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在網路通道閘道器上提供差別服務品質

之請求排程 

 

學生：歐陽銘康                      指導教授：林盈達 

國立交通大學資訊科學系 

 

摘要 

網際網路的交通流量成長的非常快速，造成網路發生擁塞的情形日益增加，

現在企業存取網際網路的瓶頸通常都是發生在連線網路的頻寬上。故在連線網路

上提供頻寬管理的功能是非常重要的，然而傳統在消費者端的網路通道閘道器上

利用封包排程的技術提供頻寬管理功能有三個缺點：低擴充性、在下載瓶頸之後

才作排程控制、同一時間內過量的傳輸。為了解決這些問題，我們提出了請求封

包排程的架構。請求封包排程根據請求封包的三個參數：反應封包大小、反應封

包傳輸率、反應封包回應延遲計算出請求封包對應的反應封包在連線網路中所佔

用的頻寬，然後透過控制類別中請求封包的送出頻率，來提供公平而且可分享的

頻寬，以及降低連線網路中發生碰撞的可能性。模擬的結果顯示不同類別之間的

實際頻寬佔用比率跟指定的頻寬佔用比率相似度非常高，同時反應封包的回覆時

間下降為原來的 68.75%，原因為空閒的頻寬可被其他類別所分享及封包在連線網

路發生碰撞的情形降低，顯示所提的方法確實可以提供差別服務品質。 

 

 

 

關鍵字: 需求封包排程、頻寬管理、應用程式差別服務 
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Abstract 

For ISP’s customers, the access link is usually the bottleneck when accessing the 

Internet since they often delay upgrading the access link bandwidth to save costs. Thus 

the management of access link bandwidth is imperatively required. On managing the 

access link bandwidth, the common approach, packet-level scheduling at consumer-side 

access gateway, has three potential problems, namely, low scalability, scheduling behind 

the downlink bottleneck, and excessive concurrent transmissions. This work proposes a 

ReQuest Scheduler (RQS) to avoid these problems. RQS calculates the bandwidth of 

access link needed by the response traffic according to each request’s three parameters, 

namely, response size, response transmission rate, and response delay. RQS controls the 

releasing rate of requests to provide proportionally shared bandwidth between various 

classes, and to reduce congestion occurring at the access link. The simulation results 

show the bandwidth usage ratio between classes can be close to the allocated quantum 

ratio, while the free bandwidth can be shared among active classes. Also the mean 

transmission time is decreased to 68.75% of the original value; and congestion 

occurring at the access link is reduced. 

Keywords: Request Scheduling, Bandwidth Management, Application QoS 
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Chapter 1. Introduction 

Internet has evolved to provide a multitude of services, more and more enterprises 

and users use Internet to exchange various kinds of information, causing that the 

volume of traffic on Internet grows rapidly. Generally speaking, ISPs are willing to 

invest a lot of money to expand the backbone bandwidth to provide their customers 

good surfing. However, to minimize costs, their customers often delay upgrading the 

bandwidth of the access link for as long as possible, and the insufficient bandwidth at 

the access link results in the serious congestion and long transmission latency. Thus the 

access link is still the potential bottleneck for enterprises and users who want to access 

the Internet. 

For enterprises, in order to avoid such congestion from degrading the transmission 

of important connections, some levels of Quality of Service (QoS) must be provided. 

Currently the common solution to this requirement is deploying the packet-level 

bandwidth management [1] at an access gateway. The deployment at the access gateway 

is undoubted because enterprises do not need to install any software into and modify 

any configuration on their PCs and servers. However, managing the bandwidth of the 

access link by a packet-level scheduling mechanism at an access gateway has three 

problems: 

Low scalability: The segment of a file or a web page is usually decomposed to a 

great amount of packets. To manage the link bandwidth, the packet scheduling has to 

decide the releasing order and time of each packet. This per-packet processing costs 

much CPU resource and increases the complexity on scheduling, causing the scalability 

problem. 

Scheduling behind the downlink bottleneck: In general, without ISP’s support, the 
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enterprise can only deploy the bandwidth management at the local gateway. Such a 

management mechanism schedules the downlink packets behind the bottleneck, the 

access link, which the downlink packets have already passed through. Therefore, the 

downlink scheduling behind the access link is meaningless. Actually, these packets 

should be delivered to end hosts immediately without any scheduling because the 

bandwidth within enterprise’s intranet is far larger than the bandwidth of the access link. 

Excessive concurrent transmissions: The packet-level scheduling mainly considers 

packet delay differentiation between various classes, but does not care which packets 

belong to one file within a class. When too many files in one queue are transmitted 

simultaneously, each file may only grab a little bandwidth, implying that all users in this 

class have to experience a long transmission time before they get the complete file.  

The above three problems reveal the inefficiency and ineffectiveness of packet 

scheduling. Fortunately, scheduling packets is not the only way for managing bandwidth 

in the today Internet. Most applications running over the Internet adopt the 

request-response model; that is, a client sends a request to a server, and then the server 

returns a response to the client. Request scheduling is used in some recent studies to 

provide Web QoS [2]. These studies provided QoS services on a single Web server [3-6], 

caching proxies [7-8] and server farms [9-10]. No studies discussed how to design 

request scheduling at the access gateway. This work proposes a novel approach, the 

mechanism at an access gateway, ReQuest Scheduling (RQS) which schedules requests 

to manage the bandwidth of the access link. The RQS achieves three objectives: 

 1) High scalability: According to [11], the size of one request is 1/10 long as that 

of one response averagely. The ratio indicates that scheduling requests is more efficient 

than scheduling packets of responses. 

 2) Differentiated and shared bandwidth: By controlling the amount of requests 

released from various classes, RQS can allocate the bandwidth of the access link to 
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different classes for transmitting the response packets. Besides, by adopting the Deficit 

Round-Robin scheduling algorithm [12], free bandwidth can be shared among all active 

classes. 

 3) Reducing congestion: By controlling the releasing time of a request RQS can 

roughly estimate the return time of its response. Thus RQS can avoid too many 

responses competing for the access link simultaneously, reducing the congestion 

occurrence at the access link and then shortening the mean transmission time of a 

response. 

Note RQS not only can schedule outgoing requests to manage the downlink 

bandwidth, but also can schedule incoming requests to manage the uplink bandwidth. In 

fact, the complexity and effect of scheduling incoming requests is easier and stabler, 

respectively, because the servers accessed by the incoming requests are very close to the 

access gateway. However, for clearer description, this work first emphasizes on 

scheduling outgoing requests, and then considers handling incoming requests. 

The rest of this paper is organized as follows. Chapter 2 presents the operation 

model and three components of RQS. Chapter 3 describes the algorithms used in each 

component and proposes a compensation mechanism for the case that the response size 

cannot be accurately estimated. The simulation results, in Chapter 4, demonstrate that 

RQS actually achieves the above three objectives and reveal how the dynamic 

transmission rate and response delay affect RQS on fairness and link utilization. 

Chapter 5 discusses the scenario that RQS manages the uplink bandwidth of the access 

link. Finally, the conclusions and future works are given in Chapter 6. 
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Chapter 2. Architecture of the ReQuest Scheduler 

2.1 Operation Model 

Fig. 1 is a typical network topology that an enterprise accesses the Internet 

services. Requests sent from multiple clients go through the access gateway and the 

uplink of the access link to the servers in the Internet; then, the corresponding responses 

returned from the servers come back through the downlink of the access link. To supply 

differentiated QoS among clients, a request classifier and a ReQuest Scheduler (RQS), 

deployed in the access gateway, classifies and schedules the requests sent from clients, 

respectively, as shown in Fig. 1. The request classifier puts every arriving request into a 

request class queue according to the user-defined classification policies. The RQS 

mechanism controls the sending rate of requests to allocate the differentiated downlink 

bandwidth for each class. This rate control involves the decision of the sending order 

and the sending time of a request. Under the operation of RQS, the user-perceived 

latency consists of the time queued in the gateway with RQS, Delayresp, and response 

transmission time, where Delayresp is the delay from releasing the request to receiving 

the first packet of its response at RQS and can be considered as the total of the RTT of 

the gateway and the processing time of the server. In fact, Delayresp can be seen as the 

response time of one request [13] experienced by RQS. RQS is designed to handle the 

application protocols that use request-response model and the response size can be 

known after receives the first response packet. For example, HTTP, IMAP4, POP3, and 

some streaming video services are such application protocols that fit these two 

assumptions. 
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Fig. 1: Operation Model of a gateway with ReQuest Scheduler 

RQS consists of three components, namely, Release Proportion Controller (RPC), 

Release Time Controller (RTC), and Response Recorder (RR). RTC releases the request 

selected by RPC at a "suitable" time. Releasing the request at this suitable time will let 

the corresponding response occupy at a "right" time, a downlink bandwidth which is 

equal to the bandwidth supplied by the Internet. RPC controls the released amount of 

requests for each class, and thus determines its occupied proportion on the downlink 

bandwidth. To estimate the releasing time of a request and decide the released 

proportion for each class, RTC requires two parameters, the transmission rate and 

Delayresp of the response, and RPC require one parameter, the response size of the 

request. RR is responsible to monitor the response traffic and then update these 

parameters.  

2.2 Release Time Controller (RTC) 

RTC is invoked in the two cases. The first case is when a new request arrives in a 

queue and the other queues are empty. The other case is at the scheduled instant, as 

shown in Fig. 2, which is determined by RR. Specifically, the scheduled time is the 

lookahead instant before the finishing time of a response transmission that is at (TminFT - 
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Tlookahead), where Tlookahead is the advance time and TminFT is the minimum finishing time 

among all active response transmissions. Once invoked, RTC computes the available 

downlink bandwidth after TminFT. Next, RTC gets requests from RPC and sends them out 

if the free bandwidth is sufficient to transmit responses. 

Time

Download Bandwidth

Delayresp

Bandwidth

Tlookahead

TminFT

Release the request 
at this moment

RTC is invoked 
at this moment

Response of the request

 

Fig. 2: Execution of RTC 

In the following, the choice of Tlookahead is explained. If a response is expected to 

return and fill up the bandwidth available beginning from TminFT, RTC needs to release 

its request at TminFT - Delayresp. In fact, Delayresp among connections are different, so 

RTC computes the available bandwidth at TminFT -Tlookahead where Tlookahead should be 

equal to the maximum of the Delayresp of all connections. If Tlookahead is smaller than 

some requests’ Delayresp, the response of these requests won't come back by TminFT, the 

time when the downloading response finishes. Since Tlookahead and TminFT are estimated 

by RR, the scheduled time at invoking RTC is scheduled by RR. 

2.3 Release Proportion Controller (RPC) 

Every time when RPC is invoked by RTC, RPC selects a request from queues. The 

amount of requests selected by RPC in long term for one class decides the proportion on 

the downlink bandwidth occupied by the corresponding response traffic in this class. 

The selecting algorithm applied in RPC is derived from the Deficit Round Robin (DRR) 

algorithm [12]. DRR is one of packet fair queuing algorithms, which guarantees all of 
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the flows passing through a link proportionally share the bandwidth of the link. DRR 

serves the queues in a round-robin manner. As a queue is served, the scheduler allows a 

given quantum in bytes or bits to send out from this queue. If the quantum is insufficient 

for sending out the first packet in the queue, the deficit counter of this queue saves the 

residual quantum for using in the next round. Then the scheduler serves the next queue. 

However, applying DRR in RPC requires two modifications. First, the proportion 

on quantum size among classes should decide the proportion on the response traffic 

among classes, not on the request traffic. Thus, sending a request is determined on 

whether the quantum is sufficient for the size of its corresponding response, not the size 

of itself. Second, in RPC transmitting requests does not cost the downlink bandwidth, 

the target to be scheduled. Therefore, if RPC sends requests one-by-one as the way 

DRR sends packets, the returning response traffic may overflow the downlink 

bandwidth. For this, in RQS, RPC only decides from which queue to get the next 

request, but RTC decides when to send the request. When RTC forecasts there are free 

downlink bandwidth, it get the appropriate request from RPC and then send it out. In 

this way, the sending rate of requests in RPC actually depends on the target bandwidth 

to be scheduled. 

2.4 Response Recorder (RR) 

For scheduling a request having been forwarded by RQS, RR provides the historical 

size, rate and Delayresp of the response transmission corresponding to this request. On 

the other hand, for a new request, RR needs to provide the initial estimation of these 

three parameters. Delayresp can be predicted by monitoring the TCP 3-way handshaking 

when client connects to server. Response size can be assigned by the average value of 

the response type and transmission rate can be assigned by the average value by using 

historical records. Besides providing the three parameters, another important job in RR 
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is to schedule the next invoked time of RTC, TminFT - Tlookahead. To get TminFT, the 

finishing time of each response transmission is necessary and calculated by RR from the 

size and rate of the response. 
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Chapter 3. Implementation of ReQuest Scheduler 

3.1 Procedures within RQS 

Fig. 3, 4 and 5 lists the pseudo codes executed in RTC, RPC, and RR, respectively. 

Table 1, 2 and 3 list the variables, functions, and data structures, such as HFT, HRELEASE, 

and QRPC, used in the pseudo code, respectively.  

a) The procedure in RTC: As presented in Fig. 3, when RTC is invoked, the first 

loop from HFT removes all of the requests whose finishing time of response transmission 

equals to TminFT to accumulate the bandwidth going to be released by these requests and 

thus available after TminFT. In the second loop, if the available bandwidth, BW, is enough 

for the head request in QRPC to receive its response with the rate offered by the Internet, 

denoted as HEAD(QRPC).BW, RTC calls DEQUEUE(QRPC) function to get this header 

request from RPC, and then subtracts the bandwidth occupied by its response, denoted 

as Req.BW, from BW. Next, RTC determines the releasing time of this request as TminFT - 

Delayresp of the request. Finally, this scheduled request is put into HRELEASE, and going to 

be released when time is up. If the available bandwidth is still enough for the next 

requests in QRPC, RTC continues to arrange them. Otherwise, it sleeps. Since the 

responses of these scheduled requests are returning in the future, RTC also puts them 

into HFT, but their finishing time are set to infinite at present since the times are 

unknown before RR receives the first packets of their responses. 

b) The procedure in RPC: RPC, invoked by DEQUEUE(QRPC) in RTC, is 

responsible for selecting a request from queues. Fig. 4 lists the pseudo codes of RPC, 

which is similar to the DRR algorithm. An index, i, is maintained in RPC to point the 

next queue to be served. If the queue Qui is empty, then the deficit counter of this queue, 

DCi, will be set to 0. Otherwise, the quantum of this class queue, Qi, will be added to 
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DCi. The Heading-of-line (HOL) request in queue is picked only when the value of 

deficit counter is bigger than the response size of this request. After the request is 

dequeued from the queue, the deficit counter must be subtracted from its response size. 

c) The procedure in RR: RR is invoked when the first packet of a response comes 

back to the access gateway. RR receives a response packet then calculates the 

transmission time by measuring the response size and bandwidth usage. Finally RR 

decides the next trigger time of RTC by a look ahead time before the minimum finishing 

time among all active response transmissions. 

Table 1: Parameters of RQS algorithms 

Parameter Name Parameter Description 

Req A request object 

req.BW Bandwidth usage for transmitting the response relative to the request object 

req.FT Transmission finish time for the response relative to the request object 

req.D The Delayresp of the request object. 

req.SIZE Response size of the request object 

DCi The deficit counter of classi 

Qi The quantum size of classi 

TminFT The minimum finishing time among all active response transmissions 

Tlookahead The period between the finish time of a response and the execution time of RTC

BW The variable for accumulating available bandwidth 

Table 2: Functions of RQS algorithms 

Function Name Function Description 

EMPTY(DSxxx) Check if the data structure DSXXX is empty or not 

HEAD(DSXXX) Get parameter from the first object of DSXXX 

DEQUEUE(DSXXX) Remove the first object of DSXXX 

INSERT(req, DSxxx) Insert the request object req into DSXXX 

SCH_RTC(Time) Set the next trigger time of RTC 
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Table 3: Data Structures of RQS algorithms 

Data Structure Name Data Structure Description 

HFT This min-heap tree mounts all requests whose responses are transmitting. 

The root of this heap presents the request whose response will be 

transmitted completely earliest. 

HRELEASE The min-heap tree mounts all un-transmitted requests whose released time 

has be decided by RTC. The root in this heap presents the request has the 

earliest released time. 

QRPC This queue is not a real queue presented in RQS. The order of requests in it 

shows the sequence of requests released from RPC. That is, the first object 

in this queue is the next request selected by the modified DRR algorithm in 

RPC 

Qui The queue for queuing the request arriving from Classi 

 
Procedure_in_RTC 
// The first loop 
TminFT = HEAD(HFT).FT 
do { 
 req = DEQUEUE(HFT) 
 BW = BW + req.BW 
} while(HEAD(HFT).FT = TminFT) 
 
// The second loop 
while (HEAD(QRPC).BW < BW) 
{ 
 req = DEQUEUE(QRPC) 
 BW -= req.BW 
 req.release = TminFT – req.D 

INSERT(req, HRELEASE) 
 INSERT(req, HFT) 
} 
sleep() 

Fig. 3: Procedure in RTC 
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Procedure_in_RPC 
do { 

if (EMPTY(Qui)) { 
  DCi = 0 

} else { 
  DCi = DCi + Qi 
  if (HEAD(Qui).SIZE <= DCi) { 
   req = DEQUEUE(Qui) 
   DCi = DCi – req.SIZE 
   return req 
  } 

} 
i = (i +1) mod n 

} while (!(EMPTY(Qui) for all i)) 
sleep() 

Fig. 4: Procedure in RPC 

 
Procedure_in_RR 
{ 
Get req.SIZE 
req.FT = TCURR + req.SIZE/req.BW 
SCH_RTC(HEAD(HFT).FT – Tlookahead) 
} 

Fig. 5: Procedure in RR 

3.2 Examples 

HRELEASE

d

a

b

c

Time

QRPC

HFTd c

6530
Download Bandwidth

d.D

e

TCURR

ab

d

Bandwidth

d

XX

X

Required Bandwidth

35

40

25

Tlookahead

TminFT

d.release
 

Fig. 6: Example of RTC 
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HRELEASE
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c

Time

QRPC

HFTd c

30
Download Bandwidth e

TCURRBandwidth
Required Bandwidth

35

40

25

Tlookahead

HEAD(HFT).FT – Tlookahead

HEAD(HFT).FT

 

Fig. 7: Example of RR 

To illustrate the interactive operation between RTC, RPC and RR, an example is 

given under the assumption that the exact transmission rate and required time on 

transmitting a response are known in advance. As shown on the left of Fig. 6, assume 

that 3 requests: a, b, and c, have be released before the time TCURR, and their 

corresponding responses are transmitting and exhausts all downlink bandwidth. Among 

them, the finishing time of the responses corresponding to a and b should be at The 

variable for accumulating available bandwidth which is available at TminFT and before 

that to c. Thus, at current time, TCURR, i.e., TminFT - Tlookahead, HFT should contain three 

requests and a is its root node since the request a arrives before b and will finish the 

transmission before c. Meanwhile, RTC is also invoked at this time, scheduled by RR. 

Once invoked, RTC pops up a and b from HFT to update the available bandwidth after 

TminFT from 0 to (25+40). Obviously, the available bandwidth is enough for transmitting 

the response of the request d, the head of QRPC. 

Thus, as shown in Fig. 6, RTC gets request d from RPC and then calculates its 

releasing time. In this example, the best releasing time of request d is TCURR + Tlookahead – 

d.D, since the response of d will come back after d.D and is expected to fill the 

bandwidth released by the response of a and b. Next, the request d is inserted into 

HRELEASE and into HFT. The finishing time of d is set to infinite since the time is 
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unknown before RR receives the first packet of its response. Since the available 

bandwidth is not enough for the response of the next request e, RTC sleeps.  

Fig. 7 shows the time that RR receives the first response packet of d. The first job 

of RR is to re-compute the finishing time of d, d.FT. HFT rewrite it into HFT, and 

reconstruct HFT. In this case, the first request in HFT is still c, meaning c.FT is the next 

time that the available bandwidth will be increased. Finally, RTC is scheduled to be 

invoked at c.FT – Tlookahead. 

3.3 Inaccurate Parameters and Compensation 

Unfortunately, the parameters provided by RR are not always correct for two 

reasons. First, the parameters of new requests cannot be actually estimated. Second, 

even for the forwarded requests, their historical parameters recorded by RR may affect 

by the flexibility of the Internet. Inaccurate Delayresp and transmission rate may affect 

the access-link utilization because RTC needs these two parameters in order to feed 

some responses to the available bandwidth of downlink. Inaccurate response size may 

affect the fairness of access-link bandwidth shared between various classes because in 

RPC the response size of a request determines the releasing order of the request.  

A revised RR with a compensation mechanism is proposed to prevent the unfair 

sharing between various classes resulted from inaccurate response size.  

Get req.SIZE 

if (req.SIZE > the value used in RPC) { 

 DCi = DCi – abs(req.SIZE – the value used in RPC) 

} else { 

 DCi = DCi + abs(req.SIZE – the value used in RPC) 

} 

req.FT = TCURR + req.SIZE/req.BW 

SCH_RTC(HEAD(HFT).FT – Tlookahead) 

Fig. 8: Procedure in RR with Compensation 

Fig. 8 shows the modified RR algorithm with compensation. This revision 



 15

compensates the corresponding deficit counter in RPC after the accurate response size is 

known. Generally, the size is known after the first response packet is received or the 

transmission is finished. As shown as pseudo codes with the bold style in Fig. 8, if the 

real size is bigger or smaller than the value used in RPC, the corresponding deficit 

counter must be compensated with this difference. 
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Chapter 4. Simulation Results 

4.1 Simulation Environment 

The network simulation tool, ns-2 [14], is used to simulate the operation of RQS. 

The class Http/Cache in ns-2 models behaves as a simple HTTP cache with infinite size, 

so it will intercept the requests sent from clients and then will forward them to the web 

server. Thus, we implement the RQS algorithm on the class Http/Cache. 
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Fig. 9: Simulation topology used in this work 

Fig. 9 shows the simulation topology used in this work. The RQS gateway 

provides three classes. Twelve clients connecting to the RQS gateway are equally 

divided into the three classes. The link between the RQS gateway and a client is 10Mb/s 

with 2 ms propagation delay. Besides, a 128Kb link with 50 ms propagation delay 

connects the RQS gateway with an ISP's edge route R to simulate the access link. Next, 

the route R connects to four servers with four independent links, whose configurations 

are presented in Fig. 9. The fixed response sizes in the four servers are 40KB, 20KB, 

10KB, and 5KB, respectively. The client named as Cx-y represents that it only send 

requests to server x and their responses belong to class y. In other words, each server 

has to serve three clients belonging to three different classes. Note that the client can 

only send the next request until the whole response packets requested by the last request 
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return. 

4.2 Throughput Differentiation 

First, we demonstrate that RQS can actually allocate the proportional bandwidth to 

different classes and let active classes share the free bandwidth. The proportion of the 

bandwidth allocated for three classes is given as 4:2:1. At the beginning, clients in 

Class1 and Class2 send requests and after four minutes, clients in Class3 join. Fig. 10 

shows the bandwidth usage of three classes during 8 minutes. At 0~4 minutes, Class1 

and Class2 occupy the downlink bandwidth and their average bandwidth usages are 

equal. The reason that the ratio is not 4:2 is that the mean transmission rate of the 

response traffic in Class1 (55 Kbps) is not high enough to occupy 2/3 bandwidth of the 

access link (256/3, or 85.33 Kbps). Thus, the Class2 fairly shares the bandwidth with 

Class1. However, at the 4th min, Class3 starts to occupy the downlink bandwidth. The 

proportion of the bandwidth usage occupied by three classes is 57:37:18. Compared to 

the average target ratio between various classes, ( 4/2 + 2/1 )/2, or 2, that under RQS is 

((57/37+37/18)/2), i.e., 1.798. The accuracy is 1.798/2=89.9% 
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Fig. 10: Downlink bandwidth usage of each class during 8 minutes 
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4.3 User-perceived Latency 

 Next, we observe the user-perceived latency experienced by the clients in three 

classes during 8 minutes. The simulation scenario here is the same as that in Chapter 4.2, 

except that all clients send requests from the beginning. For the clients accessing the 

same server, as shown in Fig. 11, the higher class the client belongs to, the shorter 

user-perceived latency the client experiences. Besides, the differences of latency 

between various classes decrease with the increase of server’s number, and this 

phenomenon can be further observed from Fig. 12 and 13. Fig. 12 shows the time 

queued in RQS and Fig. 13 shows the sum of Delayresp and response transmission time. 

Obviously, as shown in Fig. 12, the queuing delay in RQS for different classes 

determines the differences of latency between classes. That is because RQS delays the 

release of a request according to its response size, and the response size in Server1 is the 

larger than other servers. In other words, all clients connecting to Server1 get larger 

response sizes, i.e. longer transmission times, and therefore have longer waiting times 

for the next service than the waiting times experienced by clients of Server4. 
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Fig. 11: Average user-perceived latency  
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Fig. 12: Average queuing time in RQS gateway 
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Fig. 13: The sum of average Delayresp and response transmission time 

4.4 Response Transmission Time 

Finally, as shown in the most left group of Fig. 13, the average transmission time 

of user-perceived latency for all classes under RQS is 68.75% shorter than that under no 

RQS. Thus RQS can decrease the transmission time, that is, it actually avoids too many 

connections competing for the access link simultaneously. 

4.5 Fairness Improved by the Compensation Mechanism 
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Fig. 14: Average bandwidth usage without compensation 
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Fig. 15: Average bandwidth usage with compensation 

In this evaluation, all clients of three classes send requests from the beginning and 

the bandwidth allocated for three classes are equal, i.e. the quantum ratio is 1:1:1. Next, 

assume that RQS can accurately estimate the size of the response, except the response 

belonging to Class1. The biasing ratio (size used in RQS/ real size) for the clients in the 

Class1 ranges from 1/10 to 10. For example, the biasing ratio being equal to 10 presents 

that RQS thinks the size of a response is 100KB although its real size is only 10KB. 
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This simulation runs in 8 minutes, and the average bandwidth usage is measured from 

the second minute for stability. 

Fig. 14 shows the effect of inaccurate estimation of response size on the fairness 

between classes, and Fig. 15 demonstrates the improvement of using a compensation 

mechanism in RR. It is clear in Fig. 14 that wrong response size used in RPC seriously 

degrades the fairness on bandwidth usage between various classes. In the cases that the 

biasing ratio is larger than one, the bandwidth usage of Class1 is lower than the 

expected because its deficit counter in RPC is over-decreased. In the cases that the 

biasing ratio is smaller than one, the situation is reversed. When RR applies the 

compensation mechanism, as shown in Fig. 15, the bandwidth usage between three 

classes is quite close to the targeted ratio, 1:1:1, in all cases. 

4.6 The Impact of Inaccurate Delayresp and Transmission Rate 

0

20

40

60

80

100

120

1/5 1/4 1/3 1/2 1 2 3 4 5

Bias ratio of transmission rate in Class1

B
an

dw
id

th
 (

K
b/

se
c)

Total

Class1

Class2

Class3

  

Fig. 16: The impact on link utilization resulted from inaccurate transmission rate 

Fig. 16 shows the impact of inaccurate estimation of the mean transmission rate on 

link utilization. All clients of three classes send requests from the beginning. The 

quantum ratio between three classes is 1:1:1. The first observation is the total link 

utilization is decreased with the increase of the biasing ratio of transmission rate, i.e. the 
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actual sending rate of the response traffic is smaller than the estimation used in RQS. In 

addition, although the utilization is higher when the ratio is smaller than 1, serious 

congestion will occur at the access link, and it is not preferred. 
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Fig. 17: The impact on link utilization resulted from inaccurate Delayresp 

Fig. 17 shows the results as Delayresp cannot be estimated accurately. The biasing 

ratio larger than one means the value estimated in RQS is larger than the actual Delayresp, 

leading to unexpected response traffic competing for the access link. Contrarily, when 

the ratio is smaller than one means the actual Delayresp is smaller than the value used in 

RQS, causing one response cannot follow another finished response well. Therefore, 

available bandwidth is wasted and the link utilization is going down. 

Although inaccurate Delayresp and transmission rate affect the link utilization, but 

the bandwidth usage ratio of three classes still close to the targeted ratio of three classes, 

i.e., 1:1:1. 
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Chapter 5. Managing Uplink Bandwidth by RQS 

5.1 Operation Model of RQS in Managing Uplink 
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Fig. 18: The operation model of uplink bandwidth management 

In the previous chapters, as shown in Fig. 1, the discussion of RQS focuses on how 

to manage the downlink bandwidth of the access link by controlling the outgoing 

requests in an environment where the web servers are in the Internet. In such a scenario, 

the traffic on uplink is usually light because the size of the request packet is very small. 

That is, the bottleneck is the downlink of the access link when internal clients in an 

enterprise access the web servers in the Internet. However, as shown in Fig. 18, the 

uplink may turn to be the bottleneck if the enterprise places a web server in the internal 

network and allows clients coming from the Internet to access it. Thus, in this chapter 

RQS is introduced to manage the bandwidth of uplink by skillfully scheduling the 

incoming requests. 

5.2 Modified RTC and RR Algorithm 

In the original operation of RQS mechanism, three parameters of a request are 

needed, namely, response size, transmission rate of response and Delayresp. As shown in 
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Fig. 18, the server in the intranet is very close to the access gateway of enterprise, and 

thus the value of Delayresp should be small enough to be ignored in the procedure of 

RTC. Therefore, the advance time Tlookahead can also be eliminated from the procedure in 

RR since Tlookahead is the maximum value of Delayresp. By such two simplifications, RQS 

can be easily applied to manage the uplink bandwidth. 

5.3 Simulation Scenario and Results 
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Fig. 19: Simulation Topology 

Fig. 19 shows the simulation topology that clients in the Internet access the web 

server in the Intranet. Twelve clients, divided into three classes uniformly, access the 

single server near the RQS gateway. The quantum ratio of three classes is 4:2:1. 
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Fig. 20: Uplink Bandwidth usage of each class 
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Fig. 20 shows the bandwidth usage between three classes during eight minutes. 

This result shows that RQS is capable to manage uplink bandwidth by controlling the 

releasing of incoming requests. The ratio on bandwidth usage of three classes, 50:36:18 

is close to the targeted ratio. 
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Chapter 6. Conclusions and Future Works 

This work proposes the ReQuest Scheduler (RQS) at consumer-side access 

gateway to overcome the three problems of packet-level scheduling on managing the 

access-link bandwidth. RQS controls the releasing rate of requests in one class to 

arrange concurrent transmissions and pre-allocate the bandwidth of the access link 

occupied by the response traffic corresponding to this class. Thus, RQS can provide 

proportional and sharing bandwidth between various classes, and reduce the congestion 

occurring at the access link. 

The simulation results show the ratio on bandwidth usage between classes 

scheduled by RQS is close to the targeted ratio (The similar degree is 89.75%) and the 

free bandwidth can be shared for active classes. Besides, the mean transmission time is 

decreased to 68.75% of the original value, revealing that RQS avoids too many 

responses competing for the access link simultaneously and thus reduces the congestion. 

Finally, by the compensation mechanism, RQS is robust to achieve the fairness between 

classes even when the response size is inaccurately estimated. 

In the future, we will study how to reduce the impact on link utilization as the 

transmission rate of a response or the interval between sending a request and received 

its first response packet cannot be accurately estimated. On the other hand, handling 

application protocol that do not use request-response model and testing RQS in real 

world environment are the works to be done. 
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