VPN Gateways over.Network Processors:

I mplementation and Evaluation

VPN Gateways over Network Processors: | mplementation and Evaluation

Student : Chiuan-Hung Lin
Advisor : Ying-Dar Lin

A Thesis
Submitted to Institute of Computer.and I nformation Science
College of Electrical Engineering and Computer Science
Natiohal Chiao TungUniversity
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer and Information Science
June 2004

HsinChu, Taiwan, Republic of China

(I Psec)

350%

(VPN)

| XP425

3

VPN Gatewaysover Networ k Processors:

| mplementation and Evaluation

Student: Chiuan-Hung Lin Advisor: Dr. Ying-Dar Lin
Department of Computer and |nformation Science

National Chiao Tung University

Abstract

Networking applications nowadays such as virtua private network are demanded
for more computing power than theseriginal, processor, which network processor
architecture is an dternative -solution different to ASIC. In network processor
architecture, additional processors could.be programmed as various functions to
offload computation from the".core processor and. adapt for current modification
quickly. In this work, we clarify the details of 1’XP425 network processor, which has
three network processor engines with integrated hardware co processors, and explain
the implementation steps to develop an IPsec-based VPN gateway over | XP425 with
offloading for packet transferring and cryptographic calculation. Our pototype can
reach 45Mhz for | Psec tunnel with 3DES agorithm, which has 350% improvement to
only core processor. Through internal benchmarks, we found the performance
bottlenecks on both packet forwarding and IPsec processing are till the core

processor.

Keyworks: Network Processor, VPN, I XP425, bottleneck, throughput

Contents

VPN GATEWAYS OVER NETWORK PROCES SORS: IMPLEMENTATIONAND

EV AL UATION ..ttt sttt a 642222 bbb b £ £ £ £t bbbt e bbbt eb et e snaebenas |
ABSTRACT ettt bbb I
CONTENT S .ottt Il
LIST OF FIGURES ...ttt bbbttt bbb bbbt b ettt v
CHAPTER 1. INTRODUGCT ION ..ottt sss sttt 1
CHAPTER 2. HARDWARE AND SOFTWARE ARCHITECTURE OF I XP425 ... 3
2.1 HARDWARE ARCHITECTURE OF [XPA25cviiriniciceestceisssssisss s ssessenns 3
2.2 DETAILED PACKET FLOW IN IXPA25.......oieriniriineineis e s sssssss s sssssssssens 4
2.3 SOFTWARE ARCHITECTURE OF | XPA25........cootiteniniieiieeine creesesiseeseessissssessessssass sressssssssssssssssssssessssans o 5
CHAPTER 3. DESIGN AND IMPLEMENTATION ..ottt seses 6
B LVPN BRIEFING ...ovuiiiueneeieeserceeesne s fakthiesbesesssestastisfiog s essesessessssessessssssssssmessessssesssssssssessessssessmesssssssenas 6
3.2 IDENTIFICATION OF OFFLOADING CANDIDATES .. st ercreesersermessesesssssssssssssssssessesssssssessssssssnns 6
3.3 IMPLEMENTATION. .utututueeesasatubesess e meerses siasisbieies st atasesbens e heammo e essssessessssesssssssmsnsasssesesssssssessesssssssesmansens 8
3.3.1 Operating SYSLEM POrtiNG- iueueeithaitsesseasceresbeeseiseiiheeeseesessessessessessessesssssssessessessssssssssssssssesesas 8

3.3.2 DIIiVEr DEVEIOPMENT.........iiesiise e siasnstarssns e tioh s emteeses fastheesses seesnesesssssssesssssssesssses sesessesessessssenssssnssnes 8

3.3.3 Offloading the Cryptographic OPerations.... it i e ssssees 9
CHAPTER4. SYSTEM BEN CHMARK AND BOTTLENEC K ANALYSIS ... 10
4.1 SYSTEM BENCHMARK SETUPcutuiiieniuriertisessesseseesessssessssssssessessnens 10
4.1.1 Offloading SChEMES DESIGNc.oveurieeerieeirrerrseessesesesesesessesesesessssessssessssessssessssessssessssssssssssssssssans 10
4.1.2 Benchmark Environment .. 10

4.2 SCALABILITY TEST wttiuriueiusieeiseretsssses s sesssss ettt sssens 11
4.2.1 PaCKEt FOrWAIQINGc.ocovieiecicicieieieetsse s ssss st sns s b b s et sssesesssssssnssens ik
4.2.2 I PSEC PrOCESSING ..eerreeereeeeseeresessesessesessesessessssessssesessessssesessessssssssssssssssssssessssesssssssessssssssssesssssssessenns 12

4.3 UNBALANCED LOAD BETWEEN NPEAAND NPE Bcoiiineneiseeseiseeseisesessesesse e ssessssssessanens 13
4.4 BOTTLENECK ANALY SIS...otitiuittreuereeseseesesmssssessesessessesesssssss s ssse s ssssessssssssssssmsnsssssssssssssssessnsens 14
4.4.1 BottleneCk Of PACKEL RX/TX ..ccurieerieeirieeiniieireieseisiess ettt ssessssssssssssssssssans 14
4.4.2 Bottleneck Of 1PSEC PrOCESSING.....cccuciieiriereieriesisiriess st sesessssssessssssssssssssssssssesessssssmesns 15

4.5 TURNAROUND TIME ANALYSISOF FUNCTIONAL BLOCK S.....cviuriiniirerereerisnes seesessessessssssssssssssssens 17
CHAPTER 5. CONCLUSIO NSAND FUTURE WORKS ...t esesesas 19
REFERENCES ...ttt ettt bbb s a6 4 e £ e R e b e b s bbb bbbt et easbne st nenneees 20

List of Figures

FIG. L HARDWARE ARCHITECTURE OF I X PA25. ...ttt 3
FIG. 2 SOFTWARE ARCHITECTURE OF [XPAZ5. ...ttt es 5
FIG. 3 EXAMPLE VPN ENVIRONMENT. ..c.cuttitttetreutueeresssseres sesessesssssssessssessssesssssss sresssssssssssssssssassssssaes stssssssesassess 6

FIG. 4. PROCESSING FLOW OF AN | PSEC PACKET. SHADED BLOCKS ARE STA GES THAT NEED TO BE

OFFLOAD ED. ...outetueeresseessesseesssessse st st ssse st s b ss 488888t 7
FIG. 5. HOW CRYPTOGRAPHIC PROCESSING IS OFFLOADED FROM X SCALE USING FAST_IPSECAND OCF. 9
FIG. 6. FOUR POSSIBLE OFFLOADING SCHEMES.cuvuureurereeseeeessesssesesssesseesssssessessssssessssssesssssssssssssessessssssssassan 10
FIG. 7. BENCHMARK ENVIRONMENTS FOR (A) PACKET FORWARDING AND (B) IPSEC. ...ovvvoverererererecereneen 11

FIG. 8 THROUGHPUTS OF PACKET FORWARDING WHEN DIF FERENT NUMBERS OF N PES ARE USED FOR

[0 I 12
FIG. 9. IPSEC THROUGHPUT : THE DES CASE. ..ottt 13
FIG. 10. | PSEC THROUGHPUT : THE 3DES CASE ..ottt sttt 13
FIG. 11.1PSEC THROUGHPUT WITH DIFFERENT RX/T X INTERFACES......covurerererereereereseess crssssssessesssessesssssssenees 14
FIG. 12. X STALE UTILIZATION WITH VARYING TRAFFIC LOAD AND PACKET LENGT H. ...ouvuverererirerersesreererene 15
FIG. 13.1 PSEC PACKET SUCCESSRATIO VERSUS XSCALE UTHLIZATION. ...cevereeererceersesereenens sreseesesseseseassnensenes 16
FIG. 14. T URNAROUND TIMEOFA CRYPTOGRAPHICREQUEST FOR A PACKET. PACKET SIZEMAY VARY....... 16
FIG. 15. TURNAROUND TIME OF FUNCTIONAL BLOCKS 11 s ifueath s distrms s eserese senessasssesseesssssesessseseses sesssssssesssssasenns 18

Chapter 1. Introduction

Today's networking applications, such as virtua private network (VPN) [1] and content
filtering [2] that offer extra security and applicationaware processing, have demanded more
powerful hardware devices to achieve high performance The most straight-forward way to
tackle this problem is to increase the clock rate of a general purpose processor, though some
disadvantages, such as the cost and the technology limit, accompany. Moreover, the low
efficiency is also expected since the processor, as its name suggests, is not specificaly
designed for the processing of networking packets

Another solution to this problem is to employ the concept of offloading, that is, to shift
the computing-intensive tasks from the,core processor to a number of additional processors.
The Application-Specific Integrated Circuit (ASIC) [3] has been a possible candidate to serve
as an additional processor. Nonetheless, this workaround might not be preferred in two
aspects. First, since the functionalities are fixed-once tapped out, it needs to be redesigned for
any modificatiors. Second, the development ™ period is so time-consuming that the
time-to-market requirement may not be met.

Network processors [4] are now embraced as an aternative solution to remedy the
above-mentioned problems because of its re-programmability, specifically designed
instructions for networking purpose and the hardware threads with minimal, if not zero,
context switch overhead. In this work, we explored the feasibility of implementing VPN,
which is a computation intensive application, over the Intel 1XP425 [5] network processor
featuring an XScale [6] core, multiple hardware contexts and coprocessors, and tried to figure
out the performance and possible bottlenecks of the implementation. The VPN mechanism,
which is usually based on IPsec [7], comprises several processing stages such as packet

reception(Rx) and transmission(Tx), encryption and decryption, authentication and table

lookups, each of which needs a certain amount of processing. We analyzed the detailed packet
flow and decided to offload packet transferring and cryptographic calculation to coprocessors.
Some efforts havealso beendoneto port the VPN application from ordinary PC to IXP425 in
the meantime. We then externally and internally benchmarked the resulting prototype. The
former characterized performance figures of the implementation, while the latter carried out
the in-depth analysis o the observations which were left unexplained in the externa
benchmarks such as system bottlenecks. The Xscale is identified to be the bottleneck for 1Psec
processing.

Some related works researching the bottlenecks of network processors can also be found
in the literature: Spalink et al. [presented the results of simple IP forwardingand Lin et al.
[9] implemented DiffServ, both over Intel 1XP1200 [10]. Nevertheless, our work differs from
theirs in that (1) no coprocessor was involved in their implementations; (2) both the
control-plane and part of the data-plane processing were handled in the core processor of
IXP425 while the core of IXP1200.teok care of the control-plane packets only, and (3)
computation intensive VPN application was considered, as compared with simple forwarding
and memory intensive classification of these two studies.

This article is organized as follows. Chapter 2 describes the hardware and software
architectures of 1XP425. Chapter 3 elaborates the details of the design and implementation of
VPN over I XP425 Chapter 5 presents the results and observations in the external and internal

benchmarks. Some conc lusive remarks of this article are made in chapter 5.

Chapter 2. Hardware and Software Architecture of

| XP425

2.1 HardwareAr chitecture of | XP425

The hardware block diagram of IXP425 is depicted in Fig. 1[11]. The core of IXP425 is
a 533MHz XScale processor which furnishes whole system to work from initidizing to
executing overall software objects. Furthermore, three buses interconnected by two bridges

provide the connectivity among components on 1 XP425.

133 Wb
WAl Noce MPB | XP475
=
_ sDRAM] SDEAM
_| BmmetbPEA Corteullee 7 36ME
- «
Chiene
Bthewnet MFE B M i
- LG5 CaP <
= (50] Lt
Hxh Col* Eﬂmﬂ
i bk
&l 155 MHz |
; -
Peripherals Intel ke Core [Fol Comoler | Batra |
FZ1 Comtrolle <
EGNEYTTT W Ex) d _>: PoLMLIC |
PR — |

context switch overhead further makes NPEs more tolerant to long memory accesses and thus
reduces the number of processor stalls. The communications between the XScale core and
NPEs is taken care of by a hardware gueue manager using interrupt and message queue
mechanisms. Besides, the queue manager aso contains 8KB SRAM divided into 64
independent queues manipulated as circular buffers for allocating free memory space to the
incoming packets and for locating those packets. The SDRAM can be expanded up to 256MB
for storing tables, policies and OS applications in addition to packets. A PCI interface is
available for an additional PCI NIC.

Some peripheral controllers, like USB and UART controllers, are also equipped into

I XP425 for better extenshility.

2.2 Detailed Packet Flow:in | XP425

The processing flow of arrordinary packet is elaborated below, which also referred to
Fig.1 Upon the arrival of a packet at the interface’of an NPE, it is partitioned into severa
32byte segments and stored at the Receive'FIFO of an Ethernet coprocessor which in turn
performs MAC-related operations. The NPE then moves those segments into corresponding
addresses in SDRAM allocated by the queue manager which then notifies the XScale of the
reception by interrupts for further processing. During normal processing procedures such as
IP and other higher layer protocol stacks at XScale, chances are that some authentic and
cryptographic operations are needed. The XScale core may handle them either by itself or by
offloading the computation overhead to appropriate coprocessors residing in NPE B. In the
latter scenario, the coprocessors are directly invoked by NPE B to process a certain data
segment in SDRAM requested by the XScale, where a message queue implemented in the
gueue manager is exploited to pass the request. The queue manager is informed by NPE B

upon the completion of the operations and then interrupts the XScae.

2.3 Softwar e Ar chitectur e of | XP425

As shown in Fig. 2, the software architecture [12] isdivided into two portions, namely
the platform independent (applications and some higher level components such as networking
protocol stacks in OS) and dependent parts (mainly device drivers). This design is helpful
especially when an OS migration from a H/W platform to IXP425 is demanded, that is, the
developers may need to focus only on the dependent part. When it comes to device driver
implementation, a set of software libraries collectively referred to as AccessLibrary can be
used to drive devices such as NPEs, coprocessors, peripherals, etc. The AccessLibrary also
provides utilities to implement some OS-related functions such as mutua exclusion.

The software processing flow is described as fdlows. During the boot time the IXN peDI
is caled to download the corresponding code image into the instruction cache of each NPE.
Then IxQmgr and IxNpeMh are called toinitialize the queue manager as well as the message
handler responsible for the communication. between NPEs and XScde. The IxEthAcc and
IXEthDB are used to receive Ethernet-frames, while IXCryptoAcc is incorporated for possible

cryptographic operations during packet' processing.

Hscale Core
| Application |
Crerging Sy sern
TCFAF Netwoak Frotocol Stack
| Driver |
E E | bBhax | | kCoomac | | wBeDE | ot
[umteent | [utonar | | bOwr |

| NPEs md peripherials |

Chapter 3. Design and | mplementation

In this chapter, we frst introduce basc operations in a VPN environment and then
analyze its packet processing flow in order to identify possible bottlenecks as offloading

candidates Findly, we describe how to implement aV PN gateway over | XP425.

3.1 VPN Briefing

Virtual Private Network (VPN) provides secure transmission over un-trusted networks.
Oftentimes the IPSec protocol is adopted as the underlying technique thanks to the popularity
of the Internet Protocol. As Fig:: 3 shows,. it. supports data authentication, integrity and
confidentiality, in whic h two V.PN-gateways are employed to serve asnodes that construct
tunnels for secure data transmission 'without-user awareness. Since the bandwidth between
networks depends mainly on the ‘proeessing.-capability of gateways if the bandwidth of

internet is enough, improving the performance of them will be critica to the whole VPN

throughput.
mander — G;:;i . Ga:zb:y B —— | Receiver
L N N
) % 0 7
[o }—
Data Encry phion Aoth check
anthcaknton Drata Diecry prion

Forwad [Pzc packet Forwad [P packet

To resolve this performance problem, we analyze the VPN packet processing flow in
order to identify possible candidates that can be offloaded to coprocessors. A detailed
incoming 1Psec packet flow was shown in Fig.4. It consists of three main blocks, namely the
packet reception, |Psec processing and packet transmission, whose operations are elaborated

below.

Facket Reception

. - ack Packat Upper Lawer
Chedking AL Bt a Classiication Frotocol
L | Stacks

SPO&5A0 L ypitosfuth IP Protocal
Lookup F q Procsassing

sequence seves out broken frames and th remaining frames are filtered in accordance with
possible destination MAC address configurations. Reception step ends after the frame is
moved into memory, followed by a classification recognizing it as an IPSec packet. At this
time, some table lookups for processing rules and cryptographic parameers praceed and
payload of this IPsec packet is decrypted or checked for authentication according to its
parameters Afterwards, a new packet resulting from the original IP payload may proceed
further processing of higher-level protocols, or be transmitted as a normal packet accordingto
the routing table.

Tasks suitable to be offloaded to coprocessors can be identified by two characteristics:
whether they are repeated routines or computation intensive ones. As mentioned earlier this

chapter, we know that | Psec processing is computation intensive, especially the cryptographic

operations Hence, we decide to pick the cryptographic processing as an offloading candidate.
The packet transfer, CRC checking/generation, MAC filtering and packet movement between
NPE and memory, is chosen as another candidate since the procedures are exact the same for
every packet. Some IPsec processing except data encryption/decryption is not adopted as
offloading candidates since the packet processing steps and |Psec databases are different in
according to design of OS. From the hardware block diagram in chapter two, it is clear that

I XP425 meets well the requirements of the identified candidates.

3.3 Implementation

We adopt NetBSD [13], a secure, highly portable and opensource OS derived from
4.4BSD, as our target operating system::Clean design between platform dependent and
independent parts, makes it a good implementation target for new platform. Following relates

three major parts in want of modification to operate on 1XP425,

3.3.1 Operating System Porting

The most efficient way to porting an OSto a new platform [14] isto refer to the port of
another similar platform and then implement drivers for devices of the target platform. To port
NetBSD over IXP425, we adopt the “EVbARM” port in NetBSD, which supports for
evaluation boards based on X Scale and other ARM-based core processors so that only some
system-level modifications, for example the CPU identification, setup of boardspecific
memory map, and system initiaization procedures, have to be done to enable normal

operations on 1XP425.

3.3.2 Driver Development

A number of drivers for devices such as UART, NPEs and coprocessors need to be

implemented for communications between the operating system and those devices. Thiseffort
is alleviatedwith the help of the AccessLibraryintroduced in chapter two. Besides drivers, we
also have to modify those two OS dependent modules, namely OSSL and IxOSServices, to

ensure proper operations of the OS-related services.

3.3.3 Offloading the Cryptographic Operations

The last modification to kernel regards the offloading of origina in-kernel [Psec
cryptographic computations from XScde to NPE. In addition to the ordinary method
requiring the Kkernel (and therefore the core processor) to perform whole
encryption/decryption operations, NetBSD provides another option named FAST _IPsec which
makes use of the Open Crypto Framework, OCF, for offloading. In OCF, the cryptographic
operations can be handled by a registered function.- The most significant difference between
the original IPsec and Fast_|IPsec.is that the flow in later would not suspend on data
cryptographic process and engage the.waork with other-thread running as background process.
We exploit this design by pre-registering the .crypto driver, which drives the crypto
coprocessor through the AccessLibrary functions, in the OCF so that all cryptographic
overhead is shifted from the core to the coprocessor in NPE B. Figure 5 diagramed the

concept of FAST _IPsec with OCF support.

T Fermel
=T |1 _ o NFE B

g | s
I Copo Areess), |

2| ey) iy ()
| i
I]

‘g :

— — FAST Pec

Faer

Chapter4. System Benchmark and Bottleneck Analysis

In this chapter, we investigate the benefits from offloading by externally benchmarking
the implementation using various offloading schemes. A problem regarding the unbalanced
load between NPE A and NPE B isdso addressed and analyzed. Finally, a number of internal

tests are conducted in order to identify possible bdtlenecks in the system.

4.1 System Benchmark Setup

4.1.1 Offloading Schemes Design

To have a better understanding of the improvement from the network processor
architecture as well as the offloading “mechanism’ .on packet Rx/Tx and IPsec processing, we
design and benchmark systems of different offloading schemes, and compare their
performance results. Figure 6 shows the four offloading schemes, we can disable one or both
of them to imitate other possiblesoffloading schemes. The throughput results are listed and

explained in next section.

MNFE Hzcale
(€25 I Tt Ok ling Schemes:
SRR P L. offibad coypio and pkt TafBa
: : 2. offbad coyp oy
Crsnl [3. offbad pkt TaiBa ooly
@D <t “Cap - 4. offbad aothing
FCINIC| | i i
ViV

10

Fig.7illustrates the external benchmark environments, for packet forwarding and |Psec.
We use SmartBits, which is a networking traffic generator and a performance analyzer, to
generate the input traffic and collect and analyze the performance results For internal tests,
some system uitilities, such as vmstat, top and GProf, are employedto obtain the system state

and other internal behaviors such as CPU utilization and memory usage.

Smartbit SmartBit

DUt pUT [{mmie=s | o1

11

80

"-/)\ \
Q
o]
2 o
o
>
o
< \A\
2 4 —6— IXP425: NPE-NPE
(<}
b= —O— IXP425: NPE-NIC \Z\
F o —A— IXP425: NIC-NIC 3
—¥=PIIl 1G
0 .
1518 1280 1024 512 256 128 64

Packet Length (Bytes)

Fig. 8 Throughputsof packet forwardingwhen different numbers of NPEs are used for offloading.

4.2.2 | Psec Processing

Figure 9 and 10 depict the throughputs.of- DES and 3DES of different packet lengths.
Some observations can be made. iFirst, dfloading1Psec processing to the coprocessors in
NPE B improves the performance’of -1XP425 by "350%; in some cases |IXP425 even
outperforms the Pentium |1l 1GHZz as.can be seen in Fig. 9. Second, he maximum of
throughputs occurs when the packet length is 1450 bytes, instead of 1510 bytes. This is
because 1450 bytes is the largest length for a packet not to be fragmented after encapsul ated
into IPsec one. Third, the throughput of DES is similar to 3DES, though the computation
requirement of the former is almost triple of the later. Thisis because it isthe XScae, not the

coprocessors, that becomes the bottleneck, as is to be explained in the later simulations.

12

80
70 Offload both |
—HE—oOffload crypto
_. 60 NI — —A—Offload RX/Tx |~
8 \K\ —*<—No offload
g 50 —K—PII1G -
2 40 —— -
ey
< EI-/E\\Q\ \
§ 30
ﬁ \
20 \
10 e A W
O 1 1 1 1
1518 1450 1024 512 64
Packet Length (Bytes)
Fig. 9 IPsec Throughput : theDES case
60
—O— Offload both
50 —HB—Offload crypto [
’uQ_T ()/9\ —4A—Offload Rx/Tx
§ 40 —><—No Offload i
< m —X—PII11G
e
(@)
>
© 20
N
£ \S\
LTRE—R————
o 1 1 1 1

1518 1450 1024 512 64
Packet Length (Bytes)

Fig. 10. IPsec throughput : the 3DES case

4.3 Unbalanced L oad between NPE A and NPE B

Unlike NFE A, NPE B doesrit only provides packet reception and transmission but also

IPsec processing. We wonder if the different services provided on NPE A and B forms

13

performance of them different. To measure this problem, we compare the throughput of |Psec
processing between settings with different port to receive packet, but only NPE B can form

I Psec offloading. Asshownin Fig.11, the influence doesrit matter.

——NPE A

%Ag\m —H-NPEB
30

. AN
.

0 1 1 1 1
1518 1450 1024 512 64

Packet length (Bytes)

Throughput (Mbps)
N
o

Fig. 11. IPsec throughput with different Rx/Tx interfaces.

4.4 Bottleneck Analysis

Another question to be answered after system benchmark is: what is the bottleneck of the
system? Some components in 1XP425 could become a bottleneck, namely the XScale, bus

and memory. We try to identify it in this section.

4.4.1 Bottleneck of Packet Rx/Tx

The most important factor in performance of Rx/Tx is the turnaround time for packet
processing. Figure.12 shows the CPU utilization increases with a direct ratio to the number of
packet. Though the processing load for each shorter packet is a little smaller, the number of
packet applies that the throughput under small packets are very low. Hence, busyness of

XScale leads the latency for packets to increase when packets come too frequently. Then the

14

packet queue in system is full and remaining packets are all dropped.

Bandwidth of bus or memory would not be the bottlenecks because the throughput on
bigger packet length can achieve the wire speed. Furthermore, the NPE isrit either since when
we can obtain the packets are al received into system by “netstat” utility. We could say the
bottleneck is XScale since most packet processing proceeds on it. Anything with benefit to
decrease packet processing time would has improvement to maximum throughput, such as

better packet processing method in kernel and higher-speed core processor or memory.

XScale utilization (%)

100
90 =

80
70 /Zr
/z' Packet

60 —=
50 <1 Ell I\lzlélgb

—0— 1450

40

30

2/"'
=
20 /Z/
10 ._./E/ M

10 20 30 40 50 60 70 8 9 100

Traffic load (Mbps)

Fig. 12. X Scale utilization with varying traffic load and packet length.

4.4.2 Bottleneck of | Psec Processing

The hottleneck in the 1Psec processing is known to be the XScale before offloading is
applied, since the cryptographic calculation demands much computing power. However, the
XScde is again found to be the bottleneck even after offloaced by the crypto coprocessors.
This is provenby Fig.13 From the figure we can see that as the utilization of the XScale

approaches 100%, the success ratio of IPsec packets drops significantly; the processor is so

busy that incoming packets are dropped due to limited buffer space.

15

100 § = =

90 -

80 b— —&=— Packet success ratio /Z' \
= 70 — = XScale utilization J7|/ \
IS
S 60 7 \
2 50 e \
g 40 = \
E’ 30 D‘/_ \

10 Z/

0 1 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 55
Traffic Load (Mbps)

Fig. 13. IPsec packet success ratioversus X Scale utilization .

The XScale bottleneck can be further confirmed with the turnaround times of DES and
3DES requests, respectively, as showntin'Fig:14 The turnaroundtime means the duration
from the time a request of cryptographic operations isissued by XScale the queue manager, to
the time the XScale is notified of the completion. As mentioned previoudly, the throughputs of
DES and 3DES are similar, indicating ‘that"their turnaround times should also be same.
However, this contradicts the results in Fig.14, in which the turnaround times of DES and

3DES are different.

200

160 —o—DES
‘—“\Q —&—3DES
120

Latency (usec)
[ee]
o

D
o

o

1458 1052 540 284
Packet length (bytes)

Fig. 14. Turnaround time of acryptographic request for a packet. Packet size may vary.

16

We can aso estimate the maximum throughput of the crypto coprocessor since the
processing times of encryption, decryption and data movement are proportiona to the data
length. The approximate estimated performances can be computed by ¢ t,where sand t

represent the differences of two packet lengths and latencies, respectively. That is, the crypto

coprocessor is estimated to scale to about % @20.3(bytes/ usec) =153.6(Mb/ sec)

for DES and 101Mbyps for 3DES.

4.5 Turnaround Time Analysis of Functional Blocks

Figure 15 depicts the turnaround time analysis of the functional blocks in processing
DES and 3DES packets. Functional blocks considered in the analysis include the IP
preprocessing, |Psec preprocessing, and 1Psee.encryption. Three different configurations are
conducted: 1XP425 with the cryptographic operations offloaded to the coprocessor; | XP425
without offloading; and PII1 pracessor. From-the figure:we can see that the the longest period
is cryptographic calculation. Here ene important thing is the time of cryptographic calculation
in IXP425 could be ignored since NPE handles that but not X Scale. Sameturnaround time on
XScale for DES and 3DES makes our prototypes has the same throughput on DES and 3DES

since the bottleneck is X Scale but not NPE or co-processor.

17

DES@IXP425 [:i

3DES@IXP425 [ifm

3 IP processing
&1 |Psec preprocessing
IPsec encryption

DES@XScale [z

FII77 77 T7 7777777,

3DES@XScale [

DES@PIII

3DES@PII [Ed

EW)"///// SIS IS SIS III SIS SIS IIIY,

200

300 400 500

Turnaround time (uSec)

600 700 800

900

Fig. 15. Turnaround time of functional blocks.

18

Chapter 5. Conclusions and FutureWor ks

In this work, we elaborate the implementation of a VPN gateway over the IXP425
network processor, where a number of coprocessors are provided for offloading computation
intensive tasks from the Xscale core. We introduce the hardware and software architectures of
the platform, analyze the VPN, i.e. IPsec, processing flow, and then identify the packet Rx/Tx
as well as encryption/decryption as the ones to be offloaded to coprocessors. We realize the
offloading design by implementing a number of driversin NetBSD, and finaly externaly and
internally benchmark the system in order to find possible peformance bottlenecks.

The benchmark results show that the'throughputs of IPsec processing and packet Rx/Tx
have improvements of 350% and*25%, respectively, after offloading. However, the Xscale is
again found to be the bottleneck-for both packet Rx/Tx and |Psec processing.

Two issues are to be investigated-in thefuture, First, more tasks may be considered to be
offloaded to NPEs or coprocessors. An example of this is the IPsec database lookup, which
determines the policy to be applied to a certain IPsec packet. Second, the performance may be
further improved if we may call the related functions directly in the AccessLibrary for

cryptographic operations, instead of going through the Open Crypto Framework.

19

Refer ences

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

T. Braun, M. Ginter, M. Kasumi and |. Khalil, “Virtual Private NetworkArchitect
ure.” Technical Report IAM-99-001, CATI, April 1999.

About Antivirus Software, Content filtering guide picks, http://antivirus.about.can/c
s/contentfiltering.

Michael John and Sebastian Smith, “Application-Specific Integrated Circuits,” Addi
son-Wesley Publishing Company, ISBN 0-201-50022-1, June 1997.

Panos C. Lekkas, “Network Processors: Architectures, Protocols and Platforms (
Telecom Engineering),” McGraw-Hill Professional, ISBN 0071409866, July 2003.
Intel 1XP425 Network Processor,. http:/devel oper.intel.com/design/network/products/n
pfamily/ixp425.htm.

Intel XScale Microarchitecture, http:/Avww.intel:com/desi gn/intelX Scae/benefits.ntm?
iid=ipp_a2z+i_620_xsmicro&..

R. Atkinson, Security architecture for: the“Internet protocol, RFC1825, IETF Net-
work Working Group, August 1995

T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb, “Building a Robust Software-
Based Router Using Network Processors,” Proceedings of the 18th ACM Sym pos
um on Operating Systems Principles (SOSP) 2001.

Ying-Dar Lin, Yi-Neng Lin, Shun-Chin Yang, Yu-Sheng Lin, "DiffServ Edge Rout
ers over Network Processors. Implementation and Evauation,” |IEEE Network, Spe
ciad Issue on Network Processors, July 2003.

Intel® IXP12XX Product Line of Network Processors, http://www.intel.com/design/
network/products/npfamily/ixp1200.htm.

Intel® IXP4XX Product Line and IXC1100 Control Plane Processors, Deveoper’ s

20

Manual, Intef® Document Number: 252480, Felruary 2003.

[12] Intel® IXP400 Software, Programmer’ s Guide, Intel® Document Number: 252539,
December 2003

[13] The NetBSD Project, http://www.netbsd.org/.

[14] Lawrence Kesteloot, “Porting BSD UNIX to a New Platform,” http://www.teamten.

com/lawrence/291.paper/291.paper.html, January 1995.

21

