
50

Chapter 5  
Fast Watermark Verification by 
Progressive Image Matching 

5.1 Overview of Proposed Method 

In this chapter, the study on fast watermark verification focuses on Joint 

Photographic Experts Group (JPEG) images only. Thus, in Section 5.1.1, some 

properties of JPEG images are introduced. And a review of employed invisible 

watermarking technique for compressed images is described in Section 5.1.2. And the 

proposed idea of fast watermark verification is introduced in Section 5.1.3. Also, in 

Section 5.2, the proposed method for fast watermark verification by progressive 

image matching is described. In Section 5.3, some experimental results are illustrated. 

Finally, in Section 5.4, some discussions and a summary are made. 

5.1.1 Properties of JPEG Images 
Figures 5.1 and 5.2 show the encoding and decoding frameworks of the JPEG. In 

the compression process, the source image is first divided into non-overlapping 8×8 

blocks. Each 8×8 block is independently taken as an input to the forward DCT 

(FDCT), and is transformed into the frequency domain. The outputs of the FDCT are 

64 integer values, called DCT coefficients. The coefficient with zero frequency is 

called the DC coefficient, while the other 63 coefficients are called the AC 

coefficients. These 64 DCT coefficients are quantized using a quantization table in 



51

order to discard information that is not visually significant. After the quantization, the 

DC coefficient of each 8×8 block is treated separately from the 63 AC coefficients. 

The DC coefficients are encoded by predictive coding, and the 63 AC coefficients are 

reordered in a zigzag order for better performance of entropy coding. There are two 

entropy coding methods, which are the Huffman coding method and the arithmetic 

coding method, specified by the JPEG standard. 

 

Source
 Image Data

FDCT Quantizer Entropy 
Encoder

8x8 
blocks

Compressed 
Image Data

Table 
Specifications

Table 
Specifications

Figure 5.1 DCT-based encoder compression process. 

 

IDCTQuantizerEntropy 
Encoder

Compressed 
Image Data

Table 
Specifications

Table 
Specifications

 Reconstructed 
Image Data

Figure 5.2 DCT-based decoder decompression process. 

 

 

 

 



52

5.1.2 Review of Employed Invisible Watermarking 

Technique for JPEG Images 
First of all, two DCT coefficients are selected to embed an irremovable invisible 

watermark in the employed method. The two DCT coefficients are chosen according 

to the quantization values associated with them in the standard quantization table, and 

the quantization values should be equal. Consequently, the magnitude relation 

between the two coefficients will be kept after the quantization step. Let (x, y) denote 

the location of a coefficient in an 8×8 block. According to Table 5.1, the coefficients 

located at (1, 4) and (2, 3) or (0, 5) and (3, 2) are good candidates for this purpose. 

 

Table 5.1 Standard quantization table in JPEG compression standard (luminance 
component). 

(x,y) 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

 
 

In the watermark embedding process of the employed method, we use an 8×8 

image block to embed a pixel of the watermark. Therefore, we divide the cover image 

of size M×N into non-overlapping 8×8 image blocks and resize the binary watermark 



53

image W to be ⎥⎦
⎥

⎢⎣
⎢×⎥⎦

⎥
⎢⎣
⎢

88
NM  if the original size of the watermark is larger than 

⎥⎦
⎥

⎢⎣
⎢×⎥⎦

⎥
⎢⎣
⎢

88
NM . For each image block, the RGB color model are transformed into the 

YCbCr color model and the FDCT is performed on the Y channel. The magnitude 

relation of the two chosen DCT coefficients, called S1 and S2, is adjusted according to 

the corresponding watermark pixel. If the watermark pixel color is black, then we let 

S1 to be larger than S2. If S2 is larger than S1 originally, we swap two coefficients. If S1 

is larger than S2 originally, two coefficients are kept unchanged. If the watermark 

pixel color is white, we let the two DCT coefficients be adjusted in the contrary way. 

After the watermark signal embedding process, these 64 DCT coefficients are 

transformed back into the spatial domain by the IDCT, and then the YCbCr color 

values are transformed back into the RGB color model. When all blocks are processed, 

a stego-image is obtained. A flowchart of the employed invisible watermark 

embedding process is shown in Figure 5.3. 

⎥⎦
⎥

⎢⎣
⎢×⎥⎦

⎥
⎢⎣
⎢

88
NM

 

Figure 5.3 A flowchart of employed invisible watermark embedding process. 



54

In the watermark extraction process, we extract the embedded invisible 

watermark signal by detecting the magnitude relation of the two chosen DCT 

coefficients. First, the stego-image is divided again into non-overlapping 8×8 image 

blocks. For each image block, the RGB color values are transformed into the YCbCr 

color values and the FDCT is performed on the resulting Y channel. After performing 

the FDCT, the magnitude relation of the two chosen DCT coefficients is detected. If 

S1 is larger than S2, the extracted watermark pixel color is decided to be black; 

otherwise, white. After all blocks are detected, the binary pixel values of the 

watermark are extracted and the binary embedded watermark reconstructed. A 

flowchart of the employed invisible watermark embedding process is shown in Figure 

5.4. 

 
Figure 5.4 A flowchart of employed invisible watermark extraction process. 



55

5.1.3 Proposed Idea of Fast Watermark Verification 
The employed method described in the last section was implemented in the 

software InfoProtector to embed invisible watermarks into JPEG images. Relatively, 

the extraction process of the employed method is a bit of slow, so we propose the 

method for fast watermark verification by progressive image matching. 

In certain conditions, we can judge a suspected image as a non-infringed one 

before all pixels of the embedded watermark are extracted. For example, we can reject 

the possibility of infringement of a suspected image immediately if a low similarity 

between partial pixels of the embedded watermark and the corresponding pixels of the 

declared image owner’s watermark is found. Only when the similarity is high enough 

is the suspected image likely to be a copyright-infringed one. And then we will extract 

other pixels of a larger amount to calculate a new similarity for further judgment. 

5.2 Proposed Method for Fast 
Watermark Verification 

In Section 5.2.1, we described the process of fast watermark verification by 

progressive image matching, which is a progressive watermark extraction technique. 

And a detailed algorithm of the proposed method is described in Section 5.2.2. 

5.2.1 Process of Fast Watermark Verification by 

Progressive Watermark Extraction 
In the previous chapters, an entire embedded watermark is extracted to find out 

whether the suspected image is a copyright-infringed one or not. But in certain 



56

conditions, it is not needed to extract the entire watermark to judge the suspected 

image as a non-infringed one; part of it is enough sometimes if progressive watermark 

image extraction and matching is conducted. That is, if the similarity between the 

partially extracted pixels and the corresponding pixels of the declared image owner’s 

watermark is not high enough, we can infer immediately that the extracted watermark 

is not the watermark of the declared image owner’s. So we do not have to continue 

the extraction work, which saves a lot of time. In the proposed method based on such 

an idea, only JPEG images are applicable. 

First of all, some symbols that will be used in the proposed method are defined. 

Let S be a suspected image of size M×N. And let it be divided into non-overlapping 

8×8 image blocks and use si,j to denote the resulting image block at position (i, j), 

where 0 ≤ i ≤ ⎥⎦
⎥

⎢⎣
⎢

8
M  and 0 ≤ j ≤ ⎥⎦

⎥
⎢⎣
⎢

8
N . If the size of the watermark W is larger than 

the embedding capacity of the cover image, the size of which is ⎥⎦
⎥

⎢⎣
⎢

8
M

× ⎥⎦
⎥

⎢⎣
⎢

8
N , we 

resize W to ⎥⎦
⎥

⎢⎣
⎢

8
M

× ⎥⎦
⎥

⎢⎣
⎢

8
N . Otherwise, we keep the size of W unchanged. Then, let the 

size of the watermark W be E×F and let wij be the pixel value of the watermark image 

at position (i, j), where 0 ≤ i ≤ E and 0 ≤ j ≤ F. We cluster the non-overlapping 8×8 

image blocks of a suspected image into four groups and then extract one group of 

image blocks in every single round. 

Detailed descriptions of clustering an image and a watermark are given as 

follows. First, we divide image S into non-overlapping sets S1, S2, S3, S4 and S5: 

S1 = {si,j} where i mod 8 =0, j mod 8 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ F; 

S2 = {si,j} –S 1 where i mod 4 =0, j mod 4 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ F; 

S3 = {si,j} –S 2 –S 1 where i mod 2 =0, j mod 2 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ F; 

S4 = {si,j} –S 3 –S 2 –S 1 where 0 ≤ i ≤ E and 0 ≤ j ≤ F; 

S5 = S –S 4 –S 3 –S 2 –S 1. 



57

S5 could be an empty set if E= ⎥⎦
⎥

⎢⎣
⎢

8
M and F= ⎥⎦

⎥
⎢⎣
⎢

8
N , but this has no effect on our method. 

And | S1 | ≤ | S2 | ≤ | S3| ≤ | S4 |. Also, we divide W into non-overlapping sets W1, W2, W3 

and W4 in a similar way: 

W1 = {wi,j} where i mod 8 =0, j mod 8 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ F; 

W2 = {wi,j} – W1 where i mod 4 =0, j mod 4 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ F; 

W3 = {wi,j} – W2 – W1 where i mod 2 =0, j mod 2 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ F; 

W4 = W – W3 – W2 – W1. 

And | W1 | ≤ | W2 | ≤ | W3 | ≤ | W4 |. An example of clustering a watermark in the use 

of Wi is shown in Figure 5.5. 

 

 
Figure 5.5 An example of clustering a watermark of size 32x32. W1 is the set of 

green pixels, W2 is the set of blue pixels, W3 is the set of pink pixels, and 
W4 is the set of white pixels. 

 

 

 



58

 

At the beginning, we extract embedded watermark pixels from image blocks 

which belong to S1. And we calculate the similarity between the extracted watermark 

and part of the declared image owner’s watermark W1, which equals the amount of 

pixels having the same values divided by the amount of the total extracted pixels. If 

the similarity is lower than a threshold value, which is set according to our 

experimental experience, we infer right away that the suspected image is a 

non-infringed image. And we stop the extraction. Only when the calculated similarity 

is higher than the threshold value do we consider the embedded watermark to be 

likely the same as the watermark of the declared image owner’s. And we will extract 

watermark pixels from S2 further. As just mentioned above, we calculate the similarity 

again and compare it with the threshold value. If the suspected image is not a 

copyright-infringed one, then we will get into the third extraction from S3. If we 

finally get into the fourth extraction, S4 will be extracted and after this extraction, the 

watermark is entirely extracted. If the similarity is lower than the threshold value, the 

suspected image is judged to be a non-infringed one. But if the similarity is still 

higher than the threshold value, then we judge the suspected image as a 

copyright-infringed one. A flowchart of the proposed method for fast watermark 

verification by progressive image matching is shown in Figure 5.6. 



59

Suspected image is 
JPG image?

Extract partial 
watermark

Calculate the 
similarity with local 
center´s watermark?

Similarity<threshold?

Infringed

Non-infringed
No

No

Entire watermark has 
been extracted?

Yes

Yes

Yes

Image owner´s watermark

 

Figure 5.6 A flowchart of fast watermark verification by progressive image 
matching. 

 

Some important properties of the proposed method should be emphasized. To 

able to exclude the suspected image which is unlike to be a copyright-infringed one 

with a low cost, we start to extract the smallest set S1. Nevertheless, the amount 

should not be too small, or an unrepresentative similarity will be calculated. And we 

increase the amount of extracted image blocks round-by-round to make it possible to 

extract the entire watermark within four rounds. In addition, image blocks are 

clustered by their positions in order to make the extracted watermark pixels look 

meaningful. That is, we can see an indistinct extracted watermark turning into a clear 

extracted watermark. 



60

The threshold value is an important comparison standard in the proposed method. 

It should not happen that we judge a suspected image as a non-infringed one 

erroneously because of the distortion resulting from geometric attacks. Hence, we set 

the threshold value by experiments on images subjected to different attacks. Figure 

5.7(a) shows the extracted watermark for each round and (b) shows the extracted 

watermark for each round from an image subjected to the expansion attack. More 

experimental details and results will be given in Section 5.3. 

 

    
(a) 

    
(b) 

Figure 5.7 (a) Extracted watermark for each round. (b) Extracted watermark from an 
image subjected to expansion attack for each round. 

 

 

5.2.2 Detailed Algorithm 
The process of fast watermark verification by progressive image matching can be 

expressed as an algorithm as follows. Let T be the threshold value mentioned 

previously. 



61

Algorithm 5.1: Fast watermark verification by progressive image matching. 

Input: A given suspected image S of size M×N and a declared image owner’s 

watermark W. 

Output: A verification result R. 

Steps: 

1. Divide the suspected image S into non-overlapping 8×8 image blocks. Let 

si,j be the image block at position (i, j), where 0 ≤ i ≤ ⎥⎦
⎥

⎢⎣
⎢

8
M  and 0 ≤ j ≤ 

⎥⎦
⎥

⎢⎣
⎢

8
N . 

2. Resize the watermark W into one of size ⎥⎦
⎥

⎢⎣
⎢×⎥⎦

⎥
⎢⎣
⎢

88
NM  if it is larger than 

⎥⎦
⎥

⎢⎣
⎢×⎥⎦

⎥
⎢⎣
⎢

88
NM . Otherwise, keep it unchanged. Denote the size of W by E×F 

and let wi,j be the pixel value of the watermark image at position (i, j), 

where 0 ≤ i ≤ E and 0 ≤ j ≤ F. 

3. Extract embedded watermark E1 using the employed method described in 

Section 5.1.2 from 8×8 image blocks in the set S1 = {si,j} where i mod 8 =0, 

j mod 8 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ F. And perform the following operations. 

3.1 Compare E1 with the corresponding pixels of W, which are in the set 

W1 = {wi,j} where i mod 8 =0, j mod 8 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ F. 

3.2 If the similarity M1 between E1 and W1 is smaller than the threshold 

value T, go to Step 7.1. 

3.3 If M1 is larger than T, go to Step 4. 

4. Extract embedded watermark E2 from 8×8 image blocks in the set S2 = 

{si,j} – S1 where i mod 4 =0, j mod 4 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ F. And 

perform the following operations. 

4.1 Compare E2 with the corresponding pixels of W, which are the in set 



62

W2 = {wi,j} – W1 where i mod 4 =0, j mod 4 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ 

F. 

4.2 If the similarity M2 between E2 and W2 is smaller than T, go to Step 

7.1. 

4.3 If M2 is larger than T, go to Step 5. 

5 Extract embedded watermark E3 from 8×8 image blocks in the set S3 = 

{si,j} – S2 – S1 where i mod 2 =0, j mod 2 = 0, 0 ≤ i ≤ E and 0 ≤ j ≤ F. And 

perform the following operations. 

5.1 Compare E3 with the corresponding pixels of W, which are in the set 

W3 = {wi,j} – W2 – W1 where i mod 2 =0, j mod 2 = 0, 0 ≤ i ≤ E and 0 ≤ 

j ≤ F. 

5.2 If the similarity M3 between E3 and W3 is smaller than T, go to Step 

7.1. 

5.3 If M3 is larger than T, go to Step 6. 

6 Extract embedded watermark E4 from 8×8 image blocks in the set S4 = 

{si,j} – S3 – S2 – S1 where 0 ≤ i ≤ E and 0 ≤ j ≤ F. And perform the following 

operations. 

6.1 Compare E4 with the corresponding pixels of W, which are in the set 

W4 = W – W3 – W2 – W1. 

6.2 If the similarity M4 between E4 and W4 is smaller than T, go to Step 

7.1. 

6.3 If M4 is larger than T, go to Step 7.2. 

7 A verification result R is obtained to include exclusively one of the 

following two decisions: 

7.1 We judge the suspected image as a non-infringed one. 

7.2 We judge the suspected image as a copyright-infringed one. 



63

5.3 Determination of Threshold Value 
and Experimental Results 

Some experiments on setting the threshold value T mentioned previously are 

shown in this section. Five binary watermarks as shown in Figure 5.8 are used as 

invisible watermarks. The cover images are all of size 512×512. Figure 5.9(a) is the 

color image of “Jet,” (b) is “Lena,” (c) “Baboon,” (d) “Painting,” and (e) “Pepper.” 

   
(a) (b) (c) 

  
(d) (e) 

Figure 5.8 Five binary invisible watermark of size 128×128 and 32x32, respectively. 
(a) Watermark of National Chiao Tung University. (b) Watermark of 
National Palace Museum. (c) Watermark of digital archive program. (d) 
Watermark of computer vision laboratory in NCTU. (e) Watermark of 
National Museum of History. 

 



64

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 5.9 Five cover images of size 512×512. (a) Color image of “Jet”, (b) Color 
image of “Lena,” (c) Color image of “Baboon,” (d) Color image of 
“Painting,” and (e) Color image of “Pepper.” 

 

 



65

The purpose of the proposed method is to exclude non-infringed images as 

earlier as possible in the progressive checking process. However, it must be 

guaranteed that copyright-infringed images will not be considered as non-infringed 

ones. So we conducted experiments on copyright-infringed images and took different 

attacks into consideration to obtain an appropriate threshold value T for the similarity 

Mi mentioned in the above algorithm. We experimented on five cover images, and five 

watermarks of two different sizes were supposed to be embedded into each of them. 

So we had 150 stego-images. And each stego-image was supposed to be subject to 

three different attacks, respectively. Each image was allowed to have four rounds of 

progressive matching. Therefore, we obtained 600 experimental results about the 

similarity measures between the original embedded watermark and the extracted 

distorted watermarks after being subject to geometric attacks. The rotation attack and 

the flipping attack resulted in minor distortion for about one percent of difference on 

the stego-image, while the expansion attack resulted in major distortion for about 

nineteen percent of difference. According to the experimental results, 0.8 which is the 

smallest is finally set to be the threshold value T used in our method. The 

experimental results of similarity between the original embedded watermark and the 

extracted distorted watermark after being subject to the expansion attack are partially 

shown in Table 5.2. 

 

 

 

 

 

 

 



66

Table 5.2 Similarity in each of four rounds between original watermarks of size 
128×128 and distorted watermark extracted from two different stego-images 
after being subject to the expansion attack. 

 Round 1 Round 2 Round 3 Round 4 

between distorted 

watermark ”NCTU

” extracted from 

“Jet” and original 

“NCTU” 

58/64≈0.91 177/192≈0.92 663/705≈0.94 2732/2883≈0.95

between distorted 

watermark ”NCTU

” extracted from 

“Baboon” and 

original “NCTU” 

58/64≈0.91 157/192≈0.82 613/705≈0.87 2470/2882≈0.86

between distorted 

watermark ”NPM” 

extracted from 

“Jet” and original 

“NPM” 

59/64≈0.92 183/192≈0.95 666/705≈0.94 2740/2883≈0.95

between distorted 

watermark ”NPM” 

extracted from 

“Baboon” and 

original “NPM” 

58/64≈0.91 164/192≈0.85 604/705≈0.86 2460/2883≈0.85

 

 



67

However, miscalculating a non-infringed image as a copyright-infringed one will 

probably happen when the embedded watermark and the declared image owner’s 

watermark is very similar but we think that this is acceptable in our study, because we 

can finally differentiate the extracted watermark from the declared image owner’s by 

human eyes. But we have experimented on 100 non-infringed images, and fortunately 

none was miscalculated as a copyright-infringed one. 

5.4 Discussions and Summary 

In this chapter, a method for fast watermark verification by progressive image 

matching has been proposed. We extract part of an embedded watermark using an 

employed watermarking technique and compare the extracted watermark with the 

corresponding pixels of the declared image owner’s watermark. If the similarity 

between these two is lower than a pre-selected threshold value, we stop the extraction 

process and judge the suspected image as a non-infringed one. Conversely, if the 

similarity between these two is higher than the threshold value, we infer that the 

suspected image is likely to be a copyright-infringed one. And so we have to check 

the image further. That is, we extract more unprocessed pixels of the embedded 

watermark for recalculating the similarity to check whether we can judge the 

suspected image as a non-infringed one or not in this round. If the calculated 

similarity in the first, second, and third round is all higher than the threshold value, we 

will finally go into the fourth round. All unprocessed embedded watermark pixels will 

be extracted in this round. And we calculate the similarity as well as in the former 

rounds. If the similarity is still higher than the threshold, we can say that the suspected 

image is a copyright-infringed one. Otherwise, it is not. 


