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 I

基於網路處理器架構之虛擬私人網路閘道器: 

實作與探討 

 

學生 : 林權宏          指導教授 :林盈達 

國立交通大學資訊科學系 

摘要 

今日的網路應用像是虛擬私人網路(VPN)所需要的計算能力已超過了處

理器的能力，而網路處理器是有別於特定功能積體電路的另一選擇。網路處理器

可程式化其額外的處理器來幫核心處理器卸載不同的處理需求以及能夠快速地

依軟體變更作修改。在本論文中，我們利用IXP425這個擁有3個網路處理引擎

以及內嵌硬體處理器的網路處理器來實做出一個使用網際網路安全性協定

(IPsec)之虛擬私人網路閘道器，並卸載其上之封包收送和密碼學運算至網路處

理器上。我們實作出之原形機在3DES之IPsec下可達45Mbps，較純軟體運算之

吞吐量多了 350%。另外經由內部測試，我們發現無論封包傳送跟網際網路安全

處理的瓶頸都還是在核心處理器上。 

 
 
關鍵字: 網路處理器，虛擬私人網路，IXP425，瓶頸，效能
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VPN Gateways over Network Processors: 

Implementation and Evaluation 
 

Student: Chiuan-Hung Lin   Advisor: Dr. Ying-Dar Lin  

Department of Computer and Information Science 

National Chiao Tung University 
 

Abstract 

Networking applications nowadays such as virtual private network are demanded 

for more computing power than the original processor, which network processor 

architecture is an alternative solution different to ASIC. In network processor 

architecture, additional processors could be programmed as various functions to 

offload computation from the core processor and adapt for current modification 

quickly. In this work, we clarify the details of IXP425 network processor, which has 

three network processor engines with integrated hardware co-processors, and explain 

the implementation steps to develop an IPsec-based VPN gateway over IXP425 with 

offloading for packet transferring and cryptographic calculation. Our prototype can 

reach 45Mhz for IPsec tunnel with 3DES algorithm, which has 350% improvement to 

only core processor.  Through internal benchmarks, we found the performance 

bottlenecks on both packet forwarding and IPsec processing are still the core 

processor.  

 

Keyworks: Network Processor, VPN, IXP425, bottleneck, throughput 



 III 

Contents  
VPN GATEWAYS OVER NETWORK PROCES SORS: IMPLEMENTATION AND 

EVALUATION.........................................................................................................................................................I 

ABSTRACT............................................................................................................................................................ II 

CONTENTS..........................................................................................................................................................III 

LIST OF FIGURES .............................................................................................................................................IV 

CHAPTER 1. INTRODUCTION...................................................................................................................... 1 

CHAPTER 2. HARDWARE AND SOFTWARE ARCHITECTURE OF IXP425 ............................... 3 

2.1 HARDWARE ARCHITECTURE OF IXP425 ................................................................................................ 3 

2.2 DETAILED PACKET FLOW IN IXP425 ...................................................................................................... 4 
2.3 SOFTWARE ARCHITECTURE OF IXP425.................................................................................................. 5 

CHAPTER 3. DESIGN AND IMPLEMENTATION.................................................................................... 6 

3.1 VPN BRIEFING ............................................................................................................................................. 6 

3.2 IDENTIFICATION OF OFFLOADING CANDIDATES................................................................................... 6 
3.3 IMPLEMENTATION........................................................................................................................................ 8 

3.3.1 Operating System Porting ................................................................................................................. 8 
3.3.2 Driver Development............................................................................................................................ 8 

3.3.3 Offloading the Cryptographic Operations ..................................................................................... 9 

CHAPTER4. SYSTEM BEN CHMARK AND BOTTLENEC K ANALYSIS ...................................... 10 

4.1 SYSTEM BENCHMARK SETUP .................................................................................................................. 10 
4.1.1 Offloading Schemes Design ............................................................................................................ 10 

4.1.2 Benchmark Environment................................................................................................................ 10 
4.2 SCALABILITY TEST .................................................................................................................................... 11 

4.2.1 Packet Forwarding ............................................................................................................................11 
4.2.2 IPsec Processing ............................................................................................................................... 12 

4.3 UNBALANCED LOAD BETWEEN NPE A AND NPE B ............................................................................ 13 
4.4 BOTTLENECK ANALYSIS........................................................................................................................... 14 

4.4.1 Bottleneck of Packet Rx/Tx ............................................................................................................ 14 
4.4.2 Bottleneck of IPsec Processing...................................................................................................... 15 

4.5 TURNAROUND TIME ANALYSIS OF FUNCTIONAL BLOCKS................................................................ 17 

CHAPTER 5. CONCLUSIO NS AND FUTURE WORKS ....................................................................... 19 

REFERENCES ..................................................................................................................................................... 20 



 IV 

List of Figures 
FIG. 1. HARDWARE ARCHITECTURE OF IXP425. ................................................................................................... 3 

FIG. 2. SOFTWARE ARCHITECTURE OF IXP425. ..................................................................................................... 5 
FIG. 3. EXAMPLE VPN  ENVIRONMENT. .................................................................................................................. 6 

FIG. 4. PROCESSING FLOW OF AN IPSEC PACKET. SHADED BLOCKS ARE STAGES THAT NEED TO BE 

OFFLOAD ED. .................................................................................................................................................... 7 

FIG. 5. HOW CRYPTOGRAPHIC PROCESSING IS OFFLOADED FROM XSCALE USING FAST_IPSEC AND OCF. 9 
FIG. 6. FOUR POSSIBLE OFFLOADING SCHEMES . .................................................................................................. 10 

FIG. 7. BENCHMARK ENVIRONMENTS FOR (A) PACKET FORWARDING AND (B) IPSEC. ................................... 11 
FIG. 8. THROUGHPUTS OF PACKET  FORWARDING WHEN DIF FERENT NUMBERS OF NPES ARE USED FOR 

OFFLOADING. ................................................................................................................................................. 12 
FIG. 9. IPSEC THROUGHPUT : THE DES CASE. ...................................................................................................... 13 

FIG. 10. IPSEC THROUGHPUT : THE 3DES CASE. .................................................................................................. 13 
FIG. 11. IPSEC THROUGHPUT WITH DIFFERENT RX/TX INTERFACES................................................................. 14 

FIG. 12. X SCALE UTILIZATION WITH VARYING TRAFFIC LOAD AND PACKET LENGT H. ................................... 15 
FIG. 13. IPSEC PACKET SUCCESS RATIO VERSUS XSCALE UTILIZATION. .......................................................... 16 

FIG. 14. T URNAROUND TIME OF A CRYPTOGRAPHIC REQUES T FOR A PACKET. PACKET SIZE MAY VARY....... 16 
FIG. 15. T URNAROUND TIME OF FUNCTIONAL BLOCKS. ..................................................................................... 18 



 1 

Chapter 1. Introduction 

 

Today’s networking applications, such as virtual private network (VPN) [1] and content 

filtering [2] that offer extra security and application-aware processing, have demanded more 

powerful hardware devices to achieve high performance. The most straight-forward way to 

tackle this problem is to increase the clock rate of a general purpose processor, though some 

disadvantages , such as the cost and the technology limit, accompany.  Moreover, the low 

efficiency is also expected since the processor, as its name suggests, is not specifically 

designed for the processing of networking packets.  

 Another solution to this problem is to employ the concept of offloading, that is, to shift 

the computing-intensive tasks from the core processor to a number of additional processors. 

The Application-Specific Integrated Circuit (ASIC) [3] has been a possible candidate to serve 

as an additional processor. Nonetheless, this workaround might not be preferred in two 

aspects. First, since the functionalities are fixed once tapped out, it needs to be redesigned for 

any modifications. Second, the development period is so time -consuming that the 

time-to-market requirement may not be met.  

Network processors [4] are now embraced as an alternative solution to remedy the 

above-mentioned problems because of its re-programmability, specifically designed 

instructions for networking purpose and the hardware threads with minimal, if not zero, 

context switch overhead. In this work, we explored the feasibility of implementing VPN, 

which is a computation intensive application, over the Intel IXP425 [5] network processor   

featuring an XScale [6] core, multiple hardware contexts and coprocessors, and tried to figure 

out the performance and possible bottlenecks of the implementation. The VPN mechanism, 

which is usually based on IPsec [7] , comprises several processing stages such as packet 

reception(Rx) and transmission(Tx) , encryption and decryption, authe ntication and table 
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lookups, each of which needs a certain amount of processing. We analyze d the detailed packet 

flow and decided to offload packet transferring and cryptographic calculation to coprocessors. 

Some efforts have also been done to port the VPN application from ordinary PC to IXP425 in 

the meantime. We then externally and internally benchmarked the resulting prototype. The 

former characterized performance figures of the implementation, while the latter carried out 

the in-depth analysis of the observations which were left  unexplained in the external 

benchmarks  such as system bottlenecks . The Xscale is identified to be the bottleneck for IPsec 

processing.  

Some related works researching the bottlenecks of network processors can also be found 

in the literature: Spalink et al. [8] presented the results of simple IP forwarding and Lin et al. 

[9] implemented DiffServ, both over Intel IXP1200 [10] . Nevertheless, our work differs from 

theirs in that (1) no coprocessor was involved in their implementations; (2) both the 

control-plane and part of the data-plane processing were handled in the core processor of 

IXP425 while the core of IXP1200 took care of the control-plane packets only, and (3)  

computation intensive VPN application was considered, as compared with simple forwarding 

and memory intensive classification of these two studies. 

This article  is organized as follows. Chapter 2 describes the hardware and software 

architectures of IXP425. Chapter 3 elaborates the details of the design and implementation of 

VPN over IXP425. Chapter 5 presents the results and observations in the external and internal 

benchmarks. Some conc lusive remarks  of this article are made in chapter 5. 
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Chapter 2. Hardware and Software Architecture of 

IXP425  

 

2.1 Hardware Architecture of IXP425 

The hardware block diagram of IXP425 is depicted in Fig. 1 [11]. The core of IXP425 is 

a 533MHz XScale processor which furnishes whole system to work from initializing to 

executing overall software objects. Furthermore, three buses interc onnected by two bridges 

provide the connectivity among components on IXP425.  

 

????????????????

 

                     Fig. 1. Hardware architecture of IXP425. 

 

To assist the XScale  core in processing networking packets, three 133MHz 

programmable network processor engines (NPEs) are used to execute in parallel the 

microcode stored in internal memory to provide functions, such as MAC, CRC 

checking/generation, AAL2, AES, DES, SHA-1 and MD5, in cooperate with a number of 

applica tion-specific coprocessors. The support of hardware multithreading with single cycle 
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context switch overhead further makes NPEs more tolerant to long memory accesses and thus 

reduces the number of processor stalls. The communications between the XScale core and 

NPEs is taken care of by a hardware queue manager using interrupt and message queue 

mechanisms. Besides, the queue manager also contains 8KB SRAM divided into 64 

independent queues manipulated as circular buffers for allocating free memory space to the 

incoming packets and for locating those packets. The SDRAM can be expanded up to 256MB 

for storing ta bles, policies and OS applications in addition to packets. A PCI interface is 

available  for an additional PCI NIC. 

Some peripheral controllers, like USB and UART controllers, are also equipped into 

IXP425 for better extensibility.  

 

2.2 Detailed Packet Flow in IXP425 

The processing flow of an ordinary packet is elaborated below, which also referred to 

Fig.1. Upon the arrival of a packet at the interface of an NPE, it is partitioned into several 

32byte segments and stored at the Receive FIFO of an Ethernet coprocessor which in turn 

performs MAC-related operations. The NPE then moves those segments into corresponding 

addresses in SDRAM allocated by the queue manager which then notifies the XScale of the 

reception by interrupts for further processing. During normal processing procedures such as 

IP and other higher layer protocol stacks at XScale , chances are that some authentic and 

cryptographic operations are needed. The XScale  core may handle them either by itself or by 

offloading the computation overhead to appropriate coprocessors residing in NPE B. In the 

latter scenario, the coprocessors are directly invoked by NPE B to process a certain data 

segment in SDRAM requested by the XScale , where a message queue implemented in the 

queue manager is exploited to pass the request. The queue manager is informed by NPE B 

upon the completion of the operations and then interrupts the XScale . 
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2.3 Software Architecture of IXP425 

As shown in Fig. 2, the software architecture  [12]  is divided into two portions, namely 

the platform independent (applications and some higher level components such as networking 

protocol stacks in OS) and dependent parts (mainly device drivers). This design is helpful 

especially when an OS migration from a H/W platform to IXP425 is demanded, that is, the 

developers may need to focus only on the dependent part. When it comes to device driver 

implementation, a set of software libraries collectively re ferred to as AccessLibrary  can be  

used to drive devices such as NPEs, coprocessors , peripherals, etc. The AccessLibrary also 

provides utilities to implement some OS-related functions such as mutual exclusion.  

The software processing flow is described as follows. During the boot time the IxN peDl 

is called to download the corresponding code image into the instruction cache of each NPE. 

Then IxQmgr and IxNpeMh are called to initialize the queue manager as well as the message 

handler responsible for the communication between NPEs and XScale . The IxEthAcc and 

IxEthDB are used to receive Ethernet frames, while IxCryptoAcc is incorporated for possible 

cryptographic operations during packet processing. 

 

 

Fig. 2. Software architecture of IXP425.



 6 

 

Chapter 3. Design and Implementation 

 

In this chapter, we first introduce basic operations in a VPN environment and then 

analyze its packet processing flow in order to identify possible bottlenecks as offloading 

candidates. Finally, we describe how to implement a VPN gateway over IXP425.  

 

3.1 VPN Briefing 

Virtual Private Network (VPN) provides secure transmission over un-trusted networks . 

Oftentimes the IPSec protocol is adopted as the underlying technique thanks to the popularity 

of the Internet Protocol. As Fig. 3 shows, it supports data authentication, integrity and 

confidentiality, in whic h two VPN gateways are employed to serve as nodes that construct 

tunnels for  secure data transmission without user awareness. Since the bandwidth between 

networks depends mainly on the processing capability of gateways if the bandwidth of 

internet is enough, improving the performance of them will be critical to the whole VPN 

throughput. 

 

 

      Fig. 3. Example VPN environment . 

3.2 Identification of Offloading Candidates 
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 To resolve this performance problem, we analyze the VPN packet processing flow in 

order to identify possible candidates that can be offloaded to coprocessors. A detailed 

incoming IPsec packet flow was shown in Fig.4. It consists of three main blocks, namely the 

packet reception, IPsec processing and packet transmission, whose operations are elaborated 

below.  

 

 

Fig. 4. Proces sing flow of an IPsec packet. Shaded blocks are stages that need to be offloaded. 

 

Once an Ethernet frame is received by the physical interface, checking for frame check 

sequence sieves out broken frames and then remaining frames are filtered in accordance w ith 

possible destination MAC address configurations . Reception step ends after the frame is 

moved into memory, followed by a classification recognizing it as an IPSec packet. At this 

time, some table lookups for processing rules and cryptographic parameters proceed and 

payload of this IPsec packet is decrypted or checked for authentication according to its 

parameters. Afterwards, a new packet result ing from the original IP payload may proceed 

further processing of higher-level protocols, or be transmitted as a normal packet according to 

the routing table . 

Tasks suitable to be offloaded to coprocessors can be identified by two characteristics: 

whether they are repeated routines or computation intensive ones. As mentioned earlier this 

chapter, we know that IPsec processing is computation intensive , especially the cryptographic 
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operations. Hence, we decide to pick the cryptographic processing as  an offloading candidate. 

The packet transfer, CRC checking/generation, MAC filtering and packet movement between 

NPE and memory, is chosen as another candidate since the procedures are exact the same for 

every packet. Some IPsec processing except data encryption/decryption is not adopted as 

offloading candidates since the packet processing steps and IPsec databases are different in 

according to design of OS. From the hardware block diagram in chapter two, it is clear that 

IXP425 meets well the requirements of the identified candidates.    

 

3.3 Implementation 

 We adopt NetBSD [13], a secure, highly portable and open-source OS derived from  

4.4BSD, as our target operating system. Clean design between platform dependent and 

independent parts, makes it a good implementation target for new platform. Following relates 

three major parts in want of modification to operate on IXP425. 

 

3.3.1 Operating System Porting 

 The most efficient way to porting an OS to a new platform [14] is to refer to the port of 

another similar platform and then implement drivers for devices of the target platform. To port 

NetBSD over IXP425, we adopt the “EvbARM” port in NetBSD, which supports for  

evaluation boards based on XScale and other ARM-based core processors so that only some 

system-level modifications, for example the  CPU identification, setup of board-specific  

memory map, and system initialization procedures, have to be done to enable normal 

operations on IXP425. 

 

3.3.2 Driver Development 

 A number of drivers for devices such as UART, NPEs and coprocessors need to be 
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implemented for  communications between the  operating system and those devices. This effort 

is alleviated with the help of the AccessLibrary introduced in chapter two. Besides drivers, we 

also have to modify those two OS dependent modules , namely OSSL and IxOSServices, to 

ensure proper operations of the OS-related services. 

 

3.3.3 Offloading the Cryptographic Operations 

 The last modification to kernel regards the offloading of original in-kernel IPsec 

cryptographic computations from XScale  to NPE. In addition to the ordinary method 

requiring the kernel (and therefore the core processor) to perform whole 

encryption/decryption operations, NetBSD provides another option named FAST_IPsec which 

makes use of the Open Crypto Framework, OCF, for offloading. In OCF, the cryptographic 

operations can be handled by a registered function. The most significant difference between 

the original IPsec and Fast_IPsec is that the flow in later would not suspend on data 

cryptographic process and engage the work with other thread running as background process. 

We exploit this design by pre-registering the crypto driver, which drives the crypto 

coprocessor through the AccessLibrary functions, in the OCF so that all cryptographic 

overhead is shifted from the core to the coprocessor in NPE B. Figure 5 diagramed the 

concept of FAST_IPsec with OCF support. 

 

 

        Fig. 5. How cryptographic processing is offloaded from XScale using FAST_IPsec and OCF. 
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Chapter4. System Benchmark and Bottleneck Analysis 

 

 In this chapter, we investigate the benefits from offloading by externally benchmarking 

the implementation using various offloading schemes. A problem regarding the unbalanced 

load between NPE A and NPE B is also addressed and analyzed. Finally,  a number of internal 

tests are conducted in order to identify possible bottlenecks in the system. 

 

4.1 System Benchmark Setup 

4.1.1 Offloading Schemes Design 

To have a better understanding of the improvement from the network processor 

architecture as well as the offloading mechanism on packet Rx/Tx and IPsec processing, we 

design and benchmark systems of different offloading schemes, and compare their 

performance results. Figure 6 shows the four offloading schemes, we can disable one or both 

of them to imitate other possible offloading schemes. The throughput results are listed and 

explained in next section. 

 

 

                         Fig. 6. Four possible offloading schemes. 

 

4.1.2 Benchmark Environment 
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 Fig.7 illustrates the external benchmark environments, for packet forwarding and IPsec. 

We use SmartBits, which is a networking traffic generator and a performance analyzer, to 

generate the input traffic and collect and analyze the performance results. For internal tests, 

some system utilit ies, such as vmstat, top and GProf, are employed to obtain the system state 

and other internal behaviors such as CPU utilization and memory usage. 

 

     

Fig. 7. Benchmark environment s for (a) packet forwarding and (b) IPsec. 

 

4.2 Scalability Te st 

 Scalability tests aim to derive the maximum throughput of prototype s implemented with 

different offloading schemes. A gateway using Pentium III 1GHz processor and 256MB 

SDRAM is also included for comparison between IXP425 and x86-based systems. 

 

4.2.1 Packet Forwarding 

 Figure 8 shows the performance results of 1-to-1 packet forwarding under the condition 

of zero packet loss. From the figure we can know  that the throughput of IXP425 offloaded by 

two NPEs parallels the one of Pentium III 1GHz. Both of them can support wire speed for  

packet lengths larger than 512 bytes. Besides, a performance improvement of up to 60% 

contributed by NPEs can also be gained. The maximum throughput appears when the packet 

length is 1024Bytes because number of incoming packets and the processing time for each 

packet just get a balance there. 
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Fig. 8. Throughputs of packet forwarding when different numbers of NPEs are used for offloading. 

 

4.2.2 IPsec Processing 

 Figure 9 and 10 depict the throughputs of DES and 3DES of different packet lengths . 

Some observations can be made. First, offloading IPsec processing to the coprocessors in 

NPE B improves the performance of IXP425 by 350%; in some cases IXP425 even 

outperforms the  Pentium III 1GHz as can be seen in Fig. 9. Second, the maximum of 

throughputs occurs when the packet length is 1450 bytes, instead of 1510 bytes. This is 

because 1450 bytes is the largest length for a packet not to be fragmented after encapsulated 

into IPsec one. Third, the throughput of DES is similar to 3DES, though the computation 

requirement of the former is almost triple of the later. This is because it is the XScale , not the 

coprocessors, that becomes the bottleneck, as is to be explained in the later s imulations. 
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Fig. 9. IPsec Throughput : the DES case. 
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Fig. 10. IPsec throughput : the 3DES case. 

 

4.3 Unbalanced Load between NPE A and NPE B 

 Unlike NPE A, NPE B doesn’t only provides packet reception and transmission but also 

IPsec processing. We wonder if the different services provided on NPE A and B forms 
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performance of them different. To measure this problem, we compare the throughput of IPsec 

processing between settings with different port to receive packet, but only NPE B can form 

IPsec offloading. As shown in Fig.11 , the influence doesn’t matter. 

 

0

10

20

30

40

50

1518 1450 1024 512 64

Packet length (Bytes)

Th
ro

ug
hp

ut
 (

M
bp

s)

NPE A

NPE B

 

Fig. 11. IPsec throughput with different Rx/Tx interfaces. 

 

4.4 Bottleneck Analysis 

 Another question to be answered after system benchmark is: what is the bottleneck of the 

system? Some components in IXP425 could become a bottleneck, namely the XScale , bus  

and memory. We try to identify it in this section. 

 

4.4.1 Bottleneck of Packet Rx/Tx 

 The most important factor in performance of Rx/Tx is the turnaround time for packet 

processing. Figure.12 shows the CPU utilization increases with a direct ratio to the number of 

packet. Though the processing load for each shorter packet is a little smaller, the number of 

packet applies that the throughput under small packets are very low. Hence, busyness of 

XScale leads the latency for packets to increase when packets come too frequently. Then the 
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packet queue in system is full and remaining packets are all dropped.  

 Bandwidth of bus or memory would not be the bottlenecks because the throughput on 

bigger packet length can achieve the wire speed. Furthermore, the NPE isn’t either since when 

we can obtain the packets are all received into system by “netstat” utility.  We could say the 

bottleneck is XScale since most packet processing proceeds on it. Anything with benefit to 

decrease packet processing time would has improvement to maximum throughput, such as 

better packet processing method in kernel and higher-speed core processor or memory.  
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Fig. 12. XScale utilization with varying traffic load and packet length. 

 

4.4.2 Bottleneck of IPsec Processing 

 The bottleneck in the IPsec processing is known to be the XScale before offloading is 

applied, since the cryptographic calculation demands much computing power. However, the 

XScale  is again found to be the bottleneck even after offloaded by the crypto coprocessors. 

This  is proven by Fig.13. From the figure we can see that as the utilization of the XScale  

approaches 100%, the success ratio of IPsec packets drops significantly; the processor is so 

busy that incoming packets are dropped due to limited buffer space. 
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Fig. 13. IPsec packet success ratio versus XScale utilization . 

 

  The XScale bottleneck can be further confirmed with the turnaround times of DES and 

3DES requests, respectively, as shown in Fig.14.  The turnaround time means the duration 

from the time a request of cryptographic operations is issued by XScale the queue manager, to 

the time the XScale is notified of the completion. As mentioned previously, the throughputs of 

DES and 3DES are similar, indicating that their turnaround times should also be same. 

However, this contradicts the results in Fig.14, in which the turnaround times of DES and 

3DES are different.  

 

0

40

80

120

160

200

1458 1052 540 284

Packet length (bytes)

La
te

nc
y 

(µ
se

c)

DES
3DES

 

Fig. 14. Turnaround time of  a cryptographic request for a packet. Packet size may vary. 
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 We can also estimate the maximum throughput of the crypto coprocessor since the 

processing times of encryption, decryption and data movement are proportional to the data 

length. The approximate estimated performances can be computed by △s/△t, where △s and △t 

represent the differences of two packet lengths and latencies, respectively. That is, the crypto 

coprocessor is estimated to scale to about sec)/(6.153sec)u/(3.20
97117

10521458
Mbbytes =≅

−
−

 

for DES and 101Mbps for 3DES. 

 

4.5 Turnaround Time Analysis of Functional Blocks 

 Figure 15 depicts the turnaround time analysis of the functional blocks in processing 

DES and 3DES packets. Functional blocks considered in the analysis include the IP 

preprocessing, IPsec preprocessing, and IPsec encryption. Three different configurations are 

conducted: IXP425 with the cryptographic operations offloaded to the coprocessor; IXP425 

without offloading; and PIII processor. From the figure we can see that the the longest period 

is cryptographic calculation. Here one important thing is the time of cryptographic calculation 

in IXP425 could be ignored since NPE handles that but not XScale. Same turnaround time on 

XScale for DES and 3DES makes our prototypes has the same throughput on DES and 3DES 

since the bottleneck is XScale but not NPE or co-processor.  
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Fig. 15. Turnaround time of functional blocks. 
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Chapter 5. Conclusions and Future Works 

 

In this work, we elaborate the implementation of a VPN gateway over the IXP425 

network processor, where a number of coprocessors are provided for offloading computation 

intensive tasks from the Xscale core. We introduce the hardware and software architectures of 

the platform, analyze the VPN, i.e. IPsec, processing flow, and then identify the packet Rx/Tx 

as well as encryption/decryption as the ones to be offloaded to coprocessors. We realize the 

offloading design by implementing a number of drivers in NetBSD, and finally externally and 

internally benchmark the system in order to find possible performance bottlenecks. 

The benchmark results show that the throughputs of IPsec processing and packet Rx/Tx 

have improvements of 350% and 25%, respectively, after offloading. However, the Xscale is 

again found to be the bottleneck for both packet Rx/Tx and IPsec processing.  

Two issues are to be investigated in the future. First, more tasks may be considered to be 

offloaded to NPEs or coprocessors. An example of this is the IPsec database lookup, which 

determines the policy to be applied to a certain IPsec packet. Second, the performance may be 

further improved if we may call the related functions directly in the AccessLibrary for 

cryptographic operations, instead of going through the Open Crypto Framework.  
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