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Abstract—We consider piecewise monotone (not necessarily, strictly) piecewise C? maps on
the interval with positive topological entropy. For such a map f we prove that its topological
entropy hiop(f) can be approximated (with any required accuracy) by restriction on a compact
strictly f-invariant hyperbolic set disjoint from some neighborhood of prescribed set consisting
of periodic attractors, nonhyperbolic intervals and endpoints of monotonicity intervals. By
using this result we are able to generalize main theorem from [1] on chaotic behavior of
multidimensional perturbations of solutions for difference equations which depend on two
variables at nonperturbed value of parameter.
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1. INTRODUCTION

In this paper we generalize main result of [1] from piecewise analytic to piecewise C? maps.
Consider a family of difference equations of the form

@)\(ynayn-i-la o 7yn+m) = 07 ne Z’ (]‘]‘)

where ) is a parameter from some metric space. We assume that the difference equation at the
exceptional (unperturbed) value of the parameter depends on two variables, i.e.,

@)\0 (.TO, L) 7xm) - {(mNa xN-i—L)a

where N and N + L are two distinct integers between 0 and m, and {(z,y) is a function such
that for the equation &(x,y) = 0 there is a branch y = ¢(z) with positive topological entropy, i.e.,
E(z,o(x)) =0 and hiop(e) > 0. Notice that in the case when L =1, the solutions of difference
equation (1.1) with A = Ao contain orbits of the one-dimensional map x — @(z). On the other
hand, if L > 1, the solutions of (1.1) with A = Ao contain orbits of a generalized one-dimensional
transformation which can be regarded as the “L-th root” of ¢. The case when L < 0 is also possible,
this case corresponds to reversing the time for solutions induced by the maps.

In view of more applications, we allow the functions @) and the local map ¢ to be not defined
in some regions; more precisely, we suppose that ®, and ¢ are defined on domains @ and Q™!
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APPROXIMATION OF ENTROPY ON HYPERBOLIC SETS 211

respectively, where @ = [s1, 2] \ V for some fixed real numbers s1,s2 and open set V, the latter
being the union of finitely many open intervals in [s1,s9]. Here s; and sg can be regarded as
some fixed bounds for coordinate projections of orbits we are interested in, while V stays for an
escaping region which is never visited by those interesting orbits. The topological entropy for (1.1)
(as a quantity to estimate chaotic behavior of solutions) is defined as hiop(0) for the shift map o
restricted to the set of bi-infinite solutions (z,,)> _ . for (1.1) (with respect to the product topology)
satisfying x,, € @Q for all n € Z. Also, hiop () is meant as the topological entropy of ¢ restricted to
Nolo® ™(Q) . Main result in [1] shows that the perturbed multidimensional difference equations
are chaotic provided that the one-dimensional map at the unperturbed value of the parameter is
piecewise analytic and has enough (with respect to the topological entropy) chaotic orbits which
avoid prescribed regions. In the present paper we are able to extend that result to allow piecewise
C? one-dimensional local maps. More precisely, the following holds.

Theorem 1. Consider a family of difference equations of the form

q))\(yn7 Yn+1y - - - 7yn+m) - 07 n e Za (12)
with the function ®y : Q™! — R which is C' for each X and is continuous in A\ along with the
partial derivatives 0;®y, i =1,...,m+1, Q = [s1,82] \'V for some (fized) real numbers s1 < s

and 'V is the union of finitely many open intervals in [s1, $2], while parameter \ being from some
neighborhood of the unperturbed value \g in some metric space. Assume that at \g, the function ®
depends on exactly two variables:

(I))\O(l'o,l‘l, cee ,LL‘m) = g(xNvl‘N-i-L)v

0 < N,N + L < m. Assume, in addition, that for the equation {(x,y) = 0 there is a branch y = ¢(x)
with positive topological entropy, where ¢ : Q — [s1,52] is supposed to be a piecewise C? function.
Then for any € > 0 there exists d > 0 such that for each X\ in the d-neighborhood of Ao , there
is a closed (in the product topology) o-invariant subset Ty of the set of solutions for (1.1) with
hiop(a|ry) > hiop(@)/|L| — €. Moreover, solutions inI'y depend continuously on X both in the product
and the uniform topologies.

The only difference between this theorem and similar result in [1] is that the local map
¢ : @ — [s1, s2] was supposed there to be a piecewise analytic function. The proof in [1] contained
three ingredients: (i) proving a version of the implicit function theorem in Banach spaces with
uncountably many branches along with constructing topological conjugacy in terms of these
branches; (ii) checking the assumptions of this theorem for multidimensional perturbations of
hyperbolic orbits of one-dimensional local maps; and (iii) finding a closed invariant subset for
the local one-dimensional map which consists of hyperbolic repelling orbits and approximates the
topological entropy of the local map. By using items (i) and (ii), the hyperbolic orbits from item
(iii) can be continued in high dimensional space of solutions for perturbed difference equations.
Now in the present paper, only item (iii) needs to be generalized as to admit piecewise C? local
maps. The main difference between piecewise analytic and piecewise C? maps for the mentioned
problem on approximation of entropy by hyperbolic orbits, is possible presence of nonhyperbolic
subintervals for piecewise C? maps (because one needs to avoid neighborhoods of such subintervals
without lost of entropy).

It is well known that in contrast to higher dimensions, for smooth one-dimensional maps one has
commonly Axiom A and hyperbolicity results. A remarkable theorem by Mané [5] states that for a
C? interval map f whose periodic points are hyperbolic, any compact f -invariant set away from
critical points is hyperbolic repelling (see more precise statement in next section). Nevertheless,
given a C? interval map, it is not easy to check the above assumption on whether all of the periodic
orbits are hyperbolic. And also, given a compact invariant set, in order to ensure its hyperbolicity,
one needs to check that this set is disjoint from some neighborhood of the critical set. On the other
hand, if the topological entropy of f is positive, it is reasonable to ask whether there is a compact f-
invariant hyperbolic set whose topological entropy approximates htop (f) with the required accuracy
(see similar problems in [12] for piecewise monotone piecewise C! intervals maps without critical
points, and in [3] for C'*¢ surface diffeomorphisms; let us mention in this connection that for merely
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212 LI, MALKIN

continuous surface homeomorhisms such an approximation need not take place, because M.Rees in
[10] has constructed a minimal positive entropy homeomorphism on the 2-torus).

In this paper we answer the above question for a class of piecewise monotone piecewise C? maps
(possibly discontinuous and not necessarily strictly monotone on monotonicity intervals). By small
change of entropy we are able to get rid of the redundant assumptions (both on the map and on
the orbits of points from an invariant set) to ensure hypebolicity for the restriction of f to an
appropriate set. More precisely, we prove the following.

Theorem A. Let f be a piecewise monotone piecewise C? map on a compact interval I and assume
that its derivative is piecewise monotone as well. If hiop(f) > 0 then for any 6 > 0 there exists a
compact hyperbolic repelling strictly f-invariant set M such that hyop(f|ar) > heop(f) — 0.

In order to prove this result in piecewise C? setting, we first prove a result on approximating
the topological entropy for piecewise C° maps as follows.

Theorem B. Let f be a piecewise monotone piecewise continuous map on I = [0, 1] with a partition
Z ={(0,dy1),(d1,d2), ..., (dm—1,1)}. If hiop(f) > 0 then for any 6 > 0 there exist a compact strictly
f-invariant set M C I and an open set V O {di,da,...,dm—1} such that hiop(flar) > heop(f) — 9
and M NV = (.

In the above theorems, the set M is proved to be strictly invariant (i.e., f(M) = M). Such a strict
invariance is needed for the mentioned item (ii) in our strategy for multidimensional perturbations
of one-dimensional maps. Our technique below uses some constructions from entropic theory for
piecewise monotone piecewise continuous maps (see [4, 6-9]). Note that even in the situation when
the initial map is continuous, we need to use construction of truncations which lead naturally to
discontinuous maps.

2. PRELIMINARIES AND PROOF OF THEOREM B

The following result by Maifié [5] states that away from critical points, any C? interval map is
hyperbolic.

Theorem 2 (Mané [5]). Let I be a compact interval of R and g: I — I be a C? map. Let U be
a neighborhood of the set of critical points of g. Then

1. All periodic orbits of g contained in I\U of sufficiently large periods are hyperbolic repelling.

2. If all the periodic orbits of g contained in I\U are hyperbolic repelling, then there exist C' > 0
and X\ > 1 such that |Dg™(z)| = C\", whenever g'(z) € I\(U U By) for all 0 <i<n—1,
where By is the union of the immediate basins of the attracting periodic orbits of g contained
in I\U.

We need also the following corollary from Mané’s theorem.

Corollary 1 ([2]). Let g: I — I be a C? map and K C I be a compact forward invariant set. If
K does not contain critical points, attracting periodic points and non-hyperbolic periodic points of
g, then it is a hyperbolic repelling set.

We consider piecewise C2 maps f, so there might be discontinuity points for f, its first derivative
D f and second derivative. We shall remove small neighborhoods of such discontinuity points along
with neighborhoods of critical points, attracting and nonhyperbolic periodic points. Nevertheless,
the topological entropy after appropriate removing will be proved to approach hiop(f).

Let I =[0,1] and f : I — I be a piecewise monotone piecewise continuous map and let Z be its
partition, i.e., I = J,.z Z and Z consists of finitely many, say m, disjoint open intervals, denoted
by (0,d1), (dy,d2),...,(dn—1,1), on each of which the restriction of f is monotone and continuous.
Also, f will be referred to as a piecewise monotone piecewise C" map if f is monotone and of
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APPROXIMATION OF ENTROPY ON HYPERBOLIC SETS 213

class C" on each of the intervals (0,dy), (d1,d2), ..., (dm—1,1). The map f need not to be strictly
monotone on each interval in Z, and moreover, at the endpoints d;’s, the map f need not to be
discontinuous nor to change the type of monotonicity. To define the topological entropy in the case
of piecewise continuous piecewise monotone maps, here we use the approach by doubling points
construction, as in [7]; see below for details. There are other definitions of topological entropy for
these maps (via separated or spanned sets, and also by counting growth number for preturning
points) and they are equivalent, as it is shown in [9].

We now state the result on approximating the topological entropy hiop(f) by restricting on
compact f-invariant sets whose f-orbits are disjoint from some neighborhood of {dy, ds, ..., dy—1}.
In what follows, by an f-orbit we mean the forward orbit under f; by an f-invariant set M, we
mean a forward invariant one: f(M) C M, while strict invariance means that f(M) = M.

Theorem 3. Let f be a piecewise monotone piecewise continuous map on I = [0, 1] with a partition
Z ={(0,dy),(d1,d2),...,(dm—1,1)}. If hop(f) > O then for any § > 0 there exist a compact strictly
f-invariant set M C I and an open set VO {di,da,...,dm—1} such that hip(flar) > heop(f) — 0
and M NV = (.

Before proving Theorem 3, we state its consequence.

Theorem 4. Let f be a piecewise monotone piecewise C* map on a compact interval I with finitely
many critical points, attracting periodic points, and non-hyperbolic periodic points. If hyop(f) > 0
then for any § > 0 there exists a compact hyperbolic repelling strictly f-invariant set M such that
htop(f|M) > htop(f) — 0.

Proof. Let D be the (finite) set consisting of: (i) endpoints of intervals on each of which f is
monotone and C?, (ii) critical points of f, (iii) non-hyperbolic periodic points of f, and (iv)
attracting periodic points of f. By considering addition of finitely many points to the endpoints of
monotonicity intervals for an (old) partition, we may assume the points of D as endpoints of the
new partition. Then given any ¢ > 0, by using Theorem 3 we get a compact strictly f-invariant set
M and an open set V' O D so that f-orbits of M are disjoint from V', and hop(f|ar) > hiop(f) — 0.
If d € D is a point at which f is not of class C2, then we can modify f inside a small neighborhood
of d contained in V such that (the modified map) f becomes C? in the closure of this neighborhood.
Repeating such a smoothing for each point under consideration, we get a map, say Fs: I — I of
class C2. By such a construction, Fs|ys = f|yr and since M is strictly f-invariant, we have that M is
also strictly Fs-invariant, and hop(Fs|ar) = hiop(f|ar) > hiop(f) — 9. Therefore, by using Corollary
1 for the map Fs and the compact invariant set M, we complete the proof.

The proof of Theorem 3 contains several lemmas below. We will need the so called doubling
points construction (see e.g., [7]). Let I = [0,1] and D := {d;,da,...,dn_1}. Let us emphasize that
we do not care about values of f at the points from D because only one sided limits of f at these
points are of use (see also [9], where the authors proved that the values of the map at the endpoints
of intervals of continuity are irrelavent for calculation of topological entropy). Define the set

wi= (U7, £m) \{o.1}

(which could be thought of as “the set of preturning points”). Now consider the following set I
which contains “doubling preturning points” rather than single ones:

I=T\W)U{w ,w:weW}.

The set I = I(f) is endowed with the natural (total) ordering so that if y < w < z in I and w € W,
then y < w™ < w™ < z. Then it is supposed that I is endowed with the order topology (note

that I is a totally disconnected space provided f has no homtervals). We will call I the doubling
construction space for f.

Let 7 : I — I denote the map by
7(y) =w fory € {w™,w"} with w € W,and n(y) =y for y € I\ W. (2.1)
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214 LI, MALKIN

For a subset A C I, let clos;A denote the closure of 7~ (A \ W) in I. Let 2 = {clos;A: A€ Z}.
The restriction f| n\w can be uniquely extended to a continuous piecewise monotone map f I—1.
We will call f the doubling extension of f.

For z,y € I, let {(z,y) be the minimal nonnegative integer ¢ such that ff(a;) and fg(y) belong
to different elements of Z; and set £(z,1) = 400 if for any n, f”( ) and f"(y) belong to the same

element (depending on n) of Z. Then the order topology on I is induced by the metric p on I
defined by the formula

P, y) = +|m(z) — m(y)l. (2.2)

Uz, y)+1

We remark that p(d=,d") =1 for any d € D (even in the case when f is continuous at d).
The map m is continuous on I and it is a semiconjugacy from f to f in the following sense:
fom(z)=mof(z) forall z e I\ {d~,d" :d e D}, and if x = d* (resp. z = d~) for some d € D,
then 7o f(z) = lim,\ g fom(y) (resp. mo flz) = limy 4 f om(y)). So, if P is an f-invariant set
disjoint from {w™,w* : w € W} then 7 conjugates f|p to flr(py-

According to the total ordering in I, we can consider intervals in I of the form (a, b), (a,b], [a,b),
or [a,b] (the latter possibly with a = b), a,b € I. Let ¢ € I, € > 0 and let U,(c) denote the open ball
of radius € centered at ¢ : U.(c) = {z € I : p(z,¢) < €}. Notice that Uc(c) is an interval in I which
might have any of the four above forms, and 7(U(c)) is an interval in I which contains 7(c), but
7(c) need not to be the middle point of this interval). Nevertheless, it is easily seen that m(U(c))
tends to {c} as € — 0.

Following [7], we define the topological entropy, hiop(f), of the initial map f to be equal to
Ptop ( f ), the usual topological entropy of the continuous map f on the compact space I.

Given an ¢ > 0 and a € I, let M, , denote the set
Meo=I\{J_ F(Ua)). (2.3)

So M, is a compact f—invariant subset of I (in the order topology) such that f—orbits of points
from M, , never visit Uc(a). Let us fix (for a while) an e with

0 < e < min(1,min{|d — d'|/2 : d,d’ € D,d # d'}) (2.4)

and take a point a € {d~,d"} for some d € D. We now consider, without loss of generality, the

case when a = d~. Then, because of (2.4), the subinterval U.(a) of I is of the form either (y,d"]
with y € I\ W or [y,d”| with y = w™ for some w € W. We denote such a left end point y by d_.
Notice that (2.4) also implies that these 2(m — 1) subintervals {U.(d™),U.(d") : d € D} are disjoint

(because the distance p between points on I is bigger than or equal to the distance on I between
the m-images of these points).

Define the following map fé,d_ on I by
. fz), ifxzé¢Udld),
foar (o) = S0 20 7 Uel) (25)
f(dZ), otherwise,
and call it the left e-truncation of f at d.
Lemma 1. The map f;d_ : I — I is continuous and htop(fed—) = htop(fad“Me )= htop(f|M€ )
Proof. The map fe,df differs from f only on the interval Uc(d™), which equals either (d_,d~] or

[d-,d~]. Since f is continuous, it follows that in both cases fe,df is continuous at dZ (because of

the definition by (2.5)). Moreover, fé,d— is continuous at d~ because d~ is isolated in I from the
right.
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APPROXIMATION OF ENTROPY ON HYPERBOLIC SETS 215

Let Q(ﬁd—) be the nonwandering set of fé,d—. If f"(d-)NU.(d") =@ for every n > 1, then
Q(ﬂd_) C M, 4- because Uc(d~) consists of wandering points for fe,d_, and if we suppose, by

contrary, that there is a point in Q( fadf) \ M 4-, then we would have a contradiction to the fact
that the nonwandering set is invariant. Therefore,

htOp(fgd‘) = htOp(de— |Q(f~€’d_)) = htOp(de— |M€7d7) = htOp(ﬂME’df ) (2.6)

where the last equality holds because the restriction of f to M, 4 coincides with fe7d—. In the
case when fm0(d-) e U.(d”) for some ng > 1, it is easily seen that the set Q(fad_)\ME,d_

consists precisely of one periodic orbit of period ng. Thus we have as before, hop( fe,df |Q( 7 dﬁ)) =

hiop ( ]Fe,d— |a, ) because the topological entropy on a finite set is zero. So in this case the equalities
in (2.6) are true.

Similar to the left e-truncation, we can consider the right e-truncation, ]Ee7d+, and get
hiop (f] M, ;i) = htop( fe7d+ |m_ . ). Furthermore, we consider the e-truncations for all d € D simulta-

neously. To do this, we define the map fg on I by

f(x), ifz¢Uld)UUL(d") for all d € D,
fe(x) =9 f(do), if z € U.(d") with d € D, (2.7)

Also let M, := Naep(Mc 4- VM, 4+). Then M, is a compact f-invariant subset of I whose f-orbits

never visit e-neighborhood of the set |J,c D{d_,d+}. Since D is a finite set, the result similar to
Lemma 1 readily follows.

Lemma 2. The map f.: I — I is continuous and hiop(fe) = htop(fe|M€) = htop(f|M€)-

A

In order to relate the above properties of continuous maps on I to properties of piecewise
continuous maps on I (in other words, “to project” the constructed truncations to maps on I),
we need to introduce an intermediate space. To do this, we identify those pairs of points

{w™,wt},w € W, which under some iterate of f belong to the same e-neighborhood of either
d~ or d* for some d € D. More precisely, consider the following equivalence relation ~ on I:

x=yor {z,y} = {w ,wt} with w € W, and there exist

T~y <— N . . ~ B
n>0and d € Jyep{d,d"} such that {f"(z), f"(y)} C Ue(d).

Notice that by the above definition, the relation ~ is preserved by f., i.e., if z ~ y then fé(m) ~ fe(y).

Let I, be the quotient space with respect to this relation ~ and let 7, : I — I. be the corresponding
quotient map. Clearly, 7. is at most two-to-one, order preserving, and is continuous with respect

to the order topologies on I and I.. If two points w™,w™ are collapsed by 7, (i.e., w™ ~w™), we
will denote their common image simply by w. Let W, denote the subset of W which consists of
“non-collapsed” points by 7, i.e.,

We={weW:t{z - (w)} =1}

Then I, can be represented as I, = (I \ W) U {w™,w" : w € W,}. By the definition of 7., one easily
gets m o T = m, where 7 : I. — I is defined just as m by (2.1) (for m¢ we use the subscript € in
order to mention that it acts on the space different from I).
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Let g : I — I be a continuous map which preserves the relation ~, i.e., g satisfies the assumption
that g(w™) = g(w™) for every w € W with 716( ~) = @(w™). Then g projects to a continuous map

on I,. Indeed, consider the map ¢ : I. — 1. defined by

g'(x) = e 0 g(7t. (2)),
where by 7. 1(3:) we mean the full preimage of ; notice that although #.!(x) may consist of two
points, g(#71(x)) is a single point because of the above assumption on g. By its definition, g' is
continuous and satisfies ¢' o 716 = 7. o g. We may apply the above construction to the map g = f6
because it is continuous on I and preserves the relation ~; hence we have the continuous map fE
on I..
Now we return to the “initial phase space” I. Let M, := m(M,).

Lemma 3. The following statements hold:

1. The set M. is a compact f-invariant subset of I;

2. There is a neighborhood of D such that for any point xg € M., its f-orbit is disjoint from
this neighborhood.

Proof. Let us recall that 7 : I — I is continuous and the restriction of 7 to any subset of I disjoint
from {w™,wt : w e W} is a one-to-one map which satisfies f o 7w (z) = 7 o f(x). This implies the
first statement of the lemma.

Let

8o = minmin(d — 7(d.), 7(d}) — d).
deD

Then the f-orbit of any initial point from M, is away from D by the distance at least dg.

So, in particular, M, is disjoint from W and therefore, by notation in (2.1), M, is the same as
M, (they are homeomorphic metric spaces with respect to the usual length on M, and the metric
p on M,). Next, we define the e-truncation map f. : I — I by

f(x), if # ¢ (w(d;),n(d})), for alld € D,
fe(z) = q f(x(d)), if z € (x(d]),d),d € D, (2.8)

)
¢)
f(x(dd)), if z € (d,m(d)),d € D

See Figure 1. It is easily seen that f. is continuous at the points w(d_ ), w(dS) for any d € D.
Hence, f. is a piecewise continuous and piecewise monotone map with the partition Z. Then it is

easily checked that the doubling construction space for f. is precisely fe( i.e., if we consider f. as
the initial map then Iy, its doubling construction space, coincides with I, ), while the doubling

extension of f, is precisely fj , i.e., fe = fj . So we have the following commutative diagrams:

NI RO
fl LR UL (2.9)
IAA—> fE — I

For the proof of Theorem 3, we need one general fact on topological entropy as follows.

Lemma 4. Let X be a compact metric space and ¢ : X — X a continuous map. Then Y :=
Ne o™ (X) is a compact strictly invariant subset of X and hiop(@ly) = hiop().

Proof. The strict p-invariance of Y follows from our assumptions on compactness of X and
continuity of ¢. The equality htop(¢) = htop(@lnse  on(x)) follows from [11], Corollary 8.6.1.
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A

|
0 w(d)dnd) d d" kg

Fig. 1. The graph of the e-truncation map fe.

Now we give the proof of Theorem 3, named as Theorem B in Section 1.

Proof. Since f. is semiconjugate to fe by the map 7, which is at most two-to-one, we have hgop ( fe) =
hiop(fe). Note that if we consider the restrictions fe[ar., fel#. (ar) and fe|as, in diagram (2.9), then

the semicongugacies 7. and 7. becomes, in fact, conjugacies. Hence hgop( f5| M.) = heop(felar.). So
by using lemma 2, we have

htop(fe) = htop(.fe) = htop(.fe‘Me) = htop(f5|M5)-

Since f, is the doubling extension of f., it follows from the definition of topological entropy for

piecewise monotone maps that hop(fe) = hiop( fe) Now, using the fact that the restrictions to M,
of the maps f and f. coincide, we have

htop(fe) - htop(fe|M5) = htop(f‘Me)' (2'10)

Since each interval (w(d.),m(dl)) tends to {d} as ¢ — 0, we have that the Hausdorff distance
between graphs of f. and f tends to zero. Thus by the lower semi-continuity property of the
topological entropy function on the set of piecewise monotone piecewise continuous maps with the
given number of monotone intervals (see [9]), we have liminfc_.g hop(fe) = hiop(f). On the other
hand, it is easily seen that for any € > 0, hiop(fe) < hiop(f). So we get that lime_.g hiop (fe) = Piop(f)
and thus, by (2.10), lime_q htop(f|a1.) = htop(f). So, given a § > 0 we can find €y > 0 such that
for 0 < e < €, hiop(f|ar.) > hiop(f) — 0, and so by using lemma 4 (since M, is compact and f-
invariant) we may set M := N9, f"(M) and V := Ugep(m(d. ), 7(d])) according to notations in
the statement of Theorem 3.

3. PROOF OF THEOREM A

The following result can be regarded in a sense as an extension of Theorem 4.

Theorem 5. Let f be a piecewise monotone piecewise C? map on a compact interval I and assume
that its derivative is piecewise monotone as well. If hiop(f) > 0 then for any § > 0 there exists a
compact hyperbolic repelling strictly f-invariant set M such that hiop(f|ar) > hiop(f) — 9.

We will need the following lemma. To clarify the statement, let us assume that for a piecewise
monotone piecewise C? map ¢ with piecewise monotone derivative, its partition is chosen so that
on each interval of the partition, g is C? and both ¢ and Dg, the derivative of ¢, are monotone. We
will refer to the intervals of such a partition simply as monotonicity intervals.
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Lemma 5. Let g: 1 — I be a piecewise monotone piecewise C? map with piecewise monotone
derivative and let U be a neighborhood of the set containing critical values of g and endpoints of
monotonicity intervals. Then there exists a natural number K such that all g-periodic orbits having
periods bigger than K and contained in I\ U are hyperbolic repelling.

Proof. Since the derivative Dg is piecewise monotone, it follows that L := {g(x) : Dg(x) = 0}, the
set of critical values of g, is finite. For any y € L, the intersection of g~! (y) and the set of critical
points is a union of finitely many closed (possibly trivial) intervals. Take a small neighborhood
of each of these intervals so that its g-image belongs to U. Denote by V(y) the union of such
neighborhoods and let V' ={J,c; V(y).

Next we modify the map ¢ inside small neighborhoods containing endpoints of monotonicity
intervals and contained in U, in order to obtain a C? map G : I — I. By applying Theorem 2 to G,
we get that any periodic orbit of G contained in I\ V of sufficiently large period is hyperbolic
repelling. One the other hand, by the construction of G, any g-periodic orbit contained in I\ U
coincides with G-periodic orbit and is away from V. This completes the proof.

Now we prove Theorem 5 which is named as Theorem A in the Introduction.

Proof. Since the set of critical values of f is finite, we may add the points in this set to the
endpoints of monotonicity intervals of f. Let us denote the obtained set by D = {dy,ds, ... ,dp—1}
and let Z be the induced partition (we could regard Z as the initial partition for f). Next we apply
Theorem 3 to f with the partition Z for §/2 instead of § in the statement of Theorem 3. Thus, with
the notations in the proof of Theorem 3, for given § > 0 we have a constant € > 0, an open set V, :=

U (m(d),m(dF)) D D and a compact f-invariant set M, such that hyop(f|ar.) > hop(f) — /2 and
deD
f" (M) NV, =0 for any n > 0. We have also constructed the map f. : I — I defined in (2.8) and

associated to the set V¢, and for this map we have (see (2.10))

htop(fe) = htop(f|Me) > htop(f) - 5/2 (3'1)

Let us stress that the number ¢, the map f. and the sets V., M, will be fixed till the end of the
proof. Also we note that any f-orbit contained in I\ V, is the same as f.-orbit.

Next we apply Lemma 5 to the map f and the open set V. (denoted there by g and U
respectively). Let K be as in the statement of Lemma 5. Then all attracting and nonhyperbolic
periodic orbits contained in I\ V. have periods less than K. Therefore the points of these orbits
are fixed points for the K!-th iterate of f, where K! means the factorial of K. Note that there are
only finitely many attracting periodic points under consideration; indeed, since the derivative D f
is piecewise monotone, it follows that on each monotonicity interval for f&', there might exist at
most one attracting fixed point because attracting fixed points must alternate with non-attracting
ones. As for nonhyperbolic periodic f-orbits contained in I\ V¢, there are fixed points for the map
X' which coincides with the map fX' on UnKZ'BI (V). We show now that these points form a
union of finitely many closed (possibly, trivial) intervals. Indeed, because of piecewise monotonicity
of Df., solutions for the equation |DfX'(x)] =1 form a finite union of closed (possibly, trivial)
intervals. Let be J be such an interval with |DfX'(z)| = 1 on J and fX'(zq) = xq for some zq € J.
In the case when DfX'(z) =1 on J, it is clear that fX'(z) =2 for any x € J. If DfX'(z) = —1
on J, then in fact, J = {zo} because for any other point in J one would have that its least period
is 2K!, which contradicts the definition of the number K. So the set of nonhyperbolic periodic
points under consideration consists of finitely many (possibly none) nontrivial closed intervals, say
Ji = e, Bi], i =1,...,k, and finitely many single points. We will denote by E the (finite) set
consisting of attracting and single nonhyperbolc periodic points (whose orbits are not in V).

We need to construct further truncations for f. in order to remove from M, the nonhyperbolic
periodic points and also the points which belong to basins of periodic attractors (whenever they
exist). For this we supply the map f. with a finer partition: namely, let D' = DU EU{«;, [5; : i =
1,...,k}, so we have added to D attracting periodic points, single nonhyperbolic periodic points
and endpoints of nonhyperbolic periodic intervals (away from V). Let Z’ be the partition for f.
induced by D’. Let us rename f. by g (since € is fixed, it is convenient to regard g = f. as the
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initial map for the doubling construction). It is also convenient to rename for brevity dy := 7(d_)
and d, := w(d}). Then for g with the partition Z’, we consider the doubling construction space
I = f(g) and the doubling extension g.

Let the map 7’ : I’ — I and the metric 5/ on I’ be defined as in formulas (2.1) and (2.2). For
v>0and a € I', we denote by Ufy(a) an open ball in I’ of radius ~ centered at a with respect to
the metric p’. Then Uf/(a) is actually an interval in I’. We further denote by a2/, afyr the endpoints
of the interval U (a).

Let 1 be a positive number smaller than the half of the minimal pairwise distances between
points of the set D' U{dy,d, : d € D}. Let the left and right 7-truncations for the map g : I’ — I’
be constructed at the points e~, et € I’ for each e € E as in formulas (2.5) and (2.7) for similar
truncations for the map f ), and denote them by g, .- and g, .+, respectively. Then for the obtained

. ~ ~ . / / . A~ .
truncations g, .-, g, .+ and the corresponding sets Mme,, ]\41778+ (i.e., the sets whose g-orbits never

visit n-neighborhoods of e~ and e~ respectively; see formula (2.3)), the results similar to those in
Lemma 1 clearly hold true.

Furthermore, for given a “periodic” interval J = [o, (] in the collection {[a;, Gi] : i =1,...,k},
we construct the following map g, s : I’ — I’, the 7)-truncation associated to J , by

9(z), ifa ¢ Uyla™)UUH(BT),
gna(x) =S 9(ay)), ifzeUp(ar), (3.2)
9(8y), ifzeUp(B).
Then g, s is continuous on I , and we obtain the results on topological entropy similar to those in
Lemma 1. More precisely, let J' be the closure of

N (UZ a7 @)) Vo))

in I’, and let M;7 ; denote the set of points in I’ whose g-orbits never visit 7-neighborhood of J’,
i.€.,

A o0 . _ A
My ;=1\ g7"(U(J)), where Up(J) = Up(a™) UJ UUL(BT)).
Then M, ; is compact and g-invariant. Next, we claim that hop(Gn,s) = htop(9| M ,)- Indeed, the

only difference from the proof of Lemma 1 is that the nonwandering points in U, (a™) U J'U Up(B87),
except for two possible periodic points in Ué(a‘) and Ué([fr), fill the whole periodic interval .J'.
Since %' is the identity map on this interval, htop(g| /) = 0 and therefore, the claim is true.

Now by constructing simultaneously the n-truncations at e, e™ and J for all e € E and all J in
the collection P := {[ay, B;] : i = 1,..., k}, we get the n-truncation map, say g,. Let M := clos;, M..

Then the g-orbits contained M/ in never visit open intervals (') ~*(dy, d,), d € D. Let

M= Myn (Y (M - My )0 () My, ). (3.3)
ecE JeP

Then M,; is a compact g-invariant set whose orbits never visit neither the intervals (dy,d,) for

d € D, nor the n-neighborhoods of the points e™, e for e € E, and of the intervals J' for J € P.
Hence, similar to Lemma 2, we have the result that hiop(gy) = Piop (9|57 )-
n

Next, back to the “initial phase space” I, we consider the set M,’7 = (M,;) and the truncation
map g, : [ — I which is defined to coincide with g except at the intervals (7'(e; ), e), (e, 7' (e}))
and ('(a,) ), @), (8,7 (B,)), the map g, takes the constant values g(7' (e, ), g(7'(e;) and g(' (e, ),
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Fig. 2. The graph of the n-truncation map g,; here we denote for brevity o = 7' (o), ﬁ:‘_ =n'(B;}), where

J = [a, 8] is a nonhyperbolic periodic interval, and eli = w’(ef), where e is an attracting periodic point. The
points d and d belong to the set D (which induces the partition of f), where d* is a critical value of f which
equals f-image of a nontrivial interval consisting of critical points.

g(w’(ﬁ;r), respectively (as shown in Fig. 1). As (2.10) in the proof of Theorem 3, we have that

htop(gn) = htop(g|M;])'

Finally, we consider that 1 approaches zero (while € is still fixed). Then the Hausdorff
distance between graphs of g, and g tends to zero. By the lower semi-continuity property of
the topological entropy function due to [9], together with the fact that hyp(gy) < hiop(g), we
have that lim, o htop(gy) = hiop(g). Hence, there exists n > 0 such that hiop(g| M;]) = hiop(gn) >

htop(g) — 6/2. By the definition of MT’? in (3.3), we have M; :w’(M,;) C 7'(M,) C M,; hence
f|M;] = f€|M{7. By recalling that g = f., we have that

hiop (fla1y) = hiop (felary) > top(fe) = 6/2 > hiop(f) =6,

where the last inequality holds due to inequality (3.1).
So, we have obtained for any § > 0, the compact f-invariant set ]\4,’7 with hop (f[ar,) > Ptop(f) — 0
and the neighborhood

V= U(W'(e;),w'(ef{))u U (' (a), 7' (B)) U U (dyg, d,)

ecE [, B]€P deD

of the set consisting of discontinuity points, critical points, attracting periodic points and non-
hyperbolic points such that f-orbits of M, are disjoint from V. Finally, as in Theorem 3, in
order to get strictly invariant set with the same entropy on its restriction, we replace M, by
M =N f"(My).

If d € D is a point at which f is not of class C2, then we can modify f inside a small neighborhood
of d contained in V, so that (the modified map) f becomes C? in the closure of this neighborhood.
Repeating such a smoothing for each point under consideration, we get a map, say Fs: I — [
of class C2. By this construction, Fs|y; = f|a and since M is strictly f-invariant we have that
M is also strictly Fs-invariant, and hiop (F5|ar) = htop (f|ar) > hiop(f) — 6. Therefore, by applying
Corollary 1 to the map Fj3 and the compact invariant set M, we complete the proof.
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