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The Conditional Diagnosability of Hypercube
under the PMC M odel

Student: Yue-Lun Li Advisor: Dr. Jimmy JM. Tan

Institute of Computer and Information Science

National Chiao Tung University

Abstract

The diagnosability is an important role to value the reliability of an interconnection
networks. We introduce a new measure of conditional diagnosability by requiring
any faulty set cannot contain all the neighbors of any vertex in the graph. Based on
this measure, the conditional connectivity of Hypercube is shown to be 4(n-2)+1
under the PMC model.
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Chapter 1

Introduction

Large-scale multiprocessor systems have begun to be a vital role in computing in recent
years. The potential use of such system in safety-critical applications increase the im-
portance of their reliability. A key preblemi in this area, known as the fault diagnosis
problem, is to identify the faulty processors in'a system. In this approach, a well-know
PMC diagnosis model [4] was first introduced by Preparata et al. In this diagnosis model,
two linked processors can test eachiother. We use this model as faulty diagnosis model in

this thesis.

A lot discussions of diagnosability under PMC model have been done over past years.
For a instance, Hakimi and Amin had the result for a multiprocessor system, it is t-
connected and has at least 2t + 1 vertices implies this system is t-diagnosable [9]. And
many diagnosabilities of cubes have been valued, like the Hypercube @),,, the Crossed cube
C'Q,, the Mobius cube M@Q,,, and the Twisted cube T'Q,, are all n-diagnosable [7, 5, 6, 2].

We are interesting in what stops the abilities of identifying faulty vertices of these cubes



being n+ 1. We observe that these cubes are almost (n+ 1)-connected and almost (n+1)-
diagnosable except that all the neighbors of some vertex are faulty simultaneously. for the
classical diagnosability, if all the neighbors of some vertex v are faulty at the same time,
the system cannot determine whether the vertex v is faulty-free or not. In other words,
it is impossible that the diagnosability of a system is larger than the minimum vertex
degree. This becomes a interesting problem how to increase the diagnosability with some

reasonable restrictions.

In advance, we know the reason of the diagnosability of cubes not being (n+1) is that
all the neighbors of some vertex are faulty simultaneously. Therefore, we introduce the
conditional diagnosability by restricting that each vertex v in the graph, all the vertices
which are directly connected to v.do not fail at.the same time. The Hypercube structure
is a well-know interconnection model for multiprocessor system. As a topology to inter-
connect processors, it has many attractive properties. The fault-tolerant computing for
the Hypercube structure has been the interest of many researchers. Under our condition,
we show that the conditional diagnosability of Hypercube Q,, is 4(n — 2) + 1, which is

about four times larger than the classical diagnosability.

In this dissertation, we purpose to prove the conditional diagnosability of Hypercube
is 4(n — 2) + 1. First, in Chapter 2, we provide terminology and preliminaries for diag-
nosing a system, and introduce Hypercube including the definition and some studies of

Hypercube. In chapter 3, we define conditional diagnosability and study properties of



conditionally diagnosable system. Then, the conditional diagnosability of Hypercube is

shown in Chapter 4. Finally, our conclusions are given in Chapter 5.




Chapter 2

Terminology and Preliminaries

2.1 The PMC Diagnosis Model

Usually we use G = (V, E) to represent a graph G, V is the node set (or vertex set) and
E is the edge set of G. A graph is'eonnected if there is a path in G between any given
pair of vertices, and disconnected otherwise. Fhrough this thesis, we use |G| as |V(G)| to

denote the number of vertices ofG.

If a graph S is a sub-graph of G, it implies that V' (S) C V(G) and E(S) C E(G) with
E(S) CV(S) x V(S), where the V(S) means the node set of S and E(S) is the edge set
of S. Now we introduce an operation on graphs, let S be a sub-graph of GG, G — S means
to remove the vertices of S form G and delete the edges which have at least one end-node

contained by S from G.

A vertex cut of a connected graph G is a set of vertices with the following two prop-

erties: first, the removal of all the vertices in this set disconnect GG; second, the removal



of some (but not all) of the vertices of the vertex set does not disconnect G. The con-
nectivity x(G) of a connected graph G is the smallest number of vertices whose removal

disconnects G.

The components of a graph G are its maximal connected sub-graph. If there is no
edge contained by a component, this component is trivial; otherwise, it is nontrivial. By
this definition we can tell that a nontrivial component has at least two nodes, and there

is just one component if GG is connected.

A neighbor of a vertex v means it has an edge connected with v. Let N(v) be the
neighbor set of vertex v, that is , all the neighbors of v is contained by N(v). A vertex v
and a sub-graph S of G, the restrigted degree of ©-in sub-graph S is denoted as deggs(v),

whose definition is degs(v) = [{@f(wyv) € E(G),wec V(C)}.

When we use a graph model a multi-processor‘system, the vertices of graph represent
the processors and the edges are communication links between processors. We hope the
system can identify the inner faulty processors itself, and the process of identifying all
the faulty vertices is called the diagnosis. The maximum number of faulty nodes that the
system can guarantee to identify is the diagnosability of this system. Use #(G) to denote

the diagnosability of graph G.

To value the ability of identifying faulty nodes of a graph, we introduce the PMC

model. When there is an edge between two nodes, which means they can test each other.



For example, there is an edge (u,v) implies that u can test v by checking the response
send by v, and v also can test u. The result is 0 of u testing v if u evaluates v as fault-free;

otherwise, the result is 1. We list the possible outcomes of u test v in Table 2.1.

u | v | result
00 0
01 1
110 0/1
111 0/1

Table 2.1: All possible result of u testing v.

A vertex set is a faulty set if it contains all faulty nodes of a graph. The collection
of testing outcomes of all vertex pairs of graph G with faulty set F', is called a syndrome
produced by F'. Notices that one'faulty set F .maybe not just form only one syndrome.

Therefore, let o(F') represent the set of all the syndromes which can be produced by F.

If now we have two faulty sets Fy andFy of graph G. They are distinguishable if
o(F1)No(Fy) # 0; otherwise, they are distinguishable if o(F;) No(F,) = (). The meaning
of two faulty sets F} and F5 being indistinguishable is that, we will confuse which one is
the set containing the real all faulty nodes. For instance, we can not tell the faulty set is
{1} or {1,2, 3}, because {1} and {1,2,3} both can form the syndrome shown in Figure

2.1 if they are the faulty sets.

From the previous research, we already know that two faulty sets F; and F;, of graph

G are distinguishable under the PMC model, if and only if there exists some edge between
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0
Graph G Syndrome

Figure 2.1: A graph and its one syndrome.

G—(F1UF2) and F1AF2, where F1AF2 lS(F].—FQ)U(FQ—Fl)

Lemma 1 Let F; and F5 be two distinct fafulty éets of graph G. Fy and Fy are dis-
tinguishable if and only if theré. exist awertew u/€ G — (Fy U Fy), and a vertex v €

(Fl — Fg) U (F2 — Fl), (U,U) S E(G)

F F, F) ¥
(1) (ii)

Figure 2.2: Illustrations of a distinguishable faulty set pair (F}, F5).



The definition of t-diagnosable system is listed as Definition 1.

Definition 1 [4] A system is t-diagnosable if all faulty nodes can be identified provided

that the number of faulty nodes does not exceed t.
From the above definitions, we obtain the following lemma.

Lemma 2 A system is t-diagnosable if and only if any two distinct faulty sets Fy and Fs

of this system, |Fi| <t and |F3| < t, are distinguishable.
And the following lemma 3 is equivalent to lemma 2.

Lemma 3 A system is t-diagnosable’if and only if any indistinguishable faulty sets Fy

and Fy implies that |Fy| >t or |F| >t

2.2 Hypercubes

In this section, we start to introduce a well-know interconnection network system, Hyper-
cube. An n-dimensional Hypercube is denoted as @),,, which has 2" vertices usually repre-
sented by n-bits binary strings. Use {0, 1}" to denote the set b, _1b,_2...bo|b; € 0,1for0 <i <mn
and h(u, v) is the hamming distance between vertices u and v. We can define n-dimensional

Hypercube as following:

Definition 2 [11] A n-dimensional Hypercube @, = (V,E), V. = {0,1}", and E =
{(u,v)|u, vareverticesofVandh(u,v) = 1}.

10



00 10

01 11

Figure 2.3: A 2-dimensional Hypercube.

There is another way to recursive structure a Hypercube. First, we define @), is a
complete graph K with nodes denoted by 0 and 1. And a perfect matching with the
definition: ®(0a) = la with « is a binary string. Now if we want to build a @)y graph,
we reproduce two ()1, and add 0 te'the left of biiary stings of nodes of one (), denoted
the result as @Y, and add 1 to the left of binary stings of nodes another, denoted as Q1.
Then adding the perfect matching betweem@Qirand-Q1, we can see the outcome is a Qo

graph.

Definition 3 Let () is a complete graph with two nodes labelled by 0 and 1, respectively.
Forn > 2, Q, is obtained by taking two copies of Q,_1, denoted by Q°_, and Q. _,. For
each v € V(Q,), insert a 0 to the front of (n — 1)-bit binary string for v in Q°_, and a 1
to the front of (n — 1)-bit binary string for v in QL . Let V(Q%_,) = {0,n — 2u,_3...u :
u; = Oorl} and V(QL_1) = {1v,_ov,_3...09 : v; = Qorl}, where 0 < i < n —2. A node

U = Oup_ot,_3...uy of V(QY_,) is joined to a node v = 1v, _sv,_3...v9 of V(QL_,) if and

11



1 01 11 01 11

Q, Two copies Q,

Figure 2.4: Structure ()5 by recursive way.

only if u; = v; for 0 <i<mn-—2.

Hypercube is well-know because its'good properties. First, an n-dimensional Hyper-
cube is a n-regular graph, which=means'any vertex of Q,, its degree is n. Secondly, the
connectivity of @), is n, and the diagnosability is also n under the PMC model. And

Hypercube is vertex symmetric [8]; that is, any vertex of (),, can map to {0}".
Lemma 4 The connectivity of Q,, denoted as k(Q,), is n.

Lemma 5 [7] The diagnosability of Q,,, denoted as t(Qy), is t.

12



Chapter 3

Conditionally Diagnosable System

Consider the diagnosability of Hypercube ),, under the PMC model, the value of ), is n
by the traditional definition. But system @),, has 2n vertices and can just detect n faulty
nodes, this makes the ration of faulty nodésswhich can be detected to the vertices which

(), has is decreasing quickly with the value of n.increasing.

For improving this defect of traditional'definition of diagnosability, we study what on
earth limits the ability of faulty-node detection of Hypercube. Then we observe that the
only case, which stops the diagnosability of (),, being n+ 1, is that there exits some vertex

whose neighbors are all contained by a faulty set.

Therefore, we now introduce a better measure of diagnosability, the conditional diag-
nosability, to ameliorate the ability of faulty-node detection. The concept of conditional
diagnosability is to avoid all neighbors of some vertex being contained by the faulty set. To

make a system with faulty nodes satisfy our claim, we request that any faulty set cannot

13



contain all neighbors of any vertices, and such faulty set is called conditional fault-set. By
extending the above definition, we can continue defining the indistinguishable conditional-

pair, conditional t-diagnosable system, and the conditional diagnosability, listed below.

Definition 4 Let vertex set F' be a faulty set of system G. Then F is a conditional

fault-set if N(v) € F for any vertez v € V(G).

Definition 5 Let Fy and Fy be two distinct conditional fault-sets of system G. We call
(F1, Fy) as a conditional-pair. If Fy and Fy are distinguishable, (Fy, Fy) is a distinguishable
conditional-pair of system G; otherwise, (Fy, Fy) is an indistinguishable conditional-pair

of system G.

Definition 6 For any conditional-pair (Fi, F») of system G, |Fi| <t and |Fy| <t, if F}
and Fy are distinguishable, G is conditioneal-t-diagnosable, and the maximum value of t is

the conditional diagnosability of G, denoted-ast.(G) = t.

And it is clearly that t.(G) > t(G).

Lemma 6 In a system G, t.(G) > t(G).

Before discussing the conditional diagnosable system, we first name some sets to sim-
plify the writing through this section. In a system G = (V, E), there is a conditional-pair

(F1, F»). We use X to represent the vertex set V —(FiUFy), F1AFy as (F1—Fy)U(Fy— FY),

14



and S as F1 N Fy. We will continue using these symbols in the following discussion. See

Figure 3.1.

F1AF2

Figure 3.1: Symbols in graph G with a conditional-pair (F}, F5).

Let (Fy, F») be an indistinguishable conditional-pair of system G. We obverse two
phenomena in this system as follows: first of all, there is no edge between X and F; A Fj
because of F; and F; being indistinguighable. This means that for any vertex u of I} — F;
or Fy, — I, all neighbors of u musf be contained in F1 U F3, but the neighbors of u cannot
be all in the set I} or F, because-of F) andF5 being the conditional fault-sets of system G.
Therefore, there is at least one neighbor of u belonging to F}, and another one belonging
to Fy. Second, we know that for any vertex v of X, the neighbors of v cannot all belong
to F1 N Fy, because F and F, cannot contain all neighbors of a vertex. Therefore, v has

at least one neighbor in X for any vertex v of X. We state these observations in Lemma

7.

Lemma 7 For any indistinguishable conditional-pair (Fy, Fy) of system G = (V, E), the

following two properties hold:

1. IN(uw) N (Fy — F3)| > 1 and |N(u) N (Fy — Fy)| > 1, for each vertex u € Fy A Fs.

15



2. IN(v)NX| > 1, for each vertezv € X =V — (Fy U Fy).

Proof. (1) Without loss of generality, assume u € Fy—F;, then we know that N (u)NX =
() because of F; and F;, being indistinguishable, therefore N(u) C (F; U F3). Besides, F}
and F, are conditional fault-sets, which means N(u) ¢ F; and N(u) € F», so we can
tell that |N(u) N (Fy — F2)| > 1 and |N(u) N (Fy — Fy)| > 1 from N(u) C (Fy U Fy) and

(2) Because Fy and Fy are indistinguishable, N(v) N (Fy A Fy) = 0. F; and F, are
conditional fault-sets, so N(v) € S. therefore there is at least one neighbor of v in X,

that is, |[N(v) N X| > 1. O

vO——O

Figure 3.2: lustration of Lemma 7.

From Lemma 7 we can discover some facts, if a system G has an indistinguishable
conditional-pair (F, Fy), S = F1 N Fy, then G — S is disconnected and every component
of G — S must be nontrivial graph. More exactly, if there exists a component C', C'N
(F1U Fy) = (), then every vertex of C' must have at least one neighbor in C; if there exists

another component C', C' N (F1U F2) # (), then every vertex of C’ must have at least

16



two neighbors in C”.
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Chapter 4

Conditional Diagnosability of
Hypercube

In this section, we start to discuss the conditional diagnosability of Hypercube. To simplify
the following discussion, we list a lemiha 'torpresent a property about the relation of
common neighbors between two vertices in a ‘Hypercube. This lemma explains that any

two nodes have at most two common neighbors in Hypercube.

Lemma 8 Let u and v be two different nodes of Hypercube Q,, = (V, E), then the following

two properties hold:

1. If (u,v) € E, u and v have no common neighbor.

2. If (u,v) ¢ E, u and v have at most two common neighbors.

Proof. (1) From the recursive way of structuring Hypercube, it is clearly that there
is no triangle structure in Hypercube. Therefore, u and v have no common neighbor, if
(u,v) € E.

18



(2) We proof this property by using induction on n of @),,. When n = 2, we can see

from Figure 4.1 that any (u,v)-pair nodes in @) have at most two common neighbors.

Figure 4.1: An (u,v)-pair of Hypercube Q.

Assume that this property holds when n = k — 1, then now we show this property also

holds when n = k.

Divide Qj, to two Qx_1s, detoted, as-Qr “and @F |, we have two cases to discuss,
case 1: wu, v are in the same sub-Hypercube (Figure 4.2); case 2: u, v are in different

sub-Hypercubes (Figure 4.3).

Case 1: u and v are in the same sub-Hypercube.

Without loss of generality, assume u and v are in the Q¥ ;. We can tell that u, v
have no common neighbor in another sub-Hypercube, because there is a perfect-matching
relation between QF | and QF |, u and v can not match to a same node in QF ;. And

u and v have at most two common neighbors in Q¥ | by the induction hypothesis, so u

19



Q%4 0%,

Figure 4.2: u and v are in the same sub-Hypercube.

and v have at most two common neighbors in Q.

Case 2: u and v are in different sub-Hypercubes.

L R
le, Q%

Figure 4.3: u and v are in different sub-Hypercubes.

Without loss of generality, assume w is in the QF | and v is in the Q% ;. Then u and v

have no common neighbor without the edges between QF | and QF ,. Because u(v) can

20



just match to one node of QF | (QF ), we can easily know that u and v at most have one
common neighbor in Q¥ |, and at most one in Q¥ |, u and v have at most two common

neighbors in Q. a

Now, we show the limit of conditional diagnosability of Hypercube by citing a instance,

which explains the ¢.(Q,) will not be grater than 4(n — 2) + 1.

This example is as shown in Figure 4.4; we take a (o structure from @), which has
four nodes. Let {x,y,v,u} be the four consecutive vertices of this ()2 graph, which means
r—y—v—uis a four-length cycle. Now we make vertex set S = N(z)UN (y)UN (v)UN (u),
and F} = {z}U{y} US, F» = {u} U{v}US. By Lemma 8, there is no common neighbor
of x, y, u and v contained in S, therefore, Wwe:can know that |S| = 4(n — 2). In this
case, if we take Fy and F; to be the conditional'fault-sets of @, then (Fy, Fy) will be an
indistinguishable conditional-pair because @, — S is' disconnected. |Fi| and |F,| in this
case are all 4(n — 2) + 2, that is, the conditional diagnosability of Hypercube @, is less

than 4(n — 2) + 2. We state this fact in Lemma 9.

Figure 4.4: Ilustration of ¢.(Q),) < 4(n —2) + 1.

21



Lemma 9 ¢.(Q,) <4(n—2)+1,n>2.

Let S be a vertex cut of Hypercube (),,. Then there are some components in @),, — 5.
Let C be one of components of (),,—S. We observe that it is important to know some result
on the cardinalities of S and C' under some conditions. We will state our observations of

the cardinalities of S and C in Lemma 10 and Lemma 11.

In the proof of the following two lemmas, we divide ),, into two ,,_1s, denoted as

L

L and QF |, and use some symbols for simplifying our explanation. We list these

definitions as following: CNQL |, =Cr, CNQE | =Cg, SNQL_, =S, SNQE | = Sg,
S is the cut set of @), and C' is one of component of (), — 5. We illustrate these symbols

with Figure 4.5.

Figure 4.5: Illustrations of symbols used in Lemma 10 and 11.

Lemma 10 Let @), be a Hypercube with n > 3, and let S be a vertex cut. Then the
following two properties hold:

22



1. |S| > n.

2. When |S| < 2(n—1)—1, Q,—S has exactly one trivial component and one nontrivial

component.

Proof. (1) The property is rue because of k(Q,) = n.

(2) Because @, — S is disconnected, we know there are at least two components in
@, — 5, and there are three cases we have to discuss, case 1: there are at least two trivial
components; case 2: there are at least two nontrivial components; case 3: there are exactly
one trivial component and one nontrivial component in @), — S. If we can show that case

1 and case 2 only hold when |S| > 2(n —1)gthen case 3 holds when n < |S| < 2(n—1)—1.

Case 1: there are at least two trivial components in"(),, — S.

Let {v;} and {vs} be the two trivial components in @, — S, then we know that
N(vy) € S and N(vy) € S. By Lemma 8, v; and v, have at most two common neighbors,
so |[N(v1) N N(ve)| < 2. Therefore, |S| > |N(v1) UN(v)| = |N(v1)| + |N(v2)| — [N (v1) N

N(vg)| >2n—2=2(n—1).

Case 2: there are at least two nontrivial components in @), — S.

We proof this case by using introduction on n. Whenn =3, n < |S| <2(n—-1) -1

implies |S| = 3. The only situation is to remove all neighbors of some vertex can make

23



@3 — S being disconnected when |S| = 3, and this makes one trivial component and one

nontrivial component in ()3 —S. Therefore, ()3 — S has at least two nontrivial components

holds when [S| > 2(n — 1).

Assume when n = k — 1, @), — S has at least two nontrivial components only at

|S| > 2(n — 1), then we consider when n = k:

Let C' and C' be the two nontrivial components in @, — S. Because |V (C)| > 2,
we can divide @, into the two disjoint @Q,_1s, Q% | and QF |, such that |C7| > 1 and

|Cr| > 1.And there are two components in @, — S, so at least one of QL , — S} and

R

w1 — Spr is disconnected.

When both of QL ;| — S; and Q2. — Sglare disconnected, |Sz| > (n — 1) and |Sg| >

(n — 1) because of k(Q,—1) = n=1. Se{SI'=1SL| +|Sr| > 2(n —1).

When exactly one of QL _; — S; and QF | — Sy is disconnected, assume that Q%_; is
connected and QT ; is disconnected without loss of generality. Then V(QL_|) =V (Cp)U
Sy, € is totally in QF |, and the corresponding matched vertices of C’ are all in S,

n—1

because C and C’ are disconnected. That means C’ C QF | and |S;| > |C'] > 2.

When [Sg| > 2(n —2), |S| = |Sg| + |SL] > 2(n —2) +2 = 2(n — 1). Otherwise, when
n < 1S| <2(n—1) -1, because QZ | already has one nontrivial component C’, we can

see that QF | has one trivial component and one nontrivial component by hypothesis and
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result of case 1. Then we know that QF | is composed by one trivial component, one
nontrivial component C’ and Sg, which means Cy is a trivial component in Q% ;. So we
can tell | Sz| > |C'| = 271 —|Sg|—1. Therefore, |S| = [Sp|+|Sr| > 2" ' —|Sr|—1+|Sg| >

271 —1>2(n—1) when n > 4.

According to the proof of above two cases, the second property is true and this lemma

is proofed. a

Now we introduce another lemma to show the properties about cardinalities of S and
C' under some conditions, these conditions are formed form Lemma 7. We claim that
every component of (), — S must be nontrivial, and at least one of these components
must satisfy that every vertex v of £his components its restricted degree is greater than 1.

We use the same symbols in proof which are-defined=before Lemma 10.

Lemma 11 Let Q,, be a n-dimensional Hypercube with n > 5, and let S be a verter cut
of Q. Suppose that QQ,, — S satisfies that every component of @), — S is nontrivial. If
there exists a component C' of Q, — S satisfying degc(v) > 2 for every vertex v of C, one

of the following two properties holds:

119 = 4(n —2)
2.10) > 4(n—2) -1

Proof. Because dego(v) > 2 for every vertex v of C, we can divide Q,, into QL_, and

QF |, where |C| > 0 and |Cg| > 0. If there is a vertex v of Cp, then there is at most one

25



R

neighbor of v contained in @, q,

so we can tell that there is at least one neighbor of v

L

belonging to C, because dege(v) > 2. Therefore, C}, is a nontrivial component of Q7 ,

and by the same way, Cp is also a nontrivial component of QF ;.

Because Q,, — S is disconnected, there is at least one of QX | — Sy and QF | — Sg is
disconnected. So there are two cases, case 1: exactly one of QL | — Sp and QF | — Sy is

disconnected; case 2: QL | — Sp and QF | — Sy are both disconnected.

Case 1: exactly one of Q% | — S and QF | — Sy is disconnected.

Without loss of generality, assume QX | — Sy is connected and QF | — Sg is discon-
nected. Then V(QE ;) = V(Cr) U Sgstand theie exists another nontrivial component C
contained in QF |. Because C" and O are-all.nontrivial, we know that |Sg| > 2(n — 2)
by lemma 10. If |S.| > 2(n — 2); then{S|'="|S.| # |Sr| > 4(n — 2), the first property
holds. Otherwise, |S;| < 2(n — 2)"= 4, then |@p= 2" — |S| > 2" —2(n — 2) + 1.
Besides, |Cr| > 2,50 |C] = |CL| +|Cg| > 2" —2(n—2)+3 > 4(n—2) — 1 when n > 4,

the second property holds.

Case 2: QL — S, and Q| — Sg are both disconnected.

In this case, we have three sub-cases to consider, sub-case 1: |S.| > 2(n — 2) and
|Sgr| > 2(n — 2); sub-case 2: |Sp| < 2(n —2) — 1 and |Sg| < 2(n — 2) — 1; sub-case 3:

|SL| > 2(n —2) and |Sg| < 2(n—2) — 1 or |S.| <2(n—2) and |Sg| > 2(n —2) — 1.
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Sub-case 2.1: |S;| > 2(n — 2) and |Sg| > 2(n — 2).

If |S.| > 2(n —2) and |Sg| > 2(n — 2), then the first property, |S| > 4(n — 2), holds.

Sub-case 2.2: [SL| < 2(n—2) — 1 and |Sg| < 2(n —2) — 1.

By Lemma 10, there is exactly one trivial component and one nontrivial component in
QL | — 81, same as QF | — Sg. Cp and Cp are nontrivial, so there are trivial components
{v} and {u} for somev € V(QL ,—S;) and some u € V(QE | —Sg), such that V(QEL ) =
V(Cp)U Sy U{v} and V(QE ) = V(Cgr) U Sk U {u}. Therefore, |C| =271 —|S,| -1,
|Cr| =271 —|Sp|—1,and |C| = |CL|+|Cr| =2"—|S]| =2 >2"—4(n—2) > 4(n—2)—1

with n > 4. That is, the second property holds:

Sub-case 2.3: |S.| > 2(n — 2)zand |Sp|.< 2(n — 2y — 1 or |SL| < 2(n — 2) and |Sg| >

2(n—2)— 1.

With loss of generality, we assume |S;| > 2(n — 2) and |[Sg| < 2(n —2) — 1. By
Lemma 10, Q2 | — Sk has one trivial component and one nontrivial component. Cp is
nontrivial, so there is a trivial component {u} which makes V(Qf ) = V(Cg)USrU{u},
Cg| = 21— |8, |1 > 21 =2(n—2). |C| = |CL|+|Cr| > 242" —2(n—2) > 4(n—2)—1

with n > 5, the second property holds.

The proof of Lemma 11 is completed. O
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Let @, be an n-dimensional Hypercube. By Lemma 9, we know that ¢.(Q,) < 4(n —
2) + 1. If we can proof that any indistinguishable conditional-pair (F7, Fy) of @, implies

|F1| > 4(n —2) 4+ 2 or |F3| > 4(n — 2) + 2, then we can tell that £.(Q,) = 4(n — 2) + 1.

Lemma 12 Let Q,, be an n-dimensional Hypercube with n > 5, t.(Q,) = 4(n — 2) + 1.

Proof. Let (Fy, F3) be an indistinguishable conditional-pair of @ —n and S = Fy N Fy.
Then @, — S is disconnected and every component of ), — S is nontrivial by Lemma 7.
Let F1 A Fy = (Fy — Fy) U (Fy — Fy), then by Lemma 7-(1), every vertex v of Fy A\ Fy
satisfies that degp ap,(v) > 2. So one of |S| > 4(n —2) and |Fy A Fy| > 4(n—2) — 1 will

be true by Lemma 11.

Case 1: |S| > 4(n — 2).

Because every vertex v of Fy"/A Fy satisfies that degp ap,(v) > 2, and there is no
triangle structure in Hypercube, there are at least four nodes which form a 4-length cycle
contained in F} A Fy, which means |Fy A Fy| > 4. Therefore, |F} — Fy| > (%1 =2 or
|Fo— Fy| > [%1 = 2, that is, |F}| = |S|+|F1 — F3| > 4(n—2)+2 or |Fy| = |S|+ |Fy— Fi| >

Aln —2) +2.

Case 2: |F} A Fy| > 4(n—2)—1.

There are at least two components and every component of ), — S is nontrivial, by

Lemma 10, [S| > 2(n—1). |[FiAF| > 4(n—2)+1, 50 |Fy — Fy| > [2271] = 2(n—2) or
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Fy— Fy| > [2=2=17 — 2(p,—2), therefore , |Fy| = |S|+|F — Fy| > 2(n—1)+2(n—2) =
2

dn—2)4+2or |Fo| = |S|+ |[Fo— Fi| >2(n—1)+2(n—2) =4(n —2) + 2.
According to Lemma 9 and the above proof, t.(Q,,) = 4(n — 2) + 1 with n > 5. O

Now think about @3 and Q4. We can find two indistinguishable conditional-pair

examples to show that #.(Q3) < 3 and t.(Q4) < 7 which are shown in Figure 4.6.

(11)

Figure 4.6: Two examples of indistinguishable conditional-pair for Q3 and Q4.

By Lemma 6, t.(Q3) > t(Q3) = 3. And t.(Q3) < 3, therefore, t.(Q3) = 3. For Q4, we

proof its conditional diagnosability in Lemma 13.

Lemma 13 t.(Q4) =7

Proof. Because we already know that ¢.(Q4) < 7, we only to proof that any indistinguishable-
pair (Fy, Fy) of Q4 implies that |Fy| > 8 or |Fy| > 8. Let (Fy, F3) be an indistinguishable
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conditional-pair of @4, and S = F; N Fy. Then |S| > 2(n — 1) = 6 by Lemma 7 and
Lemma 10. And |F} — F| > 2 or |Fy, — Fi| > 2 by Lemma 7-(1), that is, |F;| > 8 or

|F5| > 8. Therefore, t.(Q4) = 7. O

By above lemmas, we get Theorem .

Theorem 1 Let (), be a Hypercube. Thent.(Q,) = 4(n—2)+1 forn > 5, andt.(Q3) = 3,

t(Q4) =T.
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Chapter 5

Conclusion

The PMC diagnosis model is used generally, and Hypercube is a well-know topology. In
this thesis, we define the conditional diagnosability under the PMC model, and show that
the conditional diagnosability of Hypercuber€), is 4(n — 2) + 1. There are other cubes
and another well-know diagnosis‘model} the ¢comparison model. Hence, it is interesting
to find the conditional diagnosability of other famous cubes, like the Crossed cube C'Q),,,
the Mobius cube M@, and the Twisted cube 71Q2,,. And it is also interesting to inves-
tigate the conditional diagnosability of a system under the comparison model. Besides,
it is a attractive problem how can we increase the diagnosability with other reasonable

restrictions.
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