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Abstract—We study the hyperbolic dynamics of three-dimensional quadratic maps with
constant Jacobian the inverse of which are again quadratic maps (the so-called 3D Hénon
maps). We consider two classes of such maps having applications to the nonlinear dynamics
and find certain sufficient conditions under which the maps possess hyperbolic nonwandering
sets topologically conjugating to the Smale horseshoe. We apply the so-called Shilnikov’s cross-
map for proving the existence of the horseshoes and show the existence of horseshoes of various
types: (2,1)- and (1,2)-horseshoes (where the first (second) index denotes the dimension of stable
(unstable) manifolds of horseshoe orbits) as well as horseshoes of saddle and saddle-focus types.
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1. INTRODUCTION

The Theory of Dynamical Systems has been formed as a separate branch of science in the 1960s–
1970s. Fundamentally, this event happened as the result of the so-called “hyperbolic revolution”,
i.e. very interesting and quite short period (of the 60-s) when numerous problems of natural science
got a solid mathematical base. In turn, this base – the Hyperbolic Theory – was born so rapidly
due to long standing scrupulous work of such distinguish scientists as H. Poincaré, J. Hadamard,
J. Birkhoff, A.A. Andronov etc. Due to this activity, there were collected a lot of scientific facts
and important problems which have required an explanation by the mathematical language. One
can point out three such famous problems which have led tightly to the creation of Hyperbolic
Theory. The first one is the Poincaré–Birkhoff problem on the structure of orbits entirely lying near
a transverse Poincaré homoclinic orbit. The second problem (one of the most famous problems in
differential equations) was connected with the study of geodesic flows on the manifolds of constant
negative curvature. Finally, the third problem selected by us is the Andronov hypothesis on the
existence of structurally stable systems with infinitely many periodic orbits.

The first two problems had a quite long-time history, many important partial results were
obtained by H. Poincaré, J. Hadamard, J. Birkhoff, M. Morse, G. Hedlund et al. However, the
complete solution of these problems was found only in the 1960s: by L.Shilnikov who solved the
Poincaré–Birkhoff problem, [1], and by D.Anosov who solved the problem on geodesic flows, [2].
As is well known, the positive answer on the Andronov hypothesis was obtained, in fact, by S.
Smale who introduced the famous “horseshoe C∞-homeomorphism” on S2, [3]. Indeed, in this
horseshoe map, the “evident” structural stability was combined with the presence of infinitely
many (saddle) periodic orbits. However, a justification of the pointed out “evidence” required a
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certain mathematical formalization including, in particular, the introduction, by D. Anosov [4], of
such basic notation as the hyperbolic set. On the basis of this, many mathematical methods for
establishing hyperbolicity were created, e.g. the cone theory, the shadow lemma (also referred to
as the (Anosov) lemma on ε-trajectories) etc.

In this series of methods, a special value have the so-called Shilnikov’s cross-map method. Namely,
this method was used by L. Shilnikov for the complete proof of the mentioned Poincaré–Birkhoff
problem. The essence of the method can be illustrated by the simplest example of a map having a
fixed point. Let this C1-map have a form x̄ = f(x, y), ȳ = g(x, y) and let O(0, 0) be its the fixed
point. Suppose that the second equation can be resolved with respect to the coordinate y (near
O), i.e. y = g̃(x, ȳ). Then, the map can be rewritten in the cross form as x̄ = f̃(x, ȳ), y = g̃(x, ȳ),
where f̃(x, ȳ) ≡ f(x, g̃(x, ȳ)). Then, it is evident that

• if the cross map (x, ȳ) �→ (x̄, y) is contracting (near (0, 0)), then the fixed point O is a hyperbolic
saddle.

However, the given example corresponds only to one of the simplest and not interesting applications
of the method. There are more important applications including non-uniformly hyperbolic situations
(see, e.g. [5]). For more information on the Shilnikov’s method see Section 3.2 (see also [6]).

In this paper, we will apply the Shilnikov’s cross-map method for finding some sufficient
conditions for hyperbolicity of certain three-dimensional quadratic maps.

We will say that a map (diffeomorphism, in fact) defined on R3 is a three-dimensional Hénon
map (or a 3D Hénon map) if the following conditions hold: (i) the map has the constant Jacobian;
(ii) the map and its inverse map are both quadratic; (iii) the coordinates are not decoupled by the
action of the map.1)

The class of 3D Hénon maps is sufficiently vast: any three-dimensional Hénon map can be
brought (by affine transformations) to the following standard form, [7, 8],

x̄ = y, ȳ = z,

z̄ = M1 + Bx + M
(1)
2 y + M

(2)
2 z + ây2 + b̂yz + ĉz2,

(1.1)

where B is the Jacobian. Formally speaking, map (1.1) depends on 7 parameters. However, in
any case, only 5 of them can be considered as independent. Indeed, by an appropriate rescaling
(x, y, z) �→ α(x, y, z), we can make equal to ±1 one of the coefficients â, b̂ or ĉ of the quadratic form;
if â or ĉ is non-zero, we can vanish identically (by a coordinate shift) the coefficient M

(1)
2 or M

(2)
2 ,

respectively.
In the paper we will consider two classes of 3D Hénon maps. The first class corresponds to the

case where â = b̂ = 0, ĉ �= 0. Thus, in this case, equations (1) define the following three parameter
family

x̄ = y, ȳ = z, z̄ = M + Bx − by − z2. (1.2)

The second class corresponds to the case where b̂ = ĉ = 0, â �= 0 and, thus, equations (1) define here
the following three parameter family2)

x̄ = y, ȳ = z, z̄ = M + Bx + Cz − y2. (1.3)

1)Note that not all quadratic maps with constant Jacobian are of Hénon type. So, for example, the map
(x̄, ȳ, z̄) = (y, x + y2, z + x2) has an inverse map which is not quadratic; the maps (x̄, ȳ, z̄) = (x,−z, y + z + x2)

and (x̄, ȳ, z̄) = (y + x,−x, z + y2) decouple the coordinates: the image x̄ depends only on x for the first map and
the image (x̄, ȳ) depends only on (x, y) for the second map.

2)In the case of equation (1.2), we take ĉ ≡ −1, M̂
(2)
2 ≡ 0, M = M1 and M̂

(1)
2 = −b in (1.1); in the case of equation

(1.3), we take M = M1, â ≡ −1, M̂
(1)
2 ≡ 0 and C = M̂

(2)
2 , respectively. Thus, if B = 0 the variable x decouples

and map (1.2) degenerates, in fact, into the standard Hénon map ȳ = z, z̄ = M − by − z2, whereas, map (1.3)

degenerates into the Mirá map ȳ = z, z̄ = M + Cz − y2.
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Formally speaking, maps (1.2) and (1.3) are quite specific cases (codimension 2 subfamilies) of
the general family (1.1) of 3D Hénon maps. However, they both have an exceptional value for the
nonlinear dynamics.

First, these maps play an important role in the bifurcation theory of multidimensional systems
with homoclinic orbits. It was shown in [8–11] that maps (1.2) and (1.3) are normal forms of first
return maps near certain quadratic homoclinic tangencies. It means that both the maps can be
considered as universal quadratic maps like the well-known maps: the parabola map x̄ = M − x2,
the standard Hénon map x̄ = y, ȳ = M − bx − y2 and the Mirá map x̄ = y, ȳ = M + Cy − x2; as
well as the generalized Hénon maps (GHM) of the form

x̄ = y, ȳ = M − bx − y2 + ε1xy + ε2y
3. (1.4)

The latter map was introduced in [12, 13] as the rescaled “homoclinic map” (see also [10]). Note
that, unlike the standard Hénon map, it demonstrates nondegenerate Andronov-Hopf bifurcations
occurring near b = 1; see [13, 14].

Second, the dynamics of maps (1.2) and (1.3) is quite interesting by itself, since, for example,
both these maps possess strange attractors. Notice that map (1.3) was introduced in [9] and also
this map written in a specific form is known as the ACT-map (Arneodo–Coullet–Tresser map),
whose chaotic dynamics was studied in [15]. We note especially that map (1.2) demonstrates very
interesting type of chaotic dynamics. Namely, it was shown in [8, 16] that map (1.2) has the so-called
wild Lorenz-like attractor for values of the parameters from some open region. The question of the
existence of such attractors in map (1.3) is still open (note that this map possesses a wild Lorenz-
like repeller, since map (1.3) is the inverse of (1.2)). The notation of wild hyperbolic attractor was
introduced in [17]: briefly, it is a strange attractor which allows homoclinic tangencies but does not
contain stable periodic orbits, and this property holds for all close systems.3) The mentioned wild
Lorenz-like attractors compose very important class of wild hyperbolic attractors: in the sense that
they can be considered as periodically perturbed classical Lorenz attractors of flows; see [16, 19]
for more detail.

And finally, maps (1.2) and (1.3) can be regarded as the simplest in form three-dimensional
nonlinear maps. Therefore, one can apply various standard qualitative, analytical and numerical
methods when studying their dynamics. Our previous expertise shows that one can obtain rather
interesting results in this way; see e.g. [8, 15, 16].

Note that the present paper was essentially stimulated by our recent results, [20], obtained
when studying hyperbolic dynamics of GHM (1.4) at small ε1, ε2 and b. It was shown in [20] that
horseshoes of new types, the so-called half-orientable horseshoes, appear here, see also [21, 22]. In
contrast to the standard Smale horseshoes, the half-orientable ones are divided into infinitely many
equivalence classes with respect to such an equivalence relation as the local topological conjugacy.

These results cause natural questions about types of multidimensional horseshoes. In this paper
we study these questions for three-dimensional Hénon-like maps. We show, in particular, that
3D Hénon maps (1.2) and (1.3) can possess horseshoes of different types. Map (1.2) has (2,1)-
horseshoes, whereas, map (1.3) has (1,2)-horseshoes, where the first (second) index denotes the
dimension of the stable (unstable) manifolds of points of horseshoes.

2. STATEMENT OF THE PROBLEM AND MAIN RESULTS

In the present paper, we study hyperbolic dynamics of 3D Hénon maps (1.2) and (1.3). We
find certain regions of hyperbolicity (in the parameter space) and show that, in these regions,
the nonwandering sets, namely Λ1 and Λ2, respectively, for maps (1.2) and (1.3) are uniformly
hyperbolic sets. Both Λ1 and Λ2 are Smale horseshoes in the sense that the restriction of the

3)It is not the case for the well-known Hénon-like strange attractors that are born under homoclinic bifurcations
of two-dimensional diffeomorphisms [18], as they do not seem to be robust, i.e. an arbitrarily small perturbation
may lead to the birth of stable periodic orbits. The same holds true for many “physical” attractors observed in
numerical experiments, where a seeming chaotic behavior can easily correspond to some periodic orbit with a
very large period (plus inevitable noise).
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corresponding map onto Λi is topologically conjugate to the topological Bernoulli scheme (shift)
with two symbols.

However, geometrically, the horseshoes Λ1 and Λ2 are quite different; see Fig. 1. Both of them can
be obtained by means of the standard procedure of the Smale horseshoe creation: we start from
some initial cube Q; the image of Q under the map has a form of three-dimensional horseshoe;
this horseshoe intersects Q into two connected and disjoint components etc. However, map (1.2)
contracts Q along two directions and expands it along one direction. Therefore, we say that the
horseshoe Λ1 has type (2,1): it contains hyperbolic orbits having two-dimensional stable and one-
dimensional unstable invariant manifolds. On the contrary, map (1.3) contracts Q along only one
direction and expands it along two directions. Therefore, the horseshoe Λ2 has type (1,2): it contains
hyperbolic orbits having one-dimensional stable and two-dimensional unstable invariant manifolds.

Fig. 1. A geometry of three-dimensional horseshoes of (a) type (2,1) and (b) type (1,2).

The following two theorems describe the mentioned hyperbolic regions for maps (1.2) and (1.3),
respectively.

Theorem 1. Consider map (1.2). Let M satisfy the inequality

M >

(
ρ +

√
ρ2 +

1
4

)2

− (1 + b − B)

(
ρ +

√
ρ2 +

1
4

)
, (2.1)

where

ρ =
3 + 5(|B| + |b|)
3 + 4(|B| + |b|) (1 + |B| + |b|).

Then the nonwandering set of map (1.2) is the hyperbolic (2, 1)-horseshoe Λ1.

Theorem 2. Consider map (1.3). Let M satisfy the inequality

M >

(
ρ̃ +

√
ρ̃2 +

1
4

)2

− (1 − C − B)

(
ρ̃ +

√
ρ̃2 +

1
4

)
, (2.2)

where

ρ̃ =
3 + 5(|B| + |C|)
3 + 4(|B| + |C|)(1 + |B| + |C|).

Then the nonwandering set of map (1.3) is the hyperbolic (1, 2)-horseshoe Λ2.
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Although our goal is to study hyperbolic property of maps (1.2) and (1.3) directly, the most of
our proofs will be related to these maps written in the so-called parabola-like form. Namely, we
can represent map (1.2) in the following form (for those values of the parameters M,B and b at
which map (1.2) has fixed points):

x̄ = y, ȳ = z, z̄ = γz(1 − z) + Bx − by. (2.3)

Analogously, the parabola-like form of map (1.3) is as follows

x̄ = y, ȳ = z, z̄ = γy(1 − y) + Bx + Cz. (2.4)

Here, γ = (1 + b − B) ±
√

4M + (1 + b − B)2 in the case of map (2.3) and γ = (1 − C − B) ±√
4M + (1 − C − B)2 in the case of map (2.4).
In Section 3, we will find relations between the parameters γ,B, b and γ,B,C of maps (2.3) and

(2.4), respectively, which guarantee the existence of horseshoes Λ1 for (2.3) and Λ2 for (2.4) as the
unique nonwandering sets. Then, as applications, in Section 2.6, we prove Theorems 1 and 2.

Note that the parabola-like form of the maps is quite suitable for detecting nonwandering sets,
since they always occupy, for all γ, a rather restricted domain of the phase space. So, the initial box
Q, for the maps written in the parabola-like form, can be always chosen as the cube with sizes of
length 1 + β centered at the point (1/2, 1/2, 1/2), where β is positive and not very large (β → +0
as |B| + |b| → 0 or |B| + |C| → 0 and always β < 1/4). However, when the maps are written in
the standard form we must consider some “flatting” cube Q(γ, β) of sizes γ(1 + β) centered at the
point (γ, γ, γ), where γ → +∞ as M1 → +∞.

In the last part of the paper, Section 4, we will prove that the 3D Hénon maps under consideration
can possess horseshoes of two different smooth types: saddle horseshoes and saddle-focus horseshoes.
We will say that a horseshoe is of saddle type, if its both fixed points are saddles, i.e. all their three
multipliers are real; and a horseshoe is of saddle-focus type, if at least one of its fixed points is a
saddle-focus, i.e. it has a pair of complex conjugate multipliers. See also definition 2 relating to a
more general situation.

Denote as H1 and H2 the domains of hyperbolicity (2.1) and (2.2) for maps (1.2) and (1.3),
respectively. Geometrically, H1 and H2 look, in the space of the corresponding parameters, like
similar infinite curvilinear cones. However, divisions of these regions into domains corresponding to
the existence of saddle and saddle-focus horseshoes are quite different, which the following result
shows (see the proof in Section 4).

Theorem 3. The regions H1 and H2 are divided into 6 open subregions S+
1 , S−

1 , S+
2 , S−

2 and
SF+, SF− according to Fig. 2 such that the horseshoe (Λ1 for H1 or Λ2 for H2) is of saddle
type for S+

i ∪ S−
i , i = 1, 2, and of saddle-focus type for SF+ ∪ SF−.

Note that map (1.2) for (b,B,M) ∈ H1 or map (1.3) for (C,B,M) ∈ H2 has two saddle
hyperbolic fixed points O1 and O2, except for the plane B = 0 where the points have a zero
multiplier. For map (1.2), both points are of type (2,1), i.e. they have one unstable multiplier
(greater than 1 in the absolute value) and two stable multipliers (resp., less than 1). We define
concretely the point O1 (resp., O2) as that fixed point which has the positive (resp., negative)
unstable multiplier. For map (1.3), both the points are of type (1,2), i.e. they have two unstable
multipliers and a stable one. We show (see Lemma 10) that one of the fixed points has always
(in H2) real multipliers and, moreover, one of its unstable multipliers is positive and the other is
negative. We label this point as O1 and, accordingly, the other point is labelled as O2.

For the region H1, the point O1, resp. O2, is a saddle-focus (2,1) in SF+, resp. in SF−. Note that,
in this case, the regions SF+ and SF− touch one another along the axis (B = 0, b = 0) (when B = 0
and b = 0 map (1.3) becomes one-dimensional and, thus, fixed points have two zero multipliers).
Regions S1 and S2 do not intersect but adjoin “by angle” the line (B = 0, b = 0). For the region H2,
the point O2 is a saddle-focus (1,2) in both SF+ and SF−. In this case, the regions SF+ and SF−

adjoin one another along some area element of the plane B = 0 (on which the corresponding two-
dimensional map ȳ = z, z̄ = M + Cz − y2 has a fixed point, which is an unstable focus). Regions
S1 and S2 are disjoint in H2.
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170 GONCHENKO, LI

Fig. 2. The partition of the hyperbolicity regions into sub-regions corresponding the existence of horseshoes
of saddle type and saddle-focus type in the cases of (a) map (1.2); (b) map (1.3).

3. ON THE EXISTENCE OF HORSESHOES IN 3D HÉNON MAPS
In this section we prove Theorems 1 and 2. However, all our calculations, except for Section 3.5,

will be related to 3D Hénon maps (2.3) and (2.4) written in the parabola-like form. In what follows,
we will call map (2.3) 3HM1-map and denote it as T̃ ; analogously, we use notations 3HM2-map
and T̂ for map (2.4).

3.1. Geometrical Horseshoes in 3HM1-map

It is well known that in the case of the classical Hénon map ȳ = z, z̄ = 1 − by + az2, some
sufficient condition for hyperbolicity is given by the inequality a > 1

4(5 + 2
√

5)(1 + |b|)2; refer to
[23, 24]. For the Hénon map written in the parabola-like form, ȳ = z, z̄ = γz(1 − z) − by, it gives
the condition γ > (2 +

√
5)(1 + |b|). We need results of such a type for the case of 3HM1-map.

However, at first, we will find some conditions for the existence of a geometrical horseshoe.
Let β be a positive constant. Consider a box Qβ = Ix × Iy × Iz where Ix = [−(1 + β), (1 +

β)], Iy = Iz = [−β, 1 + β] centered at the point (0, 1/2, 1/2). Denote the faces z = −β and z = 1 + β
of Qβ as q0 and q1, respectively.

Lemma 1. Let β and γ be such that

γβ2 + (γ − 1 − |B| − |b|)β − (|B| + |b|) > 0 (3.1)

and

γ > 4(1 + β)(1 + |B| + |b|) (3.2)

for any given B and b. Then map (2.3) has a geometric horseshoe in Qβ, that is,

1. the set T̃ (Qβ) ∩ Qβ consists of two connected components;

2. T̃ (qi) ∩ Qβ = ∅, i = 0, 1;

3. there is a box Dβ ⊂ Qβ containing the section z = 1/2 such that T̃ (Dβ) ∩ Qβ = ∅.
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Proof. It follows from (2.3) that if (x, y, z) ∈ Qβ, then x̄ ∈ Ix and ȳ ∈ Iy. However, the coordinate z̄
can take values outside Iz. If (x, y, z) ∈ q0, i.e. z = −β, x ∈ Ix, y ∈ Iy, then z̄ = −γβ(1 + β) + Bx−
by � −γβ(1 + β) + (|B| + |b|)(1 + β). Thus, the inequality

−γβ(1 + β) + (|B| + |b|)(1 + β) < −β,

implies that T̃ (q0) ∩ Qβ = ∅. This inequality can be recast as (3.1).

The same relations are obtained for (x, y, z) ∈ q1, i.e. for z = 1 + β, i.e. inequality (3.1) also
implies that T̃ (q1) ∩ Qβ = ∅.

Let now z = 1/2 (it is the maximum point for function z(1 − z)). Then

z̄ =
1
4
γ + Bx − by � 1

4
γ − (|B| + |b|)(1 + β).

The condition z̄ > 1 + β, i.e. z̄ /∈ Iz for all (x, y) ∈ Ix × Iy, implies inequality (3.2).

3.2. Saddle Maps, Cross-Maps, Infinite Sequences of Saddle Maps

We will find sufficient hyperbolicity conditions for map (2.3) in Section 3.3. Our consideration
follows the Shilnikov method [1] when, instead of directly checking hyperbolicity conditions for
map(s) (like the well-known “cone conditions”), we consider the so-called “cross-form” of the map
and find its contraction conditions. In the section below, we give some necessary facts. We use the
following definition as in [1, 6].

Definition 1. A map (x1, y1) �→ (x2, y2) (where (x1, y1) ∈ X1 ×Y1, (x2, y2) ∈ X2 × Y2 and X1, X2,
Y1, Y2 are some closed subsets of complete metric spaces) is a saddle map, if the coordinates x2 and
y1 are uniquely defined by any x1 ∈ X1, y2 ∈ Y2 and the correspondence map (x1, y2) �→ (x2, y1)
(the so-called cross-map) is a contraction map in the metric max{‖x‖, ‖y‖}.

Recall that if we have a map ξ̄ = f(ξ, η), η̄ = g(ξ, η), then its cross-form is given by the map
ξ̄ = f̃(ξ, η̄), η = g̃(ξ, η̄), where η̄ ≡ g(ξ, g̃(ξ, η̄)), f̃ (ξ, η̄) ≡ f(ξ, g̃(ξ, η̄)).4)

This notation is effectively used in various problems related to the description of nontrivial
hyperbolic subsets of dynamical systems with homoclinic or heteroclinic orbits. The basis of
the corresponding theory consists in construction of criteria for the existence and uniqueness of
both periodic and non-periodic (nonwandering) orbits in terms of theorems on saddle and stable
fixed points of operators acting in a countable product of metric spaces. The corresponding exact
statements were proved by Shilnikov in [1]. Recall some principal moments.

Let us have infinitely many complete metric spaces Xi, i = 0,±1, . . . , with metric ρi(x′
i, x

′′
i )

and operators Ai such that AiXi ⊂ Xi+1 and ρi+1(Aix
′
i, Aix

′′
i ) < qρi(x′

i, x
′′
i ). Assume also that

sup
x′

i,x
′′
i ∈Xi

ρi(x′
i, x

′′
i ) < d < ∞.

Consider a direct product X =
+∞∏

i=−∞
Xi of the spaces and introduce the metric in X as

follows ρi(x′, x′′) = sup
−∞<i<+∞

ρi(x′
i, x

′′
i ), where x = (. . . , x−i, . . . , x−1, x0, x1, . . . , xi, . . . ). Consider

the operator A acting in X, A : x �→ x̄ , by the rule

x̄ = (. . . , x̄−i, . . . , x̄−1, x̄0, x̄1, . . . , x̄i, . . . ), where x̄i = Ai−1xi−1.

Lemma 2. [1] If q < 1, the operator A is contracting.

4)Usually, the cross-form is constructed in such a way: we find the relation η = g̃(ξ, η̄) between coordinates η and η̄
from the equation η̄ = g(ξ, η) (using, for example, that ‖∂g/∂η‖ �= 0), then this relation is also substituted into

the equation ξ̄ = f(ξ, η)).
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Let x∗ = (. . . , x∗
i , . . . ) be a fixed point of A, i.e. x∗ = Ax∗. Writing the latter equality by

components, we obtain that there is only one sequence {x∗
i }+∞

i=−∞ satisfying conditions x∗
i+1 = Aix

∗
i .

Note that since return maps (near homoclinic orbits, for example) are saddle maps, this lemma
is used here in the spirit of ideas of Hadamard. That is, first, there are constructed stable
leaves {W s

i : i = 0,±1, . . . , }. In this case, we consider as Xi suitable sets of Lipschitz functions
with C0-metric (or Cr-functions with Cr-metric, as in [6]). Next, in an analogous way, a set
{W u

i ; i = 0,±1, . . . , } of unstable leaves is constructed. The sought saddle orbit is {W s
i } ∩ {W u

i }.
Usually, such an approach is used when we need to know not only the existence (and uniqueness)
of the orbit but also the behavior of its stable and unstable manifold. If the latter is not required,
then one can use the following result (see Lemma 3 below).

Let us consider two sequences of complete metric spaces Xi and Yi (i = 0,±1, . . . ) and assume
that

sup
x′

i,x
′′
i ∈Xi

ρXi(x
′
i, x

′′
i ) < d, sup

y′
i,y

′′
i ∈Yi

ρYi(y
′
i, y

′′
i ) < d.

Let us define on Xi × Yi+1 the operators Ai and Bi+1 such that

Ai(Xi × Yi+1) ⊂ Xi+1, Bi+1(Xi × Yi+1) ⊂ Yi.

Assume that

ρXi+1(x̄
′
i+1, x̄

′′
i+1) <

q

2
(
ρXi(x

′
i, x

′′
i ) + ρYi+1(y

′
i+1, y

′′
i+1)

)
,

ρYi(ȳ
′
i, ȳ

′′
i ) <

q

2
(
ρXi(x

′
i, x

′′
i ) + ρYi+1(y

′
i+1, y

′′
i+1)

)
,

where x̄i+1 = Ai(xi, yi+1), ȳi = Bi+1(xi, yi+1).

Consider the space Z =
+∞∏

i=−∞
(Xi × Yi). The metric in Z is defined as follows

ρZ

(
(x′, y′), (x′′, y′′)

)
= sup

−∞<i<+∞

(
ρXi(x

′
i, x

′′
i ) + ρYi(y

′
i, y

′′
i )

)
,

where z = (x, y) = (. . . , (xi, yi), . . . ). Introduce the operator5) C1,−1

C1,−1 : Z = (x, y) �→ Z̄ = (x̄, ȳ)

(by the rule: (x̄, ȳ) = (. . . , (x̄i, ȳi), . . . ) where x̄i+1 = Ai(xi, yi+1), ȳi = Bi+1(xi, yi+1)).

Lemma 3. [1] If q < 1, the operator C1,−1 is contracting.

Let z∗ = (x∗, y∗) be a fixed point of C1,−1. Writing this condition by components, we obtain
that there exists only one sequence

(
. . . , (x∗

−1, y
∗
−1), (x

∗
0, y

∗
0)(x

∗
1, y

∗
1) . . .

)
satisfying conditions x∗

i+1 =
Ai(x∗

i , y
∗
i+1), y∗i = Bi+1(x∗

i , y
∗
i+1).

We can deduce from Lemma 3, for example, the following:

Corollary 1. If the conditions of Lemma 3 hold, then the set {W s
i } consists of leaves of form

xi = hi(yi), where hi are Lipschitz functions with the Lipschitz constant Li < L < 1.

Proof. Consider the spaces Xi of curves of form xi = hi(yi) given on Xi × Yi. Assume that |hi(y′i)−

hi(y′′i )| < L0|y′i − y′′i | for all i, where L0 < 1. Consider the operator A which acts on X =
+∞∏

i=−∞
Xi

5)The notation C1,−1 belongs to L.Shilnikov and it has a sense: the operator is given in such a form which is
“standard” with respect to one group coordinates and “cross” with respect to other coordinates. Note that when
there are no “cross”-coordinates the operator is normal; when there are no “standard”-coordinates the operator
can be considered as an “inverse limit”.
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and transforms curves xi = hi(yi) into xi+1 = h̄i+1(yi+1) by the rule xi+1 = Ai(hi(yi), yi+1), yi =
Bi+1(hi(yi), yi+1). Then we have

|y′i − y′′i | � q

2
(
L0|y′i − y′′i | + |y′i+1 − y′′i+1|

)
⇒ |y′i − y′′i | < |y′i+1 − y′′i+1|,

since 0 < q,L0 < 1. Thus,

|x′
i+1 − x′′

i+1| � q

2
(
L0|y′i − y′′i | + |y′i+1 − y′′i+1|

)
< L0|y′i+1 − y′′i+1|.

It means that A(X ) ⊂ X . Let us show that the operator A is contracting. We write the following
equalities

h′
i+1(yi+1) = Ai(hi(y′i), yi+1), y′i = Bi+1(h′

i(y
′
i), yi+1),

h′′
i+1(yi+1) = Ai(hi(y′′i ), yi+1), y′′i = Bi+1(h′′

i (y′′i ), yi+1).

Then we have |y′i − y′′i | � q
2 |h′

i(y
′
i) − h′′

i (y
′′
i )| � q

2 (|h′
i − h′′

i | + L0|y′i − y′′i |). Since q < 1, L0 < 1, it
implies that |y′i − y′′i | < |h′

i − h′′
i | and, hence,

|h′
i+1 − h′′

i+1| � q

2

∣∣h′
i(y

′
i) − h′′

i (y
′′
i )

∣∣ � q

2
(
|h′

i − h′′
i | + L0|y′i − y′′i |

)
<

q

2
(1 + L0)|h′

i − h′′
i | < q |h′

i − h′′
i |.

Analogously, we can prove that the set {W u
i } consists of leaves of form yi = hi(xi), where hi are

Lipschitz functions with the Lipschitz constant Li < L < 1. For this goal, we consider the operator
C−1,1. Moreover, applying methods of [6], for example, we can prove that {W s

i } and {W u
i } consist

of the corresponding Cr-leaves.
Thus, Lemma 3 allows to be deduced all necessary facts for applying the hyperbolic theory.

Note also that we can use various contraction conditions in particular calculations (taking suitable
metrics, for example). In particular, we will use the following reformulation of Lemma 3; see [6].
Lemma 4. Let complete metric spaces Xi and Yi and operators Ai and Bi, i = 0,±1, . . . , satisfy
the following conditions:

1. diam Xi < d, diam Yi < d ;

2. Ai(Xi × Yi+1) ⊂ Xi+1, Bi+1(Xi × Yi+1) ⊂ Yi ;

3. ρXi+1(x̄
1
i+1, x̄

2
i+1) < q1 ρXi(x

1
i , x

2
i ) + L1q1 ρYi+1(y

1
i+1, y

2
i+1),

ρYi(ȳ
1
i , ȳ

2
i ) < q2 ρXi(x

1
i , x

2
i ) + L2q2 ρYi+1(y

1
i+1, y

2
i+1),

where d and ql, Ll, l = 1, 2, are constants with d > 0, ql > 0, Ll > 0 and 0 < ql(1 + Ll) < 1, and for
all i, xi ∈ Xi, yi ∈ Yi, and x̄i+1 = Ai(xi, yi+1), ȳi = Bi+1(xi, yi+1). Then there exists the unique
sequence of form (. . . , (x∗

i−1, y
∗
i−1), (x

∗
i , y

∗
i ), . . .), satisfying the conditions x∗

i+1 = Ai(x∗
i , y

∗
i+1) , y∗i =

Bi+1(x∗
i , y

∗
i+1).

3.2.1. Abstraction.
Note that the bases of the theory of cross-maps were constructed by L.Shilnikov as far back

as 1960s. However, this theory seems to be not very popular. The reason may be that some basic
constructions (like Lemmas 2 and 3) look quite abstract and, as a result, have no “transparent”
geometrical sense. However, this theory must be considered as an alternative and complementary
one to such “standard” branches of the hyperbolic theory as “cone technique”, “shadow lemma”
etc. Moreover, there is a series of classical results which have been proved by means of the Shilnikov
method (and it is not clear how these results could be obtained by other methods). For example, the
Poincaré–Birkhoff problem on a structure of a neighborhood of transverse Poincaré homoclinic orbit
was solved, [1]; analogous results were obtained for the cases of transverse heteroclinic cycles, [1],
and a homoclinic tube of an invariant torus, [26]; in [5, 27, 28] a description was given of nontrivial
hyperbolic subsets in the case of systems close to systems having homoclinic tangencies.6) Therefore,
in this paper, we use the Shilnikov method, since it seems to be rather convenient for our goals.
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3.3. Hyperbolic Horseshoes for 3HM1-map

Lemma 5. Let the conditions of Lemma 1 be fulfilled. If

γ > 2(1 + β)(1 + |b| + |B|) +
√

4(1 + β)2(1 + |b| + |B|)2 + 1, (3.3)

then the 3HM1-map (2.3) has in Qβ a hyperbolic (2, 1)-horseshoe Λ1.

Proof. Introduce a new coordinate x by the formula xnew = sx with s > 1. Then map (2.3) takes
the following form

x̄ = s−1y, ȳ = z, z̄ = γz(1 − z) + sBx − by. (3.4)

Now we rewrite map (3.4) in the so-called cross-form [1, 6] with respect to the “unstable”
coordinate z. For this goal, we express the coordinate z in the third equation of (3.4) in terms of
all other coordinates: x, y and z̄. We obtain

z =
1
2

+ (−1)i+1 1
2

√
1 − 4

γ
(z̄ + by − sBx) ≡ Pi(x, y, z̄), i = 0, 1. (3.5)

Then the action of map (3.4) on Qβ is equivalent to the actions of two cross-maps

T̃0 : x̄ = s−1y, ȳ = P0(x, y, z̄), z = P0(x, y, z̄), and

T̃1 : x̄ = s−1y, ȳ = P1(x, y, z̄), z = P1(x, y, z̄).
(3.6)

Both these maps are defined in Jβ = Ix × Iy × Iz̄ where Ix and Iy are defined as before and
Iz̄ = [−β, 1 + β]. However, unlike T̃ , the image of any point of Jβ under T̃i, i = 0, 1, is, by Lemma 1,
a point of Jβ . Moreover, there are no points of Jβ which are mapped onto Dβ under T̃i, i = 0, 1.
Indeed, by Lemma 1, all such points do not belong to Jβ, since the image of Dβ under T̃ is positioned
outside Qβ (i.e. all points from T̃ (Dβ) have the z̄-coordinate outside Iz̄). Note that Qβ is divided
into three connected and disjoint components: Q0, Q1 and Dβ which are, respectively,low, upper
and middle parts of Qβ and, moreover, T̃0(Qβ) ⊂ Q0 and T̃1(Qβ) ⊂ Q1; see Fig. 3. We need now to
find conditions under which both maps T̃0 and T̃1 are contracting. Then we can conclude that the
initial map T̃ is a saddle map on Qβ.

It follows from (3.6) that |x̄1 − x̄2| < s−1|y1 − y2|, and since 0 < s−1 < 1, it gives us a contraction
with respect to the first coordinate. Evidently, the sought contraction along y and z̄ will be
guaranteed if the following estimates hold

R =
∥∥∥∥∂Pi

∂x

∥∥∥∥ +
∥∥∥∥∂Pi

∂y

∥∥∥∥ +
∥∥∥∥∂Pi

∂z̄

∥∥∥∥ < q < 1, i = 0, 1, (3.7)

where q is some positive constant. We obtain from (3.5) that

R =
1 + |b| + s|B|

γ

∣∣∣∣1 − 4
γ

(z̄ + by − sBx)
∣∣∣∣
−1/2

.

Since z̄ + by − sBx = γz(1 − z), we have

R =
1 + |b| + s|B|

γ
|z − 1

2
|−1.

Thus, the condition R < q can be rewritten as the following inequality

|z − 1
2
| >

1 + |b| + s|B|
2qγ

.

6)For example, in [27] (see also [29]), the existence of nontrivial hyperbolic subsets was proved for systems having
homoclinic tangencies of arbitrary finite orders and their description was given; these results cover widely the
results obtained (by other methods) in [30, 31], for example (note that many proofs in [31] are not correct).
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Fig. 3. The initial box Qβ (a) and its image T̃ (Qβ) (b) under the 3HM1-map.

Since this inequality holds for any s > 1, 0 < q < 1 we can take the limit s → 1, q → 1. Then we
obtain

|z − 1
2
| >

1 + |b| + |B|
2γ

. (3.8)

Inequality (3.8) gives, in fact, some estimate for the vertical size of the sub-box Dβ . The
corresponding z̄ for these values of z must be greater than (1 + β). Since z̄ = γz(1 − z) + Bx − by

(we put here s = 1) and z(1 − z) =
1
4
− (z − 1

2
)2, the condition z̄ > 1 + β is satisfied (when (3.8)

holds), if

γ

4
− 1

4γ
− |B|(1 + β) − |b|(1 + β) > 1 + β.

This gives the final estimate (3.3).

It remains now to show that Lemma 1 and estimate (3.3) provide sufficient conditions for the
existence of the Smale horseshoe Λ1 on Qβ. Note that the set of orbits which do not leave Qβ under
both forward and backward iterations of T̃ is defined as Λ =

⋂+∞
n=−∞ T̃ n(Qβ). We have proved

that the set T̃ (Qβ) consists of two connected components D0 and D1; see Fig. 3. Therefore, for a
complete description of Λ1 we need to use (at least) two symbols in order to point out to which
component, D0 or D1, belongs a point of an orbit from Λ. Let some orbit of Λ intersect successively
components

(. . . ,Dαi , Dαi+1 , . . . ), (3.9)

where i = 0,±1, . . . , and αi ∈ {0, 1}. Let Mi(xi, yi, zi) ∈ Dαi be the corresponding sequence of
points of this orbit. By our construction, we have such relations between coordinates of the points
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Mi and Mi+1 (see (3.6)): for i = 0,±1, . . . ,

xi+1 = s−1yi, yi+1 = Pαi(xi, yi, zi+1), zi = Pαi(xi, yi, zi+1), (3.10)

where the functions Pαi are defined, for all i, on Ix × Iy × Iz̄. Let us prove that the system (3.10)
has a unique solution where the conditions of Lemma 5 hold. Consider the following sequence of
operators and spaces: for i = 0,±1, . . . ,

Ai : Ix × Iy × Iz̄ → Ix × Iy given by x̄i+1 = s−1yi, ȳi+1 = Pαi(xi, yi, zi+1),

Bi+1 : Ix × Iy × Iz̄ → Iz̄ given by z̄i = Pαi(xi, yi, zi+1).
(3.11)

However, we have proved that this sequence satisfies the conditions of Lemma 4. Thus, it has a
unique fixed point M∗ = (. . . , (x∗

i , y
∗
i , z

∗
i ), . . . ) and this point corresponds to a saddle orbit from Λ:

its coordinates satisfy relations (3.10) and the orbit intersect successively components D′ and D∞
of Qβ in accordance with rule (3.9). Besides, we have proved that when the conditions of Lemma 5
hold the 3HM1-map is hyperbolic on Qβ, more exactly, it is (exponentially) contracting along y-
direction and expanding along z-direction. It gives a way to construct stable and unstable leaves (see
Corollary 1). These leaves compose two invariant families of stable and unstable invariant manifolds
of Λ (having on Qβ the structure of direct products of Cantor sets on interval). It completes the
proof.

Remark 1. Inequality (3.1) has a particular solution of form7)

β =
|B| + |b|
γ − 1

. (3.12)

This solution can be regarded as “good”(it gives a quite small value of β: note that β = (|B|+ |b|)/γ
is not a solution of (3.1)). Thus, we can always take (3.12) as a very suitable value of β. Let β be
given by (3.12).8)

Remark 2. Since γ > 4, we can use the estimate β < 1
3(|B| + |b|) which is quite suitable for the

case of small |B| + |b|. If |B| + |b| are not small, we can estimate β as β < 1
4 , since one can obtain

from (3.3) that γ > 4(|B| + |b| + 1) in the domain of hyperbolicity. It also allows us to take the
following value of β:

β =
|B| + |b|

3 + 4(|B| + |b|) (3.13)

which is quite suitable. Thus, in any case, the horseshoes of the 3HM1-map are positioned not far
from the unit box Q0 = [0, 1] × [0, 1] × [0, 1].

Lemma 6. Let inequality (3.3) be satisfied with β given by (3.12) and |B| + |b| �= 0. Then the
hyperbolic set Λ1 from Lemma 5 is the unique nonwandering set of the 3HM1-map.

Proof. Take β satisfying (3.12). Consider the image of the face z = −β (or, which is the same,
z = 1 + β) of Qβ under map (2.3). We immediately obtain

z̄ � −γβ(1 + β) + (|B| + |b|)(1 + β) = (1 + β)[−γβ + |B| + |b|].
Since, by (3.12), |B| + |b| = (γ − 1)β, i.e. [−γβ + |B| + |b|] = −β, we obtain z̄ � −β(1 + β) < −β.
For the new boundary z = −β(1 + β), we obtain

z̄ � −γβ(1 + β) (1 + β(1 + β)) + (|B| + |b|)(1 + β)

< −γβ(1 + β)2 + (|B| + |b|)(1 + β)2 = (1 + β)2[−γβ + |B| + |b|] = −β(1 + β)2.

7)Since we assume that B �= 0, the constant β is always positive. In the specific one-dimensional case B = b = 0
we can take, formally, any sufficiently small positive number as β. However, the hyperbolicity here will be
“degenerate”, as well as for B = 0, from the point of view of the three-dimensional setting. Although, our
hyperbolic estimates “work” for these cases also.

8)If |B|+ |b| → 0, then β → 0 and the inequalities (3.2) and (3.3) give, respectively, solutions γ > 4 and γ > 2 +
√

5
that are well-known for the parabola map.
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We repeat this procedure in the same way. Let us obtain the boundary z̄(n) = −β(1 + β)n on the
nth step. Then

z̄(n+1) � −γβ(1 + β)n (1 + β(1 + β)n) + (|B| + |b|)(1 + β)

� −γβ(1 + β)n+1 + (|B| + |b|)(1 + β)n+1

= (1 + β)n+1[−γβ + |B| + |b|] = −β(1 + β)n+1.

Of course, this estimate will be true as long as |x| < 1 + β, |y| < 1 + β. But the form of map (2.3)
is such that these relations are fulfilled0 as long as |z| < 1 + β. However, for some n we can obtain
that z̄ < −1 − β (but |z| < 1 + β). Then, taking z = −1 − β, we obtain that the corresponding
value of z̄ satisfies the estimate z̄ � (−2γ + |B| + |b|)(1 + β). Since, by (3.3), γ > 4(1 + |b| + |B|),
one has that

z̄ < −8(1 + |b| + |B|) + |B| + |b| < −7(1 + |b| + |B|).
It follows from [25] that in the case of map (2.3) any point lying outside the box ‖(x, y, z)‖ �
(1 + |b| + |B|) is wandering (tends to ∞).

The cases of the faces x = −β, x = 1 + β and y = −β, y = 1 + β are considered in the same way,
since ȳ = z and ¯̄x = z.

3.4. Horseshoes for 3HM2-map

Now we consider map (2.4) (called 3HM2-map). It easily to see that maps 3HM1 and 3HM2 are
inverse each other. Thus, we can conclude that the 3HM2-map can also have hyperbolic dynamics
related to horseshoes, only these horseshoes will be of type (1,2). Naturally, we could transfer the
results obtained for the 3HM1-map to 3HM2-map. But the 3HM2-map is quite interesting by itself
and, besides, we demonstrate here another application of the cross-map technique. Therefore, we
consider 3HM2-map separately.

Take again the box Qβ = Ix × Iy × Iz and denote the squares y = −β and y = 1 + β of Qβ as
r0 and r1, respectively.

Lemma 7. Consider the box Qβ with β > 0 satisfying the inequality

γβ2 + (γ − 1 − |B| − |C|)β − (|B| + |C|) > 0. (3.14)

Then if

γ > 4(1 + β)(1 + |B| + |C|), (3.15)

then the 3HM2-map (2.4) has a geometric horseshoe in Qβ, i.e.

1. the set T̂ (Qβ) ∩ Qβ consists of two connected components;

2. T̂ (ri) ∩ Qβ = ∅, i = 0, 1;

3. there is a box D̂β ⊂ Qβ such that T̂ (D̂β) ∩ Qβ = ∅ and D̂β contains the section y = 1/2 of
Qβ (see Fig. 4).

Proof. It follows from (2.4) that if (x, y, z) ∈ Qβ , then x̄ ∈ Ix and ȳ ∈ Iy. However, the coordinate
z̄ can take values outside Iz since the coordinate y can expand. Indeed, if (x, y, z) ∈ r0, i.e.
y = −β, x ∈ Ix, z ∈ Iz, then z̄ = −γβ(1 + β) + Bx + Cz � −γβ(1 + β) + (|B|+ |C|)(1 + β). It gives
us the condition

−γβ(1 + β) + (|B| + |C|)(1 + β) < −β (3.16)

which is recast as inequality (3.14), the latter having solutions of the form

β >
1
2γ

(
1 + |B| + |C| − γ +

√
(1 + |B| + |C| − γ)2 + 4γ(|B| + |C|)

)
.
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The same relations are obtained for (x, y, z) ∈ r1, i.e. for y = 1 + β.
Let now y = 1/2. Then

z̄ =
1
4
γ + Bx + Cz � 1

4
γ − (|B| + |C|)(1 + β).

The condition z̄ > 1 + β, i.e. z̄ /∈ Iz for all (x, y) ∈ Ix × Iy, reads as inequality (3.15).

Fig. 4. (a) The initial box Q̂β and (b) its image T̂ (Q̂β) under the 3HM2-map.

Lemma 8. If

γ > 2(1 + β)(1 + |b| + |C|) +
√

4(1 + β)2(1 + |b| + |C|)2 + 1, (3.17)

then the nonwandering set of map (2.4) is a hyperbolic (2, 1)-horseshoe Λ2 which is positioned
inside Qβ.

Proof. Introduce a new coordinate z by the formula znew = w−1z with w < 1. Then map (2.4) takes
the following form

x̄ = y, ȳ = w−1z, z̄ = wγy(1 − y) + wBx + Cz. (3.18)

Now we rewrite map (3.18) in the cross-form with respect to the “unstable” coordinates y
and z. For this goal, we express the coordinate y in the third equation of (3.18) in terms of other
coordinates: x, z = ȳ and z̄. We obtain

y =
1
2

+ (−1)i+1 1
2

√
1 − 4

wγ
(z̄ − Cwȳ − wBx) ≡ Pi(x, ȳ, z̄), i = 0, 1. (3.19)

Then the action of map (3.18) on Qβ is equivalent to the actions of two cross-maps

T̂0 : x̄ = P0(x, ȳ, z̄), z = wȳ, z = P0(x, ȳ, z̄), and

T̂1 : x̄ = P1(x, ȳ, z̄), z = wȳ, z = P1(x, ȳ, z̄).
(3.20)

Both these maps are defined in Jβ = Ix × Iy × Iz. However, unlike T̂ , the image of any point of Jβ

under T̂i, i = 0, 1, is, by Lemma 7, a point of Jβ. Moreover, there are no points of Jβ which are
mapped onto D̂β under T̂i, i = 0, 1. Indeed, by Lemma 7, all such points do not belong Jβ , since
image of Dβ under T̂ is positioned outside Qβ (i.e. all points from T̂ (D̂β) have z̄-coordinate not
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belonging to Iz̄). Note that the box Qβ is divided onto three connected and disjoined components:
Q̂0, Q̂1 and D̂β which are, respectively, left, right and middle parts of Qβ. Then we has that
T̂0(Qβ) ⊂ Q̂0 and T̂1(Qβ) ⊂ Q̂1. We need now to find conditions under which both maps T̂0 and T̂1

are contracting.
It follows from (3.20) that |z1 − z2| < w|ȳ1 − ȳ2|, and since 0 < w < 1, it gives us a contraction

with respect to ȳ. The sought contraction along x̄ and z will be guaranteed if the estimates (3.7)
hold with Pi satisfying (3.19). Then we obtain

R =
1 + w|C| + w|B|

wγ

∣∣∣∣1 − 4
wγ

(z̄ − wCȳ − wBx)
∣∣∣∣
−1/2

.

Since z̄ − wCȳ − wBx = wγy(1 − y), we has

R =
1 + w|C| + w|B|

wγ
|y − 1

2
|−1.

Thus, the condition R < q can be rewritten as the following inequality

|y − 1
2
| >

1 + w|C| + w|B|
2qγ

.

Taking the limit w → 1, q → 1 we obtain

|y − 1
2
| >

1 + |C| + |B|
2γ

. (3.21)

Inequality (3.21) gives, in fact, some estimate for y-size of the sub-box D̂β. The corresponding z̄
for these values of y must be greater than (1 + β). Since z̄ = γy(1 − y) + Bx + Cz (we put here
w = 1), the condition z̄ > 1 + β is satisfied (when (3.21) holds), if

γ

4
− 1

4γ
− |B|(1 + β) − |C|(1 + β) > 1 + β.

This gives the final estimate (3.17).
The result on the uniqueness of horseshoe is proved quite analogously to Lemma 6. �

Note that both maps (2.3) and (2.4) have the constant Jacobian B. Therefore, the inequality
B �= 0 is always considered as a necessary condition for hyperbolicity of the three-dimensional maps.
However, in the limit case, B = 0, we can also speak of some type of hyperbolic behavior, but only
now in the two-dimensional setting. Every map (2.3) and (2.4) has at B = 0 “super-attracting”
two-dimensional invariant surfaces, S1 and S2, respectively. In the case of map (2.3) with B = 0,
the nonwandering set for T̃ |S1 is (when b �= 0) a two-dimensional Smale horseshoe. In the case of
map (2.4) with B = 0, the nonwandering set T̂ |S2 is a “total snap-back repeller” (i.e., some infinite
closed invariant set consisting of completely unstable (node type) orbits and containing a countable
subset of periodic orbits having (transverse) homoclinic points).

3.5. The Proofs of Theorems 1 and 2

The proof of Theorem 1. We consider map (2.3) and suppose that Lemma 5 holds. With the

following change of coordinates xnew = γ(x+
1
2
), ynew = γ(y +

1
2
) , znew = γ(z +

1
2
) map (2.3) takes

the standard form (1.2), where 4M1 = γ2 − 2γ(1 + b − B). Since γ is positive (due to Lemma 5),
we find also that

γ = (1 + b − B) +
√

4M1 + (1 + b − B)2. (3.22)

We take as β its value given by formula (3.13). Then Theorem 1 is obtained as the direct
reformulation of Lemma 5 in terms of M1, B and b. �
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The proof of Theorem 2. The case of the 3HM2-map in the standard form (1.3) is considered
quite analogously and we obtain again Theorem 2 as the direct reformulation of Lemma 8 in terms
of M1, B and C with β = (|B| + |C|)(3 + 4(|B| + |C|))−1. �

Note that if the initial box Qβ, in the 3D Hénon maps written in the parabola-like form, can be
always chosen as the cube with sizes of length 1 + β centered at the point (1/2, 1/2, 1/2), then in
the case of these maps written in the standard form we must consider some “flatting” cube of sizes
γ(1 + β) centered at the point (γ, γ, γ).

4. SADDLE AND SADDLE-FOCUS HORSESHOES IN 3D HÉNON MAPS.
THE PROOF OF THEOREM 3.

We show in this section that three-dimensional Hénon maps can possess horseshoes of different
smooth types in a sense of the following definitions.

Definition 2. Let a three-dimensional smooth map g have a nonwandering closed hyperbolic set Λg

and let the system gn|Λg for some positive integer n be conjugate to the topological Bernoulli scheme
(shift) with two symbols. We will say that Λ is an n-horseshoe; the horseshoe is of saddle type or
saddle horseshoe if its both orbits of period n (fixed points for n = 1) are saddles (i.e. all multipliers
are real); the horseshoe is of saddle-focus type or saddle-focus horseshoe if at least one orbit of period
n is a saddle-focus (i.e. it has a pair complex conjugate multipliers); the horseshoe is completely
saddle (resp., completely saddle-focus) if all its periodic orbits are saddles (resp., saddle-foci).

We show that in 3D Hénon maps, like (2.3) and (2.4) (and, resp., (1.2) and (1.3)) there can exist
horseshoes of both saddle and saddle-focus type; they are the horseshoes Λ1 for (2.3) and Λ2 for
(2.4) existing for distinct values of the parameters from the hyperbolicity regions. The existence of
completely saddle horseshoes of type (2,1) is well known. For example, in the case of map (2.3), if
the hyperbolicity conditions (see Lemma 5) are satisfied and |B| � |b|, then the horseshoe Λ1 will
be normally hyperbolic. In other words, any periodic point of such a horseshoe has one unstable
multiplier and two stable ones. Besides, one of the stable multipliers is greater, in the absolute value,
than the other. Indeed, if B = 0 we have the 2D Hénon map whose horseshoe (with γ sufficiently
large) has a coefficient of extension (along unstable directions) equal γ in the order and, thus,
the contraction is of order b/γ. When B �= 0 and small we have that the coefficient of volume
contraction is B and, thus, the contraction along x-direction (orthogonal to (y, z)-plane) will be of
order B/b. Thus, the normal hyperbolicity condition means that |B/b| < |b/γ|, i.e. some condition
like |B| < b2/γ defines a domain where horseshoes are completely saddle. We will show that if
|B| ∼ b2/γ or |B| > b2/γ, the horseshoes Λ1 can be of saddle-focus type. On the other hand, it is
not quite clear whether horseshoes Λ2 at small B can be completely saddle horseshoes: evidently,
this question is equivalent to the following one: can snap-back repellers Λ2|B=0 have only node
type periodic points? Of course, when B is sufficiently large, the horseshoe Λ2 can be completely
of saddle type (since it is inverse to Λ1 with small Jacobian B−1).

4.1. Saddle-Focus Horseshoes in 3HM1-map

Consider map (2.3) with γ > 0. This map has always two fixed points O1 and O2. The point O1

is in the origin, i.e. O1 = (0, 0, 0), the point O2 has coordinates

O2(x, y, z) : x = y = z =
γ − 1 + B − b

γ
.

The characteristic equation for map (2.3) has the form

λ3 − γ(1 − 2z)λ2 + bλ − B = 0, (4.1)

Consider first the point O1. If B = b = 0, the equation (4.1) has roots (for z = 0) λ1 = γ, λ2,3 = 0.
Thus, in the domain of hyperbolicity (here γ > 4(1 + |B|+ |b|)), the equation (4.1) with z = 0 has
always two stable roots (inside the unit circle) and one unstable (outside the unit circle). It means
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that the point O1 is a saddle fixed point of type (2,1). However, as far as its “smooth” type is
concerned, the point O1 can be both of saddle type (all multipliers are real) and saddle-focus type
(stable multipliers are complex conjugate) depending of values of the parameters. The boundary
between these two general cases corresponds, evidently, to the critical case where the characteristic
equation has a double root. For such a root λ, we have the following system:

λ3 − γλ2 + bλ − B = 0, 3λ2 − 2γλ + b = 0. (4.2)

Since |λ| < 1, we obtain from the second equation of (4.2) the following relation: 3λ = γ −
√

γ2 − 3b.
Then we find from the first equation that

B = g1(b, γ) ≡ 1
27

(
γ −

√
γ2 − 3b

) (
6b − γ(γ −

√
γ2 − 3b)

)
. (4.3)

This is the equation of the surface B1
sf (in the (γ,B, b)-parameter space) corresponding to those

values of the parameters when the point O1 has a double (stable) multiplier. The equation (4.3)
defines a parabola-like cylinder which contains the axis γ and has a quadratic tangency with
the plane B = 0; see Fig. 2 (a). Note that, for small B and b, the surface (4.3) can be written

as B =
b2

4γ

(
1 + O(

b

γ
)
)

. The surface B1
sf is positioned in the half-space B > 0 and divides the

parameter space into two regions: B > g1(b, γ) which we denote as SF+, where the point O1 is the
saddle-focus, and B < g1(b, γ), where the point O1 is the saddle (except for the plane B = 0).

Note that if B < 0 the point O1 can not be a saddle-focus since it has the positive unstable
multiplier and, hence, its stable multipliers must be real and of different signs: the product of all
multipliers is equal to B. However, the point O2 can be saddle-focus in the region B < 0 (and,
otherwise, O2 can not be a saddle-focus for B > 0).

The characteristic equation at the point O2 is λ3 + (γ − 2 + 2B − 2b)λ2 + bλ − B = 0, This
equation has two stable roots and an unstable one, the latter being negative (of order −γ when B
and b are small). Thus, the stable roots can become double in the case of negative B, so that such
a double root λ satisfies the system:

λ3 + (γ − 2 + 2B − 2b)λ2 + bλ − B = 0, 3λ2 + 2(γ − 2 + 2B − 2b)λ + b = 0.

Then we can write the equation of the surface B2
sf corresponding to the existence of double

multipliers for the point O2 in the form

B = g2(b, γ) ≡ 1
9

(√
A2 − 3b − A

) [
2b +

√
A2 − 3b − A

3
A

]
, (4.4)

where A = γ − 2 + 2B − 2b. This is again a parabola-like cylinder which contains the axis γ and
touches the plane B = 0; see Fig. 2 (a). For small B and b, the equation (4.4) can be written as

B = − b2

4(γ − 2)

(
1 + O(

b

γ
)
)

. The surface B2
sf is positioned in the half-space B < 0 and divides the

parameter space into two regions: B < g2(b, γ) which we denote as SF−, where the point O2 is the
saddle-focus, and B > g2(b, γ), where the point O2 is the saddle (for B �= 0). Thus, we have proved
the following

Lemma 9. The surfaces B1
sf and B2

sf divide the region of hyperbolicity (3.3) into four open regions
SF+, SF−, S1 and S2 such that the set Λ1 is a saddle (2, 1)-horseshoe for (γ,B, b) ∈ S1 ∪ S2\{B =
0} and a saddle-focus (2, 1)-horseshoe for (γ,B, b) ∈ SF+ ∪ SF−. Besides, the point O1 (resp., O2)
is a saddle-focus for values of the parameters from the region SF+ (resp., SF−).

This lemma gives us Theorem 3 for H1, if we express γ as a function of M1 by (3.22).
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4.2. Saddle-Focus Horseshoe in 3HM2-map

Consider map (2.4) with γ > 0. This map has always two fixed points O1 and O2. The point O1

is in the origin, i.e. O1 = (0, 0, 0) and the point O2 has coordinates

O2(x, y, z) : x = y = z =
γ − 1 + B + C

γ

The characteristic equation for map (2.4) has the form

λ3 − Cλ2 − γ(1 − 2z)λ − B = 0. (4.5)

Lemma 10. The point O1 is always the saddle (of type (1, 2)) in the hyperbolicity domain.

Proof. Let B = C = 0 and γ be sufficiently large (this point is inside the hyperbolicity domain).
Then, for z = 0, the equation (4.5) has three real roots 0,±√

γ. When B becomes nonzero the point
O1 is a saddle point of type (1,2) having one stable multiplier and two unstable ones. The latter
are real and of opposite signs. It is clear that the appearance of any double root in this situation
when parameters (B,C and γ) change is only possible when one of the roots crosses the value +1
or −1. It means that we must leave the hyperbolicity domain.

Consider now the point O2. The characteristic equation (4.5) at O2 has the form

λ3 − Cλ2 + (γ − 2 + 2B + 2C)λ − B = 0.

When B = C = 0 this equation has the roots 0,±i
√

γ − 2, i.e. point O2 at small C and B �= 0 is
a saddle-focus. One can find boundaries of a domain D2

sf in the (γ,B,C)-parameter space where
O2 is a saddle-focus. The boundaries correspond to the moment when O2 has a double unstable
multiplier λ. For this purpose, we need to solve the system⎧⎨

⎩ λ3 − Cλ2 + (γ − 2 + 2B + 2C)λ − B = 0,

3λ2 − 2Cλ + (γ − 2 + 2B + 2C) = 0.

The solution defines two boundaries B+
sf2 and B−

sf2, where B±
sf2 has the following equation

B =
A±

3
(
2(γ − 2 + 2B + 2C) − CA±)

,

where

A± =
C ±

√
C2 − 3(γ − 2 + 2B + 2C)

3
.

Then domain D2
sf is defined as B−

sf2 < B < B+
sf2. It implies the following

Lemma 11. Let H2 be the hyperbolicity domain for the 3HM2-map. Then in the domain SF =
H2 ∩ D2

sf the horseshoe Λ2 is of saddle-focus type (the point O2 is a saddle-focus) when B �= 0. In
the complimentary part of H2, consisting of two disjoint regions S1 and S2, the horseshoe Λ2 is of
saddle type: both points O1 and O2 are saddles (if B �= 0).

Theorem 3 for H2 follows from this lemma, if we express γ as a function of M1 by the formula
γ = (1 − C − B) +

√
4M1 + (1 − C − B)2.
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