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Abstract

The traditional knowledge acquisition process might be'useless for solving the problems of variant
object discovery. It might never be mentioned for-the knowledge base to evolve with inference results.
So the purpose of this thesis is to presentia Variant Object Discovering Knowledge Acquisition
(VODKA) to add a new object from the inference results, including two operations: changing attribute
data type and adding a new attribute. These operations assist experts in discovering the variant objects
and elevating the Certainty Factor (CF) of embedded rules. We also propose the framework of
EMCUD-DRAMA-VODKA which has three phases: Knowledge Generation, Knowledge Utilization,
and Knowledge Discovery. To begin with, we use Embedded Meaning Capturing and Uncertainty
Deciding (EMCUD) to generate the original and embedded rules. Moreover, we apply these rules in the
real world and accumulate the logs of DRAMA in the Knowledge Utilization phase. Finally, the
VODKA is proposed to discover the variants or attributes in the Knowledge Discovery phase. In
addition, a worm taxonomy classification example is given. The implementation of these phases is also

constructed for describing how to develop a complete knowledge-based application.
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Chapter 1. Introduction

With the technology revolution, mankind’s ability to generate new data has rapidly increased. But our
capability to analyze knowledge from the mass data could not keep up with the knowledge exploitation.
As we know, knowledge system is an intelligent computer program that uses knowledge and inference
procedures to solve problems that are difficult enough to require significant human expertise for their
solution, such as disease diagnosis [3][14], investment prediction [2], or science [1]. Inference is the way
that computer reasons and knowledge base stores the domain expertise in the computer recognizable
format. To acquire the expertise, there are generally three kinds of approaches: interviewing experts by
experienced knowledge engineers, machine learning, and knowledge acquisition systems. Knowledge
engineers explicitly code the knowledge by interviewing the domain experts; Machine learning is the
way to automatically generate some rules-from.some given training cases; knowledge acquisition
systems are computer systems or toolS: that_help.experts or knowledge engineers to construct the

knowledge system.

Michael Polanyi [13](1966) classified human knowledge into two categories: tacit knowledge, and
explicit knowledge. Tacit knowledge is highly personal and hard to formalize. Explicit knowledge is the
codified knowledge that can be transformed into formal, systematic language. Almost all of knowledge
acquisition tools are suitable for eliciting explicit knowledge. One of the most popular knowledge
acquisition techniques is the repertory gird [7], which is used to assist experts in identifying objects in a
domain and how to distinguish between those objects. It helps knowledge engineers systematically elicit

the domain expertise, especially on uncertainty or incomplete information.

The current knowledge acquisition techniques aim to achieve attribute reductions and then generate



the most efficient rule set [12]. Existing repertory grid techniques and their improvements are limited in
their potential to evolve with applications and to create new attributes.

A computer worm which is a self-propagating program via a network is an acutely evolving crisis
[15].Since the recent worms are incredible sophisticated, they are difficult for experts to predict [8]. The
taxonomy of the various worms continues to develop simply because the new tactics, payload, and
attackers [15]. These above algorithms seem helpless for solving the problems of worm and its variant
taxonomy. Here, the purpose of this thesis is to present a new knowledge acquisition methodology to
learn new variant objects.

In addition, the contributions of this thesis are listed as follows.
1. Learning mechanism for variant objects
Although several repertory grid techniques have been developed, the learning and feedback
mechanism based on the real world,application would be never mentioned. e propose a Variant

Object Discovering Knowledge -Acquisition (VODKA)- method to add a new object from the

applications by the following two operations:-changing attribute data type and adding a new attribute.

This is beneficial to discover the variant objects and-elevate the certainty.

2. Worm variant discovering
The first step in understanding the treat posed by computer worm is to understand the classes. The
classification of worm is mainly based the domain experts [15] and might be in lack of a systematical
method. Until now the repertory grid technology has not been applied to the worm classification
domain. We clarify the attributes of existing worms. A series of computer worms and their variants are
identified and classified. So we can discover the unknown worm of similar property.
3. Design and implementation of VODKA
This thesis describes the theoretical foundations of a system which discovers variant objects using
VODKA and a practical approach of its implementation. This approach provides an effective and

efficient method for VODKA that is supported by the experiment.



Chapter 2. Related Work

Since the knowledge is rapidly growing, many knowledge acquisition methods have been
proposed to systematically acquire the expertise from domain experts. In this chapter, we present the
surveys of knowledge acquisition and three kinds of knowledge acquisition approaches. Further we are

concerned about the knowledge acquisition tools approach.

2.1 Knowledge Acquisition

Michael Polaner (1966) [13] classified human knowledge into two categories: tacit and explicit
knowledge. Tacit knowledge is highly personal and hard to formalize, making it difficult to
communicate or share with others. Subjective insights; intuitions and hunches fall into this category of
knowledge, i.e. knowledge that does not manifest as rules. Explicit knowledge is codified knowledge
that can be translated in formal, systematiclanguage. It.can be best described as canonical knowledge, i.e.
knowledge formalized within database, business rules; protocols, and so on.

Furthermore, to obtain the knowledge of a special domain, knowledge acquisition is proposed to
transfer the expertise of domain experts into knowledge bases. Generally speaking, there are three kinds
of approaches for knowledge acquisition.

1. Interviewing experts by experienced knowledge engineers.

After interviewing the domain expert, knowledge engineers explicitly code the knowledge. There
are two major drawbacks about this approach. Firstly, it might be time consuming that the domain expert
and knowledge engineers understand the thoughts of each other. In addition, it might be impossible to
capture the embedded meaning.

2. Machine learning.
Given the training cases, machine learning approach will automatically learn out some rules. But it

still has two disadvantages. Firstly, there might be few or no available training cases in many application



domains. Moreover, it is hard to understand the relation among cases.
3. Knowledge acquisition systems.

The knowledge acquisition system is interviewing with the help of knowledge acquisition tools. It
helps knowledge engineers work better in interviewing with experts. Besides, deeper knowledge can be
elicited using this approach such as repertory grid technique which gets domain experts to rank objects
against concepts.

The knowledge acquisition system solves the problem of communication between domain experts
and knowledge engineers without the required training cases. This will be thoroughly described in the

following section.

2.2 Knowledge Acquisition System

Here we are concerned about some current research issties on the Knowledge acquisition systems
approach. In the past few years, many knowledge acquisition systems were developed to rapidly build
prototypes and to improve the quality of theelicited explicit knowledge. The traditional approach of
knowledge acquisition from domain experts is via interviewing. However, deeper knowledge can be
elicited using knowledge acquisition system. Repertory grid which is based on Kelly’s Personal
construct theory [7] can be used as knowledge acquisition tools in the development of expert systems.
The theory reports how people make sense of the world. The technique assists in identifying different
objects in a domain and how to distinguish between these objects. A single repertory grid is represented
as a matrix whose columns have elements labels and whose rows have construct labels. In a sense, a grid
is represented for a class of objects, or individuals. In addition, the value assigned to an
element-construct pair needs not be Boolean. Grid values have numeric ratings, probabilities, etc, where
each value reflects the degree. The possibility of using different kinds of values enriches the repertory

grid technique in eliciting and representation about a domain. For example, Hwang [5] extended the



repertory grid technique to the fuzzy table. In the fuzzy table, constructs were fuzzy attributes that can be
rated by means of fuzzy linguistic terms from a finite set. Jose J [6] developed a technique using fuzzy
repertory grid for acquiring the finite set of attributes or variables which the expert uses in a classification
problem characterizing and discriminating a set of elements. Dan Pan [12] proposed a self-optimization
approach based on difference comparison tables for knowledge acquisition.

Up until now, several models have been proposed for handling uncertainties in expert systems. One
of the most fruitful models of uncertain reasoning is the EMYCIN Certainty Factor (CF) model.
Furthermore, CF model which was first used in the medical expert system EMYCIN [14] decides the
degree of belief of a rule. To extract rules with embedded meaning, Embedded Meaning Capturing and
Uncertainty Deciding (EMCUD) [4] knowledge acquisition based on Personal Construct Theory was
proposed. Each embedded rule extracted by EMCUD has a CF, which is based upon a general
repertory-grid-analysis method.

These approaches aimed at obtaining the set of attributes and values which the expert can be used
to “measure” the object type. They provided.an_effective method for attribute reduction and rule
complexity simplification. Although these are suitable for eliciting knowledge, none of them touches the
problem learning for new variant objects from the application. So we propose a new approach to

observe the inference results and generate new rules accordingly.

2.3 EMCUD

EMCUD is proposed to elicit the embedded meanings of knowledge from the existing repertory
grids. Additionally, by interacting with experts, it will guide experts to decide the certainty degree of each
rule with embedded meaning. To capture the embedded meanings of the resulting grids, the
Attribute-Ordering Table (AOT), which is used to record the relative importance of each attribute to each
object, is employed. There are three kinds of values in each AOT entry, a pair of attribute and object, "X",

"D" or an integer; "X" means that there is no relationship between the attribute and the object; "D"



means that the attribute dominates the object; An integer is represented for the relative important degree
of the attribute to the object. The larger the integer is, the more important the attribute is to the object.

Using AQT, the original rules generate some rules with embedded meaning, and the CF of each
rule, which is between 0 and 1, could be determined to indicate the degree of supporting the inference
result. The higher CF is, the more reliable the result is. The algorithm is listed in Algorithm 2.1.

Algorithm 2.1: EMCUD algorithm [4]

Input: The hierarchical grids.

Output: The guiding rules with embedded meaning

Stepl: Build the corresponding AOT with each grid of the hierarchical multiple
grids.

Step2: Generate the possible rules with embedded meaning.

Step3: Select the accepted rules with embedded meaning through the interaction

with experts.
Step4: Generate the CF of the rules with embedded meaning.

Step5: Stop.




A Certainty Sequence (CS) value is used to represent the decreasing degree of certainty for an
embedded rule, which is generated by negating some predicates of its original rule. CS of the rules with

embedded meaning is calculated by using the following formula.

CS(R;) =SUM(AOT attributey, object;]),

where attribute, belongs to the attribute set of R;, and object; is the object of R;,

Assume the rules with embedded meaning listed below are generated from the rule, Ry: if att; = A
and att, = B and att; = C then goal=o0,, where the corresponding AOT entries are [2(att;, obj;), 1(atty,

obja), D (atts, obj)]-

R1: if Not (att; = A) AND att, = B AND att;=.C then goal=0,

R2: if att; = A AND Not (att, = B) AND atts = C then goal=0,

R3: if Not (att; = A) AND Not (att, = B) AND-aitz= C then goal=0,

So the CS (R1) isAOT [att;, obj;] + AOT [att,, obj: =2+ 1=3.

To decide the CF of the embedded rules, we have to firstly decide the upper bound of CF, UB (Ry)
and the lower bound of CF, LB (R,), where R, is the original rule for these embedded rules. UB (R,) is
the original rule’s CF, since there is no embedded rule whose CF is greater than its original rule. LB (Ry)
is determined by comparing the meaning-embedded rule with maximum CS value and the original rule.
Four comparison levels suggested by the experts are “confirm”, “strongly support”, “support” and “may

support” which are mapped to 1.0, 0.8, 0.6 and 0.4, respectively. CF of the embedded rule, R;, is then

generated by the following formula.

CF(R;) =UB(R,) - (CS(R;)/ MAX(CS;)*(UB(R,) - LB(R,)))

Where MAX (CS)) is the maximum CS value of the embedded rules generated from the original R.



For the example R, and its generated embedded rules, R1, R2, and R3, the MAX(CS)) for R1, R2,

and R3is CSs.

To get the lower bound UB(R,), EMCUD will ask the following question:
EMCUD: How confident do you think R1?
Expert: Confirm.

To get the lower bound LB (R,), EMCUD will ask the following question:
Qq: If the R1is “Confirm”, which degree supports R3?

Expert: May Support.

Since in the mapping function “Confirm” is mapped to 1.0 and “May Support” is mapped to 0.6,

CF (R1), CF (R2), and CF (R3) are as followys.

CF(R1) = 10— (2/3)%(1.0-0.4)= 06
CF(R2) =1.0- (U/3)(1L0-0.4)=038

CF (R3) = 1.0 (3/3)*(1.0-04) =04



Chapter 3. Variant Object Discovering Knowledge Acquisition

(VODKA) Method

As mentioned above, most of the knowledge acquisition systems employ the repertory grid based
approaches to deal with elicitation of explicit knowledge. These knowledge acquisition tools usually
elicit knowledge as the representation of “IF ... THEN...” format due to the simplicity of knowledge
representation. Since the goals of the problems are usually clear, some systematic ways have been

proposed to help knowledge engineers for eliciting expertise from domain experts.

3.1 Problem of EMCUD

EMCUD uses the attribute ordering. table (AQT), which indicates the relative significance of
attributes, to find the certain factor of the generated original and embedded rules. Although EMCUD
successfully solves the problems «of conventional repertory grid: knowledge representation, and
embedded meaning, it might ignore the following problems:

1. Due to the knowledge exploitation, there are many variant objects emerging in a short time. It
is infeasible to elicit the knowledge of such a new variant object which is derived from original
objects using EMCUD.

2. EMCUD would generate the embedded rules with lower CF due to the low confidence of
domain expert. It is usually hard to explain these rules; for example, if a rule whose CF is 0.5, it
means experts have half confidence to assure the action. On the other hand, experts have half
confidence to reject the action.

Since EMCUD is limited in its potential to evolve by application and to discover new variant

objects, a methodology is proposed to discover the knowledge of new variant objects according to the
frequency of negated attributes occurred in embedded rules. Hence, we can incrementally level up the

CF of embedded rules.



The idea is to observe the application and provide the critical information to experts who are unsure
the embedded rules with lower CF. This will incrementally enhance the explanation power of original

knowledge base.

Example 3.1: An example of fruit classification.

We will state the problems in details by the following example and propose a new methodology to
deal with them: To represent that “IF (Shape is Round) AND (Skin is Red) AND (Inside is White) Then
Apple”, we can use the Acquisition and AOT table of fruit classification which is shown in Table 3.1 and
Table 3.2 respectively.

The Acquisition and AOT table of Fruit Classification

Table 3.1:.An example of fruits classification acquisition table

Apple Orange Grapes
Shape Round Round Chain
Skin Red Orange Purple
Inside White Orange Limpid

Table 3.2: An example of fruits classification AOT

Apple Orange Grapes
Shape D D D
Skin 1 D 2
Inside 2 1 1

Values. From the above grid, we can generate the following rules. For example, some of the rules

generated from above grids are shown in Table 3.3.

10

In EMCUD, there are four kinds of data types Boolean, Single Value, Set of Values, and Range of




Table 3.3: An example of fruits’ original rules, embedded rules and their CF

Rule Classification | Rule Condition Action | CF
Type

Apple Original Shape= Round,& Skin = Red& Inside =White Apple | 08

Apple Embedded | Shape=Round,& Skin =Not Red& Inside =Not White | Apple | 0.6

Orange Original Shape=Round,& Skin = Orange& Inside =Orange Orange | 1.0

Grapes Original Shape= Chain,& Skin =Purple& Inside =Limpid Grapes | 0.8

Grapes Embedded | Shape= Chain,& Skin =Not Purple& Inside =Limpid | Grapes | 0.7

However, based on EMCUD or any other traditional repertory grid approach, it might be hard to
find the variant object and its rules, such as green apple and white grape in this example. In addition, the
problem of rules with lower CF, for example, the embedded rule of Apple, still exists. Hence we propose

a methodology to discover the variant objects such as green apple or white grape. Moreover, our

approach assists experts in elevation of the embedded rules’ CF.
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The novelty of our approach draws from the way of learning from history. Via the user interface,
the inference engine would return the inference results decided by the rule classes in the knowledge base.
We can monitor the user’s application log to record the inferred rules and assigned values. From the
statistical data, we can find the embedded rules which have higher inferred frequency and lower CF
which may be treated as variant objects. Furthermore, the assigned value firing these embedded rules
may be the possible attribute value of variant objects; for example, there is originally red apple’s
knowledge in knowledge base. However, we can observe the inference history where “green” is often
assigned to the attribute “skin”. According to our LV algorithm, we would recommend the expert to add
a new variant object, such as green apple and then generate the original and embedded rules of this new

variant object. The idea is shown in Figure 3.1.

Inference engine

New Object: Green Apple ‘ w : 20
bl

) : 10
w 10" - @
«IF SP=Round,& SK =Green , &IN=White Others. 5

*Then Green Apple CF=0.8
«IF SP=Round,& SK =NOT Green ,&IN=White

* Then Green Apple CF=0.6 ) ) \/
Original& embedded rules ~ L€arning algorithm

Inference Log

Figure 3.1: Concept of variant objects discovery



3.2 Variant Object Discovering Knowledge Acquisition (VODKA)

Because the embedded rules with lower CF means that the domain experts are highly unsure, there
might be some variants if these are frequently inferred. To discover the variant objects, we propose a

Variants Learning algorithm, including two operations: changing data type and adding new attribute.

3.2.1 Rule Format

We are concerned about the abnormal high percentage of inference, especially the embedded rules
with lower CF. And the assigned values are the important information for experts to add a new object. So
we define the rule format as follows.

IF Condition Then Action; CF
For example,
If Shape= Round, & Skin = Red& Inside. =\White Then Apple, CF=0.8
Besides, we also define the record format‘toistore the inference history. The record format is a vector

(A, A ....AnR)

Where:
A1, Az ....,Anm, are the assigned attribute values, and

Ri is the rule number.
For example, if a rule ROis inferred with the fact Shape= Round,& Skin = Red& Inside =White, we
will create a new vector like this
(Round, Red, White, R0)

Then we append it to the buffer. Finally, we write the buffer to the file.

13



3.2.2 Rule Fired Counting Matrix

To adjust condition adaptively, we define the Meta rule to trigger appropriate algorithms. In other

words, we only need to adjust the Meta rule instead of the program. An mxn matrix A_, ., isdefined

to count the number of rule inference as follows:

Cll Cl,2' Cl,n
CZl C2,2 CZ,n
Cm,l Cm,z Cm,n

Where a is the number of attributes, b is the number of objects, the size of the matrix is mxn, and

m=Db ,n=2° Inaddition, C; ; which is the element in row i and column j represents the counter to

record the fired rule. Each row represents the original and embedded rules’ counter of one object.

C,. C,,..C,,, represent the original rules’ counter, and-the others represent the counter of embedded

rules. C; ;s value will increase by 1 when its corresponding rule is inferred. To find the rule easily, the

integer j-1 can be represented as a binary number where we define the “1” in this format corresponding

to the negated attribute of the embedded rules. An example is given as follows:

Given two attributes A, B, and the Action O, then a = 2,

C,,: O, original rule(If A, & B Then O, )since 1-1=0=(00)z
C,,: O, ’sembedded rule’s (If A, & Not B Then O, )since 2-1=1=(01)2
C,;: O, ’sembedded rule’s (If Not A, & B Then O, )since 3-1=2 =(10)2

C,4:0, 'sembedded rule’s (If Not A, & Not B Then O, )since 4-1=3 =(11)

14



To implement the above representation method, we propose a Mapping algorithm where the
relation of the rules and matrix is defined. The algorithm is listed in Algorithm 3.1

Algorithm 3.1: Mapping algorithm

Input:  a: number of attributes, b: number of objects.

Output: Rule Fired Counting Matrix.

Step 1: Createthe mxn matrixA,,, Where m=b,n=2°%.

Step 2: For each element in each row i, each column
If j=1
C,, corresponds to the original rule of Oi .
Else

C, ; corresponds to embedded rules of Oi  according to the binary

representation of j-1 where 1 represents the negated attribute.

Step 3: Return the matrix.
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Example 3.2: An example of mapping function

Given two objects: O,, O, , and two attributes A,B, then a=2, b=2.

And there are four rules can be generated by EMCUD.

Rule Type Condition Action
Original RO A&B O,
Embedded R1 A &Not B O,
Embedded R2 NotA&B O,
Embedded R3 Not A &Not B O,
Original RO A&B 0,
Embedded R1 A& NotB 0,
Embedded R2 NotA& B O,
Embedded R3 NotA & Not B 0,

Sowecancreatean mxn matrix A__,wherem=2n= 2° =4

c:1,1 C1,2 Cl,3 Cl,4:|
C2,1 CZ,Z C2,3 C2,4

C,,: O, ’soriginal rule(IfA, & B Then O, )since 1-1=0 =(00)z

C,,: O, ’sembedded rule’s (If A, & Not B Then O, )since 2-1=1 =(01)2
C,;: O, ’sembedded rule’s (If Not A, & B Then O, )since 3-1=2 =(10)2
C,,: O, ’sembedded rule’s (If Not A, & Not B Then O, )since 4-1=3 =(11)2

C,1:.-,C,, aresimilar to these cases.
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To count the inferred rule correctly, we also present the record algorithm for uncertainty fired rules. To
begin with, it reads the assigned value and fills the defined vector. And then it appends this new vector to

the buffer. Finally, it writes the whole buffer to the file. The algorithm is listed in Algorithms 3.2.

WhereR, ; represents the rule corresponds to the C, ;, CF (R, ;) represents the CFof R,

ij?

Algorithm 3.2: Recording algorithm for uncertainty fired rules

Input: Inference history, rule R, ; .

Output: Uncertainty fired rules record

Step 1: Read the assigned value of R, ;.

Step 2: Create a vector V, ;.

Step 2.1: Record the assigned value.

Step 2.2: Record the inferred rule number.

Step 2.3: Append V, ; to the buffer.

Step 3: Write the buffer to the record file.

Step 4: Return the record.

17



3.2.3 Variants Learning Algorithm

VODKA will take the action of adding a new object if some rule with lower CF is often inferred.
After adding a new object, two operations must be considered: Changing the Attribute Data Type and
Adding a new attribute. The cost of these two operations might be evaluated carefully since the big
difference of effort between them. Changing attribute data type needs only modify the setting of the
attribute, but adding new attribute needs to modify the original repertory grid and AOT which is very
time consuming and costs much effort. Because the cost of transforming data type is less than adding
new attributes, it had better choose CADT than ANA. In our approach, VODKA will firstly ask the
expert if there exists another superior attribute data type .If the expert answers “Yes”, VODKA will
guide the expert to find the proper attribute date type. In contrast, VODKA will acquire a new attribute
and modify the acquisition table and AOT. Finally, VODKA will generate the new variant object.

Algorithm 3.3 is shown as follows:

Algorithm 3.3: Variants learning algorithm (VL)

Input: Record, Rule R, ;.

Output: The new variant object.

Step 1: Count the assigned value of R, ;.

Step 2: Run ANO algorithm to acquire a variant of ObjectOi .
Step 3: Ask the expert if there is another superior attribute data type.
If the answer is "Yes”
Run CADT algorithm to change the attribute data type.
Else
Run ANA algorithm to add a new attribute.

Step 4: Return the new variant object.
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In conclusion, we generate the following Meta rules:

CF threshold H%%., Rule inference threshold Hi%,

ML: If Cij> HcAND CF(R; ; )< Hr
Run Learning Algorithm for Variants (R, ;) to acquire an object

M2: If CF(R; ; )< Hr Run Record Algorithm(R, ;) to record the assigned value.

The drawback of EMCUD is that it is hard to explain the rule with lower CF. We would like to level
up the CF of inferred rules. So we use the sum of rules’ CF as the criteria to evaluate the outcome of a
new object. So the goal is to maximize sum of each inferred rule’s CF. Additionally we have to assess

the number of rules and define the penalty of extrarrules.

A general expression of object function:is listed as-follows:

Certainty Factor Sum (CFS): ' CF(Ri)

(CFSnew — CI:Sold ) X Nold
(CFSqq) N

Object Function(OF) : Max

new

Where

R, ;:rulei€ objectO,

CF(R; ;):the CFofrule R,

N : the number of original and embedded rules of all objects O,
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3.3 The Method of Adding a New Object

To add a new variant object, VODKA firstly asks the expert for the new variant object’s name.
And then VODKA would create a new column in the acquisition table. Since the variant object is
different from the original object only by the ambiguous attribute value, the variant object’s acquisition
table values are similar to these of original object except the ambiguous attribute. In addition, the AOT
values of the variant object are the same as these of the original object. This will save much time and
effort for experts to fill in the acquisition table and AOT value of the new object. After the acquisition
and AQOT tables are completed, VODKA would ask experts how confident they feel about the original
rule of the variant object. And VODKA would ask experts if they accept the embedded rule of variant
objects. Because all but one attribute’s value between the variant object and original object are the same,
the embedded rules of the variant object would highly canflict with those of the original object. VODKA
would take action to adjust these rules according to the CF: Under the same condition, VODKA would
prefer firing the rule with higher CFIf the.CF of the original object rule’s embedded rule is higher than
that of the variant object’s embedded rule, VODKA would append the negating ambiguous attribute to
the predicates of the variant object’s original rule. This would assure the condition that fires the variant
object’s original rule will not simultaneously fire the original object’s embedded rule. Moreover, if the
CF of original object’s embedded rule is lower than that of variant objects’, the embedded rule of
original object will be discarded. This would assure the condition of variant object’s embedded rule will
fire the variant object’s embedded rule, not the original object’s embedded rule. The Adding a New

Object (ANO) Algorithm is shown as follows:
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Algorithm 3.4: Adding a New Object Algorithm (ANO)

Input: Inference Log.
Output: The new object.

Step 1: Ask for the name of the new variant object.
Step 2: Generate the original and possible embedded rules of the new variant object.
Step 2.1: Create the new object’s acquisition table which equals that of original
object.
Step 2.2: Change the ambiguous attribute value of the variant object to the
assigned value.
Step 2.3: Create the new object’s AOT which equals that of original object.
Step 3: Ask for the confidence of the variant object’s original rule.
Step 4: Ask the expert if the possible embedded rule of the variant object could be
accepted?
Step 5: If the old embedded rule’s CF is higher
Append the negating ambiguous attribute to the old embedded rule.
Else

Discard the old embedded rule

Step 6: Output the original and embedded rules of new object.
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Example 3.3: An example of adding a new object.

An example of adding a new object for computer worm is given as follows. The acquisition table and
AOT which classify three kinds of worms: Nimda, CodeRed, and Blaster are shown in Table 3.4 and
Table 3.5, respectively: The data type of ““ Large scaling Email” ,”"DCOM RPC backdoor”, and ’System
Reboot” are Boolean. And the data type of “IIS backdoor ”* and *“ Email attached filename” are Single
Value (String). In addition, the data type of “Number of Threads” is Range of Value. Besides, “L”
represents the attribute “Large scaling Email®, “I” represents the attribute *“:IIS backdoor”, “N”
represents the attribute *“: Number of Threads”, “D” represents the attribute “:DCOM RPC backdoor”,

and “S” represents the attribute *“ System reboot,E: Email attached filename”

Table 3.4: An example of worm.classification acquisition table

Nimda CodeRed Blaster
True X X
Web Traversal Buffer Overflow in X
Index Service

X >300 X

X X True

X True True
Sample.exe X X

Symbol definition: X: do not care
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Table 3.5: An example of worm classification AOT

Nimda CodeRed Blaster
L 1 X X
| 3 3
N X 1 X
D X X 1
S X 2 2
E 2 X X

Here the object Nimda is concerned. e can use EMCUD to generate the original and embedded

rules as Table 3.6.
Table 3.6: The original and embedded rules of Nimda
Rule Type Condition Action CF
Original (R0) L =Tite,& | = True& E =Sample.exe Nimda 0.8
Embedded(R1) L =True,& | =Trie&E=NotSample.exe Nimda 04
Embedded(R2) L =True,& I'=Not True& E =sample.exe | Nimda 0.6

Assuming that we have the inference history about the attribute “Email Attached filename”, there

are 15 assigned values shown in Figure 3.2.

Sample.exe,purlx.exe,purlx.exe,readme.txt,purlx.exe,Sample.exe,readme.txt

Sample.exe,purlx.exe,purlx.exe readme.txt, Sample.exe,purlx.exe,purlx.exe,readme.txt

Figure 3.2: An example of Nimda inferene log
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Table 3.7: The statistic of assigned values about Nimda

Assigned Value Count
Sample.exe 4
purlx.exe 7
readme.txt 4

Table 3.8: The statistic of inferred rules about Nimda

Rule name CF Count
RO 08 4
R1 04 u
R2 06 0

The given threshold of the embedded rules™inference frequency is 50% and the given threshold of
the embedded rule’s CF is 0.7.This means-the frequency of the attribute “Email Attached filename “is

greater than threshold. And “purlx.exe” is certificated. \VODKA takes the following steps:

VODKA: Is an object with the attribute “attached filename =purlx.exe “possible a variant of Nimda?
Expert: Yes.

VODKA: What is its name?

Expert: NimdaB

VODKA: Add a New Object NimdaB
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VODKA will add a new object named NimdaB. All attribute values of NimdaB in Acquisition
Table equal these of Nimda except the attribute “Email attached filename” which equals “purlx.exe”. In
addition, all attribute values of NimdaB in AOT equal these of Nimda. They are shown in Table 3.9 and

Table 3.10 respectively.

Table 3.9: The Computer Worm Classification Acquisition Table after adding NimdaB

Nimda NimdaB CodeRed Blaster
L True True X X
| Web Traversal | \Web Traversal Buffer X
Overflowin
Index Service
N X X >300 X
D X X X True
S X X True True
E Sample.exe purlx.exe X X

Table 3.10: The Computer Worm Classification AOT after adding NimdaB

Nimda NimdaB CodeRed Blaster
L 1 1 X X
I 3 3 2
N X X 1 X
D X X X 1
S X X 3 2
E 2 2 X X
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Moreover, VODKA would decide the accepted rule by the following steps.

VODKA: Is the embedded rule of NimdaB accepted?
IF L=True,& I = True& E =Not purlx.exe Then NimdaB
Expert : Yes
VVODKA: Add this embedded rule to the rule class NimdaB
Decide the CF.
VODKA: How confident do you feel about the original rule of NimdaB?
1. Confirm 2. Strongly support 3.Support 4. May support
Expert: 2
VODKA: If the original rule is “Strongly support”, how about the embedded rule?
Expert: 3
VODKA: calculate the CF of original and embedded rule.

The original rule result of NimdaB-and is.accepted-embedded rule

Table 3.11: The original and embedded rules of NimdaB.

Rule Type Condition Action CF
Original(R0) L =True,& | = True& E =purlx.exe NimdaB 08
Embedded (R1) L =True,& | =True&E=Not purlx.exe NimdaB 06

The final result of NimdaB’s original and embedded rules is shown in Table3.11.

In addition, there exists an embedded rule conflicting problem between Nimda and NimdaB as
follows.
NimdaB R1: IFL=True,& | =True &E=Not purlx.exe THEN NimdaB CF 0.6

Nimda R2: IFL=True,& I =True &E=Not Sample.exe THEN Nimda CF 0.4
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To solve the rule conflicting problem, VODKA would take the following steps.
VODKA: Since the new embedded rule’s CF is greater than the old embedded rule’s CF, is the
NimdaB’s embedded rule is fired under the condition “Not purlx.exe & Not Sample.exe” f?
Expert: Yes

VODKA: Delete the embedded rule Nimda R2

Then we have to evaluate the improvement of our approach. The object function calculation of the
original result is listed as follows. Nimda RO is inferred 4 times and its CF is 0.8. Nimda R1 is inferred
11 times and its CF is 0.4.

CFS,, =(4*0.8+11*0.4)=7.6:

The new result; is summarized in Table 3.12.

Table 3.12: The statistic'of inferred:rules about Nimda and NimdaB

Rule name CE Count
Nimda RO 08 4
Nimda R2 0.6 0
NimdaB RO 04 7
NimdaB R1 0.6 4

The object function calculation of the new result is

CFS,,, =(4*08+0*0.4+7*0.8+4*0.6)=11.2

Then

OF - (CFSy, ~CFSyq) y Nog _112-76, 3 35%
(CFSyq) N 7.6 4

new

We can conclude that the improvement is approximately 35%. This indeed improves the

drawback of EMCUD.
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3.4 The Method of Changing Attribute Data Type

Because of the real world application, there will be some attributes are unable to describe the object
precisely. Changing attribute data type is feasible to improve this problem. Firstly, VODKA asks experts
a superior attribute data type .Then VODKA will acquire the new acquisition table value. In addition, if
the attribute significance order is modified after attribute data type is changed, VODKA will generate the
original and embedded rules again. Finally, VODKA will output the whole new original and embedded

rules. The Changing Attribute Data Type Algorithm ( CADT) is shown in Algorithm 3.5:

Algorithm 3.5: Changing Attribute Data Type Algorithm (CADT)

Input: Inference log
Output: A changed attribute data type.

Step 1: Ask expert the new data type.
Step 2: For each object’s acquisition table,
Acquire the new attribute value.
Step 3: For each object’s AOT,
Ask experts if the order of attributes needs change.
If the expert says “Yes”, go to Step 4.
Else, goto Step 5.
Step 4: Regenerate the embedded rules using EMCUD.

Step 5: Output the original and embedded rules.
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Example 3.4: An example of changing the attribute data type

An example of Changing Data Type for computer worm is given as follows.
Here the object CodeRed is concerned . WWe can use EMCUD to generate the original and embedded

rules as shown in Table 3.13.

Table 3.13: The original and embedded rules of CodeRed

Rule Type Condition Action CF
Original (RO) | = Buffer Overflow,& N=>300& S = True CodeRed 0.8
Embedded(R1) I = Buffer Overflow,,& N = Not >300&S= True CodeRed 04
Embedded(R2) I = Buffer Overflow,& N =>300& S = Not True CodeRed 0.6
Embedded(R3) I = Not Buffer Overflow,& N = >300& S = Not True CodeRed 0.7

Assuming that we have the inferenee history about the attribute “Number of Threads”, there are 15

assigned values shown in Figure 3.3.

300, 100, 305, 300,297,301,298,100,289,302,299,100,299,301,300

Figure 3.3: An example of CodeRed inferene log

Table 3.14: The statistic of assigned values about CodeRed

Assigned Value Count
100 3
299 2
289 1
297 1
298 1
>300 7
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Table 3.15: The statistic of inferred rule about CodeRed

Rule name CF Count
CodeRed RO 08 7
CodeRed R1 04 8
CodeRed R2 0.6 0
CodeRed R3 0.7 0

The given threshold of the embedded rules’ inference frequency is 50% and the given threshold of
the embedded rule’s CF is 0.7.This means the frequency of attribute “Number of threads “is greater than

threshold. And “100” is certificated. So VODKA will take the following steps:

VODKA: Is an object with the attribute “Number of Threads =100 “possible a variant of CodeRed?
Expert: Yes.

VODKA: What is its name?

Expert: CodeRedB.

VODKA: Add a New Object CodeRedB.

VODKA will add a new object named CodeRedB. All attribute values of CodeRedB in the
acquisition table equal these of CodeRed except the attribute “Number of Threads” which equals “100”.
In addition. All attribute values of CodeRedB in AOT equal these of CodeRed. They are shown in Table

3.17 and Table 3.18 respectively.
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Table 3.17: An example of worm classification acquisition table after adding CodeRedB

Nimda CodeRed CodeRedB Blaster
L True X X X
| Web Traversal Buffer Overflowin | Buffer Overflow in X
Index Service Index Service
N X >300 100 X
D X X X True
S X True True True
E Sample.exe X X X

Table 3.18: An example of worm classification AOT after adding CodeRedB

Nimda CodeRed CodeRedB Blaster
L 1 X X X
| 3 2 2 X
N X i 1 X
D X X X 1
S X 3 3 2
E 2 X X X

Since the embedded rule is still inferred over the threshold and the set fact frequency is not over the
threshold, VODKA will take the following steps
VODKA: Is there any other superior data type for the attribute “Number of Thread s*?
Expert: Range
VODKA: Change to “Range”
The acquisition table and AOT after changing data type are shown in Table 3.19 and Table 3.20

respectively.
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Table 3.19: An example of worm classification acquisition table after changing data type

Nimda CodeRed CodeRedB Blaster
L True X X X
| Web Traversal Buffer Overflow in Buffer Overflow in X
Index Service Index Service
N X {90,110} {290,310} X
D X X X True
S X True True True
E Sample.exe X X X

Table 3.20: An example of worm elassification AOT after changing data type

Nimda CodeRed CodeRedB Blaster
L 1 X X X
| 3 2 2 X
N X 1 1 X
D X X X 1
S X 3 3 2
E 2 X X X

Moreover, VODKA would decide the accepted rule by the following steps.

VODKA: Is the embedded rule of Code B accepted?
IF 1 = Buffer Overflow,& N= Not {290,310}& S = True Then CodeRedB
Expert : Yes

VODKA: Add this embedded rule to the rule class of CodeRedB.
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Decide the CF.
VVODKA: How confident do you feel about the original rule?
1. Confirm 2. Strongly support 3. Support 4. May support
Expert: 2.
VODKA: If the original rule is “Strongly support”, how about the embedded rule?
Expert: 3.

VODKA: Calculate the CF of original and embedded rule

The result is shown in Table 3.21.

Table 3.21: The original rule result of CodeRedB and is accepted embedded rule

Rule Type Condition Action CF
Original(RO) | = Buffer Qverflow.&IN= {290,310}&'S = True CodeRedB | 0.8
Embedded(R1) I = Buffer Overflow,& N=Not {290,310}& S =True CodeRedB | 0.6

In addition, there exists an embedded rule conflicting problem between CodeRed and CodeRedB as
follows.
CodeRedB R1: IF | = Buffer Overflow,& N =Not{290,310} &S=True THEN CodeRedB CF 0.6

CodeRed R2: IF 1 =Buffer Overflow,& N = Not {90,110} &S=True THEN CodeRed CF 0.4

To solve the rule conflicting problem, VODKA would take the following steps:

VODKA: Since the new embedded rule’CF is greater than the old embedded rule’CF, is the
CodeRedB’s embedded rule fired under the conditions “Not{290,310}& Not{90,110}?

Expert: Yes.

VODKA: Delete the embedded rule CodeRed R2.
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Then we have to evaluate the improvement of our approach. The object function calculation of the
original result is listed as follows. CodeRed RO is inferred 7 times and its CF is 0.8. CodeRed R1 is
inferred 8 times and its CF is 0.4.

The original result:

CFS,, =(7*0.8+8*0.4)=8.8
The new result

{90,110} 9 times.

{290,310}: 6 times

289: 1 time

The new result is summarized in Table 3.22.

Table 3.22: The statistic.of inferred rules about CodeRed and CodeRedB

Rule name CF Count
CodeRed RO 08 9
CodeRed R2 0.6 0
CodeRed R3 0.7 0
CodeRedB RO 08 6
CodeRedB R1 06 1

The object function calculation of the new result is

CFS,,, = (11*0.8+0%0.4+3*0.8+1*0.6) =11.8

Then

oF - (CFS

new

—CFsom)X Ny _11.2-88 4
(CFSoId) N

X —=~22%
8.8 5

new

We can conclude that the improvement is approximately 22%o. This indeed improves the drawback of

EMCUD.
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3.5 The Method of Adding a New Attribute

Sometimes it is hard to discriminate between the original and variant objects after changing data
type. When the condition occurs, VODKA would take the following steps to add a new attribute. Firstly,
VODKA will acquire the name and data type of the new attribute. Then VODKA let experts fill in the
acquisition table value of each object. To save the effort of experts, if the new attribute value of AOT is
“do not care”, the original rule and embedded rules remain unchanged. In contrast, if that is not “‘do not
care”, VODKA will acquire the importance order of each attribute. This means the experts have to
regenerate the embedded rules and their CF by EMCUD. The Adding a New Attribute Algorithm
(ANA) is shown in Algorithm 3.6 and an example of adding a new attribute for computer worm is

shown in Example 3.5.

Algorithm 3.6: Adding a New Attribute Algorithm (ANA)

Input: Inference log.
Output: The new attribute.

Step 1: Ask for new attribute to discriminate the old embedded rule.
Step 2: Let experts fill in new attribute value of all objects.
Step 3: For each object
Step 3.1 If the new attribute is “do not care™, go to Step 5.
Step 3.2 Ask for the importance order of attributes.
Step 4: Regenerate the embedded rules using EMCUD.

Step 5: Output the original and embedded rules.
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Example 3.5: An example of adding a new attribute.

The object Blaster is concerned. We can use EMCUD to generate the original and embedded rules as

Table 3.23.
Table 3.23: The original and embedded rules of Blaster
Rule Condition Action CF
Type
Original (RO) D=True,& S=True Blaster 0.8
Embedded(R1) D =True,& S=False Blaster 0.6

Assuming that we have the inference history about the attribute *“System Reboot”, there are 15

assigned values shown in Figure 3.4.

True, False, True, False, True, False, True, False, True, False, False, False, False, True, True

Figure 3.4: An example of Blaster inferene log

Table 3.24: The statistic of assigned values about Blaster

Assigned Value Count
True 7
False 8

Table 3.25: The statistic of inferred rules about Blaster

Rule name CF Count
RO 08 7
R1 0.6 8
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The given threshold of the embedded rules’ inference frequency is 50% and the given threshold of
the embedded rule’s CF is 0.7.This means the frequency of the attribute “System Reboot “is greater than

threshold. And “false” is the highly certificated. So VODKA will take the following steps:

VODKA: Is an object with the attribute “System Reboot =False “possible a variant of Blaster?
Expert: Yes.

VVODKA: What is its name?

Expert: BlasterB

VODKA: Add a New Object BlasterB

VODKA will add a new object named BlasterB. All attribute values of BlasterB in the acquisition
table equal these of Blaster except the attribute “System Reboot” which equals “False”. In addition, all
attribute values of BlasterB in AOT equal these of Blaster. They are shown in Table 3.26 and Table 3.27

respectively.

Table 3.26: An example of worm classification acquisition table after adding BlasterB

Nimda CodeRed Blaster BlasterB
L True X X X
| Web Traversal Buffer X X
Overflow in
Index
Service
N X >600 X X
D X X True True
S X True True False
E Sample.exe X X X
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Table 3.27: An example of worm classification AOT after adding BlasterB

Nimda CodeRed Blaster BlasterB
L 1 X X X
| 3 2 X X
N X 1 X X
D X X 1 1
S X 3 2 2
E 2 X X X

Moreover, VODKA would decide the accepted rule by the following steps.

VODKA: Is the following embedded rule of BlasterB accepted?
IF D =True & S = False Then BlasterB
Expert : Yes

VODKA: Add it to the rule class of BlasterB

Decide the CF.
VVODKA: How confident do you feel about the original rule of BlasterB?
1. Confirm 2. Strongly support 3. Support 4. May support
Expert: 2
VODKA: If the original rule is “Strongly support”, how about the embedded rule?
Expert: 3

VODKA: Calculate the CF of original and embedded rules.
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The original rule result of BlasterB and the accepted embedded rule are shown in Table 3.28.

Table 3.28: The original rule result of BlasterB and the accepted embedded rule

Rule Condition Action CF
Type

Original(R0) D=True& S=False BlasterB 08
Embedded(R1) | = Buffer Overflow,& N= Not {290,310}& S=True | BlasterB 06

However, we find the rule conflicting problem such as the Blaster’s original rule equals BlasterB’s

embedded rule shown in Table 3.29 and Table 3.30 respectively.

Table 3.29: The original rule result of BlasterB and is accepted embedded rule

Original (R0) D=True,& S=True Blaster 0.8
Embedded(R1) D =True,& S=False Blaster 0.6

Table 3.30: The original rule'result-of Blaster and is accepted embedded rule

Original(R0) D=True& S =False BlasterB 08
Embedded(R1) D=True& S=True BlasterB 0.7

Apparently, the attributes are not sufficient. So VODKA would take action to add a new attribute:

VODKA: Are there any other attributes except “System reboote“which discriminates between Blaster
and BlasterB?
Expert: Activity port

VODKA: Add a New Attribute “Activity port”
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VODKA will let experts fill in the acquisition table and AOT as shown in Table 3.31, Table 3.32,

respectively

Table 3.31: The acquisition table after adding a new attribute “Activity Port”

Nimda CodeRed Blaster BlasterB

L True X X X

| Web Traversal Buffer Overflowin | X X

Index Service

N X 100 X X

D X X True True

S X True True False

E Sample.exe X X X

A X X TCP135 UDP 69

Table 3.32: The AOQT after adding a new attribute “Activity Port”

Nimda CodeRed Blaster BlasterB
L 1 X X X
| 3 2 X X
N X 1 X X
D X X 2 2
S X 3 3 3
E 2 X X X
A X X 1 1
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Based on Table 3.31 and Table 3.32, the new original rule and embedded rules of Blaster and

BlasterB are generated and listed in Table 3.33 and Table 3.34 respectively.

Table 3.33: The original and embedded rule of Blaster

Original (RO) D=True& S=True& A=TCP 135 Blaster 0.8
Embedded(R1) D=True,& S =False& A=TCP 135 Blaster 0.6
Embedded(R2) D =Flase,& S = False& A=TCP 135 Blaster 04

Table 3.34: The original and embedded rule of BlasterB

Original(RO) D=True& S = False& A=UDP 69 BlasterB 0.8
Embedded(R1) D=True& S =True& A=UDP 69 BlasterB 0.7
Embedded(R2) D=False& S =True& A= UDP 69 BlasterB 05

Obviously, we can discriminate between these two objectswell.

3.6 The Discussion of Operations

As mentioned above, VODKA provides three kinds of operation: ANO, CADT, and
ANA .Adding a new object is the basis of the other operations. Since we would like to cost less and
maximize the objection function, we have to analyze the cost of each operation. ANO will add a new
column to the original acquisition table, and the attribute ordering is not changed. Experts have only to
decide one original and one embedded rule and their CF. Moreover, if the attribute importance order is
not changed after CADT, experts will not be asked to regenerate them which will be done automatically
by VODKA. However, if the attribute importance order is changed, VODKA will call EMCUD again to
regenerate these rules. Finally, because it would change the order of attributes after ANA, this operation
will cost most effort because the experts have to repeat the deciding process. To sum up, VODKA will

prefer choosing ANO to CADT and ANA.
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Chapter 4. System Implementation

We propose the architecture to implement our VOKDA method, including the combination of

DRAMMA and EMCUD.

4.1 System Architecture

As shown in Figure 4.1. The domain expertise is elicited by EMCUD. We transform these objects
including their original and embedded rules into rule classes and define the relation between these rule
classes. Furthermore, the meta rules are generated to assist in triggering the correct rule class. On the
other hand, users can input the facts via the interface. And the inference engine will generate the related
log as the input of VOKDA to generate the new variant object. This object will be put into the

knowledge base to incrementally enhance our elicited knowledge base.

|m ” Web
T
% Web server

(DRAMA's Client) User Interface

Expert Inference engirje Inference
[~ [ )t
g\w s

~ |
\\W\r L | Knowledge Class Process i Variant ObJeCtl Discovery
N =
—(EZA T | Then.. CF=04 DRAMA's © serVer o
f.. Then.. CF=0.q4 Table to Rule Class
f .. Then.. CF=0.7
I m
f .. Then.. CF=0.9 Define Relations |
EMCUD - f. Then.. CF=0.6 [ @@@@ I
f .. Then.. CF=0.7 N f .. Then.. CF=0.9
| Generate MetaRule f . Then.. CF=0.6
Knowledge base f .. Then.. CF=0.7
f .. Then.. CF=0.9 (DRAMA / NORM) N biect
f .. Then.. CF=0.§ A L EEe
f .. Then.. CF=0.7 f
Original&Embedded rule

Figure 4.1: System Architecture of VODKA implementation
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4.2 Expert System Shell

Knowledge representation is very important in expert systems for two reasons. First, expert system
shells are designed for a certain type of knowledge representation such as rules or logic. Second, the way
in which an expert system represents knowledge affects the development, efficiency, and maintenance of

the system.

4.2.1 Overview of the Expert System Develop Tool - DRAMA[9]

Because of object oriented relation in DRAMA, we can clearly model the different columns in
acquisition tables as the knowledge class. We use DRAMA as our expert system shell. The architecture
of DRAMA is client-server and its knowledge base Strueture is object-oriented. The kernel knowledge

model is named NORM (New Object-Qriented Rule-base Model).

KC |
— - Z—————N
KC —1 RB % user

_Kc | | j
Z —
W % user
KC RB DRAMA-Server AP-Server - I:I
N
user

Figure 4.2: DRAMA client-server architecture

As shown in Figure 4.2, the purpose of the DRAMA’s server is to load, manage and use the

knowledge bases according to the knowledge service that users need. DRAMA server contains many

different rule bases, and provides different APIs for the AP servers to connect. The AP server employs
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DRAMA’s APIs to provide user-friendly web pages for users to use expert systems.

In essence, each knowledge module is corresponding to the knowledge class (KC) structure of
DRAMA. And there are four kinds of relation between knowledge classes: Acquire, Trigger, Reference,

and Extension-Of.

4.2.2 Object-oriented, rule-based knowledge representation

One of the most popular types of expert systems is the Rule-based system which uses rules as its
knowledge representation scheme. There are several advantages of the rule format: First, it is a natural
knowledge representation, in the form of “IF ... Then...” type which is similar to the human cognitive
process. The second is modularity that:makes it easy: to. construct, to debug, and to maintain expert
system. Finally rules are easy to explain.. Although rule-based is powerful enough in many applications,
it still has several disadvantages in-maintenance.and construction, e.g., it is hard to incrementally
construct the knowledge.

Therefore, the maintenance of rule-based expert system is a critical research issue; for example,
object-oriented technology is used to integrate rule-based paradigms and object-oriented programming
paradigms. The integration both of them seems a feasible way. Rule-based paradigm provides us with
general facilities for deductive retrieval and pattern matching. On the other hand, the object-oriented

programming provides us with a clear intuitive structure for programs in the form of class hierarchies.

4.2.3 Overview of NORM

NORM (New Object-Oriented Rule Base Model) [9]which is the knowledge representation
scheme also takes advantages of object-oriented technology to provide high maintainability, reusability,

share-ability, and abstraction for rule-based system.
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Imitation of the way by which human learn a new concept is the key notion to develop NORM,

which contains knowledge classes and the relationships between knowledge classes. In NORM, a

knowledge class represents a kind of concept that human realized. The facility of relationships is that if

we want to learn another new concept, we may refer to certain concepts that have been learned in our

mind. By this way we can quickly build the new concept. Thus, a Rule-Base (RB) can record various

knowledge concepts in a specific domain and each Knowledge Class (KC) in the RB represents

different concept of the domain knowledge. The structure of NORM is shown in Figure 4.3.

Fact-Collection

Rule-base

Knowledge
class

Knowledge
class
Knowledge
class

Knowledge
class

\

Figure 4.3: New Object-Oriented Rule Base Model

A Knowledge Class (KC) consists of rules, relations with other KCs and fact declarations as

shown in Figure 4.4. The working model is composed of different KCs and the transferences (e.g.,

Trigger, Acquire, Reference, and Extension-of, etc.) between KCs. The relationships between KCs are

divided into two kinds — dynamic and static. Trigger and Acquire are dynamic because they are activated

conditionally in the action part of a rule. In a contrast, Reference, and Extension-of are static.



) T
o= |
| - Rule-Base (t

Knowledge Class

Figure 4.4: quk&?gvéedge classinarule bl?{sjle RUle

Trigger facts

Trigger is transferring one problem another one. Basically diffefe@pttiRm solving methods will Condition
use different knowledge types; however, a knowledge class will contain only one knowledge type. In
Trigger relationship, it triggers anothe%%%@é{‘%%gmass with current fagtsias knowledge transfer. This A ction
means that the remnant knowledge in original knowledge should not be considered. For example, the
relation between meta rule and other rule classes:generated by EMCUD is “Trigger”
Acquire

Acquire relationship presents the. acquirement. After Acquire process, the original inference
process will continue and only facts predefined in the target knowledge class will be carried back. When
a problem can be divided into sub-problems, we will use the Acquire relationship to handle these
conditions.
Reference

Reference represents the associations between different concepts. Through the Reference
relationship, the knowledge contained in referred knowledge class is regarded as the base knowledge
and it will be taken into consideration first. The variant objects’ rule class have the Reference relationship
with those of their original objects.
Extension-of

The activities of Extension-of relationship include extension and modification. Therefore, it

supports the overriding mechanism, including the overriding of facts and rules.
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4.3 The Framework of EMCUD-DRAMA-VODKA

In the following, we propose a framework, consisting of EMCUD, DRAMA, and VODKA. We
integrate these into EMCUD-DRAMA-VODKA which has three phases: Knowledge Generating phase,
Knowledge Utilization phase, and Knowledge Discovering phase. Firstly, in Knowledge Generating
phase, EMCUD helps knowledge engineers to extract the knowledge from experts and generate original
and embedded rules. Experts will be asked to fill in the acquisition and attribute ordering grids with their
domain knowledge. The knowledge contained in these grids with their implicit meaning will be also
extracted by EMCUD. Besides, we provide the Table validation, checking the similarity of attributes. In
Knowledge Utilization phase, DRAMA is our expert system shell and its inference log is collect and
analyzed In Knowledge Discovering phase, some ambiguous attributes are generated by our Variants
Learning Algorithm. Variants are discovered:-and. the*.original acquisition table and AOT are

appropriately adjusted. The whole process is illustrated in Figure 4.5.

Rule 0:IF Al & A2..Then O1 CF=1.0
—— Rule 1:IF A1 & Not A2.. Then O1 CF=0.8, RC1 RC2
Rule 2:

...... IF Not Al & A2..Then O1 CF=0.6

Repertory grid Original and A
Embedded Rules Knowledge Base

v
=) == e ' -—
e

Cases

User Interface Inference Engine

New Object? Rule 0: 7 es
New Object 02. New Attribute? Rule 1: 6 (A2: Negate I1
< New Attribute A3=11 wfjm—|-D ata Type? f—

Rule 0:lF Al& A2.Then 01 CF=1.0 v

Rule 1:IF A A3..Then 01 CF=0.8 |

ule 2:2 (A1l: Negate 11:2)

Find variant 02 Learning Algorithms Inference monitor

Figure 4.5: The framework of EMCUD-DRAMA-VODKA

47



4.3.1 Knowledge Generation Phase

EMCUD is used in this phase to extract the expertise and the embedded meaning. Furthermore,
the definition the Meta rules is beneficial to integrate the generated rules into the OORB architecture,
Then the inference engine can load and infer the right knowledge base. In addition, we also propose the
Calculating Attribute Similarity Algorithm (CAS) to evaluate the attributes that experts provides .This is
done by check whether the attributes is too similar to discriminate between objects well. The definition
of similarity is given to calculate the similarity of pairs of attributes. Then we get the value of each pair of
attributes. When these values are greater than the given threshold, a warning message is issued. The
procedure is to acquire the acquisition table and AOT, and then check the similarity of each pair s
columns in AOT’. The following step is to generate the original and embedded rules by EMCUD. Then
the Meta rules are generated. The final step is to transform.these rules into the rule classes. Moreover the

links and connections among algorithms are shown in Figure-4.6.

LM heck the Similarity of A ttributes j
*_

A cquisition Table -
Attribute Ordering Tablez =

[ EMCUD j
Original, embedded rules,
nd their Certainty Factor

Transform to Rule Classes

¥

M eta rule

Generate M eta Rule

Buiilid up Rule Class Relation

=
TS

Knowledge Base

Figure 4.6: Links and connection between algorithms in Phase |
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Algorithm 4.1: Calculating Attribute Similarity Algorithm (CASA)

Input: the AOT, the similarity threshold Hs
Output: the pair of similar columns

Step 1: Calculate the similarity
For each pair of columns
Calculate the similarity
Step 2: If the similarity > Hs
Output this pair of attributes

To assure the attribute can effectively differentiate two objects, Hwang[4] defined the similarity
function to calculate the similarity of two columns. The maximum possible distance between two
attribute ordering columns can be derived by assuming that the worse case occurs for each pair of
corresponding columns; that is, the elements of the two celumns ranging from 1 to 5 are

C,=<12345> andC, =<5,4,321>

Therefore, for the columns with n numbers; the maximum possible distance is

n —
Z(n—i): nX(n 1)
= 2
Moreover, for the AOT’s with m columns, the maximum possible distance is

- N an(n—l)
mx;(n—o_m —

Definition: The similarity of between columns C;, and C;, is

DISTANCE(C,,,C; ) 2

SIMILARITY(C. ,,C. ) =1-
( ik ],k) nX(n—l)

And if the similarity of two columns is greater than the given threshold, a warning message is issued.
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Meta Rule Creation
Meta rule which contains the information about how to trigger the correct rule class facilitates the

guidance of inference. The idea is derived from the notion of maximum set of all rules, including its

original and embedded rules in one rule class.

Algorithm 4.2: Generating Meta Rule Algorithm (GMRA)

Input: The original rule and embedded rules
Output: The meta rule

Step 1: For each attribute with an assigned value
If all original and embedded rules contain this attribute
Add it to the Meta rule’s predicate
Step 2: Output the meta rule

Example 4.1: An example of constructing meta rule

Givenarule classRC; and its original and embedded rules
If Aand B and C and D then Goal G
IfAandBand Cand — D then Goal G

try to find the maximum set of these rules’ condition,

Then we have the meta rule;

IfAand B and C and Cthen RC,
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4.3.2 Knowledge Utilization Phase

In this phase, the prototype system has been integrated to DRAMA to keep an inference log. The
inference log, which records the count of each fired rules with lower certainty factor and the assigned
facts is collected and analyzed by Recording algorithm for uncertainty fired rules. If these counters are
greater than the given thresholds, we would go to Knowledge Discovering Phase. Moreover, the links

connections among algorithms are shown in Figure 4.7.
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4.3.3 Knowledge Discovery Phase

As mentioned above, we use the Variants Learning algorithm to find the new variant object. After
adding a new variant object, we have to consider the two operations: changing the attribute data type and
adding a new attribute. Finally, we transform the new object to the rule class. And this will enhance the

original knowledge base. Additionally the links connections among algorithms are shown in Figure 4.8.
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Chapter 5. Case Study: Computer Worm

In this chapter, the overview of computer worm is given to briefly introduce the worm’s life cycle.
And then we describe the environment and developing tools of our system in the following section.

Finally, an example is given to demonstrate the worm classification.

5.1 Worm Overview

Aworm is a program that self-propagates across a network exploiting security flaws in widely-used
services. [1][11]The Internet worm of 1988 was the first well-known replicating program that
self-propagated across a network by exploiting security vulnerabilities in host software. Generally
speaking, there are four stages in a-worm Life-cycle: Target selection, Exploitation, Infection, and
Propagation. In Target Selection Phase, a worm performs reconnaissance and simply probes potential
victim to see if it's running a service on a particular port.'If the service is running, the worm goes to
Exploitation phase. In Exploitation Phase, a worm compromises the target by exploiting a particular
vulnerability and published exploits. If succeed, the worm goes to Infection Phase. In Infection Phase,
the worm sets up on the newly infected machine and goes to the Propagation Phase. In Propagation
Phase, the worm attempts to spread by choosing new targets. And another victim will enter the Target

Selection Phase. The procedure is shown in Figure 5.1.

Propagation

xploitatio. Infection

Figure 5.1: Worm Transition Stages
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5.2. Experiment Environment:

The VODKA method is now being developed with the inference engine DRAMA. The rules
which are generated by EMCUD are converted to XML format because of its portability. The whole
system is integrated with a user interface which is a WINDOWS based apache server. The initial
protocol type of the repertory grid tool was written in JAVA programming language. It is used to
implementation this knowledge acquisition system since two different features of Java. Firstly, Java is
portable. So knowledge engineers can run VODKA on different platforms. In addition, it keeps language
consistent with inference engine. And the programming developer can be easily maintained. The

environment information is listed in Table 5.1.

Table 5.1: The related informatien of implementation

Attribute Description Value

Operating System The OS to develop and execuite the prototype Platform Independent
system.

Programming Language The programming language used todevelop the | Java language with JDK
prototype system. 141

KA Approach The Knowledge Acquisition approach. EMCUD

The expert system shell Rule inference engine DRAMA 25
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5.3. System Implementation Demonstration:

The worm classification acquisition table and AOT are shown Figure 5.2 and Figure 5.3
respectively .The mapping function setting is shown in Figure 5.4. What is more, the calculating attribute
similarity is shown in Figure 5.5.The process of generating embedded rules is shown in Figure 5.6. And

the process of Variants Learning algorithm is shown in Figure 5.7. Finally, the example of original and

embedded rules in XML format is shown in Figure 5.8.

-0l x|
File Edit Setting About
‘ Add row | ‘ Add column | ‘ Delete row | | Delete column |
Grid Table |n0T Table |
AfIOh] | CodeRed | Mortis | Mimda | GoalD GoalE
Fropagation FandomScan Largenail RandomScan
Microsoftlls true bt true
Part a0 22 [ife]
At_D B B R
Alt_E X % i
Checking Attributes | | Generate Embedded Rules | ‘ Learning from Real World |

Figure 5.2: An exampleof worm classification acquisition table.

_[ol ]
File Edit Setting About
‘ Add row | ‘ Add column | ‘ Delete row | | Delete column |
Grid Table |AOT Table |
ARIO] | CodeRed | Mortis | Mimda | GoalD GoalE
Propagation RandomScan Largenail RandomScan
MicrosoftlS true kS true
Port a0 22 59
Alt_D X X i3
Att_E B B R
Checking Attributes | | Generate Embedded Rules | ‘ Learning from Real World |

Figure 5.3: An example of worm classification AOT.
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File Edit Setting Alf LAy = [l S
R ——— The Mapping Function is listed as follows

Adt Cumﬁrm‘1 ,u| le column
0T Table St""“g‘”-a

AIOh] Suppnrt‘tl_a Mimda GoalD GoalE
Propagation X X
Microsoftlls Ma}"ﬂ.el X B
Port E X
At_D ‘ Complete W W
Att_E | : | & &
‘ Checking Attributes | ‘ Generate Embedded Rules | ‘ Learning from Real World |
Figure 5.4: An example of setting mapping function.
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TrIinaueT

& Extract the Embedded Ruleg o ] 3 ]

Determine the Certainty Sequence

Do you think this rule accecpted?

IF

HOT Propagation =RandomScan, Microsoftlls =true, Port =69,

Then CodeRed

& Determine Accepted Rules ] |
E Determine Accepted Rules
hccont -

[z [

Finish CS calulation |

Figure 5.6: An example of generating embedded rules.
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Propagation
Microsoftlls
Port

[ o

Figure 5.7: An example of Variants Learning algorithm.
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- <RuleClass name="CodeRed">
<Fact name="CodeRed" type="String" value="false" possibility="1" />
<Fact name="Propagation" type="String" value="RandomScan" possibility="1" />
<Fact name="Microsoftl1S" type="String" value="true" possibility="1" />
<Fact name="Port" type="String" value="69" possibility="1" />
- <Rule name="R0O" weight="1" certainty-factor="1.0">

<Condition>

<Expression operator="And">

<Expression operator="And">
- <Expression operator="=">
<Expression operator="Fact" type="string" value="Propagation” />
<Expression operator="Const" type="string" value="RandomScan" />
</Expression>
- <Expression operator="=">
<Expression operator="Fact" type="string" value="Microsoftl 1S" />
<Expression operator="Const" type="string" value="true" />
</Expression>
</Expression>
- <Expression operator="=">
<Expression operator="Fact" type="string" value="Port" />
<Expression operator="Const" type="string" value="69" />
</Expression>
</Expression>
</Condition>
- <Action>
- <Assignment>
<AssignedFact>CodeRed</AssignedFact>
- <AssignedValue>
<Expression operator="Const" value="true" type="String" />
</AssignedValue>
</Assignment>
</Action>

</Rule>

Figure 5.8: An example of a set of DRAMA rules
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Chapter 6. Conclusion

To discover the variants objects and elevate the CF of rules, we propose a Variant Object
Discovering Knowledge Acquisition. After adding a new variants object, there are two extra operations:
changing attribute and adding a new attribute, which could assist knowledge engineers in improving the
quality of the knowledge acquisition. In order to evaluate the performance of these operations, the object
function is defined to evaluate the results. These are the basis of our experiment. We also propose a
framework of EMCUD-DRAMA-VODKA which has three phases: Knowledge Generating phase,
Knowledge Utilization phase, and Knowledge Discovery phase to implement our notion.

Moreover we employ VODKA on the domain of the computer worm classification. Until now this
has not been applied to worm classification domain. We clarify the attributes of existing worms. A series
of computer worms and their variants are identified and classified.

In addition, the prototype system has been'implemented and integrated to DRAMA, a productive
rule base system. The utilities provided in-DRAMA enable the knowledge engineers to design and
perform knowledge acquisition process based.on our- proposed mechanism in this work.

However, there are still some interesting problems which could be further discussed. To begin with,
the multi-tier knowledge acquisition might be an interesting research topic. It needs to carefully define
the hierarchy relation among these objects. And it still needs further discussion about various operations

such as merging objects among different families.
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