PN [ BE 7
E}%ﬁi%' T~

EE L e T - S
# & A 8RB & T 2 5 R P o

Request Scheduling for Differentiated QoS at Access Gateway

oy oA AR
ffgcm HEE K

& X Jeq = & A %



R R B R AL BRI T2 R

Request Scheduling for Differentiated QoS at Access Gateway

oA I mB R Student : Ming-Kang Ou Yang
R A G | (e Advisor : Dr. Ying-Dar Lin

AThesis
Submitted ta:Institute of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China



PRREEMEZIRELIYVIRBET
Ay g

£3 0 WHEE e B

Rzd + FFapF s

g

PR E N L b g o A RRF AR FH 4

-

o fe £ 3 T PSR R DAL AL S0 A 2 B R R R o R il SRR

=t

B

N
~

bR AR e i £ 28T F Bodn R B fE R W B
P 3t Pz endeik BIRE B IR PG  = BB M AT AR
1R - RS R o 5 fRA i FAE O AR
FRAREH o Fldte RAARRERRH e gz Bl F ORHE A~ F R
e MES K e v RS AT R NG R HEDF it bl sURR Y ik
PR R BB ALY Rt IS > RFEELT A YT AT
B > R RBRRER? FAEREDT A RO ST A PN D
TR Y VIR R AP RN G 0 FRE i v B
BT s ke 68.70% RF|G 2 Wi v AR H & 3 n9rA 3 % 347 A

B A pLdE cnfEASE X BEor TR e B R T MR E L NIRIAEF o

Mgt FoRite B ERTEE BT 2N L YRS



Request Scheduling for Differentiated QoS

at Access Gateway

Student: Ming-Kang Ou Yang Aduvisor: Dr. Ying-Dar Lin
Department of Computer and Information Science

National Chiao Tung University

Abstract

For ISP’s customers, the access link is usually the bottleneck when accessing the
Internet since they often delay upgrading the-access link bandwidth to save costs. Thus
the management of access-link bandwidth is imperatively required. On managing the
access link bandwidth, the’common approach, packet-level scheduling at consumer-side
access gateway, has three potential problems; namely, low scalability, scheduling behind
the downlink bottleneck, and excessive concurrent transmissions. This work proposes a
ReQuest Scheduler (RQS) to avoid these problems. RQS calculates the bandwidth of
access link needed by the response traffic according to each request’s three parameters,
namely, response size, response transmission rate, and response delay. RQS controls the
releasing rate of requests to provide proportionally shared bandwidth between various
classes, and to reduce congestion occurring at the access link. The simulation results
show the bandwidth usage ratio between classes can be close to the allocated quantum
ratio, while the free bandwidth can be shared among active classes. Also the mean
transmission time is decreased to 68.75% of the original value; and congestion
occurring at the access link is reduced.
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Chapter 1. Introduction

Internet has evolved to provide a multitude of services, more and more enterprises
and users use Internet to exchange various kinds of information, causing that the
volume of traffic on Internet grows rapidly. Generally speaking, ISPs are willing to
invest a lot of money to expand the backbone bandwidth to provide their customers
good surfing. However, to minimize costs, their customers often delay upgrading the
bandwidth of the access link for as long as possible, and the insufficient bandwidth at
the access link results in the serious congestion and long transmission latency. Thus the
access link is still the potential bottleneck for enterprises and users who want to access
the Internet.

For enterprises, in order to avoid such congestion from degrading the transmission
of important connections, :some levels of Quality of Service (QoS) must be provided.
Currently the common solution” to this _requirement is deploying the packet-level
bandwidth management [1] at an access gateway. The deployment at the access gateway
is undoubted because enterprises do not need to install any software into and modify
any configuration on their PCs and servers. However, managing the bandwidth of the
access link by a packet-level scheduling mechanism at an access gateway has three
problems:

Low scalability: The segment of a file or a web page is usually decomposed to a
great amount of packets. To manage the link bandwidth, the packet scheduling has to
decide the releasing order and time of each packet. This per-packet processing costs
much CPU resource and increases the complexity on scheduling, causing the scalability
problem.

Scheduling behind the downlink bottleneck: In general, without ISP’s support, the



enterprise can only deploy the bandwidth management at the local gateway. Such a
management mechanism schedules the downlink packets behind the bottleneck, the
access link, which the downlink packets have already passed through. Therefore, the
downlink scheduling behind the access link is meaningless. Actually, these packets
should be delivered to end hosts immediately without any scheduling because the
bandwidth within enterprise’s intranet is far larger than the bandwidth of the access link.

Excessive concurrent transmissions: The packet-level scheduling mainly considers
packet delay differentiation between various classes, but does not care which packets
belong to one file within a class. When too many files in one queue are transmitted
simultaneously, each file may only grab a little bandwidth, implying that all users in this
class have to experience a long transmission time before they get the complete file.

The above three problems reveal the inefficiency and ineffectiveness of packet
scheduling. Fortunately, scheduling packets is not the only way for managing bandwidth
in the today Internet. Mostyapplications ‘running over the Internet adopt the
request-response model; that s, a.client sends a request to a server, and then the server
returns a response to the client. Request scheduling is used in some recent studies to
provide Web QoS [2]. These studies provided QoS services on a single Web server [3-6],
caching proxies [7-8] and server farms [9-10]. No studies discussed how to design
request scheduling at the access gateway. This work proposes a novel approach, the
mechanism at an access gateway, ReQuest Scheduling (RQS) which schedules requests
to manage the bandwidth of the access link. The RQS achieves three objectives:

1) High scalability: According to [11], the size of one request is 1/10 long as that
of one response averagely. The ratio indicates that scheduling requests is more efficient
than scheduling packets of responses.

2) Differentiated and shared bandwidth: By controlling the amount of requests
released from various classes, RQS can allocate the bandwidth of the access link to

2



different classes for transmitting the response packets. Besides, by adopting the Deficit
Round-Robin scheduling algorithm [12], free bandwidth can be shared among all active
classes.

3) Reducing congestion: By controlling the releasing time of a request RQS can
roughly estimate the return time of its response. Thus RQS can avoid too many
responses competing for the access link simultaneously, reducing the congestion
occurrence at the access link and then shortening the mean transmission time of a
response.

Note RQS not only can schedule outgoing requests to manage the downlink
bandwidth, but also can schedule incoming requests to manage the uplink bandwidth. In
fact, the complexity and effect of scheduling incoming requests is easier and stabler,
respectively, because the servers accessed by-the incoming requests are very close to the
access gateway. However, for clearer.description, this work first emphasizes on
scheduling outgoing requests, and-then.-considers handling incoming requests.

The rest of this paper is‘organized.as follows. Chapter 2 presents the operation
model and three components of RQS. Chapter 3 describes the algorithms used in each
component and proposes a compensation mechanism for the case that the response size
cannot be accurately estimated. The simulation results, in Chapter 4, demonstrate that
RQS actually achieves the above three objectives and reveal how the dynamic
transmission rate and response delay affect RQS on fairness and link utilization.
Chapter 5 discusses the scenario that RQS manages the uplink bandwidth of the access

link. Finally, the conclusions and future works are given in Chapter 6.



Chapter 2. Architecture of the ReQuest Scheduler

2.1 Operation Model

Fig. 1 is a typical network topology that an enterprise accesses the Internet
services. Requests sent from multiple clients go through the access gateway and the
uplink of the access link to the servers in the Internet; then, the corresponding responses
returned from the servers come back through the downlink of the access link. To supply
differentiated QoS among clients, a request classifier and a ReQuest Scheduler (RQS),
deployed in the access gateway, classifies and schedules the requests sent from clients,
respectively, as shown in Fig. 1. The request classifier puts every arriving request into a
request class queue accordingto- the user-defined classification policies. The RQS
mechanism controls the sending rate of requests to allocate the differentiated downlink
bandwidth for each class.This rate control involves the decision of the sending order
and the sending time of a request. Under the operation of RQS, the user-perceived
latency consists of the time queued in the gateway with RQS, Delayyesp, and response
transmission time, where Delay.sp is the delay from releasing the request to receiving
the first packet of its response at RQS and can be considered as the total of the RTT of
the gateway and the processing time of the server. In fact, Delays, can be seen as the
response time of one request [13] experienced by RQS. RQS is designed to handle the
application protocols that use request-response model and the response size can be
known after receives the first response packet. For example, HTTP, IMAP4, POP3, and
some streaming video services are such application protocols that fit these two

assumptions.
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Fig. 1: Operation Model of a gateway with ReQuest Scheduler

RQS consists of three components, namely, Release Proportion Controller (RPC),
Release Time Controller (RTC),:and Response Recorder (RR). RTC releases the request
selected by RPC at a "suitable” time: Releasing-the request at this suitable time will let
the corresponding response occupy-at a right™ time, a downlink bandwidth which is
equal to the bandwidth supplied. by the Internet. RPC controls the released amount of
requests for each class, and thus determines its occupied proportion on the downlink
bandwidth. To estimate the releasing time of a request and decide the released
proportion for each class, RTC requires two parameters, the transmission rate and
Delayrsp, of the response, and RPC require one parameter, the response size of the
request. RR is responsible to monitor the response traffic and then update these

parameters.

2.2 Release Time Controller (RTC)

RTC is invoked in the two cases. The first case is when a new request arrives in a
queue and the other queues are empty. The other case is at the scheduled instant, as
shown in Fig. 2, which is determined by RR. Specifically, the scheduled time is the

lookahead instant before the finishing time of a response transmission that is at (Tminet -
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Tiookahead), Where Tigokanead IS the advance time and Tpiner is the minimum finishing time
among all active response transmissions. Once invoked, RTC computes the available
downlink bandwidth after Tniner. Next, RTC gets requests from RPC and sends them out

if the free bandwidth is sufficient to transmit responses.

RTC 'is invoked T.
Bandwidtt at this moment mllnFT
_ 1 | Download Bandwidth
I I
I |
[ —

I Tlookahead

| I Delay, .,
I |

i >
Release the request Time
at this moment

Fig. 2: Execution of RTC

In the following, the choice of Tigokanead 1S-€Xplained. If a response is expected to
return and fill up the bandwidth available‘beginning from Tpinrr, RTC needs to release
its request at Tminer - Delayiesp. IN-factyDetay esp @mong connections are different, so
RTC computes the available bandwidth-at Tminrt - Tiookahead Where Tiookanead Should be
equal to the maximum of the Delayesp Of all connections. If Tigokanead iS Smaller than
some requests’ Delayresp, the response of these requests won't come back by Triner, the
time when the downloading response finishes. Since Tiookanead @aNd Tminer are estimated

by RR, the scheduled time at invoking RTC is scheduled by RR.

2.3 Release Proportion Controller (RPC)

Every time when RPC is invoked by RTC, RPC selects a request from queues. The
amount of requests selected by RPC in long term for one class decides the proportion on
the downlink bandwidth occupied by the corresponding response traffic in this class.
The selecting algorithm applied in RPC is derived from the Deficit Round Robin (DRR)

algorithm [12]. DRR is one of packet fair queuing algorithms, which guarantees all of



the flows passing through a link proportionally share the bandwidth of the link. DRR
serves the queues in a round-robin manner. As a queue is served, the scheduler allows a
given quantum in bytes or bits to send out from this queue. If the quantum is insufficient
for sending out the first packet in the queue, the deficit counter of this queue saves the
residual quantum for using in the next round. Then the scheduler serves the next queue.
However, applying DRR in RPC requires two modifications. First, the proportion
on gquantum size among classes should decide the proportion on the response traffic
among classes, not on the request traffic. Thus, sending a request is determined on
whether the quantum is sufficient for the size of its corresponding response, not the size
of itself. Second, in RPC transmitting requests does not cost the downlink bandwidth,
the target to be scheduled. Therefore, if RPC sends requests one-by-one as the way
DRR sends packets, the returning response traffic may overflow the downlink
bandwidth. For this, in RQS, RPC only decides from which queue to get the next
request, but RTC decides whento-send the reguest. When RTC forecasts there are free
downlink bandwidth, it get the appropriate request from RPC and then send it out. In
this way, the sending rate of requests in RPC actually depends on the target bandwidth

to be scheduled.

2.4 Response Recorder (RR)

For scheduling a request having been forwarded by RQS, RR provides the historical
size, rate and Delayrsp Of the response transmission corresponding to this request. On
the other hand, for a new request, RR needs to provide the initial estimation of these
three parameters. Delaysp can be predicted by monitoring the TCP 3-way handshaking
when client connects to server. Response size can be assigned by the average value of
the response type and transmission rate can be assigned by the average value by using

historical records. Besides providing the three parameters, another important job in RR



is to schedule the next invoked time of RTC, Tminer - Tiookahead- 1O g€t Tminer, the
finishing time of each response transmission is necessary and calculated by RR from the

size and rate of the response.



Chapter 3. Implementation of ReQuest Scheduler

3.1 Procedures within RQS

Fig. 3, 4 and 5 lists the pseudo codes executed in RTC, RPC, and RR, respectively.
Table 1, 2 and 3 list the variables, functions, and data structures, such as Her, HreLease,
and Qrpc, Used in the pseudo code, respectively.

a) The procedure in RTC: As presented in Fig. 3, when RTC is invoked, the first
loop from Herremoves all of the requests whose finishing time of response transmission
equals to Tminer to accumulate the bandwidth going to be released by these requests and
thus available after Tiner. In the second loop, if the available bandwidth, BW, is enough
for the head request in Qgrpc to_receive itsiresponse with the rate offered by the Internet,
denoted as HEAD(Qrpc).BW, RTC calls DEQUEUE(Qgrpc) function to get this header
request from RPC, and then subtracts the bandwidth occupied by its response, denoted
as Req.BW, from BW. Next, RTC determines the releasing time of this request as TminFr -
Delayresp Of the request. Finally, this scheduled request is put into HreLease, and going to
be released when time is up. If the available bandwidth is still enough for the next
requests in Qgrpc, RTC continues to arrange them. Otherwise, it sleeps. Since the
responses of these scheduled requests are returning in the future, RTC also puts them
into Her, but their finishing time are set to infinite at present since the times are
unknown before RR receives the first packets of their responses.

b) The procedure in RPC: RPC, invoked by DEQUEUE(Qgrpc) in RTC, is
responsible for selecting a request from queues. Fig. 4 lists the pseudo codes of RPC,
which is similar to the DRR algorithm. An index, i, is maintained in RPC to point the
next queue to be served. If the queue Qui; is empty, then the deficit counter of this queue,

DC;, will be set to 0. Otherwise, the quantum of this class queue, Q;, will be added to



DCi. The Heading-of-line (HOL) request in queue is picked only when the value of
deficit counter is bigger than the response size of this request. After the request is
dequeued from the queue, the deficit counter must be subtracted from its response size.

c) The procedure in RR: RR is invoked when the first packet of a response comes
back to the access gateway. RR receives a response packet then calculates the
transmission time by measuring the response size and bandwidth usage. Finally RR
decides the next trigger time of RTC by a look ahead time before the minimum finishing
time among all active response transmissions.

Table 1: Parameters of RQS algorithms

Parameter Name Parameter Description
Req A request object
req.BW Bandwidth usage for transmitting the response relative to the request object
req.FT Transmission-finish time for the response relative to the request object
req.D The Delayes, of the request object.
req.SIZE Response size of the request object
DGC; The deficit counter-of.elass;
Qi The quantum size of class;
TmineT The minimum finishing time among all active response transmissions
Tiookahead The period between the finish time of a response and the execution time of RTC
BW The variable for accumulating available bandwidth

Table 2: Functions of RQS algorithms

Function Name Function Description
EMPTY(DSxxx) Check if the data structure DSy is empty or not
HEAD (DSxxx) Get parameter from the first object of DSxxx

DEQUEUE(DSxxx) Remove the first object of DSyxx

INSERT(reg, DSxxx) Insert the request object req into DSyxx
SCH_RTC(Time) Set the next trigger time of RTC

10



Table 3: Data Structures of RQS algorithms

Data Structure Name Data Structure Description
Her This min-heap tree mounts all requests whose responses are transmitting.
The root of this heap presents the request whose response will be
transmitted completely earliest.

HreLease The min-heap tree mounts all un-transmitted requests whose released time
has be decided by RTC. The root in this heap presents the request has the
earliest released time.

Qrpc This queue is not a real queue presented in RQS. The order of requests in it
shows the sequence of requests released from RPC. That is, the first object
in this queue is the next request selected by the modified DRR algorithm in
RPC

Qui; The queue for queuing the request arriving from Class;

Procedure_in_RTC
// The first loop

TminFT = HEAD(HFT)-FT

do {

req = DEQUEUE(HgT)
BW = BW + req.BW
} while(HEAD(Her) -FT == Thiner)

// The second loop

while (HEAD(QRpc) BW < BW)

req = DEQUEUE(Qrec)

BW -= req-BW

req.release = Tyiner — req.D
INSERT(req, Hreiease)
INSERT(req, Her)

sleepQ)

Fig. 3: Procedure in RTC

11




Procedure_in_RPC
do {
if (EMPTY(Qup)) {
DC; = O
} else {
DC; = DC; + Q;
it (HEAD(Qu;)-SIZE <= DC;) {
req = DEQUEUE(Qu;)
DC; - DC; — req-SIZE
return req

}
}
i = (i +1) mod n
} while (V(EMPTY(Qu;) for all 1))
sleepQ

Fig. 4: Procedure in RPC

Procedure_in_RR

{

Get req-SIZE

req.FT = Tere + req-SI1ZE/req.BW
SCH_RTC(HEAD(HFT) -FT — Tlookahead)

3
Fig. 5: Procedure in RR
3.2 Examples
Bandwidth TCURR TminFT
A I | Required Bandwidth 30 65
I : Dcivnl_oad_ Ba_ndﬂidth ’ ‘ e |.d| Que
35 :C | S
— - P
T | " ldf
40 b I Tlookahead RELEASE
1 I ap | d ;
2 a 11 £
i - ’ ‘d ‘C b ?J Her
d.release me

Fig. 6: Example of RTC
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Bandwidth Teurr

4 I Required Bandwidth 30
Download Bandwidth
L CoWvnoad Bancw ’ El Qrec
35 c : | HEAD(H,,).FT
! | |
40 b I ITIookahead RELEASE
11 d
25 a 11
{ > ’ ‘ d | C | Her
Time

I
[ ]
HEAD(Hg;).FT - T

lookahead

Fig. 7: Example of RR

To illustrate the interactive operation between RTC, RPC and RR, an example is
given under the assumption that the exact transmission rate and required time on
transmitting a response are known in advance. As shown on the left of Fig. 6, assume
that 3 requests: a, b, and cythave be released before the time Tcurg, and their
corresponding responses are transmitting and exhausts all downlink bandwidth. Among
them, the finishing time of the_responses corresponding to a and b should be at The
variable for accumulating available bandwidth which is available at Tyiner and before
that to c. Thus, at current time, Tcurr, 1-€., TmineT - Tiookahead, Her Should contain three
requests and a is its root node since the request a arrives before b and will finish the
transmission before c. Meanwhile, RTC is also invoked at this time, scheduled by RR.
Once invoked, RTC pops up a and b from Her to update the available bandwidth after
Tminer from 0 to (25+40). Obviously, the available bandwidth is enough for transmitting
the response of the request d, the head of Qgpc.

Thus, as shown in Fig. 6, RTC gets request d from RPC and then calculates its
releasing time. In this example, the best releasing time of request d is Tcurr + Tiookahead —
d.D, since the response of d will come back after d.D and is expected to fill the
bandwidth released by the response of a and b. Next, the request d is inserted into

HreLease and into Her. The finishing time of d is set to infinite since the time is
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unknown before RR receives the first packet of its response. Since the available
bandwidth is not enough for the response of the next request e, RTC sleeps.

Fig. 7 shows the time that RR receives the first response packet of d. The first job
of RR is to re-compute the finishing time of d, d.FT. Hgr rewrite it into Her, and
reconstruct Her. In this case, the first request in Her is still ¢, meaning ¢.FT is the next
time that the available bandwidth will be increased. Finally, RTC is scheduled to be

invoked at ¢.FT — Tookanead-

3.3 Inaccurate Parameters and Compensation

Unfortunately, the parameters provided by RR are not always correct for two
reasons. First, the parameters of new requests cannot be actually estimated. Second,
even for the forwarded requests, their historical parameters recorded by RR may affect
by the flexibility of the Internet. Inaccurate Delayrs, and transmission rate may affect
the access-link utilization:zbecause RTC needs these two parameters in order to feed
some responses to the available-bandwidth of downlink. Inaccurate response size may
affect the fairness of access-link bandwidth shared between various classes because in
RPC the response size of a request determines the releasing order of the request.

A revised RR with a compensation mechanism is proposed to prevent the unfair

sharing between various classes resulted from inaccurate response size.

Get req.SIZE
if (req.SI1ZE > the value used in RPC) {

DC; = DC; — abs(req.SIZE — the value used in RPC)
} else {

DC; = DC; + abs(req.SIZE — the value used in RPC)
}
req.FT = Teirr + req.-SI1ZE/req.BW
SCH_RTC(HEAD(Her) -FT — Tiookahead)

Fig. 8: Procedure in RR with Compensation
Fig. 8 shows the modified RR algorithm with compensation. This revision

14




compensates the corresponding deficit counter in RPC after the accurate response size is
known. Generally, the size is known after the first response packet is received or the
transmission is finished. As shown as pseudo codes with the bold style in Fig. 8, if the
real size is bigger or smaller than the value used in RPC, the corresponding deficit

counter must be compensated with this difference.
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Chapter 4. Simulation Results

4.1 Simulation Environment

The network simulation tool, ns-2 [14], is used to simulate the operation of RQS.
The class Http/Cache in ns-2 models behaves as a simple HTTP cache with infinite size,
so it will intercept the requests sent from clients and then will forward them to the web

server. Thus, we implement the RQS algorithm on the class Http/Cache.

Class1

Class2

50Kb 2000ms

Fig. 9: Simulation topology used in this work

Fig. 9 shows the simulation topology used in this work. The RQS gateway
provides three classes. Twelve clients connecting to the RQS gateway are equally
divided into the three classes. The link between the RQS gateway and a client is 10Mb/s
with 2 ms propagation delay. Besides, a 128Kb link with 50 ms propagation delay
connects the RQS gateway with an ISP's edge route R to simulate the access link. Next,
the route R connects to four servers with four independent links, whose configurations
are presented in Fig. 9. The fixed response sizes in the four servers are 40KB, 20KB,
10KB, and 5KB, respectively. The client named as Cy., represents that it only send
requests to server x and their responses belong to class y. In other words, each server
has to serve three clients belonging to three different classes. Note that the client can

only send the next request until the whole response packets requested by the last request
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return.

4.2 Throughput Differentiation

First, we demonstrate that RQS can actually allocate the proportional bandwidth to
different classes and let active classes share the free bandwidth. The proportion of the
bandwidth allocated for three classes is given as 4:2:1. At the beginning, clients in
Classl and Class2 send requests and after four minutes, clients in Class3 join. Fig. 10
shows the bandwidth usage of three classes during 8 minutes. At 0~4 minutes, Classl
and Class2 occupy the downlink bandwidth and their average bandwidth usages are
equal. The reason that the ratio is not 4:2 is that the mean transmission rate of the
response traffic in Classl (55 Kbps) is not high enough to occupy 2/3 bandwidth of the
access link (256/3, or 85.33 Kbps). Thus, the Class2 fairly shares the bandwidth with
Classl. However, at the 4thmin, Class3-starts.to occupy the downlink bandwidth. The
proportion of the bandwidth usage occupied by three classes is 57:37:18. Compared to
the average target ratio between-various:classes, ( 4/2 + 2/1)/2, or 2, that under RQS is

((57/37+37/18)/2), i.e., 1.798. The'accuracy is 1.798/2=89.9%
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Fig. 10: Downlink bandwidth usage of each class during 8 minutes
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4.3 User-perceived Latency

Next, we observe the user-perceived latency experienced by the clients in three
classes during 8 minutes. The simulation scenario here is the same as that in Chapter 4.2,
except that all clients send requests from the beginning. For the clients accessing the
same server, as shown in Fig. 11, the higher class the client belongs to, the shorter
user-perceived latency the client experiences. Besides, the differences of latency
between various classes decrease with the increase of server’s number, and this
phenomenon can be further observed from Fig. 12 and 13. Fig. 12 shows the time
queued in RQS and Fig. 13 shows the sum of Delayes, and response transmission time.
Obviously, as shown in Fig. 12, the queuing delay in RQS for different classes
determines the differences of latency between classes. That is because RQS delays the
release of a request according to its_response size, and the response size in Serverl is the
larger than other servers. dn ‘other words, all clients connecting to Serverl get larger
response sizes, i.e. longer transmission-times; and therefore have longer waiting times

for the next service than the waiting times experienced by clients of Server4.
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Fig. 11: Average user-perceived latency
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Fig. 12: Average queuing time in RQS gateway
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Fig. 13: The sum of average Delayresp, and response transmission time
4.4 Response Transmission Time

Finally, as shown in the most left group of Fig. 13, the average transmission time
of user-perceived latency for all classes under RQS is 68.75% shorter than that under no
RQS. Thus RQS can decrease the transmission time, that is, it actually avoids too many

connections competing for the access link simultaneously.

4.5 Fairness Improved by the Compensation Mechanism
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Fig. 15: Average bandwidth usage with compensation

In this evaluation, all clients of three classes send requests from the beginning and

the bandwidth allocated for three classes are equal, i.e. the quantum ratio is 1:1:1. Next,

assume that RQS can accurately estimate the size of the response, except the response

belonging to Class1. The biasing ratio (size used in RQS/ real size) for the clients in the

Classl ranges from 1/10 to 10. For example, the biasing ratio being equal to 10 presents

that RQS thinks the size of a response is 100KB although its real size is only 10KB.
20



This simulation runs in 8 minutes, and the average bandwidth usage is measured from
the second minute for stability.

Fig. 14 shows the effect of inaccurate estimation of response size on the fairness
between classes, and Fig. 15 demonstrates the improvement of using a compensation
mechanism in RR. It is clear in Fig. 14 that wrong response size used in RPC seriously
degrades the fairness on bandwidth usage between various classes. In the cases that the
biasing ratio is larger than one, the bandwidth usage of Classl is lower than the
expected because its deficit counter in RPC is over-decreased. In the cases that the
biasing ratio is smaller than one, the situation is reversed. When RR applies the
compensation mechanism, as shown in Fig. 15, the bandwidth usage between three

classes is quite close to the targeted ratio, 1:1:1, in all cases.

4.6 The Impact of Inaccurate Delay,.,, and Transmission Rate
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Fig. 16: The impact on link utilization resulted from inaccurate transmission rate
Fig. 16 shows the impact of inaccurate estimation of the mean transmission rate on
link utilization. All clients of three classes send requests from the beginning. The

quantum ratio between three classes is 1:1:1. The first observation is the total link

utilization is decreased with the increase of the biasing ratio of transmission rate, i.e. the
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actual sending rate of the response traffic is smaller than the estimation used in RQS. In
addition, although the utilization is higher when the ratio is smaller than 1, serious

congestion will occur at the access link, and it is not preferred.
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Fig. 17: The impact-on link utihzation resulted from inaccurate Delayyesp

Fig. 17 shows the results as Delayres, cannot be estimated accurately. The biasing
ratio larger than one means the value estimated in RQS is larger than the actual Delayyesp,
leading to unexpected response traffic competing for the access link. Contrarily, when
the ratio is smaller than one means the actual Delayyes, is smaller than the value used in
RQS, causing one response cannot follow another finished response well. Therefore,
available bandwidth is wasted and the link utilization is going down.

Although inaccurate Delaysp, and transmission rate affect the link utilization, but

the bandwidth usage ratio of three classes still close to the targeted ratio of three classes,

ie., 1:1:1.
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Chapter 5. Managing Uplink Bandwidth by RQS

5.1 Operation Model of RQS in Managing Uplink
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Fig. 18: The operation model of uplink bandwidth management
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In the previous chapters, as shown in.Fig. 1, the discussion of RQS focuses on how
to manage the downlink bandwidth of the.access link by controlling the outgoing
requests in an environment where the web servers are in the Internet. In such a scenario,
the traffic on uplink is usually light because the size of the request packet is very small.
That is, the bottleneck is the downlink of the access link when internal clients in an
enterprise access the web servers in the Internet. However, as shown in Fig. 18, the
uplink may turn to be the bottleneck if the enterprise places a web server in the internal
network and allows clients coming from the Internet to access it. Thus, in this chapter
RQS is introduced to manage the bandwidth of uplink by skillfully scheduling the

incoming requests.

5.2 Modified RTC and RR Algorithm

In the original operation of RQS mechanism, three parameters of a request are

needed, namely, response size, transmission rate of response and Delayyesp. As shown in
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Fig. 18, the server in the intranet is very close to the access gateway of enterprise, and
thus the value of Delays, should be small enough to be ignored in the procedure of
RTC. Therefore, the advance time Tjqokanead Can also be eliminated from the procedure in
RR since Tiookanead 1S the maximum value of Delayesp. By such two simplifications, RQS

can be easily applied to manage the uplink bandwidth.

5.3 Simulation Scenario and Results

Class2

200Kb 400ms

100Kb 800ms

Class3

Fig:.19: Simulation Topology
Fig. 19 shows the simulation topology that clients in the Internet access the web
server in the Intranet. Twelve clients, divided into three classes uniformly, access the

single server near the RQS gateway. The quantum ratio of three classes is 4:2:1.
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Fig. 20: Uplink Bandwidth usage of each class
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Fig. 20 shows the bandwidth usage between three classes during eight minutes.
This result shows that RQS is capable to manage uplink bandwidth by controlling the
releasing of incoming requests. The ratio on bandwidth usage of three classes, 50:36:18

is close to the targeted ratio.

25



Chapter 6. Conclusions and Future Works

This work proposes the ReQuest Scheduler (RQS) at consumer-side access
gateway to overcome the three problems of packet-level scheduling on managing the
access-link bandwidth. RQS controls the releasing rate of requests in one class to
arrange concurrent transmissions and pre-allocate the bandwidth of the access link
occupied by the response traffic corresponding to this class. Thus, RQS can provide
proportional and sharing bandwidth between various classes, and reduce the congestion
occurring at the access link.

The simulation results show the ratio on bandwidth usage between classes
scheduled by RQS is close to the targeted ratio (The similar degree is 89.75%) and the
free bandwidth can be shared for active classes: Besides, the mean transmission time is
decreased to 68.75% of «the original value, revealing that RQS avoids too many
responses competing for the aceess link simultaneously and thus reduces the congestion.
Finally, by the compensation mechanism, RQS is robust to achieve the fairness between
classes even when the response size is inaccurately estimated.

In the future, we will study how to reduce the impact on link utilization as the
transmission rate of a response or the interval between sending a request and received
its first response packet cannot be accurately estimated. On the other hand, handling
application protocol that do not use request-response model and testing RQS in real

world environment are the works to be done.
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