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Abstract

An adaptive discretization method, called split-on-demand (SoD), enables estimation of
distribution algorithms (EDAs) for discrete variables to solve continuous optimization
problems. SoD randomly splits a continuous interval if the number of search points
within the interval exceeds a threshold, which is decreased at every iteration. After
the split operation, the nonempty intervals are assigned integer codes, and the search
points are discretized accordingly. As an example of using SoD with EDAs, the inte-
gration of SoD and the extended compact genetic algorithm (ECGA) is presented and
numerically examined. In this integration, we adopt a local search mechanism as an
optional component of our back end optimization engine. As a result, the proposed
framework can be considered as a memetic algorithm, and SoD can potentially be ap-
plied to other memetic algorithms. The numerical experiments consist of two parts:
(1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-
known discretization methods: the fixed-height histogram (FHH) and the fixed-width
histogram (FWH) are compared; (2) a real-world application, the economic dispatch
problem, on which ECGA with SoD is compared to other methods. The experimental
results indicate that SoD is a better discretization method to work with ECGA. More-
over, ECGA with SoD works quite well on the economic dispatch problem and delivers
solutions better than the best known results obtained by other methods in existence.
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1 Introduction

Genetic algorithms are widely applied on many real-world optimization problems.
According to the theory of design decomposition (Goldberg, 2002), key components in
the GA success include identifying, reproducing, and exchanging solution structures.
Recombination, one of the main GA operators, mixes the promising subsolutions, called
building blocks (BBs), and creates new solutions. Genetic algorithms therefore work
very well on those problems that can be decomposed into subproblems. However,
problem-independent recombination operators with fixed chromosome representations
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often break building blocks and result in ineffective mixing. When traditional genetic
algorithms meet complex solution structures composed of groups of related genes, they
often fail to appropriately identify and exchange building blocks to create good final
solutions (Goldberg et al., 1989).

In order to mix genes effectively, Larrafiaga and Lozano (2001) and Pelikan et al.
(2002) proposed evolutionary algorithms based on probabilistic models. In such
schemes, the offspring population is generated according to the estimated probabilistic
model of the selected individuals instead of using regular recombination and mutation
operators. The probabilistic model is expected to reflect the problem structure, and bet-
ter performance can be achieved via exploring and exploiting the relationship among
genes. These evolutionary algorithms are called estimation of distribution algorithms
(EDAs) or probabilistic model building genetic algorithms (PMBGAs; Larrafiaga and
Lozano, 2001; Pelikan et al., 2002).

In EDAs, decision variables are often coded with binary codes. It is computation-
ally expensive to find high accuracy solutions in solving continuous problems for EDAs
combined with elementary discretization methods (Tsutsui et al., 2001; Pelikan et al.,
2003). Moreover, many real-world engineering problems are real-parameter optimiza-
tion problems, such as structural optimization. In the literature, several attempts to
apply EDAs to problems in the continuous domain have been made, including con-
tinuous population-based incremental learning with Gaussian distribution (Sebag and
Ducoulombier, 1998), a real-coded variant of population-based incremental learning
with interval updating (Servet et al., 1997), Bayesian evolutionary algorithms for con-
tinuous function optimization (Shin and Zhang, 2001), and the real-coded Bayesian
optimization algorithm (Ahn et al., 2004).

However, these approaches require the knowledge of and are clearly specialized
for the modified algorithms. In order to provide a good, general interface between
problems of continuous variables and algorithms for discrete variables, we propose
a framework that enables the EDAs designed for handling bit strings to tackle real-
valued optimization problems. Particularly, we develop a new, adaptive discretization
encoding scheme that can be easily integrated into EDAs or other algorithms for discrete
variables, and we use the extended compact genetic algorithm (ECGA; Harik, 1999) as
an example in the present work.

In the next section, we will give a background of this study, including a brief
introduction of ECGA and two well-known discretization methods: the fixed-height
histogram (FHH) and the fixed-width histogram (FWH). Section 3 proposes split-on-
demand (SoD) and describes in detail how SoD encodes individuals of real values into
integer codes. In Section 4, we use SoD to enable ECGA to handle real-valued variables.
The numerical experiments on benchmark functions are presented in Section 5, includ-
ing the comparisons with the elementary discretization techniques and other optimiza-
tion methods in evolutionary computation. The proposed framework is also adopted to
tackle the economic dispatch problem in Section 6. Finally, Section 7 concludes this work.

2 Background

This section first provides a brief overview of EDAs. EDAs use probabilistic models
to represent distributions of candidate solutions. Constructing probabilistic models
and sampling from the models replace the usual crossover and mutation operators
in genetic algorithms. Next, the feature designs of the ECGA are described, including
the probabilistic model and the criterion to evaluate the models. The section ends
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by introducing two discretization methods, the FHH and the FWH, which will be
integrated with ECGA.

2.1 Estimation of Distribution Algorithms

EDAs (Miihlenbein and Paafs, 1996; Larrafiaga and Lozano, 2001; Pelikan et al., 2002)
tackle optimization problems by constructing probabilistic models based on promis-
ing solutions and by generating offspring solutions from the built models. From the
viewpoint of genetic and evolutionary algorithms, EDAs replace the regular genetic
operators, such as crossover and mutation, with the construction and utilization of
probabilistic models. In EDAs, at each generation, the selection operator selects promis-
ing individuals from the current population. A probabilistic model is then constructed
according to these selected individuals, and new individuals are produced by sampling
from the built model.
An EDA can be algorithmically outlined as

1. Initialize a population at random.
. Apply the selection operator on the population.

. Model the selected individuals by constructing a probabilistic model.

2

3

4. Stop if the termination criterion is satisfied.

5. Generate a new population by sampling the built model.
6

. Return to step 2.

Early EDAs, such as population-based incremental learning (PBIL; Baluja, 1994)
and the compact genetic algorithm (cGA; Harik et al., 1999), assume no interaction be-
tween variables. Each variable is modeled independently of the others and subsequent
studies start by capturing potential pairwise interactions, such as mutual-information-
maximizing input clustering (MIMIC; de Bonet et al., 1997), Baluja’s dependency tree
approach (Baluja and Davies, 1997), and the bivariate marginal distribution algorithm
(BMDA,; Pelikan and Muhlenbein, 1999). Further studies modeled multivariate inter-
actions, such as the ECGA (Harik, 1999), the Bayesian optimization algorithm (BOA;
Pelikan et al., 1999), the estimation of Bayesian network algorithm (EBNA; Etxeberria
and Larranaga, 1999), the factorized distribution algorithm (FDA; Miihlenbein and
Mahnig, 1999), and the learning version of FDA (LFDA; Miihlenbein and Hons, 2005).
With the reasoning of dependencies among variables by building probabilistic models,
these approaches can capture problem structures and achieve good performance.

2.2 Extended Compact Genetic Algorithm

The ECGA was proposed by Harik (1999) based on the idea that probability distribu-
tions can be used to model the population in genetic algorithms and the choice of a
good probability distribution can be viewed as equivalent to learning linkage between
variables. The probabilistic models adopted in ECGA are a class of models known as
the marginal product models (MPMs; Harik, 1999). ECGA utilizes MPMs to model
partitions of variables. The measurement of distribution quality is quantified accord-
ing to the minimum description length (MDL) principle (Rissanen, 1989), which can
be considered as a realization of Occam’s razor. MDL prefers simpler distributions to
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more complex ones. The MDL criterion penalizes both inaccuracy and complexity and
thereby produces high quality distributions.
ECGA can be algorithmically outlined as

1. Initialize a population of N individuals at random.

Apply tournament selection of size S.

Model the selected individuals with a greedy MPM search.
Stop if the MPM model has converged.

Generate a new population by sampling the MPM model.

A O i

Return to step 2.

The complexity measurement of the MPM model is the sum of (1) model complexity
and (2) compressed population complexity:

Model complexity = log N ) ~ 2511, €Y)
1

where N is the population size, and S[7] is the length of the /th subset of genes.
Compressed population complexity = N Z E(M)), (2

where E(M;) is the entropy of the marginal distribution for subset /. According to the
MDL principle, the goal for the greedy MPM search is to find an MPM model with the
minimal combined complexity.

Instead of applying regular crossover and mutation operators, ECGA creates the
new population by sampling the MPM model obtained in Step 3. This creates offspring
without disrupting linkage groups of decision variables. In the original framework,
ECGA can handle only binary variables. In order to make ECGA capable of tackling
the real-parameter optimization problems, a certain technique is required to play as an
interface between the method for optimization and the problem to solve. In the present
work, we propose an adaptive discretization method, SoD, which will be described in
Section 3. In the next section, we will briefly introduce two well-known discretization
methods, the FHH and the FWH.

2.3 Discretization Methods

Discretization can be used to transform problems from the continuous domain into the
discrete domain and to provide an interface between problems and solvers of different
domains. After discretization, the candidate solutions in the continuous domain are
encoded as discrete codes, such as binary strings or integer vectors. The optimization
techniques designed for discrete variables can then operate on these binary strings or
integer vectors. In this section, two elementary discretization methods are described
(Bosman and Thierens, 2000; Canta-Paz, 2001; Tsutsui et al., 2001).
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(a) Population # 1: five-bin FHH (two individuals in each bin).

B

-100 100

(b) Population # 2: five-bin FHH (two individuals in each bin).

=100 100

(c) Population # 3: five-bin FHH (two individuals in each bin).

Figure 1: Three populations discretized by the five-bin FHH.

2.3.1 Fixed-Height Histogram (FHH)

One way to discretize an interval is to place equal numbers of individuals in the bins.
Real-valued individuals within one bin are all encoded as the discrete code assigned to
that bin. One of the intuitive ways to discretize an interval is to make all the bins contain
the same number of individuals. Such a method is called the fixed-height histogram,
where the word height refers to the number of individuals contained in each bin. Figure 1
shows an example to discretize three different populations of size 10 with a five-bin
FHH. Because of the fixed height, each bin contains exactly two individuals.

2.3.2 Fixed-Width Histogram (FWH)

Another discretization technique fixes the width of the bins. Figure 2 shows the dis-
cretization of three populations of size 10 into five bins using this technique, called
fixed-width histogram. For an interval [¢, u), a k-bin FWH divides the interval into &
bins of equal width (¢ — ¢)/k. The range of the ith bin can be given as

A
k + k

|:£+i(u—6) (i+1)(u—€))’

wherei € {0, ..., k — 1}. Figure 2 shows that the discretization configuration is identical
for the three different populations, and the width of each bin is fixed as 40.

3 Split-on-Demand

An adaptive discretization method, called split-on-demand, encodes real-number deci-
sion variables into discrete numerical codes (Chen et al., 2006). The main idea of SoD is
to encode with more integer codes those regions that we are more interested in and want
to know more about. For this purpose, SoD splits the continuous intervals in which there
are equal to or more than a specified number of individuals at random. Thus, when
SoD works with EDAs, more accurate probabilistic models regarding these promising
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(a) Population # 1: 5-bin FWH (the width is 40 for each bin).
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(b) Population # 2: 5-bin FWH (the width is 40 for each bin).

40 40 40 40 40

S

=100 100

(c) Population # 3: 5-bin FWH (the width is 40 for each bin).

Figure 2: Three populations discretized by the five-bin FWH.

regions may be built, while less computational resources may be spent on modeling
the regions containing fewer individuals. A split rate y, where 0 < y < 1, is employed
to determine whether or not a real-number interval should be split. If the population
size is N, an interval containing equal to or more than N x y individuals should be
split. By adjusting y, we can control the precision of the probabilistic model (of discrete
variables) as well as avoid having unnecessarily long bit strings for discretization.

As described, SoD splits a dimension of real numbers into several intervals and
assigns each of the intervals an integer code. We can then translate a vector of real
numbers into a vector of integers, which can be represented by bits or binary codes
more directly. As an example, given a real-parameter optimization problem of two
dimensions, one possible code table constructed by SoD is shown in Figure 3. The
solution (—72.3, 24.8) is encoded as (0, 1), and the solution (13.8, —5.3) as (2, 0). Figure 4
shows the solution space split by the code table given in Figure 3. Figure 4(a) is the split
configuration on dimension 1, Figure 4(b) is the split configuration on dimension 2, and
Figure 4(c) is the combined split configuration on (dimension 1, dimension 2), which is
the whole solution space. The code table splits the solution space into 12 regions.

In order to construct the table, SoD splits continuous intervals in which there are too
many search points. Because a selection operator chooses promising individuals at each
generation, if there is a host of individuals in certain regions after selection, we may
consider those regions important and conclude that the probability of good solutions in
those regions is higher. Therefore, we split promising regions to gain higher resolution
as well as to achieve better accuracy in assisting the EDA to build high quality models.

In order to determine which interval to split, we employ a split rate y, where 0 <
y < 1. Aninterval should be split if it contains equal to or more than N x y individuals,
where N is the population size. The split rate controls the resolution and accuracy
of the probabilistic model to be built. If the probabilistic model is required to be more
accurate, smaller split rates should be used such that the value range of a variable is split
into more intervals. Furthermore, for the same reason, the split rate also stochastically
decides the overall code length. The higher the split rate, the shorter the code length,
and vice versa.
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Dimension 1 Dimension 2
Interval Code Interval Code
-100 to =50 0 -100 to 0 0
-50 to 0 1 0 to 50 1
0 to 50 2 50 to 100 2

50 to 100 3

Figure 3: An example code table constructed by SoD for a real-parameter optimization
problem of two dimensions.

-100 =50 0 50 100
(a) Split configuration on dimension 1.

—160 6 5‘0 160
(b) Split configuration on dimension 2.

100

50

-100
-100 =50 0 50 100

(c) Combined split configuration on both dimensions.

Figure 4: An illustration of the solution space being split according to the code table
given in Figure 3.

The procedure of SoD can be described as follows, and the pseudocode of SoD is
shown in Figure 5. Procedure Split-on-Demand first calls subroutine Split on the
interval [lower_bound, upper _bound), where the lower _bound and upper _bound are the
bounds of the range of a decision variable. Split generates a uniformly distributed
random number m within the interval in question and counts the individuals in the
two subintervals: [£, m) and [m, u). If an interval contains equal to or more than N x y
individuals, it should be further split. Split will recursively call itself to split that
interval until all the intervals contain fewer than N x y individuals.

When all the split operations are done, we decrease the split rate by a factor e,
where 0 < € < 1. The reason to decrease the split rate is to have higher split rates at
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1: procedure SPLIT-ON-DEMAND
2: Split([lower_bound, upper _bound))
3: vy Xe

4: end procedure

1: procedure SPLIT([(, u))

2: m « random[/, u)
3: Ny « number of individuals in [¢,m)
4: N, « number of individuals in [m<u)

5: if N, > N x v then

6: Split([¢, m))

7: else
8: Add a code for the range [¢,m)
9: end if

10: if N, > N x ~ then

11: Split([m, w))

122 else
13: Add a code for the range [m<u)
14:  endif

15: end procedure

Figure 5: Pseudocode for SoD.

early search stages to maintain the diversity as well as to implement a coarse-grained,
global search. As the search process proceeds, we obtain more and more information
about the solution space and know where to put more search points to find good
solutions. Hence, at late search stages, a lower split rate is needed to build accurate
probabilistic models for conducting a fine-grained, local search. The factor € can be set
to control the speed of convergence. An appropriate € can help the back end search
algorithm to avoid wasting time on useless regions as well as being trapped at local
optima, and therefore is key to an efficient search process.

We now give an example of how SoD runs on populations. Assume that the popu-
lation size is 10, and the initial split rate y = 0.5. Figure 6 depicts how the individuals
are distributed at different generations. Initially, Figure 6(a) shows that the first posi-
tion to split, marked by 1, is randomly generated. We then discover that the number of
individuals in the left interval is larger than 10 x y = 5. Under this condition, SoD calls
Split to perform a random split on the left interval and gets the second split position,
marked by 2. After the second split, the numbers of individuals in the two intervals,
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(a) Population #1 and two split positions at generation 1.~ = 0.5.

10 x v = 5.
2 1 3
-100 100

(b) Population #2 and three split positions at generation 10. v = 0.4.

10 x v = 4.
3 2 5 4 1
ecees o oo o ¢
-100 100

(c) Population #3 and five split positions at generation 20. v = 0.3.

10 x v = 3.

Figure 6: Populations and split positions at different generations.

the left interval and the right interval to the second split position, are both less than
10 x y = 5. As a consequence, SoD stops the split operation and decreases the split rate.

Figure 6(b) shows the population and the splits at generation 10. The split rate y
is now 0.4. SoD performs a random split to cut the whole interval into two intervals.
It can be observed that both the left and the right intervals contain equal to or more
than 10 x y = 4 individuals. As a result, SoD calls Split on both the left and the right
intervals. For the left interval, SoD randomly splits it into two intervals and finds out
that each interval contains three individuals. By conducting the recursive split operation
until no more interval has to be split, three splits make the value range four intervals.
Moreover, in Figure 6(c) at generation 20, the split rate is 0.3. SoD runs on the population,
and the whole interval is split into six regions by five splits.

One might wonder whether the proposed encoding scheme seems similar to the
FHH method. In fact, there is a significant difference between SoD and FHH—the code
table construction. In FHH, because the height of histograms, that is, the number of
bins employed in the algorithm, is fixed, the code table is deterministically constructed
for any given population. However, in SoD, even with the same split rate, for the same
population, different code tables may be stochastically constructed. Such a flexibility
might make the probabilistic model built by the back end EDA more accurate than what
is built according to the individuals encoded by FHH.

For handling the adaptive discretization during an optimization process, Figure 7
shows an example of how SoD cooperating with ECGA splits the solution space at dif-
ferent generations when a two-dimensional objective function G; = )" x? is minimized,
where the bound of every dimension is [-100, 100], and the global optimum is (0, 0).
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(a) Generation 1
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(b) Generation 50
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-100 =50 0 50 100

(c) Generation 100

Figure 7: Split configurations at different generations for G; = Y_ x2.
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Figure 7(a) depicts the split configuration on the solution space at generation 1. The split
configuration seems random because the population is highly diverse at generation 1.
Later, at generation 50, the population begins to converge, and Figure 7(b) shows that
SoD splits the solution space around (0, 0) into many regions and leaves other parts
of the solution space un-encoded. Finally, in Figure 7(c), it can be observed that SoD
focuses on the solution space close to (0, 0) at generation 100. With the population con-
verging to (0, 0), ECGA is able to explore the promising solution space more thoroughly
and to find the solutions of higher precision.

Another example is the two-dimensional objective function G, =) 10 — |x;|.
Figure 8 depicts how SoD splits the solution space, of which the bound of each di-
mension is [-10, 10], when G, is minimized. There are four global minima located at
(=10, —10), (-10, 10), (10, —10), and (10, 10). Figure 8(a) is the split configuration on
the solution space at generation 1. Because the population is initially random, the split
configuration seems random. In Figure 8(b), we observe that at generation 10, because
the population begins to converge to the global minima, the split points are close to the
four corners where the global minima of G, are located. Finally, Figure 8(c) shows that
almost all split points are around the region close to (10, 10) because the population
converges to one of the four global optima at generation 20.

These two examples demonstrate that the split configuration established by SoD
appropriately responds to the status of the population. The split configuration can en-
code the individuals as precisely as necessary for the backend EDA to build probabilistic
models. Hence, SoD is an effective encoding technique to make EDAs able to handle
real-parameter optimization problems. In the next section, ECGA, as an example of
EDAs, will be employed to show the feasibility of integrating SoD and EDAs.

4 Real-Coded ECGA

In the previous section, we proposed the adaptive discretization SoD method, we de-
scribed the behavior of SoD, and we demonstrated the effect of SoD. In this section, we
will show the way to plug SoD into ECGA, as a showcase for the integration of SoD
and EDAs. A similar hybridization was proposed by Pelikan et al. (2003) to use a dis-
cretization method as a bridge between optimization techniques designed for variables
of different domains. In this study, we use SoD as a direct interface between problems
and the optimizer. The integration of ECGA and SoD is called the real-coded ECGA
(rECGA) in the remainder of this paper and can be given as

1. Initialize a population of N individuals at random.
. Apply tournament selection of size S.

. Use SoD to encode each dimension of the continuous variables.

2
3
4. Model the selected, encoded individuals with a greedy MPM search.
5. Stop if the MPM model has converged.

6. Generate a new population by sampling the built MPM model.

7

. (Optional local search) for every L generations, run the Nelder-Mead (Nelder and
Mead, 1965) method on the best 10% individuals.

8. Return to Step 2.
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Figure 8: Split configurations at different generations for G, = >_ 10 — |x;|.
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The implementation of rECGA used in this paper is available and can be downloaded
at http:/ /www.nclab.tw/SM/2009/01.

5 Comparisons on Benchmark Functions

After proposing SoD and rECGA, first we would like to know how SoD performs
compared to the well-known discretization methods FHH and FWH. Then, we will
compare the performance of rECGA to that of other real-parameter optimization meth-
ods in evolutionary computation on a set of benchmark functions proposed in CEC
2005 (Suganthan et al., 2005).

51 Comparisons with FHH and FWH

In this section, we use the identical search engine, ECGA, as the platform and plug
SoD, FHH, and FWH into ECGA to examine how well they perform under the same
conditions. When FHH and FWH are used, the optimization procedure, similar to
rECGA, can be described as

1. Initialize a population of N individuals at random.
. Apply tournament selection of size S.

. Use FHH/FWH to encode each dimension of the continuous variables.

. Stop if the MPM model has converged.

2
3
4. Model the selected, encoded individuals with a greedy MPM search.
5
6. Generate a new population by sampling the built MPM model.

7

. (Optional local search) for every L generations, run the Nelder-Mead (Nelder and
Mead, 1965) method on the best 10% individuals.

8. Return to Step 2.

The following eight test functions were used to serve as a testbed for observing the
relative performance of the three discretization methods:

1. Sphere function

D
Fi(x) = lez
i=1

2. Rosenbrock’s function
D-1

Fz(x) = Z (100(x12 - )Ci+1)2 + (X,’ - 1)2)

i=1
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3. Ackley’s function

1<, 1o
F3(x) = —20exp | —0.2 ) ;xi —exp (B Z cos(2nx,-)) +20+e

i=1

4. Griewanks’s function

2

D D
X X;

F4(x):Z i —Hcos(%)—i—l
74000 70 Vi

i=

5. Weierstrass function

D kmax kmax
Fs(x) = Z (Z(ak cosrb* (x; + o.5)))> -D Z(ak cos2rb* - 0.5)),

i=1 \ k=0 k=0
wherea = 0.5, b = 3, kmax = 20

6. Rastrigin’s function

D
Fe(x) = Z (x? — 10 cos(2rx;) + 10)
i=1

7. Noncontinuous Rastrigin’s function

D
Fy(x) =) (v? = 10cos2my;) + 10),
i=1
Xis if |-xi| < %
where y; = { round(2x;) 1

5 ,if x| >= 3

8. Schwefel’s function

D
Fg(x) = 418.9829 x D — Zx,. sin (|xl.|%)
i=1

The global optimum positions, x*, the global optimum objective values, f(x*), and the
search intervals, [x,,i,, Xmax], Of €ach test function are listed in Table 1. The number of
dimension, D, in all the experiments is 10.

The parameters for rECGA (i.e., ECGA+SoD) we used in this series of experiments
are given in the following: population size = 250, crossover probability = 1.0, tourna-
ment size = 8, L =5, the maximum function evaluations = 30,000, and 50 independent
runs for each test function. The maximum function evaluations include the function
evaluations made by ECGA and the Nelder-Mead method. Because the code length is
constant for FHH and FWH while it varies for SoD, in order to achieve fair comparisons,
we conducted two sets of experiments to examine the effect of different code lengths
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Table 1: Global optima and search intervals of the test functions.

F x* f(x*)  Search Intervals
F [0,0,...,0] 0 [-100,100]

F, [0,0,..., 0] 0 [-2.048,2.048]
F  [0,0,...,0] 0 [-32.768,32.768]
Fy [0,0,...,0] 0 [-600,600]

Fs [0,0,..., 0] 0 [-0.5,0.5]

Fs 10,0,...,0] 0 [-5.12,5.12]
F, 10,0,...,0] 0 [-5.12,5.12]
Fs [0,0,..., 0] 0 [-500,500]

on the three discretization methods. In each experiment set, we executed ECGA with
FHH or FWH for one code length slightly shorter as well as for one slightly longer than
the mean SoD code length.

In the first set of experiments, for SoD, y = 0.7, and € = 0.99. Under this condition,
the mean SoD code length for each dimension is 13.23. We compare the results of
rECGA to that of ECGA+FHH and ECGA+FWH with bin numbers 10 and 15. The mean
objective values, variances, and ¢-test results of each function are shown in Table 2. In
the other set of experiments, for SoD, y = 0.45, and € = 0.988. In this case, the mean SoD
code length for each dimension becomes 22.81. Accordingly, we compare the results
of rECGA to that of ECGA+FHH and ECGA+FWH with bin numbers 20 and 25. The
results are given in Table 3.

According to the experimental results presented in Tables 2 and 3, we first observe
that SoD outperforms FHH or FWH on the eight test functions by comparing the
obtained mean objective values. We can also see that SoD in general provides smaller
variances of the solutions than do FHH and FWH. The ¢-values listed in the tables further
indicate that the experimental results are statistically significant. Except for FHH-25 on
F7 (marked by * in Table 3), all r-values are greater than the critical value, 1.68, for one
tail significance o = 0.05 and degree of freedom around 50. As a consequence, we can
conclude that SoD can better discretize the continuous search intervals than FHH and
FWH can, at least when SoD cooperates with ECGA.

For this series of numerical experiments, because a local search method, the Nelder-
Mead method, is utilized for the purpose of solution quality improvement, the inte-
grations, including ECGA+SoD, ECGA+FHH, and ECGA+FWH, can be considered as
hybridizations of global and local searchers and therefore as memetic algorithms. Read-
ers interested in the design and development of memetic algorithms can refer to the
details in the related publications (Bambha et al., 2004; Ong et al., 2006; Li and Jiang,
2000; Hart, 1994) in the literature.

5.2 Comparisons with Other Evolutionary Algorithms

In this section, we will use rECGA to solve a set of benchmark functions proposed in
CEC 2005 (Suganthan et al., 2005). The benchmark also defines the evaluation criteria
as well as providing the performance results for comparison. Hence, rECGA will be
compared to the existing algorithms included in the special session at CEC 2005. The
parameters of rECGA we use in this section are population size = 250, probability of
crossover = 0.975, tournament size =8,y = 0.5, ¢ = 0.998, and L = 5.
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Table 2: The mean SoD code length is 13.23.

F F F3 Fy
SoD mean 2.84E-05 8.46E+00 1.23E-03 1.09E-02
var. 2.12E-09 5.79E+01 2.96E-07 2.44E-04
FHH mean 6.65E+01 3.05E+01 4.32E+00 1.59E+00
10 var. 1.30E+403 1.70E+-02 5.41E-01 8.12E-02
t-value 1.30E+4-01 1.03E+401 4.15E+01 3.92E+01
FHH mean 6.44E+00 1.51E+01 1.84E+00 8.71E-01
15 var. 2.52E+01 1.35E+02 3.53E-01 4.88E-02
t-value 9.07E+4-00 3.40E+00 2.19E+01 2.74E+4+01
FWH mean 3.56E+02 1.67E+401 8.29E+00 4.51E+00
10 var. 1.18E+04 4.64E+00 4.99E-01 6.72E-01
t-value 2.32E+01 7.39E+4-00 8.30E+01 3.88E+01
FWH mean 5.81E+01 1.06E+401 4.53E+00 1.56E+00
15 var. 6.20E+02 9.26E+00 2.47E-01 6.27E-02
t-value 1.65E+01 1.88E+4-00 6.45E+01 4.37E+01

F5 F(J F7 Fg
SoD mean 1.03E-01 1.24E+00 4.04E+00 1.55E-04
var. 1.13E-03 1.22E+400 2.11E+00 1.03E-09
FHH mean 1.12E4-00 4.82E+00 5.88E+00 5.97E+01
10 var. 8.39E-02 4.82E+00 2.65E+00 3.59E+03
t-value 2.48E+01 1.03E+01 5.98E+00 7.05E+00
FHH mean 3.67E-01 3.29E+00 4.38E+00 1.12E4-01
15 var. 2.90E-02 2.46E+00 1.82E+4-00 3.14E+02
t-value 1.07E+01 7.58E+00 1.22E+00 4.46E+00
FWH mean 4.86E+00 2.78E+01 2.24E+01 4.09E+02
10 var. 3.46E-01 2.91E+01 9.37E+01 1.32E+04
t-value 5.71E+01 3.42E+01 1.33E+01 2.51E+01
FWH mean 2.61E4+00 1.76E+4-01 1.56E+4-01 4.10E+02
15 var. 5.33E-02 1.02E+401 1.35E+01 1.12E+04
t-value 7.59E+01 3.42E+01 2.07E+01 2.73E+01

The error values, f(x) — f(x*), are presented in Table 4 for the 25 test functions. The
number of dimensions for each problemis 10. The error values are recorded after 100,000
function evaluations (FEs) for each of the 25 runs. A run is considered a success if the final
solution reaches within the given fixed accuracy level. The predefined accuracy levels
are 1 x 107 for functions 1-5, 1 x 102 for functions 6-14, and 1 x 107! for functions
15-25. The error values of the 25 runs on one function are sorted, and the table presents
the following items: the 1st (best), the 13th (median), the 25th (worst), and the average
(mean). The notations * and ** put after the function number denote that the function
is considered solved or rECGA obtains comparable results against other algorithms,
respectively. According to the benchmark, if an algorithm successfully reaches within
the given accuracy level for a function in at least one out of the 25 runs, the function is
considered solved by the algorithm. “Comparable results” mean that the performance
of rECGA is equally good compared to that of other algorithms.

The experimental results indicate that rECGA can solve functions 1, 2, 3,4, 6,7, 9,
12, 13, and 15, which are denoted with *. Functions 1 and 2 are easy and can be solved
in every run. Function 3 is the shifted rotated high conditioned elliptic function, which
magnifies the error of input. Even if the error of input is quite small, the error value
will be huge due to a huge multiplier. By utilizing a good local search operator, rECGA
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Table 3: The mean SoD code length is 22.81.

F F F3 Fy
SoD mean 6.86E-08 6.99E+-00 2.47E-04 1.24E-02
var. 4.86E-15 2.68E+00 1.27E-08 1.34E-04
FHH mean 2.31E+00 1.13E+01 1.16E+00 5.93E-01
20 var. 5.03E+00 1.30E+02 5.24E-01 6.67E-02
t-value 7.27E+00 2.65E+00 1.13E+01 1.59E+-01
FHH mean 1.33E+00 8.30E+00 1.23E+4-00 5.55E-01
25 var. 1.46E+00 5.00E+4-00 4.25E-01 6.95E-02
t-value 7.81E4-00 3.36E+4-00 1.34E+01 1.45E+01
FWH mean 1.02E+02 1.11E+401 5.46E+00 1.94E+00
20 var. 4.69E+02 1.57E+01 2.19E-01 2.82E-02
t-value 3.32E+01 6.74E+4-00 8.25E+01 8.07E+01
FWH mean 5.42E+01 1.11E+401 4.35E+00 1.46E+-00
25 var. 1.14E+03 5.14E+01 6.16E-01 1.11E-01
t-value 1.14E+01 3.92E+4-00 3.92E+01 3.08E+01

Fs Fe F; Fg
SoD mean 9.35E-02 1.32E+-00 2.49E+00 1.27E-04
var. 1.18E-03 1.23E+00 2.00E4+00 1.22E-14
FHH mean 2.32E-01 2.19E4-00 3.71E+400 3.94E+4-00
20 var. 2.00E-02 1.27E+00 1.34E+00 1.53E+401
t-value 6.74E+4-00 3.89E+4-00 4.70E+00 7.13E4-00
FHH mean 1.99E-01 1.90E+00 2.71E4+00 3.52E+4-00
25 var. 1.08E-02 1.14E+00 1.46E+4-00 1.41E+01
t-value 6.83E4-00 2.66E+00 *8.21E-01 6.64E+-00
FWH mean 3.34E+00 3.72E+01 1.32E+01 9.45E+4-01
20 var. 1.12E-01 6.27E+01 3.94E+01 1.18E+403
t-value 6.84E+4-01 3.18E+01 1.18E+01 1.94E+01
FWH mean 1.89E+00 7.97E+400 6.50E+00 1.83E+02
25 var. 4.78E-02 2.75E+00 3.98E+00 2.15E+03
t-value 5.75E+01 2.35E+01 1.16E+01 2.78E+01

Note: *Less than the critical value (1.68).

is able to solve function 3. Function 4 is the shifted Schwefel’s problem 1.2 with noise
in fitness. rECGA can solve this problem because SoD can decrease the noise effect by
splitting the real number interval at random. Function 5 is Schwefel’s problem 2.6 with
global optimum on bounds. The special property of function 5 is that function 5 can
be solved if the individuals are located at bounds. Due to SoD’s characteristics, rECGA
fails to satisfy the success criterion, although rECGA can provide comparable results.
Functions 6-14 are basic and expanded multimodal problems. Although rECGA
cannot solve all these problems, most of the results are comparable to that of other
evolutionary algorithms. The optimum of function 8 is within a very narrow valley, and
the parameter setting used in this experiment does not allow rECGA to have a sufficient
resolution to accurately find the valley. Functions 15-25 are composites of the basic
functions, and they are big challenges to search algorithms. rECGA successfully solves
only function 15. Some of the results of rECGA for functions 16-25 are comparable to
other algorithms. rECGA and many other algorithms can only find the local optima. For
an overall comparison, Table 5 lists the performance indexes of the algorithms compared
to the benchmark in terms of the number of solved functions. We note that rECGA is
ranked second, between two versions of the most advanced evolutionary algorithm for
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Table 4: Error values for functions 1-25 (100,000 function evaluations).

Function 1* 2* 3* 4+ 5% 6* 7*
Best 5.68E-14 5.68E-14 1.14E-13 345E-08 1.06E-04 1.71E-13 9.38E-13
Median 6.82E-13  1.02E-12 1.25E-12 2.33E-04 1.33E-03 1.24E-11 1.03E-01
Worst 443E-12 1.68E-11 1.93E-04 258E-02 1.54E+00 5.54E4+01 5.34E-01
Mean 1.29E-12 2.11E-12 7.72E-06  2.13E-03 8.77E-02 5.77E4+00 1.42E-01
Function 8** 9* 10 11 12* 13* 14**
Best 2.00E+01 1.71E-13 298E+00 523E-01 5.68E-14 991E-03 2.16E400
Median ~ 2.00E4+01 6.82E-13 7.96E4+00 221E+00 1.76E-12  3.85E-01 3.06E+00
Worst 2.00E+01 8.01E-12 1.39E4+01 5.53E+00 1.56E+03 8.54E-01 4.00E+400
Mean 2.00E+01 1.33E-12 7.84E+00 2.35E4+00 6.39E+01 4.37E-01 2.97E+400
Function 15* 16 17 18 19 20 21
Best 2.84E-14 943E+01 1.13E4+02 3.00E4+02 3.00E4+02 3.00E+02 3.00E+02
Median 1.72-12 1.10E+02 1.25E+02 8.00E+02 8.00E+02 8.00E+02 8.00E+02
Worst 424E+02 1.30E+02 1.73E402 9.51E+02 9.68E+02 9.28E4+02 1.13E+403
Mean 1.55E+02 1.11E+02 1.30E+02 7.28E+02 6.61E402 5.86E+02 6.87E+02
Function 22+ 23** 24+ 25

Best 727E+02 5.59E402 2.00E+02 4.21E402

Median 740E+02 9.71E4+02 2.00E4+02 4.40E+402

Worst 8.00E4+02 1.24E4+03 2.00E+02 1.48E+03

Mean 747E+02 8.14E402 2.00E+02 6.35E4-02

*Considered solved according to the given accuracy.

**Comparable to the results obtained by other algorithms.

Table 5: The number of solved functions in the benchmark for various evolutionary
algorithms. U: Unimodal functions (f; to f5); B: Basic functions (fs to f12); E: Expanded
functions (f13 and fi4); H: Hybrid composition functions ( fis to f2s).

Algorithm U B EH Total
IPOP-CMA-ES (Auger and Hansen, 2005b) 1,2,3,4,5 6,7,9,10,11,12 — 11
rECGA 1,234 6,7,9,12,13 15 10
DMS-L-PSO (Liang and Suganthan, 2005) 1,235 6,7,9,12 15 9
LR-CMA-ES (Auger and Hansen, 2005a) 1,2,3,4,5 6,7,12 — 8
PSGES (Hsieh et al., 2007) 1,24 6,7,9,12,13 — 8
BLX-MA (Molina et al., 2005) 1,2,4,5 9,11,12 — 7
DE (Ronkkonen et al., 2005) 1,2,34,5 6,9 — 7
K-PCX (Sinha et al., 2005) 124 6,9,10,12 — 7
SPC-PNX (Ballester et al., 2005) 1,245 6,7,11 — 7
Co-EVO (Posik, 2005) 1,234 7 — 5
EDA (Yuan and Gallagher, 2005) 1,2,3,4 — — 4

real-parameter optimization, CMA-ES (Hansen, 2006). Such a result encourages us to
conduct further investigations and to apply rECGA to real-world applications in the
next section. For further information, the detailed numerical results on the test functions
can be found at http://www.nclab.tw/SM/2009/01.

6 Real-World Applications

After verifying the discretization capability of SoD, we are interested in putting the
proposed framework, rECGA, into action. In this section, we employ rECGA to handle
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the economic dispatch (ED) problem, which is an essential topic in the power system
because several important facets of power systems are involved. Thanks to the impor-
tance of the ED problem, researchers have been making numerous attempts to find good
solutions. Among evolutionary optimization methods for tackling the ED problem are
genetic algorithms (Walters and Sheble, 1993; Sheble and Brittig, 1995; Chen and Chang,
1995; Baskar et al., 2003; Yalcinoz et al., 2001), evolutionary programming (Jayabarathia
et al., 2005; Sinha et al., 2003; Yang et al., 1996, Wong and Yuryevich, 1998), and parti-
cle swarm optimization (Gaing, 2003; Victoire and Jeyakumar, 2004a; Park et al., 2005;
Victoire and Jeyakumar, 2004b). In order to obtain superior solutions, we apply rECGA
on the ED problem in this section. First, we briefly introduce the ED problem, and then
the high quality solutions offered by rECGA are presented.

6.1 The Problem: Economic Dispatch

With the development of modern power systems, the economic dispatch (ED) problem
has been receiving increased attention. The ED problem is essential for the real-time
control of power system operations. It consists of allocating the total generation re-
quired among the available thermal generating units, assuming that a thermal unit
commitment is previously determined. The problem aims to minimize the fuel cost
subject to the physical and operational constraints. As a result, the ED problem is to
find the optimal combination of generations that minimizes the total generation cost
while satisfying the specified constraints. In order to model the ED problem, a simpli-
fied cost function (Allen and Bruce, 1984) of each generator, represented as a quadratic
function, can be given as:

C=> FiP),

jeJ

Fj(Pj) = aijz-l-bij +Cj,

where C is the total generation cost; J is the set for all generators; P; is the electrical
output of generator j; F; is the cost function for generator j; and a;, b;, and c; are the
cost coefficients for generator ;.

In the real world, the total generation should be equal to the total system demand
plus the transmission network loss. However, in this study, the network loss is not
considered for simplicity as in many previous studies. Thus, the constraints of the
problem include two parts. The first part is the equality constraint. The total system
power demand must be equal to the summation of the output of each generator:

D=3 P, &)

jeJ

where D is the total system demand.

Moreover, the generation output of each unit should be within the respective min-
imum and maximum limits. Such a condition introduces the inequality constraint for
each generation unit, such as for generator j:

ijinSPjEijax,
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where P;min and Pjmax are the minimum and maximum output of generator j, and P;
is the desired output for generator j.

In reality, the objective function of economic dispatch is more complicated due to the
valve point effects, the change of fuels, and other potential practical factors. Therefore,
nonsmooth cost functions should be taken into consideration instead of the simplistic
form of Equation (3). The inclusion of the valve point effects makes the modeling of the
incremental fuel cost function of the generation units more practical. Such a modification
increases the nonlinearity as well as the number of local optima in the search space.
Hence, the employed search algorithm may be trapped at the local optima more easily.
The incremental fuel cost function of the generator with the valve point effects can be
given as (Walters and Sheble, 1993)

Fj(Pj) :aijz +bij +Cj + |€j sin(fj X (ijin — Pj))l, (4)

where e¢; and f; are the coefficients to reflect the valve point loading effects.

In this study, we focus on solving the ED problem with the valve point loading
effects, which is modeled in Equation (4). We employed rECGA as an optimization
tool. The equality and inequality constraints are handled through a repair operator.
Descriptions in detail are given in the following section.

6.2 Our Solution: rECGA for Economic Dispatch

The integration of ECGA and SoD, rECGA, can generally handle global optimization
problems. However, certain extra efforts have to be made for employing rECGA to tackle
the ED problem. Among the most important topics for solving the ED problem may
be the equality and inequality constraints. These constraints divide the problem search
space into complicated areas. This condition renders the optional local searcher (the
Nelder-Mead method, included in the framework of rECGA), inefficient and ineffective
(Nelder and Mead, 1965). As a consequence, the optional local search operator is not
applied when rECGA is used to solve the ED problem.

Furthermore, in order to deal with the constraints, based on the repair concept, we
developed a constraint handling technique specifically for the ED problem. Repairing
solutions stands for transforming infeasible solutions into feasible ones via a certain
procedure. For the equality constraint, Equation (3) in the ED problem, we repair infea-
sible solutions in the following way. Firstly, we create a sequence from 1 to the number
of generator in a random order. Each number in the sequence represents one desig-
nated generator. The sequence indicates the order in which we adjust the output of the
generation for making a solution feasible. For example, if the generated sequence is
4,2,1,5,3, we will first process generator 4, then generator 2, and so on. To process
a generator, we check the equality constraint, that is, the sum of the output has to be
equal to the total power demand. If the equality constraint is not satisfied, the output
of the generator under processing is modified according to:

n

P/ = min(UBound(P;), max((D — > P;), LBound(P))), (5)
J=1,j#

where D is the system power demand, LBound(P;) and UBound(P;) are the lower bound
and upper bound of P;, that is, the inequality constraint of P;.
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Table 6: Parameters for test case I (three-unit system) with the valve point loading
effect. a, b, ¢, ¢, and f are the cost coefficients in the fuel cost function: F;(P;) =
aijz +bij + Cj + |€j sin(fj X (ijin — PJ))|

Generator Prin(MW) PraxMW) a b c e f
1 100 600 0.001562 7.92 561 300 0.0315
2 100 400 0.00482 7.97 78 150 0.063
3 50 200 0.00194 7.85 310 200 0.042

The proposed algorithm, rECGA, incorporating the constraint handling technique
is capable of tackling the ED problem effectively. For simplicity, the optional local search
method is not used. With the adoption of the proposed repair mechanism, rECGA for
solving the ED problem can be outlined as:

1. Initialize a population of N individuals at random according to the constraints
posed to the generator output.

Apply tournament selection of size S.

Use SoD to encode each dimension of the continuous variables.
Model the selected, encoded individuals with a greedy MPM search.
Stop if the MPM model has converged.

Generate a new population by sampling the built MPM model.

Repair the infeasible solutions in the population.

® N o g s LD

Return to Step 2.

In order to observe the effectiveness and to verify the performance of rECGA for ED,
two ED problem instances, one consisting of three generators and the other consisting
of 40 generators, serve as a testbed. The experimental results on the two ED problems
are presented in the next section.

6.3 Verification: Numerical Experiments

We focus on solving the ED problem with nonsmooth cost functions considering the
valve point loading effect for verifying the utility of the proposed framework, rECGA.
The nonsmooth cost functions were described as Equation (4). In order to examine
the performance, rECGA for ED was applied to two ED problems that were adopted
as test problems in the literature (Walters and Sheble, 1993; Sinha et al., 2003) for the
purpose of comparison. One consists of three generation units, and the other consists of
40 generation units. The input data for the three-generator system are given by Walters
and Sheble (1993), and those for the 40-generator system are given by Sinha et al.
(2003). The detailed problem parameters for the two test problems, including the lower
bound and upper bound for the output of each generator as well as the coefficients for
computing the cost functions, are given in Tables 6 and 7. The total system demand for
the three-unit system is 850 MW, and that for the 40-unit system is 10,500 MW. It has been
proven that for the three-unit system, the global optimal solution is 8234.07 (Lin et al.,
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Table 7: Parameters for test case II (40-unit system) with the valve point loading effect.
a,b,c,e,and f are the cost coefficients in the fuel cost function: F;(P;) = a; Pj2 +b;P; +
Cj + |€j Sil’l(fj X (ijin — Pj))|.

Generator Prin(MW) Prax(MW) a b c e f

1 36 114 0.0069 6.73 94.705 100 0.084

2 36 114 0.0069 6.73 94.705 100 0.084

3 60 120 0.2028 7.07 309.54 100 0.084

4 80 190 0.00942 8.18 369.03 150 0.063

5 47 97 0.0114 5.35 148.89 120 0.077

6 68 140 0.01142 8.05 222.33 100 0.084

7 110 300 0.00357 8.03 287.71 200 0.042

8 135 300 0.00492 6.99 391.98 200 0.042

9 135 300 0.00573 6.6 455.76 200 0.042
10 130 300 0.00605 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.2 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.4 300 0.035
14 125 500 0.00752 8.84 1,760.4 300 0.035
15 125 500 0.00708 9.15 1,728.3 300 0.035
16 125 500 0.00708 9.15 1,728.3 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00284 6.66 794.53 300 0.035
24 254 550 0.00284 6.66 794.53 300 0.035
25 254 550 0.00277 7.1 801.32 300 0.035
26 254 550 0.00277 7.1 801.32 300 0.035
27 10 150 0.52124 3.33 1,055.1 120 0.077
28 10 150 0.52124 3.33 1,055.1 120 0.077
29 10 150 0.52124 3.33 1,055.1 120 0.077
30 47 97 0.0114 5.35 148.89 120 0.077
31 60 190 0.0016 6.43 222.92 150 0.063
32 60 190 0.0016 6.43 222.92 150 0.063
33 60 190 0.0016 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 200 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035

2002). As for the 40-unit system, the global optimal solution has not been determined.
To the best of our limited knowledge, the known best solution previously obtained by
other methods is 122,252.265 as reported by Park et al. (2005) with MPSO.

The parameter settings in rECGA for ED are population size = 400, crossover prob-
ability = 0.975, tournament size = 8, y = 0.5, ¢ =0.999, and the maximum function

220 Evolutionary Computation = Volume 18, Number 2



Enabling ECGA with Adaptive Discretization

Table 8: Comparison of the results obtained by various methods on the nonsmooth
cost function considering the valve point loading effect. For the three-unit system, EP,
CMA-ES, MPSO, and rECGA were able to find the global optimum (Lin et al., 2002).

IEP MPSO
Generator GA (pop = 20) EP (par = 20) CMA-ES rECGA
1 300 300.23 300.26 300.27 300.27 300.27
2 400 400 400 400 400 400
3 150 149.77 149.74 149.73 149.73 149.73
TP 850 850 850 850 850 850
TC 8237.6 8234.09 8234.07 8234.07 8234.07 8234.07

Table 9: Comparison of the results obtained by various methods on the nonsmooth
cost function considering the valve point loading effect. For the 40-unit system, rECGA
was able to find the best solution.

Minimum Cost Method
123,488.3 CEP
122,679.7 FEP
122,647.6 MFEP
122,624.35 IFEP
122,252.27 MPSO
122,160.19 CMA-ES
121,462.3591 rECGA

evaluations is 200,000. One hundred independent trials were conducted for each prob-
lem to collect statistically significant results. The obtained results for the three-unit
system are shown in Table 8 and are compared to those obtained by IEP (Park et al.,
1998), EP (Yang et al., 1996), MPSO (Park et al., 2005), and CMA-ES (Hansen, 2006).!
The results for this small ED problem indicate that rECGA was able to find the global
optimal solution determined by Lin et al. (2002).

In the case of the 40-unit system, the results are compared with those obtained by
using other methods given by Sinha et al. (2003) such as classical EP (CEP), fast EP (FEP),
modified FEP (MFEP), and improved FEP (IFEP). The results for MPSO provided in Park
et al. (2005) and obtained by CMA-ES (Hansen, 2006) are also included. The minimum
costs, that is, the best solutions, achieved by these methods are presented in Table 9.
We can see that the best solution delivered by rECGA is 121,462.3591, which is better
than the known, published best solution, 122,252.27, presented by Park et al. (2005) and
that obtained by CMA-ES, 122,160.19. For the purpose of access and verification, the
generation outputs (the values of the decision variables) and the corresponding cost
(the objective values) of the solution found by rECGA are given in Table 10.

Because of the stochastic nature of evolutionary computation methods, to avoid
reporting the results of a “lucky shot,” comparison of the experimental results in a
statistical manner has to be conducted. First of all, Table 11 shows the range of the
results in the 100 trials obtained by CEP, FEP, MFEP, IFEP, MPSO, CMA-ES, and rECGA,
where the listed results except for those of rECGA and CMA-ES are given elsewhere

!We downloaded the source code and conducted the experiments for CMA-ES.
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Table 10: The generator outputs and the costs of the best solution obtained by rECGA.

Generator Prin(MW) Prax(MW) Output Cost
1 36 114 110.80098 925.11565
2 36 114 110.88806 926.56631
3 60 120 97.40449 1,190.63739
4 80 190 179.73300 2,143.55011
5 47 97 96.15215 840.66343
6 68 140 140.00000 1,596.46432
7 110 300 299.99898 3,216.41474
8 135 300 284.62219 2,780.24662
9 135 300 284.61234 2,798.46198
10 130 300 130.00001 2,502.06532
11 94 375 94.00003 1,893.30606
12 94 375 94.00027 1,908.17291
13 125 500 214.76169 3,792.11715
14 125 500 394.27878 6,414.85790
15 125 500 304.52026 5,171.21428
16 125 500 394.28449 6,436.71537
17 220 500 489.27966 5,296.71703
18 220 500 489.27855 5,288.76474
19 242 550 511.27996 5,540.94200
20 242 550 511.28163 5,540.95823
21 254 550 523.28030 5,071.30855
22 254 550 523.28419 5,071.38735
23 254 550 523.28495 5,057.33548
24 254 550 523.28151 5,057.26621
25 254 550 523.28214 5,275.14526
26 254 550 523.27977 5,275.09678
27 10 150 10.00013 1,140.52698
28 10 150 10.00517 1,140.64280
29 10 150 10.00018 1,140.52812
30 47 97 87.84287 707.21302
31 60 190 189.99927 1,643.98840
32 60 190 189.99996 1,643.99109
33 60 190 189.99993 1,643.99098
34 90 200 199.99994 2,101.01644
35 90 200 199.99993 2,043.72638
36 90 200 199.99972 2,043.72436
37 25 110 110.00000 1,220.16612
38 25 110 109.99978 1,220.16484
39 25 110 109.99871 1,220.15859
40 242 550 511.28401 5,541.02984
Total generation and total cost 10,500 121,462.3591

(Sinha et al., 2003; Park et al., 2005). As we observe from Table 11, the distribution of
the rECGA results may be considered better than those obtained by the other methods.

Furthermore, to more carefully and accurately compare the performance of rECGA
and MPSO (Park et al., 2005) on the 40-unit problem, the ¢-test was conducted for the
statistical significance of the obtained experimental results. Since the actual results of the
100 trials for MPSO are not available, in order to get a fair performance comparison and
capability assessment, we set up two conditions under which the ¢-test was conducted.
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Table 12: The t-test for the experimental results obtained by rECGA and MPSO under
condition 1, where the rECGA dataset contains the actual results, and the MPSO dataset
contains 47 values of 122,252.265 and 53 values of 122,750.

rECGA MPSO
mean 121,777.649963 122,516.06455
t-value 27.8068829451749
p-value 2.2645299161711E-55

Table 13: The t-test for the experimental results obtained by rECGA and MPSO under
condition 2, where the rECGA dataset contains the actual results, and the MPSO dataset
contains 47 values of 122,252.265 and 53 values of 122,500.

rECGA MPSO
mean 121,777.649963 122,383.56455
t-value 39.4214198098397
p-value 9.0857670116394E-91

Based on the data given in Table 11, the first condition is that the MPSO results contain
47 values of 122,252.265, which is the optimum reported for MPSO (Park et al., 2005),
and 53 values of 122,750, which is the mean value of 122,500 and 123,000. Table 12
demonstrates the ¢-test results for condition 1. Given the p-value: 2.26 x 1075, which
is smaller than the commonly used statistically significant levels, such as .05 (5%), .01
(1%), or .001 (0.1%), we can conclude that the performance of rECGA on the 40-unit ED
problem is statistically significantly better than that of MPSO on the same problem. For
condition 2, the MPSO results contain 47 values of 122,252.265, which is the optimum
reported for MPSO (Park et al., 2005), and 53 values of 122,500, which is the best value in
the range from 122,500 to 123,000. The 7-test results under condition 2 are presented in
Table 13. Due to the change of the standard deviation, the p-value becomes 9.09 x 1071,
The small p-value prevents us from accepting the null hypothesis, which is interpreted
as that the performance of rECGA and MPSO on the problem is equivalent.

According to the experimental results, we know that the proposed algorithm,
rECGA (ECGA+SoD), performs well on the two ED problems. Particularly, for the
40-unit ED problem, we improved the known best solution from 122,252.265 (Park et al.,
2005) to 121,462.3591. Moreover, from Tables 11, 12, and 13, we observe that rECGA
statistically significantly outperformed MPSO on the 40-unit ED problem. Therefore,
rECGA is capable of solving ED problems effectively.

7 Summary and Conclusions

In this study, we proposed an adaptive discretization method, SoD, to enable EDAs
designed for handling discrete variables to tackle real-parameter optimization. SoD
was described in detail with its procedure, effect, and usage. In order to show the utility
of SoD, an ECGA was employed as an optimization engine, and SoD was used as a
variable-type interface. By combining ECGA and SoD, the real-coded ECGA (rECGA)
were applied to solve a set of benchmark functions and two ED problems. The results on
benchmark functions indicated that SoD was better than two well-known discretization
methods, FHH and FWH. The results on the ED problems demonstrated that rECGA
successfully achieved the global optimal solution of the three-unit ED problem and
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was able to obtain the solutions better than the known best solution obtained by other
methods and reported in the literature for the 40-unit ED problem.

The outcome of this study indicates that it is not only possible but also practical to
employ an optimization method designed for handling discrete variables to tackle prob-
lems consisting of continuous variables, as long as an appropriate interface is adopted.
Although many researchers in the field of evolutionary computation do not consider
variable-type transformation to be an issue, in practice, except for some limited cases,
most algorithms designed for discrete variables do not perform well on continuous
problems and vice versa. By comparing the real-coded ECGA to the algorithms specifi-
cally designed for handling continuous variables, such as particle swarm optimization
(MPSO), evolutionary programming (IFEP, MFEP, FEP, CEP), and evolution strategies
(CMA-ES), this paper provides the experimental results to serve as the proof of prin-
ciple for transforming the variable type while retaining the capability of the back end
optimization algorithm.

Given the nature of discretization, although good results were obtained in this
study, we believe that the proposed framework might not be suitable for applications
that require very high precision. As we can see in Table 5 in Section 5.2, rTECGA seems to
perform as well as the state of the art method, CMA-ES. However, for the benchmark,
since there is a predefined accuracy level for each function (1 x 107°,1 x 1072, and
1 x 1071), the experimental results in terms of the number of solved functions should
be appropriately interpreted instead of being considered to demonstrate that rECGA
can perform very well under any situations. For applications that do not require very
high precision, such as the control of robots, evolutionary arts, or machine learning,
the proposed discretization technique may come in handy for handling real-parameter
problems with the discrete-type optimization algorithm that is already in use.

Finally, future work of this study includes applying rECGA to handle other impor-
tant problems as well as developing different integrations of optimization algorithms
and transforming techniques. Moreover, theoretical understandings for the quality of
the transforming techniques, such as SoD, FHH, and FWH, as well as for the interaction
between the engine and the interface, should also be considered.
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