
 1

國立交通大學

資訊科學研究所

碩士論文

基於網路處理器架構之虛擬私人網路閘道器:

實作與探討

VPN Gateways over Network Processors:

Implementation and Evaluation

研 究 生： 林權宏

指導教授： 林盈達 教授

中華民國九十三年六月

 2

基於網路處理器架構之虛擬私人網路閘道器: 實作與探討
VPN Gateways over Network Processors: Implementation and Evaluation

研 究 生： 林權宏 Student : Chiuan-Hung Lin

指導教授： 林盈達 Advisor : Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2004

HsinChu, Taiwan, Republic of China

中華民國九十三年六月

 I

基於網路處理器架構之虛擬私人網路閘道器:

實作與探討

學生 : 林權宏 指導教授 :林盈達

國立交通大學資訊科學系

摘要

今日的網路應用像是虛擬私人網路(VPN)所需要的計算能力已超過了處

理器的能力，而網路處理器是有別於特定功能積體電路的另一選擇。網路處理器

可程式化其額外的處理器來幫核心處理器卸載不同的處理需求以及能夠快速地

依軟體變更作修改。在本論文中，我們利用IXP425這個擁有3個網路處理引擎

以及內嵌硬體處理器的網路處理器來實做出一個使用網際網路安全性協定

(IPsec)之虛擬私人網路閘道器，並卸載其上之封包收送和密碼學運算至網路處

理器上。我們實作出之原形機在3DES之IPsec下可達45Mbps，較純軟體運算之

吞吐量多了 350%。另外經由內部測試，我們發現無論封包傳送跟網際網路安全

處理的瓶頸都還是在核心處理器上。

關鍵字: 網路處理器，虛擬私人網路，IXP425，瓶頸，效能

 II

VPN Gateways over Network Processors:

Implementation and Evaluation

Student: Chiuan-Hung Lin Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

Networking applications nowadays such as virtual private network are demanded

for more computing power than the original processor, which network processor

architecture is an alternative solution different to ASIC. In network processor

architecture, additional processors could be programmed as various functions to

offload computation from the core processor and adapt for current modification

quickly. In this work, we clarify the details of IXP425 network processor, which has

three network processor engines with integrated hardware co-processors, and explain

the implementation steps to develop an IPsec-based VPN gateway over IXP425 with

offloading for packet transferring and cryptographic calculation. Our prototype can

reach 45Mhz for IPsec tunnel with 3DES algorithm, which has 350% improvement to

only core processor. Through internal benchmarks, we found the performance

bottlenecks on both packet forwarding and IPsec processing are still the core

processor.

Keyworks: Network Processor, VPN, IXP425, bottleneck, throughput

 III

Contents
VPN GATEWAYS OVER NETWORK PROCES SORS: IMPLEMENTATION AND

EVALUATION...I

ABSTRACT.. II

CONTENTS..III

LIST OF FIGURES ...IV

CHAPTER 1. INTRODUCTION.. 1

CHAPTER 2. HARDWARE AND SOFTWARE ARCHITECTURE OF IXP425 3

2.1 HARDWARE ARCHITECTURE OF IXP425 .. 3

2.2 DETAILED PACKET FLOW IN IXP425 .. 4
2.3 SOFTWARE ARCHITECTURE OF IXP425.. 5

CHAPTER 3. DESIGN AND IMPLEMENTATION.. 6

3.1 VPN BRIEFING ... 6

3.2 IDENTIFICATION OF OFFLOADING CANDIDATES... 6
3.3 IMPLEMENTATION.. 8

3.3.1 Operating System Porting ... 8
3.3.2 Driver Development.. 8

3.3.3 Offloading the Cryptographic Operations ... 9

CHAPTER4. SYSTEM BEN CHMARK AND BOTTLENEC K ANALYSIS 10

4.1 SYSTEM BENCHMARK SETUP .. 10
4.1.1 Offloading Schemes Design .. 10

4.1.2 Benchmark Environment.. 10
4.2 SCALABILITY TEST .. 11

4.2.1 Packet Forwarding ..11
4.2.2 IPsec Processing ... 12

4.3 UNBALANCED LOAD BETWEEN NPE A AND NPE B .. 13
4.4 BOTTLENECK ANALYSIS... 14

4.4.1 Bottleneck of Packet Rx/Tx .. 14
4.4.2 Bottleneck of IPsec Processing.. 15

4.5 TURNAROUND TIME ANALYSIS OF FUNCTIONAL BLOCKS.. 17

CHAPTER 5. CONCLUSIO NS AND FUTURE WORKS ... 19

REFERENCES ... 20

 IV

List of Figures
FIG. 1. HARDWARE ARCHITECTURE OF IXP425. ... 3

FIG. 2. SOFTWARE ARCHITECTURE OF IXP425. ... 5
FIG. 3. EXAMPLE VPN ENVIRONMENT. .. 6

FIG. 4. PROCESSING FLOW OF AN IPSEC PACKET. SHADED BLOCKS ARE STAGES THAT NEED TO BE

OFFLOAD ED. .. 7

FIG. 5. HOW CRYPTOGRAPHIC PROCESSING IS OFFLOADED FROM XSCALE USING FAST_IPSEC AND OCF. 9
FIG. 6. FOUR POSSIBLE OFFLOADING SCHEMES . .. 10

FIG. 7. BENCHMARK ENVIRONMENTS FOR (A) PACKET FORWARDING AND (B) IPSEC. 11
FIG. 8. THROUGHPUTS OF PACKET FORWARDING WHEN DIF FERENT NUMBERS OF NPES ARE USED FOR

OFFLOADING. ... 12
FIG. 9. IPSEC THROUGHPUT : THE DES CASE. .. 13

FIG. 10. IPSEC THROUGHPUT : THE 3DES CASE. .. 13
FIG. 11. IPSEC THROUGHPUT WITH DIFFERENT RX/TX INTERFACES... 14

FIG. 12. X SCALE UTILIZATION WITH VARYING TRAFFIC LOAD AND PACKET LENGT H. 15
FIG. 13. IPSEC PACKET SUCCESS RATIO VERSUS XSCALE UTILIZATION. .. 16

FIG. 14. T URNAROUND TIME OF A CRYPTOGRAPHIC REQUES T FOR A PACKET. PACKET SIZE MAY VARY....... 16
FIG. 15. T URNAROUND TIME OF FUNCTIONAL BLOCKS. ... 18

 1

Chapter 1. Introduction

Today’s networking applications, such as virtual private network (VPN) [1] and content

filtering [2] that offer extra security and application-aware processing, have demanded more

powerful hardware devices to achieve high performance. The most straight-forward way to

tackle this problem is to increase the clock rate of a general purpose processor, though some

disadvantages , such as the cost and the technology limit, accompany. Moreover, the low

efficiency is also expected since the processor, as its name suggests, is not specifically

designed for the processing of networking packets.

 Another solution to this problem is to employ the concept of offloading, that is, to shift

the computing-intensive tasks from the core processor to a number of additional processors.

The Application-Specific Integrated Circuit (ASIC) [3] has been a possible candidate to serve

as an additional processor. Nonetheless, this workaround might not be preferred in two

aspects. First, since the functionalities are fixed once tapped out, it needs to be redesigned for

any modifications. Second, the development period is so time -consuming that the

time-to-market requirement may not be met.

Network processors [4] are now embraced as an alternative solution to remedy the

above-mentioned problems because of its re-programmability, specifically designed

instructions for networking purpose and the hardware threads with minimal, if not zero,

context switch overhead. In this work, we explored the feasibility of implementing VPN,

which is a computation intensive application, over the Intel IXP425 [5] network processor

featuring an XScale [6] core, multiple hardware contexts and coprocessors, and tried to figure

out the performance and possible bottlenecks of the implementation. The VPN mechanism,

which is usually based on IPsec [7] , comprises several processing stages such as packet

reception(Rx) and transmission(Tx) , encryption and decryption, authe ntication and table

 2

lookups, each of which needs a certain amount of processing. We analyze d the detailed packet

flow and decided to offload packet transferring and cryptographic calculation to coprocessors.

Some efforts have also been done to port the VPN application from ordinary PC to IXP425 in

the meantime. We then externally and internally benchmarked the resulting prototype. The

former characterized performance figures of the implementation, while the latter carried out

the in-depth analysis of the observations which were left unexplained in the external

benchmarks such as system bottlenecks . The Xscale is identified to be the bottleneck for IPsec

processing.

Some related works researching the bottlenecks of network processors can also be found

in the literature: Spalink et al. [8] presented the results of simple IP forwarding and Lin et al.

[9] implemented DiffServ, both over Intel IXP1200 [10] . Nevertheless, our work differs from

theirs in that (1) no coprocessor was involved in their implementations; (2) both the

control-plane and part of the data-plane processing were handled in the core processor of

IXP425 while the core of IXP1200 took care of the control-plane packets only, and (3)

computation intensive VPN application was considered, as compared with simple forwarding

and memory intensive classification of these two studies.

This article is organized as follows. Chapter 2 describes the hardware and software

architectures of IXP425. Chapter 3 elaborates the details of the design and implementation of

VPN over IXP425. Chapter 5 presents the results and observations in the external and internal

benchmarks. Some conc lusive remarks of this article are made in chapter 5.

 3

Chapter 2. Hardware and Software Architecture of

IXP425

2.1 Hardware Architecture of IXP425

The hardware block diagram of IXP425 is depicted in Fig. 1 [11]. The core of IXP425 is

a 533MHz XScale processor which furnishes whole system to work from initializing to

executing overall software objects. Furthermore, three buses interc onnected by two bridges

provide the connectivity among components on IXP425.

????????????????

 Fig. 1. Hardware architecture of IXP425.

To assist the XScale core in processing networking packets, three 133MHz

programmable network processor engines (NPEs) are used to execute in parallel the

microcode stored in internal memory to provide functions, such as MAC, CRC

checking/generation, AAL2, AES, DES, SHA-1 and MD5, in cooperate with a number of

applica tion-specific coprocessors. The support of hardware multithreading with single cycle

 4

context switch overhead further makes NPEs more tolerant to long memory accesses and thus

reduces the number of processor stalls. The communications between the XScale core and

NPEs is taken care of by a hardware queue manager using interrupt and message queue

mechanisms. Besides, the queue manager also contains 8KB SRAM divided into 64

independent queues manipulated as circular buffers for allocating free memory space to the

incoming packets and for locating those packets. The SDRAM can be expanded up to 256MB

for storing ta bles, policies and OS applications in addition to packets. A PCI interface is

available for an additional PCI NIC.

Some peripheral controllers, like USB and UART controllers, are also equipped into

IXP425 for better extensibility.

2.2 Detailed Packet Flow in IXP425

The processing flow of an ordinary packet is elaborated below, which also referred to

Fig.1. Upon the arrival of a packet at the interface of an NPE, it is partitioned into several

32byte segments and stored at the Receive FIFO of an Ethernet coprocessor which in turn

performs MAC-related operations. The NPE then moves those segments into corresponding

addresses in SDRAM allocated by the queue manager which then notifies the XScale of the

reception by interrupts for further processing. During normal processing procedures such as

IP and other higher layer protocol stacks at XScale , chances are that some authentic and

cryptographic operations are needed. The XScale core may handle them either by itself or by

offloading the computation overhead to appropriate coprocessors residing in NPE B. In the

latter scenario, the coprocessors are directly invoked by NPE B to process a certain data

segment in SDRAM requested by the XScale , where a message queue implemented in the

queue manager is exploited to pass the request. The queue manager is informed by NPE B

upon the completion of the operations and then interrupts the XScale .

 5

2.3 Software Architecture of IXP425

As shown in Fig. 2, the software architecture [12] is divided into two portions, namely

the platform independent (applications and some higher level components such as networking

protocol stacks in OS) and dependent parts (mainly device drivers). This design is helpful

especially when an OS migration from a H/W platform to IXP425 is demanded, that is, the

developers may need to focus only on the dependent part. When it comes to device driver

implementation, a set of software libraries collectively re ferred to as AccessLibrary can be

used to drive devices such as NPEs, coprocessors , peripherals, etc. The AccessLibrary also

provides utilities to implement some OS-related functions such as mutual exclusion.

The software processing flow is described as follows. During the boot time the IxN peDl

is called to download the corresponding code image into the instruction cache of each NPE.

Then IxQmgr and IxNpeMh are called to initialize the queue manager as well as the message

handler responsible for the communication between NPEs and XScale . The IxEthAcc and

IxEthDB are used to receive Ethernet frames, while IxCryptoAcc is incorporated for possible

cryptographic operations during packet processing.

Fig. 2. Software architecture of IXP425.

 6

Chapter 3. Design and Implementation

In this chapter, we first introduce basic operations in a VPN environment and then

analyze its packet processing flow in order to identify possible bottlenecks as offloading

candidates. Finally, we describe how to implement a VPN gateway over IXP425.

3.1 VPN Briefing

Virtual Private Network (VPN) provides secure transmission over un-trusted networks .

Oftentimes the IPSec protocol is adopted as the underlying technique thanks to the popularity

of the Internet Protocol. As Fig. 3 shows, it supports data authentication, integrity and

confidentiality, in whic h two VPN gateways are employed to serve as nodes that construct

tunnels for secure data transmission without user awareness. Since the bandwidth between

networks depends mainly on the processing capability of gateways if the bandwidth of

internet is enough, improving the performance of them will be critical to the whole VPN

throughput.

 Fig. 3. Example VPN environment .

3.2 Identification of Offloading Candidates

 7

 To resolve this performance problem, we analyze the VPN packet processing flow in

order to identify possible candidates that can be offloaded to coprocessors. A detailed

incoming IPsec packet flow was shown in Fig.4. It consists of three main blocks, namely the

packet reception, IPsec processing and packet transmission, whose operations are elaborated

below.

Fig. 4. Proces sing flow of an IPsec packet. Shaded blocks are stages that need to be offloaded.

Once an Ethernet frame is received by the physical interface, checking for frame check

sequence sieves out broken frames and then remaining frames are filtered in accordance w ith

possible destination MAC address configurations . Reception step ends after the frame is

moved into memory, followed by a classification recognizing it as an IPSec packet. At this

time, some table lookups for processing rules and cryptographic parameters proceed and

payload of this IPsec packet is decrypted or checked for authentication according to its

parameters. Afterwards, a new packet result ing from the original IP payload may proceed

further processing of higher-level protocols, or be transmitted as a normal packet according to

the routing table .

Tasks suitable to be offloaded to coprocessors can be identified by two characteristics:

whether they are repeated routines or computation intensive ones. As mentioned earlier this

chapter, we know that IPsec processing is computation intensive , especially the cryptographic

 8

operations. Hence, we decide to pick the cryptographic processing as an offloading candidate.

The packet transfer, CRC checking/generation, MAC filtering and packet movement between

NPE and memory, is chosen as another candidate since the procedures are exact the same for

every packet. Some IPsec processing except data encryption/decryption is not adopted as

offloading candidates since the packet processing steps and IPsec databases are different in

according to design of OS. From the hardware block diagram in chapter two, it is clear that

IXP425 meets well the requirements of the identified candidates.

3.3 Implementation

 We adopt NetBSD [13], a secure, highly portable and open-source OS derived from

4.4BSD, as our target operating system. Clean design between platform dependent and

independent parts, makes it a good implementation target for new platform. Following relates

three major parts in want of modification to operate on IXP425.

3.3.1 Operating System Porting

 The most efficient way to porting an OS to a new platform [14] is to refer to the port of

another similar platform and then implement drivers for devices of the target platform. To port

NetBSD over IXP425, we adopt the “EvbARM” port in NetBSD, which supports for

evaluation boards based on XScale and other ARM-based core processors so that only some

system-level modifications, for example the CPU identification, setup of board-specific

memory map, and system initialization procedures, have to be done to enable normal

operations on IXP425.

3.3.2 Driver Development

 A number of drivers for devices such as UART, NPEs and coprocessors need to be

 9

implemented for communications between the operating system and those devices. This effort

is alleviated with the help of the AccessLibrary introduced in chapter two. Besides drivers, we

also have to modify those two OS dependent modules , namely OSSL and IxOSServices, to

ensure proper operations of the OS-related services.

3.3.3 Offloading the Cryptographic Operations

 The last modification to kernel regards the offloading of original in-kernel IPsec

cryptographic computations from XScale to NPE. In addition to the ordinary method

requiring the kernel (and therefore the core processor) to perform whole

encryption/decryption operations, NetBSD provides another option named FAST_IPsec which

makes use of the Open Crypto Framework, OCF, for offloading. In OCF, the cryptographic

operations can be handled by a registered function. The most significant difference between

the original IPsec and Fast_IPsec is that the flow in later would not suspend on data

cryptographic process and engage the work with other thread running as background process.

We exploit this design by pre-registering the crypto driver, which drives the crypto

coprocessor through the AccessLibrary functions, in the OCF so that all cryptographic

overhead is shifted from the core to the coprocessor in NPE B. Figure 5 diagramed the

concept of FAST_IPsec with OCF support.

 Fig. 5. How cryptographic processing is offloaded from XScale using FAST_IPsec and OCF.

 10

Chapter4. System Benchmark and Bottleneck Analysis

 In this chapter, we investigate the benefits from offloading by externally benchmarking

the implementation using various offloading schemes. A problem regarding the unbalanced

load between NPE A and NPE B is also addressed and analyzed. Finally, a number of internal

tests are conducted in order to identify possible bottlenecks in the system.

4.1 System Benchmark Setup

4.1.1 Offloading Schemes Design

To have a better understanding of the improvement from the network processor

architecture as well as the offloading mechanism on packet Rx/Tx and IPsec processing, we

design and benchmark systems of different offloading schemes, and compare their

performance results. Figure 6 shows the four offloading schemes, we can disable one or both

of them to imitate other possible offloading schemes. The throughput results are listed and

explained in next section.

 Fig. 6. Four possible offloading schemes.

4.1.2 Benchmark Environment

 11

 Fig.7 illustrates the external benchmark environments, for packet forwarding and IPsec.

We use SmartBits, which is a networking traffic generator and a performance analyzer, to

generate the input traffic and collect and analyze the performance results. For internal tests,

some system utilit ies, such as vmstat, top and GProf, are employed to obtain the system state

and other internal behaviors such as CPU utilization and memory usage.

Fig. 7. Benchmark environment s for (a) packet forwarding and (b) IPsec.

4.2 Scalability Te st

 Scalability tests aim to derive the maximum throughput of prototype s implemented with

different offloading schemes. A gateway using Pentium III 1GHz processor and 256MB

SDRAM is also included for comparison between IXP425 and x86-based systems.

4.2.1 Packet Forwarding

 Figure 8 shows the performance results of 1-to-1 packet forwarding under the condition

of zero packet loss. From the figure we can know that the throughput of IXP425 offloaded by

two NPEs parallels the one of Pentium III 1GHz. Both of them can support wire speed for

packet lengths larger than 512 bytes. Besides, a performance improvement of up to 60%

contributed by NPEs can also be gained. The maximum throughput appears when the packet

length is 1024Bytes because number of incoming packets and the processing time for each

packet just get a balance there.

 12

Fig. 8. Throughputs of packet forwarding when different numbers of NPEs are used for offloading.

4.2.2 IPsec Processing

 Figure 9 and 10 depict the throughputs of DES and 3DES of different packet lengths .

Some observations can be made. First, offloading IPsec processing to the coprocessors in

NPE B improves the performance of IXP425 by 350%; in some cases IXP425 even

outperforms the Pentium III 1GHz as can be seen in Fig. 9. Second, the maximum of

throughputs occurs when the packet length is 1450 bytes, instead of 1510 bytes. This is

because 1450 bytes is the largest length for a packet not to be fragmented after encapsulated

into IPsec one. Third, the throughput of DES is similar to 3DES, though the computation

requirement of the former is almost triple of the later. This is because it is the XScale , not the

coprocessors, that becomes the bottleneck, as is to be explained in the later s imulations.

0

20

40

60

80

100

1518 1280 1024 512 256 128 64

Packet Length (Bytes)

Th
ro

ug
hp

ut
 (M

bp
s)

IXP425: NPE-NPE

IXP425: NPE-NIC

IXP425: NIC-NIC
PIII 1G

 13

0

10

20

30

40

50

60

70

80

1518 1450 1024 512 64

Packet Length (Bytes)

Th
ro

ug
hp

ut
 (M

bp
s)

Offload both
Offload crypto
Offload Rx/Tx
No offload
PIII 1G

Fig. 9. IPsec Throughput : the DES case.

0

10

20

30

40

50

60

1518 1450 1024 512 64
Packet Length (Bytes)

Th
ro

ug
hp

ut
 (M

bp
s)

Offload both

Offload crypto
Offload Rx/Tx
No Offload
PIII 1G

Fig. 10. IPsec throughput : the 3DES case.

4.3 Unbalanced Load between NPE A and NPE B

 Unlike NPE A, NPE B doesn’t only provides packet reception and transmission but also

IPsec processing. We wonder if the different services provided on NPE A and B forms

 14

performance of them different. To measure this problem, we compare the throughput of IPsec

processing between settings with different port to receive packet, but only NPE B can form

IPsec offloading. As shown in Fig.11 , the influence doesn’t matter.

0

10

20

30

40

50

1518 1450 1024 512 64

Packet length (Bytes)

Th
ro

ug
hp

ut
 (

M
bp

s)

NPE A

NPE B

Fig. 11. IPsec throughput with different Rx/Tx interfaces.

4.4 Bottleneck Analysis

 Another question to be answered after system benchmark is: what is the bottleneck of the

system? Some components in IXP425 could become a bottleneck, namely the XScale , bus

and memory. We try to identify it in this section.

4.4.1 Bottleneck of Packet Rx/Tx

 The most important factor in performance of Rx/Tx is the turnaround time for packet

processing. Figure.12 shows the CPU utilization increases with a direct ratio to the number of

packet. Though the processing load for each shorter packet is a little smaller, the number of

packet applies that the throughput under small packets are very low. Hence, busyness of

XScale leads the latency for packets to increase when packets come too frequently. Then the

 15

packet queue in system is full and remaining packets are all dropped.

 Bandwidth of bus or memory would not be the bottlenecks because the throughput on

bigger packet length can achieve the wire speed. Furthermore, the NPE isn’t either since when

we can obtain the packets are all received into system by “netstat” utility. We could say the

bottleneck is XScale since most packet processing proceeds on it. Anything with benefit to

decrease packet processing time would has improvement to maximum throughput, such as

better packet processing method in kernel and higher-speed core processor or memory.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Traffic load (Mbps)

X
Sc

al
e

ut
ili

za
tio

n
(%

)

256
1450

Packet
length(bytes)

Fig. 12. XScale utilization with varying traffic load and packet length.

4.4.2 Bottleneck of IPsec Processing

 The bottleneck in the IPsec processing is known to be the XScale before offloading is

applied, since the cryptographic calculation demands much computing power. However, the

XScale is again found to be the bottleneck even after offloaded by the crypto coprocessors.

This is proven by Fig.13. From the figure we can see that as the utilization of the XScale

approaches 100%, the success ratio of IPsec packets drops significantly; the processor is so

busy that incoming packets are dropped due to limited buffer space.

 16

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20 25 30 35 40 45 50 55
Traffic Load (Mbps)

Pe
rc

en
ta

ge
 (%

)

Packet success ratio

XScale utilization

Fig. 13. IPsec packet success ratio versus XScale utilization .

 The XScale bottleneck can be further confirmed with the turnaround times of DES and

3DES requests, respectively, as shown in Fig.14. The turnaround time means the duration

from the time a request of cryptographic operations is issued by XScale the queue manager, to

the time the XScale is notified of the completion. As mentioned previously, the throughputs of

DES and 3DES are similar, indicating that their turnaround times should also be same.

However, this contradicts the results in Fig.14, in which the turnaround times of DES and

3DES are different.

0

40

80

120

160

200

1458 1052 540 284

Packet length (bytes)

La
te

nc
y

(µ
se

c)

DES
3DES

Fig. 14. Turnaround time of a cryptographic request for a packet. Packet size may vary.

 17

 We can also estimate the maximum throughput of the crypto coprocessor since the

processing times of encryption, decryption and data movement are proportional to the data

length. The approximate estimated performances can be computed by △s/△t, where △s and △t

represent the differences of two packet lengths and latencies, respectively. That is, the crypto

coprocessor is estimated to scale to about sec)/(6.153sec)u/(3.20
97117

10521458
Mbbytes =≅

−
−

for DES and 101Mbps for 3DES.

4.5 Turnaround Time Analysis of Functional Blocks

 Figure 15 depicts the turnaround time analysis of the functional blocks in processing

DES and 3DES packets. Functional blocks considered in the analysis include the IP

preprocessing, IPsec preprocessing, and IPsec encryption. Three different configurations are

conducted: IXP425 with the cryptographic operations offloaded to the coprocessor; IXP425

without offloading; and PIII processor. From the figure we can see that the the longest period

is cryptographic calculation. Here one important thing is the time of cryptographic calculation

in IXP425 could be ignored since NPE handles that but not XScale. Same turnaround time on

XScale for DES and 3DES makes our prototypes has the same throughput on DES and 3DES

since the bottleneck is XScale but not NPE or co-processor.

 18

0 100 200 300 400 500 600 700 800 900

3DES@PIII

DES@PIII

3DES@XScale

DES@XScale

3DES@IXP425

DES@IXP425

Turnaround time (µSec)

IP processing

IPsec preprocessing

IPsec encryption

Fig. 15. Turnaround time of functional blocks.

 19

Chapter 5. Conclusions and Future Works

In this work, we elaborate the implementation of a VPN gateway over the IXP425

network processor, where a number of coprocessors are provided for offloading computation

intensive tasks from the Xscale core. We introduce the hardware and software architectures of

the platform, analyze the VPN, i.e. IPsec, processing flow, and then identify the packet Rx/Tx

as well as encryption/decryption as the ones to be offloaded to coprocessors. We realize the

offloading design by implementing a number of drivers in NetBSD, and finally externally and

internally benchmark the system in order to find possible performance bottlenecks.

The benchmark results show that the throughputs of IPsec processing and packet Rx/Tx

have improvements of 350% and 25%, respectively, after offloading. However, the Xscale is

again found to be the bottleneck for both packet Rx/Tx and IPsec processing.

Two issues are to be investigated in the future. First, more tasks may be considered to be

offloaded to NPEs or coprocessors. An example of this is the IPsec database lookup, which

determines the policy to be applied to a certain IPsec packet. Second, the performance may be

further improved if we may call the related functions directly in the AccessLibrary for

cryptographic operations, instead of going through the Open Crypto Framework.

 20

References

[1] T. Braun, M. Günter, M. Kasumi and I. Khalil, “Virtual Private NetworkArchitect

ure.” Technical Report IAM-99-001, CATI, Apr il 1999.

[2] About Antivirus Software, Content filtering guide picks, http://antivirus.about.com/c

s/contentfiltering.

[3] Michael John and Sebastian Smith, “Application-Specific Integrated Circuits ,” Addi

son-Wesley Publishing Company, ISBN 0-201-50022-1, June 1997.

[4] Panos C. Lekkas, “Network Processors : Architectures, Protocols and Platforms (

Telecom Engineering),” McGraw-Hill Professional, ISBN 0071409866, July 2003.

[5] Intel IXP425 Network Processor, http://developer.intel.com/design/network/products/n

pfamily/ixp425.htm.

[6] Intel XScale Microarchitecture, http://www.intel.com/design/intelXScale /benefits.htm?

iid=ipp_a2z+i_620_xsmicro& .

[7] R. Atkinson, Security architecture for the Internet protocol, RFC1825, IETF Net-

work Working Group, August 1995.

[8] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb, “Building a Robust Software-

Based Router Using Network Processors,” Proceedings of the 18th ACM Sym posi

um on Operating Systems Principles (SOSP), 2001.

[9] Ying-Dar Lin, Yi-Neng Lin, Shun-Chin Yang, Yu-Sheng Lin, "DiffServ Edge Rout

ers over Network Processors: Implementation and Evaluation," IEEE Network, Spe

cial Issue on Network Processors, July 2003.

[10] Intel® IXP12XX Product Line of Network Processors, http://www.intel.com/design/

network/products/npfamily/ixp1200.htm.

[11] Intel® IXP4XX Product Line and IXC1100 Control Plane Processors, Developer’s

 21

 Manual, Intel® Document Number: 252480, February 2003.

[12] Intel® IXP400 Software, Programmer’s Guide , Intel® Document Number: 252539,

 December 2003.

[13] The NetBSD Project, http://www.netbsd.org/.

[14]Lawrence Kesteloot, “Porting BSD UNIX to a New Platform,” http://www.teamten.

com/lawrence/291.paper/291.paper.html, January 1995.

