Chapter 1 Introduction

1.1 The Java Programming Language

Java may be used as a conventional programming language for writing applications,
and 1t may also be used to write applets on the WWW. As the massive growth of the
Internet and the WWW, Java has become more and more popular since it was first
introduced by Sun Microsystems in 1995.

Figure 1.1 shows the simplified flow of compiling and running Java programs. Each
program (.java) is translated by a Java compiler into a platform-independent intermediate
form — the Java bytecode (.class) . The Java bytecode can then be loaded by a
classloader from local disks or remote hosts via network connection, and run in the Java
Virtual Machine[5,21,22,23,33] (interpreting or just-in-time compiling) . The Java Virtual
Machine may be implemented by softwareior hardware.

Java source Java Bytecode

Java Compiler

(. java) (.class)

=Java Virtual Machine=

\ 4

Class Loader Java class

A

(Bytecode verification) library

\ 4 A 4

Interpreter Just-In-Time

compiler

A 4 \ 4

Execution Engine

Figure 1.1 Compiling and Running Java programs

Here we summarize some features of the Java Programming Language([3].
e Architecture Neutral and Portable
The Java compiler compiles Java programs into bytecode, and bytecode helps to
transport code to different software and hardware platforms easily. Java gives detailed
definitions to the value range and storage format of its primitive data types, the
behavior of its arithmetic operators, etc. The programs are the same on every platform.
There are no more data type incompatibility problems.

e Simple and Object-Oriented
Like C++, but it removes many unnecessary features. No typedef, define, etc.,
preprocessor commands ~ no structures or unions ~ no external functions ~ no multiple
Inheritance * no goto statement ~ no operator overloading * no automatic coercion * no
pointers.

® Robust and Secure
During the compiling phase, it.provides, compile-time type checking. But due to the
unusual bytecode representation mechanism, Java-provides runtime checking in the
Java Virtual Machine.

e Multi-thread
The Java library provides a class java.lang.Thread that contains a collection of methods
modeling a thread life cycle.

1.2 Research Motivation

Successful as Java is, the performance of Java 1s still an issue. It is implemented by
compiling to portable bytecodes[5]. However, interpreting bytecodes makes Java program
many times slower than comparable C or C++ programs. One approach to improving this
situation is “Just-In-Time” (JIT) compilers. Dynamically translating bytecodes to
machine codes just before methods are first executed. This can provide substantial speed
up, but 1t 18 still slower than C or C++. There are two main drawbacks with the JIT
approach compared to conventional compilers -

e The compilation 1s done every time the application 1s executed, which means

start-up times are much worse than pre-compiled code.

e Since the JIT compiler has to run fast , it cannot do any nontrivial optimization.
Only simple register allocation and peepoptimizations are practical.

While JIT compilers have an important position in a Java system, for frequently used
applications it is better to use a more traditional “ahead-of-time” . While Java has been
primarily touted as an internet/web language, many people are interested in using Java as
an alternative to traditional languages, if the performance can be made adequate. For
embedded system applications 1t makes much more sense to pre-compile the Java program.
So far, there are some tools that can offline translate Java source/Java bytecode to native
code for performance enhancement. But, lack for translating to original assembly language
code. Therefore, we propose a method that can translate java bytecode to X86 assembly
code.

1.3 Goals

There are several benefits ittranslating Java bytecode to X86 assembly code.

- ~ Improving the execution'time than interpreter.

= ~ Providing a chance for combining existent assembly code with the translated
assembly code.

= ~ Providing a chance for interaction of assembly code and Java Virtual Machine.

The goals of our work are to develop a tool that models the flow of translation
without generating intermediate representation[6,8], and simplify the task of translating
Java bytecode, and demonstrate significant optimizations which touch bytecodes directly
and can improve the performance. An optimizing translator which is from Java bytecodes
to native machine codes and generates intermediate representations 1s too complex and i1s
understood difficultly, and today the performance by JIT compiler has acceptable state.
Therefore, we hope to build a simple translator that not only shorten the steps of translation
and simplify the method of translation, but also running time of translated assembly codes
by translator can be close to the running time of translated native code by JIT
compilers[1,16] or other native compilers[15,17,19]. So, our translator simplifies the
translation flow, and still has good performance.

1.4 Thesis Organization

The rest of this thesis 1s organized as follows. Chapter 2 briefly overviews the system
architecture of Java Virtual Machine, and introduces every kind of software approach to
bytecode execution enhancement. Chapter 3 describes the system architecture of our
approach and how the system translates every kind of Java bytecode to X86 assembly code
and 1ntroduces some associated translating examples. The experimental evaluation and
analysis are discussed in Chapter 4. Chapter 5 concludes this thesis and discusses possible
future works.

Chapter 2 Variations of Java Bytecode Execution

Interpretation 1s slow. Since the design of Java never restricts itself to be interpreted,
we may try to enhance the performance of Java using different approaches. Several
possible ways of implementing a faster performance are enumerated below.

2.1 Just-In-Time Code Generators

A “Just-In-Time” (JIT) Java compiler produces native code from Java bytecode
instructions during program execution. The results of the compilation are not kept between
runs. A JIT code generator can make use of specific hardware coprocessors running in the
current environment. Figure 2.1 18 the data structures of Intel VM.

Name METHOD
Descriptor Unoptimized
native code
Default native
fh JIT INFO JIT INFO
JIT id JIT id
Next o Next
Exception Ry
lub|| = - Exceptions / Exception Lg 1 pxceptions
abile table
Native Native
Method info Method info
GC map Profiling ll— Profile data
gt GC map

representation

Figure 2.1 Data structures of Intel VM.

Overall program execution time now includes JIT compilation time, in contrast to the
traditional methodology of performance measurement in which compilation time 1s ignored.
Compilation speed 1s more important in a Java JIT compiler than in a traditional compiler,
requiring optimization algorithms to be lightweight and effective. It is also important for
the Java JIT compiler to interact with other parts of the system.

So far, there are two types of JIT implementation. One 18 fast, effective code
generation[1]. It has no explicit intermediate representation, and it generates native code

directly from bytecodes in a pass. The first pass i1s gathering important information, the

second pass is lazy code selection. Figure 2.2 shows it's five major phases.

Prepass

\ 4

Global register allocation

\ 4

Code generation

A 4

Code emission

A 4

Code and data patching

Figure 2.2 Fast, effective eode generation in JIT compiler

Another one 1s optimizing . compiler[18]y The optimizing compiler takes a

conventional compilation approach”that builds an intermediate representation (IR) and
performs global optimizations based on the IR. Global optimizations are highly effective in
improving the code quality. However, they are expensive in terms of compilation time.
Therefore, we apply global optimization to a method only if the method is identified
s “hot” . Figure 2.3 is the structure of the optimizing compiler.

¥

Prepass

L4

v

Code expansion

[R construction

Y

Y

| Global register alloc

Inlining

v

|

v

GO support

Y

I Global optimization

>
v\ |

Code emission

o

|nI|l|n¢T data
representation

.

]

2.2 Native Compilers

Figure 2.3 Structure of the optimizing compiler

Native compilers translate Java source code/bytecode to native code which 13

platform dependent but is not portable. Since it 1s assumed that the compilation is

performed once and maintained on a disk, additional time may be devoted to optimizations.

Most of these native compilers[6,17,15,19] are forced to build 3-address code intermediate

representations, and perform significant optimizations. Among them, translated code by

some native compilers, which is runned at nearly the full performance of native code

directly generated from a source representation such as the C programming language. The

following shows the translation path of native compilers which belong to this category[8].

Inlining

IR

Machine-independent

Interclass analysis

Data dependence analysis

Classic optimizations

optimizations

Predication

nstruction-level parallelism

Stack analysis
Stack-to-register mapping
Class inheritance analysis

Instruction annotation

internal representation

Java

IR

Instruction recognition

Data recognition

Bytecode

Class file reader

Java bytecode decoder

A 4

Optimized
machine-independent
IR

Peephole optimizations

Scheduling, speculation

Register allocation

Optimized
machine-specific
IR

Assembly code generation

Assembly and link

Optimized
native code

Runtime support

Benchmarks

Figure 2.4 Impact NET compiler translation path

Few of native compilers do not have intermediate representations. They use mapping
styles to generate native code, such as JBCC[7]. Our paper focus on those methods which
they propose, and enhance them.

2.3 Bytecode Annotator

Tools of this category analyze bytecode and produce new class files with annotations
which convey information to the virtual machine on how to execute the bytecode faster.
We are aware of one such system[14] which passes register allocation information to a JIT
compiler in this manner. They obtain speed-ups between 17% to 41% on a set of four
scientific benchmarks.

2.4 Bytecode Optimization

There are two types of Java bytecode optimization. One 1S optimizing the bytecode
directly[11]. Apply well known optimizations[2] to Java bytecodes. It has little effect that
optimizing nonexpensive bytecode. To perform-effective optimizations at this level, one
must consider more advanced opfimizations. which. directly reduce the use of these
expensive bytecodes.

Another one 1s translating Java bytecode to intermediate representation, and then
optimizing IR, and then generating new classfile; such as Soot[12].

Chapter 3 System Design and Implementation

In this chapter, we describe the design and the implementation of our Translator. First,
the architecture, which includes execution environment and internal data structure and
passl and pass2 of our translator, is introduced. Then we will detail that how to translate
every kind of bytecodes to assembly codes, and template matching. Especially, dynamic
call 1s the important item. We will use auxiliary examples for explaining our techniques on
every items.

3.1 System Architecture

In this study, we develop a translator which is effective and performance is close to
JIT compiler. The first issue when we design the system is that assembly code how to
simulate the operation model under JVM. In X86 assembly language, instructions can use
registers, memory and stack, which are all system resource, under the X86 architecture.
Because Java Virtual Machine is stacksbasedsmachine, we have to arrange available
resources which 1s under X86 architecture to,confornt.with Java bytecodes operation flow.
There 18 a existing solution for this problenr = IBCC[/]. JBCC provides a basic concept
about mapping between Java byteccode and: X86 assembly code, but it only explains
roughly and are not detailed. Therefore, werdecide to-detail their arguments and to add
some functions which can interact between JVM:and assembly code, and use Java
bytecodes optimization concepts[11] to convert several Java bytecode instructions to less
assembly codes. Figure 3.1 shows the three compiling techniques of JBCC.

According to Figure 3.1, our system consists of three parts. The first part, the Prepass
phase, collects some informations which are needed for code generation. The second part,
Mapping Code Generation phase, truly generates x86 assembly code. The third part,
Template Matching phase, uses Java bytecodes optimization concepts[11] to do some
simple optimization actions. We also introduce the first part in the section particularly, and
mtroduce other parts basically.

In the section, we hope to explain the whole system motion, and the translation of
every type of bytecodes 1s discussed in section 3.2. So, we can understand our translator
completely from section 3.1 and 3.2.

A 4

Template Matching

A 4 \ 4

Code Simulation Advanced Template Matching

A 4

Native Program

Figure 3.1 The three compiling techniques of JBCC

3.1.1 Execution Environment

Figure 3.2 explains the environment from.Java applications (.class) to X86 assembly
codes (.asm), and from assembly=codes (.asm) to execution file (.exe). If there is a Java
application, which consists of multiple elass files, we translate every class file separately to
assembly code file. Then, we combine with thosetranslated assembly files by using bec32
compiler to assembler and link those translated assembly files. Because our translater has
the interaction capacity from assembly codes to Java Virtual Machine, we prepare a C
program called startvm.c, which will starts Java Virtual Machine. We use Microsoft Win32
API to start the Java Virtual Machine, and use Java Native Interface (JNI) to let assembly
codes to have the capacity which communicates assembly codes with Java Virtual Machine.
In the front of section 3.2 will explain those contents completely.

Figure 3.3 explains how to execute those translated assembly files. We use the bce32
compiler to assemble and link those assembly files with Java Virtual Machine. The
c:\12sdk1.4.1_01 1s the directory where Java 2 sdk 1s installed. You need to supply correct
including and library directories that correspond to the JDK installation on your machine.
The - Ic:\j2sdk1.4.1_Ol\include\win32 option ensures that your native application 1s linked
with the Win32 multithreaded C library. The actual Java Virtual Machine implementation
used at run time 1s contained in a separate dynamic library file called jvm.dll. The linkage
information about invocation interface functions are contained in a file called jvm.lib. The
format of the jvm.lib belongs to COFF format, but the bec32 compiler only processes OMFE
format. So, you have to use the command called coffZomf to change COFF format to

10

OMF format. The jvm1.1ib is a changed OMF format.

.class .class .class

translator

.asm
bee32 %

Figure 3.2 Execution.environment

translator

bee3?2

Ll
S

.CXC

bee32 - Ici\j2sdk1.4.1_Ol\include - Ic:\j2sdk1.4.1_O1\include\win32
a.asm b.asm c.asm startvm.c c:\j2sdk1.4.1_01\lib\jvm1.lib

Figure 3.3 Using bee32 to assemble and link assembly codes with JVM

According to Figure 3.3 example, there is a Java application which consists of a.class,
b.class, and c.class. These three class files may come from different Java programs, but are
cooperated. These three class files are translated separately by our translator, to generate
a.asm, b.asm, and c.asm respectively. The a.class contains the main procedure which is
starting point, so we put the a.asm on the first position. The startvm.c 1s used to startup the
Java Virtual Machine. After executing the compilation action, 1t generates a execution file
called a.exe. The a.exe is a truly executable file. Assembly codes can bind the Java Virtual
Machine through this compilation method, and then calls Java API from assembly codes.
The tool which assembles and links X86 assembly files in bce32 compiler, is through
TASM.

11

3.1.2 Translation Environment and Flow

Presently, our translator 1s developed in C++, and the translation environment is
based on the Microsoft Windows operating system. For generating accurate X86 assembly
codes, we adopt two-pass operation. The first pass collects informations from the input
class file and from the result of javap the classfile. Why use javap command provided by
the J2SDK? Because the result of javap the class file shows Java assembly codes of
methods. Among these informations from the first pass, there 1s an information about the
bytecode instructions within methods. So, we merely use the command Javap to get
bytecode instructions within methods, and other many important informations are from the
class file. The javap function is hidden in translator.

Figure 3.4 shows the simple translation environment. The input class file 1s translated
to X86 assembly code, and the hidden Javap action is performed by translator.

a.class |::> javap

translator <::| a.javap

.asm

Figure 3.4 The simple translation environment

The total translation flow is shown in figure 3.5. To this end, we have modularized
the code into 6 distinct stages. In stage 1, each method’s bytecodes and associate
information 1s extracted from the input classfile and the result of javap. Decomposer
extracts (1) the class’s bytecodes, (2) all method invocation name and signature, (3)
constant pool contents, (4) the total number of local variables used by the method, (5) the

12

maximum number of operand stack used by the method, (6) static flag, (7) all method
exception tables.

decomposer

\ 4

analysis

\ 4

nitial asm code

A 4

[,| template match
Y N
Y
code]
. e predefined code match
generation =

-~
N

A 4

mapping code generation

Figure 3.5 Translation flow

In stage 2, the information obtained in stage 1 1s analyzed and translated into the data
structures shown in Figure 3.6. Bytecodes are grouped by the methods in which they reside.
All information pertaining to each instruction, including the parameters, the offset from the
beginning of the method, become attributes in a node. The node 1s placed into a linked list
(the methodcontent) which 18 later manipulated to insert and remove instructions.

Stage 3 1itials the assembly code space and writes some known codes to the space
before truly code generation. Because this stage is about mapping between Java Virtual
Machine and X86 register machine, we will discuss the stage in section 3.1.3. Stage 4
converts several Java bytecode instructions to less native codes. If can not find template,
the flow will enter into the stage 5. We will discuss the stage 4 in section 3.2.5. Because

13

some bytecode instructions are simple, we can predefine assembly codes about those
instructions in a text file, as shown in Figure 3.7. When the stage 2, it parses the predefined
file into internal data structures for used in stage 5. If can not find predefined assembly
codes, the flow will enter into the stage 6. The stage 6 map Java bytecode instruction to
assembly language instructions. We will discuss the stage 6 in section 3.2.

method list a linked list of each method’s attributes
name , signature
total number of local variables
maximum number of operand stack
static flag
branch table
Jsr ret table
method content
exception contént
method content a linked list of each-nstiuction s attributes
offset
instruction name
parameters
exception content a linked list of each€xception 1n a exception table
from
to
target
exception type
constant pool table constant pool array of the class file
asm information predefined assembly codes
allclassmethodtable informations about dynamic dispatch

Figure 3.6 Translator s data structure

The method list, methodcontent, exceptioncontent, asm information,
allclassmethodtable are linked list, and branch table, jsr ret table are binary search tree.
Figure 3.8 shows the diagram of the internal data structure.

14

//3E2 A Tk Sl el

iconst_ml” mov eax,-1;push eax;
iconst_0"mov eax,0;push eax;
iconst_1"mov eax,l;push eax;
iconst_2"mov eax,2;push eax;
iconst_3"mov eax,3;push eax;
iconst_4"mov eax,4;push eax;
iconst_5"mov eax,5;push eax;
Iconst_0"mov eax,0;push eax;push eax;
Iconst_1"mov eax,l;push eax;mov eax,0;push eax;
aconst_null*mov eax,0;push eax;
nop”nop;

pop”pop eax;

pOp2\pop eax;pop ebx;

dup”pop eax;push eax;push eax;

dup2”pop ebx;pop eax;push eax;push ebx;plish €ax;push ebx;

A 3 E[S
T

imul*pop eax;pop edx;imul edx;puéh eax;

idivApop ecx;mov edx,0;pop eax;idiv ecx;push eax;
irem”pop ecx;mov edx,0;pop eax;idiv ecx;push edx;
ineg”\pop eax;neg eax;push eax;

1shl*pop ecx;pop eax;shl eax,CL;push eax;

1shr”*pop ecx;pop eax;sar eax,CL;push eax;
1ushr”pop ecx;pop eax;shr eax,CL;push eax;

1and”\pop eax;pop ebx;and eax,ebx;push eax;
fmul*pop realdbuf;fld realdbuf;pop realdbuf;fld real4buf;fmul;fstp real4buf;push real4buf;
fdivApop realdbuf;fld realdbuf;pop realdbuf;fld real4buf;fdivr;fstp realdbuf;push real4buf;

fneg”pop realdbuf;fld realdbuf;fchs;fstp real4buf;push real4buf;

f2d”pop realdbuf;fld realdbuf;fstp real8buf;push dword ptr real8buf;push dword ptr real8buf+4;

Figure 3.7 Predefined assembly codes

15

method list

fields method exception branch Jsr ret

A 4

functions content content table content

method

Figure 3.8 The diagram of the internal data structure

In the stage 2, we generate some internal.tables'which consist of constant pool table,
allclass methodtable, branch table; jsr ret table, exception table, and instruction map table.
The constant pool table saves the:constant pool array of the class file. The type 1s 0 to 7 in
a constant pool, and 0 1s class, 148.field,;72-isTmethod, 3 is string, 4 1s int, 5 1s float, 6 18
long, 7 is double. The type 1s convenient for programming. The allclassmethodtable has all
the methods which come from every class which appears in the constant pool and their
super class and super class up to java.lang.Object. A entry 1s a class which appears in the
constant pool, and it s methods which including inheritance up to java.lang.Object. The
allclassmethodtable associates with dynamic dispatching in assembly code, and we will
detail the content in section 3.2.4.

We traverse the bytecode instructions within a method to build branch table and jsr
ret table. The branch table has all the offsets which occur among those instructions — 77~ -,
lookupswiich, tableswitch, jsr, jsr_w, exception s target. The jsr ret table has the offsets
which are the offsets of next instruction of ssror sz w. The branch table is useful in flow
control, and the jsr ret table is useful in exception handling. The instruction map table are
all predefined assembly code. These tables are shown in Figure 3.9.

16

Constant Pool Table

index

type

classname

method/field name

signature

resolved

Allclassmethodtable

classname
methodname

methodname

1dofclass

signature

signature

superclass

clsname callasmname

clsname callasmname

Branch Table

index

label

mode

Jsr.Ret-Table

index

label

Exception Table

exception type

from to

target

Instruction Map Table

bytecode

assembly

Figure 3.9 Internal tables of the translator

17

3.1.3 Map Java Stack Machine to X86 Register Machine

By studying Java bytecode instruction set, we notice that each of the Java bytecode
mstruction can be represented by one or more that one assembly language instructions.
Operands of most bytecode instructions are associated with the operand stack of the Java
Virtual Machine. Bytecode instructions take operands from the operand stack, and
manipulate them, and then push results into the operand stack. Therefore, we use the native
stack operation to emulate the stacks of JVM. Under the architecture of Intel X86 series
CPU, we can use the native stack, registers, and memory 1n assembly programming level.
So, map the operand stack of the frame every method to native stack, and map local
variables of the frame every method to memory. In order to process dynamic dispatching,
we use memory to save created objects for searching later. In the architecture of the
X86 .asm assembly code, the .data section has the name which are named .._/ocal_vars for
the local variables. The .. /ocal vars is an one- dimension array, and its quantity is from
the class file, and the unit of every entry in .._Jocal vars 1s 4 bytes. The .data section has
the name which are named .._obmapclass for save created objects. The .._obimapclass 1s
the structure, and we will discuss the usage of the .._obimapclass in the section 3.2.4.

Those architectural registers of X80 CRPU.are for.scratch registers. When we evaluate
an expression, temporary values of the operation proecess and operands of the operation all
employ scratch registers. Those Zegisters are not dedicated to the particular destination,
such as local variables. Those registers are purely for-evaluation. The final result of the
assembly codes corresponding to bytecode nstruetion are pushed into native stack or are
saved 1n local variables. Referring to the following example.

.data

aa_local_vars dword 2 dup(?)
aa_objmapclass objmapclass_table 3 dup(<-1,-1>)

.code

push [aa_local vars+1%*4] ; aa 18 the simple name of the method
; there are 26*26 1n a class

Because we have to generate a .asm file, how to arrage the order of generated codes is
important. A .asm file consists of three sections which are prior to .data, .data, and .code.
In 1mitial asm codes phase which are described in previous section, some known codes can
be filled in these three sections, and methods are classified into three types. There are
different compositions for different types in a .asm file. A type which is the main

18

procedure, 1ts .code section has to call the startvm.c function, and no parameters which are
passed into. A type which is the first procedure in a no main procedure s class file, it is like
to the main procedure, but do not call the startvm.c function, and has parameters which are
passed into. The two types are the beginning of a .asm file, and the start point is .386
assembler directive. The another type is the method which 1s besides the main and first
procedure. It 1S appended to the previous two types in a .asm file, and the start point is
procedure name. In order to generate a .asm file conveniently, we adopt the classification
manner. Figure 3.10 shows the initial asm codes of three type methods.

386

.model FLAT
EXTRN_startvm:proc
public jnienv,fntblptr

»
.

.386
.model FLAT
extrn jnienv:dword

extrn fntblptr:dword

.data

mienv dword ?
fntblptr dword ?
foptr dword ?

.code

public _main
_main proc
push EBP
mov EBP,ESP
call _startvm
mov jnienv,eax
mov ebx,[eax]

mov ntblptr,ebx

translate

main

»
>,

.data

faptr dword ?

procedure_name proc

.data

.._local_vars dword ..

.code

manipulate
parameters and

return addr

translate

.code
manipulate
parameters and

return addr

translate

first procedure

other procedure

Figure 3.10 Initial asm codes of three type methods

19

Our translator preserves three memory blocks for three sections which are prior
to .data, .data, and .code. We fill the translated assembly codes into the three memory
blocks during the translating period.

20

3.2 System Implementation

In this section, we focus on the pass 2, and describe how the translator translates
bytecode instructions. Figure 3.11 shows the flow of the translator translating.

.class "1 .Jjavap parse to blocks]

A 4 A 4

) [resolve class file]

y

>
<

method

exception table
v

constant pool talbe

method allclassmethodtable

exception table other informations
J save to DS
\ 4

A 4

< traverse
traverse |

\ 4
\ 4

exception table

branch table , jsr ret table

objmapclasstable size translate

j

append associated methods

(. J

<
Z |

\ 4

} [template match
output .asm file

1

\ 4

predefined code match

)

stack and local vars

4_
Z.
<

array
arithmetic, logic, conversion
flow control

object, method invocation l

[mapping code generation

Figure 3.11 Flow of translator translating

21

When template matching fails and predefined code matching fails during translating,
the type of the bytecode instruction is differentiated, and the translator performs associated
mapping code generation. The type of the bytecode instruction is classified into six
categories which are stack and local variables ~ array ~ arithmetic and logic and type
conversion ~ flow control ~ object ~ method invocation.

3.2.1 Start JVM From Assembly Code

A Java Virtual Machine implementation 1s typically shipped as a native library.
Native applications can link against this library and use the invocation interface to load the
Java Virtual Machine. So, we prepare for a C function which uses Win32 API to invoke
Java Virtual Machine. The startvm.c 1s described in Appendix.

When 1t targets the 1.1 release, the C code begins with a call to
JNI GetDefault/avaVMInitArgs to obtain the default virtual machine settings. Those
settings are 1n the vm_args parameter. When 1t targets the 1.2 release, the C code creates a
JavaVMInitArgs structure. The virtual gnachine .1nitialization arguments are stored in a
JavaVMOption array. The LoadLibrary which-18 -Win32 API loads the jvm.dll. The
GetProcAddress which 18 Wan32 AP “lobtains - the function pointer of the
JNI_CreateJava VM function.

After setting up the virtual machine initialization structure, the C program calls
JNI_CreateJavaVM to load and initialize the Java Virtual Machine. It fills in two return
values. An interface pointer, jvm, to the newly created Java Virtual Machine. The JN/Env
interface pointer env for the current thread. Recall that native code accesses JNI functions
through the env interface pointer. So, the value of the JN/Env interface pointer env is
returned back to the assembly code.

We use mixing mode concepts of assembly codes and C functions in some
books[25,26] which introduce the assembly language. The total flow of starting JVM 1is
that the assembly code calls the startvm.c function, and then the startvm.c function puts the
value of the JN/Env interface pointer env on the register called eax, and then the assembly
code obtains the starting address of the JNI function table through an indirect mapping.
Figure 3.12 shows the assembly code calls the startvm.c function. Next section will
introduce the JNI function table because we can call the Java api through JNI function
from assembly codes.

22

EXTRN _startvm:proc

.data
jnienv dword ?
fntblptr dword ?
fnptr dword ?
.code

public _main

_main proc
push EBP
mov EBP,ESP
call _startvm

mov jnienv,eax
mov ebx,[eax]
mov intblptr,ebx

Figure 3.12 The assembly codéinvokes the startvm.c function

3.2.2 Call Java Bytecode From Assembly Code

When we want to call the system class file of Java Virtual Machine providing, we

come to the object through the JNI function. Assembly codes pass parameters to the Java

API through the native stack, and the Java API puts the return value on the register called

eax. Figure 3.13 1s the sketch of the assembly code call the bytecode. The full name of the

JNI is Java Native Interface.

INI
— —

assembly bytecode

<=/

Figure 3.13 The sketch of the assembly code invokes the bytecode

First, we introduce the structure of the JNI function table[24]. The JNI is a two-way

23

interface that allows Java applications to invoke native code and vice versa. The JNI is the
native interface supported by all Java Virtual Machine implementations. The use of the JNI
18 not limited to specific host environments or specific application development tools.
Figure 3.14 illustrates the INIEnv interface pointer. The JNIEnv interface pointer, points to
a location that contains a pointer to a function table. Each entry in the function table points
to a JNI function. Native methods always access data structures in the Java Virtual
Machine through one of the JNI functions.

JNIEnv * .
Array of pointers to
JNI functions
Pointer » Pointer *' an NI function
(Internal virtual Pointer T])
hine dat an JNI function
machine data L)
structures) Pointer \\(.
an JNI function

Figure 3.14The JNIEnv interface pointer

For a developer using assembly language, it 1S necessary to understand clearly how
the JNI provides the interface facilities[24,31]. According to figure 3.12 and 3.14, the
Intblptr contains the starting address of the function table. There are three important points
which are noticed. The first, we need to retrieve the contents of the entry in the function
table which corresponds to the function we want to call. The content is the pointer which
points to the JNI function we want to call and saved in fzptr; and we use the
expression “call [fnptr]” to actually call the JNI function. Obviously, we have to multiply
the zero based index of the function by 4 (since each pointer is 4 bytes long) and add the
result to the starting address of the function table which we have formed in /ztbiptr earlier.
The prototype of each JNI function in JNI function table is defined in the jzz./4 which 1S in
J2SDK, and the index of each JNI function in JNI function table is the offset which is the
place where the JNI function defined in the 7.4 We use a Macro[31] to get the entry of
JNI function in JNI function table, and the following expression is the Macro. We obtain
the pointer of the JNI function through the Macro expression.

24

GetFnPtr MACRO fntblptr,index,fnptr
mov eax,index
mov ebx,4
mul ebx
mov ebx,fntblptr
add ebx,eax
mov eax,[ebx]

mov fnptr,eax
ENDM

The second, we use native stack to pass parameters to JNI function according to every
JNI function prototype. The style of passing parameters is from right to left as assembly
calling C function. Note that the rightmost parameter is pushed first in accordance with the
stdcall convention followed by JNIL If you call the Java method through JNI function, you
have to adjust esp to the place which 1s before calling the Java method, after calling the
Java method. If you do not call the Java method, and only use JNI functions to do
something, such as getting field value, parameters will be taken from native stack, and so
you do not have to adjust esp. The.third, If.the type of the return value is long, the return
value occupies two registers, otherwise occupies one register. If the type of the return value
18 float or double, the return value 15 on the ﬂoating-pdint register of the FPU. We will
introduce detailed internal operations i latersections. Figure 3.15 illustrates the example
of call Java bytecode from assembly code.

class sysjnicall {
public static void main(String[] args) {
System.out.println("abcd");

Java source code

Method void main(java.lang.String[])
0 getstatic #2 <Field java.io.PrintStream out>
3 1dc #3 <String "abcd">
5 mnvokevirtual #4 <Method void println(java.lang.String)>
8 return

Javap of Java source code

25

.data

argreversebuf dword 20 dup(?)
jelsjobjtmp dword ?
index_2_clsname db java/lang/System',0
index_2_fidname db 'out’,0
index_2_fidsig db 'Ljava/io/PrintStream;',0
index_2_fid dword ?
index_3 strname db 'abed’,0
index_3_str dword ?
index_4 midname db 'println’,0
index_4_midsig db '(Ljava/lang/String;)V',0
index_4 mid dword ?
.code
GetFnPtr fntblptr, 145 fapte ‘ ;GetStaticObjectField
push index_2_fid
push index_2_c¢ls
push jnienv.
call [fnptr]
push eax
GetbnPtr fntblptr,167,nptr ;:NewStringUTF
push offset index_3_strname
push jnienv
call [fnptr]
mov index_3_str,eax
GetbnPtr fntblptr,61,fnptr ;CallVoidMethod
push [argreversebuf+0%4]
push index_4 mid
push jelsjobjtmp
push jnienv
call [fnptr]

Figure 3.15 Example of call Java bytecode from assembly code

26

3.2.3 General Bytecode Translation

In figure 3.11, we mention that there are six bytecode types. Among them, four types
which are stack and local variables ~ array ~ arithmetic and logic and conversion ~ flow
control, belong to general bytecodes. The so-called general bytecodes imply that those
bytecode instructions are not associated with object directly.

3.2.3.1 Stack and Local Variables
If the type of the bytecode instruction is the kind of less 32 bits, the operand will be
sign-extended to an int value, and 1s then pushed onto the native stack.

bipush 3 or sipush 3 —» mov eax,3
push eax

If the type of the bytecode instruction is the kind of 64 bits, the operand is the long or

double. The operand which 1s long or double 18 split into two parts. For understanding
easily, we 1llustrate the operation rules.

localvar 0 1

i

Istore / lload / dstore / dload

high
low

A

A

lconst. 1 —» mov eax,1

push eax ; push low 4-byte
mov eax,0
push eax ; push high 4-byte

real® low 4-byte high 4-byte

A A

high
low

A

A

dconst_0 / dconst_1

For long type operand, we split it into two parts. The low part 18 from bit O to bit 31, and

27

the high part 1s from bit 32 to bit 63. We first push low part and then push high part. When
you store the long operand to local variables, the lower index of the local variable array 1s
stored the lower part of long operand, and the higher index of the local variable array is
stored the higher part of long operand. For double type operand, we split it into two parts.
The memory organization of the real8 type is first the low 4-byte and then high 4-byte. The
operation rule of the double type operand is as the long type operand. We first push the
low part and then push the high part.

For these bytecode instructions of /de series, we push item from constant pool. The
item 1S retrieved from constant pool table which is described in section 3.1.2. If the item 1s
Integer type, we generate a variable called ndex .. intname which 1s the integer binary
representation in .data section, and then push it onto the native stack. If the item is float
type, we generate a variable called index .. floatname which 1s the float binary
representation in .data section, and then push it onto the native stack. If the item is long
type, we generate two variables called ndex .. longhighname and index .. longlowname
which are the long binary representation in .data section, and then push the
ndex_.._longlowname and push index .. longhighname. If the item 1s double type, we
generate two variables called ndex_.adoublehichname and index .. doublelowname
which are the double binary representation .in “data section, and then push the
ndex_.._doublelowname and push zndex ..-doublehichname. Anyhow, first push low part
and then push high part. If the item 18 the string type, we generate two variables called
mdex_.._strname and index_.._str.in .datasections ‘We use the JNI function called
NewStringeUTF to construct a new Jjava:ang.String object from mdex_.._strname, and then
put the reference pointer in the index .. Sfr, and push it onto the native stack. (the
notation “..” 1is the index of the item from constant pool)

Figure 3.16 illustrates the example of stack and local variable associated bytecodes
translating.

class Fibonacci {
public static void main(String[] args) {
int fibonum=1; int a=1; int b=1;
for(;;) {
fibonum=a-+b;
a=b;
b=fibonum;
if(fibonum > 1000)
break; }
System.out.println("ok");

I

28

Method void main(java.lang.String[])
0 1const_1
1 1store_1
2 1const_1
3 1store_2
4 1const_1
5 1store_3
6 goto 9
9 1load_2
10 1load_3
11 iadd
12 1store 1
13 1load_3
14 1store_2
15 1load_1
16 1store_3
17 1load_1
18 sipush 1000 ! ‘
21if femple9 & RN
24 goto 27 ‘ - ‘
27 getstatic #2 <Field java.iio,PrintStream out>
30 1dc #3 <String "ok o
32 invokevirtual #4 <Method void println(java.lang.String)>
35 return
.data
frealO reald 0.0
freall reald 1.0
freal2 reald 2.0
dreal0 real8 0.0
dreall real8 1.0
real4buf reald ?
real8buf real8 ?
aa_return_addr dword ?
aa_local_vars dword 4 dup(?)

29

index_3 strname db 'ok’,0
index_3 str dword ?

.code

mov [aa_local vars+1*4],1

mov [aa_local vars+2*4],1

mov [aa_local vars+3*4],1
aa_9:

push [aa_local vars+2*4]

push [aa_local vars+3*4]

pop eax

pop ebx

add eax,ebx

push eax

pop [aa_local vars+1%4]

mov eax,[aa_local_vars$3*4]

mov [aa_local vars+2*4],eax

mov eax,[aa_localivars+1%4]

mov [aa_local vars+3*4],eax

push [aa_local_vars+1*4]

mov eax,1000

push eax
pop eax
pop ebx
cmp ebx,eax
jle aa_9
aa_27:
GetbEnPtr fntblptr,167,inptr ; NewStringUTF
push offset index_3_strname
push jnienv
call [fnptr]
mov index_3_str,eax
push index_3_str

Figure 3.16 Example of stack and local variable associated bytecodes translating

30

3.2.3.2 Array

We use some JNI functions to construct an array which may be one-dimension or
two-dimension or multi-dimension, and retrieving the element of the array is also use the
JNI function. There three kind of bytecode instructions for creating an array. The newarray
constructs an one-dimension array whose the type of the element i1s primitive type
(boolean ~ char ~ float ~ double ~ byte ~ short ~ int ~ long). The anewarray constructs an
one-dimension array whose the type of the element is reference type. The multianewarray
constructs a multi-dimension array, and you can repeatedly use the anewarray to reach the
function which the multianewarray provides. The table 3.1 shows the JNI function
relationship of bytecodes associated array. Our translator use these JNI functions to finish
the operations which are characterization in these bytecode instructions associated array.

Bytecod instruction JNI function
newarray New<Type>Array , 175 ~ 182
anewarray NewObjectArray , 172
1aload GetlntArrayRegion , 203
laload GetLongArrayRegion , 204
faload GetFloatArrayRegion , 205
daload GetDoubleArrayRegion , 206
aaload GetObgectArrayElement , 173
baload GetByteArrayRegion , 200
caload GetCharArrayRegion , 201
saload GetShortArrayRegion , 202
1astore SetIntArrayRegion , 211
lastore SetLongArrayRegion , 212
fastore SetFloatArrayRegion , 213
dastore SetDoubleArrayRegion , 214
aastore SetObjectArrayElement , 174
bastore SetByteArrayRegion , 208
castore SetCharArrayRegion , 209
sastore SetShortArrayRegion , 210
arraylength GetArrayLength , 171

31

Table 3.1 The JNI function relationship of bytecodes associated array

Figure 3.17 illustrates example of the primitive array. Our translator is tested in many
different types, but these contents 1s too long, and we only show the part of contents in this

paper.

class primitivearraytest {
public static void main(String[] args) {
double[] ir=new double[10];
for(int 1=0;1<1r.Jength;i++)
ir[i]=16.23;

B

Method void main(java.lang.String[])
0 bipush 10
2 newarray double
4 astore_1
S iconst_0
6 istore_2
7 goto 19
10 aload_1
11 iload_2
12 1dc2_w #2 <Double 16.23>
15 dastore
161inc 2 1
19 iload_2
20 aload_1
21 arraylength
22 1f 1cmplt 10
25 return

index_2_doublehighname EQU 01000000001100000011101011100001b
index_2_doublelowname EQU 01000111101011100001010001111011b

.code

GetbnPtr fntblptr,182,nptr ; NewDoubleArray

32

push jnienv
call [fnptr]
push eax
pop [aa_local vars+1*4]
mov [aa_local_vars+2*4],0
mp aa_l9
aa_l0:
push [aa_local vars+1%4]
push [aa_local vars+2%4]
push 1index_2_doublelowname
push 1index_2_doublehighname
pop dword ptr real8buf+4
pop dword ptr real8buf
pop [argreversebuf]
pop [argreversebuf+4]
GetbnPtr fntblptr,214,nptr ; SetDoubleArrayRegion
push offset real8buf
mov eax,l
push eax
push [argreversébuf]
push [argreversebuf+4]
push jnienv
call [fnptr]
add [aa_local_vars+2*4],1
aa_19:
push [aa_local vars+2%4]
push [aa_local vars+1%4]
GetbnPtr fntblptr,171,nptr ; GetArrayLength
push jnienv
call [fnptr]
push eax
pop eax
pop ebx
cmp ebx,eax
aa_10

1l

Figure 3.17 Example of the primitive array

33

The reference type of the element of anewarray and multianewarray 1s associated with
the constant pool. To get the type we must retrieve the entry of the constant pool table. The
multianewarray 1s complex. For finishing the function of multianewarray, we use the
following rule to reach the destination.

aobjlist dword 20 dup(?)

arangelist dword 20 dup(?)

aindexlist dword 20 dup(?)
we define these three one-dimension array, and can create the up to 20 level array. The
aobjlist saves the temporary reference. The arangelist saves the range of each level. The
aindexlist saves the index which 1s used to mcrement during constructing each level array.
Our constructing rule 18 like DES (depth first search), and is as the following figure 3.18.
The number of above a block which represents an array is the constructing order.

)

~ YA

Figure 3.18 The constructing order of multianewarray implementation
Figure 3.19 illustrates example of the three dimension array. The aaload uses the

procedure called update_arrayelementoby to maintain the latest reference which is loaded
from the element of the array in the objmapclass structure.

34

class ThreeDTree {
public static void main(String[] args) {
int[][][] threeD = new int[5][4][3];
for(int1=0;1<5; ++) {
for int j=0; 3<4; ++)) {
for intk =0; k< 3; ++k) {
threeD[1]J][k] =1+]+ k;
System.out.print(threeD[1][j][k]);
} } } b

Method void main(java.lang.String[])
0 iconst_5
1 iconst_4
2 iconst_3
3 multianewarray #2 dim #3 <Class [[[[>
7 astore_1
& iconst_0
9 istore_2

10 goto 72

13 iconst_0

14 istore_3

15 goto 64

18 iconst_0

19 istore 4

21 goto 55

24 aload_1

25 1load_2

26 aaload

27 1load_3

28 aaload

29 iload 4

31 1load_2

32 1load_3

33 1add

34 1load 4

36 1add

37 1astore

35

521inc 4 1

55 iload 4

57 iconst_3

58 if_icmplt 24
61 1inc 3 1

64 iload_3

65 iconst_4

66 if_icmplt 18
69 1inc 2 1

72 1load_2

73 iconst_5

74 1f_1cmplt 13
77 return

aobjlist
arangelist
aindexlist

index_2_array0

index_2_arrayl
index_2_cls

dword 20 . rdup(?)
dword .20 ' dup(?)
dword 20 .dup(0)

db 0
db 'I0

dword ?

.code

mov eax,5

push eax

mov eax,4

push eax

mov eax,3

push eax

pop [arangelist+2%4]
pop [arangelist+1%4]
pop [arangelist+0*4]

GetFnPtr fntblptr,6,fnptr
push offset index_2_arrayO

push jnienv

; FindClass

call [fnptr]

mov 1ndex_2_cls,eax
GetEnPtr fntblptr,172,inptr
mov eax,0

push eax

push index_2 cls

mov eax,[arangelist+0*4]
push eax

push jnienv

call [fnptr]

mov [aobjlist+0*4],eax
mov [aindexlist+0*4],0

aa_3 L1:

GetEnPtr fntblptr,6,fnptr
push offset index_2_arrayl
push jnienv

call [fnptr]

mov index_2_cls,eax
GetEFnPtr fntblptr, 172, faptr
mov eax,0

push eax

push index_2 cls

mov eax,[arangelist+1*4]
push eax

push jnienv

call [fnptr]

mov [aobjlist+1*4],eax
GetEnPtr fntblptr,174,inptr
push [aobjlist+1%4]

mov eax,[aindexlist+0*4]
push eax

push [aobjlist+0*4]

push jnienv

call [fnptr]

mov [aindexlist+1%4],0

aa_3 L.2:

GetEnPtr fntblptr,179,nptr
mov eax,[arangelist+2*4]

; NewObjectArray

: FindClass

; NewObjectArray

; SetObjectArrayElement

; NewIntArray

37

push eax

push jnienv

call [fnptr]

mov [aobjlist+2*4],eax
GetEnPtr fntblptr,174,inptr ; SetObjectArrayElement
push [aobjlist+2*%4]

mov eax,[aindexlist+1%*4]
push eax

push [aobjlist+1%4]

push jnienv

call [fnptr]

inc [aindexlist+1%*4]
mov esi,[aindexlist+1*4]
cmp esi,[arangelist+1%4]
1 aa 312

inc [aindexlist+0*4]
mov esi,[aindexlist+0%4]
cmp esi,[arangelist+0%44
1 aa 3 L1

push [aobjlist]

pop [aa_local wars+174]
mov [aa_local vars+2*4],0

jmp aa_72

aa_13:
mov [aa_local_vars+3*4],0
jmp aa_64

aa_l8:
mov [aa_local_vars+4*4],0
jmp aa_55

aa_24:
push eax

push offset aa_objmapclass
push eax
call update_arrayelementob]

Figure 3.19 Example of the three dimension array

38

3.2.3.3 Arithmetic, Logic, Type Conversion

Because these bytecode instructions associated this section are too many, we only
mtroduce important concepts. Because the long instruction in assembly 1S not supported,
we must implement long instruction by ourselves. The long instructions are 64 bit based,
SO we must separate them into two 32 bit in our implementation. In ladd and Isub
instruction, we must pay attention to the carry bit. We first add or sub the low bits and then
use the adjust mnstruction adc and sbb which will help add the carry bit to add or sub high
bits. The long multiplication and division do not have any assembly instruction to help
implementation. We use the multiplication algorithm to implement. P ~ A and B are 64bit
operands. The result 1s in P:A and before this algorithm, we must translate the long value
into unsigned long value. After this algorithm, we translate the result value into signed
value. Because this algorithm 1s only suitable for unsigned value, we must check the long
value 1f the multiplier and multiplicand is negative to translate into unsigned value and
judge the result value if 1t 1S positive or negative.

P=0
A=multiplier
B=multiplicand
Count=64
While(count>0)
If(LSB of A=1)
Then
P=P+B
CF=carry generated by P+B
Else
CF=0
End if
Shift right CF:P:A by one bit position
Count=count-1
End while

39

There are several division algorithms to perform 64-bit unsigned long division. Here
we describe and implement what is called the “non-restoring” division algorithm. The
division operation, unlike the multiplication operation, produces two results: a quotient and
a remainder. The algorithm consists of testing the sign of P and, depending on the sign of P,
either adding or subtracting B from P. Then P:A is left shifted while manipulating the
rightmost bit of A. After repeating these steps 64 times, the quotient 1S in A and the
remainder 1s in P.

P=0
A=dividend
B=divisor
Count=64
While(count>0)
If(P is negative)
Then
Shift left P:A by one bit position
P=A+B
Else
Shift left P:A by one bit position
P=A-B
End if
If(P is negative)
Then
Set low-order bit of Ato 0
Else
Set low-order bit of A to 1
End if
Count=count-1
End while
If(P is negative)
P=P+B
End if

40

After addition, subtraction, multiplication and division, we discuss the remaining long
instruction. The Ineg instruction just uses 2° complement to implement. The Ishl and Ishr
just use the shift instruction. The lor and Ixor use the or and xor instruction to implement.

In floating point instruction, there are two different types which are 32bit float and 64
bit double. In floating point arithmetic instruction, there are some instructions which are
supported by assembly. In assembly, the floating point instructions use another special
stack to operation. The special stack 1s called FPU. The FPU is not a pure stack because
FPU i1s consisted of eight data register, each 80 bits long. The special stack can convert any
nonfloating formats including 64 bit data type to floating point, so the double instructions
have been supported in assembly. These are only the 64 bit instruction supported by
assembly. The addition ~ subtraction ~ multiplication and division instructions in executing
float and double are very similar. The only difference 1s input data type. The float
mstructions use the 32 bit real4 data type supported by assembly. The double instructions
use the 64 bit real 8 data type. By the way, we must pay attention to real® data type and
Java stack data type, because the bit order of real® data type 1s different from the stack. In
64 bit instruction, The top data of stack.asthigh 32 bit and the second data of stack is low
32 bit, but the real® data type the low 32 bit, puts. the'top data of stack and the high 32 bit
puts the second data type.

real&

High 32 bit | Low 32 bit

A A

stack

top

second

The fadd in Java bytecode use the fadd in assembly to implement. The fsub in Java
bytecode use the fsub in assembly to implement. The fmul in Java bytecode use the fmul in
assembly to implement. The fdiv in Java bytecode use the fdiv in assembly to implement.
The double arithmetic instructions in bytecode are translated like the float instructions,
because the floating pint 1s executed in FPU we discuss above. We just change the real4 in

41

float instruction into real® for double instruction.

The ferm and drem bytecode instructions are not the same as that of the so called
remainder operation defined by IEEE 754. The IEEE 754 remainder operation computes
the remainder from a rounding division, not a truncating division, and so its behavior 1s not
analogous to that of the usual integer remainder operatior. Instead, the Java virtual machine
defines frem and drem to behave in a manner analogous to that of the Java virtual machine
Integer remainder instructions.

The result of frem and drem instructions are governed by these rules :
(1) If either dividend or divisor is NaN, the result is NaN.
(2) If neither dividend nor divisor is NaN, the sign of the result equals the sign of the
dividend.
(3) If the dividend is an infinity or divisor 1S a zero or both, the result 1s NaN.
(4) If the dividend is finite and the divisor 18 an infinity, the result equals the dividend.
(5) If the dividend is a zero and the divisor 1s finite, the result equals the dividend.
(5) In the remaining cases, where neither operand is an infinity, a zero, or NaN, the
floating-point remainder result formt:a dividend and divisor 1s defined by the mathmetical
result=dividend-(divisor*q), where q 1$ an intrger that 1s negative only if dividend/divisor
18 negative, and positive only if:dividend/divisor 1s positive, and whose magnitude is as
large as possible without exceeding the-magnitude of the true mathmetical quotient of
dividend and divisor.
Despite the fact that division by zero may occur, evaluation of ferm and drem instructions
never throw a runtime exception.

The convert floating-point to integer instructions are generated by the following the
rules in Java specification.

(1) If the value is NaN, the result of the conversion is an int0.

(2) Otherwise, if the value 1s not an infinity, it is rounded to an integer value V, rounding
towards zero using IEEE 754 round towards zero mode. If this integer value V can be
represented as an int, then the result 1s the int value V.

(3) Otherwise, either the value must be too small(a negative value of large magnitude or
negative infinity), and the result is the smallest representable value of type int, or the
value must be too large(a positive value of large magnitude or positive infinity), and
the result 1s the largest representable value of type int.

In the rule 2, we can use the special instruction which 1s supported by assembly. We
put the floating-point value in the FPU and then use the fist to convert the floating-point to

42

integer. The FPU will help us to convert the floating-point to integer.

By the way, the following table is the format of NaN ~ negative infinity ~ positive
infinity ~ negative value of large magnitude and positive value of large magnitude.

Value Float bits(sign exponent mantissa)

+Infinity 0 11111111 00000000000000000000000
-Infinity 1 11111111 00000000000000000000000
NaN 0 11111111 10000000000000000000000

Largest positive | O 11111110 11111111111111111111111
(finite) float
Largest negative | 1 11111110 11111111111111111111111
(finite) float

43

3.2.3.4 Flow Control

We have described the branch table and Jjsr ret table in section 3.1.2. Before we want
to translate the bytecode instruction, we search contents of the two tables, and check the
offset of the bytecode instruction to decide that if match the content. If the offset is in the
content, the translator generate a label. The label format 1s .._of7set. The symbol .. 1s the
short name of the method. Because it can not has the same label in a .asm file, the symbol ..
avoids the problem. Figure 3.20 illustrates the example of flow control.

class PrimeFinder {
public static void main(String[] args) {
it primeNum = 1;
int numToCheck = 2;
for (;;) {
boolean foundPrime = true;
for (int divisor = numToCheck / 2; divisor > 1;
--d1visor) {
if (numToCheck:Yo-divisor== 0) {
foundPrime =:false;
break;

]
if (foundPrime) {

primeNum = numToCheck;
System.out.println(primeNum);
1f(primeNum > 50)
break;
}

++numToCheck;

44

4 goto 7
7 1const_1

14 goto 32
17 1load_2

21 ifne 29

26 goto 38
291inc 4 -1

32 iload 4

34 1const_1

35 if_icmpgt 17
38 iload_3

39 ifeq 60

54 if_icmple 60
57 goto 66 3 | E
60 iinc 2 1 ; i :
63 goto 7 7T ‘

66 return

.code

aa_7:
mov [aa_local vars+3*4],1

jmp aa_32
aa_l7:
cmp eax,0
mz aa_29
mov [aa_local_vars+3%4],0
jmp aa_38
aa_29:

add [aa_local vars+4*4],-1

45

aa_32:
push [aa_local vars+4+%4]

cmp ebx,eax
g aa_l7
aa_38:
mov eax,[aa_local_vars+3*4]
cmp eax,0
jz aa_60

cmp ebx,eax

le aa_60
jmp aa_66
aa_60:
add [aa_local_vars+2*4],1
mp aa 7

aa_60:

Figure 3.20 Example of flow-control

The switch .. case structure 1n a‘Java program 1S implemented by the Jookupswitch or
tableswitch. According to the Java Virtual Machine Specification[5], there are a little
difference among them. Our translator can translate them. We introduce an example to

explain them, as figure 3.21.

class Struggle {
public final static char TOMAYTO ='a';
public final static char TOMAHTO ='b";
public static void main(String[] args) {
char say = TOMAYTO;
for (;;) {
switch (say) {
case TOMAYTO:
say = TOMAHTO;
break;
case TOMAHTO:
say = TOMAYTO;
break; } } } }

46

6 1load_1
7 lookupswitch 2: default=41
9732
98: 38
aa_6:
push [aa_local_vars+1%4]
pop eax
cmp eax,97
je aa_32
cmp eax,98
je aa_38
mp aa_ 4l
aa_32:
mov eax,98
push eax
pop [aa_local =vars+1*4]
mp aa_ 4l
aa_38:
mov eax,97
push eax
pop [aa_local_vars+1%4]
aa_41:
jmp aa_6

Figure 3.21 Example of lookupswitch

The /femp ~ fempl ~ fempe ~ dempl ~ dempg are bytecode instructions which are
comparable bytecodes under flow control. Figure 3.22 illustrates example of lcmp. For
fempl, fempg, dempl, and dempg, we must use the status word of the FPU[28] to
differentiate the difference. We define some values which are c3, c2, and c0 in the .data
section to assist 1n processing those comparison operations associated with real number.
Figure 3.23 illustrates example of dempl.

class lemp {

public static void main(String[] args) {

47

long 1=1;

long j=0;
ifi>)
{ s))}
6 lcmp
pushfd
pop ebx
pop edx
pop eax
pop edi
pop esl

sub esieax

sbb ediedx

)8 aa_lcmp_6_sf

test est,Offfffttth

jne aa_lcmp_6_zf

test edi,Offfffffth

jme aa_lcmp 6_zf

mov eax,0

push eax

jmp aa_lemp_6_ok
aa_lcmp_6_zf:

mov eax,l

push eax

jmp aa_lemp_6_ok
aa_lcmp_6_sf:

mov eax,-1

push eax
aa_lcmp_6_ok:

push ebx
popfd
pop eax

48

cmp eax,0

le aa_ 14

push [aa_local vars+1%4]
push [aa_local vars+2%4]
mov eax, 1

push eax

mov eax,(

push eax

pushfd

Figure 3.22 Example of lcmp

01dc2_w #2 <Double 2.3>
3 dstore_1
4 1dc2_w #4 <Double 5.9>
7 dstore_3
8 dload_1
9 dload_3
10 dcmpl
11 ifle 14
14 return
real4buf reald 7
real8buf real§ 7
intbuf dword ?
longbuf qgqword ?
c3 EQU (0100000000000000b
c2 EQU 0000010000000000b

c0 EQU 0000000100000000b

.code

index_2_doublehighname EQU 01000000000000100110011001100110b
index_2_doublelowname EQU 01100110011001100110011001100110b
index_4_doublehighname EQU 01000000000101111001100110011001b
index_4_doublelowname EQU 10011001100110011001100110011010b

49

push 1index_2_doublelowname

push 1index_2_doublehighname

pop [aa_local vars+2*4]

pop [aa_local vars+1*4]

push [aa_local vars+1*%4

push [aa_local vars+2%4
[

push aa_local_vars+3*4

—_— e

push [aa_local vars+4%4
pop dword ptr real8buf+4
pop dword ptr real8buf
Af dword ptr real8buf+4 == 01111111111110000000000000000000b
mov eax,-1
push eax
jmp aa_dcmpl 10 _end
.endif
fld real8buf
pop dword ptr real8buf+4
pop dword ptr réal8buf |
Af dword ptr redl®buf+4 ==0111111 1 1110000000000000000000b
mov eax,-1
push eax
jmp aa_dcmpl 10 _end

.endif

fld real8buf
fcom

fstsw ax
mov dx,ax
test ax,c3

mz aa_dcmpl 10_equal

mov ax,dx

test ax,c0

mz aa_dcmpl 10_small

mov ax,dx

test ax,c2

jz aa_dcmpl 10 _big
aa_dcmpl _10_equal:

mov eax,0

50

mov edx,0

push eax

jmp aa_dcmpl 10 _end
aa_dcmpl _10_small:

mov eax,-1

mov edx,0

push eax

jmp aa_dcmpl 10 _end
aa_dcmpl 10_big:

mov eax,l

mov edx,0

push eax
aa_dcmpl_10_end:

finit

pop eax

cmp eax,0

le aa_ 14
aa_l4:

Figure 3.23 Example of dempl

3.2.4 Special Bytecode Translation
The so-called special bytecodes imply that those bytecode instructions are associated
with object directly.

3.2.4.1 Object Association
We will explain how to create object, and other bytecodes — getfield ~ putfield ~
getstatic ~ putstatic ~ checkcast ~ instanceof.

Create Object
A new Java instruction in the Java language implicitly generates several bytecode

mstructions after compiled by javac. For example :

new #2

dup
StringBuffer x=new StringBuffer(100); — > bipush 100

invokespecial #3

51

astore_1
The #2 and #3 are the entries of the constant pool.
#2 : java/lang/StringBuffer
#3 : java/lang/StringBuffer <init>)V

The new bytecode instruction decides the volumn, and allocates the memory space which
18 the part of the garbage collection. The fields of the created object are set to O or false or
null. Finally, it push the reference of the created object onto the operand stack. Note that
the created object 1s not be initialized, and it must be initialized through performing
nvokespecial <imit>.

Figure 3.24 1s the translated result of the above example through translator.

GetEFnPtr fntblptr,6,fnptr ; FindClass
push offset index_2_clsname

push jnienv

call [fnptr]

mov index_2_cls,eax

push 1ndex_2 cls

pop eax

push eax

push eax

mov eax,100

push eax

pop [argreversebuf+0*4]

pop jclsjobjtmp

GetbnPtr fntblptr,33,fnptr ; GetMethodID
push offset index_3_midsig

push offset index_3_midname

push jclsjobjtmp

push jnienv

call [fnptr]

mov index_ 3 _mid,eax

GetbnPtr fntblptr,28,fnptr ; NewObject
push [argreversebuf+0%4]

push 1index_3 mid

push jclsjobjtmp

push jnienv

call [fnptr]

52

add esp,20
push eax

pop [aa_local_vars+1*4]

Figure 3.24 Example of the assembly code of the new 1nstruction

In assembly code, We use several JNI functions to finish the total flow of creating object.
According to the above example, When the translator meets the new #2, it gets the value of
entry 2 of the constant pool table, and generates two variables which are index_2_clsname
and index_2_cls in the .data section. The index_2_clsname contains the value of entry 2 of
the constant pool table. Then, we use the JNI function called FindClass to get a reference
to the named class or interface. The type of the reference 18 jc/ass, and it stands for the
loaded class, and saved in the index_2 cls. After getting the jc/ass reference, we will
differentiate if the value of entry 2 of the constant pool table belongs to the system class
which is the word “java/” starting. If it does not belong to system class, indicates that it is
the user class, and 1ts index will be maintained, and used for dynamic dispatching later. We
detail the dynamic dispatching under user’¢lassés in next section.

Now, we have finished the translationsofsthe zew bytecode instruction, then process
the dup bytecode instruction, and_process the ' bipuss bytecode instruction which 1s
associated with parameters. Right now, we will process the mvokespecial. This section
only explain the <znzt> component.ofithe mrokespecial bytecode instruction, and other
components will be explained 1n next seetion.

Now, we want to create an object through invokespecial. According to the above
example, When the translator meets the invokespecial #3, it gets the value of entry 3 of the
constant pool table, and generates three variables which are index_3 midname and
index_3_midsig and index_3_mid in the .data section. The index_3_midname contains the
method name of the entry 3 of the constant pool table, and the index_3_midsig contains the
method signature of the entry 3 of the constant pool table. Then, we use the JNI function
called GetMethodld to obtain the constructor id. Then, we use the JNI function called
NewObject to create an object, and push the object reference onto the native stack.

index_2_clsname db "java/lang/StringBuffer',0
index_2_cls dword ?

index_3_midname db '<1nit>',0
index_3_midsig db '(DV',0

index_3_mid dword ?

argreversebuf dword 20 dup(?)

53

There are two places which are noticed especially. The one, the order of passing
parameters into the JNI function called NewObject 18 from right to left. Because before the
nvokespecial appears, parameters are pushed onto the native stack from left to right. So,
we must reverse the order of parameters by a temporary area called argreversebuf when
call the NewObject. The order of passing parameter 1S the same rule when process other
JNI functions. If the type of the parameter is float, we must change it to double. Because
these calling methods in JNI functions regard the float as the double type. If you do not
perform the action, you will make a mistake, and get the wrong result. The two, after
performing the NewObject, you must adjust the register esp which points the native stack.
Because these calling methods in JNI functions do not fetch the parameters from native
stack by the register esp, and they fetch the parameters from native stack by the register
ebp. The concept 1s like mixing mode of C and assembly[25,26]. Figure 3.25 illustrates the
total flow of the translator creates an object. If the class of the object belong to user class,
inserts the object reference into the objmapclass structure for dynamic dispatching later.

generate variables 1n .data

A 4

maintain O or index if user class

A 4

FindClass

A 4

generate variables in .data

A 4

GetMethodld

A 4

1. right to left

2. float -> double

3. high part then
lowpart

adjust parameters order

A 4

NewObject

A 4

adjust the register esp

Figure 3.25 The total flow of the translator creates an object

54

getfield ~ putfield
The bytecode gets/assigns the value of the field which is instance field in an object.
For example -

fieldexample x=new fieldexample();

X.it++;

0 new #3 <Class fieldexample>
3 dup

4 invokespecial #4 <Method fieldexample()>
7 astore_1

8 aload_1

9 dup

10 getfield #2 <Field int 1>

13 iconst_1

14 1add

15 putfield #2 <Field int 1>

18 return

The #2 15 the entries of the constant pool.
#2 : fieldexample 1 [

A example of assembly code of getfield and putfield instructions 18 shown in Figure 3.26.

pop jclsjobjtmp ; object reference
GetEnPtr fntblptr,6,fnptr ; FindClass
push offset index_2_clsname

push jnienv

call [fnptr]

mov 1ndex_2_cls,eax

GetEnPtr fntblptr,94,fnptr ; GetFieldID
push offset index_2_fidsig

push offset index_2_fidname

push index_2 cls

push jnienv

call [fnptr]

mov index_2_fid,eax

55

GetEnPtr fntblptr,100,nptr ; Get<Type>Field
push 1index_ 2 fid
push jclsjobjtmp
push jnienv
call [fnptr]
push eax
|
pop [argreversebuf]
pop jclsjobjtmp ; object reference
GetEnPtr fntblptr,6,fnptr ; FindClass
push offset index_2_clsname
push jnienv
call [fnptr]
mov index_2_cls,eax
GetEnPtr fntblptr,94,fnptr ; GetFieldID
push offset index_2_fidsig
push offset index_2. fidname
push index_ 2 cls
push jnienv
call [fnptr]
mov index 2_fid,cax
GetEnPtr fntblptr,109,fnptr ; Set<Type>Field
push [argreversebuf]
push 1index_ 2 fid
push jclsjobjtmp
push jnienv
call [fnptr]

Figure 3.26 Example of assembly code of getfield and putfield instructions

We use several JNI functions to finish the bytecode getfield and puttfield. According
to the above example, When the translator meets the getfield #2, it gets the value of entry 2
of the constant pool table, and generates five variables which are index_2_clsname ~
index_2_cls ~ index_2_fidname ~ index_2 _fidsig ~ index_2_fid in the .data section. The
index_2_clsname contains the class name of entry 2 of the constant pool table. The
index_2_fidname contains the field name of entry 2. The index_2_fidsig contains the field
signature of entry 2. Then, we use the JNI function called FindClass to get a reference to

56

the named class or interface. The type of the reference 1s jc/ass, and it stands for the loaded
class, and saved in the index_2_cls. After getting the jc/ass reference, we use the the JNI
function called GetFieldID to get the field 1d for an instance field of a class. Then we
decide the jni function entry by the field signature which consists of B, C, D, F, I, J, L, [, S,
and Z Then, we call the Get<7ype>Field which 1s relative to the field signature. For the
puttield, we use the JNI function called Set<7ype>Field to set the value of the instance
field. Their translating basic rules are similar between getfield and puttield.

index_3_clsname db 'fieldexample',0
index_3_cls dword ?
index_4_midname db ‘<init>',0
index_4_midsig db 'OV',0
index_4_mid dword ?
index_2_clsname db 'fieldexample',0
index_2_cls dword ?
index_2_fidname db 7,0
index_2_fidsig db T,0
index_2_fid dword _.?

real4buf real4 ?

real8buf real8 2

argreversebuf dword 20 .~dup(?)

There are three places which are moticed especially. The one, Because the hide of the
field is a problem, we can not catch the ‘class of the object directly during translating
gettield and putfield. In the other word, When we get the parameter which is an object
reference used to getfield or putfield, we can not use the JNI function called
GetObjectClass directly to catch the class of the object. We must use the FindClass and
then use the GetFreldID to catch the accurate field id. The two, after getting the value of
the field, there are different processing rules for different return type.

If the type of the return value is long after getfzeld, it 1s saved in the edx : eax, and
push the eax, then push edx. The edx has the high part of the value, and the eax has the low
part of the value.

EDX * EAX

high [«
low

A

If the type of the return value is float or double, it is saved in the real register stack
which belongs to the floating-point unit (FPU)[28]. The following are the translated codes,

57

and if 1t 1s the double, we also push the low part, then push the high part.
float ———» fstp realdbuf
push real4buf

double —— fstp real8buf
mov edx,dword ptr real8buf
mov eax,dword ptr real8buf+4
push edx ; edx has the low part
push eax ; eax has the high part

If it 1s the other types, we push the eax onto the native stack directly.

The three, the order of passing parameters into the JNI function 1s from right to left. If
there 1s a parameter whose type 18 long or double, you must first push the high part onto
the native stack and then push the low part onto the native stack as calling the JNI function
truly. So, we use a temporary area called argreversebufto finish those ordering works.

getstatic ~ putstatic

The bytecode gets/assigns the valueiofithe: ficld which is static field in a class. The
translating flow of these two bytecodes ate,similar to getfield and puttield. The distinct
point are that replace GetField[Dwith GetStaticField[D; and replace Get<Type>Freld with
GetStatic<Type>Field, and replace Set<Zype>Field with SetStatic<T ype>Field. The
another distinct point is that we use.the jelass teference to get the value of the static field,
and do not use the object reference to get the-value of the static field. Figure 3.27
llustrates the example of assembly code of ‘getstatic and putstatic instructions.

class staticfieldexample {
static int i=1;
public static void main(String[] args) {
1++;

0 getstatic #2 <Field int 1>
3 1const_1

4 1add

5 putstatic #2 <Field int i>
8 return

index_2 clsname db ‘staticfieldexample',0

58

index_2 cls dword ?
index_2 fidname db 1,0
index_2 fidsig db 'T,0
index_2 fid dword ?

GetEFnPtr fntblptr,6,fnptr ; FindClass
push offset index_2_clsname
push jnienv
call [fnptr]
mov index_2_cls,eax
GetbnPtr fntblptr,144,nptr ; GetStaticFieldID
push offset index_2_fidsig
push offset index_2_fidname
push 1ndex_2 cls
push jnienv
call [fnptr]
mov index_2_fid,cax
GetFnPtr fntblptr, 150, faptr ‘ ; GetStatic<Type>Field
push index 2 fid
push 1index_2 cls
push jnienv
call [fnptr]
push eax
s +1
GetbnPtr fntblptr,6,fnptr ; FindClass
push offset index_2_clsname
push jnienv
call [fnptr]
mov index_2_cls,eax
GetbnPtr fntblptr,144,nptr ; GetStaticFieldID
push offset index_2_fidsig
push offset index_2_fidname
push 1index_2 cls
push jnienv
call [fnptr]
mov index_2_fid,eax
GetFnPtr fntblptr,159,fnptr ; SetStatic<Type>Field
push 1index_2 fid

59

push 1index_2 cls
push jnienv
call [fnptr]

Figure 3.27 Example of assembly code of getstatic and putstatic instructions

instanceof ~ checkcast
The bytecode test that if the object belongs to the some type. Figure 3.28 is the

example of the instanceof instruction.

class 1sinstanceof {

public static void main(String[] args) {
1sinstanceof a=new isinstanceof();
if(a instanceof isinstanceof) {

}

0 new #2 <Class isinstanceof>
3 dup ‘
4 invokespecial #3 <Method isinstanceof()>
7 astore_1
8 aload_1
9 instanceof #2 <Class isinstanceof>

12 ifeq 15

15 return

ClassCastException_name db 'java/lang/ClassCastException',0
argreversebuf dword 20 dup(?)
jelsjobjtmp dword ?

index_2_clsname db 'isinstanceof’,0
index_2 cls dword ?

index_3 _midname db '<init>',0
index_3_midsig db 'O)V',0

index_3 mid dword ?

60

push [aa_local vars+1%4] ; aload_1

GetbnPtr fntblptr,6,fnptr ; FindClass
push offset index_2_clsname

push jnienv

call [fnptr]

mov index_2_cls,eax

GetbnPtr fntblptr,32,fnptr ; IsInstanceOf
pop eax

push 1index_2 cls

push eax

push jnienv

call [fnptr]

push eax
pop eax ;ifeq 15
cmp eax,0
jz aa_lS
aa_15:

Figure 3.28 Example of the instanceof instruction

We use the JNI function called Zslastance@f to test. If the object belongs to the
index_2_clsname, push 1 onto the native stack, otherwise push O onto the native stack. The
value of 1 or 0 1s used to judge by the bytecodes which belong to the flow control
category.

For the checkeast, 1t does not push 1 or O onto the native stack. If the object does not
belong to the some type, it will throws an exception called ClassCastException. We use the
following statements to finish the function.

I eax ==
push offset ClassCastException_name

call throw_exception_func
.endif

throw_exception_func proc
.data

61

e name dword ?

e_ref dword ?
.code
pop ebp
pop e_name
GetFnPtr fntblptr,6,fnptr
push €_name
push jnienv
call [fnptr]
mov e_ref,eax
GetFnPtr fntblptr,14,fnptr ; ThrowNew
push €_name
push e_ref
push jnienv
call [fnptr]
push ebp
ret

throw_exception_fun¢: endp

Table 3.2 illustrates the total JNI functions associated with object.

FindClass , 6

Get<Type>Field , 95 ~ 103
GetFieldID , 94

GetMethodld , 33
GetStaticFieldID , 144
GetStatic<Type>Field , 145 ~ 153
IsInstanceOf , 32

NewObject , 28

Set<Type>Field , 104 ~ 112
SetStatic<Type>Field 154 ~ 162
ThrowNew , 14

Table 3.2 The total JNI functions associated with object

62

3.2.4.2 Method Invocation
We will explain how to do dynamic dispatching, and other bytecodes —
mvokevirtual ~ invokestatic ~ invokespecial * invokeinterface ~ return series.

Dynamic Dispatch
To date, When we want to call the system API, we still use the JNI function to finish
the work. But, When we want to call the user defined method, we must do the dynamic

dispatching in the assembly code ourself. In order to call user defined methods in .ASM
files, we design four components — .._obymapclass ~ allclassmethodtable -
build obymapciasstable ~ search_objmapclasstable.

objmapclass_table struct
jobj dword ?
class dword ?
objmapclass_table ends
aa_objmapclass objmapclass_table 3 dup(<-1,-1>)

The .._obimapciass 1s used to save.the created.object.whose class 1s user defined. Its job/
field saves the object reference,=and its ¢/ass field saves the index. If the class of the
created object 1s same as thisclass which 18 the translated class file now, the index 1s 0. If
the class of the created object is ‘other user defined classes, the index is the entry of the
class in the constant pool table mentioned in.section 3.1.2. The allclassmethodtable
mentioned 1n section 3.1.2 1s generated 1n pass 1.

.classname idofclass superclass
methodname signature clsname callasmname

methodname signature clsname callasmname
.end

The allclassmethodtable has all the methods which come from every class which appears in
the constant pool and their super class and super class up to java.lang.Object. A item 1S a
class which appears in the constant pool, and it s methods which including inheritance up
to java.lang.Object. If the classname 1s same as thisclass, the idofclass 1s 0, otherwise
idofclass 1s the entry number of the class in the constant pool table. The order of the
methodname in a item 1s that methods of thisclass are first, then methods of superclass of
thisclass are second, and then continue up to the java/lang/Object. When the translator
meets those invoke series instructions in pass 2, the a/lclassmethodtable 1s useful.

63

build_objmapclasstable proc

.data
allobjmapclass_entry dword ?
objref dword ?
objref_entry dword ?
.code
pop ebp

pop objref entry
pop objref
pop allobjmapclass_entry
mov ebx,dword ptr allobjmapclass_entry
mnsert_item:
cmp (objmapclass_table ptr [ebx]).jobj,-1
jne next_item
mov eax,dword ptr objref
mov (objmapclass_table ptr [ebx]).jobj,eax
mov eax,dword ptr objref_entry
mov (objmapclass_table ptr [ebx]).class,cax
jmp 1nsert_ok
next_item:
add ebx,type objmapclass_table
jmp 1nsert_item
msert_ok:
push ebp
ret
build_objmapclasstable endp

The build_objmapclasstable is a procedure that is used to save the created object of
user class in the .. obimapclass. When we new an object of an user defined class, the
object reference and index are inserted 1into the .. obymapclass by the
build obymapciasstable. When the translator wants to translate invokevirtual or
nvokerntertace, the translator will generate the following codes to find the idofclass of the
created object.

push offset aa_objmapclass
push eax ; object reference 18 saved in eax
call search_objmapclasstable

64

The search_objmapciasstable returns the 1dofclass of the created object, and the idofclass 1s
associated with the a/lclassmethodtable.

search_objmapclasstable proc

.data
s_allobjmapclass_entry dword ?
s_objref dword ?
.code
pop ebp

pop s_objref
pop s_allobjmapclass_entry
mov edx,s_objref
mov ebx,s_allobjmapclass_entry
s_search:
:check if matched ?
cmp (objmapclass_table ptr [ebx]).jobj,edx
jne s_nextitem
mov eax,(objmapclass_table ptr [ebx]).class
jmp s_finish
S_nextitem:
add ebx,type objmapclass_table
cmp (objmapclass_table ptr [ebx]).jobj,-1
je s_notfind
jmp s_search
s_notfind:
mov eax,-1
s_finish:
push ebp
ret

Because messages of the called method in the invoke series instructions are saved in the
constant pool table, and we can use an entry number to get related data. There are method
name and method signature in the data, and we make the method name and method
signature as a key. The translator use the key to search the allclassmethodtable to show
those possible calling methods. We use the .if directive concept in the assembler to make
multiple calling decisions, as the following statements.

65

i eax==2
call lower_obj show_2
mov eax,2

.endif

if eax==18
call upper_obj _show_2
mov eax,l&

.endif

The eax has the return value of the procedure called search objmapciasstable. When the
1dofclass 18 matched, the correct method 1s called. At this time, those parameters which
will be used by the called function are already in the native stack, and the called function
can use them from the native stack, as the following statements.

lower_obj_show_2 proc
pop aa_return_addr
pop [aa_local vars+2*4]
pop [aa_local vars#1%4]
pop [aa_local vars+(0*4]

These parameters are saved in the local variables of the called function. The above rule
also solves the overloading problem of the multiple inheritance. Because the actually called
methods are decided at run time for mvokevirtual and mvokeinterface, and are associated
with object. So, we must save the created object reference for dynamic dispatching later.
But, for nvoekstatic and mvokespecial they are static binding, and the actually called
methods are decided at compile time, and are not associated with object. So, the translator
generates the calling assembly code directly, and do not make multiple calling decisions.
The class name and method name and method signature from constant pool table are a key.
The translator uses the key to search the a/lclassmethodtable to find the called method, and
generates a calling method assembly code directly. Figure 3.29 illustrates the flow of
dynamic dispatching for user methods.

When we want to call the system API, we still use the JNI function to finish the work.
The flow of using the JNI function 1s like the contents described in section 3.2.4.1, and
there are still some places which are noticed. These noticed places have explained in
section 3.2.4.1. Figure 3.30 illustrates the translating flow of invoking system api.

66

v dynamic v

4 N
save objref in Y N [search allclassmethodtable]
the objmapclass e
g J
call the method
v
4 N\
search objref to p \ 4
get the 1dofclass) process parameters]
.
v v
4
make multiple decision calling return & return value
by searching allclassmethodtable L in native stack

Figure 3.29 The flow of dynamic dispatching for user methods

index_.._clsname generate variables in .data

index_.._cls

A 4

index_.._midname .
. . save these parameters in the
index_.._midsig
temporary area

index_.._mid
A 4
get jclass
argreversebuf
jclsjobjtmp v
get method 1d

A 4

get jni entry of called method

1. right to left

2. float -> double v
3. high part then adjust parameters order
lowpart

A 4

call the system method by jni function

A 4

adjust the register esp

push low part then

push high part v

push the return value

Figure 3.30 The translating flow of invoking system api

67

The “get jni entry of called method” is to decide the number of the jni function by the
return types which consistof B~ C~ D~ F~1~J~ L~ [~ 8~ 2~ V. For mvokestatic or
mvokespecial, the “get jclass” use the JNI function called FindClass to get the class. For
mvokevirtual or invokemterface, the “get jclass” use the JINI function called
GetObjectClass to get the class. For invokestatic, the “get method id” use the JNI
function called GetStaticMethodID to get the method 1d. For nvokespecial, invokevirtual
or nvokeinterface, the “get method id” use the JNI function called GetMethodld to get
the method id. Table 3.3 illustrates the JNI functions of method invocation.

Call<Type>Method , 61 34 37 40 43 46 49 52 55 58
CallStatic<Type>Method , 141 114 117 120 123 126 129 132 135 138
FindClass , 6
GetMethodID , 33
GetObjectClass , 31
GetStaticMethodID , 113

Table 3.3 The INIfunctions of method invocation

invokevirtual
We show an example about calling user method and system method.

class upper_obj {
nt upi;
int show(int a,int b) {
upi=a-b;
return 1; })}
class lower_obj extends upper_obj {
nt 1;
int show(int a,int b) {
1=a+b;
return2;)}
public class invokevirtualuserapi {
public static void main(String|[] args) {
lower_obj a=new lower_obj();
upper_obj b=new lower_obj();
int g=b.show(11,3);
System.out.println(g); } }

68

0 new #2 <Class lower_ob>
3 dup
4 invokespecial #3 <Method lower_obj()>
'/ astore_1
8 new #2 <Class lower_ob>
11 dup
12 invokespecial #3 <Method lower_obj()>
15 astore_2
16 aload_2
17 bipush 11
19 1const_3
20 invokevirtual #4 <Method int show(int, int)> //user method
23 1store_3
24 getstatic #5 <Field java.io.PrintStream out>
27 1load_3
28 invokevirtual #6 <Method Void printIn(int)> //system method
31 return

Javap. of invokevirtualuserapi

extrn lower_obj_show 2:prec,upper._obj show_2:proc
.data

argreversebuf dword 20 dup(?)
jclsjobjtmp dword ?

index_6_cls dword ?
index_6_midname db 'println',0
index_6_midsig db '(DV',0
index_6_mid dword ?
aa_objmapclass objmapclass_table 4 dup(<-1,-1>)
.code
; create object a
push offset aa_objmapclass

push eax
mov eax,2
push eax

69

call Dbuild_objmapclasstable
pop [aa_local vars+1%4]

push offset aa_objmapclass

push eax
mov eax,2
push eax

call Dbuild_objmapclasstable
pop [aa_local vars+2*4]
push [aa_local vars+2*4]

mov eax,[esp+2*4]
push offset aa_objmapclass
push eax
call search_objmapclasstable
if eax ==
call lower_objushow.2
mov eax,2
.endif
if eax ==H9
call upper.obj_ show: 2
mov eax,l19
.endif
pop [aa_local vars+3*4]

push [aa_local vars+3*4]
pop [argreversebuf+0*4]
pop jclsjobjtmp
GetbEnPtr fntblptr,31,fnptr
push jclsjobjtmp

push jnienv

call [fnptr]

mov 1ndex_6_cls,eax
GetbEnPtr fntblptr,33,fnptr
push offset index_6_midsig
push offset index_6_midname
push index_6_cls

push jnienv

; create object b

;push 11,3

; getstatic

; GetObjectClass

: GetMethodID

70

call [fnptr]

mov 1ndex_6_mid,eax
GetEnPtr fntblptr,61,fnptr
push [argreversebuf+0%4]
push index 6 _mid

push jclsjobjtmp

push jnienv

call [fnptr]

add esp,l6

: CallVoidMethod

Asm code of invokevirtualuserapi

lower_obj_show_2

proc

pop aa_return_addr

pop [aa_local_vars+2%4]
pop [aa_local_yars+1%4]
pop [aa_local vars+0%4]
mov eax,2

push eax

push aa_return: addr

ret

lower_obj_show_2

endp

Asm code of lower_obj

upper_obj_show_2

proc

pop aa_return_addr

pop [aa_local vars+2*4]
pop [aa_local vars+1%4]
pop [aa_local vars+0*4]
mov eax, 1

push eax

push aa_return_addr

ret

upper_obj_show_2

endp

Asm code of upper_obj

71

We show those generated assembly codes of the invokevirtualuserapi, lower_obj, and
upper_obj. We also show the translating processes of the invokevirtualuserapi, lower_obj,
and upper_obj, and also show the processes of compiling and executing.

D:mastertrans lateprog project>translatemain invokevirtualuserapi
parse method block=’main{java.lang.Stringll>

Jjavaslang~0Object <init> <(>U @
lower_obj <null> <{null> @

lower_obj <init> (U 8

upper_obj show <II>I A
Javaslang~System out Ljava-iosFPrintStream: @
JjavasiosPrintStream println <I>U @A
invokevirtualuserapi <null> <null> A
Java-slang-0bject ¢(null> <null> @

19 @ uwpper_obj <null> <{null> @

21 B8 javarslangsSystem ¢(null? <null> @

23 8 javasiosPrintStream (null> <null> A

[I R LI L

<init> <>U lower_obhj lower_ obj_<init>_1

zhow (II>I lower_obhj lower_obhj_show_ 2

<init> (OU upper_obj upper_obj_<init>_1

show (1121 wpper_obhj uwupper_ohbhj_show_2

— —invokevirtualuserapi @ java~slang~-0Object— -

{init> <>V invokevirtualuserapi invokevirtuwaluwserapi <init>_1

main ([Ljava~lang~-8tring;:;>U invokevirtualuserapi invokevirtualuserapi_main_2
upper_ohj 1?9 java~slang-0Ohject

<init> <>U wupper_obhj upper_obj_<init>_1

=how (II>I upper_obhj upper_obhj_show_2

translate the invokevirtualuserapi

D: “mastertrans lateprogsproject>*translatemain lower_obj
parse method block=»)show{int. dint>....

upper_ohj <init> <(>U B
Jower_ohj i I 8
lower_obj <null?> <{null> A
upper_obj (null?> <{null> @

——lower_obhj B8 upper_obj
it> (OU lower_obj lower_obj <init>_1
l=how <II>I lower_obj lower_obj _show_ 2
Kinit>» (U wpper_obj uwupper_ obj <init>_ 1

{II>1 uwupper_ohj upper_obj_shou
—upper_ohj 4 java-lang-Object
it> (OU upper_obj wpper_obj <init>_1
l=how <II>]I wpper_ _obj upper_obj show 2

translate the lower_obj

D:mastertrans lateprogsproject>translatemain upper_ s
............... parse method block=>showd{int, int>.c.ccaoa..n

Java-slang-0bject <init> (32U A
upper_ohj upi I @
wupper_obj <null> <null> &

Java~lang-0bject <null? <(null> @
—————— upper_ohj B javarslang/0Object————
Kinit> (OU upper_obj upper_obj _<init>_1
show <II>I upper_obj upper_obj_show_2

translate the upper_obj

72

-1_A1~1ib~juml_1dib

Borland GC++ 5.6 for Win3d2 Copyright <ec> 192923, 2882 Borland
invokevirtualuserapi.asm:

Turbo Assembleyr Version 5.3 Copyright <c> 1988, 2808 Inprise GCorporation

Assembling file: invokevirtualuserapi.ASH
Eryroyr mMESSages s Hone

Yarning messages:s Hone

Passes: 1

lower_ohbhj.asm:
Turbo Assembler Version 5.3 Copyright <c> 1988, 2808 Inprise Corporation

Assembling file: lower_ohbhj-ASH
~POF MESSAYES S Hone
g messages - Hone

1

Turbo Assembler Version 5.3 Copyright <c> 1988, 2ZBUH Inprise Corporation
upper_ _obj.-ASM
Hone

Hone
1

Turbo Incremental Link 5.68 Copyright <{c?> 1997-28H82 Borland

ifﬁ\]’n iZinvokevirtualuserapi

compile and run

invokestatic

The instruction is used to invoke: static method. We can known the called method at
compile time, and the message of the ealled-method 1S fecorded in the constant pool, and
we can get the message through a‘index. ' We hadresolved the class file in pass 1, and make
the constant pool into a structure called constant peol-table. For example :

mvokestatic #8 [/*static user method: abc
When the translator want to translate this statement, 1t regards the number behind the
symbol # as an entry of the constant pool table, and gets messages about the method by the
entry. The messages contain class name, method name, and method signature. If the
method is user, we use the three informations to search the a/lclassmethodtable to find the
called method, and then generate the assembly calling code directly. The problems of
parameters and returning value are the same operations as the zvokevirtual.
call abc

If the method 18 system, the translating step is like the figure 3.30. But there are two
different points. Because the nvokestatic 1s related to class, and 1s not related to object. So,
we do not have object reference, therefore we only use the JNI function called FindClass to
get the Jclass, and can not use the JNI function called GetObjectClass. Then we use the JNI
function called GetStaticMethodID to get the method 1d. Because we call the different JNI
function for static or non-static method, we wuse those JNI functions called
CallStatic<Type>Method.

73

invokespecial
The instruction is used to call the following methods :

1. 1nstance 1nitialization method <init>.
2. private instance methods of this class.
3. methods of super class of this class.

We had described how to translate the mvokespecial instruction to finish the <init> in the
previous section. Now we will explain the another two usages. When the Java programmer
uses the key word called superto invoke the method of parent class and invokes the private
mstance method 1n this class directly, the javac compiler uses the invokespecial to call
those methods. The invokespecial differs from invokevirtual primarily in that
1nvokespecial normally selects a method based on the type of the reference rather than the
class of the object. In other words, it does static binding instead of dynamic binding.

The invokespecial 1s not used to invoke private class methods, just private instance
methods. Private class methods are invoked with nvokestatic. For example - it must be
possible for a subclass to declare an instance method with the same signature as a private
mnstance method 1n a superclass.

class Superclassprivate {
private void intetestingMethod() {
System.out.printIn("Super™);

}

void exampleMethod()+{
interestingMethod();

|

class Subclassprivate extends Superclassprivate {
void interestingMethod() {
System.out.println("sub");

}

public static void main(String[] args) {
Subclassprivate me=new Subclassprivate();
me.exampleMethod();

I

Method void exampleMethod()
0 aload_0O
1 mvokespecial #5 <Method void interestingMethod()>
4 return

74

Method void main(java.lang.String[])
0 new #5 <Class Subclassprivate>
3 dup
4 1nvokespecial #6 <Method Subclassprivate()>
7 astore_1
8 aload_1
9 invokevirtual #7 <Method null>
12 return

Superclassprivate_exampleMethod 3 proc

.code
pop ab_return_addr
pop [ab_local vars+0*4] ; this reference
push [ab_locals vars+0#4]
call Superclassprivate interestingMethod_2
push ab_return_addr !
ret
Superclassprivate_exampleMethod_3 endp
Asm code of exampleMethod
_main proc
if eax ==

call Superclassprivate_exampleMethod_3
mov eax,0

.endif

I eax==38
call Superclassprivate_exampleMethod_3
mov eax,d

.endif

Asm code of main

75

The Java Virtual Machine invokes the interestingMethod() defined in Superclassprivate
even though the object is an instance of class Subclassprivate and there is an accessible
interestingMethod() defined in Subclassprivate. So, the asm code of exampleMethod
mvokes the interestingMethod of Superclassprivate directly.

When the Java Virtual Machine resolves an rnvokespecial instruction’s symbolic
reference to a superclass method, it dynamically searches the current class's superclasses to
find the nearest superclass implementation of the method. For example :

class Cat {
void someMethod() {

I

class TabbyCat extends Cat {
void someMethod() {
super.someMethod();

I

Compiled from TabbyCat.java

Method void someMethod()
0 aload_O
1 invokespecial #2 <Method void someMethod()>
4 return

TabbyCat_someMethod_2 proc

call Cat_someMethod 2

invokeinterface

The invokerntertace performs the same function as zvokevirtual, it invokes instance
methods and uses dynamic binding. It is related to object. The difference between these
two 1nstructions 1s that mvokevirtual 1s used when the type of the reference is a class,
whereas mvokeinterface 1s used when the type of the reference is an interface. The Java
Virtual Machine uses a different instruction to invoke a method on an interface reference
because it can not make as many assumptions about the method table offset given an

76

interface reference as it can given a class reference. Given a class reference, a method will
always occupy the same position in the method table, independent of the actual class of the
object. This 1s not true given an interface reference. The method could occupy different
locations for different classes that implement the same interface.

When the Java Virtual Machine encounters an zzzvokevirtual instruction and resolves
the symbolic reference to a direct reference to an instance method, that direct reference 1s
likely an offset into a method table. From that point forward, the same offset can be used.
For an invokentertace instruction, the JVM will have to search through the method table
every single time the instruction 1s encountered, because it can not assume the offset is the
same as the previous time.

The translating rule of the invokernterface is the same as the mvokevirtual. For
calling the system method by invokemnterface, every single time the instruction
encountered, we always use those associated JNI functions to finish the mvokeinterface
work. For calling the user method by invokeinterface, every single time the instruction
encountered, we always use the samestranslating steps which are mentioned in the
beginning of the section to call thé correct, method:.Because the translating rule of the
nvokerntertace 1s the same as the nvokevirtual, we do not illustrate an example about
mvokeinterface in this section.

return instructions
The return instructions consist of efurn, Ireturn, freturn, dreturn, areturn, and return.

If the location of the returning series bytecode instructions is the last bytecode in the
bytecode stream of a method, we do not generate any assembly code, and the returning
value which was prepared by bytecodes prior to those return series bytecodes immediately
were on the native stack. Because we add that pushing return address onto the native stack
and ret actions in the initialization asm code mentioned in the figure 3.5, we can return
back to the caller method. If they are not the last bytecode in the bytecode stream of a
method, the returning value was also prepared, but we must generate the following
assembly codes. The control can return back to the caller method by the following
assembly codes.

push return_addr
ret

For example :

77

public class stepoly {

(x<0) {

}

else

}

;o)

return -1;

else 1f(x<=5)
return x*x;

static int stepPoly(int x) {

System.out.println("foo");

return x*5+16;

public static void main(String[] args) {
int g=stepPoly(-5);
System.out.println(g);

Method int stepPoly(int)

12 1const_m1
13 1return

21 imul
22 ireturn

28 1add
29 ireturn

/[parameter.in the stack

{l-parameterin the stack

/l parameter in the stack

ret

ret

ret
stepoly_stepPoly_2

push aa_return_addr

push aa_return_addr

push aa_return_addr

endp

78

3.2.5 Template Match

We propose template matching technique to generate more efficient ASM codes. This
template matching method is original from the paper[7], but we add some concepts of
peephole pattern table[11] to those template patterns. We arrange many bytecode
instructions to form some patterns. Before we want to begin to translate every bytecode
instruction, we compare these patterns with adjacent bytecode instructions. If they are
matched, the result indicates that these adjacent bytecode instructions can be translated to
ASM codes together. We extend the concept of peephole pattern table[11] to constitute
advanced patterns which let our translator to generate less native codes easily. We can
1mplement some optimizations[2] in the template patterns. For examples -

bipush 9 » mov [aa_local_vars+0*4], 9
1store_0

load_1 mov eax, [aa_local_vars+1%4]
1load 8 » Mmov ebx, [aa_local_vars+8*4]

if_1cmpeq 38 cmp eax, ebx
ke aa_38
iload 6 mov eax, [aa_local_vars+6*4]
load_3 mov ebx, [aa_local_vars+3*4]
iconst_1 » add ebx, 1
ladd cmp eax, ebx
if_icmpne 38 e aa_38

We can combine two or more than two existent templates to match patterns of Java
bytecode instructions. We will implement more optimizations, such as dead code
elimination, and common subexpression elimination in the future. According to the
experiment result, when the template matching occurs within the loop, the generated
assembly codes has outstanding improvement. We hope to make better performance which
1s close to the JIT.

79

Chapter 4 Performance Evaluation and Analysis

In this chapter, we carry out a series of performance experiments in order to test the
viability of our translator. Test results are first enumerated for comparisons, and later we
analyze and explain the reason of causing the performance difference.

4.1 Performance Evaluation and Comparison

Handwritten several small Java programs which consist of loop test, arithmetic tests,
array test, field test, and user method tests. The results of these tests are in table 4.1~4.5.
Many excellent Java benchmarks exist. The Linpack executes complex algorithms which
perform many computations. The BTest 1s for a statistical evaluation, and does a lot of
shuffling around in an integer array and double computations. The results for the two
excellent benchmarks are in table 4.6.

The experiment platform is a AMD. Athlon-1600 runs at 1.41 GHz with 256MB RAM.
The operating system i1s Microsoft Windows..XP professional edition. Java Virtual Machine
is Sun “Java.exe” in Sun J2SDK 1.4.1-01-for win32. We run these benchmarks in three
approaches — interpreter, JIT, ;and our translator. The results of the three approaches
show their execution time, and thé-measure unitissecond.

1. loop test
The loop test 1terated an empty loop 1000000000 times. The result 1s list in table 4.1.

Benchmark Interpreter | JIT | Asm code

Empty loop iterated 1000000000 times 34.8 3.45 5.81

Table 4.1 Loop test

2. arithmetic tests
Four tests are enclosed in this suite. Each item 1s executed under 100000000 times, as
shown in table 4.2.

Benchmark Interpreter | JIT | Asm code
Addition and subtraction on integer 13.47 0.84 2.05

80

Multiplication and division on integer 16.5 3.7 5.08
Addition and subtraction on long 14.41 0.72 5.52
Multiplication and division on long 22.09 9.88 105.99
Addition and subtraction on float 11.67 1.81 3.69
Multiplication and division on float 12.39 2.44 4.86
Addition and subtraction on double 14.66 1.69 11.66
Multiplication and division on double 15.58 3.19 12.73

Table 4.2 Arithmetic tests

3. array test

A three-dimension array with 60 elements 1s created. Each element 1s assigned an
integral value. The assignment 1s executed 1000 times repeatedly. The result 1s shown in

table 4.3.

Benchmark Interpreter | JIT | Asm code
One-di jon nt ith T0000000

ne 1mens1o§ Int array wi 0.09 0.09 0.09
elements creation
3-dimension int array 12.28 12.06 12.48
One-dimension int array with 3 élements

0.38 0.06 1.5
1s created for 1000000 times
Table 4.3 Array test

4. field test

An instance which has an integral instance field and an integral class field 1s created.

We then use a loop to access that field for 1000000 times. Table 4.4 shows the result.

Benchmark Interpreter | JIT | Asm code
(Class field accessed for 1000000 times 0.09 0.02 1.58
Inst field d for 1000000
.ns ance field accessed for 0.09 0.02 L6l
times

Table 4.4 Field test

81

5. user method tests
An empty user instance method and an empty user static method are called 1000000
times. Table 4.5 shows the results.

Benchmark Interpreter | JIT | Asm code
tati thod invoked for 1
Sam method 1voked for 1000000 0.08 0.02 0.03
times
I hod invoked for 1
.nstance method 1voked for 1000000 0.08 0.02 0.08
times
Table 4.5 User method tests
6. excellent examples tests
Linpack and BTest are tested, as shown in table 4.6.
Benchmark Interpreter | JIT | Asm code
Linpack 0.08 0.02 0.14
BTest 77 8 76

Table 4.6 Excellent examples tests

4.2 Benchmarks Analysis

After carefully examining codes of these benchmark programs in detail, we analysis
the six clusters, and propose to some viewpoints.

1. the loop test

Take a look at the result, we notice that the performance of our translated asm codes
is close to that of the JIT. This is because the interpreter uses the memory to process the
loop, and does not use the registers. The JIT takes advantage of the registers to improve the
performance of the loop. Our translator uses the memory to record the iteration number,
and uses the registers to do these comparison and increment. The jump action of the asm
code 1s faster than the jump bytecode instruction of the interpreter. The performance
difference of our translator and the JIT is that the JIT uses the registers efficiently and does
loop optimization.

82

2. the arithmetic tests

The performance of our translator in integer computation and long addition and long
subtraction are good as expected, and if we make more template matching in the future, the
performance will be close to the JIT. This is because addition and subtraction operations
on multiword operands are straightforward, so we use several Intel assembly instructions to
finish those computations directly, and the code size is short. But the performance of long
multiplication and division 18 not good as expected. The possible reason 1s that
multiplication and division of multiword operands are not straightforward, so we must use
many Intel assembly instructions and computation algorithms to finish those operations,
and these used algorithms called longhand multiplication algorithm and nonrestoring
division algorithm([26,32] are slower than the internal operations of the interpreter.

We use the assembly instructions of the FPU to finish the float and double
computations. The performance of our translator 1s better than the interpreter, but slower
than the JIT. This 1s because local variables are saved in the memory, we must get the
value of the local variable through memory, and then continue to compute. Therefore, the
slow reason 1s the reading and writing of the memory.

3. the array test, field test

Our translator uses the JNI function to translate. those bytecode instructions associated
the array and field operations. When we use-the JNI function once, the difference is very
small and 1s unobvious. If we use the JNI functioniin a heavy-weight loop, the difference is
obvious. The solution is that many sesults which’ many JNI functions generate are
unchanged in a heavy-weight loop, and we can let these JNI functions to execute once, and
save those results which these JNI functions generate for next used. This work that how to
use the JNI function efficiently is the future work.

4. the user method tests

For static method calling, the performance of our translator is close to the JIT. This is
because the actual callee method 1s decided at compiling time, and thus we can generate a
calling assembly code directly. The speed of a calling assembly code 1s fast. For instance
method calling, the speed of invoking once 1s faster than the interpreter. The interpreter
resolves the instance method when the interpreter first meets the instance method at
running time, and replaces the entry of the constant pool with direct address which may be
an offset in the method table. When the interpreter meets the same instance method second,
it jump to the starting address of the instance method to execute. The translated asm code
always performs our designed dynamic dispatching algorithm to call the correct method
every time, even though 1s the same instance method. Because our translated asm codes
must perform dynamic dispatching despite the same instance method, but the interpreter

83

invokes the same instance method by direct address except for first resolving. So this is
why our translator has same performance as the interpreter for calling instance method in a
heavy-weight loop. The solution is that smarter dynamic dispatching mechanism. If
invoking the same instance method second, we do not perform the dynamic dispatching,
and can invoke the instance method directly. The solution needs to analysis the data flow
of the program, and this is a future work.

5. the excellent examples tests

The performance of our translator is near to the interpreter, and there are some
distance between our translator and the JIT. The Linpack and BTest has a lot of shuffling
around 1n array computations. The possible slower reason 1s the overhead of using the JNI
functions. If we can use the JNI function efficiently, we can improve the performance.

In order to make the translated asm codes right, we do many tests by many examples
during the translator developed phase. Basically, we feel that our translator is potential to
deliver good performance on these examples during testing course. In the real world, the
Java application programmer will ;hot write.a program which invokes a same instance
method for many times, and has too many array.computations. Therefore, to date our
translator can gets the good performance for.those general applications.

84

Chapter 5 Conclusion and Future Work

5.1 Conclusion

Performance of Java is always an interesting issue. In this thesis, we described an
approach to translate Java bytecode to X86 assembly code. The approach does not
generates the intermediate representation, but adopts code mapping method for the
bytecode instruction. The code mapping method simplifies the complexity of other native
compilers which generate IR in the past.

In order to generate right assembly codes, we propose that the one-pass 1s used to
gather informations about the class file and bytecode instructions, and the two-pass is used
to generate the actual asm codes. We use the template matching to do some optimizations,
and use the JNI function to communicate with the Java Virtual Machine.

In order to implement the dynamic dispatching in assembly codes, we designed a
mechanism which consists of four components mentioned in section 3.2.4.2. We use the
four components to finish that the envirenment- which is a static binding can invoke the
method which are decided in a dymamic binding environment. To date, the speed of our
translator 18 faster than the interpreter, but:is slower than the JIT according to our
experiments. Although there are still some distance between our translator and the JIT, but
the performance of our translator=which 1§ used-on real-world applications 1S acceptable,
and there are opportunity to refine it.

5.2 Future work

To date, there are still many enhancing the performance methods of Java in the native
compiler category. They are differentiated between machine dependent and machine
independent. In order to enhance the performance, we list here some work we wish to
accomplish in the future.

e smarter register allocation.

e 1mplement more optimizations in the template matching.
e Make more tests, such as SPEC JVMO98 microbenchmark.
e Use the JNI function efficiently.

e Smarter dynamic dispatching.

We believe that our translator will has the same performance as the JIT after finishing
these future work, even better.

85

References

[1] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh, and
James M. Stichnoth, “Fast and effective code generation in a just-in-time Java compiler”
ACM SIGPLAN Notices, 33(5):280-290,May 1998.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, “Compilers Principles, Techniques
and Tools” , Addison-Wesley, 1986.

[3]J. Gosling, B. Joy and G. Steele, “The Java Language Specification, second edition”
Addison-Wesley, 2000.

[4] Amold, Ken, and James Gosling, “The Java Programming Language” , (Reading, MA:
Addison-Wesley), July 1997.

[5] Tim Lindholm and Frank YellingThe-Java Virtual Machine Specification” ,
Addison-Wesley, Reading, MA, USA, second.edition;.1999.

[6] C.-H.A. Hsieh, J.C. Gyllenhaal, and W:W. Hwu,: “Java Bytecode to Native Code
Translation:The Caffeine Prototype “and 7 Preliminary Results” , Proc. 29" Ann.
International Symp. Microarchitecture, IEEE CS *Press, Los Alamitos, Calif., 1996,
pp.90-97.

[7] Ye Hua, Tong WeiQin, Yao WenSheng, “Platform independence issues in compiling
Java bytecode to native code” , High Performance Computing in the Asia-Pacific Region,
2000. Proceedings. The Fourth International Conference/Exhibition on ,Volume: 1 ,14-17
May 2000 Pages:530-532 vol.1.

[8] C.-H.A. Hsieh, M.T. Conte, T.L. Johnson, J.C. Gyllenhaal, W.-M.W. Hwu,
“Compilers for Improved Java Performance” , Computer ,Volume: 30 ,Issue: 6 ,June

1997 Pages:67-75.

[9] P. Bothner, “A Gce-based Java Implementation” , Compcon '97. Proceedings,
IEEE ,23-26 Feb. 1997 Pages:174-178.

[10] D. Lance, R.H. Untch, N.J. Wahl, “Bytecode-based Java Program Analysis” , April
1999 Proceedings of the 37th annual Southeast regional conference.

86

[11] H.D. Lambright, “Java Bytecode Optimizations” , Compcon '97. Proceedings,
IEEE ,23-26 Feb. 1997 Pages:206-210.

[12] R. V.-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, V. Sundaresan, “Soot-a Java
Bytecode Optimization Framework” , November 1999 Proceedings of the 1999
conference of the Centre for Advanced Studies on Collaborative research.

[13] F.G. Chen, and Ting-Wei Hou, “Design and Implementation of a Java Execution
Environment™ , Parallel and Distributed Systems, 1998. Proceedings., 1998 International
Conference on ,14-16 Dec. 1998 Pages:686-692.

[14] A. Azevedo, A. Nicolau, and J. Hummel, “Java Annotation-Aware Just-In-Time
(AJIT) Compilation System” , June 1999 Proceedings of the ACM 1999 conference on
Java Grande.

[15] V. Mikheev, N. Lipsky, D. Gurchenkov, P. Pavlov, V. Sukharev, A. Markov, S.
Kuksenko, S. Fedoseev, D. Leskov, A.¥Yeryomin, “Overview of Excelsior JET, a high
Performance Alternative to Java Vittual Machines™ % July 2002 Proceedings of the third
international workshop on Software and performance.

[16] Suganuma et al., “Overviéw. of the7IBMr Java Just-In-Time Compiler” , IBM
Systems Journal, Vol. 39, No. 1, 2000.

[17] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim
Newsham, and Scott A. Watterson, “Toba: Java for applications: A way ahead of time
(WAT) compiler” , Proc. Usenix Association, pp.41-54, 1997.

[18] M. Cierniak, G.-Yuan Lueh, J.M. Stichnoth, “Practicing JUDO:Java Under Dynamic
Optimizations” , May 2000 ACM SIGPLAN Notices , Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and
implementation, Volume 35 Issue 5.

[19] “TowerJ” , Tower Technology., http://www.twr.com/.

[20] Java Technology, http://java.sun.com/.

[21] Bill Venners, Inside the Java 2 Virtual Machine, McGraw-Hill Companies, 2001.

87

[22] Jon Meyer and Troy Downing ¥ » JAVA EHEESH > £e8S58 > SOyl e
B BDL, fl F[ﬁ?l, fl » 2000 = T E[FHy o

[23] Joshua Engel, Programming for the Java Virtual Machine, Addison Wesley Longman,
1999.

[24] Sheng Liang, The Java Native Interface, Addison Wesley, Longman, 1999.

[25] Kip R. Irvine, Assembly Language for Intel-Based Computers, Fourth Edition,
Pearson Education, Inc., 2003.

[26] Sivarama P. Dandamudi, Introduction to Assembly Language Programming, Springer,
1998.

[27] Ytha Yu, Charles Marut, Assembly Language Programming and Organization of the
IBM PC, McGraw-Hill, inc., 1992.

[28] Richard C. Detmer, Introduction to.,80x86 Assembly Language and Computer
Architecture, Jones and Bartlett Publishers, 2001.

[29] IA-32 Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture,
2002.

[30] IA-32 Intel Architecture Software Developer's Manual, Volume 2: Instruction Set
Reference, 2002.

[31] “99% Java” , Assembly and JNI, http://www.amherst.edu/~tliron/jni/assembly.html,
Biswajit Sarkar.

[32] David A. Patterson, John L. Hennessy, Computer Organization & Design The
Hardware/Software Interface, second edition, Morgan Kaufmann Publishers, 1997.

[)T R BT BT S Java IEEEGEY o SRS HVRDTE IR 2002

3]
F 8k TH‘}”?

88

Appendix

The following code is the startvm.c.

#include <jni.h>
#include <stdio.h>
#include <windows.h>
typedef jint ONICALL CreateJavaVM_t)(JavaVM **pvm, void **env, void *args);
#define PATH_SEPARATOR ;' /* define it to be ":' on Solaris */
#define USER_CLASSPATH "." /* where Prog.class 1s */
JNIEnv* startvm();
JNIEnv* startvm() {
CreateJavaVM_t *CreateJavaVM;
HINSTANCE hvm;
INIEnv *env;
JavaVM *jvm;
jint res;
jclass cls;) ! ‘
jmethodID mid; ‘ ‘ | . ;“
jstring jstr; -
jclass stringClass;
jobjectArray args;
#ifdef INI_VERSION_1_2
JavaVMInitArgs vm_args;
JavaVMOption options[1];
options[0].optionString = "-Djava.compiler=NONE";
/loptions[1].optionString = "-Djava.class.path=c:\\]2sdk1.4.1_01";
options[1].optionString = "-Djava.class.path=.",
/loptions[2].optionString = "-Djava.library.path=c:\\j2sdk1.4.1_01\\lib";
[loptions[3].optionString = "-verbose:jni";
/lvm_args.version = 0x00010002;
vm_args.version = INI_VERSION_1_4;
vm_args.options = options;
vm_args.nOptions = 2;
vm_args.ignoreUnrecognized = INI_TRUE;
/* Create the Java VM */
hvm=LoadLibrary("c:\\j2sdk1.4.1_01\\sre\\bin\\client\\jvm.d11");
if(hvm == NULL)

89

return NULL;

}
CreateJavaVM = (CreateJavaVM_t *)GetProcAddressthvm,"INI_CreateJavaVM");

/lres = INI_CreateJavaVM(&jvm, (void**)&env, &vm_args);

res = CreateJavaVM(&jvm, (void **)&env, &vm_args);
Helse
JDK1_1InitArgs vm_args;
char classpath[1024];
vm_args.version = 0x00010001;
JNI_GetDefaultJavaVMInitArgs(&vm_args);
/* Append USER_CLASSPATH to the default system class path */
sprintf(classpath, "%s%c%s",

vm_args.classpath, PATH_SEPARATOR, USER_CLASSPATH);

vm_args.classpath = classpath;
/* Create the Java VM */
res = INI_CreateJavaVM(&jvm, &eny, &vm_ args); .
#endif /* INI_VERSION_1_2 */ n !

if (res < 0) { = |
fprintf(stderr, "Can't create 'Jéva Vl\“‘/L\n’v’); 356 |
exit(0); ”

}

return env;

90

