

國 立 交 通 大 學

資訊科學系

碩 士 論 文

在 網 路 通 道 閘 道 器 上

提 供 差 別 服 務 品 質 之 請 求 排 程

Request Scheduling for Differentiated QoS at Access Gateway

研 究 生：歐陽銘康

指導教授：林盈達 教授

中 華 民 國 九 十 三 年 六 月

 ii

在網路通道閘道器上提供差別服務品質之請求排程

Request Scheduling for Differentiated QoS at Access Gateway

研 究 生：歐陽銘康 Student：Ming-Kang Ou Yang

指導教授：林盈達 Advisor：Dr. Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 系

碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

 i

在網路通道閘道器上提供差別服務品質

之請求排程

學生：歐陽銘康 指導教授：林盈達

國立交通大學資訊科學系

摘要

網際網路的交通流量成長的非常快速，造成網路發生擁塞的情形日益增加，

現在企業存取網際網路的瓶頸通常都是發生在連線網路的頻寬上。故在連線網路

上提供頻寬管理的功能是非常重要的，然而傳統在消費者端的網路通道閘道器上

利用封包排程的技術提供頻寬管理功能有三個缺點：低擴充性、在下載瓶頸之後

才作排程控制、同一時間內過量的傳輸。為了解決這些問題，我們提出了請求封

包排程的架構。請求封包排程根據請求封包的三個參數：反應封包大小、反應封

包傳輸率、反應封包回應延遲計算出請求封包對應的反應封包在連線網路中所佔

用的頻寬，然後透過控制類別中請求封包的送出頻率，來提供公平而且可分享的

頻寬，以及降低連線網路中發生碰撞的可能性。模擬的結果顯示不同類別之間的

實際頻寬佔用比率跟指定的頻寬佔用比率相似度非常高，同時反應封包的回覆時

間下降為原來的 68.75%，原因為空閒的頻寬可被其他類別所分享及封包在連線網

路發生碰撞的情形降低，顯示所提的方法確實可以提供差別服務品質。

關鍵字: 需求封包排程、頻寬管理、應用程式差別服務

 ii

Request Scheduling for Differentiated QoS

at Access Gateway

Student: Ming-Kang Ou Yang Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

For ISP’s customers, the access link is usually the bottleneck when accessing the

Internet since they often delay upgrading the access link bandwidth to save costs. Thus

the management of access link bandwidth is imperatively required. On managing the

access link bandwidth, the common approach, packet-level scheduling at consumer-side

access gateway, has three potential problems, namely, low scalability, scheduling behind

the downlink bottleneck, and excessive concurrent transmissions. This work proposes a

ReQuest Scheduler (RQS) to avoid these problems. RQS calculates the bandwidth of

access link needed by the response traffic according to each request’s three parameters,

namely, response size, response transmission rate, and response delay. RQS controls the

releasing rate of requests to provide proportionally shared bandwidth between various

classes, and to reduce congestion occurring at the access link. The simulation results

show the bandwidth usage ratio between classes can be close to the allocated quantum

ratio, while the free bandwidth can be shared among active classes. Also the mean

transmission time is decreased to 68.75% of the original value; and congestion

occurring at the access link is reduced.

Keywords: Request Scheduling, Bandwidth Management, Application QoS

 iii

Contents

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. ARCHITECTURE OF THE REQUEST SCHEDULER ... 4

2.1 OPERATION MODEL ... 4
2.2 RELEASE TIME CONTROLLER (RTC).. 5
2.3 RELEASE PROPORTION CONTROLLER (RPC) ... 6
2.4 RESPONSE RECORDER (RR) .. 7

CHAPTER 3. IMPLEMENTATION OF REQUEST SCHEDULER.. 9

3.1 PROCEDURES WITHIN RQS .. 9
3.2 EXAMPLES .. 12
3.3 INACCURATE PARAMETERS AND COMPENSATION... 14

CHAPTER 4. SIMULATION RESULTS... 16

4.1 SIMULATION ENVIRONMENT.. 16
4.2 THROUGHPUT DIFFERENTIATION .. 17
4.3 USER-PERCEIVED LATENCY ... 18
4.5 FAIRNESS IMPROVED BY THE COMPENSATION MECHANISM .. 19
4.6 THE IMPACT OF INACCURATE DELAYRESP AND TRANSMISSION RATE.................................... 21

CHAPTER 5. MANAGING UPLINK BANDWIDTH BY RQS.. 23

5.1 OPERATION MODEL OF RQS IN MANAGING UPLINK.. 23
5.2 MODIFIED RTC AND RR ALGORITHM .. 23
5.3 SIMULATION SCENARIO AND RESULTS .. 24

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS ... 26

REFERENCES... 27

 iv

List of Figures
FIG. 1: OPERATION MODEL OF A GATEWAY WITH REQUEST SCHEDULER ... 5
FIG. 2: EXECUTION OF RTC... 6
FIG. 3: PROCEDURE IN RTC... 11
FIG. 4: PROCEDURE IN RPC... 12
FIG. 5: PROCEDURE IN RR ... 12
FIG. 6: EXAMPLE OF RTC .. 12
FIG. 7: EXAMPLE OF RR .. 13
FIG. 8: PROCEDURE IN RR WITH COMPENSATION .. 14
FIG. 9: SIMULATION TOPOLOGY USED IN THIS WORK.. 16
FIG. 10: DOWNLINK BANDWIDTH USAGE OF EACH CLASS DURING 8 MINUTES ... 17
FIG. 11: AVERAGE USER-PERCEIVED LATENCY... 18
FIG. 12: AVERAGE QUEUING TIME IN RQS GATEWAY ... 19
FIG. 13: THE SUM OF AVERAGE DELAYRESP AND RESPONSE TRANSMISSION TIME.. 19
FIG. 14: AVERAGE BANDWIDTH USAGE WITHOUT COMPENSATION ... 20
FIG. 15: AVERAGE BANDWIDTH USAGE WITH COMPENSATION.. 20
FIG. 16: THE IMPACT ON LINK UTILIZATION RESULTED FROM INACCURATE TRANSMISSION RATE 21
FIG. 17: THE IMPACT ON LINK UTILIZATION RESULTED FROM INACCURATE DELAYRESP 22
FIG. 18: THE OPERATION MODEL OF UPLINK BANDWIDTH MANAGEMENT .. 23
FIG. 19: SIMULATION TOPOLOGY... 24
FIG. 20: UPLINK BANDWIDTH USAGE OF EACH CLASS ... 24

 v

List of Tables
TABLE 1: PARAMETERS OF RQS ALGORITHMS... 10
TABLE 2: FUNCTIONS OF RQS ALGORITHMS ... 10
TABLE 3: DATA STRUCTURES OF RQS ALGORITHMS.. 11

 1

Chapter 1. Introduction

Internet has evolved to provide a multitude of services, more and more enterprises

and users use Internet to exchange various kinds of information, causing that the

volume of traffic on Internet grows rapidly. Generally speaking, ISPs are willing to

invest a lot of money to expand the backbone bandwidth to provide their customers

good surfing. However, to minimize costs, their customers often delay upgrading the

bandwidth of the access link for as long as possible, and the insufficient bandwidth at

the access link results in the serious congestion and long transmission latency. Thus the

access link is still the potential bottleneck for enterprises and users who want to access

the Internet.

For enterprises, in order to avoid such congestion from degrading the transmission

of important connections, some levels of Quality of Service (QoS) must be provided.

Currently the common solution to this requirement is deploying the packet-level

bandwidth management [1] at an access gateway. The deployment at the access gateway

is undoubted because enterprises do not need to install any software into and modify

any configuration on their PCs and servers. However, managing the bandwidth of the

access link by a packet-level scheduling mechanism at an access gateway has three

problems:

Low scalability: The segment of a file or a web page is usually decomposed to a

great amount of packets. To manage the link bandwidth, the packet scheduling has to

decide the releasing order and time of each packet. This per-packet processing costs

much CPU resource and increases the complexity on scheduling, causing the scalability

problem.

Scheduling behind the downlink bottleneck: In general, without ISP’s support, the

 2

enterprise can only deploy the bandwidth management at the local gateway. Such a

management mechanism schedules the downlink packets behind the bottleneck, the

access link, which the downlink packets have already passed through. Therefore, the

downlink scheduling behind the access link is meaningless. Actually, these packets

should be delivered to end hosts immediately without any scheduling because the

bandwidth within enterprise’s intranet is far larger than the bandwidth of the access link.

Excessive concurrent transmissions: The packet-level scheduling mainly considers

packet delay differentiation between various classes, but does not care which packets

belong to one file within a class. When too many files in one queue are transmitted

simultaneously, each file may only grab a little bandwidth, implying that all users in this

class have to experience a long transmission time before they get the complete file.

The above three problems reveal the inefficiency and ineffectiveness of packet

scheduling. Fortunately, scheduling packets is not the only way for managing bandwidth

in the today Internet. Most applications running over the Internet adopt the

request-response model; that is, a client sends a request to a server, and then the server

returns a response to the client. Request scheduling is used in some recent studies to

provide Web QoS [2]. These studies provided QoS services on a single Web server [3-6],

caching proxies [7-8] and server farms [9-10]. No studies discussed how to design

request scheduling at the access gateway. This work proposes a novel approach, the

mechanism at an access gateway, ReQuest Scheduling (RQS) which schedules requests

to manage the bandwidth of the access link. The RQS achieves three objectives:

 1) High scalability: According to [11], the size of one request is 1/10 long as that

of one response averagely. The ratio indicates that scheduling requests is more efficient

than scheduling packets of responses.

 2) Differentiated and shared bandwidth: By controlling the amount of requests

released from various classes, RQS can allocate the bandwidth of the access link to

 3

different classes for transmitting the response packets. Besides, by adopting the Deficit

Round-Robin scheduling algorithm [12], free bandwidth can be shared among all active

classes.

 3) Reducing congestion: By controlling the releasing time of a request RQS can

roughly estimate the return time of its response. Thus RQS can avoid too many

responses competing for the access link simultaneously, reducing the congestion

occurrence at the access link and then shortening the mean transmission time of a

response.

Note RQS not only can schedule outgoing requests to manage the downlink

bandwidth, but also can schedule incoming requests to manage the uplink bandwidth. In

fact, the complexity and effect of scheduling incoming requests is easier and stabler,

respectively, because the servers accessed by the incoming requests are very close to the

access gateway. However, for clearer description, this work first emphasizes on

scheduling outgoing requests, and then considers handling incoming requests.

The rest of this paper is organized as follows. Chapter 2 presents the operation

model and three components of RQS. Chapter 3 describes the algorithms used in each

component and proposes a compensation mechanism for the case that the response size

cannot be accurately estimated. The simulation results, in Chapter 4, demonstrate that

RQS actually achieves the above three objectives and reveal how the dynamic

transmission rate and response delay affect RQS on fairness and link utilization.

Chapter 5 discusses the scenario that RQS manages the uplink bandwidth of the access

link. Finally, the conclusions and future works are given in Chapter 6.

 4

Chapter 2. Architecture of the ReQuest Scheduler

2.1 Operation Model

Fig. 1 is a typical network topology that an enterprise accesses the Internet

services. Requests sent from multiple clients go through the access gateway and the

uplink of the access link to the servers in the Internet; then, the corresponding responses

returned from the servers come back through the downlink of the access link. To supply

differentiated QoS among clients, a request classifier and a ReQuest Scheduler (RQS),

deployed in the access gateway, classifies and schedules the requests sent from clients,

respectively, as shown in Fig. 1. The request classifier puts every arriving request into a

request class queue according to the user-defined classification policies. The RQS

mechanism controls the sending rate of requests to allocate the differentiated downlink

bandwidth for each class. This rate control involves the decision of the sending order

and the sending time of a request. Under the operation of RQS, the user-perceived

latency consists of the time queued in the gateway with RQS, Delayresp, and response

transmission time, where Delayresp is the delay from releasing the request to receiving

the first packet of its response at RQS and can be considered as the total of the RTT of

the gateway and the processing time of the server. In fact, Delayresp can be seen as the

response time of one request [13] experienced by RQS. RQS is designed to handle the

application protocols that use request-response model and the response size can be

known after receives the first response packet. For example, HTTP, IMAP4, POP3, and

some streaming video services are such application protocols that fit these two

assumptions.

 5

Client
Server

Access Link

Internet

Release
Proportion
Controller

Release
Time

Controller

Request
Classifier

Response
Recorder

Class Queues

ReQuest Scheduler

Access
Gateway

Edge
Router

Send Request

Receive Response

ClientClient
ServerServer

Access Link

Internet

Release
Proportion
Controller

Release
Time

Controller

Request
Classifier

Response
Recorder

Class Queues

ReQuest Scheduler

Access
Gateway

Edge
Router

Send Request

Receive Response

Fig. 1: Operation Model of a gateway with ReQuest Scheduler

RQS consists of three components, namely, Release Proportion Controller (RPC),

Release Time Controller (RTC), and Response Recorder (RR). RTC releases the request

selected by RPC at a "suitable" time. Releasing the request at this suitable time will let

the corresponding response occupy at a "right" time, a downlink bandwidth which is

equal to the bandwidth supplied by the Internet. RPC controls the released amount of

requests for each class, and thus determines its occupied proportion on the downlink

bandwidth. To estimate the releasing time of a request and decide the released

proportion for each class, RTC requires two parameters, the transmission rate and

Delayresp of the response, and RPC require one parameter, the response size of the

request. RR is responsible to monitor the response traffic and then update these

parameters.

2.2 Release Time Controller (RTC)

RTC is invoked in the two cases. The first case is when a new request arrives in a

queue and the other queues are empty. The other case is at the scheduled instant, as

shown in Fig. 2, which is determined by RR. Specifically, the scheduled time is the

lookahead instant before the finishing time of a response transmission that is at (TminFT -

 6

Tlookahead), where Tlookahead is the advance time and TminFT is the minimum finishing time

among all active response transmissions. Once invoked, RTC computes the available

downlink bandwidth after TminFT. Next, RTC gets requests from RPC and sends them out

if the free bandwidth is sufficient to transmit responses.

Time

Download Bandwidth

Delayresp

Bandwidth

Tlookahead

TminFT

Release the request
at this moment

RTC is invoked
at this moment

Response of the request

Fig. 2: Execution of RTC

In the following, the choice of Tlookahead is explained. If a response is expected to

return and fill up the bandwidth available beginning from TminFT, RTC needs to release

its request at TminFT - Delayresp. In fact, Delayresp among connections are different, so

RTC computes the available bandwidth at TminFT -Tlookahead where Tlookahead should be

equal to the maximum of the Delayresp of all connections. If Tlookahead is smaller than

some requests’ Delayresp, the response of these requests won't come back by TminFT, the

time when the downloading response finishes. Since Tlookahead and TminFT are estimated

by RR, the scheduled time at invoking RTC is scheduled by RR.

2.3 Release Proportion Controller (RPC)

Every time when RPC is invoked by RTC, RPC selects a request from queues. The

amount of requests selected by RPC in long term for one class decides the proportion on

the downlink bandwidth occupied by the corresponding response traffic in this class.

The selecting algorithm applied in RPC is derived from the Deficit Round Robin (DRR)

algorithm [12]. DRR is one of packet fair queuing algorithms, which guarantees all of

 7

the flows passing through a link proportionally share the bandwidth of the link. DRR

serves the queues in a round-robin manner. As a queue is served, the scheduler allows a

given quantum in bytes or bits to send out from this queue. If the quantum is insufficient

for sending out the first packet in the queue, the deficit counter of this queue saves the

residual quantum for using in the next round. Then the scheduler serves the next queue.

However, applying DRR in RPC requires two modifications. First, the proportion

on quantum size among classes should decide the proportion on the response traffic

among classes, not on the request traffic. Thus, sending a request is determined on

whether the quantum is sufficient for the size of its corresponding response, not the size

of itself. Second, in RPC transmitting requests does not cost the downlink bandwidth,

the target to be scheduled. Therefore, if RPC sends requests one-by-one as the way

DRR sends packets, the returning response traffic may overflow the downlink

bandwidth. For this, in RQS, RPC only decides from which queue to get the next

request, but RTC decides when to send the request. When RTC forecasts there are free

downlink bandwidth, it get the appropriate request from RPC and then send it out. In

this way, the sending rate of requests in RPC actually depends on the target bandwidth

to be scheduled.

2.4 Response Recorder (RR)

For scheduling a request having been forwarded by RQS, RR provides the historical

size, rate and Delayresp of the response transmission corresponding to this request. On

the other hand, for a new request, RR needs to provide the initial estimation of these

three parameters. Delayresp can be predicted by monitoring the TCP 3-way handshaking

when client connects to server. Response size can be assigned by the average value of

the response type and transmission rate can be assigned by the average value by using

historical records. Besides providing the three parameters, another important job in RR

 8

is to schedule the next invoked time of RTC, TminFT - Tlookahead. To get TminFT, the

finishing time of each response transmission is necessary and calculated by RR from the

size and rate of the response.

 9

Chapter 3. Implementation of ReQuest Scheduler

3.1 Procedures within RQS

Fig. 3, 4 and 5 lists the pseudo codes executed in RTC, RPC, and RR, respectively.

Table 1, 2 and 3 list the variables, functions, and data structures, such as HFT, HRELEASE,

and QRPC, used in the pseudo code, respectively.

a) The procedure in RTC: As presented in Fig. 3, when RTC is invoked, the first

loop from HFT removes all of the requests whose finishing time of response transmission

equals to TminFT to accumulate the bandwidth going to be released by these requests and

thus available after TminFT. In the second loop, if the available bandwidth, BW, is enough

for the head request in QRPC to receive its response with the rate offered by the Internet,

denoted as HEAD(QRPC).BW, RTC calls DEQUEUE(QRPC) function to get this header

request from RPC, and then subtracts the bandwidth occupied by its response, denoted

as Req.BW, from BW. Next, RTC determines the releasing time of this request as TminFT -

Delayresp of the request. Finally, this scheduled request is put into HRELEASE, and going to

be released when time is up. If the available bandwidth is still enough for the next

requests in QRPC, RTC continues to arrange them. Otherwise, it sleeps. Since the

responses of these scheduled requests are returning in the future, RTC also puts them

into HFT, but their finishing time are set to infinite at present since the times are

unknown before RR receives the first packets of their responses.

b) The procedure in RPC: RPC, invoked by DEQUEUE(QRPC) in RTC, is

responsible for selecting a request from queues. Fig. 4 lists the pseudo codes of RPC,

which is similar to the DRR algorithm. An index, i, is maintained in RPC to point the

next queue to be served. If the queue Qui is empty, then the deficit counter of this queue,

DCi, will be set to 0. Otherwise, the quantum of this class queue, Qi, will be added to

 10

DCi. The Heading-of-line (HOL) request in queue is picked only when the value of

deficit counter is bigger than the response size of this request. After the request is

dequeued from the queue, the deficit counter must be subtracted from its response size.

c) The procedure in RR: RR is invoked when the first packet of a response comes

back to the access gateway. RR receives a response packet then calculates the

transmission time by measuring the response size and bandwidth usage. Finally RR

decides the next trigger time of RTC by a look ahead time before the minimum finishing

time among all active response transmissions.

Table 1: Parameters of RQS algorithms

Parameter Name Parameter Description

Req A request object

req.BW Bandwidth usage for transmitting the response relative to the request object

req.FT Transmission finish time for the response relative to the request object

req.D The Delayresp of the request object.

req.SIZE Response size of the request object

DCi The deficit counter of classi

Qi The quantum size of classi

TminFT The minimum finishing time among all active response transmissions

Tlookahead The period between the finish time of a response and the execution time of RTC

BW The variable for accumulating available bandwidth

Table 2: Functions of RQS algorithms

Function Name Function Description

EMPTY(DSxxx) Check if the data structure DSXXX is empty or not

HEAD(DSXXX) Get parameter from the first object of DSXXX

DEQUEUE(DSXXX) Remove the first object of DSXXX

INSERT(req, DSxxx) Insert the request object req into DSXXX

SCH_RTC(Time) Set the next trigger time of RTC

 11

Table 3: Data Structures of RQS algorithms

Data Structure Name Data Structure Description

HFT This min-heap tree mounts all requests whose responses are transmitting.

The root of this heap presents the request whose response will be

transmitted completely earliest.

HRELEASE The min-heap tree mounts all un-transmitted requests whose released time

has be decided by RTC. The root in this heap presents the request has the

earliest released time.

QRPC This queue is not a real queue presented in RQS. The order of requests in it

shows the sequence of requests released from RPC. That is, the first object

in this queue is the next request selected by the modified DRR algorithm in

RPC

Qui The queue for queuing the request arriving from Classi

Procedure_in_RTC
// The first loop
TminFT = HEAD(HFT).FT
do {
 req = DEQUEUE(HFT)
 BW = BW + req.BW
} while(HEAD(HFT).FT = TminFT)

// The second loop
while (HEAD(QRPC).BW < BW)
{
 req = DEQUEUE(QRPC)
 BW -= req.BW
 req.release = TminFT – req.D

INSERT(req, HRELEASE)
 INSERT(req, HFT)
}
sleep()

Fig. 3: Procedure in RTC

 12

Procedure_in_RPC
do {

if (EMPTY(Qui)) {
 DCi = 0

} else {
 DCi = DCi + Qi
 if (HEAD(Qui).SIZE <= DCi) {
 req = DEQUEUE(Qui)
 DCi = DCi – req.SIZE
 return req
 }

}
i = (i +1) mod n

} while (!(EMPTY(Qui) for all i))
sleep()

Fig. 4: Procedure in RPC

Procedure_in_RR
{
Get req.SIZE
req.FT = TCURR + req.SIZE/req.BW
SCH_RTC(HEAD(HFT).FT – Tlookahead)
}

Fig. 5: Procedure in RR

3.2 Examples

HRELEASE

d

a

b

c

Time

QRPC

HFTd c

6530
Download Bandwidth

d.D

e

TCURR

ab

d

Bandwidth

d

XX

X

Required Bandwidth

35

40

25

Tlookahead

TminFT

d.release

Fig. 6: Example of RTC

 13

HRELEASE

d

a

b

c

Time

QRPC

HFTd c

30
Download Bandwidth e

TCURRBandwidth
Required Bandwidth

35

40

25

Tlookahead

HEAD(HFT).FT – Tlookahead

HEAD(HFT).FT

Fig. 7: Example of RR

To illustrate the interactive operation between RTC, RPC and RR, an example is

given under the assumption that the exact transmission rate and required time on

transmitting a response are known in advance. As shown on the left of Fig. 6, assume

that 3 requests: a, b, and c, have be released before the time TCURR, and their

corresponding responses are transmitting and exhausts all downlink bandwidth. Among

them, the finishing time of the responses corresponding to a and b should be at The

variable for accumulating available bandwidth which is available at TminFT and before

that to c. Thus, at current time, TCURR, i.e., TminFT - Tlookahead, HFT should contain three

requests and a is its root node since the request a arrives before b and will finish the

transmission before c. Meanwhile, RTC is also invoked at this time, scheduled by RR.

Once invoked, RTC pops up a and b from HFT to update the available bandwidth after

TminFT from 0 to (25+40). Obviously, the available bandwidth is enough for transmitting

the response of the request d, the head of QRPC.

Thus, as shown in Fig. 6, RTC gets request d from RPC and then calculates its

releasing time. In this example, the best releasing time of request d is TCURR + Tlookahead –

d.D, since the response of d will come back after d.D and is expected to fill the

bandwidth released by the response of a and b. Next, the request d is inserted into

HRELEASE and into HFT. The finishing time of d is set to infinite since the time is

 14

unknown before RR receives the first packet of its response. Since the available

bandwidth is not enough for the response of the next request e, RTC sleeps.

Fig. 7 shows the time that RR receives the first response packet of d. The first job

of RR is to re-compute the finishing time of d, d.FT. HFT rewrite it into HFT, and

reconstruct HFT. In this case, the first request in HFT is still c, meaning c.FT is the next

time that the available bandwidth will be increased. Finally, RTC is scheduled to be

invoked at c.FT – Tlookahead.

3.3 Inaccurate Parameters and Compensation

Unfortunately, the parameters provided by RR are not always correct for two

reasons. First, the parameters of new requests cannot be actually estimated. Second,

even for the forwarded requests, their historical parameters recorded by RR may affect

by the flexibility of the Internet. Inaccurate Delayresp and transmission rate may affect

the access-link utilization because RTC needs these two parameters in order to feed

some responses to the available bandwidth of downlink. Inaccurate response size may

affect the fairness of access-link bandwidth shared between various classes because in

RPC the response size of a request determines the releasing order of the request.

A revised RR with a compensation mechanism is proposed to prevent the unfair

sharing between various classes resulted from inaccurate response size.

Get req.SIZE

if (req.SIZE > the value used in RPC) {

 DCi = DCi – abs(req.SIZE – the value used in RPC)

} else {

 DCi = DCi + abs(req.SIZE – the value used in RPC)

}

req.FT = TCURR + req.SIZE/req.BW

SCH_RTC(HEAD(HFT).FT – Tlookahead)

Fig. 8: Procedure in RR with Compensation

Fig. 8 shows the modified RR algorithm with compensation. This revision

 15

compensates the corresponding deficit counter in RPC after the accurate response size is

known. Generally, the size is known after the first response packet is received or the

transmission is finished. As shown as pseudo codes with the bold style in Fig. 8, if the

real size is bigger or smaller than the value used in RPC, the corresponding deficit

counter must be compensated with this difference.

 16

Chapter 4. Simulation Results

4.1 Simulation Environment

The network simulation tool, ns-2 [14], is used to simulate the operation of RQS.

The class Http/Cache in ns-2 models behaves as a simple HTTP cache with infinite size,

so it will intercept the requests sent from clients and then will forward them to the web

server. Thus, we implement the RQS algorithm on the class Http/Cache.

RQS
Gateway R

S4
(5KB)

S3
(10KB)

S2
(20KB)

S1
(40KB)

128Kb 50ms

400Kb 200ms

200Kb 400ms

100Kb 800ms

50Kb 2000ms

C1-1C2-1C3-1C4-1
C1-2

C2-2

C3-2

C4-2
C1-3 C2-3 C3-3 C4-3

10Mb 2ms

Class1

Class2

Class3

RQS
Gateway R

S4
(5KB)

S3
(10KB)

S2
(20KB)

S1
(40KB)

128Kb 50ms

400Kb 200ms

200Kb 400ms

100Kb 800ms

50Kb 2000ms

C1-1C2-1C3-1C4-1
C1-2

C2-2

C3-2

C4-2
C1-3 C2-3 C3-3 C4-3

10Mb 2ms

Class1

Class2

Class3

Fig. 9: Simulation topology used in this work

Fig. 9 shows the simulation topology used in this work. The RQS gateway

provides three classes. Twelve clients connecting to the RQS gateway are equally

divided into the three classes. The link between the RQS gateway and a client is 10Mb/s

with 2 ms propagation delay. Besides, a 128Kb link with 50 ms propagation delay

connects the RQS gateway with an ISP's edge route R to simulate the access link. Next,

the route R connects to four servers with four independent links, whose configurations

are presented in Fig. 9. The fixed response sizes in the four servers are 40KB, 20KB,

10KB, and 5KB, respectively. The client named as Cx-y represents that it only send

requests to server x and their responses belong to class y. In other words, each server

has to serve three clients belonging to three different classes. Note that the client can

only send the next request until the whole response packets requested by the last request

 17

return.

4.2 Throughput Differentiation

First, we demonstrate that RQS can actually allocate the proportional bandwidth to

different classes and let active classes share the free bandwidth. The proportion of the

bandwidth allocated for three classes is given as 4:2:1. At the beginning, clients in

Class1 and Class2 send requests and after four minutes, clients in Class3 join. Fig. 10

shows the bandwidth usage of three classes during 8 minutes. At 0~4 minutes, Class1

and Class2 occupy the downlink bandwidth and their average bandwidth usages are

equal. The reason that the ratio is not 4:2 is that the mean transmission rate of the

response traffic in Class1 (55 Kbps) is not high enough to occupy 2/3 bandwidth of the

access link (256/3, or 85.33 Kbps). Thus, the Class2 fairly shares the bandwidth with

Class1. However, at the 4th min, Class3 starts to occupy the downlink bandwidth. The

proportion of the bandwidth usage occupied by three classes is 57:37:18. Compared to

the average target ratio between various classes, (4/2 + 2/1)/2, or 2, that under RQS is

((57/37+37/18)/2), i.e., 1.798. The accuracy is 1.798/2=89.9%

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8

Time (min)

T
hr

ou
gh

pu
t

(K
b/

se
c)

Total Class1
Class2 Class3

Fig. 10: Downlink bandwidth usage of each class during 8 minutes

 18

4.3 User-perceived Latency

 Next, we observe the user-perceived latency experienced by the clients in three

classes during 8 minutes. The simulation scenario here is the same as that in Chapter 4.2,

except that all clients send requests from the beginning. For the clients accessing the

same server, as shown in Fig. 11, the higher class the client belongs to, the shorter

user-perceived latency the client experiences. Besides, the differences of latency

between various classes decrease with the increase of server’s number, and this

phenomenon can be further observed from Fig. 12 and 13. Fig. 12 shows the time

queued in RQS and Fig. 13 shows the sum of Delayresp and response transmission time.

Obviously, as shown in Fig. 12, the queuing delay in RQS for different classes

determines the differences of latency between classes. That is because RQS delays the

release of a request according to its response size, and the response size in Server1 is the

larger than other servers. In other words, all clients connecting to Server1 get larger

response sizes, i.e. longer transmission times, and therefore have longer waiting times

for the next service than the waiting times experienced by clients of Server4.

0

5

10

15

20

25

30

35

40

45

50

Server1 Server2 Server3 Server4

T
im

e
(s

ec
)

Class1
Class2
Class3

Fig. 11: Average user-perceived latency

 19

0

5

10

15

20

25

30

35

40

45

50

Server1 Server2 Server3 Server4

T
im

e
(s

ec
)

Class1
Class2
Class3

Fig. 12: Average queuing time in RQS gateway

0

5

10

15

20

25

30

35

40

45

50

N
oR

Q
S

R
Q

S

Se
rv

er
1

C
1-

1

C
1-

2

C
1-

3

Se
rv

er
2

C
2-

1

C
2-

2

C
2-

3

Se
rv

er
3

C
3-

1

C
3-

2

C
3-

3

Se
rv

er
4

C
4-

1

C
4-

2

C
4-

3

T
im

e
(s

ec
)

Transmission Time
Response Delay

Fig. 13: The sum of average Delayresp and response transmission time

4.4 Response Transmission Time

Finally, as shown in the most left group of Fig. 13, the average transmission time

of user-perceived latency for all classes under RQS is 68.75% shorter than that under no

RQS. Thus RQS can decrease the transmission time, that is, it actually avoids too many

connections competing for the access link simultaneously.

4.5 Fairness Improved by the Compensation Mechanism

 20

0

10

20

30

40

50

60

70

80

1/10 1/8 1/6 1/4 1/2 1 2 4 6 8 10

Bias ratio of response size in Class1

B
an

dw
id

th
 (

K
b/

se
c)

Class1
Class2
Class3

Fig. 14: Average bandwidth usage without compensation

0

10

20

30

40

50

60

70

80

1/10 1/8 1/6 1/4 1/2 1 2 4 6 8 10

Bias ratio of response size in Class1

B
an

dw
id

th
 (

K
b/

se
c)

Class1

Class2

Class3

Fig. 15: Average bandwidth usage with compensation

In this evaluation, all clients of three classes send requests from the beginning and

the bandwidth allocated for three classes are equal, i.e. the quantum ratio is 1:1:1. Next,

assume that RQS can accurately estimate the size of the response, except the response

belonging to Class1. The biasing ratio (size used in RQS/ real size) for the clients in the

Class1 ranges from 1/10 to 10. For example, the biasing ratio being equal to 10 presents

that RQS thinks the size of a response is 100KB although its real size is only 10KB.

 21

This simulation runs in 8 minutes, and the average bandwidth usage is measured from

the second minute for stability.

Fig. 14 shows the effect of inaccurate estimation of response size on the fairness

between classes, and Fig. 15 demonstrates the improvement of using a compensation

mechanism in RR. It is clear in Fig. 14 that wrong response size used in RPC seriously

degrades the fairness on bandwidth usage between various classes. In the cases that the

biasing ratio is larger than one, the bandwidth usage of Class1 is lower than the

expected because its deficit counter in RPC is over-decreased. In the cases that the

biasing ratio is smaller than one, the situation is reversed. When RR applies the

compensation mechanism, as shown in Fig. 15, the bandwidth usage between three

classes is quite close to the targeted ratio, 1:1:1, in all cases.

4.6 The Impact of Inaccurate Delayresp and Transmission Rate

0

20

40

60

80

100

120

1/5 1/4 1/3 1/2 1 2 3 4 5

Bias ratio of transmission rate in Class1

B
an

dw
id

th
 (

K
b/

se
c)

Total

Class1

Class2

Class3

Fig. 16: The impact on link utilization resulted from inaccurate transmission rate

Fig. 16 shows the impact of inaccurate estimation of the mean transmission rate on

link utilization. All clients of three classes send requests from the beginning. The

quantum ratio between three classes is 1:1:1. The first observation is the total link

utilization is decreased with the increase of the biasing ratio of transmission rate, i.e. the

 22

actual sending rate of the response traffic is smaller than the estimation used in RQS. In

addition, although the utilization is higher when the ratio is smaller than 1, serious

congestion will occur at the access link, and it is not preferred.

0

20

40

60

80

100

120

1/5 1/4 1/3 1/2 1 2 3 4 5

Bias ratio of delay_resp in Class1

B
an

dw
id

th
 (

K
b/

se
c)

Total

Class1

Class2

Class3

Fig. 17: The impact on link utilization resulted from inaccurate Delayresp

Fig. 17 shows the results as Delayresp cannot be estimated accurately. The biasing

ratio larger than one means the value estimated in RQS is larger than the actual Delayresp,

leading to unexpected response traffic competing for the access link. Contrarily, when

the ratio is smaller than one means the actual Delayresp is smaller than the value used in

RQS, causing one response cannot follow another finished response well. Therefore,

available bandwidth is wasted and the link utilization is going down.

Although inaccurate Delayresp and transmission rate affect the link utilization, but

the bandwidth usage ratio of three classes still close to the targeted ratio of three classes,

i.e., 1:1:1.

 23

Chapter 5. Managing Uplink Bandwidth by RQS

5.1 Operation Model of RQS in Managing Uplink

Client
Server

Access Link

Internet

Release
Proportion
Controller

Release
Time

Controller

Response
Recorder

Class Queues

ReQuest Scheduler

Access
Gateway

Edge
Router

Release Response

Receive RequestRequest
Classifier

ClientClient
ServerServer

Access Link

Internet

Release
Proportion
Controller

Release
Time

Controller

Response
Recorder

Class Queues

ReQuest Scheduler

Access
Gateway

Edge
Router

Release Response

Receive RequestRequest
Classifier

Fig. 18: The operation model of uplink bandwidth management

In the previous chapters, as shown in Fig. 1, the discussion of RQS focuses on how

to manage the downlink bandwidth of the access link by controlling the outgoing

requests in an environment where the web servers are in the Internet. In such a scenario,

the traffic on uplink is usually light because the size of the request packet is very small.

That is, the bottleneck is the downlink of the access link when internal clients in an

enterprise access the web servers in the Internet. However, as shown in Fig. 18, the

uplink may turn to be the bottleneck if the enterprise places a web server in the internal

network and allows clients coming from the Internet to access it. Thus, in this chapter

RQS is introduced to manage the bandwidth of uplink by skillfully scheduling the

incoming requests.

5.2 Modified RTC and RR Algorithm

In the original operation of RQS mechanism, three parameters of a request are

needed, namely, response size, transmission rate of response and Delayresp. As shown in

 24

Fig. 18, the server in the intranet is very close to the access gateway of enterprise, and

thus the value of Delayresp should be small enough to be ignored in the procedure of

RTC. Therefore, the advance time Tlookahead can also be eliminated from the procedure in

RR since Tlookahead is the maximum value of Delayresp. By such two simplifications, RQS

can be easily applied to manage the uplink bandwidth.

5.3 Simulation Scenario and Results

RQS
Gateway R

128Kb 50ms

400Kb 200ms

200Kb 400ms

100Kb 800ms

C1-1 C2-1 C3-1 C4-1

C1-2

C2-2

C3-2

C4-2

C1-3 C2-3 C3-3 C4-3

10Mb 2msS
(40KB)

Class1

Class2

Class3

RQS
Gateway R

128Kb 50ms

400Kb 200ms

200Kb 400ms

100Kb 800ms

C1-1 C2-1 C3-1 C4-1

C1-2

C2-2

C3-2

C4-2

C1-3 C2-3 C3-3 C4-3

10Mb 2msS
(40KB)

Class1

Class2

Class3

Fig. 19: Simulation Topology

Fig. 19 shows the simulation topology that clients in the Internet access the web

server in the Intranet. Twelve clients, divided into three classes uniformly, access the

single server near the RQS gateway. The quantum ratio of three classes is 4:2:1.

0

20

40

60

80

100

120

B
an

dw
id

th
 (

K
b/

se
c)

Total

Class1

Class2

Class3

Fig. 20: Uplink Bandwidth usage of each class

 25

Fig. 20 shows the bandwidth usage between three classes during eight minutes.

This result shows that RQS is capable to manage uplink bandwidth by controlling the

releasing of incoming requests. The ratio on bandwidth usage of three classes, 50:36:18

is close to the targeted ratio.

 26

Chapter 6. Conclusions and Future Works

This work proposes the ReQuest Scheduler (RQS) at consumer-side access

gateway to overcome the three problems of packet-level scheduling on managing the

access-link bandwidth. RQS controls the releasing rate of requests in one class to

arrange concurrent transmissions and pre-allocate the bandwidth of the access link

occupied by the response traffic corresponding to this class. Thus, RQS can provide

proportional and sharing bandwidth between various classes, and reduce the congestion

occurring at the access link.

The simulation results show the ratio on bandwidth usage between classes

scheduled by RQS is close to the targeted ratio (The similar degree is 89.75%) and the

free bandwidth can be shared for active classes. Besides, the mean transmission time is

decreased to 68.75% of the original value, revealing that RQS avoids too many

responses competing for the access link simultaneously and thus reduces the congestion.

Finally, by the compensation mechanism, RQS is robust to achieve the fairness between

classes even when the response size is inaccurately estimated.

In the future, we will study how to reduce the impact on link utilization as the

transmission rate of a response or the interval between sending a request and received

its first response packet cannot be accurately estimated. On the other hand, handling

application protocol that do not use request-response model and testing RQS in real

world environment are the works to be done.

 27

References
[1] F. P. Kelly "Effective bandwidths at multi-class queues," Queueing Systems:

Theory and Applications, v.9 n.1-2, p.5-16, Oct. 1991
[2] M. Conti, M. Kumar, S. K. Das, and B. A. Shirazi, "Quality of Service Issues in

Internet Web Services," IEEE Transactions on Computers, Vol.51, No.6, June
2002

[3] R. Pandey, J. Fritz Barnes, and R. Fritz Barnes, "Supporting Quality of Service
in HTTP Servers," Proceedings of the Seventeenth Annual ACM Symposium on
Principles of Distributed Computing, pp. 247-256, 1998.

[4] N. Bhatti, A. Bouch, A. Kuchinsky, "Integrating User-Perceived Quality into
Web Server Design," Proceedings of the 9th International World Wide Web
Conference, 2000.

[5] L. Cherkasova and P. Phaa, "Session Based Admission Control: a Mechanism
for Web QoS," Proceedings of the International Workshop on Quality of Service,
1999.

[6] L. Eggert and J. Heidemann, "Application-Level Differentiated Services for Web
Servers," World Wide Web Journal, vol. 3, Issue 2, pp. 133-142, 1999.

[7] T. P. Kelly, S. Jamin, and J. MacKie-Mason, "Variable QoS from Shared Web
Caches: User-Centered Design and Value-Sensitive Replacement," Proceedings
of IEEE Conference on Computer Communications, 2002.

[8] Y. Lu, T. Abdelzaher, C. Lu, and G. Tao, "An Adaptive Control Framework for
QoS Guarantees and its Application to Differentiated Caching Services,"
Proceedings of the International Workshop on Quality of Service, 2002.

[9] V. Cardellini, E. Casalicchio, M. Colajanni, and M. Mambelli, "Enhancing a
Web-Server Cluster with Quality of Service Mechanisms," Proceedings of IEEE
International Performance Computing and Communications Conference, 2002.

[10] E. Casalicchio and M. Colajanni "A Client-Aware Dispatching Algorithm for
Web Clusters Providing Multiple Services," Proceedings of the 10th
International World Wide Web Conference, 2001.

[11] F. Donelson Smith, F. Herndndez Campos, K. Jeffay, and D. Ott "What TCP/IP
Protocol Headers Can Tell Us About The Web," Proceedings of the 2001 ACM
SIGMETRICS international conference on Measurement and modeling of
computer systems

[12] M. Shreedhar, and G. Varghese "Efficient Fair Queuing using Deficit Round
Robin," IEEE/ACM Transactions on Networking (TON), 1996, vol. 4, no. 3, pp.
375-385

[13] P. Mills and C. Loosley, "A performance Analysis of 40 e-Business Web Sites,"
CMG Journal of Computer Resource Management, Issue 102, spring 2001.

[14] The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/

