CONTENTS

	RACT (in Chinese) RACT (in English)	
	NOWLEDGEMENTS	
	TENTS	
	OF FIGURES	
LIST	OF TABLES	X
Chapt	ter 1 Introduction	1
1.1	Motivation	1
1.2	Review of Related Works	3
	1.2.1 Lossless Invisible Watermarking	3
	1.2.2 Removable Visible Watermarking	
1.3	Overview of Proposed Methods	
	1.3.1 Terminologies	4
	1.3.2 Brief Descriptions of Proposed Methods	5
1.4		
1.5	Thesis Organization	8
Chapt	ter 2 Hierarchical Online Image Authentication Cent	ers
	with Multi-Capabilities	9
2.1	Overview of Proposed Concepts	9
	2.1.1 Principle of Proposed Hierarchical Online Authentication Centers	9
	2.1.2 Functions of Central and Local Authentication Centers	11
2.2	Functions in Proposed Centers	12
	2.2.1 Online Search and Verification of Watermarked Images for Copy	right
	Infringement Detection	13
	2.2.2 Online Image Authentication with Security Protection of Authentica	ation
	Certificates	16
	2.2.3 Fast Watermark Verification by Progressive Image Matching	18
	2.2.4 Convright Protection of Palette Images by A Robust Lossless Vi	sihle

	Watermarking Technique
2.3	Discussions and Summary21
Chapt	er 3 Online Search and Verification of Watermarked
	Images for Copyright Infringement Detection 23
3.1	Overview of Proposed Method
	3.1.1 Motivation
	3.1.2 Principle of Proposed Method
3.2	Proposed Method for Search and Verification of Watermarked Images25
	3.2.1 Employed Method for Detecting Images in Webpages
	3.2.2 Proposed Method for Detecting Images in Public FTP Servers27
	3.2.3 Process for Verification of Watermarked Images
	3.2.4 Overall Procedure for Proposed Online Search and Verification Method30
3.3	Discussions and Summary
Chapt	er 4 Online Image Authentication with Security
	Protection of Authentication Certificates 33
4.1	Overview of Proposed Method
	4.1.1 Motivation
	4.1.2 Review of Secure Hash Algorithm-1
4.2	Online Image Authentication Procedures
	4.2.1 Procedure for Registration as A Local Image Authentication Center38
	4.2.2 Online Procedure for Authentication of Suspected Images39
4.3	Proposed Method for Security Protection of Authentication Certificates42
	4.3.1 Definition and File Format of Authentication Certificates
	4.3.2 Proposed Method for Certificate Tampering Detection
4.4	Discussions and Summary
Chapt	er 5 Fast Watermark Verification by Progressive Image
	Matching 50
5.1	Overview of Proposed Method
	5.1.1 Properties of JPEG Images
	5.1.2 Review of Employed Invisible Watermarking Technique for JPEG
	Images
	5.1.3 Proposed Idea of Fast Watermark Verification
5.2	Proposed Method for Fast Watermark Verification

	5.2.1 Process of Fast Watermark Verification by Progressive Watermark
	Extraction55
	5.2.2 Detailed Algorithm
5.3	Determination of Threshold Value and Experimental Results
5.4	Discussions and Summary67
Chapte	er 6 Copyright Protection of Palette Images by A
	Robust Lossless Visible Watermarking Technique68
6.1	Overview of Proposed Method
	6.1.1 Idea of Proposed Robust Lossless Visible Watermarking Technique69
	6.1.2 Properties of Palette and GIF Images70
	6.1.3 Principle of Proposed Method
6.2	Proposed Method for Copyright Protection of GIF Images
	6.2.1 Embedding of Removable Visible Watermarks by A
	Neighborhood-Dependent Watermarking Technique73
	6.2.2 Lossless Recovery of Original Images by Removal of Visible
	Watermarks
	6.2.3 Noise-Residual Recovery against Removal Attacks
	6.2.4 Detailed Algorithms
6.3	Experimental Results 81
6.4	Discussions and Summary
Chapte	er 7 Conclusions and Suggestions for Future Works 88
7.1	Conclusions
7.2	Suggestions for Future Works
Refere	ncos 01

LIST OF FIGURES

Figure 1.1 A diagram illustrating proposed system of authentication centers with
multi-capabilities6
Figure 2.1 A hierarchical image authentication mechanism
Figure 2.2 Service functions in proposed centers
Figure 2.3 (a) Functions used in proposed method for online search and verification of
watermarked images for copyright infringement detection. (b) A flowchart of
proposed method for online search and verification of watermarked images.15
Figure 2.4 (a) Functions used in proposed method for online image authentication with a
heavy loaded mode. (b) Functions used in proposed method for online image
authentication with a slightly loaded mode. (c) A flowchart of proposed
method for online image authentication
Figure 2.5 (a) Function used in proposed method for fast watermark verification by
progressive image matching. (b) A flowchart of proposed method for fast
watermark verification by progressive image matching
Figure 2.6 (a) Function used in proposed method for copyright protection by lossless
visible watermarking. (b) A flowchart of proposed method for copyright
protection by lossless visible watermarking20
Figure 3.1 (a) An example of detecting images in webpages within fourth layer using a
depth-first search algorithm. (b) Searching sequence of (a)27
Figure 3.2 (a) An example of detecting images in an public FTP server using a
breadth-first search algorithm. (b) Searching sequence of (a)
Figure 3.3 A flowchart of proposed method for verification of watermarked images 29
Figure 3.4 A flowchart of overall procedure for online search and verification of
watermarked images for copyright infringement detection31
Figure 4.1 Message digest generation using SHA-1
Figure 4.2 Elementary SHA-1 operation in iteration t
Figure 4.3 Elementary SHA-1 operation in iteration t
Figure 4.4 A flowchart of online image authentication
Figure 4.5 Proposed format of certificate 44

Figure 4.6 An example of detecting a certificate which has been tampered with	in
proposed system.	48
Figure 5.1 DCT-based encoder compression process.	51
Figure 5.2 DCT-based decoder decompression process.	51
Figure 5.3 A flowchart of employed invisible watermark embedding process	53
Figure 5.4 A flowchart of employed invisible watermark extraction process	54
Figure 5.5 An example of clustering a watermark of size 32x32. S1 is the set of gree	en
pixels, S2 is the set of blue pixels, S3 is the set of pink pixels, and S4 is the	he
set of white pixels.	57
Figure 5.6 A flowchart of fast watermark verification by progressive image matching	59
Figure 5.7 (a) Extracted watermark for each round. (b) Extracted watermark from	an
image subjected to expansion attack for each round	60
Figure 5.8 Five binary invisible watermark of size 128×128 and 32x32, respectively. ((a)
Watermark of National Chiao Tung University. (b) Watermark of Nation	ıal
Palace Museum. (c) Watermark of digital archive program. (d) Watermark	of
computer vision laboratory in NCTU. (e) Watermark of National Museum	of
History.	63
Figure 5.9 Five cover images of size 512×512. (a) Color image of "Jet", (b) Color image	ge
of "Lena", (c) Color image of "Baboon", (d) Color image of "Painting", an	nd
(e) Color image of "Pepper"	64
Figure 6.1 An example of black watermark embedded pixels and white watermark	rk
embedded pixels. (a) Binary watermark. (b) Area of black waterma	rk
embedded pixels. (c) Area of white watermark embedded pixels	74
Figure 6.2 One-to-one mapping from sorted color palette to rearranged color palette	bу
original order.	75
Figure 6.3 A flowchart of proposed watermark embedding process.	76
Figure 6.4 A flowchart of proposed recovery process of stego-image.	77
Figure 6.5 Color mapping with an offset generated by a secret key.	78
Figure 6.6 A binary watermark image of size 200×200.	82
Figure 6.7 An example of results of applying proposed method. (a) A color image	of
"Lena". (b) Stego-image after embedding visible watermark of size 128×12	8.
(c) Losslessly recovered image with (b). (d) Lossy recovered image without	a
right key	83

Figure 6.8 An example of results of applying proposed method. (a) A color image of			
"Painting". (b) Stego-image after embedding visible watermark of size			
128×128. (c) Losslessly recovered image with (b). (d) Lossy recovered image			
without a right key			
Figure 6.9 An example of results of applying proposed method. (a) A color image of "Je			
(b) Stego-image after embedding visible watermark of size 256×256. (c)			
Losslessly recovered image with (b). (d) Lossy recovered image without a			
right key85			

LIST OF TABLES

Table 5.1 Standard quantization table in JPEG compression stands	ard (luminance
component).	52
Table 5.2 Similarity in each of four rounds between original watermarks	of size 128×128
and distorted watermark extracted from two different stego-im	ages after being
subject to the expansion attack	66
Table 6.1 PSNR values of images after embedding visible watermarks	82
Table 6.2 PSNR values of recovered images	86

