-diagnosable.

On the other hand, suppose that each vertex set P C V with | P |=p,0<p<t—1,
each component C' of G — P satisfiés | Vo |>2(t — p) + 1. We take any two distinct sets
of vertex S; and Sy, with | S; £ ¢t and |S5 |<¢.'Let P =SNS5y, and 0 <| P [<t—1.
Since | 51 |< t and | Sy |< t. TThen J(S1 —52) [JES2 — S1) |< 2(t — p). The number of
S1ASy can’t be formed the total mumber of-any component when we delete P from G.
At least exist one vertex w € V — {S;J Sz} such that 321 € S; — P, (w,z1) € E or
dxy € Sy — P, (w,x9) € E. Hence by lemma 1, G is t-diagnosable. This completes the

proof of the theorem. O

Lemma 7 Q, = (V, E) is n-diagnosable under the PMC model, where n > 3.

Proof. Let P C V, and | P |= p, where 0 < p < n — 1. We can obtain the graph G’ =
Qn— P = (V' E') by deleting the vertices in P from @, where | V' |=| V | —=p = 2" —p.

Since the connectivity of @, is n that is presented by Saad and Schultz[22]. Hence we can

14



know that G’ is connected, and 2" —p > 2(n — p) + 1. By theoreml, @, is n-diagnosable

when n > 3. O

The following example indicated that the @), is not n-diagnosable when n = 1 or

n = 2.
Example 2 for n = 1, Q; as shown in figure2.4. Let Sy = {v1} and Sy = {v2}. By
lemma 1, S1 and Sy are indistinguishable. Hence Q1 is not 1-diagnosable.

forn =2, Qy as shown in figure2.4. Let S; = {v1,v3} and Sy = {v9,v4}. By lemma

1, Sy and Sy are indistinguishable. Hence Q) is not 2-diagnosable.

v; v v,
v, Vs v,
QA 2

Figure 2.4: ()1 and Q)2

Theorem 2 Let G, = (Vi, Ey) and Gy = (Va, Es) be two t-diagnosable systems with the
same number of vertices, where t > 2. Then MCN G = G1D,, G2 = (V, E) is (t+1)-

diagnosable, where V.=V |JVa, and E = Ey|J E2|J M.

Proof. Let S C V, and | S |=p, 0 < p < t. We hope to prove that the each component
C of G — S with | Ve |2 2((t—|—1) —p)—l—l Let S = 51USQ, and S; C ‘/1,52 C V5 with

15



| S1|=p1,| S2 |= p2. Then p = p; + p. We consider two cases: (1) S; = @ or Sy = O,

and (2) S1 # @ and Sy # O.

Case 1: S;=0Qor S, =0

Without loss of generality, assume S; = @ and S, = S. Then p; =0 and p; = p. We
know that each vertex of V; has an adjacent neighbor in Vj, so, G — S is connected. The
only component C' of G — S is G — S itself. Hence | Vo |=|V | = | S|=| Vi |+ | V2| —p.
Since G; and G, are t-diagnosable. By lemma 4, | Vi |> 2t + 1 and | V5 |[> 2t + 1. Then

| Vo[> 2(2t+1)—p > 2((t+1) —p) + 1, for t > 2. By theorem 1, G is (t+ 1)-diagnosable.

Case 2: S1 0 and Sy, # 0

S;1 #£ O and Sy # O, it implies 1 < p & t=1and 1 < py <t — 1. Firstly, we
consider any component C of=G; — \Sy“with'| Vi, > 2(t — p1) + 1. We know that each
vertex of (' has an adjacent neighber w in V5..*If the vertex w is belong to S;. We will
delete it. Then at least 2(2(t — p;) + 1) — py vertices in any component of G — S; likewise
22(t—p1)+1)—pa > 2((t+1) —p)+1, for t > 2. By theorem 1, G is (t + 1)-diagnosable.
Secondly, We consider any component Cy of Gy — Sy with | Vi, |> 2(t — pa) + 1. Then
each vertex of Cy has an adjacent neighbor w in V. If the vertex w is belong to S;. We
will delete it. Then at least 2(2(t — p2) + 1) — p; vertices in any component of G — S;
likewise 2(2(t — po) +1) —p1 > 2((t+ 1) —p) + 1, for t > 2. By theorem 1, G is

(t + 1)-diagnosable. This completes the proof of the theorem. O

16



Chapter 3

Strongly t-diagnosable

In previous chapter, we explained that the Hypercube @), is n-diagnosable. In fact, the
Crossed cube CQ),,, the Mobius cube M@y, .and the Twisted cube T'Q),, are all known as
n-diagnosable but not (n + 1)-diagnesable. In:this:chapter, we will presented the concept
of the strongly t-diagnosable system. Besides, we will also prove that the cube family
with n-dimensional are all strongly n-diagnosable for n > 4. Firstly, we take 3 as an
example to explained that why (3 is not 4-diagnosable. The structure of )3 as shown in

Figure 3.1.

Figure 3.1: The structure of ()s.

17



Let S; = {1,2,3} and Sy = {a,1,2,3}, with | S} [< 4 and | S5 |< 4. By lemma 1,
S7 and Sy are indistinguishable-pair. Hence Q3 is not 4-diagnosable. For each of these
cubes with n-dimension, we observe that for any two distinct sets of vertex S; and S5,
| S1|<n+1and| Sy |<n+ 1, they are indistinguishable-pair implies that there exists
some vertex v such that N(v) C Sy () Ss. That is N(v) C Sy and N(v) C Sy. We continue
taking ()4 as an example, for each vertex v € V(Q,) and each vertex set P C V(Q4),
0<|P|<4. Q4 — P is connected if N(v) g P. It’s mean, the only component of Q4 — P
is itself. Let S, 55 C V(Q4) be two distinct sets of vertex with | Sy |[< 5, | Se |< 5, and
P = 51 Ss. We can get that the inequality | V(Q4) — P |=2'— | P |>| S1 — P | + |
Sy — P | +1. Then there is at least one;edgereonnecting S;ASy and V(Q4— (S1J S2)). By
lemma 1, S; and S, are distingliishable-pair if for*each v € V(Qy4), N(v) € P. Inversely,
S1 and Sy are indistinguishable-pair, then there exists some vertex v € V(@) such that
N(v) € Sy and N(v) C Sy. We Gbserved the phenomenon and give a formally definition

as follows:

Definition 9 A system G = (V, E) is strongly t-diagnosable if the following two condi-

tions hold:

1. G is t-diagnosable, and

2. for any two distinct subsets S1,Sy CV with | S [<t+1 and | Sy |<t+1,

either (a) (S, S2) is a distinguishable pair;

18



or (b) (S1,Ss) is an indistinguishable pair and there exists a vertex v € V

such that N(v) C Fy and N(v) C F;.

By lemma 5 and definition 9, we propose a sufficient condition for a system G to be

strongly t-diagnosable as follows:

Proposition 1 Let G = (V, E) be the graph presentation of a system with | V |= n is

strongly t-diagnosable if the following three conditions hold:

1. n>2(t+1)+1,

2. k(G) >t, and

3. for any vertex set P C V. with | P |=t, G = P is disconnected implies that there

exists a vertex v € V' such.that N@YTP.

Proof. To prove the proposition, we claim that condition (1) and (2) of definition 9
hold. Since condition (1) and (2), by lemma 5, G is t-diagnosable. For condition (2) of
definition 9. Let S; and S; be an indistinguishable-pair, and P = S; (] Sy, where Sy # S,
| S1|<t+1land| Sy |<t+1,then 0 <| P|<t. If G— P is connected, then there exists an
edge between S1ASy and V' — (S7|J S2). By lemma 1, S; and Sy are distinguishable-pair.
This is a contradiction. Hence G — P is disconnected. By condition (2), x(G) > ¢ and
0 <| P |< t. Therefore | P |=t. By condition (3), there exists a vertex v € V such that
N(v) C P. That is, N(v) C Sy and N(v) C Sy. Hence condition(2) of definition 9 holds.

This completes the proof of the proposition. a

19



Now, we propose a necessary and sufficient condition for a system to be strongly

t-diagnosable as follows:

Lemma 8 Let G = (V, E) be the graph presentation of a system with | V' |= n is strongly

t-diagnosable if and only if

1. n>2(t+1)+1,

2. §(G) > t, and

3. for any indistinguishable-pair Sy, Sy C V', Sy # So, with | S1 |[< t+1 and | Sy |< t+1

it implies that there exists a vertezwie,V such that N(v) C Sy and N(v) C Ss.

Proof.

To prove the necessity of condition (1), we show that the assumption n < 2(t+1) leads
to a contradiction. Assume n < 2(t+41). We can partition V' into two disjoint vertex sets
Viand Vo with | V] |[<t+1and | Vo |[<t+ 1, where V =V |J Vs and Vi (V2 = @. By
lemma 1, V; and V5 are indistinguishable-pair. Since G is strongly t-diagnosable. Then
there exists some vertex v € V' such that N(v) C V; and N(v) C V. Hence Vi (V2 # O.

That contradicts the assumption V3 |V, = O.

To prove the necessity of condition (2), since G is strongly t-diagnosable. By definition
9, G is also t-diagnosable. By condition(2) of lemma 4, N(v) > t for each vertex v € V.

Hence §(G) > t.

20



To prove the necessity of condition (3), that is the same as condition (2) of definition

9. This completes the proof for the necessity.

On the other hand, since condition (3) of this lemma and condition(2) of definition 9
are stated the same. We need only to prove that G is t-diagnosable. Assume not, then
there exists an indistinguishable-pair Sy, 5, C V, Sy # Ss, with | S |< t and | Sy |< t.
By condition (3), there exists a vertex v € V such that N(v) C S; and N(v) C Ss.
By condition (2), we know that | N(v) |> ¢t. But, | S; |[< ¢ and | Sy |< ¢t. Hence

S1 =Sy = N(v). This contradicts the S; # S;. We complete the proof of this lemma. O

The lemma given above is a method: for checking whether a system is strongly t¢-
diagnosable. Now, we propose anotherinecessary and sufficient condition. Let G = (V, E)
be a strongly t-diagnosable system. If G'is (¢ + 1)=diagnosable. By Theorem 1, for each
vertex set P C V, | P |= p where 0 < p < ;" each component C' of G — P satisfies
| Vo |= 2((t +1) — p) + 1. Otherwise, G is t-diagnosable but not (¢ + 1)-diagnosable.
Then there exists an indistinguishable-pair(Sy,Ss), | S1 |[< t+ 1 and | Sy |< ¢t + L
By condition(2) of Definition 9, there exists a vertex v € V such that N(v) C S and
N(v) C Sy, where v ¢ Sy JS2. Hence {v} is a trivial component of G — (51()S2). Let

P =552 and | P |=t, G — P has a trivial component.

Theorem 3 Let G = (V, E) be the graph presentation of a system with | V |= n is
strongly t-diagnosable if and only if each vertex set P C V with | P |=p, 0 < p <, the

following two conditions are satisfied.
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1. for 0 <p <t—1, each component C of G — P satisfies | Vo |> 2((t +1) — p) + 1,

and

2. for p = t, either each component C of G — P satisfies | Vo |> 3 or else G — P

contains at least a trivial component.

Proof.

To prove the necessity of condition (1), assume that there exists a vertex set P C V
with | P |=p, 0 < p <t—1, such that G— P has a component C' with | Vo [< 2((t+1)—p).
We can partition V¢ into two disjoint vertex sets A; and As, Ay | J Az = Vo and A [ Ay =
D, with | A; [< (t+1) —pand |4y |< (t +1)=p. Let S; = Ay UP and S, = A, U P.
Then | S; |[< t+ 1 and | Sy |<et +£1. By lemma 1+ 5] and S, are indistinguishable-pair.
Since G is strongly t-diagnosable. By Definition 9, there exists a vertex v € V' such that
N(v) € Sy and N(v) C Sy. By lemma4N(v) |> ¢t. However, N(v) C S1()S2 = P and

0 <p<t—1, this is a contradiction.

To prove the necessity of condition (2), assume that there exists a component C' of
G — P with | Vo |< 2. Then we have to prove that there is a trivial component in
G — P. If | Vo |= 1, we are done. Assume that | Vo |= 2, we say Vo = {vy,v2}. Let
S1={vi}UP and Sy = {va}|JP. Then | Sy |=| Sz |=t + 1, and are indistinguishable-
pair. Since G is strongly ¢-diagnosable. By definition 9, there exists a vertex v € V' such
that N(v) C Sy and N(v) C Sy. We have P = S S, and P = N(v). Therefore, {v} is

a trivial component in G — P.
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On the other hand, we claim that G is strongly t-diagnosable. We have to prove that
G satisfies conditions (1) and (2) of definition 9. For condition (1) of definition 9, let P be
a vertex set with | P |=p, 0 < p <t — 1. By condition (1), each component C of G — P

satisfies | Vo [> 2((t+ 1) —p) +1 > 2(t — p) + 1. By Theorem 1, G is t-diagnosable.

For condition (2) of definition 9, let Sy and S, be an indistinguishable-pair, S # S,
with | S} [<t+4+1and | Sy [<t+ 1. Let P = 51()Ss, | P |=p, then 0 < p < ¢. Since
S1 and Sy are indistinguishable-pair. Hence there is no edge between X =V — (S;(J Ss)
and S1AS;y. Therefore, S;AS; is disconnected from the other component in G — P. We
observed that | S;ASy |< 2((t + 1) — p). By condition(1), p is not in the range from 0
tot—1. Sop =tand | S1ASy |<2((t + 1) =mp) = 2((t + 1) — t) = 2. By condition(2),
G — P must have a trivial component {v}! Hence:N(v) C P. Since G is t-diagnosable,
by condition(2) of lemma 4, Ni{v) 2#-So_P-= N{v). Then N(v) C S; and N(v) C S,.

Therefore, G is strongly t-diagnosable.

Thus we complete the proof of this theorem. O

Theorem 4 Let G; = (V, E1) and Gy = (Va, Es) be two t-diagnosable systems with the
same number of vertices, where t > 2. Then MCN G = G1 @,, G2 = (V, E) is strongly

(t+1)-diagnosable, where V.=V |J Vo and E = E;|JEy| M.

Proof. Let G = G1P,,G2 = (V,E) and P C V with | P |=p, 0 < p < ¢+ 1. Let
S1=PNViand Sy = P(Va with | S; |= p; and | Sy |= ps. We will use Theorem 3 to
prove this theorem. In the following proof, we consider two cases: (1) S; = @ or Sy = O,
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and (2) S1 # © and Sy # 0. We shall prove that: (i) | Vo [> 2((t + 2) — p) + 1 for any
component C of G — P as 0 < p < ¢, and (ii) for p = ¢t 4 1, either any component C of

G — P satisfies | Vo |> 3 or else G — P contains at least one trivial component.

Case 1: S;=0 or S, =0

Without loss of generality, assume S; = @ and S, = P. Since each vertex of V5 has an
adjacent neighbor in V;. Hence G— P is connected. So, | Vo |[=| V=P |=| Vi |+ | V2| —p.
Since GG; and G9 are t-diagnosable. By lemma 4, | V} |> 2t + 1 and | V5 |> 2t + 1. Hence

| Ve |>22t4+1)—p>2((t+2)—p)+1fort >2and 0 <p<t+1.

Case 2: S1#Z0 and Sy, £ 0

Since S; # O and Sy # .- We know thatl < p; <t and 1 < p, < t. In this case,
we divide the case into two subgases: (2:a) 1.< p; <t—1and 1 <p, <t—1, and (2.b)

either py =t or py = t. In fact, for subcase (2:h),either py =t and py = 1, or, po =t and

plzl.
Subcase 2.a: 1 <p;<t—land 1 <p, <t—1

Let C; be the component of G; — S;. Since G, is t-diagnosable. By theorem 1,
| Vo, |> 2(t —p1) + 1. We claim that there is at least one vertex in Vi, which is connected
to Vo — S5, That is 2(t — p1) +1 > py + 1. Since p = p; + po, then 2(t — p1) + 1 =
2(t—p+p2)+1=2py+2(t—p)+ 1. Suppose p < t, then | Vo, |>2(t —p1)+1 > pa+ 1.
Otherwise, p = t + 1. With p; <t —1, then p, > 2 and 2py +2(t —p) +1 > ps + 1.

Hence | Vg, |> 2(t —p1) + 1 > po + 1. The claim is completed. Let Cy be the component
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of Go — S3. Since Gy is t-diagnosable. By theorem 1, | Vi, [> 2(t — p2) + 1. We let C
be the component of G — P such that Vg, |J Ve, C Ve Then | Vo |>] Ve, | + | Ve, [>

2(t—p)+ 1)+ 2(t—p2)+1) =22t —p+1) > 2((t+2)—p)+1fort >2and 0 < p < t+1.
Subcase 2.b: either p; =t and p, =1, or, p; =1 and p; =1

Without loss of generality, assume ps = ¢t and p; = 1. Let ('} be a component of
G1 — S1. Gy is t-diagnosable. By theorem 1, | Vo, |[> 2(t —p1) +1 =2(t — 1) + 1. Since
p=t+landt >2 | Vg |>2(t—1)+ 1> 3. Hence the number of vertex in each

component of G — P has at least 2((t +2) — p) + 1 vertices.

Let Cy be a component of G — Sa.pdf:V, has some adjacent neighbor v; € V4 and
vertex v; belongs to some compgnent 1 of Gy— Sy, then the component C' containing the
two vertex sets Vi, and Vi, has at least four vertices. Otherwise, N (V¢,, V1) C S;. With

| S1|=p1— 1, | N(Vg,, V1) |= 1#That is, | Vo, J= 1. Hence, Cs is a trivial component.

Thus we complete the proof of this theorem. O

We will give an example to explain why the above result is not true when ¢ = 1.
As shown in figure3.2(a), let G; and G, are 1-diagnosable systems with vertex sets
{v1,v2,v3, v, v5} and {uq, ug, us, ug, us}, respectively. Let G = G; @,; G2 be a Matching
Composition Network constructed by adding a perfect matching between GGy and Gs. By
lemma 5, G is 2-diagnosable. See Figure3.2(b), let F} = {v1, va, us} and Fy = {uq, ug, va}.
By lemma 1, F} and F, are indistinguishable-pair but there doesn’t exist any vertex

v € V1 |J Vs such that N(v) C Fy and N(v) C F,. Hence G is not strongly 2-diagnosable.
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Figure 3.2: An example of non-strongly (t+1)-diagnosable as t=1.

According to theorem 4, we know that all systems of the cube family are strongly
(t + 1)-diagnosable because their'subcubes.are t-diagnosable for ¢ > 3. The Hypercube
Q,, the Crossed cube C'Q,,, the"T'wisted cube T'Q),,, and the Mobius cube M (@Q),, are famous

parts in the cube family. Hencerwe "hold thefollowing corollary.

Corollary 1 The Hypercube ), the Crossed cube CQ,, the Twisted cube T'Q),,, and the

Mobius cube MQ),, are all strongly n-diagnosable for n > 4.

For n = 2, these cubes are all a cycle of length four. They are 1-diagnosable but
not 2-diagnosable. For n = 3, these cubes are all 3-connected, by lemma 5, they are
3-diagnosable. We now show some examples which are not strongly ¢-diagnosable. Let us
take the 3-dimensional Hypercube ()3 as an example. it is 3-diagnosable but not strongly
3-diagnosable from the fact that | V(Q3) |[=8 < 2(t+ 1) + 1 as t = 3, which contradicts

the condition (1) of lemma 8. Let Cl,, be a cycle of length n, n > 7. It is not difficult to
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verify that Cl, is 2-diagnosable, but it is not strongly 2-diagnosable. Another nontrivial
example is shown in figure 3.3. This graph is 2-connected and 3-regular. We can use
theorem 1 to verify that it is 3-diagnosable. As shown in figure 3.3, S; = {1,2,5,6} and
Sy ={3,4,5,6}. (S1,S52) is an indistinguishable-pair, but there does not exist any vertex
v € V(G) such that N(v) C Sy and N(v) C Sy. By definition 9, this graph is not strongly

3-diagnosable.

Figure 3.3: An example of non-strongly 3-diagnosable system.
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Chapter 4

Conclusion

The fault diagnosis is a popular issue for interconnection network. There are some open
problems which we can discuss. In tecent years, researchers have considered a large
number of strategies for self-diaghosis-in intéreconnection network. The PMC model, first
proposed by Preparata et al.[21],"is used widely for fault diagnosis of interconnection
network. In this thesis, we study the properties-of fault diagnosis of the cube family. We
also propose the concepts of strongly {-diagnosable systems under the PMC model. We
show that the cube family with n-dimensional are all strongly n-diagnosable, where n > 4.
The cube family include Hypercube, Crossed cube, Twisted cube and Mobius cube et al.
There are many models which we can research except the PMC model. The Comparison
model [16] that is another well-known fault diagnosis model. Hence, it is also interesting to
investigate the issues of strongly t-diagnosable of a system under the Comparison model.
Besides, there are two attractive problems which are worth researching. Firstly, we want
to know whether the recursive interconnection networks are all strongly t-diagnosable

system. Secondly, what is the diagnosability of interconnection network when we allow
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one good neighbor condition?
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