PN B %
E}%ﬁ[—‘s' T

FI* AR SgE Srag gt ¢ A NIR Y 2

Fast Packet Classification Using Bit Compression

oy o4 iFEC

hEFE I g B4

v X Jueq = F A

RSN = EE s E R

Fast Packet Classification Using Bit Compression

T B Student : Chia-Ren Hsu

1p oy im i@ Advisor : Chien Chen

SIEER A BRI
A S S S
ML ®

A Thesis
Submitted to Institute of Computer and Information Science
College of Electrical Engineering and Computer Science
National ChiaoTung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

§oxe

gt
o)
o~
I
i
e
N

X

. .v?{TjZﬁl:‘ éﬁl}i‘_ii ::l’td— ég Ao Z;‘:Fl‘/ﬁ'-;; / :

ELLERE R R L

Wiiﬁ*ﬁﬁﬂﬁﬁpfﬁ

PO REE 2R BRET G RR ST IRES FREFRRDIGE o EIERR
Bod BZ R T E TRl DA ST o3t ALY A e BEE TS §ep
Fugpkd B¢ T L RDRD L8F W, - 26 3 0 5 L adte i

~ AR FIEEOR AT ¢ 53 3552 Renm i R A O R RA BRI A
W d oo AP - B A B HE(bit compression) it & 4 HE K2 o Aok T
W%%ﬁ&£@i%@ﬁmﬁ%m%%@ﬁﬁ%’&£@ﬁ4ﬁ¥éﬁaﬁgﬁ
(multiple dimensional range lookup)s= ;2 - BLEZR =~ B EFEiE ¢ chiziw £

=

SN

(bit vector) » i I AT A B

I
Ny

FhHh) ma I BB AR APk
rAaw BB TR %ﬂ@EJQWWﬂ’@i—@?%%&ﬂ%&iwﬁ@ﬁ
AL R A N Pt B9 5 g n RiE SREGOD dro
o 1% 5 F 4 R ELA R (wildcarded rule) v 12 { 3B) 2 4% B R ARG B o B
EFHREE TR CARGFE AT BRI T RAS C AR T
i HO(dN7)i 14 5 O(dN-logN) » @ % $ 44t 6 A e o g dd o MR 5
Bl @ NE T RRPBEce b ARIRE L o TR EARBHEZ NG
Wi ARIRBEFE] PR GEERT o a Adte AR > R
BELART FRM AR T TR ARG T & OfRR Y

Fro g G AR RS R s R

Fast Packet Classification Using Bit Compression

Student: Chia-Ren Hsu Advisor: Dr. Chien Chen

Department of Computer and Information Science
National Chiao Tung University
Hsinchu, Taiwan, 300, Republic of China

Abstract

In order to support Internet security, virtual private networks, QoS and etc., Internet
routers need to classify incoming packets. quickly into flows. Packet classification
uses information contained in the'packetheader. to look up the predefined rule table in
the routers. In general, packet classification on multiple fields is a difficult problem. A
variety of algorithms had beén. proposed.-This -thesis presents a novel packet
classification algorithm, called bit compression algorithm. Like the previously well
known algorithm, bitmap intersection, bit compression is based on the multiple
dimensional range lookup approach. Since the bit vectors of the bitmap intersection
contain lots of ‘0’ bits. Utilizing those ‘0’ bits, the bit vectors could be compressed.
We compress the bit vectors by preserving only useful information but removing the
redundant bits of the bit vectors. An additional index table would be created to keep
tract of the rule number associated with the remaining bits. Additionally, the
wildcarded rules also enable more extensive improvement. Our experiment results
show that the bit compression algorithm reduces the storage complexity from O(dN *)
of the bitmap intersection algorithm to O(dN-logN), where d denotes the number of

dimensions and N represents the number of rules, without sacrificing the classification

I

performance. On the classification performance, the bit compression algorithm
requires much less memory access time than bitmap intersection algorithm. Since
memory access dominates the lookup time. Even though extra processing time for
decompression is required for the bit compression algorithm, the bit compression

scheme still outperforms bitmap intersection scheme on the classification speed.

III

Thwm R FHFIRPALIENNL T RS 7 A

R e s \m;}ﬂ W mpgEd o X FPA e 2N 5 R B pEaes b B
T ARG I HITHERER LB SRR G 3

U S TR o £ s £V S S ¥R A e B oA X

(u

FF A R 7 }Rg‘{,ﬁygjﬁgl% FEAE o Fl A X EF @ fonif d) o AT
WMEA R ARE R o ARER R ME FA R L e X
7R A R e R -

A BREA T FEAR O HEERL > FRE L PR
L BETE P AP TR AT F LR EAE e
2B KAl e licd > ¥R ighthe N FERE -

B4 RRMIRTEDL L FF RS P Bl W

WE g E N F %,/’(;g}‘]xﬁ EEANRCNE LA A I L N ,))T;I\:;/];Jcﬁ;\

o T LV ‘:4\3{5”1}{ o) |+ 2 ,31,5‘1_% ‘s %;; B i 2 m;{;}
P BN EBEAFAFTA LR FHEARSHR PR

P LRAR LT A REATVEREN S B R BenE AR -
B ts 1— \.m?’\& t/‘a, 2\ mg.\‘;[;?’ Bt P s i mgj;]ﬁ—,__ :Ei ;\‘,

- RA KBS B4 o At o e R RA R A EGFOHE -

v

Table of Contents

ADSTFACE (1IN CRINESE).....evieiiieeeeeeeee et I
ADSEFACT. ...ttt ettt I
Acknowledgement (IN CRINESE).......c.ooviiuieiieiecieeeeeteee e v
Table Of CONTENTS.ooiiieiee ettt \Y%
LAST OF FIQUIES.....eiceiieeeeeeeeeee ettt et et eae e eaeene s VI
LISE OF TADIES......ceieeeeee et s eneas VII
Chapter 1. INtrodUCTION...........oouiiiieeieecee et 1
Chapter 2. Performance Metrics and Related WOrKs.............ccccceeievievieiiecieenen, 5
2.1 Performance Metrics for Packet Classification Algorithms...........c.cccccceeeeee. 5
2.2 Related WOTKS.......cooo it eeeree bt asintinnnasneeesess bamteeeseenseeenseenssesnseessseenseessseesseessses 6
Chapter 3. Proposed Bit Compression Algorithm..............c..ccccoeeviiiiieieecieceeee. 12
3.1 Using Bit Compression to Reduce Storage Space..........cccceevveevveecieenieennens 12
3.2 Measurement of Maximum OVerlap.........cccceecvereenenieneenenienenieneeeeeenen 19
3.3 RegION SEZMENTALION.......ccvvieeriieeriiieeriiieerieeesiieeeseteeeneteeesereeeeaeessneesaneeenes 21
Chapter 4. Performance RESUILS............ccooovieiiieiieecce e 25
4.1 Performance ANALYSiS........cceecviiiiieiiienieeieerie ettt beesere e e 25
4.2 Experiment Platform...........coocooiiiiiiiiiiii e 25
4.3 Experiment RESUILS........ccceeiiiiiiiiiiiiieciieeceeeee e e 28
Chapter 5. Conclusion and FUuture WOorK.............ccoooveeiieiiieiieeceeece e 40
RETEIENCES. ...ttt ettt et aesaesseebesseeneeseeneas 42

List of Figures

Figure 1: Packet classification PrOCESS..........eveevuerierieirieiienieeie et 2
Figure 2: An example of bitmap intersection algorithm..............cccecvrviniiiinienennnn. 10
Figure 3: The bitmap in dimension X of a 2-dimensional rule table with 10 rules..... 14
Figure 4: Space saving by removing redundant ‘0’ bits.........cccevveveriierienenneniienens 14
Figure 5: The bitmap in dimension X of a 2-dimensional rule table which has two

wildcarded rules R;; and R;> in diMension X ooeeeuuneeeeeeeeeeeeeeeeeeeeeeeeeeeeenns 16
Figure 6: An example of bit compression algorithm...........cccceceviriiiniiiiniininnennn, 18
Figure 7: Graph model illustrating the steps of the region segmentation algorithm... 23
Figure 8: An example of bit compression algorithm after merging rule sets.............. 24
Figure 9: Performance comparison of number of CRs between low bound and region

segmentation With MErging..........cceecvieviiieiiierieeiieieeeesee e 24
Figure 10: IXP1200 block diagram,sii .. it 27
Figure 11: IXP 1200 system configuration for 2-dimension bit compression design 27
Figure 12: Compare the me¢mory requirements”(log, scale) between the bit

compression and the bitmap intersection algorithm under =10".............. 29
Figure 13: Compare the memory. requirements (log, scale) between the bit

compression and the bitmap intersection algorithm under f=10".............. 29
Figure 14: Compare the memory requirements (log, scale) between the bit

compression and the bitmap intersection algorithm under f=10".............. 30

Figure 15: The improvement of memory storage by merging rule sets under

BoL07 e 31
Figure 16: The improvement of memory storage by merging rule sets under
B0 e 31
Figure 17: The improvement of memory storage by merging rule sets under
B0 e 32
Figure 18: An example of ACBV SCheme..........cccccoeeeiiiiiieiiiiiieeieeeece e 34

Figure 19: Compare the memory requirements (log, scale) for ACBYV, bit compression
and the bitmap intersection algorithm under f=10"...........cocovvvrerrerrer.e. 35
Figure 20: Transmission rates for bitmap intersection, bit compression and ACBV on
IXPTI200.... ettt ettt ettt et este e b e enaesaeebeensessaeneennens 39

VI

List of Tables

Table 1: An example of packet classification rule table.............cccceevvvreeienienciienieen, 2
Table 2: The statistical maximum and average value of “maximum overlap” for
real-life Mae-West routing table............ccoeeveeiieiiieiiieiieeieceecee e 20

Table 3: The statistical maximum and average value of “maximum overlap” for

QUTRTENE L.t e 20
Table 4: Worse case of memory access times under £ = 10~ on IXP1200................ 37
Table 5: Worse case of memory access times under £ = 10" on IXP1200................. 37
Table 6: Worse case of memory access times under # = 10™ on IXP1200.................. 38

VIl

Chapter 1. Introduction

The accelerated growth of Internet applications has increased the importance of
the development of new network services, such as security, virtual private network
(VPN), quality of service (QoS), accounting, and so on. All of these mechanisms
generally require the router to be able to categorize packets into different classes
called flows. The categorization function is termed packet classification.

An Internet router categorizes incoming packets into flows utilizing information
contained in the packet header to lookup the predefined rule table in the router. A rule
table maintains a set of rules specified based on the packet header fields, such as the
network source address, network destination address, source port, destination port,
protocol type and possibly othet fields. The rule. field can be a prefix (e.g. a network
source/destination address), aZrange| (e:g. a source/destination port) or an exact
number (e.g. a protocol type).

The process of packet classification is presented in Fig. 1. When a packet arrives,
the packet header is extracted first and then compared with the corresponding fields of
rule in the rule table. A rule matching in all corresponding fields is considered a
matched rule. The packet header is compared with every rule in the rule table, and the
matched rule with the highest priority yields the best-matching rule. Finally, the router
performs an appropriate action associating with the best-matching rule.

Table 1 is an example of a rule table. Here, the address fields are shown as 3 bits
prefix. A star in address fields indicates a bit mask, and stars for entire entry indicates
a wildcard which can be matched by any packet. The port fields are shown with range,
and protocol field is shown with exact protocol type, including TCP, UDP and ICMP.

Rules are arranged in order of priority. Each rule has an associated action either Deny

or Pass. Consider a packet P with source address of 110, destination address of 010,
source port of 4, destination port of 9 and protocol type of TCP arrives. In tablel,
packet P matches rule 1 and rule 4, where rule 1 has higher priority. Therefore rule 1
is the best-matching rule for packet P. According to the associated action of rule 1,

packet P is denied.

Classifier
(Rule table)
description Action
Payload —— —
Incoming Packet -0 -0
Figure 1: Packet classification process
Source | Destination | Source | Destination | Protocol .
Rule Action
address address port port type
1 1** 010 2-4 6-9 TCP Deny
2 101 oAk 1-7 4-6 UDP Pass
3 00* 10* * * ICMP Deny
4 11* 01* 4-8 * TCP Pass
5 oAk *oxk * 10-15 * Deny

Table 1: An example of packet classification rule table

Longest prefix matching [17] for route lookup is a special case of one-dimensional
packet classification. Each rule is described by a prefix (address/mask pair). The
length of the prefix defines the priority of the rule.

The d-dimensional packet classification problem (PC problem) is formally defined
as follows. The rule table has a set of rules R = {R;, R;..., R,} over d dimensions.
Each rule comprises d fields R; = {F;;, F>;..., Fq;}, where Fj; denotes the value of
field j in rule i. Each rule also has a cost (priority). A packet P(p;,p>...,ps) matches
rule R; if all the header fields p,,, m from 1 to d, of the packet match the corresponding
fields Fj; in R;. If packet P matches multiple rules, the minimal cost (highest priority)
rule is returned.

The general packet classification problem can be viewed as a point location
problem in multidimensional space-[1]. Rules have a natural geometric interpretation
in d dimensions. Each rule R; can be considered a.“hyper-rectangle” in d dimensions,
obtained by the cross product of F; talong-each field. The set of rules R thus can be
considered a set of hyper-rectangles;-and a packet header represents a point in d
dimensions.

Point location in computational geometry involves from a set of non-overlapping
objects (hyper-rectangles) finding the enclosing object that a point belongs to. The
low bounds for point location problem in N objects with d dimensions, where d > 3,
are either an O(logN) time complexity with O(N“) space complexity; or an
O((log N)*™") time complexity with O(N) space complexity. However, the packet
classification problem allows objects (rules) overlapping with each other. Therefore,
packet classification problem is at least as hard as point location problem. A solution
of packet classification problem either requires an enormous storage space or long
search time. For example, let us assume that we would like the router to be able to

process 1,000 rules of 5 dimensions. An algorithm with O(log* N) execution time

3

and O(N) space requires 10,000 memory accesses per packet. This is impractical
with any current technology. If we use a O(logN) time and O(N’) space
algorithm, the space requirement becomes prohibitively large, in the range of 1, 000G
bytes. The complexity drives us to use heuristic algorithm being a practical solution
for the packet classification problem. By exploiting the characteristic in rule table,
heuristic algorithms may break the performance low bound achieved in the point
location problem.

A good packet classification algorithm must classify packets quickly with minimal
memory storage requirements. This study proposes a novel bit compression packet
classification algorithm. This algorithm succeeds in reducing the memory storage
requirements in the bitmap intersection algorithm [8], proposed by Lakshman and
Stiliadis. The bitmap intersection algorithm convetts the packet classification problem
into a multidimensional range-lookup problem and- constructs bit vectors for each
dimension. Since the bit vectors contain-lots-of ‘0’ bits, the bit vectors could be
compressed. We compress the bit ‘vectors by-preserving only useful information but
removing the redundant bits of the bit vectors. An additional index table would be
created to keep tract of the rule number associated with the remaining bits.
Additionally, the wildcarded rules also enable more extensive improvement. The bit
compression algorithm reduces the storage complexity from O(dN?) of the bitmap
intersection algorithm to O(dN-logN), where d denotes the number of dimensions and
N denotes the number of rules, without sacrificing the classification performance.

The rest of the thesis is organized as follows. Chapter 2 introduces performance
metrics and related works for packet classification problem. Then, the basic idea of
compressed bit vector (CBV) and the details of the bit compression algorithm are
purposed in Chapter 3. We display experimental platform and the performance results

in Chapter 4. And finally, the conclusion and future work is given in Chapter 5.

4

Chapter 2. Performance Metrics and Related Works

2.1 Performance Metrics for Packet Classification Algorithm

The packet classification problem has been studied extensively in recent years. A

good packet classification algorithm requires taking the following properties into

consideration.

1.

Search speed

The goal of packet classification is to classify packets at wire speed. Currently,
Internet links operate at very high speeds. Routers and intrusion detection devices
that operate at OC-768 (40Gbps)+and even faster link speed have been developed.
For example, links running at OC-768:can transmit 125 million packets per second
(assuming minimum 40 bytes [P packet) which requires the packet classification
engine to process same amount of packets per'second.

Storage space

The amount of memory needed to store the rule table should be small for the cost
reason. The small memory requirement allows the use of faster but typically more
expensive memory technologies for achieving higher performance. For example,
on-chip SRAM provides fast memory access but small storage space. We would
ideally like the memory requirement of a packet classification algorithm to scale

below the size of an on-chip SRAM for high speed implementations.

. Update

Each time the rule table changes, the data structure needs to be updated. The
update rate varies among different applications. For example, emerging

applications such as QoS involve dynamically identifying flows, the rules require

fast update. In contrast, the firewall applications can tolerate update infrequently
because rules are rarely changed. A packet classification algorithm with fast
update prefers especially for the applications requiring frequent rule change.
4. Scalability of number of fields
Internet applications differ on the number of fields of the IP header that is used for
classification. A good packet classification algorithm must be able to scale the
number of fields in order to avoid being outdated by future Internet developments.
5. Flexibility of specification of filed
The rule specification should be general and sufficiently expressive to specify
various types of header fields. A good packet classification algorithm must

support rules involving exact, prefix and range representation.

2.2 Related Works

Extensive collection of papers "[2-15]" and numerous approaches have been
proposed to solve the packet classification problem. This section describes some of
these approaches briefly.

Linear search

Linear search is the simplest classification algorithm. It is efficient in terms of
memory, but for large number of rules this approach implies a large search time. The
data structure is simple and easy to be updated as rules change.

Hierarchical tries

A hierarchical trie (also called multilevel tire or backtracking trie) is a simple
extension of the one dimension radix trie data structure. Hierarchical trie is

constructed field by field recursively. At beginning, according to first field of each

rule, construct the first level trie. And then, construct the second level trie from the
leaf node on the first level trie. Build the remaining fields recursively. Because of the
characteristic of recursive traversal, this scheme suffers long search time.

Set-pruning tries

The set-pruning trie [12] is similar to hierarchical trie, but with reduced query time
obtained by replicating rules to eliminate recursive traversal. Rules are replicated to
ensure every packet will encounter matching rules in one path without backtracking.
Set-pruning trie successfully reduces search time in hierarchical tries, but
unfortunately this scheme has a memory explosion problem which makes it
impractical when the size of rule table becomes large.

Grid of tries

The grid of tires data structure, proposed by Srinivasan et al. [2] reduces storage space
by allocating a rule to only one trie node as<in a hierarchical trie, and achieves the
same search time with set pruning trie-by-pre-computing and storing a switch pointer
which guides the search process in‘'some.nodes: This is a good solution if the rules are
restrict to only two fields, but is not easily extended to more fields.

Hi-Cuts (hierarchical intelligent cuttings)

HiCuts [5] attempts to partition the search space in each dimension, guided by simple
heuristics that exploits the structure of the rule table. A decision tree data structure is
built by carefully preprocessing the rule table. Each time a packet arrives, the decision
tree is traversed to find a leaf node, which stores a small number of rules. A linear
search of these rules yields the desired matching. While this scheme seems to exploit
the characteristics of real rule table, the characteristics vary, however. How to find the
suitable decision tree prevents it from scaling well to large rule table.

Hyper-Cuts

HyperCuts [7] is a similar approach to HiCuts, but uses multidimensional cuts at each

7

step. Unlike HiCuts, in which each node in the decision tree represents a hyperplane,
each node in the HyperCuts decision tree represents a k-dimensional hypercube,
where k > 1. HyperCuts appears to have excellent lookup performance. It has
excellent storage efficiency in many cases, but does not fare quite as well with heavily
wildcarded rules.

Tuple Space

Tuple space algorithm [3] partitions the rules into different tuples categories based on
the number of specified bits (don’t care bits) in the rules, and then uses hasing among
rules within the same tuple. This algorithm has fast average search time and fast
update time. The main disadvantage of tuple space algorithm is the use of hashing
leading to lookups or updates with non-deterministic duration.

Cross-producting

Cross-producting approach [2] builds a table.of all possible field value combinations
(cross-products) and pre-computes the. best-matching rule for each cross-product.
Search can be done quickly by deing.separatelookups on each field, pasting the
results together into a cross-product, and then indexing into the cross-product table.
Unfortunately, the size of cross-product table grows enormously with the number of
rules and number of fields

RFC (Recursive Flow Classification)

RFC [4] is one of the earliest of the heuristic approaches. RFC attempts to map S bits
packet header into T bits identifier, where 7 =logN (N is number of rules) and
T<<S. RFC uses crossproducting in stages, and groups intermediate results into
equivalence classes to reduce storage requirements. RFC appears to be a fast
classification algorithm; this speed, however, comes at the cost of substantial memory
usage, and it does not support an efficient updating process.

TCAM (Ternary Content Addressable Memory)

8

TCAM is a hardware device performing the function of a fully associative memory. In
TCAM, cells can be stored with three types of value: ‘0’°, ‘1’ or ‘X’, where *X’
represents don’t care. ‘X’ can be operated as a mask representing wildcard bits.
Therefore, excluding range match, TCAM can supports exact or prefix match. Range
must be transformed to prefix or exact value (e.g. the range gt 1023 can be expressed
with 6 prefixes 000001*, 00001*, 0001*, 001*, 01* and 1*). TCAM compares a
packet to every rule simultaneously. Packet classification based on TCM is suitable
for small rule tables. For large rule table however, using TCAM requires large amount
of board space and power consumption and expensive cost.

Bit-map intersection

The bit-map intersection algorithm devised by Lakshman et al. [8] uses the concept of
divide-and-conquer, dividing the packet classification problem into k sub-problems,
and then combining the results. This .scheme: uses the geometrical space
decomposition approach to project levery-tule, on each dimension. For N rules, a
maximum of 2N+1 non-overlapping intervals are created on each dimension. Each
interval is associated with an N-bits bit vector. Bit j in the bit vector is set if the
projection of the rule range corresponding to rule j overlaps with the interval. On
packet arrival, for each dimension, the interval to which the packet belongs is found.
Taking conjunction of the corresponding bit vectors in each dimension to a resultant
bit vector, the highest priority entry in the resultant bit vector can be determined.
Since the rules in the rule table are assumed to be sorted in terms of decreasing
priority, the first set bit found in the resultant bit vector is the highest priority entry.
The rule corresponding to the first set bit is the best matching rule applied to the
arriving packet. This scheme employs bit-level parallelism to match multiple fields
concurrently, and can be implemented in hardware for fast classification. However,

this scheme is difficult to apply to large rule tables, since the memory storage scales

9

quadratically each time the number of rules doubles. The same study describes a
variation that reduces the space requirement at the expense of higher execution time.
Consider the simple example of a 2-dimensional rule table with four rules, shown
in Fig. 2, to illustrate the functioning of the bitmap intersection. The four rules are
represented as 2-dimensional rectangles. The construction process of bitmap starts at
projecting the edges of the rectangles to the corresponding axes, X axis and Y axis.
The four rectangles then create seven intervals in X axis and six intervals in Y axis.
Subsequently, each interval is associated with a bit vector. Assume a packet, denoted
by a point p in Fig. 2, arrives. The first step of classification is to locate the intervals
that contain packet p in both axes. The intervals are X3 and Y2 for X and Y axis
respectively. Then read the associated bit vectors of intervals X3 (“1011”) and Y2
(““0011”) respectively. After takinginlegﬂjqnéti(;g;'.6f~.;;hese two bit vectors, the resultant
bit vector “0011” is built. Obvigiisly, ru{-ei 3llstheb¢st matching rule applied to the

arriving packet p.

o] of of 4]
o] :fof 5]

HEEHEA
HEEHEA
[ofof 1]
[oJof 1f0]

12 34

X1 X4 X5 X6 X7
1] HEBa H B
2 [o] [o| |1 H B
3 |o] HEBA [o B
4 o] B B [o

Figure 2: An example of bitmap intersection algorithm

10

ABV (Aggregated Bit Vector)

The Aggregated Bit Vector (ABV) algorithm [9] is an improvement on the bit map
intersection scheme. The authors propose two observations: there are sparse set bits in
bit vectors and a packet matches few rules in the rule table. Building on these two
observations, two key ideas are extended, aggregation of bit vectors and rule
rearrangement. Aggregation attempts to reduce memory access time by adding smaller
bit vectors called ABV (Aggregate Bit Vector), which partially captures information
from the whole bit vectors. The length of an ABV is defined as| N/4], where 4
denotes aggregate size. Bit i is set in ABV if there is at least one bit set in group K,
ﬁmﬂ%ﬂﬂmm«HDm—DmWJMﬂMWMtimdwmdA%m@mmmwws
the search time for bitmap intersection, but produces another unfavorable effect, false
match, a situation in which the result of conjunction of all ABV returns a set bit, but
no actual match exists in the- group of rules identified by the aggregate. False
matching may increase memory ac¢ess-time-—-Rule rearrangement can alleviate the
probability of false matching. Although ABV outperforms bit map intersection for
memory access time by an order of magnitude, it does not ameliorate the main
problem of bit map intersection, exponentially growing memory space, yet uses more

space.

11

Chapter 3. Bit Compression Algorithm

3.1 Using Bit Compression to Reduce Storage Space

As mentioned in the previous section, bit-map intersection is a hardware oriented
scheme with rapid classification speed, but suffers from the crucial drawback that the
storage requirements increase exponentially with the number of rules. The space
complexity of bit-map intersection is O(dN?), where d denotes the number of
dimensions and N represents the number of rules. Even though the ABV algorithm
improves the search speed, but requires even more memory space than bitmap
intersection algorithm. For a hardware solution of packet classification, memory
storage is an important performance metric.Decreasing the required storage will
reduce costs correspondingly. The question thus arises whether any method exists way
of solving the extreme memory:storage of a large rule table. Observing the bit vectors
produced by each dimension, as- mentioned in-[9], the set bits (“1” bits) are very
sparse in the bit vectors of each dimension, there are considerable clear bits (“0” bits).
The authors of [9] used this property to reduce memory access time, but this property
can also be applied to reduce memory storage requirements. For the example of Fig. 4,
an approximately 60% space saving can be achieved by removing redundant ‘0’ bits.
The shaded parts of Fig. 4 illustrate the removable ‘0’ bits.

Therefore, our challenge is how to represent compressed format of bit vector. We
try to segment each dimension into several sub-ranges. We call the sub-range
“Compressed Region” (CR), where a CR denotes the range of a series of consecutive
intervals. In each CR, only an extreme small number of rules are overlapped, while
the corresponding bits of the non-overlapped rules in this CR are all 0 bits. If a packet

falls into a CR, denoted by CR,, only the overlapped rules need to be taken into

12

consideration, while the non-overlapped rules do not. The corresponding bits of the
non-overlapped rules in CR,, are all 0 bits. Neglecting the non-overlapped rules means
these 0 bits corresponding to the non-overlapped rules of the bit vectors in CR,, can be
removed. This study calls the bit vector after removing redundant 0 bits CBV
(Compressed Bit Vector).

For example, consider the two dimensional rule table like Fig. 3. By dividing
dimension X into four CRs, CR;, CR,, CR; and CR,. Only R;, R; and R, are
overlapped with CR;. Therefore, if a packet falls into CR;, only R;, R; and R, have to
be considered. Consequently, maintaining the first, third and forth bits of the bit
vectors while removing the ‘0’ bits of the non-overlapped rules in CR; are sufficient to
looking for matching rules.

However, recall that in the bit map intersection the bit order of a bit vector
indicates to the rule order (i ™ bits,in a bit vector corresponds to i " rule in rule table).
‘0’ bits are removed from a bit vector ih-such-a-way that it is no longer known which
remaining bits represent what rules.<To:solve this problem, this study claims an “index
list” with each CR, which stores the rule number associated with the remaining bits.
Collections of the “index list” form an “index table”. For example in Fig. 3, after
removing the redundant 0 bits, the bit vectors in CR; remain three bits. In order to
keep track of the rule number of the three remaining bits, an index list [1, 3, 4] is
appended in CR;. Each CR associates an index list, and the index table comprising
four index lists shows in Fig. 6.

After removing redundant 0 bits, we build the CBVs and index list for each CR.
Because the length (number of bits) of CBV is related to the number of overlapped
rules in the corresponding CR, the length of the CBVs is different for each CR, For
example as Fig. 4, the length of CBVs in CR; should be three bits, while the length of

CBVs in CR, should be five bits. However, the bit-map intersection is a

13

hardware-oriented algorithm, and our improvement scheme is also hardware-oriented.
For convenience of memory access, the length of bit vectors should be fixed, and thus
CBVs maintaining fixed length are also desired. Therefore, the length of all CBV
should be based on the longest (maximum bits) CBV, and fill up ‘0’ bits to the end of
the CBVs which are shorter than the longest CBV. Notably, a similar idea is applied to

the index lists, where the index lists should have the same number of entries.

e[=[o]e]e]o]e[e]o]o] &

SOV U AW~

Figure 3: The bitmap in dimension X of a 2-dimensional rule table with 10 rules.

SRy, x xCRey, xCRsy, xs CRax, X
Ul [l fal (3] (3] [3] [a] [o] o]
2 [[of [of [of] [a] [[&] [o] o] o]
31LL|L L|_0_ 0] o] o]
4 fol [a] Fol [fol [oll |[of [o] o] o]
>l [of [of] [&] [1] 0 0 o] o]
6 1o] [o] [o]| [o F IR U R N o] o]
7 o] [of [of] [a ol [u 0 0] 0]
8 o] [[[&] [+ |[of [<] o] o]
S/ 1 I R O B W I A o N R Y 1]]
101 o] 11|1 1|1 0] o] 1]

Figure 4: Space saving by removing redundant ‘0’ bits.

14

Furthermore, rules are considered to have wildcards. This study notes that if rule
R;is wildcarded in dimension j, the i ” bit of each bit vector in dimension j is set,
therefore forms a series of ‘1’ bits over dimension j. For example, Fig. 5 illustrates the
rule table with two wildcarded rules in dimension X, rule R;; and R;,. The last two
bits of each bit vector are set because the ranges of R;; and R;, cover all intervals in
dimension X. In [9], the authors mentioned that in the destination and source address
fields, approximately half of rules are wildcarded. Consequently, half of each bit
vector in the destination field (or source field) is set to ‘1’ owing to wildcards.
Intrinsically, lots of these ‘1’ bits are redundant. The idea is that for each dimension j,
regardless of the interval that a packet falls in, the packet always matches the rules
with wildcards in dimension j. Thus there is no need to set corresponding ‘1’ bits in
every interval for recording these wildcareded rules, and instead these rules are stored
just once. Additional bit vectors; here called *“Don’t Care Vectors” (DCV), are utilized
to separate the wildcarded and non-wildearded rules. A DCV is established for each
dimension. Removing the redundant 1’ bits caused by wildcarded rules helps further
reduce storage space. A DCV resembles a bit vector. Note that in a bit vector, bitj in
the bit vector is set if the projection of the rule region corresponding to rule j overlaps
with the related interval. In the DCV, bit j is set if the corresponding rule j is
wildcarded, otherwise bit j is clear. For example, the last two bits of each bit vector in
Fig. 3 could be removed and DCV “000000000011” added instead, which indicates
that the 11™ and 12" rules are wildcarded and others are not.

Using the above ideas, this study proposed an improved approach of bitmap
intersection, called “bit compression”. Before describing the proposed bit

compression scheme, this study presents some denotations and definitions.

15

4
5
1 1 1
X(l: Ry X2 X X4CR2 Xs X5CR3 X7 Xs CR, X X

| SO I I R IF N N B W [o] [o]
2 ol o] |o] faf 2] 1] o] 0] 0]
3 [ol [z] [1] [o] [o] o] [o] 0] 0]
4 fo| faf [o} [o] |o] [o} [o] 0] 1 0]
5 (o] [o] [o] [z2] [2] o] [o] 0] o]
6 [o] [o] [of] [of [2] [1] [o] o] o]
7 ol |o] |o] [o] o] 1] 0] 0] 0]
8 [ol [o] [of] [2] [2] [of [o] o] o]
9 Jol o] |o] [fof o] o] o] 1] 1]
10 To] Jol Jo} [ol Jol Jo] o] 0] 1]
e fa} [o} [2] [z] [z} [z} 1] 1]
12 |1 1 1 1 1 1 1 1 1

Figure 5: The bitmap in dimension X of a 2-dimensional rule table which has two

wildcarded rules R;; and R;> in dimension X.

t? denotes the ;" non-overlapping

oxgﬁrlapped rule numbers for each

18 ' f 3
-| 1896 B -
interval /;;. Furthermore, BV;; de'famqhs the bit vectors associated with the interval ; J

TS
and CBV; represents the correspondlrigr rc?oqlri‘lp;;essed bit vector. Finally, DCV; is the
“Don’t Care Vector” for dimension j and DCV;; is the i bit in DCV;.

Definition: For a k-dimensional rule table with N rules, “maximum overlap” for
dimension j, denoted as MOP;, is defined as the maximum ORN;; for all intervals in
dimension j.

The preprocessing part of bit compression algorithm is as follows. For each
dimension j, 1 <j <k,

1. Construct DCV;. For n from 1 to N, if Ry is wildcarded on dimension j then DCV,;
is set, otherwise DCV,, is clear.

2. Calculate the value of MOP; and segment the entire range of dimension j into ¢

CRs, CR;, CR;, ..., CR, . The rules, where the rule projection overlaps with CR;, 1

16

< i <t, form a rule set RS;, where the entry number of each rule set should be
smaller than or equal to MOP;. (according to the subsequently described “region
segmentation” algorithm)

. For each CR CR;, 1 <i < ¢, construct a compressed bit vector and corresponding
index list based on RS;. Then gather the index lists to compose an index table.
Furthermore, use /ist; to denote the index list related to CR; and [ist, ; to represent
the x ” entry of list;.

. Foreach CR CR;, 1 <i<t, append “index table lookup address” (ITLA), which is
the binary of (i-1), in front of each CBV. For convenient hardware processing, the

number of bits of ITLA in each CR are all the same.

The classification steps of a packet are as follows. For each dimensionj, 1 <j <k,

. Find the interval /;; to which.the packet-belongs and obtain the corresponding
compressed bit vector CBV; yand ITLA:

. Use ITLA to look up the index table.to obtainthe corresponding index list, assume
list,,.

. Read the DCV; into the final bit vector. Subsequently, read the index list found in
step 2 entry by entry. If the x™ bit in CBV;; is ‘1°, then access /ist,, and set the
corresponding bit in the final bit vector.

Take the conjunction of the final bit vector associated with each dimension and

then determine the highest priority rule implied to the packet.

Figure 6 illustrates the bit compression algorithm. First, construct the DCV

“000000000011” for dimension X. As shown in Fig. 1, the dimension X is divided

into 4 CRs. In CR; the corresponding rule set RS; is {R;, R3, R4}, and thus the CBV in

CR; is constructed by considering R, R;, Ry only and the index list /ist;is [1, 3, 4]. An

17

ITLA “00” then is appended in front of the CBVs in CR;. As mentioned previously,
additional ‘0’ bits are filled up in the CBVs and index table for the convenience of

hardware implementation. Furthermore, similar steps are manipulated for CR,, CR;

and CR,.
l l
1 1 Index table
1 .
P
e 2 | . | 1] 3| 4] 0] o
f' 01 1 2 5 6 8
3 8 -
10 10 1) 6 7 0
11 9 10 | 0 0 0
4 . [-
CR> 3 4 ’ 1 1 1 0 1
Xl Xz X3 X4 Xs X6 X7 Xg Xg Set Set
0o 00 0 0 I 1 1 1 LI set i pn Set
000 1 1 0 0 1 ; |ITLA =1 piz 0 s
T 1 1T 1 1 T 1 | Ja s B =1
0 1 1 1 1 1 0 Qghe 1 |Don't Care Vector|
010 1 1 1 0 {0 0.
OTT0T 0 1 1 0 40 R, ¢ 000000000011}
100 0 1 1 CUTTONEE0L 0 ek e @
Compressed bit mapy | | |z - [110010010011]

Figure 6: An e)zampl‘e of bit nébmpnression algorithm.

Consider an arriving packet p shown in Fig. 6, which falls into interval X4. The
ITLA “01” and CBV “11101” associated with X4 thus are accessed. The ITLA “01”
serves as the lookup address in the index table to access index list [1, 2, 5, 6, 8]. The
bits of “11101” then are known to represent R;, R,, Rs5, Rs and Ry respectively. Read
DCV “000000000011” and set the first, second, fifth and eighth bits to form the final
bit vector. The final bit vector in dimension X is “110010010011”, the same as the bit
vector of interval X4 produced by the bitmap intersection scheme in Fig. 5. Similar
processes are operated to form the final bit vector of dimension Y. Take the
conjunction of the final bit vectors in dimension X and Y, and then the matched

highest priority rule is obtained.

18

3.2 Measurement of Maximum Overlap

Because the bit compression scheme does not vary the number of bit vectors, the
storage space saving is influenced by the length of the CBV, shorter CBV length leads
greater space saving. However, as mentioned previously, the length of the CBV is
limited by the value of maximum overlap. Consequently, the space saving increases
with decreasing value of the maximum overlap. Notably, the bit compression scheme
requires extra storage for the index table. If the value of the maximum overlap is
sufficiently large, the overhead for the index table may exceed the profit from
compression.

To ensure the redundant 0 bits removed from bitmap are large enough to exceed
the extra storage overhead (index:table) in the bit. compression algorithm, this study
performs experiments on the destination field to .measure statistics of the maximum
overlap. This study employs two approaches-to,create the one-dimensional rule table
with 0.5K, 1K, 5K and 10K numbers of rules.-In the first approach, the rule tables are
generated by randomly picking prefixes from Mae-West routing database [22]. In the
second approach, the type of rule table considers the prefix length distribution
probability based on five publicly available routing tables in [9] and probability, f,
[10], which denotes the probability that prefix P, is a prefix of prefix Pg, where Py
and Pjp are randomly selected from the rule table. £ is an important parameter for the
second rule type for controlling rule overlapping probability, and overlapping
probability increases with increasing f. In [10], the authors calculated the value of f
and acquired results about 10~ for several real-life routing tables obtained from the
Mae-West routing database. This study considers four different values of 8 (107, 107,
10" and 107).

Table 2 and 3 present the statistical results of first and second approach

19

respectively. The maximum and average values of maximum overlap of 1000 statistics
are calculated. For real-life Mae-west routing tables, the ratio of maximum overlap to
rule numbers shown in table 2 is low (below 0.006). And for rule tables created by
second approach, as expected, maximum overlap increases with f. Table 3 shows that
even with large S, the ratio of maximum overlap to rule numbers still remains low
(below 0.044). The statistics confirm that considerable storage in the bitmap
intersection is saved through bit compression. Notably, the maximum overlap for

Mae-west routing table lie between the statistical results of the second approach with

=10 and =107,

Number of Rules Max. Average
0.5K 3 2111
1K 4 2.561
5K 1 4.734
10K 9 6.58

Table 2: The statistical maximum and'average value of “maximum overlap” for

real-life Mae-West routing table

8 =102 8 =103 8 =10* 8 =10°
Number of Rules
Max. | Average | Max. | Average | Max. | Average | Max. | Average
0.5K 22 15.308 7 4.827 4 2.544 3 2.014
1K 36 | 25.879 10 6.777 6 3.205 4 2.119
5K 114 | 98.39 26 18.183 9 5.844 5 3.158
10K 253 | 189.075 | 42 29.487 11 8.178 6 3.742

Table 3: The statistical maximum and average value of “maximum overlap” for

different S

20

3.3 Region Segmentation Algorithm

This section describes the “region segmentation” algorithm. As mentioned
previously, the region segmentation algorithm is used to segment the range of each
dimension into CRs and then to groups rules overlapping with each CR. Moreover,
since in bit compression algorithm, each CR is associated with an index list which
contains the same number of entries (the maximum overlap). So, if more CRs are
constructed, more storage space is needed to store the index list. Minimizing the
number of CR can help bit compression algorithm save space further. Consequently
the objective of region segmentation algorithm is to segment the range of dimension
into minimum number of CRs such such that the number of rules overlapping within
each CR is smaller than or equal to'the maximum overlap.

The region segmentation algorithm transforms'this problem into a graph model
according to the rule dependency. The definition, of rule dependency is as follows.

Definition: Projecting all rule regions. to’one dimension, rules R; and R; are
considered dependent if they overlap, and otherwise are considered independent.

According the rule dependency, the region segmentation algorithm constructs a
undirected graph G (V, E) first, where V' = {v,,v,, ..., vy}, each vertex v; corresponds
to a rule R;, and an edge is constructed between v; and v; if rules i and j are dependent.
Graph G would include several connected components, where each connected
component represents a group of mutually dependent rules that form a separated CR.
The corresponding rules of a connected component form a rule set. If the vertex
numbers of connected component (rule numbers of rule set) are less than or equal to
the maximum overlap, the connected component (rule set) is desired; otherwise the
maximum degree vertex (which means neglect the rule overlapped with maximum

number of rules) and the related edges are removed, and the search for desired

21

connected components continues. In fact, the rule set corresponding to a connected
component should consider the removed vertexes originally connected with the
connected component. The process is repeated until the vertex numbers of each
connected component are less than or equal to the maximum overlap.

For example, Fig. 7(a) presents a graph model constructed using the rule table of
Fig. 1, in which the maximum overlap equals 5. First, two connected components, C;
and C», are found, as shown in Fig. 7(b). The corresponding rule set of C> is {Ry, R;o},
where the numbers of rule are 2, less than maximum overlap, and thus the rule set is
desired. On the other hand the rule set corresponding to connected component C; has
eight vertexes, so the maximum degree vertex of C;, vertex v;, and the related edges are
removed. Subsequently, two new connected components, C;; and Cj,, are obtained, as
shown in Fig. 7(c). The corresponding rule set'of C;; and C;, should take R; into
consideration, therefore the rule-set.of C;; should be {R;, R;, R,} and the rule set of C;;
should be {R;, R», Rs, Rs, R7, Rs}: {Rys Rs-Reyf-is a desired rule set, while the maximum
degree vertex, v,, is neglected for Cjz.and the process is continued like Fig. 7(d) and
7(e). Finally, four desired rule sets {R;, Rs3, R4}, {R;, R2, Rs5, Rs, Rs}, {R;, R2, Rs, R7}

and {Ry, R;y} are obtained.

The region segmentation algorithm achieves the objective for minimizing the number

of CRs by merging the rule sets. Two rule sets can be merged together if the rule numbers

of the merged rule set are still smaller than or equal to the maximum overlap. The merged

CRs then share the same index list. After merging the rule set, the required number of index

lists can be reduced such that the space of the index table is saved. For example, Fig. 8

merges the rule set {R;, R;, Ry} and {R9 R;9}, so CR; and CR, can be considered as the

same CR which uses only an index list [1, 3, 4, 9, 10]. The CBVs in regions 1 and 4 then

employ ITLA “00” to access the same index list. Comparing with Fig.6, merging rule sets

helps the index table in Fig. 8 save 1/4 storage space.

22

1 10 remove

Figure 7(a) Figure 7(b)

remove 1 10

remove

Figure 7(d) Figure 7(e)

Figure 7: Graph model illustrating the steps of the region segmentation algorithm

In order to observe the performance of region segmentation algorithm with
merging rule set, we compare the number of CRs constructed by merging rule sets
with the low bound. The low bound for the number of CRs is determined by the
number of rules and maximum overlap, since the maximal number of rules in each

CR is equal to maximum overlap. Therefore the low bound of the number of CRs for

23

N-rules rule table is %JOP . Figure 9 presents the statistical results under three
J

different £ (107, 10* and 10°). The number of CRs constructed by region

segmentation with merging rule sets is very close to the low bound.

Index table

1 3 4 9 10

SOOO |
SO — ==
—_O = = e O
O = = N

Figure 8: An example of bit'c - alggrithm after merging rule sets

2500
2000
1500

1000

number of CRs

500

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
number of rules

——low bound (p=0.001) —&—merge rule set (8=0.001)"
—>—low bound ($=0.0001) —-8-merge rule set (3=0.0001)
——low bound ($=0.00001) -o—merge rule set (§=0.00001)

Figure 9: Performance comparison of number of CRs between low bound and region

segmentation with merging

24

Chapter 4. Performance Results

4.1 Performance Analysis

For a d-dimensional rule table with N rules, the query time of our bit compression
scheme contains the time to do interval lookup, denoted by 77, and the time to access
ITLA, CBYV, index list and don’t care vector from memory storage. The time
complexity should be O(d -(T,, +(logr+n+nlogN + N)/W)), where r is the number
of index lists, n is the value of maximum overlap and W is the memory bandwidth,
while the time complexity of bitmap intersection is O(d - (T, + N/W)).

The space requirement of bit compression, contains four parts -- ITLA, CBV,
index table and don’t care vector. We neglect:the*space complexity of don’t care
vector because the size of it ds much.less than the other three parts. The space
complexity 1is O(d “N - (logr +n+log N)) the. storage complexity is reduced
roughly by a factor of N comparing with the complexity O(d-N’) of bitmap

intersection.

4.2 Experiment Platform

We have implemented the bitmap intersection and bit compression algorithms
with Microengine C based on IXP1200 [20]. Experiments are conducted on the Intel
IXP1200 Developer WorkBench [21]. At beginning, we closely examine the hardware
architecture of IXP1200, as shown in Fig. 10.

The 32-bit embedded RISC processor, StrongARM, governs the initialization of

the whole system and handles higher layers of the protocol stack as well as any packet

25

that raises an exception. Six microengines, where each supports 4 hardware threads,
form the basis of fast path processing. The microengines are intended to handle
low-level transfer among 1/O devices and memory as well as basic packet processing
tasks such as frame de-multiplexing. The microengines also support zero context
switching overhead, and other specifically designed instructions for bit, byte, and
longword operations. The memory hierarchy in IXP1200 consists of multiple
memories, and three primary memory devices are focused on. First, SRAM is used for
storing lookup tables and has facilities that allow the manipulation of stack to hold
packet headers or lists of packets forwarding. Second, the largest SDRAM is used for
storing mass data of packets. And third, the onboard Scratchpad memory offers fastest
access time and serves as a local data store. The 64-bit IX bus interface unit is
responsible for servicing MAC intérface ports on'the IX Bus, and moving data to the
receive FIFOs or from the transmit. FIFOs. The MAX devices can be either multiple
10/100BT Ethernet MAC, Gigabit Ethetnet-MAC, orrATM MAC.

Figure 11 is our system configuration. Weise 4 microengines to receive, classify
and route packet and remaining 2 microengines to transmit packet. The StorngARM
core handles the routing table management and exception. Three types of memory
storage are used, a SRAM configuration of 8MB, a SDRAM of 64MB and a
scratchpad memory of 4KB. In bitmap intersection, SRAM or SDRAM is used to
store the bit vectors according to the size of required space. And the memory access
latency and the bus bandwidth of the three types of memory is Scratchpad: 12~14 clks
with 32-bits bus, SRAM: 16~20 clks 32-bits bus and SDRAM: 33~40 clks 64-bits bus
respectively. In bit compression scheme, SRAM is used to store compressed bit

vectors, index table and scratchpad stores the DCV.

26

Serial line

Figure 11: IXP 1200 system configuration for 2-dimensional bit compression design

27

4.3 Experiment Results

This study considers the complexity of storage requirement and classification
performance. We focus on the two dimensional rule table, IP destination address and
IP source address. The proposed scheme randomly generates two field rules to create
a synthesized rule table, as previous experiments consider the prefix length
distribution and f. Recall that for the real-life routing table, the value of S is
approximately 10~ and maximum overlap is measured to be between =10 and 10~
Therefore, this study lists the experimental performance statistics with #=10"* and 107
and even a larger 8, 10,

Figures 12, 13 and 14 compare the memory requirements (based on /og,) for the
bit-map intersection and bit compression schemes. Notably, since the bitmap
intersection and bit compression use the same-size.of*memory storage to store interval
boundary, we omit the memory storage of-interval boundary in memory requirements.
The experimental results demonstrate that the:proposed scheme performs better than
bitmap intersection. Under =10, with the rule table size of 5K, we need only 164
Kbytes to store the bit compression algorithm compared with 12.5 Mbytes by bitmap
intersection. And with the rule table size of 10K, 374 Kbytes is needed to store the bit
compression algorithm compared with 48 Mbytes of bitmap intersection. The memory
storage for bitmap intersection scales quadratically each time the number of rules
doubles, while bit compression algorithm is almost linear with rule numbers. Bit
compression algorithm prevents memory exploration with large rule tables. The
difference between theoretical and implementation on IXP1200 is that the lengths of
CBY, index list and DCV are a multiple of 32 bits when stored on IXP1200 for
convenient memory access, creating a certain amount of space wastage. Therefore, the

memory storage with implementation on IXP1200 is higher than the theoretical value.

28

memory storage (KBs)

memory storage (KBs)

—_ = =
(= S)

(based on log2)
(o)

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

number of rules

—&— bit-compression (theoretical) —— bitmap intersection (theoretical)
—— bit-compression (on IXP1200) —<— bitmap intersection (on IXP1200)

Figure 12: Compare the memory requirements (log, scale) between the bit

compression and the bitmap interse algorithm under =10~

—_— = =
S NN A

(based on log2)
(o o]

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

number of rules

—©— bit-compression (theoretical) —<&— bitmap intersection (theoretical)
—A— bit-compression (on IXP1200) —<— bitmap intersection (on IXP1200)

Figure 13: Compare the memory requirements (log, scale) between the bit

compression and the bitmap intersection algorithm under f=10"

29

—_— = = = e
(= S = e]

memory storage (KBs)
(based on log2)

(= =) e)

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

number of rules

—©— bit-compression (theoretical) —&— bitmap intersection (theoretical)
—A— bit-compression (on IXP1200) —%- bitmap intersection (on IXP1200)

the rule sets. Figures 15, 16 and 17 d he total memory space consumed by the
rule table of the bit compression scheme with and without merging under. As a result,

the required space is reduced about 25%~40% after merging the rule sets.

30

O before merging M after merging

180
160
140
120
100
80
60
40
20

Memory Stroage (KBs)

IK 2K 3K 4K 5K 6K 7K 8K 9K 10K
Number of Rules

Figure 15: The improvement of miemory storage’by merging rule sets under =107

O before merging M after merging

300

250

200

150

100

Memory Stroage (KBs)

50F°

IK 2K 3K 4K 5K 6K 7K 8K 9K 10K

Number of Rules

Figure 16: The improvement of memory storage by merging rule sets under f=10"*

31

E before merging M after merging

400

350

A

g 300

> 250

=

g 200

2 150

)

2 100

(]

= 50F
0

IK 2K 3K 4K 5K 6K 7K 8K 9K 10K

Number of Rules

Figure 17: The improvement of memory storage by merging rule sets under f=10"

Besides the bit compression and- bitmap intersection schemes, we propose a
different compression scheme here, called ACBV (Aggregated and Compressed Bit
Vector), which is a modification -of the ABV scheme [9]. The ACBV scheme
compresses the bit vectors into aggregated and compressed bit vectors. An aggregated
and compressed bit vector comprises two parts, aggregated part and compressed part.
The aggregated part is an aggregated bit vector of the ABV scheme. The compressed
part records sections of bit vector in which have at least one ‘1’ bit. The preprocessing
steps of the ACBV scheme are as follows.

1. Aggregate the bit vector to form the aggregated part. Bit i is set in the

aggregated part if there is at least one bit set in the bit vector from (i X A)’h to

(E+1)x4)- 1)”' bits, otherwise bit 7 is cleared. 4 denotes aggregated size.
2. Construct the compressed part. For i from 0 to [N/A]|—1, where N denotes the

number of rules. If bit 7 is set in the aggregated bit vector, the section of the bit

32

vector from (ix4)"to (((i+1)x4)—1)" bits is selected. Compact the selected

sections of bit vector together in selecting order to form the compressed part.

3. Append the compressed part to the aggregated part to form the “aggregated and
compressed bit vector”.

4. To maintain the same vector length, fill up ‘0’ bits to the end of the aggregated and
compressed bit vectors.

Figure 18 illustrates the preprocessing steps of the ACBV scheme. Figure 18(a)
presents the bitmap of the 2-dimensional rule table. Let’s consider the interval Xj.
First, the aggregated part is built. We use an aggregate size 4=4 in Fig. 18(b). The
associated bit vector “10010000” is aggregated to “10” first. Subsequently, according
to the aggregated part, select the desired sections of the bit vector. Since the first bit of
the aggregated part is ‘1°. The first 4 bits'of the bit'vector “10010000” are selected to
form the compressed part, which is “1001°*: Then append the compressed part to the
aggregated part, the aggregated and compressed bit vector “101001” is completed.

After describing the preprocessing ‘steps, let’s explain how the ACBV scheme
classifies the packet. Assume an arriving packet p shown in Fig. 18(b) falling into
interval Xs3. The classification process is as follows. First, the aggregated and
compressed bit vector associated with X3 is accessed. The aggregated part “10”
indicates the first 4 bits of the bit vector are recorded in the compressed part, while the
second 4 bits are not recorded. The second 4 bits of the bit vector is “0000”. Therefore,
read the compressed part, we can restore the bit vector to “10010000”. For dimension
Y, operate the similar process to restore the bit vector, and take the conjunction of
these bit vectors to get best-matching rule.

Furthermore, the rule table presented in Fig. 18 doesn’t have wildcarded rules. If

the wildcarded rules are considered, the idea of “Don’t Care Vector” of the bit

33

compression scheme can be applied.

>
s
2

0NN [N R [WIN|—
QOO0 O0OO0OrkrOo
QOO OFrFrOoOOo
OQOO0OOFrOOoOR
POOOOOOO

S X
X , c Xs _ X6~ X7 Xy aggregated .
1 1 :1: 0 /)y 0 0 O |part | .
R S S B - 10010000
1 O 0 0 1 0 0 O compressed _
1 1 0 0 0 0 1 1 part
0o 1 :1 0 0 1 1 0

Figure 18(b)

Figure 18: An example of the ACBV scheme

Figure 19 compares the memory requirements (based on /og,) for the ACBYV, bit

compression and bitmap intersection schemes under #=107. In the ACBV scheme, we

34

take 4 different aggregate sizes (8, 16, 32 and 64) into consideration. Under 4
different aggregate sizes, the memory requirements for ACBV scheme are between
638 Kbytes and 1.62 Mbytes for 5K rules and between 1.94 Mbytes and 6.33 Mbytes
for 10K rules. Recall that the bitmap intersection requires 12.5 Mbytes and 374
Kbytes for 5K and 10K rules, and the bit compression requires 164 Kbytes and 374
Kbytes for 5K and 10K rules. The experimental results demonstrate that the ACBV

scheme performs better than bitmap intersection while worse than bit compression.

18

16

14

12

10

Memory Storage (KBs) (based on log2)

0
1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Number of Rules
—— ACBYV, size=8 -8 ACBYV, size=16 —— ACBYV, size=32
—— ACBYV, size=64 —%— bit compression —©— bitmap

Figure 19: Compare the memory requirements (log, scale) for ACBYV, bit compression

and the bitmap intersection algorithm under f=10"

Table 4, 5 and 6 show the worse case memory access times with different number
of rules under # = 107, 10® and 10™ on IXP 1200. Here, we assume the memory
access time is 14, 20 and 40 clks for scratchpad, SRAM and SDRAM respectively.

In the bitmap intersection scheme, the rule table is expected to store in SRAM.

But the memory storage increases rapidly such that the required storage exceeds the

35

size of SRAM (8MB). For example, under 8 = 10~, the required storage space for the
rule table with rules more than 4K exceeds 8MB. Thus the rule table of more than 4K
rules must be stored in SDRAM.

In the bit compression scheme, the memory exploration is prevented. For
2-dimensional rule table with 10K rules, the bit compression scheme still store the bit
vector and index table using SRAM without SDRAM. Moreover, because most
memory access cost of the bit compression scheme is expended to access the DCVs,
we take advantage of memory hierarchy to store the DCVs in the smallest (4KB) but
fastest scratchpad memory rather than SRAM. Storing the DCVs in the scratchpad
memory facilitate decreasing memory access time for our bit compression scheme,
while the bitmap intersection can only use SRAM or SDRAM. Therefore, although
the times of memory access of bit.:ecompression ate more than bitmap intersection for
the same size rule tables, the memory access performance of bit compression is better
than bitmap intersection.

In the ACBV scheme, we use ‘an‘aggregate size 32. Under aggregate size 32, the
memory requirement is below the size of SRAM for 10K rules. Therefore, SRAM is
employed to store the aggregated and compressed bit vectors. Moreover, like the bit
compression scheme, the ACBV scheme utilizes the scratchpad memory to stores
DCVs. Since an aggregated and compressed bit vector has more bits than the sum of a
compressed bit vector and index list. The memory access times of ACBV scheme are
more than bit compression scheme. Therefore, the memory access performance of
ACBYV is worse than bit compression. However the memory access performance is

still better than bitmap intersection.

36

Number of Rules 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

No. of
Scratchpad 0 0 0 0 0 0 0 0 0 0

access

bit map No. of
SRAM ancess 64 | 126 | 188 | 250 | 314 | 376 0 0 0 0

intersection No. of
SDRAM access 0 0 0 0 0 0 220 | 250 282 314
Memory access | 150 | 5550 | 3760 | 5000 | 6280 | 7520 | 8800 | 10000 | 11280 | 12560

time (clks)

No. of
Scratchpad 64 | 126 | 188 | 250 | 314 | 376 | 438 | 500 564 626

access

bit No. of
SRAM ancess 10 14 16 18 24 26 28 30 32 34

compression No. of
SDRAM access 0 0 0 0 0 0 0 0 0 0
Memory access | 1595 | 2044 | 2952 | 3860 | 4876 | 5784 | 6692 | 7600 | 8536 | 9444

time (clks)

No. of
Scratchpad 64 | 126 | 188 | 250 | 314 | 376 | 438 | 500 564 626

access

ACBYV, No. of
SRAM ancess 16 26 32 40 48 54 62 68 74 80

size=32 No. of
SDRAM access 0 0 0 0 0 0 0 0 0 0
Memory access | 1516 | 2384 | 3072 | 4300 | 5356 | 6344 | 7372 | 8360 | 9376 | 10364

time (clks)

ol -3
Table 4: Worse case of memory access times under £ = 10~ on IXP1200

Number of Rules 1K | 2K p3K “l=4ke=| sk | 6K | 7K 8K 9K 10K

No. of
Scratchpad 0 0 0 0 0 0 0 0 0 0

access

bit map No. of
SRAM ancess 64 | 126 | 188 | 250 0 0 0 0 0 0

intersection No. of
SDRAM aceess 0 0 0 0 158 | 188 | 220 | 250 282 314
Memoryaceess | 1500 | 2550 | 3760 | 5000 | 6320 | 7520 | 8800 | 10000 | 11280 | 12560

time (clks)

No. of
Scratchpad 64 | 126 | 188 | 250 | 314 | 376 | 438 | 500 564 626

access

bit No. of
SRAM ancess 6 8 8 8 8 10 10 10 10 12

compression No. of
SDRAM access 0 0 0 0 0 0 0 0 0 0
Memory access | o6 | 1924 | 2762 | 3660 | 4556 | 5464 | 6332 | 7220 | 8096 | 9004

time (clks)

No. of
Scratchpad 64 | 126 | 188 | 250 | 314 | 376 | 438 | 500 564 626

access

ACBY, No. of
SRAM ancess 10 14 16 20 22 26 28 32 34 38

size =32 No. of
SDRAM access 0 0 0 0 0 0 0 0 0 0
Memory access | 505 | 2044 | 2952 | 3900 | 4836 | 5784 | 6692 | 7640 | 8576 | 9524

time (clks)

Table 5: Worse case of memory access times under 8= 10" on IXP1200

37

Number of Rules 1K 2K 3K 4K SK 6K 7K 8K 9K 10K

No. of
Scratchpad 0 0 0 0 0 0 0 0 0 0
access
bit map No. of
SRAM access 64 126 188 0 0 0 0 0 0 0
intersection No. of
SDRAM access 0 0 0 126 158 188 220 250 282 314
Memoryaceess | 1500 | 2550 | 3760 | 5040 | 6320 | 7520 | 8800 | 10000 | 11280 | 12560
time (clks)
No. of
Scratchpad 64 126 188 250 314 376 438 500 564 626
access
bit No. of
SRAM access 6 6 6 6 6 6 6 6 6 6
compression No. of
SDRAM access 0 0 0 0 0 0 0 0 0 0

Memory access

. 1016 | 1884 | 2752 | 3620 | 4516 | 5384 | 6252 7120 8016 8884
time (clks)

No. of
Scratchpad 64 126 188 250 314 376 438 500 564 626

access

ACBY, No. of
SRAM ancess 8 10 12 14 18 20 22 24 26 28

size =32 No. of
SDRAM access 0 0 0 0 0 0 0 0 0 0
Memoryaceess | o561 1964 | 2872 | 3780 | 4756 | S664 | 6572 | 7480 | 8416 | 9324

time (clks)

Table 6: Worse case of memory access times under 8= 10~ on IXP1200

As mentioned above, the bit compression and ACBV need less memory access
time than bitmap intersection. But notably; compared with bitmap intersection, the bit
compression and ACBV algorithm requite decompressing a compressed bit vector or
aggregated and compressed bit vector to a bit vector. Extra processing time for
decompression is required, which will degrade the classification performance.
However, the time for decompression is actually much less than memory access time.
The memory access time dominates the classification performance. Therefore, even
the bit compression and ACBV schemes require extra processing time for
decompression. The bit compression and ACBV schemes can still outperform bitmap
intersection. Figure 20 presents the packet transmission rates for bitmap intersection,
bit compression and ACBV schemes with different size of rule tables without
wildcards under # =107 on IXP 1200. In the bitmap intersection scheme, the rule

tables are stored in SDRAM. In the bit compression and ACBV schemes, the rule

38

table is stored in SRAM only. Because the memory access time for reading a CBV
and index list or reading an aggregated and compressed bit vector is less than reading
a bit vector. Although extra processing time for decompression is required. The bit
compression and ACBV schemes outperform bitmap intersection scheme. The
transmission rate of the ACBV scheme is between the bitmap intersection scheme and
the bit compression scheme. Moreover, since the length of CBVs and index lists
almost remain a fixed value (according to maximum overlap), the transmission rate of
the bit compression scheme nearly remain constant. In contrast, the transmission rate

of bitmap intersection decreases linearly with number of rules.

500
450 | g
400 -

350
300
250
200
150
100

XD

XD
o
by
IE
b

transmission rate (Mbps)

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
numbers of rule

—+— bitmap intersection (SDRAM) —4A— bit compression —k— ACBV

Figure 20: Transmission rates for bitmap intersection, bit compression and ACBV on

IXP1200

39

Chapter 5 Conclusion and Future Work

Packet classification is an essential function of QoS, MPLS and several network
services. There are numerous various investigations have addressed this problem. This
thesis attempts to improve the original bitmap intersection algorithm, which has
memory explosion problem for large rule table. This study introduces the notion of bit
compression to significantly decrease the storage requirement, creating what we
called the CBV. Bit compression is based on the fact that ‘1’ bits are sparse enabling
redundant ‘0’ bits to be removed. By region segmentation, the bit compression
algorithm segments the range of dimension into CRs and then associates each CR
with an index list. Merging rule sets’reducing:the number of CRs further. For rule
table with wildcared rules, the’bit compression. propose a novel idea, “Don’t Care
Vector” to save plenty storage space..The experithents for measuring maximum
overlap led us to believe that plenty of redundant 0" bits exist, such that removing ‘0’
bits can significantly improve memory storage.

Compared with bitmap intersection, the storage complexity is reduced from
O(dN?) of bitmap intersection to O(dN-logN). In our experiment, our bit compression
scheme only needs less than 380 Kbytes to store the 2-dimensional rule table with
10K rules, while bitmap intersection needs 48 Mbytes. Furthermore, comparing with
memory access speed, our algorithm accesses average 96% less bits than bitmap
intersection. Additionally, by exploiting the memory hierarchy to store the DCV, our
bit compression scheme requires much less memory access time than bitmap
intersection. Even though extra processing time for decompression is required for bit
compression. The bit compression scheme still outperforms bitmap intersection

scheme on the classification speed.

40

Future work on our study is to prove the practicability of our algorithm. We
attempt to implement our algorithm on the hardware based platform, such as Intel
IXP2400 or FPGA (Field Programmable Gate Array) to verify the practicability of bit
compression algorithm.

A good packet classification engine also needs to quickly update the algorithm
data structure to accommodate the changes in the rule table. In terms of fast update,
bitmap requires pre-processing entire rule table each time when the rule changes.
However, since our bit compression algorithm segments dimension range into CRes, it
is enough to update the bit vectors in CRs which overlapped with changed rule only.
In future work, we will investigate exhaustively the update policy of our algorithm.

Finally, we will extend our algorithm to support different field of the IP header. In
the thesis, we consider the rule table only with layer-3 destination and source address
fields. Bit compression algorithm performs well with-these two layer-3 address fields.
However, does bit compression-scheme-adapt-to other IP header fields? For example,
bit compression scheme does not"suit.for layer-4 protocol type field. Because the
protocol type field is restricted to a small set of exact values, such as TCP, UDP, ICMP,
etc., the projection of rules in protocol type field are few, which means the probability
of rule overlapping is high. Therefore, the maximum overlap in protocol type field
would be large. It leads to performance degradation using bit compression scheme. In
the future work, we will measure the maximum overlap of layer-4 source port and
destination port from real-life rule database. By measure the maximum overlap, we
can investigate the adaptation of the bit compression algorithm to layer-4 source port

and destination port fields.

41

References

[1] M.H. Overmars and A.F. van der Stappen, “Range searching and point location
among fat objects,” Journal of Algorithms, vol.21, no.3, pages 629-656, November
1996.

[2] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel, “Fast and Scalable Layer
four Switching,” Proceedings of ACM Sigcomm, pages 203-14, September 1998.

[3] V. Srinivasan, S. Suri, and G. Varghese, ‘“Packet Classification using Tuple Space
Search,” Proceedings of ACM Sigcomm, pages 135-46, September 1999.

[4] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,” Proc.
Sigcomm, Computer Communication Review, pages 147-160, September 1999.

[5] P. Gupta and N. McKeown, “Packet Classification using Hierarchical Intelligent
Cuttings,” IEEE Micro, vol.20,n0. 1, pages 34-41, January/February 2000.

[6] F. Baboescu, S. Singh, G. Varghese; “Packet.classification for core routers: is there
an alternative to CAMSs,” Proceedings. of Infocom, vol.1 pages 53-63, March 2003.

[7] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification using
multidimensional cutting,” Proceedings of SIGCOMM, pages 213-224, August
2003.

[8] T.V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet Forwarding
Using Efficient Multi-dimensional Range Matching,” Proceedings of ACM
Sigcomm, pages 191-202, September 1998.

[9] F. Baboescu, G. Varghese, “Scalable Packet Classification,” Proceedings of ACM
Sigcomm, pages 199-210, August 2001.

[10] G. Zhang, H.J. Chao, J. Joung, “Fast packet classification using field-level trie,”
Global Telecommunications Conference, vol. 6, Pages 3201-3205 December 2003.

[11] D. Shah and P. Gupta, “Fast Incremental updates on Ternary-CAMs for routing

42

lookups and packet classification,” Proceedings of IEEE Hot Interconnects, page
145-153, August 2000.

[12] P. Tsuchiya, "A Search Algorithm for Table Entries with Non-contiguous
Wildcarding," unpublished report, Bellcore, 1992.

[13] M. M. Buddhikot, S. Suri, M.Waldvogel, “Space Decomposition Techniques for
Fast Layer-4 Switching,” Proceedings of conference on Protocols for High Speed
Networks, page 25-41, August 1999.

[14] X. Sun and Y.Q. Zhao, “Packet classification using independent sets,”
Proceedings of ISCC, vol. 1, page 83-90, June/July 2003.

[15] W.T. Chen, S.B. Shin and J.L. Chiang. “A two-stage packet classification
algorithm,” Proceedings of Conference on AINA, page 762-767, March, 2003.

[16] P. Gupta and N. McKeown, “Algorithms. for packet classification,” IEEE
Network, vol. 15, no. 2, page 24-32, 2001,

[17] M. A. Ruiz-Sanchex, E. W. Biersacks-and W. Dabbous, “Survey and Taxonomy
of IP Address Lookup Algorithms;” IEEE Network, vol. 15, issue 2, page 8-23,
March/April 2001.

[18] M. Waldvogel, G. Varghesez, J. Turnerz and B. Plattnery, “Scalable High Speed
IP Routing Lookups,” Proceedings of ACM Sigcomm, vol. 27 , issue 4, page 25-36,
October 1997

[19] H. Liu, “Efficient Mapping of Range Rule table into Ternary-CAM,”
Proceedings of IEEE Hot Interconnects, page 95- 100, August 2002.

[20] “IXP1200 Network Processor: Datasheet”, Part No. 278298-010 December 2001.

[21] “IXP1200 Network Processor: Development Tools Use’s Guide”, Part No.
278302-010, March 2002.

[22] Mae-West routing database, “The Internet Performance measurement and

analysis (IPMA) project”, http://www.merit.edu/ipma/routing_table, 2002.

43

