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Chapter 1 Introduction 

 

1.1 The Java Programming Language 

 

 Java may be used as a conventional programming language for writing applications, 

and it may also be used to write applets on the WWW. As the massive growth of the 

Internet and the WWW, Java has become more and more popular since it was first 

introduced by Sun Microsystems in 1995.  

 

    Figure 1.1 shows the simplified flow of compiling and running Java programs. Each 

program（.java）is translated by a Java compiler into a platform-independent intermediate 

form － the Java bytecode（.class）. The Java bytecode can then be loaded by a 

classloader from local disks or remote hosts via network connection, and run in the Java 

Virtual Machine[5,21,22,23,33]（interpreting or just-in-time compiling）. The Java Virtual 

Machine may be implemented by software or hardware. 
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Figure 1.1 Compiling and Running Java programs 

 

    Here we summarize some features of the Java Programming Language[3]. 

● Architecture Neutral and Portable 

The Java compiler compiles Java programs into bytecode, and bytecode helps to 

transport code to different software and hardware platforms easily. Java gives detailed 

definitions to the value range and storage format of its primitive data types, the 

behavior of its arithmetic operators, etc. The programs are the same on every platform. 

There are no more data type incompatibility problems. 

 

● Simple and Object-Oriented 

Like C++, but it removes many unnecessary features. No typedef, define, etc., 

preprocessor commands、no structures or unions、no external functions、no multiple 

inheritance、no goto statement、no operator overloading、no automatic coercion、no 

pointers. 

 

● Robust and Secure 

During the compiling phase, it provides compile-time type checking. But due to the 

unusual bytecode representation mechanism, Java provides runtime checking in the 

Java Virtual Machine. 

 

● Multi-thread 

The Java library provides a class java.lang.Thread that contains a collection of methods 

modeling a thread life cycle. 

 

 

1.2 Research Motivation 

 

 Successful as Java is, the performance of Java is still an issue. It is implemented by 

compiling to portable bytecodes[5]. However, interpreting bytecodes makes Java program 

many times slower than comparable C or C++ programs. One approach to improving this 

situation is“Just-In-Time”(JIT) compilers. Dynamically translating bytecodes to 

machine codes just before methods are first executed. This can provide substantial speed 

up, but it is still slower than C or C++. There are two main drawbacks with the JIT 

approach compared to conventional compilers： 

 

● The compilation is done every time the application is executed, which means 
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start-up times are much worse than pre-compiled code. 

 

● Since the JIT compiler has to run fast , it cannot do any nontrivial optimization.   

Only simple register allocation and peepoptimizations are practical. 

 

    While JIT compilers have an important position in a Java system, for frequently used 

applications it is better to use a more traditional“ahead-of-time”. While Java has been 

primarily touted as an internet/web language, many people are interested in using Java as 

an alternative to traditional languages, if the performance can be made adequate. For 

embedded system applications it makes much more sense to pre-compile the Java program. 

So far, there are some tools that can offline translate Java source/Java bytecode to native 

code for performance enhancement. But, lack for translating to original assembly language 

code. Therefore, we propose a method that can translate java bytecode to X86 assembly 

code. 

 

 

1.3 Goals 

 

    There are several benefits in translating Java bytecode to X86 assembly code. 

 

一、 improving the execution time than interpreter. 

二、 Providing a chance for combining existent assembly code with the translated 

assembly code. 

三、 Providing a chance for interaction of assembly code and Java Virtual Machine. 

 

    The goals of our work are to develop a tool that models the flow of translation 

without generating intermediate representation[6,8], and simplify the task of translating 

Java bytecode, and demonstrate significant optimizations which touch bytecodes directly 

and can improve the performance. An optimizing translator which is from Java bytecodes 

to native machine codes and generates intermediate representations is too complex and is 

understood difficultly, and today the performance by JIT compiler has acceptable state. 

Therefore, we hope to build a simple translator that not only shorten the steps of translation 

and simplify the method of translation, but also running time of translated assembly codes 

by translator can be close to the running time of translated native code by JIT 

compilers[1,16] or other native compilers[15,17,19]. So, our translator simplifies the 

translation flow, and still has good performance. 
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1.4 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 briefly overviews the system 

architecture of Java Virtual Machine, and introduces every kind of software approach to 

bytecode execution enhancement. Chapter 3 describes the system architecture of our 

approach and how the system translates every kind of Java bytecode to X86 assembly code 

and introduces some associated translating examples. The experimental evaluation and 

analysis are discussed in Chapter 4. Chapter 5 concludes this thesis and discusses possible 

future works. 
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Chapter 2 Variations of Java Bytecode Execution 

 

Interpretation is slow. Since the design of Java never restricts itself to be interpreted, 

we may try to enhance the performance of Java using different approaches. Several 

possible ways of implementing a faster performance are enumerated below. 

 

2.1 Just-In-Time Code Generators 

    A“Just-In-Time”(JIT) Java compiler produces native code from Java bytecode 

instructions during program execution. The results of the compilation are not kept between 

runs. A JIT code generator can make use of specific hardware coprocessors running in the 

current environment. Figure 2.1 is the data structures of Intel VM. 

 

 

 

Figure 2.1 Data structures of Intel VM. 

 

    Overall program execution time now includes JIT compilation time, in contrast to the 

traditional methodology of performance measurement in which compilation time is ignored. 

Compilation speed is more important in a Java JIT compiler than in a traditional compiler, 

requiring optimization algorithms to be lightweight and effective. It is also important for 

the Java JIT compiler to interact with other parts of the system. 

    So far, there are two types of JIT implementation. One is fast, effective code 

generation[1]. It has no explicit intermediate representation, and it generates native code 
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directly from bytecodes in a pass. The first pass is gathering important information, the 

second pass is lazy code selection. Figure 2.2 shows it´s five major phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Fast, effective code generation in JIT compiler 

 

    Another one is optimizing compiler[18]. The optimizing compiler takes a 

conventional compilation approach that builds an intermediate representation (IR) and 

performs global optimizations based on the IR. Global optimizations are highly effective in 

improving the code quality. However, they are expensive in terms of compilation time. 

Therefore, we apply global optimization to a method only if the method is identified 

as“hot”. Figure 2.3 is the structure of the optimizing compiler. 

 

 

Prepass 

Global register allocation

Code generation 

Code emission

Code and data patching



 7

Figure 2.3 Structure of the optimizing compiler 

 

2.2 Native Compilers 

Native compilers translate Java source code/bytecode to native code which is 

platform dependent but is not portable. Since it is assumed that the compilation is 

performed once and maintained on a disk, additional time may be devoted to optimizations. 

Most of these native compilers[6,17,15,19] are forced to build 3-address code intermediate 

representations, and perform significant optimizations. Among them, translated code by 

some native compilers, which is runned at nearly the full performance of native code 

directly generated from a source representation such as the C programming language. The 

following shows the translation path of native compilers which belong to this category[8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Impact NET compiler translation path 
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    Few of native compilers do not have intermediate representations. They use mapping 

styles to generate native code, such as JBCC[7]. Our paper focus on those methods which 

they propose, and enhance them. 

 

2.3 Bytecode Annotator 

    Tools of this category analyze bytecode and produce new class files with annotations 

which convey information to the virtual machine on how to execute the bytecode faster. 

We are aware of one such system[14] which passes register allocation information to a JIT 

compiler in this manner. They obtain speed-ups between 17% to 41% on a set of four 

scientific benchmarks. 

 

2.4 Bytecode Optimization 

    There are two types of Java bytecode optimization. One is optimizing the bytecode 

directly[11]. Apply well known optimizations[2] to Java bytecodes. It has little effect that 

optimizing nonexpensive bytecode. To perform effective optimizations at this level, one 

must consider more advanced optimizations which directly reduce the use of these 

expensive bytecodes. 

    Another one is translating Java bytecode to intermediate representation, and then 

optimizing IR, and then generating new class file, such as Soot[12]. 
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Chapter 3 System Design and Implementation 

 

In this chapter, we describe the design and the implementation of our Translator. First, 

the architecture, which includes execution environment and internal data structure and 

pass1 and pass2 of our translator, is introduced. Then we will detail that how to translate 

every kind of bytecodes to assembly codes, and template matching. Especially, dynamic 

call is the important item. We will use auxiliary examples for explaining our techniques on 

every items. 

 

3.1 System Architecture 

 In this study, we develop a translator which is effective and performance is close to 

JIT compiler. The first issue when we design the system is that assembly code how to 

simulate the operation model under JVM. In X86 assembly language, instructions can use 

registers, memory and stack, which are all system resource, under the X86 architecture. 

Because Java Virtual Machine is stack-based machine, we have to arrange available 

resources which is under X86 architecture to conform with Java bytecodes operation flow. 

There is a existing solution for this problem － JBCC[7]. JBCC provides a basic concept 

about mapping between Java bytecode and X86 assembly code, but it only explains 

roughly and are not detailed. Therefore, we decide to detail their arguments and to add 

some functions which can interact between JVM and assembly code, and use Java 

bytecodes optimization concepts[11] to convert several Java bytecode instructions to less 

assembly codes. Figure 3.1 shows the three compiling techniques of JBCC. 

 

    According to Figure 3.1, our system consists of three parts. The first part, the Prepass 

phase, collects some informations which are needed for code generation. The second part, 

Mapping Code Generation phase, truly generates x86 assembly code. The third part, 

Template Matching phase, uses Java bytecodes optimization concepts[11] to do some 

simple optimization actions. We also introduce the first part in the section particularly, and 

introduce other parts basically. 

 

    In the section, we hope to explain the whole system motion, and the translation of 

every type of bytecodes is discussed in section 3.2. So, we can understand our translator 

completely from section 3.1 and 3.2. 
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Figure 3.1 The three compiling techniques of JBCC 

 

 

3.1.1 Execution Environment 

 

 Figure 3.2 explains the environment from Java applications (.class) to X86 assembly 

codes (.asm), and from assembly codes (.asm) to execution file (.exe). If there is a Java 

application, which consists of multiple class files, we translate every class file separately to 

assembly code file. Then, we combine with those translated assembly files by using bcc32 

compiler to assembler and link those translated assembly files. Because our translater has 

the interaction capacity from assembly codes to Java Virtual Machine, we prepare a C 

program called startvm.c, which will starts Java Virtual Machine. We use Microsoft Win32 

API to start the Java Virtual Machine, and use Java Native Interface (JNI) to let assembly 

codes to have the capacity which communicates assembly codes with Java Virtual Machine. 

In the front of section 3.2 will explain those contents completely. 

 

    Figure 3.3 explains how to execute those translated assembly files. We use the bcc32 

compiler to assemble and link those assembly files with Java Virtual Machine. The 

c:\j2sdk1.4.1_01 is the directory where Java 2 sdk is installed. You need to supply correct 

including and library directories that correspond to the JDK installation on your machine. 

The–Ic:\j2sdk1.4.1_01\include\win32 option ensures that your native application is linked 

with the Win32 multithreaded C library. The actual Java Virtual Machine implementation 

used at run time is contained in a separate dynamic library file called jvm.dll. The linkage 

information about invocation interface functions are contained in a file called jvm.lib. The 

format of the jvm.lib belongs to COFF format, but the bcc32 compiler only processes OMF 

format. So, you have to use the command called coff2omf  to change COFF format to 
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OMF format. The jvm1.lib is a changed OMF format. 

 

 

Figure 3.2 Execution environment 

 

 

 

 

 

 

 

 

Figure 3.3 Using bcc32 to assemble and link assembly codes with JVM 

 

    According to Figure 3.3 example, there is a Java application which consists of a.class, 

b.class, and c.class. These three class files may come from different Java programs, but are 

cooperated. These three class files are translated separately by our translator, to generate 

a.asm, b.asm, and c.asm respectively. The a.class contains the main procedure which is 

starting point, so we put the a.asm on the first position. The startvm.c is used to startup the 

Java Virtual Machine. After executing the compilation action, it generates a execution file 

called a.exe. The a.exe is a truly executable file. Assembly codes can bind the Java Virtual 

Machine through this compilation method, and then calls Java API from assembly codes. 

The tool which assembles and links X86 assembly files in bcc32 compiler, is through 

TASM. 
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3.1.2 Translation Environment and Flow 

 

    Presently, our translator is developed in C++, and the translation environment is 

based on the Microsoft Windows operating system. For generating accurate X86 assembly 

codes, we adopt two-pass operation. The first pass collects informations from the input 

class file and from the result of javap the classfile. Why use javap command provided by 

the J2SDK? Because the result of javap the class file shows Java assembly codes of 

methods. Among these informations from the first pass, there is an information about the 

bytecode instructions within methods. So, we merely use the command javap to get 

bytecode instructions within methods, and other many important informations are from the 

class file. The javap function is hidden in translator. 

 

    Figure 3.4 shows the simple translation environment. The input class file is translated 

to X86 assembly code, and the hidden javap action is performed by translator. 

 

 

 

Figure 3.4 The simple translation environment 

 

 

    The total translation flow is shown in figure 3.5. To this end, we have modularized 

the code into 6 distinct stages. In stage 1, each method´s bytecodes and associate 

information is extracted from the input classfile and the result of javap. Decomposer 

extracts (1) the class´s bytecodes, (2) all method invocation name and signature, (3) 

constant pool contents, (4) the total number of local variables used by the method, (5) the 
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maximum number of operand stack used by the method, (6) static flag, (7) all method 

exception tables. 
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Figure 3.5 Translation flow 

 

 

    In stage 2, the information obtained in stage 1 is analyzed and translated into the data 

structures shown in Figure 3.6. Bytecodes are grouped by the methods in which they reside. 

All information pertaining to each instruction, including the parameters, the offset from the 

beginning of the method, become attributes in a node. The node is placed into a linked list 

(the methodcontent) which is later manipulated to insert and remove instructions. 

 

    Stage 3 initials the assembly code space and writes some known codes to the space 

before truly code generation. Because this stage is about mapping between Java Virtual 

Machine and X86 register machine, we will discuss the stage in section 3.1.3. Stage 4 

converts several Java bytecode instructions to less native codes. If can not find template, 

the flow will enter into the stage 5. We will discuss the stage 4 in section 3.2.5. Because 
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some bytecode instructions are simple, we can predefine assembly codes about those 

instructions in a text file, as shown in Figure 3.7. When the stage 2, it parses the predefined 

file into internal data structures for used in stage 5. If can not find predefined assembly 

codes, the flow will enter into the stage 6. The stage 6 map Java bytecode instruction to 

assembly language instructions. We will discuss the stage 6 in section 3.2. 

 

 

  

method list        a linked list of each method´s attributes 

                    name , signature 

                    total number of local variables 

                    maximum number of operand stack 

                    static flag 

                    branch table 

                    jsr ret table 

                    method content 

                    exception content 

 method content     a linked list of each instruction´s attributes 

                    offset 

instruction name 

                    parameters 

 exception content    a linked list of each exception in a exception table 

                    from 

                    to  

                    target 

                    exception type 

 constant pool table   constant pool array of the class file 

 asm information     predefined assembly codes 

 allclassmethodtable   informations about dynamic dispatch 

 

 

Figure 3.6 Translator´s data structure 

 

 

    The method list, methodcontent, exceptioncontent, asm information, 

allclassmethodtable are linked list, and branch table, jsr ret table are binary search tree. 

Figure 3.8 shows the diagram of the internal data structure. 
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//堆疊及區域變數 

iconst_m1^mov eax,-1;push eax; 

iconst_0^mov eax,0;push eax; 

iconst_1^mov eax,1;push eax; 

iconst_2^mov eax,2;push eax; 

iconst_3^mov eax,3;push eax; 

iconst_4^mov eax,4;push eax; 

iconst_5^mov eax,5;push eax; 

lconst_0^mov eax,0;push eax;push eax; 

lconst_1^mov eax,1;push eax;mov eax,0;push eax; 

aconst_null^mov eax,0;push eax; 

nop^nop; 

pop^pop eax; 

pop2^pop eax;pop ebx; 

dup^pop eax;push eax;push eax; 

dup2^pop ebx;pop eax;push eax;push ebx;push eax;push ebx; 

… 

//流程控制 

//算術邏輯轉換 

… 

imul^pop eax;pop edx;imul edx;push eax; 

idiv^pop ecx;mov edx,0;pop eax;idiv ecx;push eax; 

irem^pop ecx;mov edx,0;pop eax;idiv ecx;push edx; 

ineg^pop eax;neg eax;push eax; 

ishl^pop ecx;pop eax;shl eax,CL;push eax; 

ishr^pop ecx;pop eax;sar eax,CL;push eax; 

iushr^pop ecx;pop eax;shr eax,CL;push eax; 

iand^pop eax;pop ebx;and eax,ebx;push eax; 

… 

fmul^pop real4buf;fld real4buf;pop real4buf;fld real4buf;fmul;fstp real4buf;push real4buf; 

fdiv^pop real4buf;fld real4buf;pop real4buf;fld real4buf;fdivr;fstp real4buf;push real4buf; 

fneg^pop real4buf;fld real4buf;fchs;fstp real4buf;push real4buf; 

… 

f2d^pop real4buf;fld real4buf;fstp real8buf;push dword ptr real8buf;push dword ptr real8buf+4; 

… 

 

Figure 3.7 Predefined assembly codes 
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                       method list 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 The diagram of the internal data structure 

 

 

    In the stage 2, we generate some internal tables which consist of constant pool table, 

allclass methodtable, branch table, jsr ret table, exception table, and instruction map table. 

The constant pool table saves the constant pool array of the class file. The type is 0 to 7 in 

a constant pool, and 0 is class, 1 is field, 2 is method, 3 is string, 4 is int, 5 is float, 6 is 

long, 7 is double. The type is convenient for programming. The allclassmethodtable has all 

the methods which come from every class which appears in the constant pool and their 

super class and super class up to java.lang.Object. A entry is a class which appears in the 

constant pool, and it´s methods which including inheritance up to java.lang.Object. The 

allclassmethodtable associates with dynamic dispatching in assembly code, and we will 

detail the content in section 3.2.4. 

 

    We traverse the bytecode instructions within a method to build branch table and jsr 

ret table. The branch table has all the offsets which occur among those instructions－if_···, 

lookupswitch, tableswitch, jsr, jsr_w, exception´s target. The jsr ret table has the offsets 

which are the offsets of next instruction of jsr or jsr_w. The branch table is useful in flow 

control, and the jsr ret table is useful in exception handling. The instruction map table are 

all predefined assembly code. These tables are shown in Figure 3.9. 
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Constant Pool Table 

index type classname method/field name signature resolved 

      

 

 

Allclassmethodtable 

classname  idofclass  superclass 

   methodname  signature  clsname  callasmname 

   … 

   methodname  signature  clsname  callasmname 

 

 

 

Branch Table 

index label mode 

   

 

 

Jsr Ret Table 

index label 

  

 

 

Exception Table 

exception type from to target 

    

 

 

Instruction Map Table 

bytecode assembly 

  

 

 

Figure 3.9 Internal tables of the translator 
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3.1.3 Map Java Stack Machine to X86 Register Machine 

    By studying Java bytecode instruction set, we notice that each of the Java bytecode 

instruction can be represented by one or more that one assembly language instructions. 

Operands of most bytecode instructions are associated with the operand stack of the Java 

Virtual Machine. Bytecode instructions take operands from the operand stack, and 

manipulate them, and then push results into the operand stack. Therefore, we use the native 

stack operation to emulate the stacks of JVM. Under the architecture of Intel X86 series 

CPU, we can use the native stack, registers, and memory in assembly programming level. 

So, map the operand stack of the frame every method to native stack, and map local 

variables of the frame every method to memory. In order to process dynamic dispatching, 

we use memory to save created objects for searching later. In the architecture of the 

X86 .asm assembly code, the .data section has the name which are named .._local_vars for 

the local variables. The .._local_vars is an one- dimension array, and its quantity is from 

the class file, and the unit of every entry in .._local vars is 4 bytes. The .data section has 

the name which are named .._objmapclass for save created objects. The .._objmapclass is 

the structure, and we will discuss the usage of the .._objmapclass in the section 3.2.4. 

 

    Those architectural registers of X86 CPU are for scratch registers. When we evaluate 

an expression, temporary values of the operation process and operands of the operation all 

employ scratch registers. Those registers are not dedicated to the particular destination, 

such as local variables. Those registers are purely for evaluation. The final result of the 

assembly codes corresponding to bytecode instruction are pushed into native stack or are 

saved in local variables. Referring to the following example. 

    .data  

      … 

      aa_local_vars      dword   2  dup(?) 

      aa_objmapclass  objmapclass_table  3  dup(<-1,-1>) 

      … 

    .code 

      … 

      push   [aa_local_vars+1*4]            ; aa is the simple name of the method 

      …                                ; there are 26*26 in a class 

 

    Because we have to generate a .asm file, how to arrage the order of generated codes is 

important. A .asm file consists of three sections which are prior to .data, .data, and .code. 

In initial asm codes phase which are described in previous section, some known codes can 

be filled in these three sections, and methods are classified into three types. There are 

different compositions for different types in a .asm file. A type which is the main 
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procedure, its .code section has to call the startvm.c function, and no parameters which are 

passed into. A type which is the first procedure in a no main procedure´s class file, it is like 

to the main procedure, but do not call the startvm.c function, and has parameters which are 

passed into. The two types are the beginning of a .asm file, and the start point is .386 

assembler directive. The another type is the method which is besides the main and first 

procedure. It is appended to the previous two types in a .asm file, and the start point is 

procedure name. In order to generate a .asm file conveniently, we adopt the classification 

manner. Figure 3.10 shows the initial asm codes of three type methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Initial asm codes of three type methods 

.386 

.model FLAT 

EXTRN_startvm:proc 
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… 

.data 
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… 

.code 

 public _main 

  _main proc 

  push  EBP 

  mov EBP,ESP 

  call  _startvm 

  mov jnienv,eax 

  mov ebx,[eax] 

  mov fntblptr,ebx 

  … 
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    Our translator preserves three memory blocks for three sections which are prior 

to .data, .data, and .code. We fill the translated assembly codes into the three memory 

blocks during the translating period. 
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3.2 System Implementation 

    In this section, we focus on the pass 2, and describe how the translator translates 

bytecode instructions. Figure 3.11 shows the flow of the translator translating. 
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Figure 3.11 Flow of translator translating 
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    When template matching fails and predefined code matching fails during translating, 

the type of the bytecode instruction is differentiated, and the translator performs associated 

mapping code generation. The type of the bytecode instruction is classified into six 

categories which are stack and local variables、array、arithmetic and logic and type 

conversion、flow control、object、method invocation. 

 

 

3.2.1 Start JVM From Assembly Code 

    A Java Virtual Machine implementation is typically shipped as a native library. 

Native applications can link against this library and use the invocation interface to load the 

Java Virtual Machine. So, we prepare for a C function which uses Win32 API to invoke 

Java Virtual Machine. The startvm.c is described in Appendix. 

 

    When it targets the 1.1 release, the C code begins with a call to 

JNI_GetDefaultJavaVMInitArgs to obtain the default virtual machine settings. Those 

settings are in the vm_args parameter. When it targets the 1.2 release, the C code creates a 

JavaVMInitArgs structure. The virtual machine initialization arguments are stored in a 

JavaVMOption array. The LoadLibrary which is Win32 API loads the jvm.dll. The 

GetProcAddress which is Win32 API obtains the function pointer of the 

JNI_CreateJavaVM function. 

 

    After setting up the virtual machine initialization structure, the C program calls 

JNI_CreateJavaVM to load and initialize the Java Virtual Machine. It fills in two return 

values. An interface pointer, jvm, to the newly created Java Virtual Machine. The JNIEnv 

interface pointer env for the current thread. Recall that native code accesses JNI functions 

through the env interface pointer. So, the value of the JNIEnv interface pointer env is 

returned back to the assembly code. 

 

    We use mixing mode concepts of assembly codes and C functions in some 

books[25,26] which introduce the assembly language. The total flow of starting JVM is 

that the assembly code calls the startvm.c function, and then the startvm.c function puts the 

value of the JNIEnv interface pointer env on the register called eax, and then the assembly 

code obtains the starting address of the JNI function table through an indirect mapping. 

Figure 3.12 shows the assembly code calls the startvm.c function. Next section will 

introduce the JNI function table because we can call the Java api through JNI function 

from assembly codes. 
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… 

EXTRN  _startvm:proc 

… 

.data 

  jnienv           dword  ? 

  fntblptr          dword  ? 

  fnptr            dword  ? 

  … 

.code 

  public _main 

  _main proc 

      push  EBP 

      mov   EBP,ESP 

      call    _startvm 

      mov   jnienv,eax 

      mov   ebx,[eax] 

      mov   fntblptr,ebx 

      … 

 

Figure 3.12 The assembly code invokes the startvm.c function 

 

 

3.2.2 Call Java Bytecode From Assembly Code 

    When we want to call the system class file of Java Virtual Machine providing, we 

come to the object through the JNI function. Assembly codes pass parameters to the Java 

API through the native stack, and the Java API puts the return value on the register called 

eax. Figure 3.13 is the sketch of the assembly code call the bytecode. The full name of the 

JNI is Java Native Interface. 

 

 

Figure 3.13 The sketch of the assembly code invokes the bytecode 

 

    First, we introduce the structure of the JNI function table[24]. The JNI is a two-way 

assembly 

JNI

bytecode 
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interface that allows Java applications to invoke native code and vice versa. The JNI is the 

native interface supported by all Java Virtual Machine implementations. The use of the JNI 

is not limited to specific host environments or specific application development tools. 

Figure 3.14 illustrates the JNIEnv interface pointer. The JNIEnv interface pointer, points to 

a location that contains a pointer to a function table. Each entry in the function table points 

to a JNI function. Native methods always access data structures in the Java Virtual 

Machine through one of the JNI functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 The JNIEnv interface pointer 

 

    For a developer using assembly language, it is necessary to understand clearly how 

the JNI provides the interface facilities[24,31]. According to figure 3.12 and 3.14, the 

fntblptr contains the starting address of the function table. There are three important points 

which are noticed. The first, we need to retrieve the contents of the entry in the function 

table which corresponds to the function we want to call. The content is the pointer which 

points to the JNI function we want to call and saved in fnptr, and we use the 

expression“call [fnptr]”to actually call the JNI function. Obviously, we have to multiply 

the zero based index of the function by 4 (since each pointer is 4 bytes long) and add the 

result to the starting address of the function table which we have formed in fntblptr earlier. 

The prototype of each JNI function in JNI function table is defined in the jni.h which is in 

J2SDK, and the index of each JNI function in JNI function table is the offset which is the 

place where the JNI function defined in the jni.h. We use a Macro[31] to get the entry of 

JNI function in JNI function table, and the following expression is the Macro. We obtain 

the pointer of the JNI function through the Macro expression. 

 

Pointer 
 
(Internal virtual 
machine data 
structures) 
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Pointer 
 
Pointer 
 
   … 

an JNI function 

an JNI function 

an JNI function 

Array of pointers to 

JNI functions 

JNIEnv * 
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         GetFnPtr MACRO fntblptr,index,fnptr 

             mov    eax,index 

          mov    ebx,4 

             mul     ebx 

             mov    ebx,fntblptr 

             add     ebx,eax 

             mov    eax,[ebx] 

             mov    fnptr,eax 

ENDM 

 

    The second, we use native stack to pass parameters to JNI function according to every 

JNI function prototype. The style of passing parameters is from right to left as assembly 

calling C function. Note that the rightmost parameter is pushed first in accordance with the 

stdcall convention followed by JNI. If you call the Java method through JNI function, you 

have to adjust esp to the place which is before calling the Java method, after calling the 

Java method. If you do not call the Java method, and only use JNI functions to do 

something, such as getting field value, parameters will be taken from native stack, and so 

you do not have to adjust esp. The third, If the type of the return value is long, the return 

value occupies two registers, otherwise occupies one register. If the type of the return value 

is float or double, the return value is on the floating-point register of the FPU. We will 

introduce detailed internal operations in later sections. Figure 3.15 illustrates the example 

of call Java bytecode from assembly code. 

 

 

class sysjnicall { 

     public static void main(String[] args) { 

         System.out.println("abcd"); 

     } 

} 

Java source code 

 

 

Method void main(java.lang.String[]) 

   0 getstatic #2 <Field java.io.PrintStream out> 

   3 ldc #3 <String "abcd"> 

   5 invokevirtual #4 <Method void println(java.lang.String)> 

   8 return 

Javap of Java source code 
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… 

.data 

  … 

  argreversebuf      dword  20  dup(?) 

  jclsjobjtmp        dword  ? 

  … 

  index_2_clsname   db     'java/lang/System',0 

  index_2_fidname   db     'out',0 

  index_2_fidsig     db     'Ljava/io/PrintStream;',0 

  index_2_fid       dword   ? 

  index_3_strname   db     'abcd',0 

  index_3_str       dword   ? 

  index_4_midname  db     'println',0 

  index_4_midsig    db     '(Ljava/lang/String;)V',0 

  index_4_mid      dword   ? 

.code 

      … 

      GetFnPtr   fntblptr,145,fnptr            ;GetStaticObjectField 

      push      index_2_fid 

      push      index_2_cls 

      push      jnienv 

      call       [fnptr]  

      push      eax 

      GetFnPtr   fntblptr,167,fnptr            ;NewStringUTF 

      push      offset index_3_strname 

      push      jnienv 

      call       [fnptr] 

      mov      index_3_str,eax 

      … 

      GetFnPtr   fntblptr,61,fnptr             ;CallVoidMethod 

      push      [argreversebuf+0*4] 

      push      index_4_mid 

      push      jclsjobjtmp 

      push      jnienv 

      call       [fnptr] 

      … 

 

Figure 3.15 Example of call Java bytecode from assembly code 
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3.2.3 General Bytecode Translation 

    In figure 3.11, we mention that there are six bytecode types. Among them, four types 

which are stack and local variables、array、arithmetic and logic and conversion、flow 

control, belong to general bytecodes. The so-called general bytecodes imply that those 

bytecode instructions are not associated with object directly. 

 

 

3.2.3.1 Stack and Local Variables 

    If the type of the bytecode instruction is the kind of less 32 bits, the operand will be 

sign-extended to an int value, and is then pushed onto the native stack.  

 

        bipush 3 or sipush 3        mov eax,3 

                                push eax 

 

If the type of the bytecode instruction is the kind of 64 bits, the operand is the long or 

double. The operand which is long or double is split into two parts. For understanding 

easily, we illustrate the operation rules. 

 

 

 

 

                 high 

                 low 

 

 

lconst_1       mov eax,1   

push eax            ; push low 4-byte 

mov eax,0 

push eax            ; push high 4-byte 

 

 

 

 

 

              high 

              low 

 

For long type operand, we split it into two parts. The low part is from bit 0 to bit 31, and 

local var  0  1 

lstore / lload / dstore / dload 

low 4-byte high 4-bytereal8 

dconst_0 / dconst_1 



 28

the high part is from bit 32 to bit 63. We first push low part and then push high part. When 

you store the long operand to local variables, the lower index of the local variable array is 

stored the lower part of long operand, and the higher index of the local variable array is 

stored the higher part of long operand. For double type operand, we split it into two parts. 

The memory organization of the real8 type is first the low 4-byte and then high 4-byte. The 

operation rule of the double type operand is as the long type operand. We first push the 

low part and then push the high part. 

    For these bytecode instructions of ldc series, we push item from constant pool. The 

item is retrieved from constant pool table which is described in section 3.1.2. If the item is 

integer type, we generate a variable called index_.._intname which is the integer binary 

representation in .data section, and then push it onto the native stack. If the item is float 

type, we generate a variable called index_.._floatname which is the float binary 

representation in .data section, and then push it onto the native stack. If the item is long 

type, we generate two variables called index_.._longhighname and index_.._longlowname  

which are the long binary representation in .data section, and then push the 

index_.._longlowname and push index_.._longhighname. If the item is double type, we 

generate two variables called index_.._doublehighname and index_.._doublelowname 

which are the double binary representation in .data section, and then push the 

index_.._doublelowname and push index_.._doublehighname. Anyhow, first push low part 

and then push high part. If the item is the string type, we generate two variables called 

index_.._strname and index_.._str in .data section. We use the JNI function called 

NewStringUTF to construct a new java.lang.String object from index_.._strname, and then 

put the reference pointer in the index_.._str, and push it onto the native stack. (the 

notation“..”is the index of the item from constant pool) 

Figure 3.16 illustrates the example of stack and local variable associated bytecodes 

translating. 

 

class Fibonacci { 

     public static void main(String[] args) { 

         int fibonum=1;    int a=1;    int b=1; 

         for(;;) { 

             fibonum=a+b; 

             a=b; 

             b=fibonum; 

             if(fibonum > 1000) 

                 break;      }     

         System.out.println("ok");                        

     }  } 
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Method void main(java.lang.String[]) 

   0 iconst_1 

   1 istore_1 

   2 iconst_1 

   3 istore_2 

   4 iconst_1 

   5 istore_3 

   6 goto 9 

   9 iload_2 

  10 iload_3 

  11 iadd 

  12 istore_1 

  13 iload_3 

  14 istore_2 

  15 iload_1 

  16 istore_3 

  17 iload_1 

  18 sipush 1000 

  21 if_icmple 9 

  24 goto 27 

  27 getstatic #2 <Field java.io.PrintStream out> 

  30 ldc #3 <String "ok"> 

  32 invokevirtual #4 <Method void println(java.lang.String)> 

  35 return 

 

 

… 

.data 

  … 

  freal0           real4  0.0 

  freal1           real4  1.0 

  freal2           real4  2.0 

  dreal0           real8  0.0 

  dreal1           real8  1.0 

  real4buf          real4  ? 

  real8buf          real8  ? 

  aa_return_addr     dword   ? 

  aa_local_vars      dword   4  dup(?) 
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  index_3_strname    db   'ok',0 

  index_3_str        dword   ? 

  … 

.code 

  … 

      mov   [aa_local_vars+1*4],1 

      mov   [aa_local_vars+2*4],1 

      mov   [aa_local_vars+3*4],1 

   aa_9: 

      push   [aa_local_vars+2*4] 

      push   [aa_local_vars+3*4] 

      pop    eax 

      pop    ebx 

      add    eax,ebx 

      push   eax 

      pop   [aa_local_vars+1*4] 

      mov   eax,[aa_local_vars+3*4] 

      mov   [aa_local_vars+2*4],eax 

      mov   eax,[aa_local_vars+1*4] 

      mov   [aa_local_vars+3*4],eax 

      push   [aa_local_vars+1*4] 

      mov   eax,1000 

      push   eax 

      pop   eax 

      pop   ebx 

      cmp   ebx,eax 

      jle    aa_9 

   aa_27: 

      … 

      GetFnPtr   fntblptr,167,fnptr            ; NewStringUTF 

      push      offset index_3_strname 

      push      jnienv 

      call       [fnptr] 

      mov      index_3_str,eax 

      push      index_3_str 

      … 

 

Figure 3.16 Example of stack and local variable associated bytecodes translating 
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3.2.3.2 Array 

    We use some JNI functions to construct an array which may be one-dimension or 

two-dimension or multi-dimension, and retrieving the element of the array is also use the 

JNI function. There three kind of bytecode instructions for creating an array. The newarray 

constructs an one-dimension array whose the type of the element is primitive type 

(boolean、char、float、double、byte、short、int、long). The anewarray constructs an 

one-dimension array whose the type of the element is reference type. The multianewarray 

constructs a multi-dimension array, and you can repeatedly use the anewarray to reach the 

function which the multianewarray provides. The table 3.1 shows the JNI function 

relationship of bytecodes associated array. Our translator use these JNI functions to finish 

the operations which are characterization in these bytecode instructions associated array. 

 

Bytecod instruction JNI function 

newarray New<Type>Array , 175 ~ 182 

anewarray NewObjectArray , 172 

iaload GetIntArrayRegion , 203 

laload GetLongArrayRegion , 204 

faload GetFloatArrayRegion , 205 

daload GetDoubleArrayRegion , 206 

aaload GetObjectArrayElement , 173 

baload GetByteArrayRegion , 200 

caload GetCharArrayRegion , 201 

saload GetShortArrayRegion , 202 

iastore SetIntArrayRegion , 211 

lastore SetLongArrayRegion , 212 

fastore SetFloatArrayRegion , 213 

dastore SetDoubleArrayRegion , 214 

aastore SetObjectArrayElement , 174 

bastore SetByteArrayRegion , 208 

castore SetCharArrayRegion , 209 

sastore SetShortArrayRegion , 210 

arraylength GetArrayLength , 171 
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Table 3.1 The JNI function relationship of bytecodes associated array 

 

    Figure 3.17 illustrates example of the primitive array. Our translator is tested in many 

different types, but these contents is too long, and we only show the part of contents in this 

paper. 

 

 

class primitivearraytest { 

    public static void main(String[] args) { 

         double[] ir=new double[10]; 

         for(int i=0;i<ir.length;i++) 

               ir[i]=16.23; 

    } } 

 

Method void main(java.lang.String[]) 

   0 bipush 10 

   2 newarray double 

   4 astore_1 

   5 iconst_0 

   6 istore_2 

   7 goto 19 

  10 aload_1 

  11 iload_2 

  12 ldc2_w #2 <Double 16.23> 

  15 dastore 

  16 iinc 2 1 

  19 iload_2 

  20 aload_1 

  21 arraylength 

  22 if_icmplt 10 

  25 return 

 

  … 

  index_2_doublehighname EQU  01000000001100000011101011100001b 

  index_2_doublelowname  EQU  01000111101011100001010001111011b 

.code 

      … 

      GetFnPtr   fntblptr,182,fnptr           ; NewDoubleArray 
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      push   jnienv 

      call   [fnptr] 

      push   eax 

      pop   [aa_local_vars+1*4] 

      mov   [aa_local_vars+2*4],0 

      jmp   aa_19 

   aa_10: 

      push   [aa_local_vars+1*4] 

      push   [aa_local_vars+2*4] 

      push   index_2_doublelowname 

      push   index_2_doublehighname 

      pop   dword ptr real8buf+4 

      pop   dword ptr real8buf 

      pop   [argreversebuf] 

      pop   [argreversebuf+4] 

      GetFnPtr   fntblptr,214,fnptr           ; SetDoubleArrayRegion 

      push   offset real8buf 

      mov   eax,1 

      push   eax 

      push   [argreversebuf] 

      push   [argreversebuf+4] 

      push   jnienv 

      call   [fnptr] 

      add   [aa_local_vars+2*4],1 

   aa_19: 

      push   [aa_local_vars+2*4] 

      push   [aa_local_vars+1*4] 

      GetFnPtr   fntblptr,171,fnptr            ; GetArrayLength 

      push   jnienv 

      call   [fnptr] 

      push   eax 

      pop   eax 

      pop   ebx 

      cmp   ebx,eax 

      jl   aa_10 

      … 

 

Figure 3.17 Example of the primitive array 
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    The reference type of the element of anewarray and multianewarray is associated with 

the constant pool. To get the type we must retrieve the entry of the constant pool table. The 

multianewarray is complex. For finishing the function of multianewarray, we use the 

following rule to reach the destination. 

        aobjlist    dword  20  dup(?) 

        arangelist  dword  20  dup(?) 

        aindexlist  dword  20  dup(?) 

we define these three one-dimension array, and can create the up to 20 level array. The 

aobjlist saves the temporary reference. The arangelist saves the range of each level. The 

aindexlist saves the index which is used to increment during constructing each level array. 

Our constructing rule is like DFS (depth first search), and is as the following figure 3.18. 

The number of above a block which represents an array is the constructing order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 The constructing order of multianewarray implementation 

 

    Figure 3.19 illustrates example of the three dimension array. The aaload uses the 

procedure called update_arrayelementobj to maintain the latest reference which is loaded 

from the element of the array in the objmapclass structure. 
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class ThreeDTree { 

    public static void main(String[] args) { 

        int[][][] threeD = new int[5][4][3]; 

        for (int i = 0; i < 5; ++i) { 

            for (int j = 0; j < 4; ++j) { 

                for (int k = 0; k < 3; ++k) { 

                    threeD[i][j][k] = i + j + k; 

                    System.out.print(threeD[i][j][k]); 

                }     }     }    }   } 

 

 

Method void main(java.lang.String[]) 

   0 iconst_5 

   1 iconst_4 

   2 iconst_3 

   3 multianewarray #2 dim #3 <Class [[[I> 

   7 astore_1 

   8 iconst_0 

   9 istore_2 

  10 goto 72 

  13 iconst_0 

  14 istore_3 

  15 goto 64 

  18 iconst_0 

  19 istore 4 

  21 goto 55 

  24 aload_1 

  25 iload_2 

  26 aaload 

  27 iload_3 

  28 aaload 

  29 iload 4 

  31 iload_2 

  32 iload_3 

  33 iadd 

  34 iload 4 

  36 iadd 

  37 iastore 
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  … 

  52 iinc 4 1 

  55 iload 4 

  57 iconst_3 

  58 if_icmplt 24 

  61 iinc 3 1 

  64 iload_3 

  65 iconst_4 

  66 if_icmplt 18 

  69 iinc 2 1 

  72 iload_2 

  73 iconst_5 

  74 if_icmplt 13 

  77 return 

 

 

… 

  aobjlist         dword  20  dup(?) 

  arangelist       dword  20  dup(?) 

  aindexlist       dword  20  dup(0) 

  … 

  index_2_array0   db   '[[I',0 

  index_2_array1   db   '[I',0 

  index_2_cls   dword   ? 

.code 

      … 

      mov eax,5 

      push eax 

      mov eax,4 

      push eax 

      mov eax,3 

      push eax 

      pop   [arangelist+2*4] 

      pop   [arangelist+1*4] 

      pop   [arangelist+0*4] 

      GetFnPtr   fntblptr,6,fnptr              ; FindClass 

      push   offset index_2_array0 

      push   jnienv 
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      call   [fnptr] 

      mov   index_2_cls,eax 

      GetFnPtr   fntblptr,172,fnptr             ; NewObjectArray 

      mov   eax,0 

      push   eax 

      push   index_2_cls 

      mov   eax,[arangelist+0*4] 

      push   eax 

      push   jnienv 

      call   [fnptr] 

      mov   [aobjlist+0*4],eax 

      mov   [aindexlist+0*4],0 

   aa_3_L1: 

      GetFnPtr   fntblptr,6,fnptr               ; FindClass 

      push   offset index_2_array1 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_cls,eax 

      GetFnPtr   fntblptr,172,fnptr             ; NewObjectArray 

      mov   eax,0 

      push   eax 

      push   index_2_cls 

      mov   eax,[arangelist+1*4] 

      push   eax 

      push   jnienv 

      call   [fnptr] 

      mov   [aobjlist+1*4],eax 

      GetFnPtr   fntblptr,174,fnptr       ; SetObjectArrayElement 

      push   [aobjlist+1*4] 

      mov   eax,[aindexlist+0*4] 

      push   eax 

      push   [aobjlist+0*4] 

      push   jnienv 

      call   [fnptr] 

      mov   [aindexlist+1*4],0 

   aa_3_L2: 

      GetFnPtr   fntblptr,179,fnptr        ; NewIntArray 

      mov   eax,[arangelist+2*4] 
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      push   eax 

      push   jnienv 

      call   [fnptr] 

      mov   [aobjlist+2*4],eax 

      GetFnPtr   fntblptr,174,fnptr      ; SetObjectArrayElement 

      push   [aobjlist+2*4] 

      mov   eax,[aindexlist+1*4] 

      push   eax 

      push   [aobjlist+1*4] 

      push   jnienv 

      call   [fnptr] 

      inc   [aindexlist+1*4] 

      mov   esi,[aindexlist+1*4] 

      cmp   esi,[arangelist+1*4] 

      jl   aa_3_L2 

      inc   [aindexlist+0*4] 

      mov   esi,[aindexlist+0*4] 

      cmp   esi,[arangelist+0*4] 

      jl   aa_3_L1 

      push   [aobjlist] 

      pop   [aa_local_vars+1*4] 

      mov   [aa_local_vars+2*4],0 

      jmp   aa_72 

   aa_13: 

      mov   [aa_local_vars+3*4],0 

      jmp   aa_64 

   aa_18: 

      mov   [aa_local_vars+4*4],0 

      jmp   aa_55 

   aa_24: 

      … 

      push   eax 

      push   offset aa_objmapclass 

      push   eax 

      call   update_arrayelementobj 

      … 

 

Figure 3.19 Example of the three dimension array 
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3.2.3.3 Arithmetic, Logic, Type Conversion 

    Because these bytecode instructions associated this section are too many, we only 

introduce important concepts. Because the long instruction in assembly is not supported, 

we must implement long instruction by ourselves. The long instructions are 64 bit based, 

so we must separate them into two 32 bit in our implementation. In ladd and lsub 

instruction, we must pay attention to the carry bit. We first add or sub the low bits and then 

use the adjust instruction adc and sbb which will help add the carry bit to add or sub high 

bits. The long multiplication and division do not have any assembly instruction to help 

implementation. We use the multiplication algorithm to implement. P、A and B are 64bit 

operands. The result is in P:A and before this algorithm, we must translate the long value 

into unsigned long value. After this algorithm, we translate the result value into signed 

value. Because this algorithm is only suitable for unsigned value, we must check the long 

value if the multiplier and multiplicand is negative to translate into unsigned value and 

judge the result value if it is positive or negative. 

 

 

 

P=0 
A=multiplier 
B=multiplicand 
Count=64 
 While(count>0) 
  If(LSB of A=1) 
  Then 
   P=P+B 
   CF=carry generated by P+B 
  Else 
   CF=0 
  End if 
  Shift right CF:P:A by one bit position 
 Count=count-1 
 End while 
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    There are several division algorithms to perform 64-bit unsigned long division. Here 

we describe and implement what is called the “non-restoring” division algorithm. The 

division operation, unlike the multiplication operation, produces two results: a quotient and 

a remainder. The algorithm consists of testing the sign of P and, depending on the sign of P, 

either adding or subtracting B from P. Then P:A is left shifted while manipulating the 

rightmost bit of A. After repeating these steps 64 times, the quotient is in A and the 

remainder is in P. 

 

 

P=0 
A=dividend 
B=divisor 
Count=64 
While(count>0) 
 If(P is negative) 
 Then 
  Shift left P:A by one bit position 
  P=A+B 
 Else 
  Shift left P:A by one bit position 
  P=A-B 
 End if 
 If(P is negative) 
 Then 
  Set low-order bit of A to 0 
 Else 
  Set low-order bit of A to 1 
 End if 
Count=count-1 
End while 
If(P is negative) 
 P=P+B 
End if 
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After addition, subtraction, multiplication and division, we discuss the remaining long 

instruction. The lneg instruction just uses 2’complement to implement. The lshl and lshr 

just use the shift instruction. The lor and lxor use the or and xor instruction to implement. 

 

In floating point instruction, there are two different types which are 32bit float and 64 

bit double. In floating point arithmetic instruction, there are some instructions which are 

supported by assembly. In assembly, the floating point instructions use another special 

stack to operation. The special stack is called FPU. The FPU is not a pure stack because 

FPU is consisted of eight data register, each 80 bits long. The special stack can convert any 

nonfloating formats including 64 bit data type to floating point, so the double instructions 

have been supported in assembly. These are only the 64 bit instruction supported by 

assembly. The addition、subtraction、multiplication and division instructions in executing 

float and double are very similar. The only difference is input data type. The float 

instructions use the 32 bit real4 data type supported by assembly. The double instructions 

use the 64 bit real 8 data type. By the way, we must pay attention to real8 data type and 

Java stack data type, because the bit order of real8 data type is different from the stack. In 

64 bit instruction, The top data of stack is high 32 bit and the second data of stack is low 

32 bit, but the real8 data type the low 32 bit puts the top data of stack and the high 32 bit 

puts the second data type. 

 

 

 
The fadd in Java bytecode use the fadd in assembly to implement. The fsub in Java 

bytecode use the fsub in assembly to implement. The fmul in Java bytecode use the fmul in 

assembly to implement. The fdiv in Java bytecode use the fdiv in assembly to implement. 

The double arithmetic instructions in bytecode are translated like the float instructions, 

because the floating pint is executed in FPU we discuss above. We just change the real4 in 

High 32 bit Low 32 bit

top 

second 

… 

stack 

real8
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float instruction into real8 for double instruction. 

 

The ferm and drem bytecode instructions are not the same as that of the so called 

remainder operation defined by IEEE 754. The IEEE 754 remainder operation computes 

the remainder from a rounding division, not a truncating division, and so its behavior is not 

analogous to that of the usual integer remainder operatior. Instead, the Java virtual machine 

defines frem and drem to behave in a manner analogous to that of the Java virtual machine 

integer remainder instructions. 

 

The result of frem and drem instructions are governed by these rules： 

(1) If either dividend or divisor is NaN, the result is NaN. 

(2) If neither dividend nor divisor is NaN, the sign of the result equals the sign of the 

dividend. 

(3) If the dividend is an infinity or divisor is a zero or both, the result is NaN. 

(4) If the dividend is finite and the divisor is an infinity, the result equals the dividend. 

(5) If the dividend is a zero and the divisor is finite, the result equals the dividend. 

(5) In the remaining cases, where neither operand is an infinity, a zero, or NaN, the 

floating-point remainder result form a dividend and divisor is defined by the mathmetical 

result=dividend-(divisor*q), where q is an intrger that is negative only if dividend/divisor 

is negative, and positive only if dividend/divisor is positive, and whose magnitude is as 

large as possible without exceeding the magnitude of the true mathmetical quotient of 

dividend and divisor. 

Despite the fact that division by zero may occur, evaluation of ferm and drem instructions 

never throw a runtime exception. 

 

The convert floating-point to integer instructions are generated by the following the 

rules in Java specification. 

(1) If the value is NaN, the result of the conversion is an int0. 

(2) Otherwise, if the value is not an infinity, it is rounded to an integer value V, rounding 

towards zero using IEEE 754 round towards zero mode. If this integer value V can be 

represented as an int, then the result is the int value V. 

(3) Otherwise, either the value must be too small(a negative value of large magnitude or 

negative infinity), and the result is the smallest representable value of type int, or the 

value must be too large(a positive value of large magnitude or positive infinity), and 

the result is the largest representable value of type int. 

 

In the rule 2, we can use the special instruction which is supported by assembly. We 

put the floating-point value in the FPU and then use the fist to convert the floating-point to 
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integer. The FPU will help us to convert the floating-point to integer. 

 

By the way, the following table is the format of  NaN 、negative infinity、positive 

infinity、negative value of large magnitude and positive value of large magnitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value Float bits(sign exponent mantissa) 
+Infinity 0 11111111 00000000000000000000000 
-Infinity 1 11111111 00000000000000000000000 
NaN 0 11111111 10000000000000000000000 
Largest positive 
(finite) float 

0 11111110 11111111111111111111111 

Largest negative 
(finite) float 

1 11111110 11111111111111111111111 
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3.2.3.4 Flow Control 

    We have described the branch table and jsr ret table in section 3.1.2. Before we want 

to translate the bytecode instruction, we search contents of the two tables, and check the 

offset of the bytecode instruction to decide that if match the content. If the offset is in the 

content, the translator generate a label. The label format is .._offset. The symbol .. is the 

short name of the method. Because it can not has the same label in a .asm file, the symbol .. 

avoids the problem. Figure 3.20 illustrates the example of flow control. 

 

 

class PrimeFinder { 

    public static void main(String[] args) { 

        int primeNum = 1; 

        int numToCheck = 2; 

        for (;;) { 

            boolean foundPrime = true; 

            for (int divisor = numToCheck / 2; divisor > 1; 

                --divisor) { 

                if (numToCheck % divisor == 0) { 

                    foundPrime = false; 

                    break; 

                } 

            } 

            if (foundPrime) { 

                primeNum = numToCheck; 

                System.out.println(primeNum); 

                if(primeNum > 50) 

                   break; 

            } 

            ++numToCheck; 

        } 

    } 

} 
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   … 

   4 goto 7 

   7 iconst_1 

   … 

  14 goto 32 

  17 iload_2 

  … 

  21 ifne 29 

  … 

  26 goto 38 

  29 iinc 4 -1 

  32 iload 4 

  34 iconst_1 

  35 if_icmpgt 17 

  38 iload_3 

  39 ifeq 60 

  … 

  54 if_icmple 60 

  57 goto 66 

  60 iinc 2 1 

  63 goto 7 

  66 return 

 

… 

.code 

      … 

   aa_7: 

      mov   [aa_local_vars+3*4],1 

      … 

      jmp   aa_32 

   aa_17: 

      … 

      cmp   eax,0 

      jnz   aa_29 

      mov   [aa_local_vars+3*4],0 

      jmp   aa_38 

   aa_29: 

      add   [aa_local_vars+4*4],-1 
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   aa_32: 

      push   [aa_local_vars+4*4] 

    … 

      cmp   ebx,eax 

      jg   aa_17 

   aa_38: 

      mov   eax,[aa_local_vars+3*4] 

      cmp   eax,0 

      jz   aa_60 

      … 

      cmp   ebx,eax 

      jle   aa_60 

      jmp   aa_66 

   aa_60: 

      add   [aa_local_vars+2*4],1 

      jmp   aa_7 

   aa_66: 

      … 

 

Figure 3.20 Example of flow control 

 

    The switch .. case structure in a Java program is implemented by the lookupswitch or 

tableswitch. According to the Java Virtual Machine Specification[5], there are a little 

difference among them. Our translator can translate them. We introduce an example to 

explain them, as figure 3.21. 

class Struggle { 

    public final static char TOMAYTO = 'a'; 

    public final static char TOMAHTO = 'b'; 

    public static void main(String[] args) { 

        char say = TOMAYTO; 

        for (;;) { 

            switch (say) { 

            case TOMAYTO: 

                say = TOMAHTO; 

                break; 

            case TOMAHTO: 

                say = TOMAYTO; 

                break;      }     }    }    } 
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   … 

   6 iload_1 

   7 lookupswitch 2: default=41 

    97: 32 

    98: 38 

  … 

 

aa_6: 

      push   [aa_local_vars+1*4] 

      pop   eax 

      cmp   eax,97 

      je   aa_32 

      cmp   eax,98 

      je   aa_38 

      jmp   aa_41 

   aa_32: 

      mov   eax,98 

      push   eax 

      pop   [aa_local_vars+1*4] 

      jmp   aa_41 

   aa_38: 

      mov   eax,97 

      push   eax 

      pop   [aa_local_vars+1*4] 

   aa_41: 

      jmp   aa_6 

 

Figure 3.21 Example of lookupswitch 

 

    The lcmp、fcmpl、fcmpg、dcmpl、dcmpg are bytecode instructions which are 

comparable bytecodes under flow control. Figure 3.22 illustrates example of lcmp. For 

fcmpl, fcmpg, dcmpl, and dcmpg, we must use the status word of the FPU[28] to 

differentiate the difference. We define some values which are c3, c2, and c0 in the .data 

section to assist in processing those comparison operations associated with real number. 

Figure 3.23 illustrates example of dcmpl. 

 

class lcmp { 

     public static void main(String[] args) { 
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          long i=1; 

          long j=0; 

          if(i > j) 

          {   i++;   }  }  } 

 

 

   … 

   6 lcmp 

   … 

 

      … 

      pushfd 

      pop   ebx 

      pop   edx 

      pop   eax 

      pop   edi 

      pop   esi 

      sub   esi,eax 

      sbb   edi,edx 

      js   aa_lcmp_6_sf 

      test   esi,0ffffffffh 

      jne   aa_lcmp_6_zf 

      test   edi,0ffffffffh 

      jne   aa_lcmp_6_zf 

      mov   eax,0 

      push   eax 

      jmp   aa_lcmp_6_ok 

   aa_lcmp_6_zf: 

      mov   eax,1 

      push   eax 

      jmp   aa_lcmp_6_ok 

   aa_lcmp_6_sf: 

      mov   eax,-1 

      push   eax 

   aa_lcmp_6_ok: 

      push   ebx 

      popfd 

      pop   eax 
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      cmp   eax,0 

      jle   aa_14 

      push   [aa_local_vars+1*4] 

      push   [aa_local_vars+2*4] 

      mov eax,1 

      push eax 

      mov eax,0 

      push eax 

      pushfd 

      … 

 

Figure 3.22 Example of lcmp 

 

0 ldc2_w #2 <Double 2.3> 

   3 dstore_1 

   4 ldc2_w #4 <Double 5.9> 

   7 dstore_3 

   8 dload_1 

   9 dload_3 

  10 dcmpl 

  11 ifle 14 

  14 return 

 

  … 

real4buf         real4  ? 

  real8buf         real8  ? 

  intbuf           dword  ? 

  longbuf          qword  ? 

  c3              EQU    0100000000000000b 

  c2              EQU    0000010000000000b 

  c0              EQU    0000000100000000b 

  … 

  index_2_doublehighname EQU   01000000000000100110011001100110b 

  index_2_doublelowname EQU   01100110011001100110011001100110b 

  index_4_doublehighname EQU   01000000000101111001100110011001b 

  index_4_doublelowname EQU   10011001100110011001100110011010b 

.code 

  … 
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      push   index_2_doublelowname 

      push   index_2_doublehighname 

      pop   [aa_local_vars+2*4] 

      pop   [aa_local_vars+1*4] 

      … 

      push   [aa_local_vars+1*4] 

      push   [aa_local_vars+2*4] 

      push   [aa_local_vars+3*4] 

      push   [aa_local_vars+4*4] 

      pop   dword ptr real8buf+4 

      pop   dword ptr real8buf 

      .if   dword ptr real8buf+4 == 01111111111110000000000000000000b 

         mov   eax,-1 

         push   eax 

         jmp   aa_dcmpl_10_end 

      .endif 

      fld   real8buf 

      pop   dword ptr real8buf+4 

      pop   dword ptr real8buf 

      .if   dword ptr real8buf+4 == 01111111111110000000000000000000b 

         mov   eax,-1 

         push   eax 

         jmp   aa_dcmpl_10_end 

      .endif 

      fld   real8buf 

      fcom 

      fstsw   ax 

      mov   dx,ax 

      test   ax,c3 

      jnz   aa_dcmpl_10_equal 

      mov   ax,dx 

      test   ax,c0 

      jnz   aa_dcmpl_10_small 

      mov   ax,dx 

      test   ax,c2 

      jz   aa_dcmpl_10_big 

   aa_dcmpl_10_equal: 

      mov   eax,0 
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      mov   edx,0 

      push   eax 

      jmp   aa_dcmpl_10_end 

   aa_dcmpl_10_small: 

      mov   eax,-1 

      mov   edx,0 

      push   eax 

      jmp   aa_dcmpl_10_end 

   aa_dcmpl_10_big: 

      mov   eax,1 

      mov   edx,0 

      push   eax 

   aa_dcmpl_10_end: 

      finit 

      pop   eax 

      cmp   eax,0 

      jle   aa_14 

   aa_14: 

 

Figure 3.23 Example of dcmpl 

 

 

3.2.4 Special Bytecode Translation 

    The so-called special bytecodes imply that those bytecode instructions are associated 

with object directly. 

 

3.2.4.1 Object Association 

    We will explain how to create object, and other bytecodes － getfield、putfield、

getstatic、putstatic、checkcast、instanceof. 

 

Create Object 

    A new Java instruction in the Java language implicitly generates several bytecode 

instructions after compiled by javac. For example： 

 

                                              new #2 

                                              dup 

StringBuffer x=new StringBuffer(100);           bipush 100 

                                              invokespecial #3 
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                                              astore_1 

     The #2 and #3 are the entries of the constant pool. 

     #2：java/lang/StringBuffer 

     #3：java/lang/StringBuffer  <init>  (I)V 

 

The new bytecode instruction decides the volumn, and allocates the memory space which 

is the part of the garbage collection. The fields of the created object are set to 0 or false or 

null. Finally, it push the reference of the created object onto the operand stack. Note that 

the created object is not be initialized, and it must be initialized through performing 

invokespecial <init>. 

    Figure 3.24 is the translated result of the above example through translator. 

 

GetFnPtr   fntblptr,6,fnptr               ; FindClass 

      push   offset index_2_clsname 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_cls,eax 

      push   index_2_cls 

      pop eax 

      push eax 

      push eax 

      mov   eax,100 

      push   eax 

      pop   [argreversebuf+0*4] 

      pop   jclsjobjtmp 

      GetFnPtr   fntblptr,33,fnptr              ; GetMethodID 

      push   offset index_3_midsig 

      push   offset index_3_midname 

      push   jclsjobjtmp 

      push   jnienv 

      call   [fnptr] 

      mov   index_3_mid,eax 

      GetFnPtr   fntblptr,28,fnptr              ; NewObject 

      push   [argreversebuf+0*4] 

      push   index_3_mid 

      push   jclsjobjtmp 

      push   jnienv 

      call   [fnptr] 
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      add   esp,20 

      push   eax 

      pop   [aa_local_vars+1*4] 

 

Figure 3.24 Example of the assembly code of the new instruction 

 

In assembly code, We use several JNI functions to finish the total flow of creating object. 

According to the above example, When the translator meets the new #2, it gets the value of 

entry 2 of the constant pool table, and generates two variables which are index_2_clsname 

and index_2_cls in the .data section. The index_2_clsname contains the value of entry 2 of 

the constant pool table. Then, we use the JNI function called FindClass to get a reference 

to the named class or interface. The type of the reference is jclass, and it stands for the 

loaded class, and saved in the index_2_cls. After getting the jclass reference, we will 

differentiate if the value of entry 2 of the constant pool table belongs to the system class 

which is the word“java/”starting. If it does not belong to system class, indicates that it is 

the user class, and its index will be maintained, and used for dynamic dispatching later. We 

detail the dynamic dispatching under user classes in next section. 

    Now, we have finished the translation of the new bytecode instruction, then process 

the dup bytecode instruction, and process the bipush bytecode instruction which is 

associated with parameters. Right now, we will process the invokespecial. This section 

only explain the <init> component of the invokespecial bytecode instruction, and other 

components will be explained in next section. 

    Now, we want to create an object through invokespecial. According to the above 

example, When the translator meets the invokespecial #3, it gets the value of entry 3 of the 

constant pool table, and generates three variables which are index_3_midname and 

index_3_midsig and index_3_mid in the .data section. The index_3_midname contains the 

method name of the entry 3 of the constant pool table, and the index_3_midsig contains the 

method signature of the entry 3 of the constant pool table. Then, we use the JNI function 

called GetMethodId to obtain the constructor id. Then, we use the JNI function called 

NewObject to create an object, and push the object reference onto the native stack. 

 

         index_2_clsname   db      'java/lang/StringBuffer',0 

  index_2_cls       dword   ? 

  index_3_midname  db      '<init>',0 

 index_3_midsig    db      '(I)V',0 

  index_3_mid      dword   ? 

  argreversebuf      dword   20  dup(?) 
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    There are two places which are noticed especially. The one, the order of passing 

parameters into the JNI function called NewObject is from right to left. Because before the 

invokespecial appears, parameters are pushed onto the native stack from left to right. So, 

we must reverse the order of parameters by a temporary area called argreversebuf when 

call the NewObject. The order of passing parameter is the same rule when process other 

JNI functions. If the type of the parameter is float, we must change it to double. Because 

these calling methods in JNI functions regard the float as the double type. If you do not 

perform the action, you will make a mistake, and get the wrong result. The two, after 

performing the NewObject, you must adjust the register esp which points the native stack. 

Because these calling methods in JNI functions do not fetch the parameters from native 

stack by the register esp, and they fetch the parameters from native stack by the register 

ebp. The concept is like mixing mode of C and assembly[25,26]. Figure 3.25 illustrates the 

total flow of the translator creates an object. If the class of the object belong to user class, 

inserts the object reference into the objmapclass structure for dynamic dispatching later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 The total flow of the translator creates an object 

generate variables in .data

FindClass

generate variables in .data

GetMethodId

adjust parameters order

NewObject

adjust the register esp

maintain 0 or index if user class

1. right to left 

2. float -> double 

3. high part then 

lowpart 
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getfield、putfield 

    The bytecode gets/assigns the value of the field which is instance field in an object. 

For example： 

       fieldexample x=new fieldexample();      

       x.i++; 

 

 

       0 new #3 <Class fieldexample> 

       3 dup 

   4 invokespecial #4 <Method fieldexample()> 

   7 astore_1 

   8 aload_1 

   9 dup 

 10 getfield #2 <Field int i> 

  13 iconst_1 

  14 iadd 

  15 putfield #2 <Field int i> 

  18 return 

 

       The #2 is the entries of the constant pool. 

     #2：fieldexample  i  I 

 

A example of assembly code of getfield and putfield instructions is shown in Figure 3.26. 

 

… 

pop   jclsjobjtmp                  ; object reference 

      GetFnPtr   fntblptr,6,fnptr           ; FindClass 

      push   offset index_2_clsname 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_cls,eax 

      GetFnPtr   fntblptr,94,fnptr          ; GetFieldID 

      push   offset index_2_fidsig 

      push   offset index_2_fidname 

      push   index_2_cls 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_fid,eax 
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      GetFnPtr   fntblptr,100,fnptr         ; Get<Type>Field 

      push   index_2_fid 

      push   jclsjobjtmp 

      push   jnienv 

      call   [fnptr] 

      push   eax 

      …                              ; +1 

      pop   [argreversebuf] 

      pop   jclsjobjtmp                  ; object reference 

      GetFnPtr   fntblptr,6,fnptr           ; FindClass 

      push   offset index_2_clsname 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_cls,eax 

      GetFnPtr   fntblptr,94,fnptr          ; GetFieldID 

      push   offset index_2_fidsig 

      push   offset index_2_fidname 

      push   index_2_cls 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_fid,eax 

      GetFnPtr   fntblptr,109,fnptr         ; Set<Type>Field 

      push   [argreversebuf] 

      push   index_2_fid 

      push   jclsjobjtmp 

      push   jnienv 

      call   [fnptr] 

      … 

 

Figure 3.26 Example of assembly code of getfield and putfield instructions 

 

We use several JNI functions to finish the bytecode getfield and putfield. According 

to the above example, When the translator meets the getfield #2, it gets the value of entry 2 

of the constant pool table, and generates five variables which are index_2_clsname、

index_2_cls、index_2_fidname、index_2_fidsig、index_2_fid in the .data section. The 

index_2_clsname contains the class name of entry 2 of the constant pool table. The 

index_2_fidname contains the field name of entry 2. The index_2_fidsig contains the field 

signature of entry 2. Then, we use the JNI function called FindClass to get a reference to 
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the named class or interface. The type of the reference is jclass, and it stands for the loaded 

class, and saved in the index_2_cls. After getting the jclass reference, we use the the JNI 

function called GetFieldID to get the field id for an instance field of a class. Then we 

decide the jni function entry by the field signature which consists of B, C, D, F, I, J, L, [, S, 

and Z. Then, we call the Get<Type>Field which is relative to the field signature. For the 

putfield, we use the JNI function called Set<Type>Field to set the value of the instance 

field. Their translating basic rules are similar between getfield and putfield. 

      index_3_clsname    db      'fieldexample',0 

  index_3_cls        dword   ? 

  index_4_midname   db      '<init>',0 

  index_4_midsig     db      '()V',0 

  index_4_mid       dword   ? 

  index_2_clsname    db      'fieldexample',0 

  index_2_cls        dword   ? 

  index_2_fidname    db      'i',0 

  index_2_fidsig      db      'I',0 

  index_2_fid        dword   ? 

  real4buf           real4    ? 

  real8buf           real8    ? 

      argreversebuf       dword   20  dup(?) 

 

    There are three places which are noticed especially. The one, Because the hide of the 

field is a problem, we can not catch the class of the object directly during translating 

getfield and putfield. In the other word, When we get the parameter which is an object 

reference used to getfield or putfield, we can not use the JNI function called 

GetObjectClass directly to catch the class of the object. We must use the FindClass and 

then use the GetFieldID to catch the accurate field id. The two, after getting the value of 

the field, there are different processing rules for different return type. 

    If the type of the return value is long after getfield, it is saved in the edx：eax, and 

push the eax, then push edx. The edx has the high part of the value, and the eax has the low 

part of the value. 

 

 

                   high 

                   low 

 

    If the type of the return value is float or double, it is saved in the real register stack 

which belongs to the floating-point unit (FPU)[28]. The following are the translated codes, 

EDX：EAX 
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and if it is the double, we also push the low part, then push the high part. 

             float            fstp   real4buf 

                   push   real4buf 

             double        fstp   real8buf 

                          mov   edx,dword ptr real8buf 

                          mov   eax,dword ptr real8buf+4 

                          push   edx              ; edx has the low part 

                          push   eax              ; eax has the high part 

 

If it is the other types, we push the eax onto the native stack directly. 

The three, the order of passing parameters into the JNI function is from right to left. If 

there is a parameter whose type is long or double, you must first push the high part onto 

the native stack and then push the low part onto the native stack as calling the JNI function 

truly. So, we use a temporary area called argreversebuf to finish those ordering works. 

 

getstatic、putstatic 

    The bytecode gets/assigns the value of the field which is static field in a class. The 

translating flow of these two bytecodes are similar to getfield and putfield. The distinct 

point are that replace GetFieldID with GetStaticFieldID, and replace Get<Type>Field with 

GetStatic<Type>Field, and replace Set<Type>Field with SetStatic<Type>Field. The 

another distinct point is that we use the jclass reference to get the value of the static field, 

and do not use the object reference to get the value of the static field. Figure 3.27 

illustrates the example of assembly code of getstatic and putstatic instructions. 

 

class staticfieldexample { 

      static int  i=1; 

      public static void main(String[] args) { 

             i++; 

      }  } 

 

0 getstatic #2 <Field int i> 

   3 iconst_1 

   4 iadd 

   5 putstatic #2 <Field int i> 

   8 return 

 

… 

index_2_clsname   db   'staticfieldexample',0 
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index_2_cls   dword   ? 

index_2_fidname   db   'i',0 

index_2_fidsig   db   'I',0 

index_2_fid   dword   ? 

… 

GetFnPtr   fntblptr,6,fnptr            ; FindClass 

      push   offset index_2_clsname 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_cls,eax 

      GetFnPtr   fntblptr,144,fnptr          ; GetStaticFieldID 

      push   offset index_2_fidsig 

      push   offset index_2_fidname 

      push   index_2_cls 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_fid,eax 

      GetFnPtr   fntblptr,150,fnptr          ; GetStatic<Type>Field 

      push   index_2_fid 

      push   index_2_cls 

      push   jnienv 

      call   [fnptr] 

      push   eax 

      …                               ; +1 

      GetFnPtr   fntblptr,6,fnptr            ; FindClass 

      push   offset index_2_clsname 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_cls,eax 

      GetFnPtr   fntblptr,144,fnptr          ; GetStaticFieldID 

      push   offset index_2_fidsig 

      push   offset index_2_fidname 

      push   index_2_cls 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_fid,eax 

      GetFnPtr   fntblptr,159,fnptr          ; SetStatic<Type>Field 

      push   index_2_fid 
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      push   index_2_cls 

      push   jnienv 

      call   [fnptr] 

      … 

 

Figure 3.27 Example of assembly code of getstatic and putstatic instructions 

 

instanceof、checkcast 

    The bytecode test that if the object belongs to the some type. Figure 3.28 is the 

example of the instanceof instruction. 

 

class isinstanceof { 

    public static void main(String[] args) { 

           isinstanceof a=new isinstanceof(); 

           if(a instanceof isinstanceof) { 

           } 

    }   } 

 

0 new #2 <Class isinstanceof> 

   3 dup 

   4 invokespecial #3 <Method isinstanceof()> 

   7 astore_1 

   8 aload_1 

   9 instanceof #2 <Class isinstanceof> 

  12 ifeq 15 

  15 return 

 

ClassCastException_name  db  'java/lang/ClassCastException',0 

  argreversebuf    dword  20  dup(?) 

  jclsjobjtmp      dword  ? 

  … 

  index_2_clsname   db   'isinstanceof',0 

  index_2_cls   dword   ? 

  index_3_midname   db   '<init>',0 

  index_3_midsig   db   '()V',0 

  index_3_mid   dword   ? 

… 

      … 
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      push   [aa_local_vars+1*4]            ; aload_1 

      GetFnPtr   fntblptr,6,fnptr             ; FindClass 

      push   offset index_2_clsname 

      push   jnienv 

      call   [fnptr] 

      mov   index_2_cls,eax 

      GetFnPtr   fntblptr,32,fnptr            ; IsInstanceOf 

      pop   eax 

      push   index_2_cls 

      push   eax 

      push   jnienv 

      call   [fnptr] 

      push   eax 

      pop   eax                          ; ifeq 15 

      cmp   eax,0 

      jz   aa_15 

   aa_15: 

      … 

 

Figure 3.28 Example of the instanceof instruction 

 

    We use the JNI function called IsInstanceOf to test. If the object belongs to the 

index_2_clsname, push 1 onto the native stack, otherwise push 0 onto the native stack. The 

value of 1 or 0 is used to judge by the bytecodes which belong to the flow control 

category. 

 

    For the checkcast, it does not push 1 or 0 onto the native stack. If the object does not 

belong to the some type, it will throws an exception called ClassCastException. We use the 

following statements to finish the function. 

 

           .if  eax == 0                                                               

            push   offset ClassCastException_name 

                call    throw_exception_func 

      .endif 

 

 

           throw_exception_func   proc 

.data 
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                e_name   dword   ? 

                e_ref     dword   ? 

.code 

                pop        ebp 

           pop        e_name 

                GetFnPtr    fntblptr,6,fnptr 

                push       e_name 

           push       jnienv 

                call        [fnptr] 

                mov       e_ref,eax 

           GetFnPtr    fntblptr,14,fnptr             ; ThrowNew 

                push       e_name 

                push       e_ref 

           push       jnienv 

                call        [fnptr] 

                push       ebp 

           ret 

throw_exception_func   endp 

 

 

Table 3.2 illustrates the total JNI functions associated with object. 

 

FindClass , 6 

Get<Type>Field , 95 ~ 103 

GetFieldID , 94 

GetMethodId , 33 

GetStaticFieldID , 144 

GetStatic<Type>Field , 145 ~ 153 

IsInstanceOf , 32 

NewObject , 28 

Set<Type>Field , 104 ~ 112 

SetStatic<Type>Field 154 ~ 162 

ThrowNew , 14 

 

Table 3.2 The total JNI functions associated with object 
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3.2.4.2 Method Invocation 

    We will explain how to do dynamic dispatching, and other bytecodes － 

invokevirtual、invokestatic、invokespecial、invokeinterface、return series. 

 

Dynamic Dispatch 

    To date, When we want to call the system API, we still use the JNI function to finish 

the work. But, When we want to call the user defined method, we must do the dynamic 

dispatching in the assembly code ourself. In order to call user defined methods in .ASM 

files, we design four components － .._objmapclass 、 allclassmethodtable 、

build_objmapclasstable、search_objmapclasstable. 

 

        objmapclass_table  struct 

            jobj    dword    ? 

            class   dword    ? 

objmapclass_table       ends 

        aa_objmapclass  objmapclass_table  3  dup(<-1,-1>) 

 

The .._objmapclass is used to save the created object whose class is user defined. Its jobj 

field saves the object reference, and its class field saves the index. If the class of the 

created object is same as thisclass which is the translated class file now, the index is 0. If 

the class of the created object is other user defined classes, the index is the entry of the 

class in the constant pool table mentioned in section 3.1.2. The allclassmethodtable 

mentioned in section 3.1.2 is generated in pass 1. 

 

        .classname  idofclass  superclass 

            methodname  signature  clsname  callasmname 

    … 

     methodname  signature  clsname  callasmname 

.end 

 

The allclassmethodtable has all the methods which come from every class which appears in 

the constant pool and their super class and super class up to java.lang.Object. A item is a 

class which appears in the constant pool, and it´s methods which including inheritance up 

to java.lang.Object. If the classname is same as thisclass, the idofclass is 0, otherwise 

idofclass is the entry number of the class in the constant pool table. The order of the 

methodname in a item is that methods of thisclass are first, then methods of superclass of 

thisclass are second, and then continue up to the java/lang/Object. When the translator 

meets those invoke series instructions in pass 2, the allclassmethodtable is useful. 
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    The build_objmapclasstable is a procedure that is used to save the created object of 

user class in the .._objmapclass. When we new an object of an user defined class, the 

object reference and index are inserted into the .._objmapclass by the 

build_objmapclasstable. When the translator wants to translate invokevirtual or 

invokeinterface, the translator will generate the following codes to find the idofclass of the 

created object. 

       push   offset aa_objmapclass 

       push   eax                           ; object reference is saved in eax 

       call    search_objmapclasstable 

build_objmapclasstable   proc 

.data 

           allobjmapclass_entry   dword   ? 

           objref                 dword   ? 

           objref_entry           dword   ? 

.code 

           pop   ebp 

           pop   objref_entry 

           pop   objref 

           pop   allobjmapclass_entry 

           mov  ebx,dword ptr allobjmapclass_entry 

    insert_item: 

           cmp  (objmapclass_table ptr [ebx]).jobj,-1 

           jne   next_item 

           mov  eax,dword ptr objref 

           mov  (objmapclass_table ptr [ebx]).jobj,eax 

           mov  eax,dword ptr objref_entry 

           mov  (objmapclass_table ptr [ebx]).class,eax 

           jmp  insert_ok 

     next_item: 

           add  ebx,type objmapclass_table 

           jmp  insert_item 

     insert_ok: 

           push       ebp 

           ret 

build_objmapclasstable   endp 
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The search_objmapclasstable returns the idofclass of the created object, and the idofclass is 

associated with the allclassmethodtable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because messages of the called method in the invoke series instructions are saved in the 

constant pool table, and we can use an entry number to get related data. There are method 

name and method signature in the data, and we make the method name and method 

signature as a key. The translator use the key to search the allclassmethodtable to show 

those possible calling methods. We use the .if directive concept in the assembler to make 

multiple calling decisions, as the following statements. 

search_objmapclasstable   proc 

.data 

           s_allobjmapclass_entry   dword   ? 

           s_objref                 dword   ? 

.code 

           pop   ebp 

           pop   s_objref 

           pop   s_allobjmapclass_entry 

           mov   edx,s_objref 

           mov   ebx,s_allobjmapclass_entry 

     s_search: 

           ;check if matched ? 

           cmp   (objmapclass_table ptr [ebx]).jobj,edx 

           jne   s_nextitem 

           mov  eax,(objmapclass_table ptr [ebx]).class 

           jmp  s_finish 

     s_nextitem: 

           add  ebx,type objmapclass_table 

           cmp  (objmapclass_table ptr [ebx]).jobj,-1 

           je   s_notfind 

           jmp  s_search 

     s_notfind: 

           mov  eax,-1 

     s_finish: 

           push       ebp 

           ret 
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          .if   eax == 2 

                call   lower_obj_show_2 

        mov   eax,2 

          .endif 

          .if   eax == 18 

                call   upper_obj_show_2 

           mov   eax,18 

          .endif 

 

The eax has the return value of the procedure called search_objmapclasstable. When the 

idofclass is matched, the correct method is called. At this time, those parameters which 

will be used by the called function are already in the native stack, and the called function 

can use them from the native stack, as the following statements. 

 

       lower_obj_show_2    proc 

          pop   aa_return_addr 

       pop   [aa_local_vars+2*4] 

           pop   [aa_local_vars+1*4] 

           pop   [aa_local_vars+0*4] 

           … 

 

These parameters are saved in the local variables of the called function. The above rule 

also solves the overloading problem of the multiple inheritance. Because the actually called 

methods are decided at run time for invokevirtual and invokeinterface, and are associated 

with object. So, we must save the created object reference for dynamic dispatching later. 

But, for invoekstatic and invokespecial they are static binding, and the actually called 

methods are decided at compile time, and are not associated with object. So, the translator 

generates the calling assembly code directly, and do not make multiple calling decisions. 

The class name and method name and method signature from constant pool table are a key. 

The translator uses the key to search the allclassmethodtable to find the called method, and 

generates a calling method assembly code directly. Figure 3.29 illustrates the flow of 

dynamic dispatching for user methods. 

 

    When we want to call the system API, we still use the JNI function to finish the work. 

The flow of using the JNI function is like the contents described in section 3.2.4.1, and 

there are still some places which are noticed. These noticed places have explained in 

section 3.2.4.1. Figure 3.30 illustrates the translating flow of invoking system api. 
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Figure 3.29 The flow of dynamic dispatching for user methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30 The translating flow of invoking system api 
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The“get jni entry of called method”is to decide the number of the jni function by the 

return types which consist of B、C、D、F、I、J、L、[、S、Z、V. For invokestatic or 

invokespecial, the“get jclass”use the JNI function called FindClass to get the class. For 

invokevirtual or invokeinterface, the“get jclass”use the JNI function called 

GetObjectClass to get the class. For invokestatic, the“get method id”use the JNI 

function called GetStaticMethodID to get the method id. For invokespecial, invokevirtual 

or invokeinterface, the“get method id”use the JNI function called GetMethodId to get 

the method id. Table 3.3 illustrates the JNI functions of method invocation. 

 

Call<Type>Method , 61 34 37 40 43 46 49 52 55 58 

CallStatic<Type>Method , 141 114 117 120 123 126 129 132 135 138 

FindClass , 6 

GetMethodID , 33 

GetObjectClass , 31 

GetStaticMethodID , 113 

Table 3.3 The JNI functions of method invocation 

 

invokevirtual 

    We show an example about calling user method and system method. 

 

class  upper_obj {  

       int upi;            

       int show(int a,int b) { 

           upi=a-b; 

           return 1;  }  } 

class lower_obj extends upper_obj { 

      int i;       

      int show(int a,int b) {  

         i=a+b;     

         return 2;   }  } 

public class invokevirtualuserapi {                  

       public static void main(String[] args) {                  

              lower_obj  a=new lower_obj(); 

              upper_obj  b=new lower_obj();                 

              int g=b.show(11,3);       

              System.out.println(g);   }   } 
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0 new #2 <Class lower_obj> 

   3 dup 

   4 invokespecial #3 <Method lower_obj()> 

   7 astore_1 

   8 new #2 <Class lower_obj> 

  11 dup 

  12 invokespecial #3 <Method lower_obj()> 

  15 astore_2 

  16 aload_2 

  17 bipush 11 

  19 iconst_3 

  20 invokevirtual #4 <Method int show(int, int)>   //user method 

  23 istore_3 

  24 getstatic #5 <Field java.io.PrintStream out> 

  27 iload_3 

  28 invokevirtual #6 <Method void println(int)>   //system method 

  31 return 

Javap of invokevirtualuserapi 

 

… 

extrn  lower_obj_show_2:proc,upper_obj_show_2:proc 

.data 

  … 

  argreversebuf    dword  20  dup(?) 

  jclsjobjtmp      dword  ? 

  … 

  index_6_cls   dword   ? 

  index_6_midname   db   'println',0 

  index_6_midsig   db   '(I)V',0 

  index_6_mid   dword   ? 

  aa_objmapclass  objmapclass_table  4  dup(<-1,-1>) 

.code 

 …                            ; create object a 

      push   offset aa_objmapclass 

      push   eax 

      mov   eax,2 

      push   eax 
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      call  build_objmapclasstable 

      pop   [aa_local_vars+1*4] 

      …                            ; create object b 

      push   offset aa_objmapclass 

      push   eax 

      mov   eax,2 

      push   eax 

      call  build_objmapclasstable 

      pop   [aa_local_vars+2*4] 

      push   [aa_local_vars+2*4] 

      …                            ; push 11 , 3 

      mov   eax,[esp+2*4] 

      push   offset aa_objmapclass 

      push   eax 

      call   search_objmapclasstable 

      .if   eax == 2 

        call   lower_obj_show_2 

        mov   eax,2 

      .endif 

      .if   eax == 19 

        call   upper_obj_show_2 

        mov   eax,19 

      .endif 

      pop   [aa_local_vars+3*4] 

      …                           ; getstatic 

      push   [aa_local_vars+3*4] 

      pop   [argreversebuf+0*4] 

      pop   jclsjobjtmp 

      GetFnPtr   fntblptr,31,fnptr       ; GetObjectClass 

      push   jclsjobjtmp 

      push   jnienv 

      call   [fnptr] 

      mov   index_6_cls,eax 

      GetFnPtr   fntblptr,33,fnptr       ; GetMethodID 

      push   offset index_6_midsig 

      push   offset index_6_midname 

      push   index_6_cls 

      push   jnienv 
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      call   [fnptr] 

      mov   index_6_mid,eax 

      GetFnPtr   fntblptr,61,fnptr       ; CallVoidMethod 

      push   [argreversebuf+0*4] 

      push   index_6_mid 

      push   jclsjobjtmp 

      push   jnienv 

      call   [fnptr] 

      add   esp,16 

      … 

Asm code of invokevirtualuserapi 

 

… 

lower_obj_show_2    proc 

      pop   aa_return_addr 

      pop   [aa_local_vars+2*4] 

      pop   [aa_local_vars+1*4] 

      pop   [aa_local_vars+0*4] 

      … 

      mov eax,2 

      push eax 

      push   aa_return_addr 

      ret 

lower_obj_show_2      endp 

Asm code of lower_obj 

 

upper_obj_show_2    proc 

      pop   aa_return_addr 

      pop   [aa_local_vars+2*4] 

      pop   [aa_local_vars+1*4] 

      pop   [aa_local_vars+0*4] 

      … 

mov eax,1 

      push eax 

      push   aa_return_addr 

      ret 

upper_obj_show_2      endp 

Asm code of upper_obj 
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We show those generated assembly codes of the invokevirtualuserapi, lower_obj, and 

upper_obj. We also show the translating processes of the invokevirtualuserapi, lower_obj, 

and upper_obj, and also show the processes of compiling and executing. 

 

 

translate the invokevirtualuserapi 

 

 

translate the lower_obj 

 

 

translate the upper_obj 
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compile and run 

 

 

invokestatic 

    The instruction is used to invoke static method. We can known the called method at 

compile time, and the message of the called method is recorded in the constant pool, and 

we can get the message through a index. We had resolved the class file in pass 1, and make 

the constant pool into a structure called constant pool table. For example： 

            invokestatic  #8        // static user method: abc 

When the translator want to translate this statement, it regards the number behind the 

symbol # as an entry of the constant pool table, and gets messages about the method by the 

entry. The messages contain class name, method name, and method signature. If the 

method is user, we use the three informations to search the allclassmethodtable to find the 

called method, and then generate the assembly calling code directly. The problems of 

parameters and returning value are the same operations as the invokevirtual. 

             call  abc 

 

If the method is system, the translating step is like the figure 3.30. But there are two 

different points. Because the invokestatic is related to class, and is not related to object. So, 

we do not have object reference, therefore we only use the JNI function called FindClass to 

get the jclass, and can not use the JNI function called GetObjectClass. Then we use the JNI 

function called GetStaticMethodID to get the method id. Because we call the different JNI 

function for static or non-static method, we use those JNI functions called 

CallStatic<Type>Method. 
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invokespecial 

    The instruction is used to call the following methods： 

1. instance initialization method <init>. 

2. private instance methods of this class. 

3. methods of super class of this class. 

 

We had described how to translate the invokespecial instruction to finish the <init> in the 

previous section. Now we will explain the another two usages. When the Java programmer 

uses the key word called super to invoke the method of parent class and invokes the private 

instance method in this class directly, the javac compiler uses the invokespecial to call 

those methods. The invokespecial differs from invokevirtual primarily in that 

invokespecial normally selects a method based on the type of the reference rather than the 

class of the object. In other words, it does static binding instead of dynamic binding. 

    The invokespecial is not used to invoke private class methods, just private instance 

methods. Private class methods are invoked with invokestatic. For example：it must be 

possible for a subclass to declare an instance method with the same signature as a private 

instance method in a superclass. 

class Superclassprivate { 

     private void interestingMethod() { 

        System.out.println("Super"); 

     } 

     void exampleMethod() { 

         interestingMethod(); 

     }  } 

 

class Subclassprivate extends Superclassprivate { 

     void interestingMethod() { 

        System.out.println("sub"); 

     } 

     public static void main(String[] args) { 

         Subclassprivate me=new Subclassprivate(); 

         me.exampleMethod(); 

     }  } 

 

Method void exampleMethod() 

   0 aload_0 

   1 invokespecial #5 <Method void interestingMethod()> 

   4 return 
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Method void main(java.lang.String[]) 

   0 new #5 <Class Subclassprivate> 

   3 dup 

   4 invokespecial #6 <Method Subclassprivate()> 

   7 astore_1 

   8 aload_1 

   9 invokevirtual #7 <Method null> 

  12 return 

 

 

Superclassprivate_exampleMethod_3    proc 

… 

.code 

      pop   ab_return_addr 

      pop   [ab_local_vars+0*4]           ; this reference 

      … 

      push   [ab_local_vars+0*4] 

      call   Superclassprivate_interestingMethod_2 

      push   ab_return_addr 

      ret 

Superclassprivate_exampleMethod_3      endp 

Asm code of exampleMethod 

 

… 

  _main proc 

      … 

      .if   eax == 0 

        call   Superclassprivate_exampleMethod_3 

        mov   eax,0 

      .endif 

      .if   eax == 8 

        call   Superclassprivate_exampleMethod_3 

        mov   eax,8 

      .endif 

      … 

Asm code of main 
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The Java Virtual Machine invokes the interestingMethod() defined in Superclassprivate 

even though the object is an instance of class Subclassprivate and there is an accessible 

interestingMethod() defined in Subclassprivate. So, the asm code of exampleMethod 

invokes the interestingMethod of Superclassprivate directly. 

 

    When the Java Virtual Machine resolves an invokespecial instruction´s symbolic 

reference to a superclass method, it dynamically searches the current class´s superclasses to 

find the nearest superclass implementation of the method. For example： 

 

class Cat { 

    void someMethod() { 

    }  } 

 

class TabbyCat extends Cat { 

     void someMethod() { 

         super.someMethod(); 

     }  } 

 

Compiled from TabbyCat.java 

… 

Method void someMethod() 

   0 aload_0 

   1 invokespecial #2 <Method void someMethod()> 

   4 return 

 

TabbyCat_someMethod_2    proc 

      … 

      call   Cat_someMethod_2 

      … 

 

 

invokeinterface 

    The invokeinterface performs the same function as invokevirtual, it invokes instance 

methods and uses dynamic binding. It is related to object. The difference between these 

two instructions is that invokevirtual is used when the type of the reference is a class, 

whereas invokeinterface is used when the type of the reference is an interface. The Java 

Virtual Machine uses a different instruction to invoke a method on an interface reference 

because it can not make as many assumptions about the method table offset given an 
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interface reference as it can given a class reference. Given a class reference, a method will 

always occupy the same position in the method table, independent of the actual class of the 

object. This is not true given an interface reference. The method could occupy different 

locations for different classes that implement the same interface. 

 

    When the Java Virtual Machine encounters an invokevirtual instruction and resolves 

the symbolic reference to a direct reference to an instance method, that direct reference is 

likely an offset into a method table. From that point forward, the same offset can be used. 

For an invokeinterface instruction, the JVM will have to search through the method table 

every single time the instruction is encountered, because it can not assume the offset is the 

same as the previous time. 

 

    The translating rule of the invokeinterface is the same as the invokevirtual. For 

calling the system method by invokeinterface, every single time the instruction 

encountered, we always use those associated JNI functions to finish the invokeinterface 

work. For calling the user method by invokeinterface, every single time the instruction 

encountered, we always use the same translating steps which are mentioned in the 

beginning of the section to call the correct method. Because the translating rule of the 

invokeinterface is the same as the invokevirtual, we do not illustrate an example about 

invokeinterface in this section. 

 

return instructions 

    The return instructions consist of ireturn, lreturn, freturn, dreturn, areturn, and return. 

If the location of the returning series bytecode instructions is the last bytecode in the 

bytecode stream of a method, we do not generate any assembly code, and the returning 

value which was prepared by bytecodes prior to those return series bytecodes immediately 

were on the native stack. Because we add that pushing return address onto the native stack 

and ret actions in the initialization asm code mentioned in the figure 3.5, we can return 

back to the caller method. If they are not the last bytecode in the bytecode stream of a 

method, the returning value was also prepared, but we must generate the following 

assembly codes. The control can return back to the caller method by the following 

assembly codes. 

 

              push  return_addr 

              ret 

 

For example： 
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public class stepoly { 

      static int stepPoly(int x)   { 

          if(x<0)  { 

              System.out.println("foo"); 

              return -1; 

          } 

          else if(x<=5) 

              return x*x; 

          else 

              return x*5+16; 

      } 

      public static void main(String[] args) { 

        int g=stepPoly(-5); 

        System.out.println(g); 

      }  } 

 

Method int stepPoly(int) 

  … 

  12 iconst_m1           // parameter in the stack 

  13 ireturn 

  … 

  21 imul               // parameter in the stack 

  22 ireturn 

  … 

  28 iadd               // parameter in the stack 

  29 ireturn 

 

… 

push   aa_return_addr 

      ret 

      … 

      push   aa_return_addr 

      ret 

      … 

      push   aa_return_addr 

      ret 

stepoly_stepPoly_2      endp 
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3.2.5 Template Match 

    We propose template matching technique to generate more efficient ASM codes. This 

template matching method is original from the paper[7], but we add some concepts of  

peephole pattern table[11] to those template patterns. We arrange many bytecode 

instructions to form some patterns. Before we want to begin to translate every bytecode 

instruction, we compare these patterns with adjacent bytecode instructions. If they are 

matched, the result indicates that these adjacent bytecode instructions can be translated to 

ASM codes together. We extend the concept of peephole pattern table[11] to constitute 

advanced patterns which let our translator to generate less native codes easily. We can 

implement some optimizations[2] in the template patterns. For examples： 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    We can combine two or more than two existent templates to match patterns of Java 

bytecode instructions. We will implement more optimizations, such as dead code 

elimination, and common subexpression elimination in the future. According to the 

experiment result, when the template matching occurs within the loop, the generated 

assembly codes has outstanding improvement. We hope to make better performance which 

is close to the JIT. 

 

 

bipush 9         mov  [aa_local_vars+0*4], 9  

istore_0        

iload_1          mov  eax, [aa_local_vars+1*4] 

iload 8            mov  ebx, [aa_local_vars+8*4] 

if_icmpeq 38       cmp  eax, ebx 

                 je    aa_38 

iload 6               mov  eax, [aa_local_vars+6*4] 

iload_3              mov  ebx, [aa_local_vars+3*4] 

iconst_1              add   ebx, 1 

iadd                 cmp  eax, ebx 

if_icmpne 38          jne   aa_38 
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Chapter 4 Performance Evaluation and Analysis 

 

    In this chapter, we carry out a series of performance experiments in order to test the 

viability of our translator. Test results are first enumerated for comparisons, and later we 

analyze and explain the reason of causing the performance difference. 

 

4.1 Performance Evaluation and Comparison 

    Handwritten several small Java programs which consist of loop test, arithmetic tests, 

array test, field test, and user method tests. The results of these tests are in table 4.1~4.5. 

Many excellent Java benchmarks exist. The Linpack executes complex algorithms which 

perform many computations. The BTest is for a statistical evaluation, and does a lot of 

shuffling around in an integer array and double computations. The results for the two 

excellent benchmarks are in table 4.6. 

 

    The experiment platform is a AMD Athlon 1600 runs at 1.41 GHz with 256MB RAM. 

The operating system is Microsoft Windows XP professional edition. Java Virtual Machine 

is Sun“Java.exe”in Sun J2SDK 1.4.1_01 for win32. We run these benchmarks in three 

approaches － interpreter, JIT, and our translator. The results of the three approaches 

show their execution time, and the measure unit is second. 

 

1. loop test 

    The loop test iterated an empty loop 1000000000 times. The result is list in table 4.1. 

 

 

Benchmark Interpreter JIT Asm code 

Empty loop iterated 1000000000 times 34.8 3.45 5.81 

 

Table 4.1 Loop test 

 

2. arithmetic tests 

    Four tests are enclosed in this suite. Each item is executed under 100000000 times, as 

shown in table 4.2. 

 

Benchmark Interpreter JIT Asm code 

Addition and subtraction on integer 13.47 0.84 2.05 
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Multiplication and division on integer 16.5 3.7 5.08 

Addition and subtraction on long 14.41 0.72 5.52 

Multiplication and division on long 22.09 9.88 105.99 

Addition and subtraction on float 11.67 1.81 3.69 

Multiplication and division on float 12.39 2.44 4.86 

Addition and subtraction on double 14.66 1.69 11.66 

Multiplication and division on double 15.58 3.19 12.73 

 

Table 4.2 Arithmetic tests 

 

3. array test 

    A three-dimension array with 60 elements is created. Each element is assigned an 

integral value. The assignment is executed 1000 times repeatedly. The result is shown in 

table 4.3. 

 

Benchmark Interpreter JIT Asm code 

One-dimension int array with 10000000

elements creation 
0.09 0.09 0.09 

3-dimension int array 12.28 12.06 12.48 

One-dimension int array with 3 elements 

is created for 1000000 times 
0.38 0.06 1.5 

 

Table 4.3 Array test 

 

4. field test 

    An instance which has an integral instance field and an integral class field is created. 

We then use a loop to access that field for 1000000 times. Table 4.4 shows the result. 

 

Benchmark Interpreter JIT Asm code 

Class field accessed for 1000000 times 0.09 0.02 1.58 

Instance field accessed for 1000000 

times 
0.09 0.02 1.61 

 

Table 4.4 Field test 
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5. user method tests 

    An empty user instance method and an empty user static method are called 1000000 

times. Table 4.5 shows the results. 

 

Benchmark Interpreter JIT Asm code 

Static method invoked for 1000000 

times 
0.08 0.02 0.03 

Instance method invoked for 1000000 

times 
0.08 0.02 0.08 

 

Table 4.5 User method tests 

 

6. excellent examples tests 

    Linpack and BTest are tested, as shown in table 4.6. 

 

Benchmark Interpreter JIT Asm code 

Linpack 0.08 0.02 0.14 

BTest 77 8 76 

 

Table 4.6 Excellent examples tests 

 

 

4.2 Benchmarks Analysis 

    After carefully examining codes of these benchmark programs in detail, we analysis 

the six clusters, and propose to some viewpoints. 

 

1. the loop test 

    Take a look at the result, we notice that the performance of our translated asm codes 

is close to that of the JIT. This is because the interpreter uses the memory to process the 

loop, and does not use the registers. The JIT takes advantage of the registers to improve the 

performance of the loop. Our translator uses the memory to record the iteration number, 

and uses the registers to do these comparison and increment. The jump action of the asm 

code is faster than the jump bytecode instruction of the interpreter. The performance 

difference of our translator and the JIT is that the JIT uses the registers efficiently and does 

loop optimization. 
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2. the arithmetic tests 

    The performance of our translator in integer computation and long addition and long 

subtraction are good as expected, and if we make more template matching in the future, the 

performance will be close to the JIT. This is because addition and subtraction operations 

on multiword operands are straightforward, so we use several Intel assembly instructions to 

finish those computations directly, and the code size is short. But the performance of long 

multiplication and division is not good as expected. The possible reason is that 

multiplication and division of multiword operands are not straightforward, so we must use 

many Intel assembly instructions and computation algorithms to finish those operations, 

and these used algorithms called longhand multiplication algorithm and nonrestoring 

division algorithm[26,32] are slower than the internal operations of the interpreter. 

    We use the assembly instructions of the FPU to finish the float and double 

computations. The performance of our translator is better than the interpreter, but slower 

than the JIT. This is because local variables are saved in the memory, we must get the 

value of the local variable through memory, and then continue to compute. Therefore, the 

slow reason is the reading and writing of the memory. 

 

3. the array test, field test 

    Our translator uses the JNI function to translate those bytecode instructions associated 

the array and field operations. When we use the JNI function once, the difference is very 

small and is unobvious. If we use the JNI function in a heavy-weight loop, the difference is 

obvious. The solution is that many results which many JNI functions generate are 

unchanged in a heavy-weight loop, and we can let these JNI functions to execute once, and 

save those results which these JNI functions generate for next used. This work that how to 

use the JNI function efficiently is the future work. 

 

4. the user method tests 

    For static method calling, the performance of our translator is close to the JIT. This is 

because the actual callee method is decided at compiling time, and thus we can generate a 

calling assembly code directly. The speed of a calling assembly code is fast. For instance 

method calling, the speed of invoking once is faster than the interpreter. The interpreter 

resolves the instance method when the interpreter first meets the instance method at 

running time, and replaces the entry of the constant pool with direct address which may be 

an offset in the method table. When the interpreter meets the same instance method second, 

it jump to the starting address of the instance method to execute. The translated asm code 

always performs our designed dynamic dispatching algorithm to call the correct method 

every time, even though is the same instance method. Because our translated asm codes 

must perform dynamic dispatching despite the same instance method, but the interpreter 
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invokes the same instance method by direct address except for first resolving. So this is 

why our translator has same performance as the interpreter for calling instance method in a 

heavy-weight loop. The solution is that smarter dynamic dispatching mechanism. If 

invoking the same instance method second, we do not perform the dynamic dispatching, 

and can invoke the instance method directly. The solution needs to analysis the data flow 

of the program, and this is a future work. 

 

5. the excellent examples tests 

    The performance of our translator is near to the interpreter, and there are some 

distance between our translator and the JIT. The Linpack and BTest has a lot of shuffling 

around in array computations. The possible slower reason is the overhead of using the JNI 

functions. If we can use the JNI function efficiently, we can improve the performance. 

 

 

    In order to make the translated asm codes right, we do many tests by many examples 

during the translator developed phase. Basically, we feel that our translator is potential to 

deliver good performance on these examples during testing course. In the real world, the 

Java application programmer will not write a program which invokes a same instance 

method for many times, and has too many array computations. Therefore, to date our 

translator can gets the good performance for those general applications. 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

    Performance of Java is always an interesting issue. In this thesis, we described an 

approach to translate Java bytecode to X86 assembly code. The approach does not 

generates the intermediate representation, but adopts code mapping method for the 

bytecode instruction. The code mapping method simplifies the complexity of other native 

compilers which generate IR in the past. 

 

    In order to generate right assembly codes, we propose that the one-pass is used to 

gather informations about the class file and bytecode instructions, and the two-pass is used 

to generate the actual asm codes. We use the template matching to do some optimizations, 

and use the JNI function to communicate with the Java Virtual Machine. 

    In order to implement the dynamic dispatching in assembly codes, we designed a 

mechanism which consists of four components mentioned in section 3.2.4.2. We use the 

four components to finish that the environment which is a static binding can invoke the 

method which are decided in a dynamic binding environment. To date, the speed of our 

translator is faster than the interpreter, but is slower than the JIT according to our 

experiments. Although there are still some distance between our translator and the JIT, but 

the performance of our translator which is used on real-world applications is acceptable, 

and there are opportunity to refine it. 

 

5.2 Future work 

    To date, there are still many enhancing the performance methods of Java in the native 

compiler category. They are differentiated between machine dependent and machine 

independent. In order to enhance the performance, we list here some work we wish to 

accomplish in the future. 

 

● smarter register allocation. 

● implement more optimizations in the template matching. 

● Make more tests, such as SPEC JVM98 microbenchmark. 

● Use the JNI function efficiently. 

● Smarter dynamic dispatching. 

 

We believe that our translator will has the same performance as the JIT after finishing 

these future work, even better. 



 86

References 

 

[1] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh, and 

James M. Stichnoth,“Fast and effective code generation in a just-in-time Java compiler”, 

ACM SIGPLAN Notices, 33(5):280-290,May 1998. 

 

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,“Compilers Principles, Techniques 

and Tools”, Addison-Wesley, 1986. 

 

[3] J. Gosling, B. Joy and G. Steele,“The Java Language Specification, second edition”, 

Addison-Wesley, 2000. 

 

[4] Arnold, Ken, and James Gosling,“The Java Programming Language”, (Reading, MA: 

Addison-Wesley), July 1997. 

 

[5] Tim Lindholm and Frank Yellin,“The Java Virtual Machine Specification”, 

Addison-Wesley, Reading, MA, USA, second edition, 1999. 

 

[6] C.-H.A. Hsieh, J.C. Gyllenhaal, and W.W. Hwu,“Java Bytecode to Native Code 

Translation:The Caffeine Prototype and Preliminary Results”, Proc. 29
th Ann. 

International Symp. Microarchitecture, IEEE CS Press, Los Alamitos, Calif., 1996, 

pp.90-97. 

 

[7] Ye Hua, Tong WeiQin, Yao WenSheng,“Platform independence issues in compiling 

Java bytecode to native code”, High Performance Computing in the Asia-Pacific Region, 

2000. Proceedings. The Fourth International Conference/Exhibition on , Volume: 1 , 14-17 

May 2000 Pages:530-532 vol.1. 

 

[8] C.-H.A. Hsieh, M.T. Conte, T.L. Johnson, J.C. Gyllenhaal, W.-M.W. Hwu, 

“Compilers for Improved Java Performance”, Computer , Volume: 30 , Issue: 6 , June 

1997 Pages:67-75. 

 

[9] P. Bothner,“A Gcc-based Java Implementation”, Compcon '97. Proceedings, 

IEEE , 23-26 Feb. 1997 Pages:174-178. 

 

[10] D. Lance, R.H. Untch, N.J. Wahl,“Bytecode-based Java Program Analysis”, April 

1999 Proceedings of the 37th annual Southeast regional conference. 



 87

[11] H.D. Lambright,“Java Bytecode Optimizations”, Compcon '97. Proceedings, 

IEEE , 23-26 Feb. 1997 Pages:206-210. 

 

[12] R. V.-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, V. Sundaresan, “Soot-a Java 

Bytecode Optimization Framework”, November 1999 Proceedings of the 1999 

conference of the Centre for Advanced Studies on Collaborative research. 

 

[13] F.G. Chen, and Ting-Wei Hou,“Design and Implementation of a Java Execution 

Environment”, Parallel and Distributed Systems, 1998. Proceedings., 1998 International 

Conference on , 14-16 Dec. 1998 Pages:686-692. 

 

[14] A. Azevedo, A. Nicolau, and J. Hummel,“Java Annotation-Aware Just-In-Time 

(AJIT) Compilation System”, June 1999 Proceedings of the ACM 1999 conference on 

Java Grande. 

 

[15] V. Mikheev, N. Lipsky, D. Gurchenkov, P. Pavlov, V. Sukharev, A. Markov, S. 

Kuksenko, S. Fedoseev, D. Leskov, A. Yeryomin,“Overview of Excelsior JET, a high 

Performance Alternative to Java Virtual Machines”, July 2002 Proceedings of the third 

international workshop on Software and performance. 

 

[16] Suganuma et al.,“Overview of the IBM Java Just-In-Time Compiler”, IBM 

Systems Journal, Vol. 39, No. 1, 2000. 

 

[17] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim 

Newsham, and Scott A. Watterson,“Toba: Java for applications: A way ahead of time 

(WAT) compiler”, Proc. Usenix Association, pp.41-54, 1997. 

 

[18] M. Cierniak, G.-Yuan Lueh, J.M. Stichnoth,“Practicing JUDO:Java Under Dynamic 

Optimizations”, May 2000 ACM SIGPLAN Notices , Proceedings of the ACM 

SIGPLAN 2000 conference on Programming language design and 

implementation,  Volume 35 Issue 5. 

 

[19]“Tower J”, Tower Technology., http://www.twr.com/. 

 

[20] Java Technology, http://java.sun.com/. 

 

[21] Bill Venners, Inside the Java 2 Virtual Machine, McGraw-Hill Companies, 2001. 

 



 88

[22] Jon Meyer and Troy Downing 著，JAVA 虛擬機器，蔡寶進譯，美商歐萊禮股

份有限公司台灣分公司，2000 年 7 月初版。 

 

[23] Joshua Engel, Programming for the Java Virtual Machine, Addison Wesley Longman, 

1999. 

 

[24] Sheng Liang, The Java Native Interface, Addison Wesley, Longman, 1999. 

 

[25] Kip R. Irvine, Assembly Language for Intel-Based Computers, Fourth Edition, 

Pearson Education, Inc., 2003. 

 

[26] Sivarama P. Dandamudi, Introduction to Assembly Language Programming, Springer, 

1998. 

 

[27] Ytha Yu, Charles Marut, Assembly Language Programming and Organization of the 

IBM PC, McGraw-Hill, inc., 1992. 

 

[28] Richard C. Detmer, Introduction to 80x86 Assembly Language and Computer 

Architecture, Jones and Bartlett Publishers, 2001. 

 

[29] IA-32 Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, 

2002. 

 

[30] IA-32 Intel Architecture Software Developer's Manual, Volume 2: Instruction Set 

Reference, 2002. 

 

[31]“99% Java”, Assembly and JNI, http://www.amherst.edu/~tliron/jni/assembly.html, 

Biswajit Sarkar. 

 

[32] David A. Patterson, John L. Hennessy, Computer Organization & Design The 

Hardware/Software Interface, second edition, Morgan Kaufmann Publishers, 1997. 

 

[33] 探矽工作室著，深入嵌入式 Java 虛擬機器，學貫行銷股份有限公司，2002

年 8 月初版。 

 

 

 

 



 89

Appendix 

    The following code is the startvm.c. 

 

#include <jni.h> 

#include <stdio.h> 

#include <windows.h> 

typedef jint (JNICALL CreateJavaVM_t)(JavaVM **pvm, void **env, void *args); 

#define PATH_SEPARATOR ';' /* define it to be ':' on Solaris */ 

#define USER_CLASSPATH "." /* where Prog.class is */ 

JNIEnv*  startvm(); 

JNIEnv*  startvm() { 

    CreateJavaVM_t *CreateJavaVM; 

    HINSTANCE hvm; 

    JNIEnv *env; 

    JavaVM *jvm; 

    jint res; 

    jclass cls; 

    jmethodID mid; 

    jstring jstr; 

    jclass stringClass; 

    jobjectArray args; 

#ifdef JNI_VERSION_1_2 

    JavaVMInitArgs vm_args; 

    JavaVMOption options[1]; 

    options[0].optionString = "-Djava.compiler=NONE"; 

    //options[1].optionString = "-Djava.class.path=c:\\j2sdk1.4.1_01"; 

    options[1].optionString = "-Djava.class.path=."; 

    //options[2].optionString = "-Djava.library.path=c:\\j2sdk1.4.1_01\\lib"; 

    //options[3].optionString = "-verbose:jni"; 

    //vm_args.version = 0x00010002; 

    vm_args.version = JNI_VERSION_1_4; 

    vm_args.options = options; 

    vm_args.nOptions = 2; 

    vm_args.ignoreUnrecognized = JNI_TRUE; 

/* Create the Java VM */ 

   hvm=LoadLibrary("c:\\j2sdk1.4.1_01\\jre\\bin\\client\\jvm.dll"); 

   if(hvm == NULL) 
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   { 

    return NULL; 

   } 

   CreateJavaVM = (CreateJavaVM_t *)GetProcAddress(hvm,"JNI_CreateJavaVM"); 

    //res = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args); 

    res = CreateJavaVM(&jvm, (void **)&env, &vm_args); 

#else 

    JDK1_1InitArgs vm_args; 

    char classpath[1024]; 

    vm_args.version = 0x00010001; 

    JNI_GetDefaultJavaVMInitArgs(&vm_args); 

    /* Append USER_CLASSPATH to the default system class path */ 

    sprintf(classpath, "%s%c%s", 

            vm_args.classpath, PATH_SEPARATOR, USER_CLASSPATH); 

    vm_args.classpath = classpath; 

/* Create the Java VM */ 

    res = JNI_CreateJavaVM(&jvm, &env, &vm_args); 

#endif /* JNI_VERSION_1_2 */ 

 

    if (res < 0) { 

        fprintf(stderr, "Can't create Java VM\n"); 

        exit(0); 

    } 

    return env; 

} 

 

 

 


