
 1

Chapter 1 Introduction

1.1 The Java Programming Language

 Java may be used as a conventional programming language for writing applications,

and it may also be used to write applets on the WWW. As the massive growth of the

Internet and the WWW, Java has become more and more popular since it was first

introduced by Sun Microsystems in 1995.

 Figure 1.1 shows the simplified flow of compiling and running Java programs. Each

program（.java）is translated by a Java compiler into a platform-independent intermediate

form － the Java bytecode（.class）. The Java bytecode can then be loaded by a

classloader from local disks or remote hosts via network connection, and run in the Java

Virtual Machine[5,21,22,23,33]（interpreting or just-in-time compiling）. The Java Virtual

Machine may be implemented by software or hardware.

Java source

（.java）
Java Compiler

Java Bytecode

（.class）

=Java Virtual Machine=

Class Loader

（Bytecode verification）

Java class
library

Interpreter Just-In-Time
compiler

Execution Engine

 2

Figure 1.1 Compiling and Running Java programs

 Here we summarize some features of the Java Programming Language[3].

● Architecture Neutral and Portable

The Java compiler compiles Java programs into bytecode, and bytecode helps to

transport code to different software and hardware platforms easily. Java gives detailed

definitions to the value range and storage format of its primitive data types, the

behavior of its arithmetic operators, etc. The programs are the same on every platform.

There are no more data type incompatibility problems.

● Simple and Object-Oriented

Like C++, but it removes many unnecessary features. No typedef, define, etc.,

preprocessor commands、no structures or unions、no external functions、no multiple

inheritance、no goto statement、no operator overloading、no automatic coercion、no

pointers.

● Robust and Secure

During the compiling phase, it provides compile-time type checking. But due to the

unusual bytecode representation mechanism, Java provides runtime checking in the

Java Virtual Machine.

● Multi-thread

The Java library provides a class java.lang.Thread that contains a collection of methods

modeling a thread life cycle.

1.2 Research Motivation

 Successful as Java is, the performance of Java is still an issue. It is implemented by

compiling to portable bytecodes[5]. However, interpreting bytecodes makes Java program

many times slower than comparable C or C++ programs. One approach to improving this

situation is“Just-In-Time”(JIT) compilers. Dynamically translating bytecodes to

machine codes just before methods are first executed. This can provide substantial speed

up, but it is still slower than C or C++. There are two main drawbacks with the JIT

approach compared to conventional compilers：

● The compilation is done every time the application is executed, which means

 3

start-up times are much worse than pre-compiled code.

● Since the JIT compiler has to run fast , it cannot do any nontrivial optimization.

Only simple register allocation and peepoptimizations are practical.

 While JIT compilers have an important position in a Java system, for frequently used

applications it is better to use a more traditional“ahead-of-time”. While Java has been

primarily touted as an internet/web language, many people are interested in using Java as

an alternative to traditional languages, if the performance can be made adequate. For

embedded system applications it makes much more sense to pre-compile the Java program.

So far, there are some tools that can offline translate Java source/Java bytecode to native

code for performance enhancement. But, lack for translating to original assembly language

code. Therefore, we propose a method that can translate java bytecode to X86 assembly

code.

1.3 Goals

 There are several benefits in translating Java bytecode to X86 assembly code.

一、 improving the execution time than interpreter.

二、 Providing a chance for combining existent assembly code with the translated

assembly code.

三、 Providing a chance for interaction of assembly code and Java Virtual Machine.

 The goals of our work are to develop a tool that models the flow of translation

without generating intermediate representation[6,8], and simplify the task of translating

Java bytecode, and demonstrate significant optimizations which touch bytecodes directly

and can improve the performance. An optimizing translator which is from Java bytecodes

to native machine codes and generates intermediate representations is too complex and is

understood difficultly, and today the performance by JIT compiler has acceptable state.

Therefore, we hope to build a simple translator that not only shorten the steps of translation

and simplify the method of translation, but also running time of translated assembly codes

by translator can be close to the running time of translated native code by JIT

compilers[1,16] or other native compilers[15,17,19]. So, our translator simplifies the

translation flow, and still has good performance.

 4

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 briefly overviews the system

architecture of Java Virtual Machine, and introduces every kind of software approach to

bytecode execution enhancement. Chapter 3 describes the system architecture of our

approach and how the system translates every kind of Java bytecode to X86 assembly code

and introduces some associated translating examples. The experimental evaluation and

analysis are discussed in Chapter 4. Chapter 5 concludes this thesis and discusses possible

future works.

 5

Chapter 2 Variations of Java Bytecode Execution

Interpretation is slow. Since the design of Java never restricts itself to be interpreted,

we may try to enhance the performance of Java using different approaches. Several

possible ways of implementing a faster performance are enumerated below.

2.1 Just-In-Time Code Generators

 A“Just-In-Time”(JIT) Java compiler produces native code from Java bytecode

instructions during program execution. The results of the compilation are not kept between

runs. A JIT code generator can make use of specific hardware coprocessors running in the

current environment. Figure 2.1 is the data structures of Intel VM.

Figure 2.1 Data structures of Intel VM.

 Overall program execution time now includes JIT compilation time, in contrast to the

traditional methodology of performance measurement in which compilation time is ignored.

Compilation speed is more important in a Java JIT compiler than in a traditional compiler,

requiring optimization algorithms to be lightweight and effective. It is also important for

the Java JIT compiler to interact with other parts of the system.

 So far, there are two types of JIT implementation. One is fast, effective code

generation[1]. It has no explicit intermediate representation, and it generates native code

 6

directly from bytecodes in a pass. The first pass is gathering important information, the

second pass is lazy code selection. Figure 2.2 shows it´s five major phases.

Figure 2.2 Fast, effective code generation in JIT compiler

 Another one is optimizing compiler[18]. The optimizing compiler takes a

conventional compilation approach that builds an intermediate representation (IR) and

performs global optimizations based on the IR. Global optimizations are highly effective in

improving the code quality. However, they are expensive in terms of compilation time.

Therefore, we apply global optimization to a method only if the method is identified

as“hot”. Figure 2.3 is the structure of the optimizing compiler.

Prepass

Global register allocation

Code generation

Code emission

Code and data patching

 7

Figure 2.3 Structure of the optimizing compiler

2.2 Native Compilers

Native compilers translate Java source code/bytecode to native code which is

platform dependent but is not portable. Since it is assumed that the compilation is

performed once and maintained on a disk, additional time may be devoted to optimizations.

Most of these native compilers[6,17,15,19] are forced to build 3-address code intermediate

representations, and perform significant optimizations. Among them, translated code by

some native compilers, which is runned at nearly the full performance of native code

directly generated from a source representation such as the C programming language. The

following shows the translation path of native compilers which belong to this category[8].

Figure 2.4 Impact NET compiler translation path

Machine-independent

IR

Java

internal representation

IR

Bytecode

Optimized

machine-independent

IR

Optimized

machine-specific

IR

Optimized

native code

Class file reader

Java bytecode decoder

Instruction recognition

Data recognition

Stack analysis

Stack-to-register mapping

Class inheritance analysis

Instruction annotation

Runtime support

Benchmarks

Assembly code generation

Assembly and link

Peephole optimizations

Scheduling, speculation

Register allocation

Inlining

Data dependence analysis

Interclass analysis

Classic optimizations

instruction-level parallelism

optimizations

Predication

 8

 Few of native compilers do not have intermediate representations. They use mapping

styles to generate native code, such as JBCC[7]. Our paper focus on those methods which

they propose, and enhance them.

2.3 Bytecode Annotator

 Tools of this category analyze bytecode and produce new class files with annotations

which convey information to the virtual machine on how to execute the bytecode faster.

We are aware of one such system[14] which passes register allocation information to a JIT

compiler in this manner. They obtain speed-ups between 17% to 41% on a set of four

scientific benchmarks.

2.4 Bytecode Optimization

 There are two types of Java bytecode optimization. One is optimizing the bytecode

directly[11]. Apply well known optimizations[2] to Java bytecodes. It has little effect that

optimizing nonexpensive bytecode. To perform effective optimizations at this level, one

must consider more advanced optimizations which directly reduce the use of these

expensive bytecodes.

 Another one is translating Java bytecode to intermediate representation, and then

optimizing IR, and then generating new class file, such as Soot[12].

 9

Chapter 3 System Design and Implementation

In this chapter, we describe the design and the implementation of our Translator. First,

the architecture, which includes execution environment and internal data structure and

pass1 and pass2 of our translator, is introduced. Then we will detail that how to translate

every kind of bytecodes to assembly codes, and template matching. Especially, dynamic

call is the important item. We will use auxiliary examples for explaining our techniques on

every items.

3.1 System Architecture

 In this study, we develop a translator which is effective and performance is close to

JIT compiler. The first issue when we design the system is that assembly code how to

simulate the operation model under JVM. In X86 assembly language, instructions can use

registers, memory and stack, which are all system resource, under the X86 architecture.

Because Java Virtual Machine is stack-based machine, we have to arrange available

resources which is under X86 architecture to conform with Java bytecodes operation flow.

There is a existing solution for this problem － JBCC[7]. JBCC provides a basic concept

about mapping between Java bytecode and X86 assembly code, but it only explains

roughly and are not detailed. Therefore, we decide to detail their arguments and to add

some functions which can interact between JVM and assembly code, and use Java

bytecodes optimization concepts[11] to convert several Java bytecode instructions to less

assembly codes. Figure 3.1 shows the three compiling techniques of JBCC.

 According to Figure 3.1, our system consists of three parts. The first part, the Prepass

phase, collects some informations which are needed for code generation. The second part,

Mapping Code Generation phase, truly generates x86 assembly code. The third part,

Template Matching phase, uses Java bytecodes optimization concepts[11] to do some

simple optimization actions. We also introduce the first part in the section particularly, and

introduce other parts basically.

 In the section, we hope to explain the whole system motion, and the translation of

every type of bytecodes is discussed in section 3.2. So, we can understand our translator

completely from section 3.1 and 3.2.

 10

Figure 3.1 The three compiling techniques of JBCC

3.1.1 Execution Environment

 Figure 3.2 explains the environment from Java applications (.class) to X86 assembly

codes (.asm), and from assembly codes (.asm) to execution file (.exe). If there is a Java

application, which consists of multiple class files, we translate every class file separately to

assembly code file. Then, we combine with those translated assembly files by using bcc32

compiler to assembler and link those translated assembly files. Because our translater has

the interaction capacity from assembly codes to Java Virtual Machine, we prepare a C

program called startvm.c, which will starts Java Virtual Machine. We use Microsoft Win32

API to start the Java Virtual Machine, and use Java Native Interface (JNI) to let assembly

codes to have the capacity which communicates assembly codes with Java Virtual Machine.

In the front of section 3.2 will explain those contents completely.

 Figure 3.3 explains how to execute those translated assembly files. We use the bcc32

compiler to assemble and link those assembly files with Java Virtual Machine. The

c:\j2sdk1.4.1_01 is the directory where Java 2 sdk is installed. You need to supply correct

including and library directories that correspond to the JDK installation on your machine.

The–Ic:\j2sdk1.4.1_01\include\win32 option ensures that your native application is linked

with the Win32 multithreaded C library. The actual Java Virtual Machine implementation

used at run time is contained in a separate dynamic library file called jvm.dll. The linkage

information about invocation interface functions are contained in a file called jvm.lib. The

format of the jvm.lib belongs to COFF format, but the bcc32 compiler only processes OMF

format. So, you have to use the command called coff2omf to change COFF format to

Code Simulation

Template Matching

Advanced Template Matching

Native Program

 11

OMF format. The jvm1.lib is a changed OMF format.

Figure 3.2 Execution environment

Figure 3.3 Using bcc32 to assemble and link assembly codes with JVM

 According to Figure 3.3 example, there is a Java application which consists of a.class,

b.class, and c.class. These three class files may come from different Java programs, but are

cooperated. These three class files are translated separately by our translator, to generate

a.asm, b.asm, and c.asm respectively. The a.class contains the main procedure which is

starting point, so we put the a.asm on the first position. The startvm.c is used to startup the

Java Virtual Machine. After executing the compilation action, it generates a execution file

called a.exe. The a.exe is a truly executable file. Assembly codes can bind the Java Virtual

Machine through this compilation method, and then calls Java API from assembly codes.

The tool which assembles and links X86 assembly files in bcc32 compiler, is through

TASM.

.class .class .class

.asm .asm .asm

.exe

translator translator

bcc32 bcc32

bcc32 –Ic:\j2sdk1.4.1_01\include –Ic:\j2sdk1.4.1_01\include\win32

a.asm b.asm c.asm startvm.c c:\j2sdk1.4.1_01\lib\jvm1.lib

 12

3.1.2 Translation Environment and Flow

 Presently, our translator is developed in C++, and the translation environment is

based on the Microsoft Windows operating system. For generating accurate X86 assembly

codes, we adopt two-pass operation. The first pass collects informations from the input

class file and from the result of javap the classfile. Why use javap command provided by

the J2SDK? Because the result of javap the class file shows Java assembly codes of

methods. Among these informations from the first pass, there is an information about the

bytecode instructions within methods. So, we merely use the command javap to get

bytecode instructions within methods, and other many important informations are from the

class file. The javap function is hidden in translator.

 Figure 3.4 shows the simple translation environment. The input class file is translated

to X86 assembly code, and the hidden javap action is performed by translator.

Figure 3.4 The simple translation environment

 The total translation flow is shown in figure 3.5. To this end, we have modularized

the code into 6 distinct stages. In stage 1, each method´s bytecodes and associate

information is extracted from the input classfile and the result of javap. Decomposer

extracts (1) the class´s bytecodes, (2) all method invocation name and signature, (3)

constant pool contents, (4) the total number of local variables used by the method, (5) the

a.class javap

translator a.javap

.asm

 13

maximum number of operand stack used by the method, (6) static flag, (7) all method

exception tables.

 Y

 Y

Figure 3.5 Translation flow

 In stage 2, the information obtained in stage 1 is analyzed and translated into the data

structures shown in Figure 3.6. Bytecodes are grouped by the methods in which they reside.

All information pertaining to each instruction, including the parameters, the offset from the

beginning of the method, become attributes in a node. The node is placed into a linked list

(the methodcontent) which is later manipulated to insert and remove instructions.

 Stage 3 initials the assembly code space and writes some known codes to the space

before truly code generation. Because this stage is about mapping between Java Virtual

Machine and X86 register machine, we will discuss the stage in section 3.1.3. Stage 4

converts several Java bytecode instructions to less native codes. If can not find template,

the flow will enter into the stage 5. We will discuss the stage 4 in section 3.2.5. Because

decomposer

analysis

initial asm code

template match

predefined code match

mapping code generation

N

N

code
generation

 14

some bytecode instructions are simple, we can predefine assembly codes about those

instructions in a text file, as shown in Figure 3.7. When the stage 2, it parses the predefined

file into internal data structures for used in stage 5. If can not find predefined assembly

codes, the flow will enter into the stage 6. The stage 6 map Java bytecode instruction to

assembly language instructions. We will discuss the stage 6 in section 3.2.

method list a linked list of each method´s attributes

 name , signature

 total number of local variables

 maximum number of operand stack

 static flag

 branch table

 jsr ret table

 method content

 exception content

 method content a linked list of each instruction´s attributes

 offset

instruction name

 parameters

 exception content a linked list of each exception in a exception table

 from

 to

 target

 exception type

 constant pool table constant pool array of the class file

 asm information predefined assembly codes

 allclassmethodtable informations about dynamic dispatch

Figure 3.6 Translator´s data structure

 The method list, methodcontent, exceptioncontent, asm information,

allclassmethodtable are linked list, and branch table, jsr ret table are binary search tree.

Figure 3.8 shows the diagram of the internal data structure.

 15

//堆疊及區域變數

iconst_m1^mov eax,-1;push eax;

iconst_0^mov eax,0;push eax;

iconst_1^mov eax,1;push eax;

iconst_2^mov eax,2;push eax;

iconst_3^mov eax,3;push eax;

iconst_4^mov eax,4;push eax;

iconst_5^mov eax,5;push eax;

lconst_0^mov eax,0;push eax;push eax;

lconst_1^mov eax,1;push eax;mov eax,0;push eax;

aconst_null^mov eax,0;push eax;

nop^nop;

pop^pop eax;

pop2^pop eax;pop ebx;

dup^pop eax;push eax;push eax;

dup2^pop ebx;pop eax;push eax;push ebx;push eax;push ebx;

…

//流程控制

//算術邏輯轉換

…

imul^pop eax;pop edx;imul edx;push eax;

idiv^pop ecx;mov edx,0;pop eax;idiv ecx;push eax;

irem^pop ecx;mov edx,0;pop eax;idiv ecx;push edx;

ineg^pop eax;neg eax;push eax;

ishl^pop ecx;pop eax;shl eax,CL;push eax;

ishr^pop ecx;pop eax;sar eax,CL;push eax;

iushr^pop ecx;pop eax;shr eax,CL;push eax;

iand^pop eax;pop ebx;and eax,ebx;push eax;

…

fmul^pop real4buf;fld real4buf;pop real4buf;fld real4buf;fmul;fstp real4buf;push real4buf;

fdiv^pop real4buf;fld real4buf;pop real4buf;fld real4buf;fdivr;fstp real4buf;push real4buf;

fneg^pop real4buf;fld real4buf;fchs;fstp real4buf;push real4buf;

…

f2d^pop real4buf;fld real4buf;fstp real8buf;push dword ptr real8buf;push dword ptr real8buf+4;

…

Figure 3.7 Predefined assembly codes

 16

 method list

Figure 3.8 The diagram of the internal data structure

 In the stage 2, we generate some internal tables which consist of constant pool table,

allclass methodtable, branch table, jsr ret table, exception table, and instruction map table.

The constant pool table saves the constant pool array of the class file. The type is 0 to 7 in

a constant pool, and 0 is class, 1 is field, 2 is method, 3 is string, 4 is int, 5 is float, 6 is

long, 7 is double. The type is convenient for programming. The allclassmethodtable has all

the methods which come from every class which appears in the constant pool and their

super class and super class up to java.lang.Object. A entry is a class which appears in the

constant pool, and it´s methods which including inheritance up to java.lang.Object. The

allclassmethodtable associates with dynamic dispatching in assembly code, and we will

detail the content in section 3.2.4.

 We traverse the bytecode instructions within a method to build branch table and jsr

ret table. The branch table has all the offsets which occur among those instructions－if_···,

lookupswitch, tableswitch, jsr, jsr_w, exception´s target. The jsr ret table has the offsets

which are the offsets of next instruction of jsr or jsr_w. The branch table is useful in flow

control, and the jsr ret table is useful in exception handling. The instruction map table are

all predefined assembly code. These tables are shown in Figure 3.9.

fields

functions

method

content

exception

content

branch

table

jsr ret

content

method

 17

Constant Pool Table

index type classname method/field name signature resolved

Allclassmethodtable

classname idofclass superclass

 methodname signature clsname callasmname

 …

 methodname signature clsname callasmname

Branch Table

index label mode

Jsr Ret Table

index label

Exception Table

exception type from to target

Instruction Map Table

bytecode assembly

Figure 3.9 Internal tables of the translator

 18

3.1.3 Map Java Stack Machine to X86 Register Machine

 By studying Java bytecode instruction set, we notice that each of the Java bytecode

instruction can be represented by one or more that one assembly language instructions.

Operands of most bytecode instructions are associated with the operand stack of the Java

Virtual Machine. Bytecode instructions take operands from the operand stack, and

manipulate them, and then push results into the operand stack. Therefore, we use the native

stack operation to emulate the stacks of JVM. Under the architecture of Intel X86 series

CPU, we can use the native stack, registers, and memory in assembly programming level.

So, map the operand stack of the frame every method to native stack, and map local

variables of the frame every method to memory. In order to process dynamic dispatching,

we use memory to save created objects for searching later. In the architecture of the

X86 .asm assembly code, the .data section has the name which are named .._local_vars for

the local variables. The .._local_vars is an one- dimension array, and its quantity is from

the class file, and the unit of every entry in .._local vars is 4 bytes. The .data section has

the name which are named .._objmapclass for save created objects. The .._objmapclass is

the structure, and we will discuss the usage of the .._objmapclass in the section 3.2.4.

 Those architectural registers of X86 CPU are for scratch registers. When we evaluate

an expression, temporary values of the operation process and operands of the operation all

employ scratch registers. Those registers are not dedicated to the particular destination,

such as local variables. Those registers are purely for evaluation. The final result of the

assembly codes corresponding to bytecode instruction are pushed into native stack or are

saved in local variables. Referring to the following example.

 .data

 …

 aa_local_vars dword 2 dup(?)

 aa_objmapclass objmapclass_table 3 dup(<-1,-1>)

 …

 .code

 …

 push [aa_local_vars+1*4] ; aa is the simple name of the method

 … ; there are 26*26 in a class

 Because we have to generate a .asm file, how to arrage the order of generated codes is

important. A .asm file consists of three sections which are prior to .data, .data, and .code.

In initial asm codes phase which are described in previous section, some known codes can

be filled in these three sections, and methods are classified into three types. There are

different compositions for different types in a .asm file. A type which is the main

 19

procedure, its .code section has to call the startvm.c function, and no parameters which are

passed into. A type which is the first procedure in a no main procedure´s class file, it is like

to the main procedure, but do not call the startvm.c function, and has parameters which are

passed into. The two types are the beginning of a .asm file, and the start point is .386

assembler directive. The another type is the method which is besides the main and first

procedure. It is appended to the previous two types in a .asm file, and the start point is

procedure name. In order to generate a .asm file conveniently, we adopt the classification

manner. Figure 3.10 shows the initial asm codes of three type methods.

Figure 3.10 Initial asm codes of three type methods

.386

.model FLAT

EXTRN_startvm:proc

public jnienv,fntblptr

…

.data

jnienv dword ?

fntblptr dword ?

fnptr dword ?

…

.code

 public _main

 _main proc

 push EBP

 mov EBP,ESP

 call _startvm

 mov jnienv,eax

 mov ebx,[eax]

 mov fntblptr,ebx

 …

 translate

.386

.model FLAT

extrn jnienv:dword

extrn fntblptr:dword

…

.data

fnptr dword ?

…

.code

 …

 manipulate

parameters and

return addr

 …

 translate

procedure_name proc

.data

.._local_vars dword ..

..

.code

 manipulate

parameters and

return addr

 …

 translate

main first procedure other procedure

 20

 Our translator preserves three memory blocks for three sections which are prior

to .data, .data, and .code. We fill the translated assembly codes into the three memory

blocks during the translating period.

 21

3.2 System Implementation

 In this section, we focus on the pass 2, and describe how the translator translates

bytecode instructions. Figure 3.11 shows the flow of the translator translating.

 Y

 N

 Y

 N Y

Figure 3.11 Flow of translator translating

.class .javap parse to blocks

method

exception table

method

exception table

resolve class file

constant pool talbe

allclassmethodtable

other informations
save to DS

traverse
traverse

branch table , jsr ret table

objmapclasstable size

exception table

translate

template match

predefined code match

type ?

mapping code generation

finished ?append associated methods

output .asm file

stack and local vars

array

arithmetic, logic, conversion

flow control

object, method invocation

 22

 When template matching fails and predefined code matching fails during translating,

the type of the bytecode instruction is differentiated, and the translator performs associated

mapping code generation. The type of the bytecode instruction is classified into six

categories which are stack and local variables、array、arithmetic and logic and type

conversion、flow control、object、method invocation.

3.2.1 Start JVM From Assembly Code

 A Java Virtual Machine implementation is typically shipped as a native library.

Native applications can link against this library and use the invocation interface to load the

Java Virtual Machine. So, we prepare for a C function which uses Win32 API to invoke

Java Virtual Machine. The startvm.c is described in Appendix.

 When it targets the 1.1 release, the C code begins with a call to

JNI_GetDefaultJavaVMInitArgs to obtain the default virtual machine settings. Those

settings are in the vm_args parameter. When it targets the 1.2 release, the C code creates a

JavaVMInitArgs structure. The virtual machine initialization arguments are stored in a

JavaVMOption array. The LoadLibrary which is Win32 API loads the jvm.dll. The

GetProcAddress which is Win32 API obtains the function pointer of the

JNI_CreateJavaVM function.

 After setting up the virtual machine initialization structure, the C program calls

JNI_CreateJavaVM to load and initialize the Java Virtual Machine. It fills in two return

values. An interface pointer, jvm, to the newly created Java Virtual Machine. The JNIEnv

interface pointer env for the current thread. Recall that native code accesses JNI functions

through the env interface pointer. So, the value of the JNIEnv interface pointer env is

returned back to the assembly code.

 We use mixing mode concepts of assembly codes and C functions in some

books[25,26] which introduce the assembly language. The total flow of starting JVM is

that the assembly code calls the startvm.c function, and then the startvm.c function puts the

value of the JNIEnv interface pointer env on the register called eax, and then the assembly

code obtains the starting address of the JNI function table through an indirect mapping.

Figure 3.12 shows the assembly code calls the startvm.c function. Next section will

introduce the JNI function table because we can call the Java api through JNI function

from assembly codes.

 23

…

EXTRN _startvm:proc

…

.data

 jnienv dword ?

 fntblptr dword ?

 fnptr dword ?

 …

.code

 public _main

 _main proc

 push EBP

 mov EBP,ESP

 call _startvm

 mov jnienv,eax

 mov ebx,[eax]

 mov fntblptr,ebx

 …

Figure 3.12 The assembly code invokes the startvm.c function

3.2.2 Call Java Bytecode From Assembly Code

 When we want to call the system class file of Java Virtual Machine providing, we

come to the object through the JNI function. Assembly codes pass parameters to the Java

API through the native stack, and the Java API puts the return value on the register called

eax. Figure 3.13 is the sketch of the assembly code call the bytecode. The full name of the

JNI is Java Native Interface.

Figure 3.13 The sketch of the assembly code invokes the bytecode

 First, we introduce the structure of the JNI function table[24]. The JNI is a two-way

assembly

JNI

bytecode

 24

interface that allows Java applications to invoke native code and vice versa. The JNI is the

native interface supported by all Java Virtual Machine implementations. The use of the JNI

is not limited to specific host environments or specific application development tools.

Figure 3.14 illustrates the JNIEnv interface pointer. The JNIEnv interface pointer, points to

a location that contains a pointer to a function table. Each entry in the function table points

to a JNI function. Native methods always access data structures in the Java Virtual

Machine through one of the JNI functions.

Figure 3.14 The JNIEnv interface pointer

 For a developer using assembly language, it is necessary to understand clearly how

the JNI provides the interface facilities[24,31]. According to figure 3.12 and 3.14, the

fntblptr contains the starting address of the function table. There are three important points

which are noticed. The first, we need to retrieve the contents of the entry in the function

table which corresponds to the function we want to call. The content is the pointer which

points to the JNI function we want to call and saved in fnptr, and we use the

expression“call [fnptr]”to actually call the JNI function. Obviously, we have to multiply

the zero based index of the function by 4 (since each pointer is 4 bytes long) and add the

result to the starting address of the function table which we have formed in fntblptr earlier.

The prototype of each JNI function in JNI function table is defined in the jni.h which is in

J2SDK, and the index of each JNI function in JNI function table is the offset which is the

place where the JNI function defined in the jni.h. We use a Macro[31] to get the entry of

JNI function in JNI function table, and the following expression is the Macro. We obtain

the pointer of the JNI function through the Macro expression.

Pointer

(Internal virtual
machine data
structures)

Pointer

Pointer

Pointer

 …

an JNI function

an JNI function

an JNI function

Array of pointers to

JNI functions

JNIEnv *

 25

 GetFnPtr MACRO fntblptr,index,fnptr

 mov eax,index

 mov ebx,4

 mul ebx

 mov ebx,fntblptr

 add ebx,eax

 mov eax,[ebx]

 mov fnptr,eax

ENDM

 The second, we use native stack to pass parameters to JNI function according to every

JNI function prototype. The style of passing parameters is from right to left as assembly

calling C function. Note that the rightmost parameter is pushed first in accordance with the

stdcall convention followed by JNI. If you call the Java method through JNI function, you

have to adjust esp to the place which is before calling the Java method, after calling the

Java method. If you do not call the Java method, and only use JNI functions to do

something, such as getting field value, parameters will be taken from native stack, and so

you do not have to adjust esp. The third, If the type of the return value is long, the return

value occupies two registers, otherwise occupies one register. If the type of the return value

is float or double, the return value is on the floating-point register of the FPU. We will

introduce detailed internal operations in later sections. Figure 3.15 illustrates the example

of call Java bytecode from assembly code.

class sysjnicall {

 public static void main(String[] args) {

 System.out.println("abcd");

 }

}

Java source code

Method void main(java.lang.String[])

 0 getstatic #2 <Field java.io.PrintStream out>

 3 ldc #3 <String "abcd">

 5 invokevirtual #4 <Method void println(java.lang.String)>

 8 return

Javap of Java source code

 26

…

.data

 …

 argreversebuf dword 20 dup(?)

 jclsjobjtmp dword ?

 …

 index_2_clsname db 'java/lang/System',0

 index_2_fidname db 'out',0

 index_2_fidsig db 'Ljava/io/PrintStream;',0

 index_2_fid dword ?

 index_3_strname db 'abcd',0

 index_3_str dword ?

 index_4_midname db 'println',0

 index_4_midsig db '(Ljava/lang/String;)V',0

 index_4_mid dword ?

.code

 …

 GetFnPtr fntblptr,145,fnptr ;GetStaticObjectField

 push index_2_fid

 push index_2_cls

 push jnienv

 call [fnptr]

 push eax

 GetFnPtr fntblptr,167,fnptr ;NewStringUTF

 push offset index_3_strname

 push jnienv

 call [fnptr]

 mov index_3_str,eax

 …

 GetFnPtr fntblptr,61,fnptr ;CallVoidMethod

 push [argreversebuf+0*4]

 push index_4_mid

 push jclsjobjtmp

 push jnienv

 call [fnptr]

 …

Figure 3.15 Example of call Java bytecode from assembly code

 27

3.2.3 General Bytecode Translation

 In figure 3.11, we mention that there are six bytecode types. Among them, four types

which are stack and local variables、array、arithmetic and logic and conversion、flow

control, belong to general bytecodes. The so-called general bytecodes imply that those

bytecode instructions are not associated with object directly.

3.2.3.1 Stack and Local Variables

 If the type of the bytecode instruction is the kind of less 32 bits, the operand will be

sign-extended to an int value, and is then pushed onto the native stack.

 bipush 3 or sipush 3 mov eax,3

 push eax

If the type of the bytecode instruction is the kind of 64 bits, the operand is the long or

double. The operand which is long or double is split into two parts. For understanding

easily, we illustrate the operation rules.

 high

 low

lconst_1 mov eax,1

push eax ; push low 4-byte

mov eax,0

push eax ; push high 4-byte

 high

 low

For long type operand, we split it into two parts. The low part is from bit 0 to bit 31, and

local var 0 1

lstore / lload / dstore / dload

low 4-byte high 4-bytereal8

dconst_0 / dconst_1

 28

the high part is from bit 32 to bit 63. We first push low part and then push high part. When

you store the long operand to local variables, the lower index of the local variable array is

stored the lower part of long operand, and the higher index of the local variable array is

stored the higher part of long operand. For double type operand, we split it into two parts.

The memory organization of the real8 type is first the low 4-byte and then high 4-byte. The

operation rule of the double type operand is as the long type operand. We first push the

low part and then push the high part.

 For these bytecode instructions of ldc series, we push item from constant pool. The

item is retrieved from constant pool table which is described in section 3.1.2. If the item is

integer type, we generate a variable called index_.._intname which is the integer binary

representation in .data section, and then push it onto the native stack. If the item is float

type, we generate a variable called index_.._floatname which is the float binary

representation in .data section, and then push it onto the native stack. If the item is long

type, we generate two variables called index_.._longhighname and index_.._longlowname

which are the long binary representation in .data section, and then push the

index_.._longlowname and push index_.._longhighname. If the item is double type, we

generate two variables called index_.._doublehighname and index_.._doublelowname

which are the double binary representation in .data section, and then push the

index_.._doublelowname and push index_.._doublehighname. Anyhow, first push low part

and then push high part. If the item is the string type, we generate two variables called

index_.._strname and index_.._str in .data section. We use the JNI function called

NewStringUTF to construct a new java.lang.String object from index_.._strname, and then

put the reference pointer in the index_.._str, and push it onto the native stack. (the

notation“..”is the index of the item from constant pool)

Figure 3.16 illustrates the example of stack and local variable associated bytecodes

translating.

class Fibonacci {

 public static void main(String[] args) {

 int fibonum=1; int a=1; int b=1;

 for(;;) {

 fibonum=a+b;

 a=b;

 b=fibonum;

 if(fibonum > 1000)

 break; }

 System.out.println("ok");

 } }

 29

Method void main(java.lang.String[])

 0 iconst_1

 1 istore_1

 2 iconst_1

 3 istore_2

 4 iconst_1

 5 istore_3

 6 goto 9

 9 iload_2

 10 iload_3

 11 iadd

 12 istore_1

 13 iload_3

 14 istore_2

 15 iload_1

 16 istore_3

 17 iload_1

 18 sipush 1000

 21 if_icmple 9

 24 goto 27

 27 getstatic #2 <Field java.io.PrintStream out>

 30 ldc #3 <String "ok">

 32 invokevirtual #4 <Method void println(java.lang.String)>

 35 return

…

.data

 …

 freal0 real4 0.0

 freal1 real4 1.0

 freal2 real4 2.0

 dreal0 real8 0.0

 dreal1 real8 1.0

 real4buf real4 ?

 real8buf real8 ?

 aa_return_addr dword ?

 aa_local_vars dword 4 dup(?)

 30

 index_3_strname db 'ok',0

 index_3_str dword ?

 …

.code

 …

 mov [aa_local_vars+1*4],1

 mov [aa_local_vars+2*4],1

 mov [aa_local_vars+3*4],1

 aa_9:

 push [aa_local_vars+2*4]

 push [aa_local_vars+3*4]

 pop eax

 pop ebx

 add eax,ebx

 push eax

 pop [aa_local_vars+1*4]

 mov eax,[aa_local_vars+3*4]

 mov [aa_local_vars+2*4],eax

 mov eax,[aa_local_vars+1*4]

 mov [aa_local_vars+3*4],eax

 push [aa_local_vars+1*4]

 mov eax,1000

 push eax

 pop eax

 pop ebx

 cmp ebx,eax

 jle aa_9

 aa_27:

 …

 GetFnPtr fntblptr,167,fnptr ; NewStringUTF

 push offset index_3_strname

 push jnienv

 call [fnptr]

 mov index_3_str,eax

 push index_3_str

 …

Figure 3.16 Example of stack and local variable associated bytecodes translating

 31

3.2.3.2 Array

 We use some JNI functions to construct an array which may be one-dimension or

two-dimension or multi-dimension, and retrieving the element of the array is also use the

JNI function. There three kind of bytecode instructions for creating an array. The newarray

constructs an one-dimension array whose the type of the element is primitive type

(boolean、char、float、double、byte、short、int、long). The anewarray constructs an

one-dimension array whose the type of the element is reference type. The multianewarray

constructs a multi-dimension array, and you can repeatedly use the anewarray to reach the

function which the multianewarray provides. The table 3.1 shows the JNI function

relationship of bytecodes associated array. Our translator use these JNI functions to finish

the operations which are characterization in these bytecode instructions associated array.

Bytecod instruction JNI function

newarray New<Type>Array , 175 ~ 182

anewarray NewObjectArray , 172

iaload GetIntArrayRegion , 203

laload GetLongArrayRegion , 204

faload GetFloatArrayRegion , 205

daload GetDoubleArrayRegion , 206

aaload GetObjectArrayElement , 173

baload GetByteArrayRegion , 200

caload GetCharArrayRegion , 201

saload GetShortArrayRegion , 202

iastore SetIntArrayRegion , 211

lastore SetLongArrayRegion , 212

fastore SetFloatArrayRegion , 213

dastore SetDoubleArrayRegion , 214

aastore SetObjectArrayElement , 174

bastore SetByteArrayRegion , 208

castore SetCharArrayRegion , 209

sastore SetShortArrayRegion , 210

arraylength GetArrayLength , 171

 32

Table 3.1 The JNI function relationship of bytecodes associated array

 Figure 3.17 illustrates example of the primitive array. Our translator is tested in many

different types, but these contents is too long, and we only show the part of contents in this

paper.

class primitivearraytest {

 public static void main(String[] args) {

 double[] ir=new double[10];

 for(int i=0;i<ir.length;i++)

 ir[i]=16.23;

 } }

Method void main(java.lang.String[])

 0 bipush 10

 2 newarray double

 4 astore_1

 5 iconst_0

 6 istore_2

 7 goto 19

 10 aload_1

 11 iload_2

 12 ldc2_w #2 <Double 16.23>

 15 dastore

 16 iinc 2 1

 19 iload_2

 20 aload_1

 21 arraylength

 22 if_icmplt 10

 25 return

 …

 index_2_doublehighname EQU 01000000001100000011101011100001b

 index_2_doublelowname EQU 01000111101011100001010001111011b

.code

 …

 GetFnPtr fntblptr,182,fnptr ; NewDoubleArray

 33

 push jnienv

 call [fnptr]

 push eax

 pop [aa_local_vars+1*4]

 mov [aa_local_vars+2*4],0

 jmp aa_19

 aa_10:

 push [aa_local_vars+1*4]

 push [aa_local_vars+2*4]

 push index_2_doublelowname

 push index_2_doublehighname

 pop dword ptr real8buf+4

 pop dword ptr real8buf

 pop [argreversebuf]

 pop [argreversebuf+4]

 GetFnPtr fntblptr,214,fnptr ; SetDoubleArrayRegion

 push offset real8buf

 mov eax,1

 push eax

 push [argreversebuf]

 push [argreversebuf+4]

 push jnienv

 call [fnptr]

 add [aa_local_vars+2*4],1

 aa_19:

 push [aa_local_vars+2*4]

 push [aa_local_vars+1*4]

 GetFnPtr fntblptr,171,fnptr ; GetArrayLength

 push jnienv

 call [fnptr]

 push eax

 pop eax

 pop ebx

 cmp ebx,eax

 jl aa_10

 …

Figure 3.17 Example of the primitive array

 34

 The reference type of the element of anewarray and multianewarray is associated with

the constant pool. To get the type we must retrieve the entry of the constant pool table. The

multianewarray is complex. For finishing the function of multianewarray, we use the

following rule to reach the destination.

 aobjlist dword 20 dup(?)

 arangelist dword 20 dup(?)

 aindexlist dword 20 dup(?)

we define these three one-dimension array, and can create the up to 20 level array. The

aobjlist saves the temporary reference. The arangelist saves the range of each level. The

aindexlist saves the index which is used to increment during constructing each level array.

Our constructing rule is like DFS (depth first search), and is as the following figure 3.18.

The number of above a block which represents an array is the constructing order.

Figure 3.18 The constructing order of multianewarray implementation

 Figure 3.19 illustrates example of the three dimension array. The aaload uses the

procedure called update_arrayelementobj to maintain the latest reference which is loaded

from the element of the array in the objmapclass structure.

1

2

3

4

5

6

7
8

 35

class ThreeDTree {

 public static void main(String[] args) {

 int[][][] threeD = new int[5][4][3];

 for (int i = 0; i < 5; ++i) {

 for (int j = 0; j < 4; ++j) {

 for (int k = 0; k < 3; ++k) {

 threeD[i][j][k] = i + j + k;

 System.out.print(threeD[i][j][k]);

 } } } } }

Method void main(java.lang.String[])

 0 iconst_5

 1 iconst_4

 2 iconst_3

 3 multianewarray #2 dim #3 <Class [[[I>

 7 astore_1

 8 iconst_0

 9 istore_2

 10 goto 72

 13 iconst_0

 14 istore_3

 15 goto 64

 18 iconst_0

 19 istore 4

 21 goto 55

 24 aload_1

 25 iload_2

 26 aaload

 27 iload_3

 28 aaload

 29 iload 4

 31 iload_2

 32 iload_3

 33 iadd

 34 iload 4

 36 iadd

 37 iastore

 36

 …

 52 iinc 4 1

 55 iload 4

 57 iconst_3

 58 if_icmplt 24

 61 iinc 3 1

 64 iload_3

 65 iconst_4

 66 if_icmplt 18

 69 iinc 2 1

 72 iload_2

 73 iconst_5

 74 if_icmplt 13

 77 return

…

 aobjlist dword 20 dup(?)

 arangelist dword 20 dup(?)

 aindexlist dword 20 dup(0)

 …

 index_2_array0 db '[[I',0

 index_2_array1 db '[I',0

 index_2_cls dword ?

.code

 …

 mov eax,5

 push eax

 mov eax,4

 push eax

 mov eax,3

 push eax

 pop [arangelist+2*4]

 pop [arangelist+1*4]

 pop [arangelist+0*4]

 GetFnPtr fntblptr,6,fnptr ; FindClass

 push offset index_2_array0

 push jnienv

 37

 call [fnptr]

 mov index_2_cls,eax

 GetFnPtr fntblptr,172,fnptr ; NewObjectArray

 mov eax,0

 push eax

 push index_2_cls

 mov eax,[arangelist+0*4]

 push eax

 push jnienv

 call [fnptr]

 mov [aobjlist+0*4],eax

 mov [aindexlist+0*4],0

 aa_3_L1:

 GetFnPtr fntblptr,6,fnptr ; FindClass

 push offset index_2_array1

 push jnienv

 call [fnptr]

 mov index_2_cls,eax

 GetFnPtr fntblptr,172,fnptr ; NewObjectArray

 mov eax,0

 push eax

 push index_2_cls

 mov eax,[arangelist+1*4]

 push eax

 push jnienv

 call [fnptr]

 mov [aobjlist+1*4],eax

 GetFnPtr fntblptr,174,fnptr ; SetObjectArrayElement

 push [aobjlist+1*4]

 mov eax,[aindexlist+0*4]

 push eax

 push [aobjlist+0*4]

 push jnienv

 call [fnptr]

 mov [aindexlist+1*4],0

 aa_3_L2:

 GetFnPtr fntblptr,179,fnptr ; NewIntArray

 mov eax,[arangelist+2*4]

 38

 push eax

 push jnienv

 call [fnptr]

 mov [aobjlist+2*4],eax

 GetFnPtr fntblptr,174,fnptr ; SetObjectArrayElement

 push [aobjlist+2*4]

 mov eax,[aindexlist+1*4]

 push eax

 push [aobjlist+1*4]

 push jnienv

 call [fnptr]

 inc [aindexlist+1*4]

 mov esi,[aindexlist+1*4]

 cmp esi,[arangelist+1*4]

 jl aa_3_L2

 inc [aindexlist+0*4]

 mov esi,[aindexlist+0*4]

 cmp esi,[arangelist+0*4]

 jl aa_3_L1

 push [aobjlist]

 pop [aa_local_vars+1*4]

 mov [aa_local_vars+2*4],0

 jmp aa_72

 aa_13:

 mov [aa_local_vars+3*4],0

 jmp aa_64

 aa_18:

 mov [aa_local_vars+4*4],0

 jmp aa_55

 aa_24:

 …

 push eax

 push offset aa_objmapclass

 push eax

 call update_arrayelementobj

 …

Figure 3.19 Example of the three dimension array

 39

3.2.3.3 Arithmetic, Logic, Type Conversion

 Because these bytecode instructions associated this section are too many, we only

introduce important concepts. Because the long instruction in assembly is not supported,

we must implement long instruction by ourselves. The long instructions are 64 bit based,

so we must separate them into two 32 bit in our implementation. In ladd and lsub

instruction, we must pay attention to the carry bit. We first add or sub the low bits and then

use the adjust instruction adc and sbb which will help add the carry bit to add or sub high

bits. The long multiplication and division do not have any assembly instruction to help

implementation. We use the multiplication algorithm to implement. P、A and B are 64bit

operands. The result is in P:A and before this algorithm, we must translate the long value

into unsigned long value. After this algorithm, we translate the result value into signed

value. Because this algorithm is only suitable for unsigned value, we must check the long

value if the multiplier and multiplicand is negative to translate into unsigned value and

judge the result value if it is positive or negative.

P=0
A=multiplier
B=multiplicand
Count=64
 While(count>0)
 If(LSB of A=1)
 Then
 P=P+B
 CF=carry generated by P+B
 Else
 CF=0
 End if
 Shift right CF:P:A by one bit position
 Count=count-1
 End while

 40

 There are several division algorithms to perform 64-bit unsigned long division. Here

we describe and implement what is called the “non-restoring” division algorithm. The

division operation, unlike the multiplication operation, produces two results: a quotient and

a remainder. The algorithm consists of testing the sign of P and, depending on the sign of P,

either adding or subtracting B from P. Then P:A is left shifted while manipulating the

rightmost bit of A. After repeating these steps 64 times, the quotient is in A and the

remainder is in P.

P=0
A=dividend
B=divisor
Count=64
While(count>0)
 If(P is negative)
 Then
 Shift left P:A by one bit position
 P=A+B
 Else
 Shift left P:A by one bit position
 P=A-B
 End if
 If(P is negative)
 Then
 Set low-order bit of A to 0
 Else
 Set low-order bit of A to 1
 End if
Count=count-1
End while
If(P is negative)
 P=P+B
End if

 41

After addition, subtraction, multiplication and division, we discuss the remaining long

instruction. The lneg instruction just uses 2’complement to implement. The lshl and lshr

just use the shift instruction. The lor and lxor use the or and xor instruction to implement.

In floating point instruction, there are two different types which are 32bit float and 64

bit double. In floating point arithmetic instruction, there are some instructions which are

supported by assembly. In assembly, the floating point instructions use another special

stack to operation. The special stack is called FPU. The FPU is not a pure stack because

FPU is consisted of eight data register, each 80 bits long. The special stack can convert any

nonfloating formats including 64 bit data type to floating point, so the double instructions

have been supported in assembly. These are only the 64 bit instruction supported by

assembly. The addition、subtraction、multiplication and division instructions in executing

float and double are very similar. The only difference is input data type. The float

instructions use the 32 bit real4 data type supported by assembly. The double instructions

use the 64 bit real 8 data type. By the way, we must pay attention to real8 data type and

Java stack data type, because the bit order of real8 data type is different from the stack. In

64 bit instruction, The top data of stack is high 32 bit and the second data of stack is low

32 bit, but the real8 data type the low 32 bit puts the top data of stack and the high 32 bit

puts the second data type.

The fadd in Java bytecode use the fadd in assembly to implement. The fsub in Java

bytecode use the fsub in assembly to implement. The fmul in Java bytecode use the fmul in

assembly to implement. The fdiv in Java bytecode use the fdiv in assembly to implement.

The double arithmetic instructions in bytecode are translated like the float instructions,

because the floating pint is executed in FPU we discuss above. We just change the real4 in

High 32 bit Low 32 bit

top

second

…

stack

real8

 42

float instruction into real8 for double instruction.

The ferm and drem bytecode instructions are not the same as that of the so called

remainder operation defined by IEEE 754. The IEEE 754 remainder operation computes

the remainder from a rounding division, not a truncating division, and so its behavior is not

analogous to that of the usual integer remainder operatior. Instead, the Java virtual machine

defines frem and drem to behave in a manner analogous to that of the Java virtual machine

integer remainder instructions.

The result of frem and drem instructions are governed by these rules：

(1) If either dividend or divisor is NaN, the result is NaN.

(2) If neither dividend nor divisor is NaN, the sign of the result equals the sign of the

dividend.

(3) If the dividend is an infinity or divisor is a zero or both, the result is NaN.

(4) If the dividend is finite and the divisor is an infinity, the result equals the dividend.

(5) If the dividend is a zero and the divisor is finite, the result equals the dividend.

(5) In the remaining cases, where neither operand is an infinity, a zero, or NaN, the

floating-point remainder result form a dividend and divisor is defined by the mathmetical

result=dividend-(divisor*q), where q is an intrger that is negative only if dividend/divisor

is negative, and positive only if dividend/divisor is positive, and whose magnitude is as

large as possible without exceeding the magnitude of the true mathmetical quotient of

dividend and divisor.

Despite the fact that division by zero may occur, evaluation of ferm and drem instructions

never throw a runtime exception.

The convert floating-point to integer instructions are generated by the following the

rules in Java specification.

(1) If the value is NaN, the result of the conversion is an int0.

(2) Otherwise, if the value is not an infinity, it is rounded to an integer value V, rounding

towards zero using IEEE 754 round towards zero mode. If this integer value V can be

represented as an int, then the result is the int value V.

(3) Otherwise, either the value must be too small(a negative value of large magnitude or

negative infinity), and the result is the smallest representable value of type int, or the

value must be too large(a positive value of large magnitude or positive infinity), and

the result is the largest representable value of type int.

In the rule 2, we can use the special instruction which is supported by assembly. We

put the floating-point value in the FPU and then use the fist to convert the floating-point to

 43

integer. The FPU will help us to convert the floating-point to integer.

By the way, the following table is the format of NaN 、negative infinity、positive

infinity、negative value of large magnitude and positive value of large magnitude.

Value Float bits(sign exponent mantissa)
+Infinity 0 11111111 00000000000000000000000
-Infinity 1 11111111 00000000000000000000000
NaN 0 11111111 10000000000000000000000
Largest positive
(finite) float

0 11111110 11111111111111111111111

Largest negative
(finite) float

1 11111110 11111111111111111111111

 44

3.2.3.4 Flow Control

 We have described the branch table and jsr ret table in section 3.1.2. Before we want

to translate the bytecode instruction, we search contents of the two tables, and check the

offset of the bytecode instruction to decide that if match the content. If the offset is in the

content, the translator generate a label. The label format is .._offset. The symbol .. is the

short name of the method. Because it can not has the same label in a .asm file, the symbol ..

avoids the problem. Figure 3.20 illustrates the example of flow control.

class PrimeFinder {

 public static void main(String[] args) {

 int primeNum = 1;

 int numToCheck = 2;

 for (;;) {

 boolean foundPrime = true;

 for (int divisor = numToCheck / 2; divisor > 1;

 --divisor) {

 if (numToCheck % divisor == 0) {

 foundPrime = false;

 break;

 }

 }

 if (foundPrime) {

 primeNum = numToCheck;

 System.out.println(primeNum);

 if(primeNum > 50)

 break;

 }

 ++numToCheck;

 }

 }

}

 45

 …

 4 goto 7

 7 iconst_1

 …

 14 goto 32

 17 iload_2

 …

 21 ifne 29

 …

 26 goto 38

 29 iinc 4 -1

 32 iload 4

 34 iconst_1

 35 if_icmpgt 17

 38 iload_3

 39 ifeq 60

 …

 54 if_icmple 60

 57 goto 66

 60 iinc 2 1

 63 goto 7

 66 return

…

.code

 …

 aa_7:

 mov [aa_local_vars+3*4],1

 …

 jmp aa_32

 aa_17:

 …

 cmp eax,0

 jnz aa_29

 mov [aa_local_vars+3*4],0

 jmp aa_38

 aa_29:

 add [aa_local_vars+4*4],-1

 46

 aa_32:

 push [aa_local_vars+4*4]

 …

 cmp ebx,eax

 jg aa_17

 aa_38:

 mov eax,[aa_local_vars+3*4]

 cmp eax,0

 jz aa_60

 …

 cmp ebx,eax

 jle aa_60

 jmp aa_66

 aa_60:

 add [aa_local_vars+2*4],1

 jmp aa_7

 aa_66:

 …

Figure 3.20 Example of flow control

 The switch .. case structure in a Java program is implemented by the lookupswitch or

tableswitch. According to the Java Virtual Machine Specification[5], there are a little

difference among them. Our translator can translate them. We introduce an example to

explain them, as figure 3.21.

class Struggle {

 public final static char TOMAYTO = 'a';

 public final static char TOMAHTO = 'b';

 public static void main(String[] args) {

 char say = TOMAYTO;

 for (;;) {

 switch (say) {

 case TOMAYTO:

 say = TOMAHTO;

 break;

 case TOMAHTO:

 say = TOMAYTO;

 break; } } } }

 47

 …

 6 iload_1

 7 lookupswitch 2: default=41

 97: 32

 98: 38

 …

aa_6:

 push [aa_local_vars+1*4]

 pop eax

 cmp eax,97

 je aa_32

 cmp eax,98

 je aa_38

 jmp aa_41

 aa_32:

 mov eax,98

 push eax

 pop [aa_local_vars+1*4]

 jmp aa_41

 aa_38:

 mov eax,97

 push eax

 pop [aa_local_vars+1*4]

 aa_41:

 jmp aa_6

Figure 3.21 Example of lookupswitch

 The lcmp、fcmpl、fcmpg、dcmpl、dcmpg are bytecode instructions which are

comparable bytecodes under flow control. Figure 3.22 illustrates example of lcmp. For

fcmpl, fcmpg, dcmpl, and dcmpg, we must use the status word of the FPU[28] to

differentiate the difference. We define some values which are c3, c2, and c0 in the .data

section to assist in processing those comparison operations associated with real number.

Figure 3.23 illustrates example of dcmpl.

class lcmp {

 public static void main(String[] args) {

 48

 long i=1;

 long j=0;

 if(i > j)

 { i++; } } }

 …

 6 lcmp

 …

 …

 pushfd

 pop ebx

 pop edx

 pop eax

 pop edi

 pop esi

 sub esi,eax

 sbb edi,edx

 js aa_lcmp_6_sf

 test esi,0ffffffffh

 jne aa_lcmp_6_zf

 test edi,0ffffffffh

 jne aa_lcmp_6_zf

 mov eax,0

 push eax

 jmp aa_lcmp_6_ok

 aa_lcmp_6_zf:

 mov eax,1

 push eax

 jmp aa_lcmp_6_ok

 aa_lcmp_6_sf:

 mov eax,-1

 push eax

 aa_lcmp_6_ok:

 push ebx

 popfd

 pop eax

 49

 cmp eax,0

 jle aa_14

 push [aa_local_vars+1*4]

 push [aa_local_vars+2*4]

 mov eax,1

 push eax

 mov eax,0

 push eax

 pushfd

 …

Figure 3.22 Example of lcmp

0 ldc2_w #2 <Double 2.3>

 3 dstore_1

 4 ldc2_w #4 <Double 5.9>

 7 dstore_3

 8 dload_1

 9 dload_3

 10 dcmpl

 11 ifle 14

 14 return

 …

real4buf real4 ?

 real8buf real8 ?

 intbuf dword ?

 longbuf qword ?

 c3 EQU 0100000000000000b

 c2 EQU 0000010000000000b

 c0 EQU 0000000100000000b

 …

 index_2_doublehighname EQU 01000000000000100110011001100110b

 index_2_doublelowname EQU 01100110011001100110011001100110b

 index_4_doublehighname EQU 01000000000101111001100110011001b

 index_4_doublelowname EQU 10011001100110011001100110011010b

.code

 …

 50

 push index_2_doublelowname

 push index_2_doublehighname

 pop [aa_local_vars+2*4]

 pop [aa_local_vars+1*4]

 …

 push [aa_local_vars+1*4]

 push [aa_local_vars+2*4]

 push [aa_local_vars+3*4]

 push [aa_local_vars+4*4]

 pop dword ptr real8buf+4

 pop dword ptr real8buf

 .if dword ptr real8buf+4 == 01111111111110000000000000000000b

 mov eax,-1

 push eax

 jmp aa_dcmpl_10_end

 .endif

 fld real8buf

 pop dword ptr real8buf+4

 pop dword ptr real8buf

 .if dword ptr real8buf+4 == 01111111111110000000000000000000b

 mov eax,-1

 push eax

 jmp aa_dcmpl_10_end

 .endif

 fld real8buf

 fcom

 fstsw ax

 mov dx,ax

 test ax,c3

 jnz aa_dcmpl_10_equal

 mov ax,dx

 test ax,c0

 jnz aa_dcmpl_10_small

 mov ax,dx

 test ax,c2

 jz aa_dcmpl_10_big

 aa_dcmpl_10_equal:

 mov eax,0

 51

 mov edx,0

 push eax

 jmp aa_dcmpl_10_end

 aa_dcmpl_10_small:

 mov eax,-1

 mov edx,0

 push eax

 jmp aa_dcmpl_10_end

 aa_dcmpl_10_big:

 mov eax,1

 mov edx,0

 push eax

 aa_dcmpl_10_end:

 finit

 pop eax

 cmp eax,0

 jle aa_14

 aa_14:

Figure 3.23 Example of dcmpl

3.2.4 Special Bytecode Translation

 The so-called special bytecodes imply that those bytecode instructions are associated

with object directly.

3.2.4.1 Object Association

 We will explain how to create object, and other bytecodes － getfield、putfield、

getstatic、putstatic、checkcast、instanceof.

Create Object

 A new Java instruction in the Java language implicitly generates several bytecode

instructions after compiled by javac. For example：

 new #2

 dup

StringBuffer x=new StringBuffer(100); bipush 100

 invokespecial #3

 52

 astore_1

 The #2 and #3 are the entries of the constant pool.

 #2：java/lang/StringBuffer

 #3：java/lang/StringBuffer <init> (I)V

The new bytecode instruction decides the volumn, and allocates the memory space which

is the part of the garbage collection. The fields of the created object are set to 0 or false or

null. Finally, it push the reference of the created object onto the operand stack. Note that

the created object is not be initialized, and it must be initialized through performing

invokespecial <init>.

 Figure 3.24 is the translated result of the above example through translator.

GetFnPtr fntblptr,6,fnptr ; FindClass

 push offset index_2_clsname

 push jnienv

 call [fnptr]

 mov index_2_cls,eax

 push index_2_cls

 pop eax

 push eax

 push eax

 mov eax,100

 push eax

 pop [argreversebuf+0*4]

 pop jclsjobjtmp

 GetFnPtr fntblptr,33,fnptr ; GetMethodID

 push offset index_3_midsig

 push offset index_3_midname

 push jclsjobjtmp

 push jnienv

 call [fnptr]

 mov index_3_mid,eax

 GetFnPtr fntblptr,28,fnptr ; NewObject

 push [argreversebuf+0*4]

 push index_3_mid

 push jclsjobjtmp

 push jnienv

 call [fnptr]

 53

 add esp,20

 push eax

 pop [aa_local_vars+1*4]

Figure 3.24 Example of the assembly code of the new instruction

In assembly code, We use several JNI functions to finish the total flow of creating object.

According to the above example, When the translator meets the new #2, it gets the value of

entry 2 of the constant pool table, and generates two variables which are index_2_clsname

and index_2_cls in the .data section. The index_2_clsname contains the value of entry 2 of

the constant pool table. Then, we use the JNI function called FindClass to get a reference

to the named class or interface. The type of the reference is jclass, and it stands for the

loaded class, and saved in the index_2_cls. After getting the jclass reference, we will

differentiate if the value of entry 2 of the constant pool table belongs to the system class

which is the word“java/”starting. If it does not belong to system class, indicates that it is

the user class, and its index will be maintained, and used for dynamic dispatching later. We

detail the dynamic dispatching under user classes in next section.

 Now, we have finished the translation of the new bytecode instruction, then process

the dup bytecode instruction, and process the bipush bytecode instruction which is

associated with parameters. Right now, we will process the invokespecial. This section

only explain the <init> component of the invokespecial bytecode instruction, and other

components will be explained in next section.

 Now, we want to create an object through invokespecial. According to the above

example, When the translator meets the invokespecial #3, it gets the value of entry 3 of the

constant pool table, and generates three variables which are index_3_midname and

index_3_midsig and index_3_mid in the .data section. The index_3_midname contains the

method name of the entry 3 of the constant pool table, and the index_3_midsig contains the

method signature of the entry 3 of the constant pool table. Then, we use the JNI function

called GetMethodId to obtain the constructor id. Then, we use the JNI function called

NewObject to create an object, and push the object reference onto the native stack.

 index_2_clsname db 'java/lang/StringBuffer',0

 index_2_cls dword ?

 index_3_midname db '<init>',0

 index_3_midsig db '(I)V',0

 index_3_mid dword ?

 argreversebuf dword 20 dup(?)

 54

 There are two places which are noticed especially. The one, the order of passing

parameters into the JNI function called NewObject is from right to left. Because before the

invokespecial appears, parameters are pushed onto the native stack from left to right. So,

we must reverse the order of parameters by a temporary area called argreversebuf when

call the NewObject. The order of passing parameter is the same rule when process other

JNI functions. If the type of the parameter is float, we must change it to double. Because

these calling methods in JNI functions regard the float as the double type. If you do not

perform the action, you will make a mistake, and get the wrong result. The two, after

performing the NewObject, you must adjust the register esp which points the native stack.

Because these calling methods in JNI functions do not fetch the parameters from native

stack by the register esp, and they fetch the parameters from native stack by the register

ebp. The concept is like mixing mode of C and assembly[25,26]. Figure 3.25 illustrates the

total flow of the translator creates an object. If the class of the object belong to user class,

inserts the object reference into the objmapclass structure for dynamic dispatching later.

Figure 3.25 The total flow of the translator creates an object

generate variables in .data

FindClass

generate variables in .data

GetMethodId

adjust parameters order

NewObject

adjust the register esp

maintain 0 or index if user class

1. right to left

2. float -> double

3. high part then

lowpart

 55

getfield、putfield

 The bytecode gets/assigns the value of the field which is instance field in an object.

For example：

 fieldexample x=new fieldexample();

 x.i++;

 0 new #3 <Class fieldexample>

 3 dup

 4 invokespecial #4 <Method fieldexample()>

 7 astore_1

 8 aload_1

 9 dup

 10 getfield #2 <Field int i>

 13 iconst_1

 14 iadd

 15 putfield #2 <Field int i>

 18 return

 The #2 is the entries of the constant pool.

 #2：fieldexample i I

A example of assembly code of getfield and putfield instructions is shown in Figure 3.26.

…

pop jclsjobjtmp ; object reference

 GetFnPtr fntblptr,6,fnptr ; FindClass

 push offset index_2_clsname

 push jnienv

 call [fnptr]

 mov index_2_cls,eax

 GetFnPtr fntblptr,94,fnptr ; GetFieldID

 push offset index_2_fidsig

 push offset index_2_fidname

 push index_2_cls

 push jnienv

 call [fnptr]

 mov index_2_fid,eax

 56

 GetFnPtr fntblptr,100,fnptr ; Get<Type>Field

 push index_2_fid

 push jclsjobjtmp

 push jnienv

 call [fnptr]

 push eax

 … ; +1

 pop [argreversebuf]

 pop jclsjobjtmp ; object reference

 GetFnPtr fntblptr,6,fnptr ; FindClass

 push offset index_2_clsname

 push jnienv

 call [fnptr]

 mov index_2_cls,eax

 GetFnPtr fntblptr,94,fnptr ; GetFieldID

 push offset index_2_fidsig

 push offset index_2_fidname

 push index_2_cls

 push jnienv

 call [fnptr]

 mov index_2_fid,eax

 GetFnPtr fntblptr,109,fnptr ; Set<Type>Field

 push [argreversebuf]

 push index_2_fid

 push jclsjobjtmp

 push jnienv

 call [fnptr]

 …

Figure 3.26 Example of assembly code of getfield and putfield instructions

We use several JNI functions to finish the bytecode getfield and putfield. According

to the above example, When the translator meets the getfield #2, it gets the value of entry 2

of the constant pool table, and generates five variables which are index_2_clsname、

index_2_cls、index_2_fidname、index_2_fidsig、index_2_fid in the .data section. The

index_2_clsname contains the class name of entry 2 of the constant pool table. The

index_2_fidname contains the field name of entry 2. The index_2_fidsig contains the field

signature of entry 2. Then, we use the JNI function called FindClass to get a reference to

 57

the named class or interface. The type of the reference is jclass, and it stands for the loaded

class, and saved in the index_2_cls. After getting the jclass reference, we use the the JNI

function called GetFieldID to get the field id for an instance field of a class. Then we

decide the jni function entry by the field signature which consists of B, C, D, F, I, J, L, [, S,

and Z. Then, we call the Get<Type>Field which is relative to the field signature. For the

putfield, we use the JNI function called Set<Type>Field to set the value of the instance

field. Their translating basic rules are similar between getfield and putfield.

 index_3_clsname db 'fieldexample',0

 index_3_cls dword ?

 index_4_midname db '<init>',0

 index_4_midsig db '()V',0

 index_4_mid dword ?

 index_2_clsname db 'fieldexample',0

 index_2_cls dword ?

 index_2_fidname db 'i',0

 index_2_fidsig db 'I',0

 index_2_fid dword ?

 real4buf real4 ?

 real8buf real8 ?

 argreversebuf dword 20 dup(?)

 There are three places which are noticed especially. The one, Because the hide of the

field is a problem, we can not catch the class of the object directly during translating

getfield and putfield. In the other word, When we get the parameter which is an object

reference used to getfield or putfield, we can not use the JNI function called

GetObjectClass directly to catch the class of the object. We must use the FindClass and

then use the GetFieldID to catch the accurate field id. The two, after getting the value of

the field, there are different processing rules for different return type.

 If the type of the return value is long after getfield, it is saved in the edx：eax, and

push the eax, then push edx. The edx has the high part of the value, and the eax has the low

part of the value.

 high

 low

 If the type of the return value is float or double, it is saved in the real register stack

which belongs to the floating-point unit (FPU)[28]. The following are the translated codes,

EDX：EAX

 58

and if it is the double, we also push the low part, then push the high part.

 float fstp real4buf

 push real4buf

 double fstp real8buf

 mov edx,dword ptr real8buf

 mov eax,dword ptr real8buf+4

 push edx ; edx has the low part

 push eax ; eax has the high part

If it is the other types, we push the eax onto the native stack directly.

The three, the order of passing parameters into the JNI function is from right to left. If

there is a parameter whose type is long or double, you must first push the high part onto

the native stack and then push the low part onto the native stack as calling the JNI function

truly. So, we use a temporary area called argreversebuf to finish those ordering works.

getstatic、putstatic

 The bytecode gets/assigns the value of the field which is static field in a class. The

translating flow of these two bytecodes are similar to getfield and putfield. The distinct

point are that replace GetFieldID with GetStaticFieldID, and replace Get<Type>Field with

GetStatic<Type>Field, and replace Set<Type>Field with SetStatic<Type>Field. The

another distinct point is that we use the jclass reference to get the value of the static field,

and do not use the object reference to get the value of the static field. Figure 3.27

illustrates the example of assembly code of getstatic and putstatic instructions.

class staticfieldexample {

 static int i=1;

 public static void main(String[] args) {

 i++;

 } }

0 getstatic #2 <Field int i>

 3 iconst_1

 4 iadd

 5 putstatic #2 <Field int i>

 8 return

…

index_2_clsname db 'staticfieldexample',0

 59

index_2_cls dword ?

index_2_fidname db 'i',0

index_2_fidsig db 'I',0

index_2_fid dword ?

…

GetFnPtr fntblptr,6,fnptr ; FindClass

 push offset index_2_clsname

 push jnienv

 call [fnptr]

 mov index_2_cls,eax

 GetFnPtr fntblptr,144,fnptr ; GetStaticFieldID

 push offset index_2_fidsig

 push offset index_2_fidname

 push index_2_cls

 push jnienv

 call [fnptr]

 mov index_2_fid,eax

 GetFnPtr fntblptr,150,fnptr ; GetStatic<Type>Field

 push index_2_fid

 push index_2_cls

 push jnienv

 call [fnptr]

 push eax

 … ; +1

 GetFnPtr fntblptr,6,fnptr ; FindClass

 push offset index_2_clsname

 push jnienv

 call [fnptr]

 mov index_2_cls,eax

 GetFnPtr fntblptr,144,fnptr ; GetStaticFieldID

 push offset index_2_fidsig

 push offset index_2_fidname

 push index_2_cls

 push jnienv

 call [fnptr]

 mov index_2_fid,eax

 GetFnPtr fntblptr,159,fnptr ; SetStatic<Type>Field

 push index_2_fid

 60

 push index_2_cls

 push jnienv

 call [fnptr]

 …

Figure 3.27 Example of assembly code of getstatic and putstatic instructions

instanceof、checkcast

 The bytecode test that if the object belongs to the some type. Figure 3.28 is the

example of the instanceof instruction.

class isinstanceof {

 public static void main(String[] args) {

 isinstanceof a=new isinstanceof();

 if(a instanceof isinstanceof) {

 }

 } }

0 new #2 <Class isinstanceof>

 3 dup

 4 invokespecial #3 <Method isinstanceof()>

 7 astore_1

 8 aload_1

 9 instanceof #2 <Class isinstanceof>

 12 ifeq 15

 15 return

ClassCastException_name db 'java/lang/ClassCastException',0

 argreversebuf dword 20 dup(?)

 jclsjobjtmp dword ?

 …

 index_2_clsname db 'isinstanceof',0

 index_2_cls dword ?

 index_3_midname db '<init>',0

 index_3_midsig db '()V',0

 index_3_mid dword ?

…

 …

 61

 push [aa_local_vars+1*4] ; aload_1

 GetFnPtr fntblptr,6,fnptr ; FindClass

 push offset index_2_clsname

 push jnienv

 call [fnptr]

 mov index_2_cls,eax

 GetFnPtr fntblptr,32,fnptr ; IsInstanceOf

 pop eax

 push index_2_cls

 push eax

 push jnienv

 call [fnptr]

 push eax

 pop eax ; ifeq 15

 cmp eax,0

 jz aa_15

 aa_15:

 …

Figure 3.28 Example of the instanceof instruction

 We use the JNI function called IsInstanceOf to test. If the object belongs to the

index_2_clsname, push 1 onto the native stack, otherwise push 0 onto the native stack. The

value of 1 or 0 is used to judge by the bytecodes which belong to the flow control

category.

 For the checkcast, it does not push 1 or 0 onto the native stack. If the object does not

belong to the some type, it will throws an exception called ClassCastException. We use the

following statements to finish the function.

 .if eax == 0

 push offset ClassCastException_name

 call throw_exception_func

 .endif

 throw_exception_func proc

.data

 62

 e_name dword ?

 e_ref dword ?

.code

 pop ebp

 pop e_name

 GetFnPtr fntblptr,6,fnptr

 push e_name

 push jnienv

 call [fnptr]

 mov e_ref,eax

 GetFnPtr fntblptr,14,fnptr ; ThrowNew

 push e_name

 push e_ref

 push jnienv

 call [fnptr]

 push ebp

 ret

throw_exception_func endp

Table 3.2 illustrates the total JNI functions associated with object.

FindClass , 6

Get<Type>Field , 95 ~ 103

GetFieldID , 94

GetMethodId , 33

GetStaticFieldID , 144

GetStatic<Type>Field , 145 ~ 153

IsInstanceOf , 32

NewObject , 28

Set<Type>Field , 104 ~ 112

SetStatic<Type>Field 154 ~ 162

ThrowNew , 14

Table 3.2 The total JNI functions associated with object

 63

3.2.4.2 Method Invocation

 We will explain how to do dynamic dispatching, and other bytecodes －

invokevirtual、invokestatic、invokespecial、invokeinterface、return series.

Dynamic Dispatch

 To date, When we want to call the system API, we still use the JNI function to finish

the work. But, When we want to call the user defined method, we must do the dynamic

dispatching in the assembly code ourself. In order to call user defined methods in .ASM

files, we design four components － .._objmapclass 、 allclassmethodtable 、

build_objmapclasstable、search_objmapclasstable.

 objmapclass_table struct

 jobj dword ?

 class dword ?

objmapclass_table ends

 aa_objmapclass objmapclass_table 3 dup(<-1,-1>)

The .._objmapclass is used to save the created object whose class is user defined. Its jobj

field saves the object reference, and its class field saves the index. If the class of the

created object is same as thisclass which is the translated class file now, the index is 0. If

the class of the created object is other user defined classes, the index is the entry of the

class in the constant pool table mentioned in section 3.1.2. The allclassmethodtable

mentioned in section 3.1.2 is generated in pass 1.

 .classname idofclass superclass

 methodname signature clsname callasmname

 …

 methodname signature clsname callasmname

.end

The allclassmethodtable has all the methods which come from every class which appears in

the constant pool and their super class and super class up to java.lang.Object. A item is a

class which appears in the constant pool, and it´s methods which including inheritance up

to java.lang.Object. If the classname is same as thisclass, the idofclass is 0, otherwise

idofclass is the entry number of the class in the constant pool table. The order of the

methodname in a item is that methods of thisclass are first, then methods of superclass of

thisclass are second, and then continue up to the java/lang/Object. When the translator

meets those invoke series instructions in pass 2, the allclassmethodtable is useful.

 64

 The build_objmapclasstable is a procedure that is used to save the created object of

user class in the .._objmapclass. When we new an object of an user defined class, the

object reference and index are inserted into the .._objmapclass by the

build_objmapclasstable. When the translator wants to translate invokevirtual or

invokeinterface, the translator will generate the following codes to find the idofclass of the

created object.

 push offset aa_objmapclass

 push eax ; object reference is saved in eax

 call search_objmapclasstable

build_objmapclasstable proc

.data

 allobjmapclass_entry dword ?

 objref dword ?

 objref_entry dword ?

.code

 pop ebp

 pop objref_entry

 pop objref

 pop allobjmapclass_entry

 mov ebx,dword ptr allobjmapclass_entry

 insert_item:

 cmp (objmapclass_table ptr [ebx]).jobj,-1

 jne next_item

 mov eax,dword ptr objref

 mov (objmapclass_table ptr [ebx]).jobj,eax

 mov eax,dword ptr objref_entry

 mov (objmapclass_table ptr [ebx]).class,eax

 jmp insert_ok

 next_item:

 add ebx,type objmapclass_table

 jmp insert_item

 insert_ok:

 push ebp

 ret

build_objmapclasstable endp

 65

The search_objmapclasstable returns the idofclass of the created object, and the idofclass is

associated with the allclassmethodtable.

Because messages of the called method in the invoke series instructions are saved in the

constant pool table, and we can use an entry number to get related data. There are method

name and method signature in the data, and we make the method name and method

signature as a key. The translator use the key to search the allclassmethodtable to show

those possible calling methods. We use the .if directive concept in the assembler to make

multiple calling decisions, as the following statements.

search_objmapclasstable proc

.data

 s_allobjmapclass_entry dword ?

 s_objref dword ?

.code

 pop ebp

 pop s_objref

 pop s_allobjmapclass_entry

 mov edx,s_objref

 mov ebx,s_allobjmapclass_entry

 s_search:

 ;check if matched ?

 cmp (objmapclass_table ptr [ebx]).jobj,edx

 jne s_nextitem

 mov eax,(objmapclass_table ptr [ebx]).class

 jmp s_finish

 s_nextitem:

 add ebx,type objmapclass_table

 cmp (objmapclass_table ptr [ebx]).jobj,-1

 je s_notfind

 jmp s_search

 s_notfind:

 mov eax,-1

 s_finish:

 push ebp

 ret

 66

 .if eax == 2

 call lower_obj_show_2

 mov eax,2

 .endif

 .if eax == 18

 call upper_obj_show_2

 mov eax,18

 .endif

The eax has the return value of the procedure called search_objmapclasstable. When the

idofclass is matched, the correct method is called. At this time, those parameters which

will be used by the called function are already in the native stack, and the called function

can use them from the native stack, as the following statements.

 lower_obj_show_2 proc

 pop aa_return_addr

 pop [aa_local_vars+2*4]

 pop [aa_local_vars+1*4]

 pop [aa_local_vars+0*4]

 …

These parameters are saved in the local variables of the called function. The above rule

also solves the overloading problem of the multiple inheritance. Because the actually called

methods are decided at run time for invokevirtual and invokeinterface, and are associated

with object. So, we must save the created object reference for dynamic dispatching later.

But, for invoekstatic and invokespecial they are static binding, and the actually called

methods are decided at compile time, and are not associated with object. So, the translator

generates the calling assembly code directly, and do not make multiple calling decisions.

The class name and method name and method signature from constant pool table are a key.

The translator uses the key to search the allclassmethodtable to find the called method, and

generates a calling method assembly code directly. Figure 3.29 illustrates the flow of

dynamic dispatching for user methods.

 When we want to call the system API, we still use the JNI function to finish the work.

The flow of using the JNI function is like the contents described in section 3.2.4.1, and

there are still some places which are noticed. These noticed places have explained in

section 3.2.4.1. Figure 3.30 illustrates the translating flow of invoking system api.

 67

Figure 3.29 The flow of dynamic dispatching for user methods

Figure 3.30 The translating flow of invoking system api

dynamic

save objref in

the objmapclass

search objref to

get the idofclass

make multiple decision calling

by searching allclassmethodtable

search allclassmethodtable

call the method

process parameters

return & return value

in native stack

Y N

generate variables in .data

get jclass

get method id

get jni entry of called method

adjust parameters order

call the system method by jni function

adjust the register esp

1. right to left

2. float -> double

3. high part then

lowpart

save these parameters in the

temporary area

push the return value

index_.._clsname

index_.._cls

index_.._midname

index_.._midsig

index_.._mid

argreversebuf
jclsjobjtmp

push low part then

push high part

 68

The“get jni entry of called method”is to decide the number of the jni function by the

return types which consist of B、C、D、F、I、J、L、[、S、Z、V. For invokestatic or

invokespecial, the“get jclass”use the JNI function called FindClass to get the class. For

invokevirtual or invokeinterface, the“get jclass”use the JNI function called

GetObjectClass to get the class. For invokestatic, the“get method id”use the JNI

function called GetStaticMethodID to get the method id. For invokespecial, invokevirtual

or invokeinterface, the“get method id”use the JNI function called GetMethodId to get

the method id. Table 3.3 illustrates the JNI functions of method invocation.

Call<Type>Method , 61 34 37 40 43 46 49 52 55 58

CallStatic<Type>Method , 141 114 117 120 123 126 129 132 135 138

FindClass , 6

GetMethodID , 33

GetObjectClass , 31

GetStaticMethodID , 113

Table 3.3 The JNI functions of method invocation

invokevirtual

 We show an example about calling user method and system method.

class upper_obj {

 int upi;

 int show(int a,int b) {

 upi=a-b;

 return 1; } }

class lower_obj extends upper_obj {

 int i;

 int show(int a,int b) {

 i=a+b;

 return 2; } }

public class invokevirtualuserapi {

 public static void main(String[] args) {

 lower_obj a=new lower_obj();

 upper_obj b=new lower_obj();

 int g=b.show(11,3);

 System.out.println(g); } }

 69

0 new #2 <Class lower_obj>

 3 dup

 4 invokespecial #3 <Method lower_obj()>

 7 astore_1

 8 new #2 <Class lower_obj>

 11 dup

 12 invokespecial #3 <Method lower_obj()>

 15 astore_2

 16 aload_2

 17 bipush 11

 19 iconst_3

 20 invokevirtual #4 <Method int show(int, int)> //user method

 23 istore_3

 24 getstatic #5 <Field java.io.PrintStream out>

 27 iload_3

 28 invokevirtual #6 <Method void println(int)> //system method

 31 return

Javap of invokevirtualuserapi

…

extrn lower_obj_show_2:proc,upper_obj_show_2:proc

.data

 …

 argreversebuf dword 20 dup(?)

 jclsjobjtmp dword ?

 …

 index_6_cls dword ?

 index_6_midname db 'println',0

 index_6_midsig db '(I)V',0

 index_6_mid dword ?

 aa_objmapclass objmapclass_table 4 dup(<-1,-1>)

.code

 … ; create object a

 push offset aa_objmapclass

 push eax

 mov eax,2

 push eax

 70

 call build_objmapclasstable

 pop [aa_local_vars+1*4]

 … ; create object b

 push offset aa_objmapclass

 push eax

 mov eax,2

 push eax

 call build_objmapclasstable

 pop [aa_local_vars+2*4]

 push [aa_local_vars+2*4]

 … ; push 11 , 3

 mov eax,[esp+2*4]

 push offset aa_objmapclass

 push eax

 call search_objmapclasstable

 .if eax == 2

 call lower_obj_show_2

 mov eax,2

 .endif

 .if eax == 19

 call upper_obj_show_2

 mov eax,19

 .endif

 pop [aa_local_vars+3*4]

 … ; getstatic

 push [aa_local_vars+3*4]

 pop [argreversebuf+0*4]

 pop jclsjobjtmp

 GetFnPtr fntblptr,31,fnptr ; GetObjectClass

 push jclsjobjtmp

 push jnienv

 call [fnptr]

 mov index_6_cls,eax

 GetFnPtr fntblptr,33,fnptr ; GetMethodID

 push offset index_6_midsig

 push offset index_6_midname

 push index_6_cls

 push jnienv

 71

 call [fnptr]

 mov index_6_mid,eax

 GetFnPtr fntblptr,61,fnptr ; CallVoidMethod

 push [argreversebuf+0*4]

 push index_6_mid

 push jclsjobjtmp

 push jnienv

 call [fnptr]

 add esp,16

 …

Asm code of invokevirtualuserapi

…

lower_obj_show_2 proc

 pop aa_return_addr

 pop [aa_local_vars+2*4]

 pop [aa_local_vars+1*4]

 pop [aa_local_vars+0*4]

 …

 mov eax,2

 push eax

 push aa_return_addr

 ret

lower_obj_show_2 endp

Asm code of lower_obj

upper_obj_show_2 proc

 pop aa_return_addr

 pop [aa_local_vars+2*4]

 pop [aa_local_vars+1*4]

 pop [aa_local_vars+0*4]

 …

mov eax,1

 push eax

 push aa_return_addr

 ret

upper_obj_show_2 endp

Asm code of upper_obj

 72

We show those generated assembly codes of the invokevirtualuserapi, lower_obj, and

upper_obj. We also show the translating processes of the invokevirtualuserapi, lower_obj,

and upper_obj, and also show the processes of compiling and executing.

translate the invokevirtualuserapi

translate the lower_obj

translate the upper_obj

 73

compile and run

invokestatic

 The instruction is used to invoke static method. We can known the called method at

compile time, and the message of the called method is recorded in the constant pool, and

we can get the message through a index. We had resolved the class file in pass 1, and make

the constant pool into a structure called constant pool table. For example：

 invokestatic #8 // static user method: abc

When the translator want to translate this statement, it regards the number behind the

symbol # as an entry of the constant pool table, and gets messages about the method by the

entry. The messages contain class name, method name, and method signature. If the

method is user, we use the three informations to search the allclassmethodtable to find the

called method, and then generate the assembly calling code directly. The problems of

parameters and returning value are the same operations as the invokevirtual.

 call abc

If the method is system, the translating step is like the figure 3.30. But there are two

different points. Because the invokestatic is related to class, and is not related to object. So,

we do not have object reference, therefore we only use the JNI function called FindClass to

get the jclass, and can not use the JNI function called GetObjectClass. Then we use the JNI

function called GetStaticMethodID to get the method id. Because we call the different JNI

function for static or non-static method, we use those JNI functions called

CallStatic<Type>Method.

 74

invokespecial

 The instruction is used to call the following methods：

1. instance initialization method <init>.

2. private instance methods of this class.

3. methods of super class of this class.

We had described how to translate the invokespecial instruction to finish the <init> in the

previous section. Now we will explain the another two usages. When the Java programmer

uses the key word called super to invoke the method of parent class and invokes the private

instance method in this class directly, the javac compiler uses the invokespecial to call

those methods. The invokespecial differs from invokevirtual primarily in that

invokespecial normally selects a method based on the type of the reference rather than the

class of the object. In other words, it does static binding instead of dynamic binding.

 The invokespecial is not used to invoke private class methods, just private instance

methods. Private class methods are invoked with invokestatic. For example：it must be

possible for a subclass to declare an instance method with the same signature as a private

instance method in a superclass.

class Superclassprivate {

 private void interestingMethod() {

 System.out.println("Super");

 }

 void exampleMethod() {

 interestingMethod();

 } }

class Subclassprivate extends Superclassprivate {

 void interestingMethod() {

 System.out.println("sub");

 }

 public static void main(String[] args) {

 Subclassprivate me=new Subclassprivate();

 me.exampleMethod();

 } }

Method void exampleMethod()

 0 aload_0

 1 invokespecial #5 <Method void interestingMethod()>

 4 return

 75

Method void main(java.lang.String[])

 0 new #5 <Class Subclassprivate>

 3 dup

 4 invokespecial #6 <Method Subclassprivate()>

 7 astore_1

 8 aload_1

 9 invokevirtual #7 <Method null>

 12 return

Superclassprivate_exampleMethod_3 proc

…

.code

 pop ab_return_addr

 pop [ab_local_vars+0*4] ; this reference

 …

 push [ab_local_vars+0*4]

 call Superclassprivate_interestingMethod_2

 push ab_return_addr

 ret

Superclassprivate_exampleMethod_3 endp

Asm code of exampleMethod

…

 _main proc

 …

 .if eax == 0

 call Superclassprivate_exampleMethod_3

 mov eax,0

 .endif

 .if eax == 8

 call Superclassprivate_exampleMethod_3

 mov eax,8

 .endif

 …

Asm code of main

 76

The Java Virtual Machine invokes the interestingMethod() defined in Superclassprivate

even though the object is an instance of class Subclassprivate and there is an accessible

interestingMethod() defined in Subclassprivate. So, the asm code of exampleMethod

invokes the interestingMethod of Superclassprivate directly.

 When the Java Virtual Machine resolves an invokespecial instruction´s symbolic

reference to a superclass method, it dynamically searches the current class´s superclasses to

find the nearest superclass implementation of the method. For example：

class Cat {

 void someMethod() {

 } }

class TabbyCat extends Cat {

 void someMethod() {

 super.someMethod();

 } }

Compiled from TabbyCat.java

…

Method void someMethod()

 0 aload_0

 1 invokespecial #2 <Method void someMethod()>

 4 return

TabbyCat_someMethod_2 proc

 …

 call Cat_someMethod_2

 …

invokeinterface

 The invokeinterface performs the same function as invokevirtual, it invokes instance

methods and uses dynamic binding. It is related to object. The difference between these

two instructions is that invokevirtual is used when the type of the reference is a class,

whereas invokeinterface is used when the type of the reference is an interface. The Java

Virtual Machine uses a different instruction to invoke a method on an interface reference

because it can not make as many assumptions about the method table offset given an

 77

interface reference as it can given a class reference. Given a class reference, a method will

always occupy the same position in the method table, independent of the actual class of the

object. This is not true given an interface reference. The method could occupy different

locations for different classes that implement the same interface.

 When the Java Virtual Machine encounters an invokevirtual instruction and resolves

the symbolic reference to a direct reference to an instance method, that direct reference is

likely an offset into a method table. From that point forward, the same offset can be used.

For an invokeinterface instruction, the JVM will have to search through the method table

every single time the instruction is encountered, because it can not assume the offset is the

same as the previous time.

 The translating rule of the invokeinterface is the same as the invokevirtual. For

calling the system method by invokeinterface, every single time the instruction

encountered, we always use those associated JNI functions to finish the invokeinterface

work. For calling the user method by invokeinterface, every single time the instruction

encountered, we always use the same translating steps which are mentioned in the

beginning of the section to call the correct method. Because the translating rule of the

invokeinterface is the same as the invokevirtual, we do not illustrate an example about

invokeinterface in this section.

return instructions

 The return instructions consist of ireturn, lreturn, freturn, dreturn, areturn, and return.

If the location of the returning series bytecode instructions is the last bytecode in the

bytecode stream of a method, we do not generate any assembly code, and the returning

value which was prepared by bytecodes prior to those return series bytecodes immediately

were on the native stack. Because we add that pushing return address onto the native stack

and ret actions in the initialization asm code mentioned in the figure 3.5, we can return

back to the caller method. If they are not the last bytecode in the bytecode stream of a

method, the returning value was also prepared, but we must generate the following

assembly codes. The control can return back to the caller method by the following

assembly codes.

 push return_addr

 ret

For example：

 78

public class stepoly {

 static int stepPoly(int x) {

 if(x<0) {

 System.out.println("foo");

 return -1;

 }

 else if(x<=5)

 return x*x;

 else

 return x*5+16;

 }

 public static void main(String[] args) {

 int g=stepPoly(-5);

 System.out.println(g);

 } }

Method int stepPoly(int)

 …

 12 iconst_m1 // parameter in the stack

 13 ireturn

 …

 21 imul // parameter in the stack

 22 ireturn

 …

 28 iadd // parameter in the stack

 29 ireturn

…

push aa_return_addr

 ret

 …

 push aa_return_addr

 ret

 …

 push aa_return_addr

 ret

stepoly_stepPoly_2 endp

 79

3.2.5 Template Match

 We propose template matching technique to generate more efficient ASM codes. This

template matching method is original from the paper[7], but we add some concepts of

peephole pattern table[11] to those template patterns. We arrange many bytecode

instructions to form some patterns. Before we want to begin to translate every bytecode

instruction, we compare these patterns with adjacent bytecode instructions. If they are

matched, the result indicates that these adjacent bytecode instructions can be translated to

ASM codes together. We extend the concept of peephole pattern table[11] to constitute

advanced patterns which let our translator to generate less native codes easily. We can

implement some optimizations[2] in the template patterns. For examples：

 We can combine two or more than two existent templates to match patterns of Java

bytecode instructions. We will implement more optimizations, such as dead code

elimination, and common subexpression elimination in the future. According to the

experiment result, when the template matching occurs within the loop, the generated

assembly codes has outstanding improvement. We hope to make better performance which

is close to the JIT.

bipush 9 mov [aa_local_vars+0*4], 9

istore_0

iload_1 mov eax, [aa_local_vars+1*4]

iload 8 mov ebx, [aa_local_vars+8*4]

if_icmpeq 38 cmp eax, ebx

 je aa_38

iload 6 mov eax, [aa_local_vars+6*4]

iload_3 mov ebx, [aa_local_vars+3*4]

iconst_1 add ebx, 1

iadd cmp eax, ebx

if_icmpne 38 jne aa_38

 80

Chapter 4 Performance Evaluation and Analysis

 In this chapter, we carry out a series of performance experiments in order to test the

viability of our translator. Test results are first enumerated for comparisons, and later we

analyze and explain the reason of causing the performance difference.

4.1 Performance Evaluation and Comparison

 Handwritten several small Java programs which consist of loop test, arithmetic tests,

array test, field test, and user method tests. The results of these tests are in table 4.1~4.5.

Many excellent Java benchmarks exist. The Linpack executes complex algorithms which

perform many computations. The BTest is for a statistical evaluation, and does a lot of

shuffling around in an integer array and double computations. The results for the two

excellent benchmarks are in table 4.6.

 The experiment platform is a AMD Athlon 1600 runs at 1.41 GHz with 256MB RAM.

The operating system is Microsoft Windows XP professional edition. Java Virtual Machine

is Sun“Java.exe”in Sun J2SDK 1.4.1_01 for win32. We run these benchmarks in three

approaches － interpreter, JIT, and our translator. The results of the three approaches

show their execution time, and the measure unit is second.

1. loop test

 The loop test iterated an empty loop 1000000000 times. The result is list in table 4.1.

Benchmark Interpreter JIT Asm code

Empty loop iterated 1000000000 times 34.8 3.45 5.81

Table 4.1 Loop test

2. arithmetic tests

 Four tests are enclosed in this suite. Each item is executed under 100000000 times, as

shown in table 4.2.

Benchmark Interpreter JIT Asm code

Addition and subtraction on integer 13.47 0.84 2.05

 81

Multiplication and division on integer 16.5 3.7 5.08

Addition and subtraction on long 14.41 0.72 5.52

Multiplication and division on long 22.09 9.88 105.99

Addition and subtraction on float 11.67 1.81 3.69

Multiplication and division on float 12.39 2.44 4.86

Addition and subtraction on double 14.66 1.69 11.66

Multiplication and division on double 15.58 3.19 12.73

Table 4.2 Arithmetic tests

3. array test

 A three-dimension array with 60 elements is created. Each element is assigned an

integral value. The assignment is executed 1000 times repeatedly. The result is shown in

table 4.3.

Benchmark Interpreter JIT Asm code

One-dimension int array with 10000000

elements creation
0.09 0.09 0.09

3-dimension int array 12.28 12.06 12.48

One-dimension int array with 3 elements

is created for 1000000 times
0.38 0.06 1.5

Table 4.3 Array test

4. field test

 An instance which has an integral instance field and an integral class field is created.

We then use a loop to access that field for 1000000 times. Table 4.4 shows the result.

Benchmark Interpreter JIT Asm code

Class field accessed for 1000000 times 0.09 0.02 1.58

Instance field accessed for 1000000

times
0.09 0.02 1.61

Table 4.4 Field test

 82

5. user method tests

 An empty user instance method and an empty user static method are called 1000000

times. Table 4.5 shows the results.

Benchmark Interpreter JIT Asm code

Static method invoked for 1000000

times
0.08 0.02 0.03

Instance method invoked for 1000000

times
0.08 0.02 0.08

Table 4.5 User method tests

6. excellent examples tests

 Linpack and BTest are tested, as shown in table 4.6.

Benchmark Interpreter JIT Asm code

Linpack 0.08 0.02 0.14

BTest 77 8 76

Table 4.6 Excellent examples tests

4.2 Benchmarks Analysis

 After carefully examining codes of these benchmark programs in detail, we analysis

the six clusters, and propose to some viewpoints.

1. the loop test

 Take a look at the result, we notice that the performance of our translated asm codes

is close to that of the JIT. This is because the interpreter uses the memory to process the

loop, and does not use the registers. The JIT takes advantage of the registers to improve the

performance of the loop. Our translator uses the memory to record the iteration number,

and uses the registers to do these comparison and increment. The jump action of the asm

code is faster than the jump bytecode instruction of the interpreter. The performance

difference of our translator and the JIT is that the JIT uses the registers efficiently and does

loop optimization.

 83

2. the arithmetic tests

 The performance of our translator in integer computation and long addition and long

subtraction are good as expected, and if we make more template matching in the future, the

performance will be close to the JIT. This is because addition and subtraction operations

on multiword operands are straightforward, so we use several Intel assembly instructions to

finish those computations directly, and the code size is short. But the performance of long

multiplication and division is not good as expected. The possible reason is that

multiplication and division of multiword operands are not straightforward, so we must use

many Intel assembly instructions and computation algorithms to finish those operations,

and these used algorithms called longhand multiplication algorithm and nonrestoring

division algorithm[26,32] are slower than the internal operations of the interpreter.

 We use the assembly instructions of the FPU to finish the float and double

computations. The performance of our translator is better than the interpreter, but slower

than the JIT. This is because local variables are saved in the memory, we must get the

value of the local variable through memory, and then continue to compute. Therefore, the

slow reason is the reading and writing of the memory.

3. the array test, field test

 Our translator uses the JNI function to translate those bytecode instructions associated

the array and field operations. When we use the JNI function once, the difference is very

small and is unobvious. If we use the JNI function in a heavy-weight loop, the difference is

obvious. The solution is that many results which many JNI functions generate are

unchanged in a heavy-weight loop, and we can let these JNI functions to execute once, and

save those results which these JNI functions generate for next used. This work that how to

use the JNI function efficiently is the future work.

4. the user method tests

 For static method calling, the performance of our translator is close to the JIT. This is

because the actual callee method is decided at compiling time, and thus we can generate a

calling assembly code directly. The speed of a calling assembly code is fast. For instance

method calling, the speed of invoking once is faster than the interpreter. The interpreter

resolves the instance method when the interpreter first meets the instance method at

running time, and replaces the entry of the constant pool with direct address which may be

an offset in the method table. When the interpreter meets the same instance method second,

it jump to the starting address of the instance method to execute. The translated asm code

always performs our designed dynamic dispatching algorithm to call the correct method

every time, even though is the same instance method. Because our translated asm codes

must perform dynamic dispatching despite the same instance method, but the interpreter

 84

invokes the same instance method by direct address except for first resolving. So this is

why our translator has same performance as the interpreter for calling instance method in a

heavy-weight loop. The solution is that smarter dynamic dispatching mechanism. If

invoking the same instance method second, we do not perform the dynamic dispatching,

and can invoke the instance method directly. The solution needs to analysis the data flow

of the program, and this is a future work.

5. the excellent examples tests

 The performance of our translator is near to the interpreter, and there are some

distance between our translator and the JIT. The Linpack and BTest has a lot of shuffling

around in array computations. The possible slower reason is the overhead of using the JNI

functions. If we can use the JNI function efficiently, we can improve the performance.

 In order to make the translated asm codes right, we do many tests by many examples

during the translator developed phase. Basically, we feel that our translator is potential to

deliver good performance on these examples during testing course. In the real world, the

Java application programmer will not write a program which invokes a same instance

method for many times, and has too many array computations. Therefore, to date our

translator can gets the good performance for those general applications.

 85

Chapter 5 Conclusion and Future Work

5.1 Conclusion

 Performance of Java is always an interesting issue. In this thesis, we described an

approach to translate Java bytecode to X86 assembly code. The approach does not

generates the intermediate representation, but adopts code mapping method for the

bytecode instruction. The code mapping method simplifies the complexity of other native

compilers which generate IR in the past.

 In order to generate right assembly codes, we propose that the one-pass is used to

gather informations about the class file and bytecode instructions, and the two-pass is used

to generate the actual asm codes. We use the template matching to do some optimizations,

and use the JNI function to communicate with the Java Virtual Machine.

 In order to implement the dynamic dispatching in assembly codes, we designed a

mechanism which consists of four components mentioned in section 3.2.4.2. We use the

four components to finish that the environment which is a static binding can invoke the

method which are decided in a dynamic binding environment. To date, the speed of our

translator is faster than the interpreter, but is slower than the JIT according to our

experiments. Although there are still some distance between our translator and the JIT, but

the performance of our translator which is used on real-world applications is acceptable,

and there are opportunity to refine it.

5.2 Future work

 To date, there are still many enhancing the performance methods of Java in the native

compiler category. They are differentiated between machine dependent and machine

independent. In order to enhance the performance, we list here some work we wish to

accomplish in the future.

● smarter register allocation.

● implement more optimizations in the template matching.

● Make more tests, such as SPEC JVM98 microbenchmark.

● Use the JNI function efficiently.

● Smarter dynamic dispatching.

We believe that our translator will has the same performance as the JIT after finishing

these future work, even better.

 86

References

[1] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh, and

James M. Stichnoth,“Fast and effective code generation in a just-in-time Java compiler”,

ACM SIGPLAN Notices, 33(5):280-290,May 1998.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,“Compilers Principles, Techniques

and Tools”, Addison-Wesley, 1986.

[3] J. Gosling, B. Joy and G. Steele,“The Java Language Specification, second edition”,

Addison-Wesley, 2000.

[4] Arnold, Ken, and James Gosling,“The Java Programming Language”, (Reading, MA:

Addison-Wesley), July 1997.

[5] Tim Lindholm and Frank Yellin,“The Java Virtual Machine Specification”,

Addison-Wesley, Reading, MA, USA, second edition, 1999.

[6] C.-H.A. Hsieh, J.C. Gyllenhaal, and W.W. Hwu,“Java Bytecode to Native Code

Translation:The Caffeine Prototype and Preliminary Results”, Proc. 29
th Ann.

International Symp. Microarchitecture, IEEE CS Press, Los Alamitos, Calif., 1996,

pp.90-97.

[7] Ye Hua, Tong WeiQin, Yao WenSheng,“Platform independence issues in compiling

Java bytecode to native code”, High Performance Computing in the Asia-Pacific Region,

2000. Proceedings. The Fourth International Conference/Exhibition on , Volume: 1 , 14-17

May 2000 Pages:530-532 vol.1.

[8] C.-H.A. Hsieh, M.T. Conte, T.L. Johnson, J.C. Gyllenhaal, W.-M.W. Hwu,

“Compilers for Improved Java Performance”, Computer , Volume: 30 , Issue: 6 , June

1997 Pages:67-75.

[9] P. Bothner,“A Gcc-based Java Implementation”, Compcon '97. Proceedings,

IEEE , 23-26 Feb. 1997 Pages:174-178.

[10] D. Lance, R.H. Untch, N.J. Wahl,“Bytecode-based Java Program Analysis”, April

1999 Proceedings of the 37th annual Southeast regional conference.

 87

[11] H.D. Lambright,“Java Bytecode Optimizations”, Compcon '97. Proceedings,

IEEE , 23-26 Feb. 1997 Pages:206-210.

[12] R. V.-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, V. Sundaresan, “Soot-a Java

Bytecode Optimization Framework”, November 1999 Proceedings of the 1999

conference of the Centre for Advanced Studies on Collaborative research.

[13] F.G. Chen, and Ting-Wei Hou,“Design and Implementation of a Java Execution

Environment”, Parallel and Distributed Systems, 1998. Proceedings., 1998 International

Conference on , 14-16 Dec. 1998 Pages:686-692.

[14] A. Azevedo, A. Nicolau, and J. Hummel,“Java Annotation-Aware Just-In-Time

(AJIT) Compilation System”, June 1999 Proceedings of the ACM 1999 conference on

Java Grande.

[15] V. Mikheev, N. Lipsky, D. Gurchenkov, P. Pavlov, V. Sukharev, A. Markov, S.

Kuksenko, S. Fedoseev, D. Leskov, A. Yeryomin,“Overview of Excelsior JET, a high

Performance Alternative to Java Virtual Machines”, July 2002 Proceedings of the third

international workshop on Software and performance.

[16] Suganuma et al.,“Overview of the IBM Java Just-In-Time Compiler”, IBM

Systems Journal, Vol. 39, No. 1, 2000.

[17] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim

Newsham, and Scott A. Watterson,“Toba: Java for applications: A way ahead of time

(WAT) compiler”, Proc. Usenix Association, pp.41-54, 1997.

[18] M. Cierniak, G.-Yuan Lueh, J.M. Stichnoth,“Practicing JUDO:Java Under Dynamic

Optimizations”, May 2000 ACM SIGPLAN Notices , Proceedings of the ACM

SIGPLAN 2000 conference on Programming language design and

implementation, Volume 35 Issue 5.

[19]“Tower J”, Tower Technology., http://www.twr.com/.

[20] Java Technology, http://java.sun.com/.

[21] Bill Venners, Inside the Java 2 Virtual Machine, McGraw-Hill Companies, 2001.

 88

[22] Jon Meyer and Troy Downing 著，JAVA 虛擬機器，蔡寶進譯，美商歐萊禮股

份有限公司台灣分公司，2000 年 7 月初版。

[23] Joshua Engel, Programming for the Java Virtual Machine, Addison Wesley Longman,

1999.

[24] Sheng Liang, The Java Native Interface, Addison Wesley, Longman, 1999.

[25] Kip R. Irvine, Assembly Language for Intel-Based Computers, Fourth Edition,

Pearson Education, Inc., 2003.

[26] Sivarama P. Dandamudi, Introduction to Assembly Language Programming, Springer,

1998.

[27] Ytha Yu, Charles Marut, Assembly Language Programming and Organization of the

IBM PC, McGraw-Hill, inc., 1992.

[28] Richard C. Detmer, Introduction to 80x86 Assembly Language and Computer

Architecture, Jones and Bartlett Publishers, 2001.

[29] IA-32 Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture,

2002.

[30] IA-32 Intel Architecture Software Developer's Manual, Volume 2: Instruction Set

Reference, 2002.

[31]“99% Java”, Assembly and JNI, http://www.amherst.edu/~tliron/jni/assembly.html,

Biswajit Sarkar.

[32] David A. Patterson, John L. Hennessy, Computer Organization & Design The

Hardware/Software Interface, second edition, Morgan Kaufmann Publishers, 1997.

[33] 探矽工作室著，深入嵌入式 Java 虛擬機器，學貫行銷股份有限公司，2002

年 8 月初版。

 89

Appendix

 The following code is the startvm.c.

#include <jni.h>

#include <stdio.h>

#include <windows.h>

typedef jint (JNICALL CreateJavaVM_t)(JavaVM **pvm, void **env, void *args);

#define PATH_SEPARATOR ';' /* define it to be ':' on Solaris */

#define USER_CLASSPATH "." /* where Prog.class is */

JNIEnv* startvm();

JNIEnv* startvm() {

 CreateJavaVM_t *CreateJavaVM;

 HINSTANCE hvm;

 JNIEnv *env;

 JavaVM *jvm;

 jint res;

 jclass cls;

 jmethodID mid;

 jstring jstr;

 jclass stringClass;

 jobjectArray args;

#ifdef JNI_VERSION_1_2

 JavaVMInitArgs vm_args;

 JavaVMOption options[1];

 options[0].optionString = "-Djava.compiler=NONE";

 //options[1].optionString = "-Djava.class.path=c:\\j2sdk1.4.1_01";

 options[1].optionString = "-Djava.class.path=.";

 //options[2].optionString = "-Djava.library.path=c:\\j2sdk1.4.1_01\\lib";

 //options[3].optionString = "-verbose:jni";

 //vm_args.version = 0x00010002;

 vm_args.version = JNI_VERSION_1_4;

 vm_args.options = options;

 vm_args.nOptions = 2;

 vm_args.ignoreUnrecognized = JNI_TRUE;

/* Create the Java VM */

 hvm=LoadLibrary("c:\\j2sdk1.4.1_01\\jre\\bin\\client\\jvm.dll");

 if(hvm == NULL)

 90

 {

 return NULL;

 }

 CreateJavaVM = (CreateJavaVM_t *)GetProcAddress(hvm,"JNI_CreateJavaVM");

 //res = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);

 res = CreateJavaVM(&jvm, (void **)&env, &vm_args);

#else

 JDK1_1InitArgs vm_args;

 char classpath[1024];

 vm_args.version = 0x00010001;

 JNI_GetDefaultJavaVMInitArgs(&vm_args);

 /* Append USER_CLASSPATH to the default system class path */

 sprintf(classpath, "%s%c%s",

 vm_args.classpath, PATH_SEPARATOR, USER_CLASSPATH);

 vm_args.classpath = classpath;

/* Create the Java VM */

 res = JNI_CreateJavaVM(&jvm, &env, &vm_args);

#endif /* JNI_VERSION_1_2 */

 if (res < 0) {

 fprintf(stderr, "Can't create Java VM\n");

 exit(0);

 }

 return env;

}

