

國 立 交 通 大 學

資訊工程學系

博 士 論 文

即時資料驅動描繪之參數表示式與張量近似演算法

Parametric Representations and Tensor Approximation Algorithms
for Real-Time Data-Driven Rendering

研 究 生：蔡侑庭

指導教授：施仁忠 博士

中 華 民 國 九 十 八 年 五 月

即時資料驅動描繪之參數表示式與張量近似演算法

Parametric Representations and Tensor Approximation Algorithms
for Real-Time Data-Driven Rendering

研 究 生：蔡侑庭 Student：Yu-Ting Tsai

指導教授：施仁忠 博士 Advisor：Dr. Zen-Chung Shih

國 立 交 通 大 學
資 訊 工 程 學 系

博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

May 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年五月

即時資料驅動描繪之參數表示式與張量近似演算法

學生：蔡侑庭 指導教授： 施仁忠博士

國立交通大學資訊工程學系博士班

摘 要

過去幾十年來，電腦繪圖領域之專家學者致力於開發各式各樣特殊新穎的視覺效果，

以期能夠利用電腦合成出如同真實相片般之影像。為了達到高畫質擬真影像輸出，許

多被稱為資料驅動描繪之進階繪圖演算法，會事先運用複雜程序處理輸入之三維場景

以獲得必要資訊，抑或從真實世界當中預先擷取影像資訊，以便於執行時期能藉由這

些視覺資訊快速重建出所希望描繪之視覺特效。然而隨著人類對於影像逼真程度之需

求日益增高，預先採樣資訊之資料量也隨之水漲船高，不但耗費大量的儲存空間，也

同時增加執行時期之資料存取時間以及描繪運算量。

為了解決上述問題，我們可以透過簡潔的表示式來有效率地描述預先採樣資訊，

並應用精密複雜的壓縮方法以進一步減少資料儲存量。然而從以往相關研究成果卻可

以觀察到，要能夠大幅度減少資料量，同時保有即時運算效能，是相當困難的一項挑

戰，因為此兩項主要目標之間經常具有互斥性質。有鑑於此，我們於本論文當中將特

別著重相關議題之探討，針對資料之表示式與近似演算法兩大主題，研究兩者於即時

視覺資訊描繪之發展與應用。關於資料表示式，本論文將介紹兩項特殊參數表示式：

單變量以及多變量球面輻射基底函數，主要用以描述視覺資訊中常見的輻射與照明度

函數，同時更可以進一步拓展至各種於球表面採樣之資訊。而資料壓縮方面，本論文

則提出兩項嶄新張量近似演算法：叢集以及稀疏叢集張量近似法，不但能夠充分利用

視覺資訊之相依性關係，達到資料量減少與即時快速重建皆可兼顧之目的，也能夠延

伸至各式高維度大型科學資料之壓縮、分析、或描述。

本論文最終更將深入研討如何透過所提出之方法來近似與重建預先採樣資訊，以期

能於計算量、壓縮誤差、以及儲存空間三者之間達到最佳平衡點，同時更選取於電腦

繪圖與視覺領域中具代表性之數項應用作為實驗基礎。實驗成果充分驗證本論文所提

方法之可行性與可塑性，不但能夠有效保留原始資訊當中之視覺特徵，同時也能輕易

達到即時描繪速率。如此一來，高畫質之擬真影像合成便可以於現今一般個人電腦上

實現，不再是超級電腦或電影製作所專屬之權益。

i

Parametric Representations and Tensor Approximation
Algorithms for Real-Time Data-Driven Rendering

Student: Yu-Ting Tsai Advisor: Dr. Zen-Chung Shih

Department of Computer Science

National Chiao Tung University

ABSTRACT

Over the last decades, computer graphics and vision researchers have focused on developing
novel visual effects for computer-generated photo-realistic images. To achieve high-quality
output, many state-of-the-art rendering algorithms, which are known as data-driven rendering,
pre-process an input three-dimensional scene with complex procedures to obtain necessary data,
or pre-capture the real world with a set of images. The desired visual effects are then recon-
structed from the pre-sampled observations for efficient run-time rendering. Nevertheless, with
the increasing demand of more and more photo-realistic image synthesis, the amount of pre-
sampled data expands accordingly. It not only consumes a great deal of storage space, but also
increases data access time and rendering costs at run-time.

In order to solve this issue, we can adopt a compact representation to efficiently describe the
pre-sampled observations and further apply sophisticated approximation methods to reduce the
amount of data, but achieving real-time performance at the same time is frequently another chal-
lenging problem. In this dissertation, we thus focus on data representations and approximation
algorithms for real-time rendering of visual data sets. Two novel parametric representations,
univariate and multivariate spherical radial basis functions (SRBFs), and two sophisticated
tensor approximation algorithms, clustered tensor approximation (CTA) and K-clustered tensor

approximation (K-CTA), are proposed to exploit the coherence in visual data sets. The univari-
ate and multivariate SRBFs are especially suitable for modeling radiance and illumination data
sets that are common and ubiquitous in computer graphics and vision. Additionally, SRBFs

ii

also can be applied to represent various kinds of observations on the unit hyper-sphere. As for
CTA and K-CTA, they are developed based on tensor approximation to simultaneously achieve
high compression ratios and real-time rendering performance for multi-dimensional visual data
sets. CTA and K-CTA are also general approximation algorithms that are not restricted to spe-
cific applications. They can be employed to compress, analyze, or represent other large-scale
scientific data sets that intrinsically exhibit multi-dimensional structures.

Last but not the least, we also investigate how to approximate and reconstruct the pre-
sampled observations with a trade-off among computational costs, compression errors, and
storage space. The proposed methods are further applied to various representative applications
in computer graphics and vision. Our experiments show promising results in which important
features of visual data sets are well-preserved after approximation and rendered at real-time
rates. As a result, high-quality photo-realistic image synthesis can be efficiently realized on
modern personal computers, not privileged to supercomputers or film production anymore.

iii

Acknowledgements

First of all, I appreciate my advisor, Dr. Zen-Chung Shih, for his support and guidance dur-
ing the hard time of my stay at the Department of Computer Science, National Chiao Tung
University. I would also like to thank the members of Computer Graphics Laboratory, espe-
cially Chih-Hao Chen for helping me with parts of the precomputed radiance transfer program,
Shr-Ching Weng and Qing-Zhen Jiang for profound discussions on the proposed importance
sampling algorithm, Yu-Pao Tsai for his advice on the applications of the proposed methods,
Dr. Wen-Chieh Lin and Kuei-Li Fang for suggestions and implementation of the hierarchical
fitting algorithm, Jia-Yin Ji for preparing the model Cloth, and to name a few.

Finally, special thanks are due to Ya-Mei Chen for her encouragement and assistance during
the last few years of my Ph.D. program. I would also like to dedicate this dissertation to my
parents for their selfless love and support. Without all of you, I would never receive the Ph.D.
degree in computer science, and this dissertation would not have been written.

iv

Contents

Abstract (in Chinese) i

Abstract (in English) ii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xii

List of Algorithms xiii

List of Symbols xiv

1 Introduction 1
1.1 Background . 1
1.2 Motivations and Methods . 2
1.3 Applications of Data-Driven Rendering . 4
1.4 Contributions . 5
1.5 Dissertation Organization . 7

2 Literature Review 9
2.1 Data Representations . 9

2.1.1 Functional Models . 9
2.1.2 Spherical Radial Basis Functions . 11
2.1.3 Parameterization . 11

2.2 Dimensionality Reduction . 12
2.2.1 Linear Models . 12
2.2.2 Non-Linear Models . 13
2.2.3 Multi-Linear Models . 14

2.3 Data-Driven Rendering . 15

v

2.3.1 Spatially-Varying Appearance Models 16
2.3.2 Radiance Transfer . 17

3 Univariate Spherical Radial Basis Functions 20
3.1 Mathematical Formulation . 20
3.2 Characteristics of Univariate SRBFs . 23

3.2.1 Spherical Singular Integral . 23
3.2.2 Spatial Localization . 24
3.2.3 Univariate Gaussian SRBFs and Von Mises-Fisher Distributions 24

3.3 Uniform Univariate SRBF Representation . 26
3.3.1 Ordinary Least-Squares Projection . 26
3.3.2 Regularized Least-Squares Projection 27

3.4 Scattered Univariate SRBF Representation . 27
3.4.1 Fitting Algorithm . 27
3.4.2 Initial Guess . 28

3.5 Mathematical Proofs . 30
3.5.1 Convolution of Univariate Gaussian SRBFs 30
3.5.2 Relation between Univariate Gaussian SRBF and Von Mises-Fisher Dis-

tribution . 32

4 Multivariate Spherical Radial Basis Functions 33
4.1 Mathematical Formulation . 33

4.1.1 Basic Definitions . 33
4.1.2 Example . 35

4.2 Scattered Multivariate SRBF Representation 35
4.2.1 Fitting Algorithm . 35
4.2.2 Initial Guess . 36

4.3 Parameterized Multivariate SRBF Representation 37
4.3.1 Overview . 37
4.3.2 Example . 39
4.3.3 Fitting Algorithm . 40

4.4 Hierarchical Fitting Algorithm . 40
4.4.1 Upsampling Stage . 43
4.4.2 Optimization Stage . 44

5 Clustered Tensor Approximation 46
5.1 Preliminaries and Background . 46

5.1.1 Basic Definitions . 47
5.1.2 Tensor Approximation . 48

5.2 Mathematical Formulation . 49

vi

5.3 Algorithm . 51
5.3.1 Overview . 51
5.3.2 Clustering Stage . 53
5.3.3 Update Stage . 53

5.4 Implementation Issues . 54
5.4.1 Initial Guess . 54
5.4.2 Global Basis Matrices . 55

5.5 Mathematical Proofs . 55

6 K-Clustered Tensor Approximation 59
6.1 Mathematical Formulation . 60
6.2 Algorithm . 61

6.2.1 Overview . 61
6.2.2 Clustering Stage . 62
6.2.3 Update Stage . 66

6.3 Implementation Issues . 67
6.3.1 Initial Guess . 67
6.3.2 Degeneracy and Convergence . 68

6.4 Mathematical Proofs . 69
6.4.1 Greedy Search . 69
6.4.2 Optimal Projection . 70

7 Application I: Illumination and Reflectance Functions 73
7.1 High Dynamic Range Environment Maps . 73

7.1.1 Problem Formulation . 73
7.1.2 Experimental Results . 74

7.2 Bidirectional Reflectance Distribution Functions 78
7.2.1 Univariate SRBFs . 79
7.2.2 Multivariate SRBFs . 80
7.2.3 Experimental Results . 81

7.3 Importance Sampling of Direct Illumination 83
7.3.1 Problem Formulation . 88
7.3.2 Importance Sampling Algorithm . 90
7.3.3 Experimental Results . 90

8 Application II: Spatially-Varying Appearance Models 95
8.1 Bidirectional Texture Functions . 95

8.1.1 Tensor Approximation Algorithms . 96
8.1.2 Multivariate SRBFs . 102
8.1.3 Comparisons and Discussions . 111

vii

8.2 View-Dependent Occlusion Texture Functions 118
8.2.1 Problem Formulation . 118
8.2.2 Rendering Issues . 120
8.2.3 Experimental Results . 122

9 Application III: Radiance Transfer 127
9.1 Precomputed Radiance Transfer . 127

9.1.1 Problem Formulation . 128
9.1.2 Algorithm . 130
9.1.3 Experimental Results . 133
9.1.4 Discussions . 135

9.2 Bi-Scale Radiance Transfer . 139
9.2.1 Problem Formulation . 140
9.2.2 Algorithm . 144
9.2.3 Experimental Results . 146

10 Conclusions and Future Work 150
10.1 Conclusions . 150

10.1.1 Spherical Radial Basis Functions . 150
10.1.2 Tensor Approximation Algorithms . 151
10.1.3 Summary . 151

10.2 Future Work . 152
10.2.1 Flexible Data Representations . 152
10.2.2 Powerful Approximation Algorithms 153
10.2.3 General Data-Driven Applications . 154

Bibliography 156

viii

List of Figures

3.1 Two-dimensional and three-dimensional plots of univariate Gaussian spherical
radial basis functions. 21

3.2 A univariate spherical function in univariate spherical radial basis function ex-
pansions. 22

4.1 Approximate a bidirectional texture function using the proposed hierarchical
fitting algorithm. 42

5.1 The decomposed core tensor and basis matrices of a third order tensor based on
tensor approximation. 48

5.2 Decompose a third order tensor using clustered tensor approximation. 50

6.1 Decompose a third order tensor using K-clustered tensor approximation. 61

7.1 Examples of high dynamic range environment maps. 74
7.2 Squared error ratio plots for high dynamic range environment maps. 75
7.3 Reconstructed images of the high dynamic range environment map St. Peter’s

Basilica. 76
7.4 Reconstructed images of the high dynamic range environment maps Eucalyptus

Grove, Grace Cathedral, and The Uffizi Gallery. 77
7.5 Examples of bidirectional reflectance distribution functions. 78
7.6 Squared error ratio plots for bidirectional reflectance distribution functions. . . 83
7.7 Reconstructed images of the bidirectional reflectance distribution function Blue

Metallic Paint. 84
7.8 Reconstructed images of the bidirectional reflectance distribution function Kry-

lon Blue. 85
7.9 Reconstructed images of the bidirectional reflectance distribution function Nickel. 86
7.10 Rendered images for bidirectional reflectance distribution functions. 87
7.11 Rendered images based on the proposed importance sampling algorithm for

Bunny with the bidirectional reflectance distribution function Blue Metallic Paint. 92
7.12 Rendered images based on the proposed importance sampling algorithm for the

model Buddha with the bidirectional reflectance distribution function Krylon

Blue. 93

ix

7.13 Rendered images based on the proposed importance sampling algorithm for the
model Venus with the bidirectional reflectance distribution function Nickel. . . . 94

8.1 An example of a bidirectional texture function. 96
8.2 Squared error ratio plots based on different tensor approximation algorithms for

bidirectional texture functions. 102
8.3 Rendered images based on different tensor approximation algorithms for bidi-

rectional texture functions. 103
8.4 Reconstructed images of the bidirectional texture function for the material Fiber

based on different tensor approximation algorithms. 104
8.5 Reconstructed images of the bidirectional texture function for the material Rough-

Hole based on different tensor approximation algorithms. 105
8.6 Reconstructed images of the bidirectional texture function for the material Sponge

based on different tensor approximation algorithms. 106
8.7 Reconstructed images of the bidirectional texture function for the material Wool

based on different tensor approximation algorithms. 107
8.8 Rendered images based on the parameterized multivariate spherical radial basis

function representation for bidirectional texture functions. 112
8.9 Reconstructed images of the bidirectional texture function for the material Car-

pet based on the parameterized multivariate spherical radial basis function rep-
resentation. 113

8.10 Reconstructed images of the bidirectional texture function for the material Im-

palla based on the parameterized multivariate spherical radial basis function
representation. 114

8.11 Reconstructed images of the bidirectional texture function for the material Sponge

based on the parameterized multivariate spherical radial basis function repre-
sentation. 115

8.12 Reconstructed images of the bidirectional texture function for the material Wool

based on the parameterized multivariate spherical radial basis function repre-
sentation. 116

8.13 Examples of the proposed view-dependent occlusion texture functions. 119
8.14 Comparison between different encoding schemes for view-dependent occlusion

texture functions . 121
8.15 Error texel ratio plots based on different encoding schemes for view-dependent

occlusion texture functions. 123
8.16 Error texel ratio plots based on different tensor approximation algorithms for

view-dependent occlusion texture functions. 124
8.17 Reconstructed images of the view-dependent occlusion texture function for the

material Fiber. 125

x

8.18 Reconstructed images of the view-dependent occlusion texture function for the
material RoughHole. 126

9.1 System diagram of the proposed all-frequency precomputed radiance transfer
algorithm. 130

9.2 Tensor representation for radiance transfer matrices in the proposed all-frequency
precomputed radiance transfer algorithm. 132

9.3 Rendered images based on the proposed all-frequency precomputed radiance
transfer algorithm. 136

9.4 Rendered images with various configurations of clustered tensor approximation
based on the proposed all-frequency precomputed radiance transfer algorithm. . 137

9.5 Comparison between the proposed all-frequency precomputed radiance transfer
algorithm and all-frequency clustered principal component analysis. 138

9.6 The proposed all-frequency bi-scale radiance transfer algorithm determines vis-
ibility values at the meso-scale. 141

9.7 System diagrams of the proposed all-frequency bi-scale radiance transfer algo-
rithm. 143

9.8 Rendered images with different tensor approximation algorithms for meso-structures
based on the proposed all-frequency bi-scale radiance transfer algorithm. 147

9.9 Rendered images with/without indirect illumination based on the proposed all-
frequency bi-scale radiance transfer algorithm. 148

9.10 Rendered images based on the proposed all-frequency bi-scale radiance transfer
algorithm. 149

xi

List of Tables

7.1 Statistics and timing measurements for bidirectional reflectance distribution
functions. 81

7.2 Rendering performance for bidirectional reflectance distribution functions. . . . 82

8.1 Statistics and timing measurements of different tensor approximation algorithms
for bidirectional texture functions. 100

8.2 Rendering performance of different tensor approximation algorithms for bidi-
rectional texture functions. 101

8.3 Statistics and timing measurements of the parameterized multivariate spherical
radial basis function representation for bidirectional texture functions. 110

8.4 Rendering performance of the parameterized multivariate spherical radial basis
function representation for bidirectional texture functions. 111

8.5 Feature comparisons between tensor approximation algorithms and multivariate
spherical radial basis functions for bidirectional texture functions. 117

8.6 Statistics and timing measurements of different tensor approximation algorithms
for view-dependent occlusion texture functions. 123

9.1 Statistics and timing measurements of the proposed all-frequency precomputed
radiance transfer algorithm. 134

9.2 Comparisons between the proposed all-frequency precomputed radiance trans-
fer algorithm and all-frequency clustered principal component analysis. 135

9.3 Feature comparisons of the proposed all-frequency bi-scale radiance transfer
algorithm with various meso-scale appearance models. 140

9.4 Statistics and timing measurements of the proposed all-frequency bi-scale radi-
ance transfer algorithm. 146

xii

List of Algorithms

3.1 Fitting algorithm for the scattered univariate spherical radial basis function rep-
resentation. 28

3.2 Modified soft von Mises-Fisher clustering algorithm for preconditioning. . . . 31

4.1 Fitting algorithm for the scattered multivariate spherical radial basis function
representation. 36

4.2 Initial guess for the scattered multivariate spherical radial basis function repre-
sentation. 38

4.3 Fitting algorithm for the parameterized multivariate spherical radial basis func-
tion representation. 41

4.4 Hierarchical fitting algorithm based on the scattered multivariate spherical ra-
dial basis function representation. 43

5.1 N -mode singular value decomposition. 49
5.2 Static and iterative clustered tensor approximation. 52

6.1 Iterative K-clustered tensor approximation. 63

xiii

List of Symbols

General

N set of natural numbers
R set of real numbers
Rm m-dimensional Euclidean space
a, b, . . . scalars (italic roman lowercase letters)
a,b, . . . column vectors (boldface roman lowercase letters)
A,B, . . . matrices (boldface roman capitals)
c, i, j, k, n indices
C, I, J,K,N maximum values of indices c, i, j, k, n
e base of the natural logarithm
π ratio of the circumference of a circle to its diameter
|·| absolute value of a real number or cardinal of a set
‖·‖0 `0 norm of a vector
‖·‖2 `2 norm of a vector
{·} a set
\ set minus operator
× scalar multiplication operator or Cartesian product operator of sets
Γ(·) gamma function
Pn(·) normalized Legendre polynomial of degree n so that Pn(1) = 1

`
(F)
n degree-n Legendre coefficient of a function F (·)
In(·) order-n modified Bessel function of the first kind
A−1 inverse of a square matrix A

A+ Moore-Penrose pseudo-inverse of a matrix A

In identity matrix of size n×n
AT transpose of a matrix A

(A)ij entry in row i and column j of a matrix A

(A)i∗ i-th row of a matrix A

(A)∗j j-th column of a matrix A

xiv

Spherical Radial Basis Functions

Sm unit hyper-sphere embedded in Rm+1 (or unit m-sphere)
φ geodesic distance on the unit hyper-sphere
ω a point on the unit hyper-sphere
β basis coefficient of a spherical radial basis function
ξ center of a spherical radial basis function
λ bandwidth of a spherical radial basis function
θ a parameterization coefficient
ω · ξ dot product of ω and ξ
ψ(·) a parameterization function
Ω a set of points on the unit hyper-sphere(s)
Ξ a set of spherical radial basis function centers
Λ a set of spherical radial basis function bandwidths
Θ a set of parameterization coefficients
Ψ a set of parameterization functions
F (·) a univariate/multivariate spherical function
G(·) a spherical radial basis function
?m spherical singular integral operator over Sm

Ω(m) total surface area of Sm

τG center of gravity of a spherical radial basis function G(·)
σG variance of a spherical radial basis function G(·)

Tensor Algebra

A,B, . . . tensors (boldface calligraphic capitals)
‖·‖F Frobenius norm of a tensor (or a matrix)
(A)i1i2···iN entry of an N -th order tensor A indexed by i1, i2, . . . , iN
A〈ni〉 the i-th mode-n sub-tensor of a tensor A
〈A,B〉 scalar product of A and B
ufn(·) mode-n unfolded matrix of a tensor
×n mode-n product operator
⊗ Kronecker product operator
ą

n
operator of a series of mode-n products⊗
operator of a series of Kronecker products

Rn a mode-n reduced rank
Z a core tensor
Un a mode-n basis matrix
Vn a dual mode-n basis matrix

xv

Applications

ωl an illumination direction on S2

ωv a view direction on S2

L(ωl) a high dynamic range environment map
ρ(ωl, ωv) a bidirectional reflectance distribution function
p a pixel or a point on an object surface
np surface normal at point p
Lo,p(ωv) exitant radiance in view direction ωv at point p
Lin(ωl) incident radiance in illumination direction ωl
Vp(ωl) visibility function at point p in illumination direction ωl
x horizontal coordinate in the two-dimensional Cartesian coordinate system
y vertical coordinate in the two-dimensional Cartesian coordinate system
t =

[
x, y
]T two-dimensional spatial coordinates, x and y, of a texel

B(ωl, ωv, t) a bidirectional texture function
O(ωv, t) a view-dependent occlusion texture function
S a spatial coordinate texture for spatially-varying materials

xvi

Chapter 1

Introduction

1.1 Background

Synthesizing photo-realistic images is a significant and ambitious goal in computer graphics
and vision. It has not only been extensively studied in the academic community, but also be-
come ubiquitous in our daily life. Special visual effects and vivid animations are nowadays
essential to many computer applications as well as film production, and could even be found
on various consumer electronic devices. In real-time rendering applications, visual realism has
always been a more challenging problem, since realistic image synthesis is not the only con-
cern, but the human-computer interaction is also of great importance. The difficulty lies in that
the interactivity usually dominates other objectives, hence the desired visual effects can only be
realized with limited computational power.

Researchers have conventionally focused on developing analytic models and simulation-
based algorithms to achieve photo-realistic image synthesis in real time. Nevertheless, real-
world object shape, surface reflectance, micro-scale appearance, and natural illumination effects
are frequently too complicated to be synthesized using analytic models or simple simulations.
Over the last decades, there have been tremendous advances in this field. First, the emergence of
programmable graphics processing units (GPUs) [103, 141] and general-purpose computation

on GPUs (GP-GPUs) [131, 157] introduced flexible programming models whose compiled code
could be executed and accelerated by graphics hardware. The fast pace of progress in the
computational power of GPUs not only enables many rendering methods that were previously
impractical to operate in real time, but also has stimulated the development of highly parallel
algorithms in many scientific communities beyond computer graphics and vision.

Second, while traditional rendering algorithms generate images using computationally ex-
pensive procedures, state-of-the-art methods, which are known as data-driven rendering or in-

verse rendering, handle the same problem from a different standpoint – if we can not afford the
computational costs of complex procedures at run-time, why not perform rendering from cached

or pre-sampled data that represent the results of complex procedures or even real-world mea-

1

surement? A common example is the bidirectional reflectance distribution functions (BRDFs)
for local illumination reflection. In data-driven rendering, the whole process begins by mea-
suring data samples from real-world object surfaces [113, 114]. The data collections are then
modeled with an appropriate representation for fast run-time rendering from novel illumination
and view directions. This simple idea obviously reverses the conventional ’forward’ rendering
process that develops a representation from theories or heuristics, and also ushers in a new era
for real-time rendering.

1.2 Motivations and Methods

Although data-driven rendering avoids computationally expensive procedures at run-time, they
are usually subject to cumbersome pre-sampled observations that consume a large amount
of storage space and memory bandwidth. As the demand of more and more photo-realistic
computer-generated images increases, this problem has become even worse since we have to
record more information to account for more degrees of freedom and more detailed descrip-
tions of the desired visual effects. Nowadays, the amount of pre-sampled data often exceeds
tens or hundreds of gigabytes, and tends to increase in the future. Since memory bandwidth
is a major bottleneck of GPUs in modern real-time graphics and vision applications, the per-
formance of data-driven rendering may be, in the worst case, downgraded to be slower than
directly employing complex procedures.

To solve this problem, researchers have been devoted to developing effective representations
and approximation algorithms for handling the pre-sampled observations. While an expressive
representation provides an efficient and meaningful description of data, a powerful compres-
sion method results in compact storage space and fast data reconstruction on GPUs. Tight
cooperation between them may be a remedy for real-time photo-realistic image synthesis. In
this dissertation, we thus focus on data representations and approximation algorithms for real-
time rendering of visual data sets. Related topics and methods are extensively surveyed and
studied. We also discuss how to achieve an appropriate trade-off among computational costs,
approximation errors, and storage space for real-time applications. Our investigation leads to
the following methods:

Data Representations

We introduce two parametric representations for radiance and illumination functions, which
are named univariate and multivariate spherical radial basis functions (SRBFs). A univariate
SRBF is a circularly axis-symmetric and rotation-invariant function defined on the unit hyper-
sphere. Radiance functions thus can be modeled in their intrinsic spherical domain, rather than
a cubic or planar domain as in previous articles [22, 125]. This can avoid false boundaries and
distortions that may result from improper resampling strategies in a non-intrinsic domain. The

2

spatial localization property of univariate SRBFs especially allows the high-frequency signals
within local regions to be handled efficiently. On the other hand, a multivariate SRBF is a
function constructed by the product of multiple univariate SRBFs. This breaks the limitation of
univariate SRBFs, as they only account for a single variable on the unit hyper-sphere. Since the
surface appearance of a real-world object is frequently an effect of different physical factors,
multivariate SRBFs are particularly suitable for modeling the complex behaviors of measured
reflectance data. Moreover, we also demonstrate that a linear combination of either univariate
or multivariate SRBFs can generalize SRBFs into a powerful analysis tool for heterogenous
radiance functions.

To obtain a compact representation, it is also well-known that transforming the parameters
of a multivariate function into another parametric space, which we refer to as parameterization,
can improve approximation efficiency [77, 90, 151, 213, 214]. However, previous articles have
considered only heuristic or fixed transformation functions, little attention have been paid to
a data-dependent parameterization method. Therefore, we propose to learn a set of optimized
parameterization functions for a given visual data set to overcome the main disadvantage of
conventional fixed parameterization. By using a parametric representation to model the trans-
formation functions, the parameterization process can be tightly integrated into the proposed
multivariate SRBF representation. Previous heuristic parameterizations, such as the half-way
vector for reflectance functions, thus become special cases in our general framework.

Approximation Algorithms

For data compression, we propose two dimensionality reduction algorithms, namely clustered

tensor approximation (CTA) and K-clustered tensor approximation (K-CTA), for large-scale
multi-dimensional visual data sets. A major drawback of traditional tensor approximation (also
called multi-linear models or multi-way analysis) [33, 165] is that reconstruction costs may be
still too high for real-time rendering applications when the data variations in the input tensor
are large [185, 192]. The proposed CTA algorithm therefore aims at overcoming this drawback
by classifying the input tensor into disjoint clusters, so that the member data within each cluster
form another tensor with much lower variations and can be more efficiently decomposed using
tensor approximation. An iterative technique for updating cluster members is also introduced
to derive a locally optimal solution for CTA.

Based on CTA, we further develop K-CTA to classify the input tensor into ’overlapped’
regions so that inter-cluster coherence can be exploited by mixing the decomposed results of
more than one cluster. Since the maximum number of mixture clusters is guaranteed in the
proposed model, K-CTA provides a sparse multi-linear representation in which the sparsity is
totally under user control. This especially leads to predictable run-time reconstruction costs and
an easy-to-optimize shader program on GPUs.

3

1.3 Applications of Data-Driven Rendering

To demonstrate the effectiveness of our methods, intensive experiments have been conducted
on various applications of data-driven rendering and visual data sets in computer graphics and
vision. They are summarized as follows:

Illumination and Reflectance Functions

Lighting and shading effects are considered as one of the main contributing factors in human
visual perception. A large number of attempts have been made to develop realistic illumina-
tion and reflectance models in computer graphics and vision. In our experiments, two common
kinds of illumination and reflectance data, including high dynamic range (HDR) environment
maps [34, 36] and BRDFs, are modeled with univariate or multivariate SRBFs. One of the ma-
jor advantages of SRBFs is their ’non-uniformity’. Specifically, SRBFs can be non-uniformly
distributed based on the input observations to obtain a compact representation for the original
function. This non-uniformity particularly captures the irregularity and high-frequency signals
of real-world illumination and reflectance functions, which are difficult to be modeled efficiently
using conventional data representations, for example, spherical harmonics and wavelets.

Furthermore, ray tracing is a promising framework that allows photo-realistic image synthe-
sis. However, it frequently relies on time-consuming Monte Carlo sampling to simulate numer-
ous illumination effects. We thus focus on the direct illumination computation in ray tracing,
and demonstrate that the univariate SRBF representation for BRDFs can be seamlessly inte-
grated with existing Monte Carlo sampling methods. The proposed importance-driven method
especially exploits the non-uniformity of univariate SRBFs to efficiently generate sampling di-
rections from the distributions of BRDFs.

Spatially-Varying Appearance Models

Meso-scale surface appearance is often difficult to be faithfully captured using analytic mod-
els. The shape details and spatially-varying reflectance distributions owing to complex meso-
structures may need millions of polygons to model. Traditional bidirectional texture functions

(BTFs) [28] only consider meso-scale illumination effects, but completely ignore the micro-
geometry of object surfaces. We thus introduce a new spatially-varying appearance model,
which is named view-dependent occlusion texture function (VOTF), to render view-dependent
meso-scale occlusions from precomputed visibility information. The proposed VOTFs can be
easily implemented on GPUs and further combined with existing appearance models for visu-
alizing meso-scale silhouettes.

In addition, modeling spatially-varying surface appearance is a more challenging problem
than approximating illumination and reflectance functions, since the large amount of appearance
data frequently prevents sophisticated data representations and approximation algorithms. In

4

this dissertation, we specifically demonstrate the experimental results of two different approx-
imation approaches for spatially-varying appearance models: one is a non-parametric multi-
linear model based on CTA or K-CTA; the other is a parametric representation based on multi-
variate SRBFs and optimized parameterization.

First, the multi-linear framework provides a computationally efficient approximation scheme
for large-scale multi-dimensional appearance models. By organizing an appearance data set as
a high-order tensor, both CTA and K-CTA allow a compact representation for meso-structures
and efficient run-time reconstruction on GPUs with just a few low-order factors and reduced
multi-dimensional core tensors. Second, by using the proposed multivariate SRBF representa-
tion, we show that BTFs can be accurately approximated and efficiently rendered on GPUs. A
hierarchical fitting algorithm is developed to exploit the spatial coherence in BTFs and reduce
the computational costs of non-linear optimization.

Radiance Transfer

Rendering global illumination effects is one of the most computationally expensive problems
in computer graphics. The light transport is a highly coupled effect of scene geometry, lighting
environments, and object materials, such that its real-time simulation is difficult to achieve.
Our experimental results demonstrate that based on precomputed radiance transfer (PRT) [125,
161, 162] and bi-scale radiance transfer (BRT) [163], real-time global illumination effects for a
static scene in dynamic lighting environments can be easily realized by combining the univariate
SRBF representation and CTA (or K-CTA). Furthermore, all-frequency signals in the rendered
images, such as sharp shadow boundaries and specular reflections, also can be well-preserved
with high compression ratios.

1.4 Contributions

In brief, this dissertation makes the following contributions to data representations and approx-
imation algorithms for real-time data-driven rendering:

Data Representations

• A compact parametric representation for univariate spherical functions based on a linear
combination of non-uniformly distributed univariate SRBFs is proposed. It particularly
allows efficient spherical integrals and reconstruction on GPUs.

• A novel parametric representation based on a linear combination of multivariate SRBFs is
introduced to efficiently model multivariate spherical functions that result from complex
effects of various physical factors.

5

• An parameter transformation method based on parametric models is presented to auto-
matically derive the optimal parameterization functions from a given visual data set. It
can seamlessly cooperate with the proposed multivariate SRBF representation to improve
approximation efficiency for multivariate spherical functions.

• The proposed univariate and multivariate SRBF representations as well as optimized pa-
rameterization are hardware-friendly and easy-to-implement on modern GPUs. Since
they are all continuous functions, no additional interpolation or filtering techniques are
required for smooth run-time rendering.

Approximation Algorithms

• A new algorithm for analyzing large-scale multi-dimensional visual data sets, namely
CTA, is proposed. It iteratively re-classifies the input tensor into disjoint regions, so that
the member data within each cluster can be more efficiently decomposed using traditional
tensor approximation.

• A novel multi-linear model, which is called K-CTA, is introduced to permit accurate and
compact approximation of large-scale multi-dimensional visual data sets. K-CTA not
only extends CTA to exploit intra- and inter-cluster coherence at the same time, but also
provides a sparse multi-linear representation in which the sparsity is totally under user
control.

• Both CTA and K-CTA are efficient and GPU-friendly for run-time reconstruction. They
can be further combined with other data representations and approximation algorithms to
derive a more powerful model for real-time data-driven rendering.

Applications

• Novel approaches for modeling illumination and reflectance functions, including HDR
environment maps and BRDFs, with non-uniform univariate or multivariate SRBFs are
demonstrated. Although they are based on time-consuming non-linear optimization,
GPUs can be employed to reduce the processing time from hours to minutes.

• The proposed univariate SRBF representation for reflectance functions is also promising
for the importance sampling of direct illumination in ray tracing. By exploiting the rota-
tional invariance of the univariate SRBF representation, the distribution of a BRDF can
be efficiently analyzed to determine sampling directions for Monte Carlo integration.

• A new spatially-varying appearance model, namely the VOTF, is introduced to enable per-
pixel rendering of view-dependent occlusions without actually modifying the geometric
shape of objects at the meso-scale.

6

• A multi-linear framework for compressing spatially-varying appearance materials, such
as BTFs and VOTFs, by using CTA or K-CTA is presented. It can be easily integrated into
other data representations and approximation algorithms for efficient run-time rendering.

• A view-dependent signed-distance representation for VOTFs is introduced to preserve
sharp features at the meso-scale even after approximation using multi-linear models.

• An extended texture synthesis method, based on the decomposed results of CTA or K-
CTA, is demonstrated to account for the synthesis of view-dependent meso-structures
over arbitrary surfaces.

• A hierarchical fitting algorithm for BTFs based on multivariate SRBFs and optimized
parameterization is proposed to exploit the spatial coherence in visual data sets. It sig-
nificantly accelerates the approximation process and is particularly suitable for multi-
resolution data analysis and practical rendering applications owing to the inherent mipmap
pyramid construction.

• A novel all-frequency PRT framework based on univariate SRBFs and CTA (or K-CTA) is
introduced. It permits a compact data representation and real-time rendering of complex
objects with global illumination effects in high-frequency lighting environments. The
PRT application especially demonstrates the flexibility and potential of univariate SRBFs
and CTA (or K-CTA). Since they do not conflict with each other, their combination is
possible to provide a more powerful analysis tool for visual data sets.

• An all-frequency BRT algorithm is proposed to allow real-time rendering of objects with
spatially-varying surface appearance and various global illumination effects on GPUs.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 reviews the literature on
data representations, dimensionality reduction, and data-driven rendering in computer graphics
and vision. Next, Chapters 3 and 4 introduce two parametric data representations, univariate
and multivariate spherical radial basis functions, to model spherical radiance and illumination
information. Chapter 4 also describes the main concept of optimized parameterization that
can be applied to improve approximation efficiency for modeling multivariate functions on
the unit hyper-sphere. Chapters 5 and 6 then develop two novel dimensionality reduction
algorithms, namely clustered tensor approximation and K-clustered tensor approximation, to
compress large-scale multi-dimensional visual data sets.

In addition, applications and experimental results of the proposed methods are demonstrated
in Chapters 7–9. We choose various representative applications and visual data sets in com-
puter graphics and vision, including high dynamic range environment maps (Section 7.1), bidi-

7

rectional reflectance distribution functions (Section 7.2), importance sampling of direct illumi-
nation in ray tracing (Section 7.3), bidirectional texture functions (Section 8.1), view-dependent
occlusion texture functions (Section 8.2), precomputed radiance transfer (Section 9.1), and bi-
scale radiance transfer (Section 9.2). Finally, Chapter 10 discusses the conclusions of this
dissertation and sheds lights on future research directions.

8

Chapter 2

Literature Review

2.1 Data Representations

The data representation is a fundamental element of algorithms which can not be simply ignored
or depreciated. It significantly affects the way in which we handle problems. Since various rep-
resentations have entirely different advantages and disadvantages, there is no general solution to
all problems. To derive a satisfactory representation, we need to analyze and exploit the special
attributes of the given problem. The following three sections thus briefly review contemporary
functional models (Section 2.1.1), spherical radial basis functions (Section 2.1.2), and param-
eterization methods (Section 2.1.3) that have been widely adopted for data representations in
computer graphics and vision.

2.1.1 Functional Models

Scientists frequently rely on finite representation sets to establish an effective basis for further
data analysis or processing. In computer graphics and vision, common forms of the finite sets
may include:

• Primitive elements: Points, piecewise elements, solid primitives, and so forth.

• Parametric splines: Parametric curves, surfaces, volumes, and so forth.

• Topological structures: Meshes, graphs, hierarchical structures, and so forth.

• Functional models: Harmonic functions, wavelets, radial basis functions, and so forth.

Functional models have recently received great attention due to their efficiency and flex-
ibility. In this category, data sets are analyzed and transformed into the space spanned by a
finite set of basis functions. The combination of these functions thus ’implicitly’ describes or
approximates the raw data. Since this function set is often compact and sparse, the computa-
tional complexity of data analysis can be greatly reduced. Furthermore, the flexible ability of

9

handling different problems with appropriate functions is also an appealing property. Applica-
tions of functional models in computer graphics and vision include image-based modeling and
rendering [113, 119, 203, 213, 214], point-based graphics [122, 134, 136, 152], photo-realistic
illumination computation [22, 49, 50, 125, 162], multi-resolution techniques [39, 106, 168], and
to name a few.

Harmonic functions are important in physics, applied mathematics, and engineering com-
munities. In computer graphics and vision, one major harmonic function, spherical harmonics,
has been employed to represent illumination and reflectance functions for efficient rendering,
for example, scattering functions [74], reflectance distributions [143, 145, 146, 160, 201], and
environment maps [144, 145]. Light transport data sets have also been modeled with spherical
harmonics to render self-shadowing, self-inter-reflection, subsurface scattering, and caustics
effects [99, 161, 162]. Similar to Fourier series, spherical harmonics form a complete set of
orthonormal basis functions on the unit sphere, so that a square-integrable univariate spherical
function can be decomposed as a linear combination of the spherical harmonic basis. In ad-
dition to spherical harmonics, Ren et al. [149] and Sloan et al. [164] further employed zonal

harmonics, which are special cases of spherical harmonics, to account for the radiance transfer
observations of dynamic scenes and deformable objects.

Wavelets possess the characteristics of multi-resolution decompositions and hierarchical
structures to provide an adaptive basis for data analysis. Although originated in applied mathe-
matics and signal processing, wavelets have a great impact on several topics of computer graph-
ics and vision [168], including image processing [12, 66], geometric modeling [39, 43, 106],
global illumination [48], and so forth. As data-driven rendering becomes prevalent, wavelets
have been applied to derive a compact representation for precomputed radiance transfer [125,
126, 170, 195, 196] and measured reflectance data sets [22, 87, 113].

Radial basis functions (RBFs) are also among the most popular basis functions for data
representations except harmonic functions and wavelets. A RBF is a kernel function that de-
pends on the ’distance’ with respect to its center. The simplicity and powerful capability of
RBFs have led to many applications in computer graphics and vision, such as geometric mod-
eling [17, 38, 182], point-based rendering [136, 152, 215], point-based animation [122, 134],
and so forth. For data-driven rendering, spatially-varying reflectance functions [213, 214] and
view-dependent light transport [49, 50] have also been approximated with RBFs.

In this dissertation, we seek to develop an appropriate data representation for modeling ra-
diance and illumination functions. Since radiance data are highly related to directions on the
unit hyper-sphere, it would be better to preserve their intrinsic nature in the spherical domain.
Additionally, this representation should be compact, rotation-invariant, and efficient in comput-
ing the spherical integral of the rendering equation [73]. In contrast to previous approaches, we
introduce univariate and multivariate SRBFs that satisfy the desired objectives.

10

2.1.2 Spherical Radial Basis Functions

Spherical radial basis functions (also called spherical basis functions in [123]) are special RBFs
defined on the unit hyper-sphere. Their intrinsic nature in the spherical domain and other ap-
pealing properties, such as rotational invariance and positive definiteness, make them appropri-
ate for modeling spherical functions without introducing any artificial boundaries or distortions.
When combined with multi-resolution approaches, such as spherical wavelets [44, 123], SRBFs
become a powerful mathematical tool for analyzing scattered data on the unit hyper-sphere, in-
cluding information measured by satellites [41] and observed stations on the entire globe [129].

In fact, computer graphics and vision researchers are not unfamiliar with SRBFs. The gen-
eralized cosine lobe [86] and the isotropic Gaussian kernel of Ward model [198] are two special
cases of SRBFs. In both articles, SRBFs were utilized to model bidirectional reflectance distri-

bution functions (BRDFs), and usually lead to a compact, expressive, and physically plausible
representation for reflectance functions. Green et al. [49, 50] also employed spherical Gaus-
sian functions, which can be viewed as a variant of SRBFs, to model all-frequency glossy and
mirroring effects with self-occlusions.

In this dissertation, we apply traditional SRBFs, which are referred to as univariate SRBFs,
to model radiance and illumination functions, and propose a novel category of SRBFs, namely
multivariate SRBFs, to overcome the major drawbacks of univariate SRBFs. We also present
practical fitting algorithms based on non-linear optimization to estimate the parameters of uni-
variate/multivariate SRBF representations. Besides, it is worth noted that a special form of
univariate SRBFs is highly related to the well-known von Mises-Fisher distribution [112] in
statistics and various computer science applications, including document clustering [6], orien-
tation distribution approximation [55, 117], and illumination estimation [56]. We will discuss
this relation in more details in Section 3.2.3.

2.1.3 Parameterization

For data representations, identifying or deciding the parameters of a model, which is often
called parameterization, is an essential pre-process. The identified parameters may be of par-
ticular interests for a specific application, or define a proper coordinate system for the given
observations. An intuitive parameterization approach is to employ the same coordinate system
during data acquisition, where each parameter corresponds to a single acquisition condition.
Nevertheless, there are two problems with this approach. First, we may not be able to identify
and control all the conditions that influence the measured data. Second, even all of them are
controllable during acquisition, they may not form an effective coordinate system for the obser-
vations. A common solution to the above issues is to transform the acquisition conditions into
another set of more powerful parameters. The overall effect thus is equivalent to representing
the observations with a suitable coordinate system.

In computer graphics and vision, half-way [151] and reflected vector [145] parameteriza-

11

tions for BRDFs have been shown to be effective in modeling highly specular materials. Stark
et al. [167] also proposed several physically-interpretable methods for isotropic BRDFs based
on coordinate systems with triangular supports. In recent years, various heuristic parameteri-
zations have been applied to approximate spatially-varying surface appearance [90, 213, 214]
and radiance transfer functions [49], further demonstrating the promising potentials of parame-
terization. In general, parameterization is beneficial to reduce the dimensionality of reflectance
functions, which leads to a compact and low-dimensional representation for surface appear-
ance. It also greatly increases data coherence that can be subsequently exploited by different
approximation algorithms.

Nevertheless, previous parameterization approaches are limited to fixed or heuristic trans-
formation functions. Without intensive experiments, it is difficult to predict which parameter
transformation performs the best for the given data sets. By contrast, we propose to learn the
optimal parameterization functions from data, within restricted functional forms, by introducing
additional parameters in the proposed multivariate SRBF representation. The resulting model
thus successfully combines parameterization and multivariate SRBF approximation in a uni-
fied framework to fill the gap between these two problems that have been solved separately in
conventional data representations.

2.2 Dimensionality Reduction

The high-dimensional ’curse’ has driven the advances of dimensionality reduction techniques
for a long time. Scientists generally assume that low-dimensional manifolds are embedded in
their high-dimensional observations, and could be estimated by linear or non-linear transfor-
mations. The result of this estimation should preserve the structures of the embedded low-
dimensional manifolds, and therefore implies an appropriate approximation (or representation)
of the high-dimensional observations. In the following sections, we briefly review three cate-
gories of dimensionality reduction algorithms: linear (Section 2.2.1), non-linear (Section 2.2.2),
as well as multi-linear (Section 2.2.3) models, and summarize their applications in computer
graphics and vision.

2.2.1 Linear Models

Dimensionality reduction algorithms have been widely adopted to analyze and compress var-
ious types of data sets. Perhaps the most popular approach is principal component analysis

(PCA) [72], which is a linear model and often computed using singular value decomposition

(SVD). In PCA, data samples are transformed from a high-dimensional space into another
low-dimensional sub-space spanned by only a few principal components (PCs). The origi-
nal samples thus can be approximated by projecting them onto these PCs. Variants of PCA
have also been proposed to incorporate special considerations in practical applications, includ-

12

ing non-negative matrix factorization [93, 94, 132] and non-negative sparse PCA [63, 210].
Nevertheless, a major drawback of PCA, together with its variants, is that observations must
be re-arranged into a standard two-mode matrix before analysis. In real cases, data are fre-
quently sampled under different conditions, and can be naturally classified into more than two
modes. The original structures and important information of data sets may be lost after the
re-arrangement.

In addition to traditional PCA, some linear models, such as probabilistic PCA [174, 175]
and Bayesian PCA [13], derive PCs and projection coefficients in the linear sub-space of ob-
servations from a probabilistic standpoint. These linear models thus can be made more toler-
ant to noise and outliers than conventional PCA, and easily integrated with other probabilistic
methods, for example, the mixture of Gaussians [13, 174]. There are also other popular linear
models, for instance, factor analysis [8], classical multi-dimensional scaling [26], independent
component analysis [64], and to name a few. Comprehensive surveys of linear dimensionality
reduction algorithms can be found in [7] and references therein.

In general, linear models are computationally efficient and easy to implement, but they are
inadequate to analyze data sets with non-linear structures. Due to the discrepancy between the
model assumption and the intrinsic non-linear nature of some real-world data sets, we may ob-
tain fallacious results from linear analysis. In computer graphics and vision, applications of lin-
ear models include lighting information approximation [20, 67, 99, 113, 114], spatially-varying
appearance models [153, 194], texture synthesis [96, 97], and motion tracking or estimation
[104, 127].

2.2.2 Non-Linear Models

Apart from linear models, numerous dimensionality reduction algorithms have been proposed
to explore the non-linear correlations among data. Although the structures of real-world ob-
servations are complicated and globally non-linear, local PCA [75] assumed that local corre-
lations are approximately linear, so that the observations could be ’locally’ transformed into
low-dimensional linear sub-spaces without a significant loss of information. Locally linear
embedding [150, 154] and Laplacian eigenmaps [9] aimed at preserving the local geometry
of the embedded manifolds by transforming nearby data samples to nearby points in the low-
dimensional sub-space. Isomap [173] instead attempted to preserve both local and global struc-
tures of the embedded manifolds, in terms of geodesic distance, when transforming the ob-
servations into the low-dimensional sub-space. Moreover, kernel PCA [155] took higher-order
statistics among data samples into account by performing PCA in the reproducing kernel Hilbert
space. If a proper set of kernel functions is employed, the non-linear structures of the embedded
manifolds in the original space may be mapped into linear structures in the reproducing kernel
Hilbert space. Generalized PCA [188] further extended this concept by estimating an unknown
number of sub-spaces from the observations, where the identified sub-spaces could be modeled

13

with a set of homogeneous polynomials whose degree is the number of subspaces. It thus over-
comes one of the major drawbacks of kernel PCA in which learning appropriate kernels is still
an open problem.

There are also other non-linear models, for example, auto-associative neural networks [82],
generative topographic mapping [14], self-organizing maps [80], permuted PCA [68], Gaussian
process latent variable model [92], and to name a few. Their detailed descriptions and com-
parisons are beyond the scope of this dissertation. Interested readers may refer to [95] for a
comprehensive review of non-linear dimensionality reduction algorithms.

Although non-linear models allow complex analysis on observations, not all of them are
generative. Data reconstruction may not be possible from the derived results. This frequently
prevents some of them from practical applications in data-driven rendering. Additionally, non-
linear models are computationally more expensive than linear models, and sometimes may be
intractable for large-scale data sets. Despite these disadvantages, applications of non-linear
models are still prevalent in computer graphics and vision, for instance, precomputed radiance
transfer [161], texture synthesis [97], and material modeling [113, 114, 193].

2.2.3 Multi-Linear Models

In recent years, multi-linear models (also called tensor approximation or multi-way analysis)
[33, 165] have become widespread and caught a lot of attention. They can be regarded as a
generalization of PCA, where data samples are processed in their intrinsic form as a multi-
dimensional array, and separate reduction is allowed along each dimension. Unlike linear and
non-linear models, tensor approximation relies on decomposing a high-dimensional space into
multiple low-dimensional sub-spaces that are respectively associated to each mode of observa-
tions to remove the curse of dimensionality. The extracted low-order factors in each sub-space
then can be combined to effectively model the original high-dimensional space. In this way,
multi-linear models successfully preserve the intrinsic structures and important information of
observations, and thus overwhelm one of the main disadvantages of previous dimensionality
reduction techniques. Two primary categories of traditional multi-linear models are Tucker
models [180, 181] and parallel factor analysis [57] (or canonical decomposition [18]). Both
of them play important roles in chemometrics and psychometrics, and have recently become
prevalent in signal processing [78] and computer science [1].

In computer graphics and vision, multi-linear models have also been successfully extended
[159, 204, 205, 207] and applied to various applications, such as data-driven rendering [171,
185, 192], human facial processing [183, 184, 189, 190, 191], and image analysis [59, 60]. Even
some matrix factorization methods [90, 124, 172, 208, 209] are implicitly related to multi-linear
models. Vasilescu and Terzopoulos [185] organized a bidirectional texture function as a high-
order tensor and applied tensor approximation to decompose it. Wang et al. [192] introduced an
out-of-core and block-wise tensor approximation technique based on N -mode SVD [33]. Xu et

14

al. [205] instead focused on the least-squares reconstruction, from the same sub-spaces, for a set
of objects represented as high-order tensors. Shashua and Hazan [159] extended non-negative
matrix factorization to derive positive and sparse factors from a general multi-dimensional array.
Sun et al. [171] proposed a tensor representation to model the light transport of inter-reflections
for dynamic BRDFs. Yan et al. [207] suggested re-arranging each element of a tensor so that
data coherence is maximized for tensor-based subspace learning. Furthermore, Wu et al. [204]
presented a hierarchical tensor decomposition model to expose the multi-scale structures among
multi-dimensional visual data sets. This thus successfully incorporated multi-resolution analy-
sis with existing framework of tensor approximation.

Although multi-linear models allow higher compression ratios than PCA, directly employ-
ing them to data-driven rendering would be inadequate for real-time applications. Even after
applying N -mode SVD [33] to derive an optimal approximation of the input tensor, the amount
of compressed data is still cumbersome. It is also difficult to achieve real-time performance
for run-time rendering or analysis in computer graphics and vision applications. In this dis-
sertation, we therefore propose two novel multi-linear models, clustered tensor approximation
and K-clustered tensor approximation, to solve these problems. The proposed methods rely on
combining the merits of clustering and tensor approximation to form new mathematical tools
for data analysis, and can be regarded as integrating the concept of some non-linear models into
multi-linear models.

2.3 Data-Driven Rendering

Rendering from data has a long history in computer graphics and vision. Maybe the most well-
known method is texture mapping. Recently, data-driven rendering approaches have enhanced
and glorified this concept to synthesize photo-realistic images from large-scale measured or
precomputed visual data sets. In this way, the output quality and rendering performance of
data-driven rendering are independent of scene complexity, but depend on the acquisition, en-
coding, and decoding schemes of the pre-sampled data. Numerous variants and extensions
of data-driven rendering have been proposed over the last decade. The light fields [101] and
the lumigraphs [47] employed densely-sampled images to render novel views from arbitrary
camera positions without additional information. Shade et al. [158] proposed to synthesize the
requested view from a layered depth image set that stores depth information of a scene. Dana et
al. [28] proposed bidirectional texture functions (BTFs) that combine BRDFs and texture maps
to account for the illumination- and view-dependent variations in texels. The progress of sensor
technologies has also stimulated the development of many data-driven rendering techniques,
such as material modeling [21, 113, 114, 135], time-varying appearance [51, 58, 169, 193], and
so forth.

Two primary challenges of data-driven rendering are the accurate measurement of natural
phenomena and the efficient manipulation of observations. Nowadays, the acquisition, repre-

15

sentation, and compression of visual data sets for complicated phenomena become even more
difficult to be handled. The purpose of this dissertation is to overcome the latter challenge of
data-driven rendering by applying effective data representations and powerful approximation
algorithms to measured observations. Although there are numerous related articles, we only
briefly review spatially-varying appearance models (Section 2.3.1) and radiance transfer (Sec-
tion 2.3.2) techniques that are directly related to this dissertation.

2.3.1 Spatially-Varying Appearance Models

Appearance Models

For detailed surface appearance, BTFs [28] extended texture maps and BRDFs to describe
spatially-varying local reflectance distributions owing to micro-geometry that may need mil-
lions of polygons to model. Thus, a BTF is a six-dimensional function that can be regarded as
a two-dimensional texture in which each texel records the exitant radiance of different view di-
rections with respect to incident illumination variations1. Koudelka et al. [81] and Sattler et al.
[153] also discussed the acquisition, compression, and rendering issues of BTFs and made their
measured BTF databases publicly available. Although BTFs effectively model complex meso-
scale reflectance behaviors with multiple images, they are still restricted to local illumination
responses.

Apart from BTFs, various appearance models have also been developed to render shadows
and complex illumination effects from precomputed meso-scale data or special fields, such as
visibility information [30, 61], view-dependent displacement mapping [194, 197], shell texture
functions [21], and relief mapping [130, 138, 139]. However, even if these methods permit effi-
cient representations for complicated surface appearance and meso-structures, inter-reflections
can not be rendered at real-time rates.

Approximation Algorithms

For the approximation of appearance models, we summarize three main categories of algo-
rithms: functional linear models, non-parametric models, and probabilistic models.

Functional linear models are of the most popular representations for data-driven rendering.
Their main concept is to approximate a complex appearance function as a linear combination
of simple basis functions. In this category, the choice of an appropriate basis is one of the
major research issues, which significantly influences approximation efficiency and quality. Pre-
vious articles have proposed to model various appearance functions using parametric kernels
[46, 86, 115, 198], polynomials [111, 118], radial basis functions [213, 214], spherical har-
monics [145, 163], and wavelets [107, 156]. For all-frequency appearance data sets, parametric
kernels and radial basis functions generally provide the best trade-off between rendering per-

1For a single texel, the actual intersection point on meso-structures may be different from each view direction.

16

formance and image quality. Nevertheless, they usually rely on time-consuming non-linear
optimization to derive model parameters, and thus are impractical for approximating spatially-
varying materials.

Non-parametric models can be regarded as functional models that do not have pre-defined
forms of basis functions. In this category, an appropriate basis is learnt from appearance data
sets, rather than the prior information specified by researchers. The most popular approaches
in computer graphics and vision include clustering and dimensionality reduction techniques,
such as variants of principal component analysis [27, 77, 81, 121, 153], matrix factorization
[89, 90, 116, 135, 172], tensor approximation [185, 192], and vector quantization [42, 100].
Although non-parametric models are entirely data-dependent methods that provide accurate and
flexible representations for appearance functions, the amount of compressed data and run-time
rendering costs are still high when compared to other categories of approximation algorithms.
Additionally, special interpolation or estimation techniques are frequently required to synthesize
surface appearance from novel illumination and view directions.

In probabilistic models, spatial correlations in appearance data are described with probabil-
ity density functions, so that similar materials can be synthesized from the estimated parameters
of distributions and noise maps [52, 54]. Recently, Haindl and Filip [53] proposed a multi-scale
probabilistic BTF model based on the casual autoregressive random field, and further com-
bined range maps to enhance the surface roughness of rendered objects. Although probabilistic
models can achieve very high compression ratios, their main goal is efficient and seamless ap-
pearance synthesis, not an optimal reconstruction of the original appearance data. Additionally,
the run-time rendering process is rather slow and currently not GPU-friendly.

2.3.2 Radiance Transfer

Precomputed Radiance Transfer

Recently, precomputed radiance transfer (PRT) has received a growing interest owing to its
ability of rendering complex illumination and shadowing effects, such as self-inter-reflections,
sub-surface scattering, caustics, and self-shadows, in dynamic lighting environments at real-
time rates. The key concept is to precompute and model light scattering between an object
and its surroundings by representing both incident radiance and light transport functions in the
spherical harmonic basis. Thus, run-time rendering of exitant radiance can be reduced to a
simple dot product for a diffuse object, or a matrix-vector multiplication for a glossy one. Since
the spherical harmonic basis is inadequate to approximate high-frequency signals, PRT methods
based on spherical harmonics are also called low-frequency PRT [99, 161, 162].

Beyond low-frequency radiance transfer, the all-frequency PRT methods [105, 125, 126,
195, 196] pre-sampled high-resolution light transport data to accurately capture hard and soft
shadows in all-frequency lighting environments. The densely-sampled PRT data were then com-
pressed using sophisticated compression techniques, for instance, non-linear wavelet approxi-

17

mation [125, 126, 195, 196] and matrix factorization [105, 195, 196]. Green et al. [50] further
introduced a hybrid PRT method for static scenes. While view-independent effects, including
direct and indirect diffuse terms, were modeled with spherical harmonics or wavelets, high-
frequency view-dependent signals, such as direct and indirect glossy terms, were approximated
with Gaussian functions using non-linear optimization. The success of PRT has stimulated the
development of sophisticated approximation algorithms for large-scale light transport data sets
[49, 108, 109, 206] and practical graphics applications such as editing systems [10, 11, 171].
Interested readers may refer to [98] for a comprehensive survey of recent progress of PRT.

Apart from static scenes and distant illumination, PRT has been extended to deformable ob-
jects [67, 149, 164], dynamic scenes [76, 149, 170, 211], and local lights [85, 149, 211]. Sloan
et al. [164] adopted rotation-invariant zonal harmonics to model radiance transfer functions us-
ing non-linear optimization, so that rotating the transfer functions becomes simple and trivial.
Although the zonal harmonic basis may yield a more compact representation than spherical
harmonics, it is still restricted to low-frequency signals and lighting environments. Moreover,
Kristensen et al. [85] introduced unstructured light clouds by precomputing radiance transfer
functions with respect to densely-sampled local lights and then clustering the results based on
heuristic metrics. Zhou et al. [211] also presented a shadowing approach, namely precomputed
shadow fields, for dynamic scenes and local lights. The shadow field was built from concentric
shells that surround a light source or an object. At run-time, the shadow fields of scene entities
were combined to obtain incident radiance distributions for rendering.

In this dissertation, we focus on static PRT since previous representations and approxima-
tion algorithms may be inadequate for harnessing the power of PRT. Available methods either
only handle low-frequency information, or suffer from unwieldy amount of data even after com-
pression. For dynamic scenes, the amount of PRT data sets further expands to an impractical
degree for real-time applications. The enormous data sets often prohibit high-quality rendering,
and subsequently restrict the practical use of PRT. Therefore, we employ the proposed univari-
ate SRBFs and tensor approximation algorithms to permit real-time performance and compact
storage space for view-dependent all-frequency PRT in a unified framework. Extending the
proposed PRT approach to cope with dynamic scenes remains as the future work.

Bi-Scale Radiance Transfer

While most PRT algorithms tackled spatially-uniform surface appearance, bi-scale radiance

transfer (BRT) [163] effectively extended PRT with spatially-varying materials in low-frequency
lighting environments. By generalizing light transport into macro- and meso-scale radiance
transfer, BRT effectively combined coarsely-sampled global illumination data with detailed
surface appearance. Thus, different sampling rate, precomputation technique, and data repre-
sentation can be utilized at each scale to efficiently approximate the full global illumination
solution.

Based on the same concept, radiance transfer volume [197] and shell radiance texture func-

18

tions [166] were proposed to respectively model the meso-scale radiance transfer with gener-
alized displacement maps [197] and shell texture functions [21]. In this way, rendered image
quality can be greatly improved, while considerably reducing precomputation costs. Neverthe-
less, previous articles on BRT are restricted to low-frequency light transport since the spherical
harmonic basis is employed to approximate the precomputed data. Thus, hard self-shadows
and specular highlights at both scales due to the geometric details of meso-structures can not
be accurately rendered. By contrast, we focus on the issue of combining all-frequency radiance
transfer data at both scales, and propose an all-frequency BRT framework based on the pro-
posed univariate SRBFs and tensor approximation algorithms to achieve real-time rendering on
GPUs.

19

Chapter 3

Univariate Spherical Radial Basis
Functions

In computer graphics and vision, previous functional models for radiance functions seem to be
insufficient for solving related problems. Based on harmonic functions, it may take tens of thou-
sands of terms to represent regional illumination and shadowing effects. As for wavelet-based
methods, there is usually no analytic solution for efficient rotation of wavelet coefficients of a
univariate spherical function. In this chapter, we therefore introduce a functional representation,
namely univariate spherical radial basis functions1 (SRBFs), to overcome the above-mentioned
issues.

This chapter is a more detailed version of Section 4.1 and Appendix A in our published
paper [179]. Unlike the published paper that only briefly presented the background of univariate
SRBFs, here we additionally discuss many important characteristics of univariate SRBFs, and
describe more implementation details of different univariate SRBF representations.

3.1 Mathematical Formulation

Univariate SRBFs are circularly axis-symmetric functions defined on Sm, where Sm is the unit
hyper-sphere embedded in the (m+1)-dimensional Euclidean space Rm+1. Let ω and ξ denote
two points on Sm, ω · ξ represent the dot product of ω and ξ, and φ ∈ R be the geodesic distance
between ω and ξ, namely φ = arccos(ω · ξ). A univariate SRBF is defined as a function that
depends on φ, and can be expressed in terms of expansions in Legendre polynomials as

G(cosφ) = G(ω · ξ) =
∞∑
n=0

`(G)
n Pn(ω · ξ), (3.1)

1Throughout this dissertation, the univariate SRBF is referred to as the original SRBF that was proposed by
Freeden et al. [44].

20

λ = 2
λ = 4
λ = 16

π0−π
φ (radians)

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

(a) (b) (c)

Figure 3.1: (a) A two-dimensional plot of univariate Gaussian SRBFs with different band-
widths. Three-dimensional plots of (b) a univariate Gaussian SRBF and the results by changing
its (c) coefficient, (d) center, and (e) bandwidth.

where Pn(ω · ξ) ∈ R is the normalized Legendre polynomial of degree n so that Pn(1) = 1, the
Legendre coefficients of G(ω · ξ), namely

{
`

(G)
n ∈ R

}∞
n=0

, satisfy `(G)
n ≥ 0 for each n as well as

∞∑
n=0

`
(G)
n <∞, and ξ is also known as the center of a univariate SRBF.

Two common examples of univariate SRBFs are the univariate Abel-Poisson SRBF kernel
(Equation 3.2) and the univariate Gaussian SRBF kernel (Equation 3.3):

G(Abel)(ω · ξ|λ) =
1− λ2(

1− 2λ(ω · ξ) + λ2
) 3

2

(0 < λ < 1), (3.2)

G(Gau)(ω · ξ|λ) = e−λeλ(ω·ξ), (3.3)

where λ ∈ R denotes the bandwidth parameter that controls the coverage of a univariate SRBF.
By choosing an appropriate value for λ, a univariate SRBF can be adaptive to the spatial varia-
tion of local region. Therefore, univariate SRBFs not only overcome one of the major disadvan-
tages of spherical harmonics, but also possess more degrees of freedom than zonal harmonics.
Different types of univariate SRBFs define distinctive distributions on Sm, and may exhibit
diverse behaviors in various applications. The two-dimensional and three-dimensional plots
of univariate Gaussian SRBFs are illustrated in Figure 3.1, and more examples of univariate
SRBFs can be found in [44].

Similar to RBFs in the Euclidean space, given a set of distinct points Ξ = {ξj ∈ Sm}Jj=1,

21

Figure 3.2: A univariate spherical function in univariate SRBF expansions. From left to right,
top to bottom: the result after incorporating the first univariate SRBF, the second one, and so
forth. Right-most bottom: the final summed result with six univariate SRBFs.

which is called the SRBF center set, and another set of real scalars Λ = {λj ∈ R}Jj=1, which is
named the SRBF bandwidth set, a univariate spherical function F (ω) ∈ R can be approximated
with a linear combination of J univariate SRBFs as

F (ω) ≈ F̂ (ω) =
J∑
j=1

βjG(ω · ξj|λj), (3.4)

where βj ∈ R denotes the basis coefficient of the j-th univariate SRBF. Furthermore, F̂ (ω),
whose dependence on the parameters of univariate SRBFs is omitted for notational simplicity,
specifies the approximate univariate SRBF representation of F (ω). Univariate SRBFs thus be-
have as reproducing kernels for interpolating F (ω) on Sm. An example of a univariate spherical
function in univariate SRBF expansions is illustrated in Figure 3.2.

To learn the parameters in Equation 3.4, we can formulate an unconstrained least-squares
optimization problem as follows:

min
{βj ,ξj ,λj}Jj=1

1

2

∫
Sm

(
F (ω)− F̂ (ω)

)2

dω. (3.5)

In Sections 3.3 and 3.4, we will further discuss this subject and present practical algorithms for
solving Equation 3.5.

22

3.2 Characteristics of Univariate SRBFs

3.2.1 Spherical Singular Integral

Based on the orthogonal property of Legendre polynomials in the interval [−1,+1], the Leg-
endre expansions of a univariate SRBF especially facilitate the convolution of two univariate
SRBFs over Sm, namely the spherical singular integral, by

(G ?m H)(ξg · ξh) =

∫
Sm
G(ω · ξg)H(ω · ξh)dω

=
∞∑
n=0

`(G)
n `(H)

n

Ω(m)

dm,n
Pn(ξg · ξh),

(3.6)

where

Ω(m) =
2π

m+1
2

Γ
(
m+1

2

) (3.7)

is the total surface area of Sm which is related to the gamma function Γ(·) ∈ R, ?m specifies
the spherical singular integral operator over Sm, dm,n ∈ N denotes the dimension of the space
of degree-n spherical harmonics on Sm, and dω is the differential surface element on Sm. For
more details about Equation 3.6, please refer to [45] and [123].

Furthermore, the spherical singular integral of two univariate Abel-Poisson SRBFs remains
another univariate Abel-Poisson SRBF, which is formally given by

(
G(Abel) ?m H

(Abel)
)
(ξg · ξh|λg, λh) =

1− (λgλh)
2(

1− 2(λgλh)(ξg · ξh) + (λgλh)2
) 3

2

. (3.8)

We omit the mathematical proof of Equation 3.8 since it can be easily verified from Equation
3.6 (or from Equations 2.15 and 2.16 in [123]).

Unlike univariate Abel-Poisson SRBFs, the convolution of two univariate Gaussian SRBFs
is more complicated, but can be efficiently evaluated for smallm. We thus introduce the follow-
ing theorem for computing the spherical singular integral of two arbitrary univariate Gaussian
SRBFs:

Theorem 3.1: The spherical singular integral of two arbitrary univariate Gaussian SRBFs,

G(Gau)(ω · ξg|λg) and H(Gau)(ω · ξh|λh), is

(
G(Gau) ?m H

(Gau)
)
(ξg · ξh|λg, λh) = e−(λg+λh)Ω(m)Γ

(m+ 1

2

)
Im−1

2

(
‖r‖2

)(2

‖r‖2

)m−1
2

,

(3.9)

where r = λgξg + λhξh, In(·) denotes the order-n modified Bessel function of the first kind, and

‖·‖2 represents the `2 norm of a vector.

23

Corollary 3.2: For the special case ofm = 2, the spherical singular integral of two arbitrary

univariate Gaussian SRBFs is

(
G(Gau) ?2 H

(Gau)
)
(ξg · ξh|λg, λh) = 4πe−(λg+λh) sinh ‖r‖2

‖r‖2

. (3.10)

For the mathematical proof and details about Theorem 3.1, interested readers may refer to
Section 3.5.1. We omit the proof of Corollary 3.2 since it is easy to verify Equation 3.10 from
Equation 3.9.

3.2.2 Spatial Localization

For a univariate SRBF, we are often interested in how well it localizes on the unit hyper-sphere
Sm. This spatial localization property particularly distinguishes univariate SRBFs from har-
monic functions. For example, since spherical harmonics are global functions on Sm, high-
frequency signals within local regions may need thousands of spherical harmonics to model.
Nevertheless, real-world data sets are frequently heterogeneous fields with a few localized high-
frequency signals. The lack of spatial localization thus is a fatal drawback of harmonic functions
in practical applications.

A primary measure of localization for a univariate SRBF G(ω · ξ|λ) is the variance σG
[44, 123]. Let G′(ω · ξ|λ) be the normalized univariate SRBF of G(ω · ξ|λ) over Sm so that
(G′ ?m G

′)(ξ · ξ|λ, λ) = 1, which is given by

G′(ω · ξ|λ) =
G(ω · ξ|λ)

(G ?m G)(ξ · ξ|λ, λ)
. (3.11)

The variance of G(ω · ξ|λ) is then defined as

σG =

∫
Sm

∥∥ω − τG∥∥2

2

(
G′(ω · ξ|λ)

)2
dω. (3.12)

where

τG =

∫
Sm
ω
(
G′(ω · ξ|λ)

)2
dω. (3.13)

Note that we may interpret
(
G′(ω · ξ|λ)

)2 as a density distribution on Sm, hence τG corresponds
to the center of gravity of G(ω · ξ|λ).

3.2.3 Univariate Gaussian SRBFs and Von Mises-Fisher Distributions

In this section, we identify an interesting connection between the univariate Gaussian SRBF and
the widely-adopted von Mises-Fisher distribution in directional statistics [112], which particu-
larly implies the practical effectiveness of univariate Gaussian SRBFs. This relation is described

24

as the following remark:
Remark 3.3: Let G(V on)(ω · ξ|λ) be the von Mises-Fisher distribution on Sm, which is de-

fined as

G(V on)(ω · ξ|λ) =
λ
m−1

2

(2π)
m+1

2 Im−1
2

(λ)
eλ(ω·ξ) (λ ≥ 0). (3.14)

The relation between the univariate Gaussian SRBF and the von Mises-Fisher distribution is

identified by the following equation:

G(V on)(ω · ξ|λ) =
G(Gau)(ω · ξ|λ)

g(Gau)(λ)
(λ ≥ 0), (3.15)

where

g(Gau)(λ) =

∫
Sm
G(Gau)(ω · ξ|λ)dω

= e−λΩ(m)Γ
(m+ 1

2

)
Im−1

2
(λ)

(
2

λ

)m−1
2

.

(3.16)

Corollary 3.4: The von Mises-Fisher distribution is equivalent to the normalized univariate

Gaussian SRBF with non-negative bandwidth, whose integral over Sm is 1, and gGau(λ) is

known as the normalizing constant of G(Gau)(ω · ξ|λ).

Corollary 3.5: For the special case of m = 2, the normalizing constant of G(Gau)(ω · ξ|λ)

is given by

g(Gau)(λ) = 4πe−λ
sinhλ

λ
. (3.17)

Interested readers may refer to Section 3.5.2 for the mathematical proof of Remark 3.3.
Corollaries 3.4 and 3.5 are direct consequences of Remark 3.3. A significant implication of
Remark 3.3 is that we may regard (or transform) a univariate spherical function as a density
distribution on Sm. Then, various statistical analysis techniques developed for von Mises-Fisher
distributions can be applied to univariate Gaussian SRBFs with only minor modifications. In
Section 3.4.2, we will discuss this subject in more details about how to employ the mixture
model of von Mises-Fisher distributions as a preconditioning process to improve the initial
guess of the proposed univariate SRBF representation.

25

3.3 Uniform Univariate SRBF Representation

3.3.1 Ordinary Least-Squares Projection

In Section 3.1, we described a functional model based on a weighted sum of univariate SRBFs
and formulated a least-squares optimization problem (Equation 3.5) for learning model param-
eters. Nevertheless, searching for an optimal solution to Equation 3.5 requires time-consuming
non-linear optimization, which is usually impractical for large-scale visual data sets or when the
approximation process should be performed at run-time. Rather than learning all the parameters
in Equation 3.4, we propose a uniform variant of the proposed univariate SRBF representation,
where SRBF centers are uniformly distributed on Sm, and bandwidths are either heuristically
determined by users or estimated as a pre-process. In this way, only the basis coefficients need
to be optimized. Equation 3.5 then can be re-formulated as an unconstrained linear least-squares
problem to significantly reduce computational costs, and global optimum is additionally guar-
anteed.

More formally, by taking the first order partial derivative of the objective function in Equa-
tion 3.5 with respect to each basis coefficient and setting the resulting derivatives to zeros, we
have the following set of J linear equations:

J∑
j=1

βj

∫
Sm
G(ω · ξj|λj)G(ω · ξ1|λ1)dω =

∫
Sm
F (ω)G(ω · ξ1|λ1)dω,

...
...

J∑
j=1

βj

∫
Sm
G(ω · ξj|λj)G(ω · ξJ |λJ)dω =

∫
Sm
F (ω)G(ω · ξJ |λJ)dω.

(3.18)

When the center and bandwidth sets are fixed, all the spherical singular integrals in Equation
3.18 become constants. Equation 3.18 then can be rewritten in a matrix form as Ab = gF ,
where

b =
[
β1 · · · βJ

]T
, (3.19)

A =


(G ?m G)(ξ1 · ξ1|λ1, λ1) · · · (G ?m G)(ξJ · ξ1|λJ , λ1)

...
(G ?m G)(ξ1 · ξJ |λ1, λJ) · · · (G ?m G)(ξJ · ξJ |λJ , λJ)

 , (3.20)

gF =

[∫
Sm
F (ω)G(ω · ξ1|λ1)dω · · ·

∫
Sm
F (ω)G(ω · ξJ |λJ)dω

]T
, (3.21)

and A is known as the interpolation matrix. The optimal basis coefficients thus is given by

b = A+gF , (3.22)

26

where the superscript ’+’ specifies the Moore-Penrose pseudo-inverse of a matrix. In addition,
Equation 3.22 is the so-called ordinary least-squares projection [147].

3.3.2 Regularized Least-Squares Projection

It is well-known that sometimes the ordinary least-squares projection is subject to the over-
fitting problem, in which the variations of the derived basis coefficients tend to be unreasonably
large in order to slightly decrease the sum of squared errors. This situation may lead to flickering
artifacts and unsmooth animations in data-driven rendering applications. Instead, the regular-
ized least-squares projection [147] can be applied to solve this problem by adding a penalty
term to Equation 3.5 as follows:

min
{βj ,ξj ,λj}Jj=1

1

2

∫
Sm

(
F (ω)− F̂ (ω)

)2

dω +
1

2

J∑
j=1

µjβ
2
j , (3.23)

where µj is the user-specified weight of the j-th basis coefficients. As a result, the right-most
term of the objective function in Equation 3.23 favors small values for basis coefficients, and
thus reduces their variations. By following the same approach as in the derivation of Equation
3.22, the solution to Equation 3.23, when the center and bandwidth parameters are constant, is

f =
(
A + A′

)+
gF , (3.24)

where A′ ∈ RJ×J is a diagonal matrix whose j-th diagonal entry is µj .

3.4 Scattered Univariate SRBF Representation

3.4.1 Fitting Algorithm

Although a univariate spherical function F (ω) can be approximated by adopting a set of uniform
univariate SRBFs as in Section 3.3, the power of univariate SRBFs over harmonic functions
and wavelets mostly lies in the additional degrees of freedom which come from the center and
bandwidth parameters. We therefore take a step further to obtain a compact set of scattered
univariate SRBFs for approximating F (ω), where the center and bandwidth of each univariate
SRBF are adaptive to F (ω). This implies that all the parameters in Equation 3.5 should be
solved by a non-linear optimization process.

Instead of solving all the three sets of parameters at the same time, we propose an iterative
alternating least-squares algorithm that optimizes only one set of parameters at each step, while
leaving the others unchanged. This scheme often yields better results, since the three sets of
parameters are highly coupled with each other. Algorithm 3.1 summarizes the pseudo-code
of the overall fitting process for our scattered univariate SRBF representation. During each

27

Algorithm 3.1: Fitting algorithm for the scattered univariate SRBF representation.

Procedure: UniSRBFOptimize(F (ω), J, F̃)

Input: A univariate spherical function F (ω) on Sm, the number of univariate SRBFs J ,

and the initial guess F̃ =
{
βj, ξj, λj

}J
j=1

.

Output: The optimized parameters
{
βj, ξj, λj

}J
j=1

in Equation 3.5.

begin
repeat

Update basis coefficient set {βj}Jj=1

Update center set {ξj}Jj=1

Update bandwidth set {λj}Jj=1

until convergence

Update all parameters to obtain a locally optimal solution to Equation 3.5
end

iteration, we apply the L-BFGS-B solver [16, 212] to separately update the three sets of pa-
rameters. In our current implementation, the gradient computation is performed on GPUs using
NVIDIA Compute Unified Device Architecture (CUDA) [128]. The computed results are then
transferred from GPUs to host memory for the L-BFGS-B solver to update model parameters
on CPUs. Since the gradient computation is one of the main performance bottlenecks in the
proposed fitting algorithm, this approach can reduce the computation time by a factor of 2 ∼ 5.
Note that the basis coefficients also can be obtained by using ordinary least-squares projection
(or regularized least-squares projection if Equation 3.23 is considered instead).

A special advantage of our univariate SRBF representation is that an incremental fitting al-
gorithm is straightforward. One can always take the residual function F ′(ω) = F (ω)− F̂ (ω)

as the input univariate spherical function to Algorithm 3.1, and obtain the parameters of addi-
tional univariate SRBFs. Moreover, the above process can be further iteratively performed until
a desired fitting error is reached.

3.4.2 Initial Guess

Overview

Since the approximation results significantly depend on the initial seeds of SRBF parameters,
we propose a heuristic method to automatically determine a reasonable initial guess in the hope
of achieving smaller approximation errors and reducing the computational costs. Experimental
results indicate that this heuristic guess of initial parameters generally works better than taking
a set of uniform univariate SRBFs to initialize the optimization process, and decreases the
computation time by a factor of 2 ∼ 4.

Given a univariate spherical function F (ω), we first estimate the coverage of each direction

28

in a dense set of unit directions Ω = {ωi ∈ Sm}IΩi=1, where IΩ denotes the total number of sam-
pling directions in Ω. A priority queue is then constructed with respect to the derived coverage
of each direction. To prevent the initial SRBF centers from concentrated in local regions, af-
ter selecting a direction ωi as an initial SRBF center, all the directions which locate within the
coverage of ωi are marked so that they will not be chosen in subsequent steps. This process
continues until all the initial SRBF centers are selected. If all directions are marked before all
the SRBF centers are determined, we reduce the coverage of each direction in Ω and the se-
lected centers, update the marks, and re-loop over the priority queue to choose the remaining
centers. Finally, the initial SRBF bandwidths are derived from the coverage of the selected cen-
ters, and the initial basis coefficients are set to the function values of the corresponding selected
centers. If univariate Gaussian SRBFs are employed, a preconditioning process based on the
mixture model of von Mises-Fisher distributions can be additionally performed to update the
initial centers and bandwidths without using non-linear optimization.

Coverage and Bandwidth Estimation

The coverage of a direction ωi is estimated from its resemblance to nearby sampling directions,
and can be computed by a heuristic approach. At first, we loop over the directions ωi′ in Ω, in
the order from the nearest to the farthest direction with respect to ωi, until

∣∣F (ωi)− F (ωi′)
∣∣2

exceeds a user-defined threshold or ωi · ωi′ < 0. These nearby directions, which satisfy the
above criteria, form a cone-shaped region centered on ωi. The coverage of ωi is then defined as
the geodesic distance between ωi and the farthest ωi′ within this cone. Based on the coverage
of each direction, the priority queue is constructed by sorting the coverage-weighted function
value of each sampling direction.

The remaining problem is to compute the initial bandwidth of a univariate SRBF from the
coverage of a selected center. A key observation is that this coverage is indeed related to the
variance of a univariate SRBF (Figure 5.5.1 in [44]). Specifically, let φξ be the derived coverage
of a selected initial SRBF center ξ. We determine the initial bandwidth of a univariate SRBF by
correlating φξ to the variance of the univariate SRBF and solving the following equation:

sinφξ =

∫
Sm

∥∥ω − τG∥∥2

2

(
G(ω · ξ|λ)

)2
dω. (3.25)

For univariate Abel-Poisson SRBFs, Equation 3.25 has an analytic solution. From Equation
4.27 in [123], it is easy to verify that the initial bandwidth is

λ =

√
1− sinφξ
1 + sinφξ

. (3.26)

Nevertheless, a closed-form solution to Equation 3.25 usually does not exist for most univari-
ate SRBFs, for example, univariate Gaussian SRBFs. For these univariate SRBFs, we instead

29

approximate the initial bandwidth by a gradient decent approach.

Preconditioning

Remark 3.3 suggests that the estimation techniques for von Mises-Fisher distributions may be
applicable to the parameter estimation of the univariate Gaussian SRBF representation. Accord-
ing to the experiments, we have found that the von Mises-Fisher clustering algorithm [6, 55],
or the mixture model of von Mises-Fisher distributions, indeed improves the initial guess of
centers and bandwidths of univariate Gaussian SRBFs. However, there are two principal is-
sues that should be noted. First, the mixture model of von Mises-Fisher distributions aims at
representing a probability distribution on Sm, while the target of the univariate Gaussian SRBF
representation is an arbitrary univariate spherical function on Sm. Second, the relation described
in Remark 3.3 only holds for univariate Gaussian SRBFs with non-negative bandwidths. For
initial guess preconditioning, the second issue can be easily overcome by constraining the initial
bandwidth to be non-negative when solving Equation 3.25, but the von Mises-Fisher clustering
algorithm should be slightly modified to address the first issue.

Specifically, our key concept is to regard the function value of a sampling direction as its
weight. The overall effect thus is equivalent to transforming the univariate spherical function
F (ω) into a discrete probability distribution of sampling directions before applying the cluster-
ing algorithm. Based on this concept, Algorithm 3.2 summarizes the modified soft von Mises-
Fisher clustering algorithm for preconditioning the initial centers and bandwidths of univariate
Gaussian SRBFs. We omit the derivations of Equations in Algorithm 3.2, since it is easy to ver-
ify them by following the same approach as in the appendix of [6]. Note that the main purpose
of Algorithm 3.2 is to improve the initial guess of centers and bandwidths. The initial basis
coefficients are set to the function values of the corresponding SRBF centers at the end of the
preconditioning process.

3.5 Mathematical Proofs

3.5.1 Convolution of Univariate Gaussian SRBFs

Recall that we discussed the convolution of two univariate SRBFs in Section 3.2.1. For the con-
volution of two single-scale univariate Gaussian SRBFs, namely the univariate Gaussian SRBFs
with the same bandwidth, Narcowich and Ward [123] derived an analytic solution. However,
single-scale univariate SRBFs become inadequate to model univariate spherical functions with
scattered SRBFs, whose bandwidths should be adaptive to the given data sets. We thus intro-
duce the spherical singular integral of two multi-scale univariate Gaussian SRBFs, and propose
Theorem 3.1 for efficient computation.

Proof of Theorem 3.1: Suppose that we intend to compute the convolution of two multi-scale

30

Algorithm 3.2: Modified soft von Mises-Fisher clustering algorithm for precondition-
ing. Interested readers may refer to [6] for the original soft von Mises-Fisher clustering
algorithm.

Procedure: UniGaussSRBFPrecondition(F (ω),Ω, J, F̃)

Input: A univariate spherical function F (ω) on Sm, a set of sampling directions

Ω = {ωi ∈ Sm}IΩi=1, the number of univariate SRBFs J , and the initial guess

F̃ =
{
βj, ξj, λj

}J
j=1

.

Output: The preconditioned initial guess
{
βj, ξj, λj

}J
j=1

in Equation 3.5.

begin
for j ← 1 to J do βj ← βjg

(Gau)(λj) (Equation 3.16) // Initialization

repeat
// Expectation step
for i← 1 to IΩ do

for j ← 1 to J do Fj (ωi|ξj, λj)← G(V on)(ωi · ξj|λj)

for j ← 1 to J do Pr(j|ωi, ξj, λj)←
βjFj(ωi|ξj, λj)∑J
k=1 βkFk(ωi|ξk, λk)

end

// Maximization step
for j ← 1 to J do

βj ←
1∑IΩ

i=1 F (ωi)

IΩ∑
i=1

F (ωi) Pr(j|ωi, ξj, λj)

ξj ←
IΩ∑
i=1

ωiF (ωi) Pr(j|ωi, ξj, λj)

r̄j ←
‖ξj‖2∑IΩ

i=1 F (ωi) Pr(j|ωi, ξj, λj)

ξj ←
ξj
‖ξj‖2

λj ←
r̄j(m+ 1)− r̄3

j

1− r̄2
j

end
until convergence

for j ← 1 to J do βj ← F (ξj) // Post-processing

end

univariate Gaussian SRBFs, which corresponds to∫
Sm
G(Gau)(ω · ξg|λg)H(Gau)(ω · ξh|λh)dω = e−(λg+λh)

∫
Sm
eω·(λgξg+λhξh)dω. (3.27)

Since this convolution is rotation-invariant, we can replace r, where r = λgξg + λhξh, with
r′ =

[
‖r‖2 , 0, . . . , 0

]T without losing generality. Rewrite the integral on the right side of Equa-

31

tion 3.27 in terms of spherical coordinates in Rm+1, and substitute r with r′ to obtain∫
Sm
eω·(λgξg+λhξh)dω =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

eω·r
′
(sinφ1)m−1(sinφ2)m−2 · · · sinφm−1dφ1dφ2 · · · dφm

= Ω(m− 1)

∫ π

0

e‖r‖2 cosφ1(sinφ1)m−1dφ1

= Ω(m− 1)

∫ 1

−1

e‖r‖2t
(
1− t2

)m
2
−1
dt (t = cosφ1).

(3.28)

From Equation 3.71(9) in [199], the order-n modified Bessel function of the first kind can be
written in an integral form as

In(x) =

(
1
2
x
)n

Γ
(
n+ 1

2

)
Γ
(

1
2

) ∫ 1

−1

e±xt
(
1− t2

)n− 1
2dt (n > −1

2
). (3.29)

By combining the last line of Equation 3.28 with Equation 3.29 and substituting the result into
Equation 3.27, Equation 3.9 can be derived.

3.5.2 Relation between Univariate Gaussian SRBF and Von Mises-Fisher
Distribution

In Section 3.2.3, we mentioned about the equivalence of the normalized univariate Gaussian
SRBF (with non-negative bandwidth) and the von Mises-Fisher distribution, which serves as a
solid base for the preconditioning process in Section 3.4.2. In the following paragraph, we will
analytically prove this intriguing relation.

Proof of Remark 3.3: Consider transforming a univariate Gaussian SRBFG(Gau)(ω · ξ|λ), with
λ ≥ 0, into a probability distribution function Pr(Gau)(ω · ξ|λ) on Sm as

Pr(Gau)(ω · ξ|λ) =
G(Gau)(ω · ξ|λ)

g(Gau)(λ)
(λ ≥ 0), (3.30)

where the normalizing constant g(Gau)(λ) is obtained by integrating G(Gau)(ω · ξ|λ) over Sm as

g(Gau)(λ) =

∫
Sm
G(Gau)(ω · ξ|λ)dω = e−λ

∫
Sm
eλ(ω·ξ)dω. (3.31)

Since the integral on the right side of Equation 3.31 is similar to the integral on the left side of
Equation 3.28, Equation 3.16 can be derived by substituting r and λg + λh with λ into Equation
3.9. From Equations 3.7 and 3.16, Remark 3.3 is proved by simply comparing Equation 3.30
with the definition of the von Mises-Fisher distribution (Equation 3.14).

32

Chapter 4

Multivariate Spherical Radial Basis
Functions

A compact and efficient representation for large-scale visual data sets remains challenging in
practice. The enormous amount of observations frequently becomes the performance bottleneck
at run-time and prohibits further analysis in computer graphics and vision applications. In
addition to data size, a real-world visual data set is usually a mixed effect of various types of
physical factors. This high-dimensional nature is so complicated that simple analytic models
often fail to describe the multivariate behavior of a data set.

In this chapter, we propose a novel functional representation, namely multivariate spherical

radial basis functions (SRBFs), to solve this issue. The complex behaviors of a visual data
set are described as a linear combination of multivariate SRBFs, while each multivariate SRBF
is constructed from the product of more than one univariate SRBF. As a result, many popular
analytic models and factorization-based approaches would fall within this general weighted

sum-of-products representation.

4.1 Mathematical Formulation

4.1.1 Basic Definitions

In Chapter 3, we introduced a functional model based on univariate SRBFs for a univariate
spherical function F (ω) ∈ R. As shown in Equation 3.4, F (ω) can be approximated in uni-
variate SRBF expansions. Nevertheless, there are two major problems when applying Equation
3.4 to a model multivariate spherical function, such as the bidirectional reflectance distribution

function (BRDF). First, a real-world visual data set may be a heterogenous field that results
from various physical factors. Whether these factors are visible or invisible, the observed data
distribution is frequently a function of at least two different variables, for example, illumina-
tion and view directions for a BRDF. However, Equation 3.4 is a univariate representation that
can only account for a single direction on Sm. This suggests that a multivariate representation

33

may be more favorable to describe the complex behaviors of a multivariate spherical function.
Second, one may suggest that after sampling a multivariate spherical function into multiple
univariate spherical functions under different conditions, Equation 3.4 can be applied to sep-
arately model the resulting univariate functions. For instance, we can respectively consider
the reflectance distribution of each illumination (or view) direction for a BRDF. However, the
outcome is a discrete and often non-compact representation. It is also a non-trivial matter to
generalize this representation to estimate the distributions under novel conditions, such as novel
illumination/view directions.

To represent a multivariate spherical function under different physical conditions, we can
construct a multivariate SRBF from the product of several circularly axis-symmetric univariate
SRBFs. For a complex or heterogenous multivariate spherical function, multiple multivariate
SRBFs can be further linearly mixed to derive a general weighted sum-of-products model. More
formally, we introduce the following definition of a multivariate SRBF:

Definition 4.1: Let Ω = {ωn ∈ Smn}Nn=1 and Ξ = {ξn ∈ Smn}Nn=1 denote two N -element

point sets, with ωn and ξn on the n-th unit hyper-sphere Smn in Rmn+1. We define a multi-

variate SRBF on the Cartesian product space Sm1× Sm2× · · · × SmN as

G
(
Ω|Ξ

)
= G

(
ω1, ω2, . . . , ωN |ξ1, ξ2, . . . , ξN

)
=

N∏
n=1

G(ωn · ξn). (4.1)

The multivariate Abel-Poisson SRBF kernel thus corresponds to

G(Abel)
(
Ω|Ξ,Λ

)
=

N∏
n=1

1− λ2
n(

1− 2λn(ωn · ξn) + λ2
n

) 3
2

(∀n, 0 < λn < 1), (4.2)

and the multivariate Gaussian SRBF kernel is given by

G(Gau)
(
Ω|Ξ,Λ

)
= e

∑N
n=1 (λn(ωn·ξn)−λn), (4.3)

where Λ = {λn ∈ R}Nn=1 is the set of bandwidth parameters of the involved univariate SRBFs,
and Ξ is also known as the SRBF center set. Similar to the univariate SRBF representation, an
N -variate spherical function F (Ω) ∈ R, with the n-th variable ωn defined on Smn , thus can be
approximated based on a weighted sum-of-products representation as

F (Ω) ≈ F̂ (Ω) =
J∑
j=1

βjG
(
Ω|Ξj,Λj

)
=

J∑
j=1

βj

N∏
n=1

G
(
ωn · ξj,n|λj,n

)
, (4.4)

where Ξj = {ξj,n ∈ Smn}Nn=1 and Λj = {λj,n ∈ R}Nn=1 are respectively known as the center set
and the bandwidth set of the j-th multivariate SRBF. Moreover, F̂ (Ω), whose dependence on the
parameters of multivariate SRBFs is omitted for notational simplicity, denotes the approximate
multivariate SRBF representation of F (Ω). As we will present in Section 4.3, Equation 4.4 can

34

be further extended into a more general model when combined with optimized parameterization.

4.1.2 Example

Consider a BRDF ρ(ωl, ωv) ∈ R, where ωl and ωv respectively denote the illumination and view
directions on S2. Based on Equation 4.4, we can approximate ρ(ωl, ωv) as

ρ(ωl, ωv) ≈ ρ̂(ωl, ωv) =
J∑
j=1

β
(ρ)
j G

(
ωl · ξ(ρ)

j,ωl
|λ(ρ)
j,ωl

)
G
(
ωv · ξ(ρ)

j,ωv
|λ(ρ)
j,ωv

)
. (4.5)

where
{
β

(ρ)
j ∈ R

}J
j=1

is the basis coefficient set,
{
ξ

(ρ)
j,ωl
∈ S2

}J
j=1

and
{
λ

(ρ)
j,ωl
∈ R

}J
j=1

respectively

denote the center set and the bandwidth set for illumination variations, and
{
ξ

(ρ)
j,ωv
∈ S2

}J
j=1

as

well as
{
λ

(ρ)
j,ωv
∈ R

}J
j=1

instead specify the center set and the bandwidth set for view variations.
Note that Equation 4.5 is similar to many factorization-based representations for BRDFs,

especially principal component analysis [77] and non-negative matrix factorization [91], but
the proposed multivariate SRBF representation, like other parametric models, is more compact
and intuitive to interpret or edit the derived parameters. This relation to factorization-based
methods also suggests the potential of our multivariate SRBF representation to approximate
various reflectance functions.

4.2 Scattered Multivariate SRBF Representation

4.2.1 Fitting Algorithm

To learn the model parameters in Equation 4.4, an unconstrained least-squares optimization
problem can be formulated as follows:

min
{βj ,Ξj ,Λj}Jj=1

1

2

∫
Sm1

∫
Sm2

· · ·
∫

SmN

(
F (Ω)− F̂ (Ω)

)2

dω1dω2 · · · dωN + Eaddl, (4.6)

where Eaddl denotes the additional energy term that should also be minimized for a robust and
satisfactory solution. Note that since Eaddl may substantially vary in different applications, its
mathematical formulation will not be precisely defined in this dissertation. Eaddl thus is left as
a flexible and application-specific term for readers, and a special case of Eaddl will be discussed
in Section 4.4.

Based on Algorithm 3.1, we propose an iterative alternating least-squares algorithm to solve
Equation 4.6. The key concept is similar to Algorithm 3.1. At a time, we specifically optimize
only one out of three types of parameters: basis coefficients, center sets, or bandwidth sets,
while fixing the other types of parameters. Algorithm 4.1 lists the pseudo-code of the proposed
fitting algorithm for the scattered multivariate SRBF representation. Note that the optimization

35

Algorithm 4.1: Fitting algorithm for the scattered multivariate SRBF representation.

Procedure: MultiSRBFOptimize(F (Ω), J, F̃)

Input: An N -variate spherical function F (Ω) on Sm1× Sm2× · · · × SmN , the number of

multivariate SRBFs J , and the initial guess F̃ =
{
βj,Ξj,Λj

}J
j=1

.

Output: The optimized parameters
{
βj,Ξj,Λj

}J
j=1

in Equation 4.6.

begin
repeat

Update basis coefficient set {βj}Jj=1

Update center sets {Ξj}Jj=1

Update bandwidth sets {Λj}Jj=1

until convergence

Update all parameters to obtain a locally optimal solution to Equation 4.6
end

of centers and bandwidths for the same multivariate SRBF is not decoupled in Algorithm 4.1.
According to the experiments, we found no obvious improvement in approximation errors when
decoupling the estimation of parameters for the same multivariate SRBF, but the computational
costs of this approach would certainly increase. Moreover, a GPU-based implementation and
an incremental variant of Algorithm 4.1 are also feasible by following the same approaches as
described in Section 3.4.1.

4.2.2 Initial Guess

Similar to many iterative algorithms, the initial guess of model parameters in Equation 4.6 plays
an important role in Algorithm 4.1. We thus propose a technique to heuristically determine
an effective initial guess in this section. The proposed approach mainly relies on viewing a
multivariate spherical function as multiple univariate functions, and iteratively addresses one
variable of the multivariate spherical function at a time.

More formally, consider the N -variate spherical function F (Ω) in Equation 4.4 and N sam-
pling sets {Ωn}Nn=1, where Ωn = {ωin,n}

Iωn
in=1 is a set of Iωn sampling directions on Smn . Let

F
(
ωn|
{
ωij ,j

}N
j=1,j 6=n

)
∈ R be a univariate spherical function obtained by fixing the set of vari-

ables Ω \ {ωn} to
{
ωij ,j

}N
j=1,j 6=n for F (Ω), where \ denotes the set difference operator. The

sampled data of F (Ω) can be regarded as Iω1×Iω2× · · ·×Iωn−1×Iωn+1× · · ·×IωN data sets,
where each data set contains the observations of individual univariate spherical function. We
then separately apply the scattered univariate SRBF representation to approximate the obser-
vations of each univariate spherical function, but additionally constrain that the representations
for different data sets should employ the same sets of centers and bandwidths. After carefully
examining the derived parameters, it is obvious that the basis coefficients form the observa-

36

tions of another multivariate spherical function Fn(Ω \ {ωn}) ∈ R without dependence on ωn.
The above process thus can be repeatedly performed to remove a single variable in Ω at each
iteration until all model parameters are obtained.

The pseudo-code of this heuristic method is summarized in Algorithm 4.2. Note that al-
though Algorithm 4.2 removes the variables of F (Ω) in the order from ω1, ω2, . . . , to ωN , one
can always address them in an arbitrary order. It is also feasible to find the optimal order for
small N by a brute-force approach. However, we do not consider this issue in the current im-
plementation. Developing an efficient technique for determining the optimal order is left as a
possible research direction in the future.

4.3 Parameterized Multivariate SRBF Representation

4.3.1 Overview

Previous articles have reported that heuristic parameterizations of a reflectance function, such as
the half-way and difference vectors [151], can make a great impact on the efficiency of approxi-
mation algorithms. Nevertheless, since a pre-defined parameterization method frequently relies
on certain assumptions of data characteristics, it may be inadequate to handle various real-world
visual data sets. For example, the half-way parameterization tends to align the specular peak of
a reflectance function, but the shadowing and masking effects of micro-facets are ignored. This
situation will become even worse for a real-world multivariate visual data set, since it is usually
measured under diverse and complex physical conditions.

To overcome the disadvantages of fixed parameterization, we propose to learn a set of opti-
mized transformation functions for a given visual data set. Since our goal is to obtain a compact
representation, we choose to model the transformation functions using parametric equations.
This particularly allows the parameterization process to be tightly integrated into the proposed
multivariate SRBF representation. Although the derived optimal solution is constrained to a
certain functional form, experimental results show that even a linear mixture of the parameters
of a multivariate reflectance function, followed by projection onto the unit hyper-sphere, can be
more effective than previous heuristic approaches. Finding the truly optimal parameterizations
using non-parametric models thus is left as the future work.

Let ψ(Ω|Θ) ∈ Sm be a transformation function that depends on a given set of parameter-
ization coefficients Θ = {θi ∈ R}IΘi=1, where IΘ denotes the total number of parameterization
coefficients in Θ and is specified by users. We would like to find an optimal solution to Θ so
that a multivariate spherical function F (Ω) can be efficiently approximated by transforming it
into a univariate spherical function F ′

(
ψ(Ω|Θ)

)
∈ R that is more suitable for univariate SRBF

37

Algorithm 4.2: Initial guess for the scattered multivariate SRBF representation.

Procedure: MultiInitial(F (Ω), J, {Ωn}Nn=1)

Input: An N -variate spherical function F (Ω) on Sm1× Sm2× · · · × SmN , the number of

multivariate SRBFs J , and N sets of sampling directions {Ωn}Nn=1.

Output: The initial guess of parameters
{
βj,Ξj,Λj

}J
j=1

in Equation 4.6.

begin
for j ← 1 to J do βj,0(Ω)← F (Ω)

for n← 1 to N do
// Initialization
Ω← Ω \ {ωn}
Initialize {ξj,n, λj,n}Jj=1 with respect to β1,n−1

(
ωn, {ω1,k}Nk=n+1

)
(Section 3.4.2)

for j ← 1 to J do βj,n(Ω)← βj,n−1(ξj,n,Ω)

// Model parameter estimation
repeat

for in ← 1 to Iωn do
for in+1 ← 1 to Iωn+1 do

...

for iN ← 1 to IωN do
for j ← 1 to J do

Update basis coefficients βj,n
(
{ωik,k}

N
k=n+1

)
with respect to

βj,n−1

(
ωn, {ωik,k}

N
k=n+1

)
end

end
end

end
Update center set {ξj,n}Jj=1 with respect to

{
βj,n−1(ωn,Ω)

}J
j=1

Update bandwidth set {λj,n}Jj=1 with respect to
{
βj,n−1(ωn,Ω)

}J
j=1

until convergence

Update all parameters
{
βj,n(Ω), ξj,n, λj,n

}J
j=1

to obtain a locally optimal solution

with respect to
{
βj,n−1(ωn,Ω)

}J
j=1

end
for j ← 1 to J do βj ← βj,N

end

38

expansions:

F (Ω) = F ′
(
ψ(Ω|Θ)

)
≈ F̂ ′

(
ψ(Ω|Θ)

)
=

J∑
j=1

βjG
(
ψ(Ω|Θ) · ξj|λj

)
. (4.7)

From Equation 4.7, it is also intuitive to extend the same concept to transform F (Ω) into an
N ′-variate spherical function F ′(Ψ) ∈ R as

F (Ω) = F ′(Ψ) = F ′
(
ψ1(Ω|Θ1), ψ2(Ω|Θ2), . . . , ψN ′(Ω|ΘN ′)

)
≈ F̂ ′(Ψ) =

J∑
j=1

βj

N ′∏
n=1

G
(
ψn(Ω|Θn) · ξj,n|λj,n

)
, (4.8)

where Ψ =
{
ψn(Ω|Θn) ∈ Smn

}N ′
n=1

is a set of N ′ transformation functions, Θn = {θi,n}IΘni=1

specifies the parameterization coefficient set with IΘn elements for the n-th transformation func-
tion, and F̂ ′(Ψ) denotes the approximate multivariate SRBF representation of F ′(Ψ). Note that
the number of variables of F ′(Ψ), namely N ′, is not necessarily identical to that of F (Ω), but
rather can be specified by users. This flexibility particularly allows our paramerterized mul-
tivariate SRBF representation to accurately model various complex behaviors of a real-world
multivariate spherical function.

In summary, we combine the scattered multivariate SRBF representation and optimized
parameterization to derive a parametric model (Equation 4.8), and obtain its parameters by
solving the following unconstrained least-squares optimization problem:

min
Υ

1

2

∫
Sm1

∫
Sm2

· · ·
∫

SmN

(
F (Ω)− F̂ ′(Ψ)

)2

dω1dω2 · · · dωN + Eaddl, (4.9)

where Υ =
{{
βj,Ξj,Λj

}J
j=1
, {Θn}N

′

n=1

}
, and Eaddl is the additional energy term similar to

Equation 4.6. In Section 4.3.3, we will further present a general algorithm for solving Equation
4.9.

4.3.2 Example

We again take the BRDF ρ(ωl, ωv) for instance. Based on Equation 4.8, Equation 4.5 can be
extended into an N ′-variate SRBF representation as

ρ(ωl, ωv) ≈ ρ̂′
(
Ψ(ρ)

)
=

J∑
j=1

β
(ρ)
j

N ′∏
n=1

G
(
ψ(ρ)
n

(
ωl, ωv|Θ(ρ)

n

)
· ξ(ρ)

j,n |λ
(ρ)
j,n

)
, (4.10)

where Ψ(ρ) =
{
ψ

(ρ)
n

(
ωl, ωv|Θ(ρ)

n

)
∈ S2

}N ′
n=1

is the set of transformation functions for ρ(ωl, ωv),{
β

(ρ)
j ∈ R

}J
j=1

denotes the basis coefficient set, and
{
ξ

(ρ)
j,n ∈ S2

}J
j=1

,
{
λ

(ρ)
j,n∈ R

}J
j=1

, as well as

Θ
(ρ)
n respectively represent the center set, the bandwidth set, and the parameterization coefficient

39

set for the n-th transformed variable. Each transformation function in Equation 4.10 can be
modeled with the normalization of a linear combination of ωl and ωv as follows:

∀n, ψn
(
ωl, ωv|Θ(ρ)

n

)
=

θ
(ρ)
1,nωl + θ

(ρ)
2,nωv∥∥θ(ρ)

1,nωl + θ
(ρ)
2,nωv

∥∥
2

, (4.11)

where θ(ρ)
1,n∈ R and θ(ρ)

2,n∈ R are the parameterization coefficients in Θ
(ρ)
n for the n-th transfor-

mation function.
WhenN ′ = 3 and J = 1, Equation 4.10 is similar to the mathematical formulation of homo-

morphic factorization [116], but the parameterized multivariate SRBF representation allows a
linear combination of multiple multivariate functions to model heterogeneous materials, which
is particularly important for representing spatially-varying reflectance data sets. Moreover,
Equation 4.11 was inspired by the fact that many common parameterizations for reflectance
functions, such as the half-way, illumination, and view vectors, are its special cases. It is also
remarkable that these three heuristic parameterizations were employed in the implementation
of homomorphic factorization, which further implies the practical effectiveness of our methods.

4.3.3 Fitting Algorithm

Algorithm 4.3 presents the pseudo-code of a practical algorithm for solving Equation 4.9. At a
time, we optimize only one out of four types of parameters, including basis coefficients, center
sets, bandwidth sets, and parameterization coefficient sets, while the other types of parameters
are fixed. Similar to Algorithm 4.1, the optimization of different parameterization coefficient
sets is not decoupled for performance issues. Furthermore, it is also straightforward to develop
a GPU-based implementation and an incremental variant of Algorithm 4.3.

As for the initial guess of parameters in Equation 4.9, since parameterization coefficient sets
strongly depend on the functional form of transformation functions, we currently do not have
a common solution to this issue. Nevertheless, previous heuristic parameterizations generally
provide an appropriate starting point if they are special cases of the adopted transformation
functions. Take Equation 4.11 for example, the initial guess of the first three parameterization
coefficient sets can be explicitly set to the half-way, illumination, and view parameterizations,
while the remainders are randomly generated. Once the initial guess of parameterization coef-
ficient sets is determined, that of basis coefficients, center sets, and bandwidth sets then can be
estimated using Algorithm 4.2.

4.4 Hierarchical Fitting Algorithm

A real-world visual data set is usually a heterogeneous field that results from different physical
factors. In addition to directional factors, another common factor is the spatial location of an

40

Algorithm 4.3: Fitting algorithm for the parameterized multivariate SRBF representation.

Procedure: ParamMultiSRBFOptimize(F (Ω), J,Ψ, F̃)

Input: An N -variate spherical function F (Ω) on Sm1× Sm2× · · · × SmN , the number of

multivariate SRBFs J , a set of transformation functions Ψ =
{
ψn(Ω|Θn)

}N ′
n=1

,

and the initial guess F̃ =
{{
βj,Ξj,Λj

}J
j=1
, {Θn}N

′

n=1

}
.

Output: The optimized parameters
{{
βj,Ξj,Λj

}J
j=1
, {Θn}N

′

n=1

}
in Equation 4.9.

begin
repeat

Update basis coefficient set {βj}Jj=1

Update center sets {Ξj}Jj=1

Update bandwidth sets {Λj}Jj=1

Update parameterization coefficient sets {Θn}N
′

n=1

until convergence

Update all parameters to obtain a locally optimal solution to Equation 4.9
end

observation. For example, the bidirectional texture function (BTF) [28] is an appearance data
set that describes spatially-varying and view-dependent illumination effects. Nevertheless, all
of the univariate and multivariate SRBF representations in this dissertation can only address
directional variables of a multivariate function. For a spatially-varying natural phenomenon,
we may need to ignore its spatial correlations, and then separately apply one of the proposed
SRBF representations to model the observations at a single location. When the spatial coher-
ence in the observations is high, this approach seems to be inefficient and may cause serious
problems if spatial interpolation techniques are directly applied to the derived parameters in-
stead of the reconstructed data. To solve the above-mentioned issues, we propose a hierarchical
fitting algorithm for spatially-varying visual data sets to accelerate the approximation process.
It is particularly suitable for multi-scale analysis and data-driven rendering applications due to
the inherent multi-resolution structure of derived parameters.

Specifically, consider a spatially-varying multivariate spherical functionF (Ω,x) ∈ R, where
x =

[
x1, x2, . . . , xm

]T is anm-dimensional spatial location. Let
{
Fi(Ω,x)

}Ih
i=0

denote a hierar-
chical set of Ih spatially-varying multivariate spherical functions, where Fi(Ω,x) ∈ R specifies
the spatially-varying multivariate spherical function at level i and FIh(Ω,x) = F (Ω,x). For
i < Ih, Fi(Ω,x) is obtained by spatially downsampling F (Ω,x) by a factor of dIh−i, where
d is a user-specified constant. The proposed hierarchical fitting algorithm then operates on{
Fi(Ω,x)

}Ih
i=0

and the initial guess of the scattered multivariate SRBF representation for each
spatial location at level 0. As illustrated in Figure 4.1, it also consists of a sequence of upsam-
pling and optimization stages from the coarsest level 0 to the finest level Ih.

For level i (i > 0), the upsampling stage (Section 4.4.1) derives the initial solution of the

41

SRBF Parameter

Optimization

Joint Least-Squares

Upsampling

..
.

SRBF Parameter

Optimization

Joint Least-Squares

Upsampling

..
.

SRBF Parameter

Optimization

..
.

Level 0

Level 1

Raw Data
SRBF

Parameters

Level Ih Level Ih

Level 1

Level 0

Initial Guess

Figure 4.1: Approximate a BTF using the proposed hierarchical fitting algorithm.

scattered multivariate SRBF representation, for each spatial location at level i, from F̃i−1(x),
where F̃i−1(x) represents the optimized results of level i−1. Instead of using traditional spatial
interpolation techniques, such as cubic or Lanczos filtering, we propose a joint least-squares
upsampling algorithm by exploiting the relation between Fi(Ω,x) and Fi−1(Ω,x) to assist the
resampling of F̃i−1(x). After that, the optimization stage (Section 4.4.2) updates the initial
solution for each spatial location at level i based on the scattered multivariate SRBF representa-
tion. To allow direct spatial interpolation on the optimized parameters without reconstruction,
we introduce additional spatial smoothness energy terms in the objective function, which will
constrain the parameter coherence of adjacent spatial locations. The pseudo-code of the overall
fitting process is summarized in Algorithm 4.4. Note that although we only present a hierarchi-
cal algorithm based on the scattered multivariate SRBF representation in this section, extending
it to support other SRBF representations is feasible and straightforward to implement.

Parts of this section are related to the approach presented in [40]. Fang [40] implemented a
prototype of the hierarchical fitting algorithm on CPUs, and demonstrated its potentials for mod-
eling spatially-varying materials. In this dissertation, we instead accelerate the time-consuming
non-linear optimization process of this prototype with GPUs, and further improve its robustness
by introducing advanced techniques for high-quality upsampling and the initial guess of SRBF
parameters.

42

Algorithm 4.4: Hierarchical fitting algorithm based on the scattered multivariate SRBF
representation.

Procedure: HierarchyMultiSRBFOptimize(
{
Fi(Ω,x)

}Ih
i=0
, J)

Input: A hierarchical set of Ih spatially-varying multivariate spherical functions{
Fi(Ω,x)

}Ih
i=0

and the number of multivariate SRBFs J .

Output: The optimized parameters of each level
{
F̃i(x)

}Ih
i=0

.

begin
// Initialization
foreach spatial location x at level 0 do

Initialize F̃0(x) using Algorithm 4.2

F̃0(x)← MultiSRBFOptimize(F0(Ω,x), J, F̃0(x)) (Algorithm 4.1)
end
// Hierarchical optimization
for i← 1 to Ih do

Upsample F̃i−1(x) to obtain F̃i(x) // Upsampling stage

// Optimization stage
repeat

foreach spatial location x at level i do
F̃i(x)← MultiSRBFOptimize(Fi(Ω,x), J, F̃i(x)) (Algorithm 4.1)

end
until convergence

end
end

4.4.1 Upsampling Stage

Given the optimized parameters of pyramid level i−1, namely F̃i−1(x), an appropriate initial
solution of each spatial location at level i is derived in the upsampling stage. This initial so-
lution significantly influences the quality and computational costs for approximating Fi(Ω,x).
However, since some details of Fi(Ω,x) may be lost when downsampled to Fi−1(Ω,x) dur-
ing hierarchical set construction, traditional spatial interpolation techniques are inadequate for
a high-quality upsampling from F̃i−1(x). The key insight is that because both Fi(Ω,x) and
Fi−1(Ω,x) are available in this stage, their relation can be employed to ’jointly’ derive the
initial guess of F̃i(x) from F̃i−1(x). This relies on the assumptions that the relation between
Fi(Ω,x) and Fi−1(Ω,x) is similar to that between F̃i(x) and F̃i−1(x), and F̃i−1(x) approximates
Fi−1(Ω,x) with low reconstruction errors.

Specifically, the level-i multivariate spherical function at a spatial location x can be approx-
imated with a linear combination of the level-(i−1) multivariate spherical function at multiple

43

spatial locations as follows:

Fi(Ω,x) ≈
∑

x′∈Ni−1(x)

wx′Fi−1(Ω,x′), (4.12)

where Ni−1(x) represents the set of participating spatial locations at level i−1 for x, and wx′

denotes the blending weight of a spatial location x′ ∈ Ni−1(x). In current implementation, we
heuristically determine Ni−1(x) as the neighboring spatial locations of x at level i−1 within a
user-defined window. Since both Fi(Ω,x) and Fi−1(Ω,x) are known in this stage, the unknown
blending weights thus can be derived by solving an unconstrained linear least-squares problem,
and then applied to compute the initial solution of F̃i(x) as

F̃i(x) =
∑

x′∈Ni−1(x)

wx′F̃i−1(x′). (4.13)

It should be noted that reconstructing the interpolated parameters of participating spatial loca-
tions may not exactly correspond to interpolating their reconstructed values. For example, since
the center and bandwidth sets are related to the exponents of multivariate Gaussian SRBFs,
Equation 4.13 will linearly blend these two sets at different spatial locations in the logarith-
mic space, which is definitely not equivalent to the weighted sum of the multivariate Gaussian
SRBFs at each spatial location. However, they would be close to each other if the spatial varia-
tions in the parameters of participating spatial locations are smooth. Since the model parameters
of level i−1 were already updated with spatial smoothness energy terms in the optimization
stage of previous iteration, we have found that the proposed joint least-squares upsampling
algorithm works very well in practice.

4.4.2 Optimization Stage

In this stage, the initial guess of each spatial location at level i is individually updated to obtain
a locally optimal solution to Equation 4.6. To guarantee spatial coherence in the derived param-
eters, we introduce additional smoothness energy terms of basis coefficients (Equation 4.15),
centers (Equation 4.16), and bandwidths (Equation 4.17) to Equation 4.6 as follows:

Eaddl = µβEβ + µξEξ + µλEλ, (4.14)

Eβ =
∑

x′∈N ′i (x)

J∑
j=1

1

2

(
βj(x)− βj(x′)

)2
, (4.15)

Eξ =
∑

x′∈N ′i (x)

J∑
j=1

N∑
n=1

(
1− ξj,n(x) · ξj,n(x′)

)
, (4.16)

Eλ =
∑

x′∈N ′i (x)

J∑
j=1

N∑
n=1

1

2

(
λj,n(x)− λj,n(x′)

)2
, (4.17)

44

where N ′i (x) denotes the set of participating spatial locations at levels i and i−1 for x, and µβ ,
µξ, as well as µλ are respectively the user-defined weights for Eβ , Eξ, and Eλ. Note that the
SRBF parameters in Equations 4.14–4.17 should depend on the level index i and spatial location
x, but we drop them for notational simplicity. With Equation 4.14, the smoothness energy terms
will guide the model parameters of x to approach those of N ′i (x). Similar to Ni−1(x) in the
upsampling stage, N ′i (x) can be defined as the ’valid’ neighboring spatial locations of x at
levels i and i−1 within a user-defined window, while a valid spatial location is referred to as
the spatial location whose model parameters have ever been optimized. Since a change in the
model parameters of x will influence those of N ′i (x), the above process is repeated until the
parameters of each spatial location at level i converge or a user-defined maximum number of
passes is reached.

If the parameterized multivariate SRBF representation is employed instead, we should also
add another smoothness energy term of parameterization coefficients (Equation 4.19) to Equa-
tion 4.14 as

Eaddl = µβEβ + µξEξ + µλEλ + µθEθ, (4.18)

Eθ =
∑

x′∈N ′i (x)

N ′∑
n=1

IΘn∑
j=1

1

2

(
θj,n(x)− θj,n(x′)

)2
, (4.19)

where µθ is the user-defined weight for Eθ.
For multivariate Abel-Poisson and Gaussian SRBFs (Equations 4.2 and 4.3), since centers

and bandwidths are highly coupled with each other, we additionally include a smoothness en-
ergy term of bandwidth-scaled centers (Equation 4.21) into Equation 4.14 (or Equation 4.18)
as

Eaddl = µβEβ + µξEξ + µλEλ + µξ,λEξ,λ, (4.20)

Eξ,λ =
∑

x′∈N ′i (x)

J∑
j=1

N∑
n=1

1

2

∥∥∥λj,n(x)ξj,n(x)− λj,n(x′)ξj,n(x′)
∥∥∥2

2
, (4.21)

where µξ,λ is the user-defined weight for Eξ,λ.

45

Chapter 5

Clustered Tensor Approximation

Nowadays, computer graphics and vision researchers are facing the challenge of processing
large-scale multi-dimensional visual data sets. As a compression and complexity-decreasing
method, dimensionality reduction contributes tremendously to data-driven rendering. While
the amount of visual data sets significantly increases to account for more photo-realistic image
synthesis, achieving the objective of both compact compressed data and real-time rendering per-
formance becomes more and more difficult. It is also important that the reconstruction process
is able to take full advantage of graphics hardware. Nevertheless, most of previous approxima-
tion algorithms either are inefficient in decoding data on modern GPUs or can not provide low
reconstruction errors under a high compression ratio.

Based on tensor approximation, we thus propose a novel dimensionality reduction algo-
rithm, namely clustered tensor approximation (CTA), to exploit the coherence in a multi-
dimensional visual data set, so that both storage space and rendering time are substantially
reduced. CTA is also a general approximation algorithm that can be employed to compress,
analyze, or represent any kinds of large-scale data sets whose structures are intrinsically multi-
dimensional.

This chapter is a rewritten and extended version of Section 5.2 in our published paper [179].
It describes the algorithmic concept and implementation issues of the proposed CTA algorithm
in more details, and additionally includes some mathematical proofs that demonstrate the cor-
rectness of CTA.

5.1 Preliminaries and Background

This section briefly reviews the background of tensor approximation1. For completeness, no-
tation and basic definitions of tensor operators are also introduced. Although the out-of-core

1Throughout this dissertation, tensor approximation is particularly referred to as the multi-way analysis based
on Tucker models [165, 180, 181]. Readers may notice that there is another popular multi-linear model named
parallel factor analysis [57, 165] or canonical decomposition [18, 165] in chemometrics and psychometrics, but it
is beyond the scope of this dissertation.

46

tensor decomposition algorithm [192] was applied in our experiments, in-core tensor notation
is adopted in this dissertation for notational simplicity. For more details about various tensor
operators, interested readers may additionally refer to [32, 33, 79, 165].

5.1.1 Basic Definitions

In the following context, scalars are written as italic roman lowercase letters (a, b, . . .); vectors
as boldface roman lowercase letters (a,b, . . .); matrices as boldface roman capitals (A,B, . . .);
tensors as boldface calligraphic capitals (A,B, . . .). The entry in row i and column j of a matrix
U ∈ RI×J is denoted by (U)ij . The i-th row of U is written as (U)i∗ and the j-th column of U

as (U)∗j . The transpose of a matrix U is denoted by UT .
A tensor can be viewed as a multi-dimensional array or a high-order mapping over a set of

vector spaces. Familiar examples are vectors (first order tensors) and matrices (second order
tensors). An N -th order tensor is written as A ∈ RI1×I2×···×IN , where I1, I2, . . . , IN ∈ N are
respectively the mode-1, mode-2, . . . , and mode-N ranks. Similar to a matrix, the entry of an
N -th order tensor A is denoted by (A)i1i2···iN , where i1 ∈ {1, 2, . . . , I1}, i2 ∈ {1, 2, . . . , I2},
. . . , and iN ∈ {1, 2, . . . , IN} are respectively the mode-1, mode-2, . . . , and mode-N indices.

The Frobenius norm of an N -th order tensor A is defined as ‖A‖F =
√
〈A,A〉, where

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

(A)i1i2···iN (B)i1i2···iN (5.1)

denotes the scalar product of twoN -th order tensors A,B ∈ RI1×I2×···×IN . The mode-n product
of an N -th order tensor A and a matrix U ∈ RJn×In is written as B = A×n U, where the
entries of the resulting N -th order tensor B ∈ RI1×I2×···×In−1×Jn×In+1×In+2×···×IN are given by

(B)i1i2···in−1jnin+1in+2···iN =
In∑
in=1

(A)i1i2···in−1inin+1in+2···iN (U)jnin , (5.2)

for jn = 1, 2, . . . , Jn and ik = 1, 2, . . . , Ik for k = 1, 2, . . . , n− 1, n+ 1, n+ 2, . . . , N . The
symbol ufn(A) ∈ RIn×(In+1In+2···IN I1I2···In−1) denotes the mode-n unfolded matrix of an N -th
order tensor A, which results from retaining the n-th mode of A and flattening the others (refer
to Figure 2.1 in [33]).

Moreover, we further define a series of mode-n products of a tensor and a set of matrices as
follows:

Definition 5.1: A series of mode-n products of an N -th order tensor A ∈ RI1×I2×···×IN and

a set of matrices
{
Un ∈ RJn×In

}N
n=1

is defined as

B = A
N

ą

n
n=1

Un = A×1 U1 ×2 U2 · · · ×N UN . (5.3)

47

Mode-3

Basis Matrix

Core TensorMode-1

Basis Matrix

Mode-2

Basis MatrixInput Tensor

M
o

d
e

1

Mode 2

M
od

e
3

Figure 5.1: The decomposed core tensor and basis matrices of a third order tensor based on
tensor approximation. The input tensor of size 8×11×7 is decomposed into the core tensor of
size 4×5×3, the mode-1 basis matrix of size 8×4, the mode-2 basis matrix of size 11×5, and
the mode-3 basis matrix of size 7×3.

We also introduce the following definition for a mode-n sub-tensor of a tensor:
Definition 5.2: The i-th mode-n sub-tensor of an N -th order tensor A ∈ RI1×I2×···×IN is

written as A〈ni〉 ∈ RI1×I2×···×In−1×1×In+1×In+2×···×IN , whose entries are given by

(
A〈ni〉

)
i1i2···in−11 in+1in+2···iN

= (A)i1i2···in−1i in+1in+2···iN , (5.4)

where i ∈ {1, 2, . . . , In} and ik = 1, 2, . . . , Ik for k = 1, 2, . . . , n− 1, n+ 1, n+ 2, . . . , N .

5.1.2 Tensor Approximation

Given a set of reduced ranks
{
Rn ∈ {1, 2, . . . , In}

}N
n=1

, where Rn is the mode-n reduced
rank, tensor approximation decomposes an N -th order tensor A ∈ RI1×I2×···×IN as a series
of mode-n products of an N -th order core tensor Z ∈ RR1×R2×···×RN and a set of N column-
orthonormal matrices

{
Un ∈ RIn×Rn

}N
n=1

, so that the following constrained least-squares opti-
mization problem is resolved:

min
{Z,{Un}Nn=1}

1

2

∥∥∥∥A−Z
N

ą

n
n=1

Un

∥∥∥∥2

F

, subject to ∀n, UT
nUn = IRn (orthonormal constraints),

(5.5)

where IRn∈ RRn×Rn represents the identity matrix of size Rn×Rn, and Un is also known as
the mode-n basis matrix. The constraints in Equation 5.5 enforce that each basis matrix has
orthonormal columns to remove the scale ambiguity. In this way, when a mode-n reduced rank
is much smaller than the corresponding mode-n rank, Z and

{
Un

}N
n=1

will generally provide

48

Algorithm 5.1: N -mode singular value decomposition.

Procedure: N -SVD(A, {Rn}Nn=1)

Input: An N -th order tensor A ∈ RI1×I2×···×IN and a set of reduced ranks {Rn}Nn=1.

Output: The core tensor Z and basis matrices
{
Un

}N
n=1

.

begin
// Initialization
for n← 1 to N do

Initialize Un as the identity matrix IIn or the matrix whose columns are the Rn

dominant left singular vectors of ufn(A)

end
repeat

// Basis matrix update
for n← 1 to N do

Un ← A
N

ą

j
j=1, j 6=n

UT
j

Update Un with the Rn dominant left singular vectors of ufn(Un)

end

Z ← A
N

ą

n
n=1

UT
n

until
∥∥Z∥∥

F
converges

end

an optimal rank-(R1, R2, . . . , Rn) approximation to A with a significant reduction in data size.
N -mode singular value decomposition (N -SVD) [33] derives a locally optimal solution to

Equation 5.5 using an iterative alternating least-squares algorithm that optimizes only one basis
matrix at a time, while leaving other basis matrices unchanged. At the n-th iteration, the mode-
n basis matrix Un is extracted by retaining the structures of the n-th mode of A, projecting A
onto the basis matrices of other modes, and applying SVD to the mode-n unfolded matrix of
the projected tensor. The above steps are repeated until the Frobenius norm of the core tensor
converges. In Figure 5.1 and Algorithm 5.1, we respectively illustrate the decomposed core
tensor as well as basis matrices of a third order tensor and present the pseudo-code of N -SVD.

5.2 Mathematical Formulation

In general, tensor approximation is more effective and flexible than conventional matrix fac-
torization methods, but its reconstruction costs are frequently too high to allow real-time per-
formance for data-driven rendering applications. For example, when the variations of data in
a tensor are large, we can not adopt small reduced ranks for decomposition to decrease the

49

. .
 .

Mode-3

Basis Matrix

Core TensorMode-1

Basis Matrix

Mode-2

Basis MatrixCluster Tensor

M
o
d
e

1

Mode 2

M
od

e
3

M
o
d
e

1

Mode 2

M
od

e
3

Input Tensor

M
o
d
e

1

Mode 2

M
od

e
3

. . .

Cluster 1

. .
 .

Cluster C

. .
 .

Cluster 3

Cluster 2

. .
 .

Figure 5.2: Decompose a third order tensor using CTA. Suppose that CTA is applied to a third
order tensor (left top) along the third mode, and classifies mode-3 sub-tensors into total C
disjoint clusters. An example of a mode-3 sub-tensor is the slice enclosed in the red rectangle.
All the mode-3 sub-tensors within a cluster thus can be concatenated along the third mode to
form another third order tensor. The core tensor as well as the mode-1, mode-2, and mode-
3 basis matrices of each cluster are then obtained using traditional tensor approximation (left
bottom).

storage space and at the same time obtain low approximation errors. Employing large reduced
ranks for decomposition will certainly lead to more memory bandwidth overhead and slower
rendering performance at run-time, since the reconstruction costs are roughly proportional to
the values of reduced ranks. CTA thus aims at overcoming this drawback of tensor approxima-
tion by partitioning a tensor along a user-specified clustered mode, say m, into disjoint regions.
The mode-m sub-tensors within a region thus form another tensor with lower variations which
then can be decomposed with small reduced ranks using tensor approximation. In this way,
CTA successfully combines clustering with tensor approximation to provide a powerful mathe-
matical tool for data analysis. Figure 5.2 illustrates the main concept of CTA for a third order
tensor.

Given an N -th order tensor A ∈ RI1×I2×···×IN , the clustered mode m ∈ {1, 2, . . . , N}, and

50

the number of disjoint clusters C, CTA can be formulated as the following constrained least-
squares optimization problem:

min
{Zc,{Un,c}Nn=1}Cc=1

1

2

∥∥∥∥A− C∑
c=1

(
Zc

N
ą

n
n=1

Un,c

)∥∥∥∥2

F

,

subject to


∀i,

∑C
c=1

∥∥∥(Um,c

)
i∗

∥∥∥
0

= Rm (disjoint constraints),

∀c, ∀i,
∥∥∥(Um,c

)
i∗

∥∥∥
0
∈ {0, Rm} (membership constraints),

∀c, ∀n, UT
n,cUn,c = IRn (orthonormal constraints),

(5.6)

where Zc ∈ RR1×R2×···×RN and Un,c ∈ RIn×Rn respectively denote the decomposed core tensor
and the column-orthonormal mode-n basis matrix of cluster c, Rn specifies the mode-n reduced
rank, and ‖·‖0 represents the `0 norm of a vector. The disjoint and membership constraints in
Equation 5.6 enforce that each mode-m sub-tensor is classified into only one cluster, and the
entries of the i-th row of Um,c, for i ∈ {1, 2, . . . , Im}, must be all zeros if the i-th mode-m sub-
tensor, namely A〈mi〉, is not classified into cluster c. Therefore, all the mode-m basis matrices
are sparse and implicitly specify the cluster membership of each mode-m sub-tensor.

5.3 Algorithm

5.3.1 Overview

A simple and intuitive method for solving Equation 5.6, which is referred to as static CTA, is
to classify mode-m sub-tensors into disjoint clusters according to a heuristic objective function,
concatenate all the mode-m sub-tensors within a cluster along the m-th mode into another
tensor, and then decompose the resulting tensor of each cluster using N -SVD. Nevertheless, it
is often difficult to define an objective function that is consistent with the approximation errors
of tensor decomposition. The decomposed results using static CTA are only an approximate
solution to Equation 5.6. We thus propose an iterative variant of CTA to guarantee at least
a locally optimal solution by iteratively updating cluster membership based on approximation
errors.

The proposed iterative CTA algorithm is an alternating least-squares algorithm that con-
sists of two stages: the clustering stage (Section 5.3.2) and the update stage (Section 5.3.3).
After computing the initial decomposed results of each cluster, each mode-m sub-tensor is re-
classified into the cluster with the minimum approximation error in the clustering stage, while
the decomposed results of each cluster are fixed. Since the number of member sub-tensors
varies from cluster to cluster, straightforwardly employing the decomposed results from N -
SVD would be difficult to compute the approximation error of a mode-m sub-tensor with re-
spect to a cluster. We thus additionally compute a set of dual mode-m basis matrices

{
Vm,c

}C
c=1

51

Algorithm 5.2: Static and iterative clustered tensor approximation.

Procedure: StaticCTA(A, {Rn}Nn=1 , C)

Input: An N -th order tensor A ∈ RI1×I2×···×IN , a set of reduced ranks {Rn}Nn=1, and the

number of clusters C for the clustered mode m.

Output: The core tensor and basis matrices of each cluster
{

Zc,
{
Un,c

}N
n=1

}C
c=1

.

begin
Partition

{
A〈mi〉

}Im
i=1

into C disjoint regions using traditional clustering methods
for c← 1 to C do

Ac ← A×m MT
c (refer to Equations 5.9 and 5.10 for Mc){

Zc,
{
Un,c

}N
n=1

}
← N -SVD(Ac, {Rn}Nn=1) (Algorithm 5.1)

Um,c ←McUm,c

end
end

Procedure: IterativeCTA(A, {Rn}Nn=1 , C)

Input: An N -th order tensor A ∈ RI1×I2×···×IN , a set of reduced ranks {Rn}Nn=1, and the

number of clusters C for the clustered mode m.

Output: The core tensor and basis matrices of each cluster
{

Zc,
{
Un,c

}N
n=1

}C
c=1

.

begin{
Zc,
{
Un,c

}N
n=1

}C
c=1
← StaticCTA(A, {Rn}Nn=1 , C) // Initialization

repeat
// Clustering stage
for c← 1 to C do

Compute Vm,c by normalizing each row of ufm
(
Zc

)
end
for i← 1 to Im do

Re-classify A〈mi〉 by solving Equation 5.8

end
// Update stage
for c← 1 to C do

Ac ← A×m MT
c{

Zc,
{
Un,c

}N
n=1

}
← N -SVD(Ac, {Rn}Nn=1) (Algorithm 5.1)

Um,c ←McUm,c

end
until

∑C
c=1

∥∥Zc

∥∥
F

converges

end

52

from the core tensor of each cluster to solve this issue. In the update stage, the core tensor and
the basis matrices of each cluster are then updated using N -SVD, while the cluster membership
is fixed to satisfy the constraints in Equation 5.6. The above two stages are repeated until the
sum of the Frobenius norm of each cluster core tensor converges, or a pre-defined maximum
iteration count is reached. In Algorithm 5.2, the pseudo-code of the proposed static and iterative
CTA algorithms is presented in details.

5.3.2 Clustering Stage

In this stage, we would like to re-classify each mode-m sub-tensor into the cluster with the
minimum approximation error from the core tensor and basis matrices of each cluster. To facil-
itate the computation of approximation errors for the mode-m sub-tensors outside cluster c, the
dual mode-m basis matrix Vm,c ∈ RRm×(Rm+1Rm+2···RNR1R2···Rm−1) of cluster c is additionally
derived as

Vm,c =
(
ufm
(
Zc

)
ufm
(
Zc

)T)− 1
2
ufm
(
Zc

)
, (5.7)

Since the rows of ufm
(
Zc

)
are orthogonal, Equation 5.7 is equivalent to the normalization of

each row of ufm
(
Zc

)
.

With the help of dual mode-m basis matrices, we propose the following theorem to re-
classify each mode-m sub-tensor:

Theorem 5.3: Let Vm,c ∈ RRm×(Rm+1Rm+2···RNR1R2···Rm−1) be the dual mode-m basis matrix

of cluster c as defined in Equation 5.7. The cluster ci with the minimum approximation error

for the i-th mode-m sub-tensor A〈mi〉 is obtained by solving the following constrained integer

optimization problem:

max
ci

1

2

∥∥∥∥ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

∥∥∥∥2

F

, subject to ci ∈ {1, 2, . . . , C} , (5.8)

where ‖·‖F denotes the Frobenius norm of a matrix.

Theorem 5.3 states that A〈mi〉 should be classified into a cluster whose basis matrices ade-
quately preserve its projected norm, so that the mode-m sub-tensors within a cluster are corre-
lated with each other. Interested readers may refer to Section 5.5 for the mathematical proof of
Theorem 5.3.

5.3.3 Update Stage

Given the cluster membership of each mode-m sub-tensor, the core tensor and the basis matri-
ces of each cluster are updated using N -SVD in this stage. Since the partitioned clusters are
independent of each other, their decomposed results can be separately computed. Neverthe-

53

less, to satisfy the orthonormal constraints on mode-m basis matrices in Equation 5.6, only the
member sub-tensors of a cluster should be considered during tensor decomposition.

More formally, let Mc be the membership index set of cluster c defined as

Mc =
{
i | i ∈ {1, 2, . . . , Im}, A〈mi〉 is a member of cluster c

}
, (5.9)

and Mc ∈ RIm×|Mc| denotes the membership matrix of cluster c, whose entries are

∀i1, ∀i2,
(
Mc

)
i1i2

=

 1, if i1 = (Mc)i2 ,

0, otherwise,
(5.10)

where | · | denotes the cardinal of a set, and (Mc)i2 is the i2-th element of the membership
index set Mc. We then extract the member sub-tensors of cluster c into an N -th order tensor
Ac ∈ RI1×I2×···×Im−1×|Mc|×Im+1×Im+2×···×IN by the following equation:

Ac = A×m MT
c . (5.11)

When applying tensor approximation to the shrunken tensor Ac, non-members of cluster c are
excluded from the decomposition. Zc and

{
Un,c

}N
n=1

are then updated by the decomposed core
tensor and basis matrices of Ac. Note that since Ac contains only members of cluster c, Um,c

is further updated by the multiplication McUm,c to satisfy the constraints in Equation 5.6.

5.4 Implementation Issues

5.4.1 Initial Guess

One significant implementation issue of static and iterative CTA is the initial guess of cluster
membership of each mode-m sub-tensor. According to the experiments, we have found that
applying some advanced clustering methods, such as enhanced LBG [133] and local (or clus-
tered) principal component analysis [75, 161], to determine the initial cluster membership is
often much better than using conventional K-means clustering. Although this scheme will push
the problem back to the initial seeds for clustering methods, various techniques for generating
and fixing the initial cluster seeds usually provide satisfactory results in our experience.

The best approach may vary with the given data sets, but here we present a general method
as a guideline to determine the initial cluster seeds. For a real-world data set, each mode of
the input tensor is associated with a parametric space that describes its physical conditions,
for example, different illumination or view directions for a reflectance function. Based on the
assumption that the observations from nearby parameters in the mode-m parametric space are
expected to be highly correlated, we can perform initial clustering in the parametric space in-
stead. This is computationally efficient since the dimensionality of the mode-m parametric

54

space is frequently lower than that of the observations. Sophisticated or even exhaustive meth-
ods therefore can be employed to generate appropriate cluster seeds. In our experiments, this
scheme generally improves the approximation errors of CTA by 3% ∼ 8% when compared with
directly performing K-means clustering on mode-m sub-tensors to determine the initial cluster
seeds for CTA.

5.4.2 Global Basis Matrices

Sometimes a single global mode-n basis matrix for all clusters is preferred rather than an in-
dividual local mode-n basis matrix for each cluster. The preference for global basis matrices
may be due to computational costs, storage space, or the special purpose of an application. To
account for this issue, the global basis matrices are computed by decomposing an N -th order
tensor A before applying CTA.

Let G be the index set of global basis matrices
{
Un

}
n∈G, where the subscript c of a local

mode-n basis matrix is omitted to denote a global one. After extracting
{
Un

}
n∈G by applying

tensor approximation to A, we project A onto
{
Un

}
n∈G to obtain anN -th order reduced tensor

AG as

AG = A
ą

n
n∈G

UT
n . (5.12)

CTA is then performed on AG to compute the core tensor and the local basis matrices of each
cluster, while the global basis matrices are fixed.

Although an iterative algorithm can be employed to alternately update the global basis matri-
ces and the decomposed results of CTA, it is computationally too expensive and only improves
approximation errors by a small amount. We therefore just performed the initial tensor decom-
position on A to derive the global basis matrices and did not update them after CTA for all
experimental results in this dissertation.

5.5 Mathematical Proofs

Re-Classification in the Clustering Stage

In the clustering stage of CTA, the mode-m sub-tensors of A are re-classified into C disjoint
clusters, while the core tensor and basis matrices, other than the mode-m basis matrix, of each
cluster are fixed. We thus introduced Theorem 5.3 in Section 5.3.1 to determine the cluster
membership of each mode-m sub-tensor with strong intra-cluster correlations. In this section,
the mathematical proof of Theorem 5.3 is presented in details to justify the correctness of the
proposed CTA algorithm.

Proof of Theorem 5.3: Since the cluster membership of a mode-m sub-tensor does not depend

55

on that of others, Equation 5.6, without the orthonormal constraints on Um,1,Um,2, . . . ,Um,C ,
can be separated into Im distinct constrained least-squares optimization sub-problems as

min{
(Um,c)i∗

}C
c=1

1

2

∥∥∥∥A〈mi〉 − C∑
c=1

(
Zc ×m

(
Um,c

)
i∗

N
ą

n
n=1
n6=m

Un,c

)∥∥∥∥2

F

,

subject to


∑C

c=1

∥∥∥(Um,c

)
i∗

∥∥∥
0

= Rm (disjoint constraint),

∀c,
∥∥∥(Um,c

)
i∗

∥∥∥
0
∈ {0, Rm} (membership constraints),

(5.13)

for i = 1, 2, . . . , Im. After solving all the optimization sub-problems, we should finally trans-
form each derived mode-m basis matrix by a matrix of size Rm×Rm to satisfy the orthonormal
constraints in Equation 5.6. Since this transformation actually resembles a rotation in the clus-
ter sub-space associated with the m-th mode, one can always find such a transformation matrix
without changing the final approximation errors. Therefore, the remaining issue of this proof is
to show that the solution to Equation 5.13 will implicitly provide a solution to Equation 5.8.

Without losing generality, suppose that A〈mi〉 is re-classified into cluster ci. Since the con-
straints in Equation 5.13 can be enforced by setting

(
Um,c

)
i∗ to zeros for all c 6= ci, the objective

function in Equation 5.13 becomes

1

2

∥∥∥∥A〈mi〉 −Zci×m
(
Um,ci

)
i∗

N
ą

n
n=1
n6=m

Un,ci

∥∥∥∥2

F

=
1

2

∥∥∥∥ufm(A〈mi〉)− (Um,ci

)
i∗ufm

(
Zci

N
ą

n
n=1
n6=m

Un,ci

)∥∥∥∥2

F

,

(5.14)

where the right side comes from the definitions of the mode-n unfolded matrix and the mode-n
product. Furthermore, the definition of Frobenius norm allows us to rewrite Equation 5.14 into
a standard least-squares objective function as follows:

1

2

∥∥∥∥ufm
(
A〈mi〉

)
−
(
Um,ci

)
i∗ufm

(
Zci

N
ą

n
n=1
n6=m

Un,ci

)∥∥∥∥2

2

. (5.15)

Therefore, the optimal solution of
(
Um,ci

)
i∗ to Equation 5.15 is the least-squares estimation of

the solution to the following linear equation:

ufm
(
A〈mi〉

)
=
(
Um,ci

)
i∗ufm

(
Zci

N
ą

n
n=1
n6=m

Un,ci

)
=
(
Um,ci

)
i∗ufm

(
Zci

)(N⊗
n=1
n6=m

UT
n,ci

)
, (5.16)

56

where

N⊗
n=1
n6=m

UT
n,ci

= UT
1,ci
⊗UT

2,ci
⊗ · · · ⊗UT

m−1,ci
⊗UT

m+1,ci
⊗UT

m+2,ci
⊗ · · · ⊗UT

N,ci
(5.17)

denotes a series of Kronecker products, and the symbol ⊗ represents the Kronecker product
operator. Equation 5.16 comes from the relation between the mode-n product and the Kronecker
product [33]. From Equation 5.7, we can further rewrite Equation 5.16 as

ufm
(
A〈mi〉

)
=
(
Um,ci

)
i∗ZciVm,ci

(N⊗
n=1
n6=m

UT
n,ci

)
, (5.18)

where Zci ∈ RRm×Rm is a diagonal matrix whose j-th diagonal entry is the `2 norm of the j-th
row of ufm

(
Zci

)
. Since each basis matrix has orthonormal columns and the dual mode-m basis

matrix has orthonormal rows, the least-squares solution to Equation 5.15 is

(
Um,ci

)
i∗ = ufm

(
A〈mi〉

)(N⊗
n=1
n6=m

Un,ci

)
VT
m,ci

Z−1
ci

= ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

Z−1
ci
. (5.19)

After substituting Equation 5.19 for
(
Um,ci

)
i∗ in Equation 5.15, we have

1

2

∥∥∥∥ufm(A〈mi〉)− ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

Z−1
ci

ufm

(
Zci

N
ą

n
n=1
n6=m

Un,ci

)∥∥∥∥2

2

=
1

2

∥∥∥∥ufm(A〈mi〉)− ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

Z−1
ci

ufm
(
Zci

)(N⊗
n=1
n6=m

UT
n,ci

)∥∥∥∥2

2

=
1

2

∥∥∥∥ufm(A〈mi〉)− ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

Z−1
ci

ZciVm,ci

(N⊗
n=1
n6=m

UT
n,ci

)∥∥∥∥2

2

=
1

2

∥∥∥∥ufm(A〈mi〉)− ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

Vm,ci

(N⊗
n=1
n6=m

Un,ci

)T∥∥∥∥2

2

=
1

2

∥∥∥ufm(A〈mi〉)∥∥∥2

2
− ufm

(
A〈mi〉

)(N⊗
n=1
n6=m

Un,ci

)
VT
m,ci

Vm,ciufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)T

+
1

2

∥∥∥∥ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

Vm,ci

(N⊗
n=1
n6=m

Un,ci

)T∥∥∥∥2

2

(5.20)

=
1

2

∥∥∥A〈mi〉∥∥∥2

F
− ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

(
ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

)T

57

+
1

2

∥∥∥∥ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

∥∥∥∥2

2

(5.21)

=
1

2

∥∥∥A〈mi〉∥∥∥2

F
−
∥∥∥∥ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

∥∥∥∥2

2

+
1

2

∥∥∥∥ufm(A〈mi〉 N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

∥∥∥∥2

2

=
1

2

∥∥∥A〈mi〉∥∥∥2

F
− 1

2

∥∥∥∥ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT
m,ci

∥∥∥∥2

F

. (5.22)

From Equation 5.20 to Equation 5.21, we use the facts that the Kronecker product of two
column-orthonormal matrices is another column-orthonormal matrix, and the `2 norm of a row
vector vT is unchanged under the transformation vTU for a row-orthonormal matrix U, namely∥∥vTU∥∥

2
=
∥∥vT∥∥

2
. Since the first term in Equation 5.22 is a constant, the minimization of

Equation 5.22 is equivalent to the maximization of the second term in Equation 5.22. Theo-
rem 5.3 thus is proved by identifying that the cluster membership is implicitly specified in the
solution to Equation 5.13.

58

Chapter 6

K-Clustered Tensor Approximation

Recently, there has been a growing interest in modeling real-world observations as sparse lin-
ear combinations of atoms (or basis functions) in an over-complete dictionary. Although the
underlying physical process of a natural phenomenon may be a complex function or mixture of
heterogeneous elements, it is frequently desirable to represent observations in a sparse form that
allows efficient data analysis. However, this intuitive concept is far from easy to achieve in prac-
tice. Even with a fixed dictionary, searching for an optimal solution in which each signal exactly
depends on a given number of atoms was proved to be NP-hard [31]. Therefore, many practical
algorithms instead consider sub-optimal solutions, such as matching pursuit [110, 148], basis
pursuit [19], and Bayesian models [83, 102].

In addition to pursuit algorithms and Bayesian models, previous studies have also reported
a close connection between sparse representation and vector quantization [83, 177]. K-singular

value decomposition (K-SVD) [3, 4] thus generalized K-means clustering to seek sparse rep-
resentations by alternating between the pursuit process and dictionary learning. Nevertheless,
rather than using Bayesian inference, it applied singular value decomposition (SVD) to simulta-
neously update dictionary atoms and non-zero basis coefficients in the dictionary learning stage
so that convergence rate could be improved. Interested readers may refer to [3] for more details
about K-SVD and a comprehensive review on recent progress of sparse representation.

In this chapter, we introduce a novel sparse multi-linear model, namely K-clustered tensor

approximation (K-CTA), which combines the advantages of clustered tensor approximation

(CTA) and K-SVD to bridge the gap between sparse representation and tensor approximation.
Several important theorems of K-CTA are discussed and proved to demonstrate that K-CTA in
fact resembles the behaviors of K-SVD in the tensor space and is a natural extension of CTA.
As a result, CTA is further generalized to provide a sparse multi-dimensional data analysis tool
in which the sparsity is under user control.

59

6.1 Mathematical Formulation

One major drawback of CTA for decomposing an N -th order tensor A ∈ RI1×I2×···×IN along
the clustered mode m is that it enforces hard clustering in which each mode-m sub-tensor is
classified into just one cluster. The subsequent tensor approximation within each cluster thus
can only exploit intra-cluster coherence. In addition, the performance of CTA heavily depends
on the initial guess of cluster membership, but estimating an appropriate initial guess is a non-
trivial problem at all. Even if the globally optimal solution to hard clustering could be easily
found, the decomposed core tensors and basis matrices of different clusters may still have strong
correlations.

As illustrated in Figure 6.1, our solution to this issue is to relax the hard clustering constraint
into a soft one. Each mode-m sub-tensor now can be classified into more than one cluster
and approximated by mixing the decomposed results of these clusters. To reduce run-time
reconstruction costs, this soft constraint should also be a sparse one in which each mode-m
sub-tensor belongs to just a few, say Km, clusters. This not only permits K-CTA to exploit the
inter-cluster coherence that can not be analyzed by CTA, but also alleviates the influence of an
inappropriate initial guess by breaking the hard cluster boundaries. K-CTA thus can be regarded
as a sparse extension of CTA and a multi-linear generalization of K-SVD [3, 4].

To allow soft and sparse clustering for K-CTA, Equation 5.6 is reformulated into the follow-
ing constrained least-squares optimization problem:

min
{Zc,{Un,c}Nn=1}Cc=1

1

2

∥∥∥∥A− C∑
c=1

(
Zc

N
ą

n
n=1

Un,c

)∥∥∥∥2

F

,

subject to


∀i,

∑C
c=1

∥∥∥(Um,c

)
i∗

∥∥∥
0

= KmRm (sparse constraints),

∀c, ∀i,
∥∥∥(Um,c

)
i∗

∥∥∥
0
∈ {0, Rm} (membership constraints),

∀c, ∀n, UT
n,cUn,c = IRn (orthonormal constraints),

(6.1)

where Km specifies the number of mixture clusters for a mode-m sub-tensor. For K-CTA, the
mode-m basis matrix Um,c is also called the mixing matrix of cluster c whose i-th row contains
the mixing coefficients of the i-th mode-m sub-tensor A〈mi〉 with respect to cluster c. The only
difference between Equation 5.6 and Equation 6.1 is that the sparse and membership constraints
of K-CTA enforce that each mode-m sub-tensor belongs to exact Km clusters instead of only
one. As a result, the decomposed mode-m basis matrices are still sparse for K-CTA, and their
sparsity is totally controllable by the value of Km. Note that Equation 6.1 will be exactly
equivalent to Equation 5.6 when Km = 1. In this case, K-CTA should derive the same results as
CTA to permit it as a natural generalization of CTA.

60

. .
 .

. .
 .

. .
 .

Input Tensor

M
o

d
e

1

Mode 2

M
od

e
3

. . .

≈ +

+ ...
Mode-3 Sub-Tensor Partial Sub-Tensor 1 Partial Sub-Tensor 2

Km Partial Sub-Tensors

Cluster 1

M
o

d
e

1

Mode 2

M
od

e
3

. . .

. .
 .

Cluster 2

Cluster 3

Cluster C

Figure 6.1: Decompose a third order tensor using K-CTA. Suppose that we intend to classify the
mode-3 sub-tensors of a third order tensor (left top) into total C clusters. A mode-3 sub-tensor
(enclosed in the red rectangle) is approximated as the sum of Km partial sub-tensors, each of
which is classified into one different cluster. All the partial sub-tensors within a cluster thus can
be concatenated along the third mode and decomposed using traditional tensor approximation.

6.2 Algorithm

6.2.1 Overview

Although the mathematical formulation of K-CTA is almost identical to that of CTA, the prac-
tical algorithm for solving Equation 6.1 is substantially different from static and iterative CTA.
For a small total number of clusters, while an exhaustive approach for finding the optimal so-
lution to a hard clustering problem may be efficient in practice, a brute-force method for soft
clustering is frequently time-consuming and only feasible when the number of mixture clusters
is rather small. It is therefore difficult to extend CTA into K-CTA with just minor modifications,
but the fundamental alternating framework of CTA is still applicable.

Similar to CTA, the proposed iterative K-CTA algorithm also consists of two stages: the
clustering stage (Section 6.2.2) and the update stage (Section 6.2.3). After initializing the core
tensor and basis matrices of each cluster, all variables in Equation 6.1 are fixed in the clustering

61

stage, except for the mode-m basis matrix of each cluster. For each mode-m sub-tensor, a
greedy approach is then applied to sequentially search for the best Km mixture clusters that
minimize its approximation error. The mixing coefficients, namely the rows of the mode-m
basis matrix of each cluster, are also updated by the proposed optimal projection method. Since
the mode-m basis matrices derived by the optimal projection method do not have orthonormal
columns, we should additionally update them, together with the core tensor of each cluster, to
satisfy the orthonormal constraints in Equation 6.1. In the update stage, the core tensor and basis
matrices of each cluster are then iteratively updated using N -SVD, one cluster at a time, while
those of other clusters are unchanged. Note that we also fix the cluster membership in the update
stage to simplify the proposed algorithm. Finally, the above two stages are iteratively executed
until the sum of the Frobenius norm of each cluster core tensor converges, or a user-specified
maximum iteration count is reached. The whole process of iterative K-CTA is summarized in
Algorithm 6.1. Here, we omit the description of static K-CTA, since it just follows the process
of iterative K-CTA without repeating the clustering stage and the update stage.

6.2.2 Clustering Stage

Given the core tensor and basis matrices of each cluster, we would like to find the best Km

mixture clusters for each mode-m sub-tensor and derive the corresponding mixing coefficients
in this stage, so that the sparse and membership constraints in Equation 6.1 are satisfied. This
issue can be considered as a multi-linear counterpart of the pursuit problem for sparse repre-
sentation [3, 4, 19, 110, 148], which was proved to be NP-hard [31]. Indeed, it is difficult to
solve the cluster membership and the non-zero mixing coefficients of a mode-m sub-tensor at
the same time, since the decomposed results of different clusters are frequently correlated. Even
a single change in the membership of a mode-m sub-tensor, either adding the sub-tensor to or
removing it from a cluster, will affect its mixing coefficients for other clusters. Nevertheless,
greedy approaches often provide a satisfactory approximate solution to the pursuit problem in
both theory and practice [31, 176]. We thus sequentially update the cluster membership and
sparse mixing coefficients of all the mode-m sub-tensors, one cluster at a time.

Greedy Search

First mixture cluster: To allow K-CTA as a natural generalization of CTA, the first mixture
cluster of a mode-m sub-tensor is obtained by using the same method in the clustering stage
of CTA. From Theorem 5.3, we can determine the first mixture cluster ci1 of the i-th mode-m
sub-tensor A〈mi〉 by solving the following constrained integer optimization problem:

max
ci1

1

2

∥∥∥∥ufm(A〈mi〉 N
ą

n
n=1
n6=m

UT
n,ci1

)
VT
m,ci1

∥∥∥∥2

F

, subject to ci1 ∈ {1, 2, . . . , C} . (6.2)

62

Algorithm 6.1: Iterative K-clustered tensor approximation.

Procedure: IterativeK-CTA(A, {Rn}Nn=1 , C,Km)

Input: An N -th order tensor A ∈ RI1×I2×···×IN , a set of reduced ranks {Rn}Nn=1, the

number of clusters C for the clustered mode m, and the number of mixture

clusters Km.

Output: The core tensor and basis matrices of each cluster
{

Zc,
{
Un,c

}N
n=1

}C
c=1

.

begin
// Initialization{

Zc,
{
Un,c

}N
n=1

}C
c=1
← StaticCTA(A, {Rn}Nn=1 , C) (Algorithm 5.2)

repeat
// Clustering stage
for c← 1 to C do

Compute Vm,c by normalizing each row of ufm
(
Zc

)
Initialize each entry of Um,c to zero

end
for i← 1 to Im do // Greedy search

Obtain the first mixture cluster ci1 of A〈mi〉 by solving Equation 6.2

Update
(
Um,ci1

)
i∗ as Equation 6.3

for k ← 2 to Km do
Obtain the k-th mixture cluster cik of A〈mi〉 by solving Equation 6.5

Update
{(

Um,cij

)
i∗

}k
j=1

as Equation 6.6 // Optimal projection

end
end
for c← 1 to C do // Post-processing

Decompose Um,c to obtain U′m,c and Wc (Equation 6.10)

Um,c ← U′m,c

Zc ← Zc ×mWc

end

// Update stage
for c← 1 to C do

Compute Rc as Equation 6.12

R′
c ←Rc ×m MT

c (refer to Equations 5.9 and 5.10 for Mc){
Zc,
{
Un,c

}N
n=1

}
← N -SVD(R′

c, {Rn}Nn=1) (Algorithm 5.1)

Um,c ←McUm,c

end
until

∑C
c=1

∥∥Zc

∥∥
F

converges

end

63

Then, the corresponding mixing coefficients for the first mixture cluster of a mode-m sub-tensor
are given by the following corollary:

Corollary 6.1: The mixing coefficients for the first mixture cluster ci1 of the i-th mode-m

sub-tensor A〈mi〉 are computed as

(
Um,ci1

)
i∗ = ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci1

)
VT
m,ci1

Z−1
ci1
, (6.3)

where Zci1
is a diagonal matrix whose j-th diagonal entry is the `2 norm of the j-th row of

ufm(Zci1
).

Interested readers may refer to Section 6.4.1 for the mathematical proof of Corollary 6.1.
From Theorem 5.3, we identify that correlated mode-m sub-tensors will likely be classified into
the same cluster. Corollary 6.1 further indicates that the mixing coefficients for the first mixture
cluster of the i-th mode-m sub-tensor is the projection coefficients of A〈mi〉 onto the sub-spaces
of cluster ci1 . Equation 6.2 also implies that if the total number of mixture clusters is set to one,
K-CTA will be identical to CTA in the clustering stage.

Remaining mixture clusters: After resolving the first mixture cluster of a mode-m sub-
tensor, its remaining mixture clusters are then iteratively derived, one cluster at each iteration,
from the results of previous iteration. We thus propose the following theorem to settle the k-th
mixture cluster of a mode-m sub-tensor:

Theorem 6.2: The k-th mixture cluster cik of the i-th mode-m sub-tensor A〈mi〉 is resolved

from the mixing coefficients of the previously selected k−1 mixture clusters ci1 , ci2 , . . . , cik−1
by

minimizing the approximation error of the residual sub-tensor

R(k)
〈mi〉 = A〈mi〉 −

k−1∑
j=1

(
Zcij
×m

(
Um,cij

)
i∗

N
ą

n
n=1
n6=m

Un,cij

)
, (6.4)

which is equivalent to solving the following constrained integer optimization problem:

max
cik

1

2

∥∥∥∥∥ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,cik

)
VT
m,cik

−
k−1∑
j=1

ufm

(
Zcij
×m

(
Um,cij

)
i∗

N
ą

n
n=1
n6=m

UT
n,cik

Un,cij

)
VT
m,cik

∥∥∥∥∥
2

F

,

subject to cik ∈ {1, 2, . . . , C} , cik /∈
{
ci1 , ci2 , . . . , cik−1

}
.

(6.5)

The mathematical proof of Theorem 6.2 can be found in Section 6.4.1. For each mode-m
sub-tensor, the first term of the objective function in Equation 6.5 is actually the same as the

64

objective function in Equation 6.2, and the second term instead penalizes a cluster whose basis
matrices are correlated to those of previously selected mixture clusters. Therefore, Theorem 6.2
implies that the k-th mixture cluster of a mode-m sub-tensor is determined by maximizing intra-
cluster correlations and minimizing inter-cluster correlations at the same time. This interesting
result is similar to the optimized orthogonal matching pursuit approach [148], where the k-th
atom is resolved by simultaneously minimizing its linear dependence with previously selected
atoms and maximizing the projected norm of the residual.

Moreover, it is obvious that Equation 6.5 can be computed in the reduced tensor space1 to
significantly decrease computational costs. The first term of the objective function in Equa-
tion 6.5 is the projection coefficients of A〈mi〉 onto the basis matrices and the dual mode-m
basis matrix of cluster cik . It should be already computed when resolving the first mixture
cluster of A〈mi〉 and remains unchanged during the whole clustering stage. The second term in-
stead can be interpreted as transforming the projected A〈mi〉 in the sub-spaces of cluster cij , for
j = 1, 2, . . . , k − 1, to the sub-spaces of cluster cik , followed by the multiplication with VT

m,cik

to obtain projection coefficients. As a result, we can avoid computing the residual sub-tensor
in the original tensor space (Equation 6.4), which needs to first reconstruct the corresponding
mode-m sub-tensor from the results of previous iteration.

Optimal Projection

Since the sub-spaces of different clusters may be correlated, each time when a mode-m sub-
tensor joins a new mixture cluster, its mixing coefficients for previously selected mixture clus-
ters should be updated to account for the change in the cluster membership. This guarantees
an optimal projection of the mode-m sub-tensor onto the sub-spaces of all selected mixture
clusters. We therefore introduce the following theorem to update the mixing coefficients of a
mode-m sub-tensor:

Theorem 6.3: The mixing coefficients for the k selected mixture clusters ci1 , ci2 , . . . , cik of

the i-th mode-m sub-tensor A〈mi〉 are given by

u(k)
mi

= Z(k)+

mi
a(k)
mi
, (6.6)

where the superscript ’+’ specifies the Moore-Penrose pseudo-inverse of a matrix, and

u(k)
mi

=
[(

Um,ci1

)
i∗ · · ·

(
Um,cik

)
i∗

]T
, (6.7)

1In this dissertation, the reduced tensor space is referred to as the union of all decomposed cluster sub-spaces,
whose dimensionality is frequently much less than the original tensor space.

65

Z(k)
mi

=



ufm

(
Zci1

N
ą

n
n=1
n6=m

UT
n,ci1

Un,ci1

)
ufm
(
Zci1

)T · · · ufm

(
Zci1

N
ą

n
n=1
n6=m

UT
n,cik

Un,ci1

)
ufm
(
Zcik

)T
...

ufm

(
Zcik

N
ą

n
n=1
n6=m

UT
n,ci1

Un,cik

)
ufm
(
Zci1

)T · · · ufm

(
Zcik

N
ą

n
n=1
n6=m

UT
n,cik

Un,cik

)
ufm
(
Zcik

)T


,

(6.8)

a(k)
mi

=

ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci1

)
ufm
(
Zci1

)T · · · ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,cik

)
ufm
(
Zcik

)TT .
(6.9)

Interested readers may refer to Section 6.4.2 for the mathematical proof of Theorem 6.3.
Intriguingly, Equation 6.6 resembles the least-squares solution to the projection coefficients of
an observation onto a set of basis vectors, where Z

(k)
mi can be regarded as the Gram matrix that

accounts for the correlations between all available cluster sub-spaces. Note that the proposed
K-CTA algorithm is indeed efficient since Km is usually a small positive integer. Moreover,
all of the operations during the clustering stage are performed in the reduced tensor space, and
most of them only need to be computed once at the beginning of this stage.

Post-Processing

To satisfy the orthonormal constraints on basis matrices in Equation 6.1, we additionally de-
compose the mode-m basis matrix of each cluster using principal component analysis to obtain

Um,c = U′m,cWc, (6.10)

where U′m,c ∈ RIm×Rm is a basis matrix whose columns are orthonormal principal components
of Um,c, and the columns of Wc ∈ RRm×Rm contain the projection coefficients of each column
of Um,c. After that, we replace the mode-m basis matrix of cluster c with U′m,c and re-compute
the core tensor of cluster c by the mode-m product Zc×mWc, so that the value of the objective
function in Equation 6.1 is unchanged.

6.2.3 Update Stage

In this stage, the core tensor and basis matrices of each cluster are updated from the results
of the clustering stage. While this problem for CTA can be easily solved by simultaneously
applying tensor approximation to the member sub-tensors of each cluster, sub-space learning
for all clusters at the same time would be difficult for K-CTA, since each mode-m sub-tensor
now belongs toKm different clusters that may be correlated with each other. We thus alternately
decompose one cluster at a time by tensor approximation, while fixing the results of other

66

clusters. To simplify the proposed algorithm, the cluster membership of each mode-m sub-
tensor is not altered in this stage, leaving it to be updated only in the clustering stage.

At the c-th iteration, the core tensor Zc and basis matrices
{
Un,c

}N
n=1

of cluster c are allowed
to change, while those of other clusters are fixed. Equation 6.1 thus can be rewritten as the
following constrained least-squares optimization problem:

min
{Zc,{Un,c}Nn=1}

1

2

∥∥∥∥Rc −Zc

N
ą

n
n=1

Un,c

∥∥∥∥2

F

,

subject to


∀i,

∑C
c=1

∥∥∥(Um,c

)
i∗

∥∥∥
0

= KmRm (sparse constraints),

∀i,
∥∥∥(Um,c

)
i∗

∥∥∥
0
∈ {0, Rm} (membership constraints),

∀n, UT
n,cUn,c = IRn (orthonormal constraints),

(6.11)

where Rc is the residual tensor at the c-th iteration defined as

Rc = A−
C∑
j=1
j 6=c

(
Zj

N
ą

n
n=1

Un,j

)
. (6.12)

By comparing the objective function in Equation 6.11 to Equations 4.1 and 4.2 in [33], we know
that Equation 6.11 can be solved with the aid of tensor decomposition, and Um,c will be the
decomposed mode-m basis matrix of cluster c. To enforce the sparse constraints on Um,c, the
key idea is to only include cluster members in the tensor decomposition process and just update
the non-zero entries of Um,c, which is based on the same concept in the update stage of CTA
(Section 5.3.3) and the codebook update stage of K-SVD [3, 4]. As a result, the membership of
cluster c is fixed, and the zero entries of Um,c remain zeros. However, the non-zero entries of
Um,c are allowed to change with the decomposed results of cluster c at the same time.

6.3 Implementation Issues

In this section, we discuss some practical issues of K-CTA, such as the initial guess of the
core tensor and basis matrices of each cluster (Section 6.3.1) and the degeneracy and conver-
gence problems of K-CTA (Section 6.3.2). We omit a detailed description of the extraction of
global basis matrices, since they can be easily derived based on the same technique described
in Section 5.4.2.

6.3.1 Initial Guess

Similar to CTA, one practical issue of K-CTA is the initial guess of the core tensor and basis
matrices of each cluster. A simple and heuristic solution is to employ the decomposed results of

67

hard clustering. We can execute static CTA to obtain the initial core tensor and basis matrices of
each cluster for further data analysis using K-CTA. Various general soft clustering techniques
for determining the initial membership of each mode-m sub-tensor, such as mixture models
[6, 37, 174] and sparse representation [3, 4, 177], also provide desirable solutions.

Interestingly, while finding a favorable initial guess is a significant issue for CTA and other
iterative algorithms, K-CTA is less sensitive to the quality of an initial solution. As the num-
ber of mixture clusters increases, the importance of an appropriate initial guess for K-CTA de-
creases. This result is not surprising since the impact of inappropriate initial cluster membership
can be compensated by additional mixture clusters. The compensation also can be regarded as
an optimal interpolation scheme from other cluster sub-spaces in the least-squares sense, which
particularly allows smooth transitions across different physical conditions in a practical appli-
cation. In Section 9.2, we will further demonstrate the influence of this characteristic of K-CTA
in the experimental results of bi-scale radiance transfer.

6.3.2 Degeneracy and Convergence

When the total number of clusters is large, we have observed that sometimes all the entries in
a column of a mode-m basis matrix, say Um,c, may become zeros at the end of the clustering
stage, which implies that no mode-m sub-tensors are classified into cluster c. Although this
degeneracy problem does not occur frequently in practice, an empty cluster actually consumes
memory space without any contributions to final approximation errors2. In the worst case, K-
CTA may even be trapped in a poor locally optimal solution when there are too many empty
clusters, as if the total number of clusters were set to a lower value. Our solution to this issue
is to split the cluster with the largest total sum of approximation errors in half by sorting the
approximation error of each mode-m sub-tensor within this cluster. If there are more than one
empty cluster, we can sequentially split non-empty clusters using the above method until each
empty cluster has been assigned at least one mode-m sub-tensor.

Another important question is whether the proposed iterative K-CTA algorithm always con-
verges to a local optimum. Apparently, the answer is no. Similar to K-SVD [3, 4], the con-
vergence of iterative K-CTA is not guaranteed, since only the approximate mixing coefficients
(and also the cluster membership) of each mode-m sub-tensor are derived in the clustering stage.
Therefore, the total sum of approximation errors is not guaranteed to decrease when compared
to the decomposed results of previous iteration. Fortunately, although iterative K-CTA theoreti-
cally does not ensure convergence, we have found that it practically converges within just a few
iterations in the experiments. We currently have no idea about how to efficiently update mixing
coefficients and cluster sub-spaces so that approximation errors are always improved. However,

2When encountering the degeneracy problem, we can save sparse mode-m basis matrices in the compressed
column storage format [5] without memory space overhead. Nevertheless, it is better to employ the compressed
row storage format [5], so that the mixing coefficients of a mode-m sub-tensor are grouped together to reduce the
cache miss rates of CPUs (or GPUs) for efficient run-time reconstruction.

68

a simple and intuitive technique can be applied to prevent bad results due to the divergence
problem. At the end of the update stage, if the total sum of approximation errors increases,
we instead restore the decomposed results of previous iteration. As a result, the approxima-
tion errors of an input tensor will never increase, and the convergence criterion of K-CTA in
Algorithm 6.1 can be always reached.

6.4 Mathematical Proofs

In the following two sections, we present the mathematical proofs of the proposed greedy search
(Section 6.4.1) and optimal projection (Section 6.4.2) methods in the clustering stage of K-CTA,
including Corollary 6.1 for the first mixture cluster as well as Theorems 6.2 and 6.3 for the
remaining mixture clusters.

6.4.1 Greedy Search

In the clustering stage of K-CTA, each mode-m sub-tensor of A is sequentially classified into
Km mixture clusters using a greedy approach, while the core tensor and basis matrices, ex-
cept for the mode-m basis matrix, of each cluster are fixed. Since the cluster membership and
mixing coefficients of each mode-m sub-tensor are independent, Equation 6.1, without the or-
thonormal constraints on Um,1,Um,2, . . . ,Um,C , can be separated into Im distinct constrained
least-squares optimization sub-problems as

min{
(Um,c)i∗

}C
c=1

1

2

∥∥∥∥A〈mi〉 − C∑
c=1

(
Zc ×m

(
Um,c

)
i∗

N
ą

n
n=1
n6=m

Un,c

)∥∥∥∥2

F

,

subject to


∑C

c=1

∥∥∥(Um,c

)
i∗

∥∥∥
0

= KmRm (sparse constraint),

∀c,
∥∥∥(Um,c

)
i∗

∥∥∥
0
∈ {0, Rm} (membership constraints),

(6.13)

for i = 1, 2, . . . , Im. Note that the orthonormal constraints on Um,1,Um,2, . . . ,Um,C in Equa-
tion 6.1 can be enforced from the optimized results of Equation 6.13 using a post-processing
approach as described in Section 6.2.2.

First Mixture Cluster

For the first mixture cluster and corresponding mixing coefficients of a mode-m sub-tensor, we
propose to obtain them from Theorem 5.3 and Corollary 6.1. By following the same approach
as in the proof of Theorem 5.3, it is quite easy to verify the correctness of Corollary 6.1.

Proof of Corollary 6.1: The first mixture cluster ci1 of the i-th mode-m sub-tensor A〈mi〉 is
selected as if Km = 1. Equation 6.13 thus can be further simplified into Equation 5.13. From

69

Equation 5.19, the least-squares solution to Equation 5.13 is the projection coefficients of A〈mi〉
onto the sub-spaces of cluster ci1 so that the approximation error of A〈mi〉 is minimized. Equa-
tion 6.3 is thus proved.

Remaining Mixture Clusters

After selecting the first mixture cluster of a mode-m sub-tensor, its remaining mixture clusters
are then sequentially derived from its previously determined mixture clusters and mixing coef-
ficients by applying Theorem 6.2. The mathematical proof of Theorem 6.2 is described in the
following paragraph.

Proof of Theorem 6.2: For the k-th mixture cluster cik of the i-th mode-m sub-tensor A〈mi〉
other than ci1 , it is determined as if Km = k. When previously selected mixture clusters
ci1 , ci2 , . . . , cik−1

and the corresponding mixing coefficients are fixed, the objective function
in Equation 6.13 becomes

1

2

∥∥∥∥R(k)
〈mi〉 −Zcik

×m
(
Um,cik

)
i∗

N
ą

n
n=1
n6=m

Un,cik

∥∥∥∥2

F

, (6.14)

where R(k)
〈mi〉 is defined as Equation 6.4. By following the same approach as in the proofs of

Theorem 5.3 and Corollary 6.1, the minimization of Equation 6.14 is equivalent to the maxi-
mization of

1

2

∥∥∥∥ufm

(
R(k)
〈mi〉

N
ą

n
n=1
n6=m

UT
n,cik

)
VT
m,cik

∥∥∥∥2

F

. (6.15)

Substituting Equation 6.4 for R(k)
〈mi〉 in Equation 6.15 then yields the objective function in Equa-

tion 6.5. Theorem 6.2 thus is proved by identifying that the cluster membership is implicitly
specified in the solution to Equation 6.13.

6.4.2 Optimal Projection

In the clustering stage of K-CTA, each time when adding a new mixture cluster to a mode-m
sub-tensor, its mixing coefficients for previously determined mixture clusters should be updated
by applying the proposed optimal projection algorithm (Theorem 6.3). This actually guarantees
an optimal solution of mixing coefficients with respect to all selected mixture clusters, since the
sub-spaces of different clusters may have strong correlations. For completeness, we present the
detailed mathematical proof of Theorem 6.3 as follows.

Proof of Theorem 6.3: Suppose that total k mixture clusters ci1 , ci2 , . . . , cik of the i-th mode-
m sub-tensor A〈mi〉 have been selected as if Km = k. Similar to Equations 5.14 and 5.15,

70

since the constraints in Equation 6.13 can be satisfied by setting
(
Um,c

)
i∗ to zeros for all

c /∈ {ci1 , ci2 , . . . , cik}, Equation 6.13 can be simplified into a standard unconstrained least-
squares problem whose objective function is

1

2

∥∥∥∥∥ufm(A〈mi〉)−
k∑
j=1

((
Um,cij

)
i∗ufm

(
Zcij

N
ą

n
n=1
n6=m

Un,cij

))∥∥∥∥∥
2

2

. (6.16)

By taking the first-order partial derivatives of Equation 6.16 with respect to each entry of(
Um,ci1

)
i∗ and setting the resulting derivatives to zeros, we have the following linear equation:

k∑
j=1

(
ufm

(
Zci1

N
ą

n
n=1
n6=m

Un,ci1

)
ufm

(
Zcij

N
ą

n
n=1
n6=m

Un,cij

)T (
Um,cij

)T
i∗

)
= ufm

(
Zci1

N
ą

n
n=1
n6=m

Un,ci1

)
ufm
(
A〈mi〉

)T
.

(6.17)

The right side of Equation 6.17 can be rewritten as

ufm

(
Zci1

N
ą

n
n=1
n6=m

Un,ci1

)
ufm
(
A〈mi〉

)T
= ufm

(
Zci1

)(N⊗
n=1
n6=m

UT
n,ci1

)
ufm
(
A〈mi〉

)T

= ufm
(
Zci1

)(
ufm
(
A〈mi〉

)(N⊗
n=1
n6=m

Un,ci1

))T

= ufm
(
Zci1

)
ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci1

)T
. (6.18)

Similarly, the left side of Equation 6.17 is equal to

k∑
j=1

(
ufm

(
Zci1

N
ą

n
n=1
n6=m

Un,ci1

)
ufm

(
Zcij

N
ą

n
n=1
n6=m

Un,cij

)T (
Um,cij

)T
i∗

)

=
k∑
j=1

(
ufm

(
Zci1

N
ą

n
n=1
n6=m

Un,ci1

)(N⊗
n=1
n6=m

Un,cij

)
ufm
(
Zcij

)T (
Um,cij

)T
i∗

)

=
k∑
j=1

(
ufm

(
Zci1

N
ą

n
n=1
n6=m

Un,ci1

N
ą

n
n=1
n6=m

UT
n,cij

)
ufm
(
Zcij

)T (
Um,cij

)T
i∗

)

=
k∑
j=1

(
ufm

(
Zci1

N
ą

n
n=1
n6=m

UT
n,cij

Un,ci1

)
ufm
(
Zcij

)T(
Um,cij

)T
i∗

)
. (6.19)

By following Equations 6.17–6.19 with respect to each entry of
(
Um,cij

)
i∗ for all j, we have

71

the following set of linear equations:

k∑
j=1

(
ufm

(
Zci1

N
ą

n
n=1
n6=m

UT
n,cij

Un,ci1

)
ufm
(
Zcij

)T(
Um,cij

)T
i∗

)
= ufm

(
Zci1

)
ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci1

)T
,

...
k∑
j=1

(
ufm

(
Zcik

N
ą

n
n=1
n6=m

UT
n,cij

Un,cik

)
ufm
(
Zcij

)T(
Um,cij

)T
i∗

)
= ufm

(
Zcik

)
ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,cik

)T
,

(6.20)

which can be further written in a matrix form as Z
(k)
miu

(k)
mi = a

(k)
mi , where u

(k)
mi , Z

(k)
mi , and a

(k)
mi are

respectively defined in Equations 6.7–6.9. As a result, we can conclude that Equation 6.6 gives
the least-squares solution of

(
Um,ci1

)
i∗,
(
Um,ci2

)
i∗, . . . ,

(
Um,cik

)
i∗ to Equation 6.16. Theorem

6.3 thus is proved.

72

Chapter 7

Application I: Illumination and
Reflectance Functions

This chapter presents the applications of the proposed spherical radial basis function (SRBF)
representations to important illumination and reflectance functions in computer graphics and vi-
sion, such as high dynamic range environment maps (Section 7.1) and bidirectional reflectance
distribution functions (Section 7.2). In the third part of this chapter, we also describe an im-
portance sampling scheme for direct illumination estimation in ray tracing algorithms, where
the materials of object surfaces are modeled with the scattered univariate SRBF representation
(Section 7.3).

7.1 High Dynamic Range Environment Maps

7.1.1 Problem Formulation

The dynamic range of intensities between light and dark areas in a real-world scene is frequently
much greater than traditional digital imaging techniques and display devices. Therefore, the
high dynamic range (HDR) environment map [34, 36] particularly aims at capturing the incident
radiance of object surfaces from all illumination directions in a natural scene with a wide range
of intensity levels (Figure 7.1). When adopting a HDR environment map as the light source in a
real-time rendering application, the visual fidelity of rendered images can be greatly enhanced
to simulate the surface irradiance under realistic illumination.

It is obvious that a HDR environment map is a real-valued univariate spherical function
L(ωl) ∈ R that depends on the illumination direction ωl on the unit sphere S2. To efficiently
shade objects using a HDR environment map, we can therefore model the lighting environ-
ment with the scattered univariate SRBF representation as described in Section 3.4. The entire
process is formulated as an optimization problem, and handled by minimizing squared approx-
imation errors.

Given a desired number of univariate SRBFs J for a HDR environment map L(ωl), we

73

(a) Eucalyptus Grove (b) Grace Cathedral (c) St. Peter’s Basilica

Figure 7.1: Examples of HDR environment maps from the light probe image gallery [35].
Each image shows the spectral radiance (red, green, and blue light) from different illumination
directions.

intend to learn three sets of SRBF parameters: the basis coefficient set
{
β

(L)
j ∈ R

}J
j=1

, the center

set
{
ξ

(L)
j ∈ S2

}J
j=1

, and the bandwidth set
{
λ

(L)
j ∈ R

}J
j=1

, such that the following unconstrained
least-squares optimization problem is solved:

min{
β

(L)
j ,ξ

(L)
j ,λ

(L)
j

}J
j=1

1

2

∫
S2

(
L(ωl)− L̂(ωl)

)2

dωl, (7.1)

where

L̂(ωl) =
J∑
j=1

β
(L)
j G

(
ωl · ξ(L)

j |λ
(L)
j

)
. (7.2)

It is then straightforward to derive the SRBF parameters in Equation 7.1 by applying Algorithm
3.1.

7.1.2 Experimental Results

The experiments and simulation timings of HDR environment map approximation were con-
ducted and measured on a workstation with an Intel Core 2 Extreme QX9650 CPU, an NVIDIA
GeForce 9800 GX2 graphics card, and 8 gigabytes main memory under Microsoft Windows
Vista operating system. Parts of the fitting process, including the initial guess of SRBF param-
eters and gradient computation, were accelerated on GPUs using NVIDIA Compute Unified

Device Architecture (CUDA) [128]. The univariate Gaussian SRBFs were adopted to represent
the HDR environment maps in our experiments. In general, we have found no significant dif-

74

0%

20%

40%

60%

80%

100%

150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

S
q

u
a

re
d

 e
rr

o
r

ra
ti

o

Number of Coefficients

SH Haar

SRBF N-SRBF

Representation

(a) Grace Cathedral

0%

20%

40%

60%

80%

100%

150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

S
q

u
a

re
d

 e
rr

o
r

ra
ti

o

Number of Coefficients

SH Haar

SRBF N-SRBF

Representation

(b) St. Peter’s Basilica

Figure 7.2: Plots of the squared error ratio versus the number of coefficients/parameters based
on different functional representations for HDR environment maps, including spherical har-
monics (SH); area-weighted Haar wavelets (Haar) [125]; scattered univariate SRBFs (SRBF);
scattered univariate SRBFs with non-negative basis coefficients (N-SRBF).

ference between various types of univariate SRBFs for approximating HDR environment maps,
but univariate Gaussian SRBFs are more locally compact than univariate Abel-Poisson SRBFs
and handle most common cases very well. The SRBF center and bandwidth sets were con-
strained to be the same for red, green, and blue channels of a HDR environment map, since
separately fitting the data of each channel only slightly reduces approximation errors, but in-
creases computational costs and storage space by a factor of 2 or more.

Figure 7.2 plots the squared error ratio versus the number of coefficients/parameters for dif-
ferent functional representations, including spherical harmonics, area-weighted Haar wavelets
[125], and the proposed scattered univariate SRBF representation (with/without non-negative
basis coefficient constraints). Figures 7.3 and 7.4 further demonstrate the reconstructed results
of various HDR environment maps. Note that we compare the functional representations based
on the same total number of coefficients/parameters, namely the same storage space. For spher-
ical harmonics and area-weighted Haar wavelets, the number of coefficients is equivalent to the
number of basis functions, whereas the number of parameters for the scattered univariate SRBF
representation is six times the number of basis functions. Typically, fitting a 6×256×256 HDR
environment map with 300 univariate SRBFs (total 1800 parameters) takes about 25 minutes
on average. Figures 7.2–7.4 obviously show that the proposed approach achieves the lowest
squared approximation error among the three functional representations and captures most fea-
tures of the HDR environment map with only a few univariate SRBFs. By contrast, the results
of the area-weighted Haar wavelets are blocky and fail to distinguish some features, especially
the high-energy lights at the basilica ceiling. For spherical harmonics, since high-energy signals
dominate over low-energy ones, there are a lot of unusual ringing artifacts in the reconstructed
results. Although a simple windowing technique can reduce the ringing effects, they can not be
totally eliminated owing to the wide range of intensity levels in the HDR environment maps,

75

(96.77%) (68.49%) (1.63%)
(a) Number of coefficeints/parameters: 600

(95.72%) (37.59%) (0.87%)
(b) Number of coefficeints/parameters: 1200

(95.1%) (25.48%) (0.71%)
(c) Number of coefficeints/parameters: 1800

Figure 7.3: Reconstructed images of the HDR environment map St. Peter’s Basilica based
on different functional representations. From left to right in each row: raw data; spherical
harmonics; area-weighted Haar wavelets [125]; scattered univariate SRBFs with non-negative
basis coefficients. The squared error ratio of each reconstructed image is shown in parentheses.

76

(41.88%) (25.25%) (5.63%)
(a) Eucalyptus Grove

(67.59%) (22.92%) (2.39%)
(b) Grace Cathedral

(6.28%) (3.68%) (1.26%)
(c) The Uffizi Gallery

Figure 7.4: Reconstructed images of the HDR environment maps Eucalyptus Grove, Grace
Cathedral, and The Uffizi Gallery based on different functional representations. From left to
right in each row: raw data; spherical harmonics; area-weighted Haar wavelets [125]; scattered
univariate SRBFs with non-negative basis coefficients. The number of coefficeints/parameters
for each functional representation is 1800, and the squared error ratio of each reconstructed
image is shown in parentheses.

77

(a) Blue Metallic Paint (b) Krylon Blue (c) Nickel

Figure 7.5: Examples of BRDFs from the databases of Cornell University [140] and Mitsubishi
Electric Research Laboratories [120]. Each image shows the spectral reflectance (red, green,
and blue light) in a single view direction from different illumination directions.

which may exceed six orders of magnitude.
Moreover, it is recommended to constrain the basis coefficients as non-negative, which can

be achieved by simply setting the lower bounds of basis coefficients to zeros for the L-BFGS-B
optimization solver [16, 212]. According to our experiments, non-negative basis coefficients
only result in a slight increase in approximation errors (Figure 7.2), but tend to provide much
smoother transitions than coefficients without non-negative constraints when rotating the HDR
environment map.

7.2 Bidirectional Reflectance Distribution Functions

The surface reflectance properties significantly affect the appearance of real-world objects.
Computer graphics and vision researchers are particularly interested in representing the inter-
action between materials and light in an efficient way. One of the most popular models is the
bidirectional reflectance distribution function (BRDF). BRDFs assume that light hits a surface
point from an illumination direction ωl, and leaves the surface from the same point in a view
direction ωv on the hemisphere to which ωl belongs. As a result, a BRDF is a real-valued bi-
variate spherical function ρ(ωl, ωv) ∈ R that gives the reflectance of a surface point with respect
to the illumination and view directions. In some literatures, BRDFs are instead defined over the
entire unit sphere S2. This further combines the reflective and transmissive parts of light trans-
port together into one material model for transparent surfaces. Figure 7.5 shows some examples
of BRDFs.

In this dissertation, we consider BRDFs measured from real-world opaque object surfaces,

78

and introduce two compact functional models for BRDFs based on univariate and multivariate
SRBFs. The first model relies on discretizing the illumination (or view) domain of a BRDF,
so that the reflectance distribution of each illumination (or view) direction can be separately
described using the scattered univariate SRBF representation (Section 7.2.1). In addition, the
second model instead approximates a BRDF in its intrinsic domain to derive a continuous func-
tional model based on the parameterized multivariate SRBF representation (Section 7.2.2).

7.2.1 Univariate SRBFs

Problem Formulation

Recall that the proposed scattered univariate SRBF representation can only handle a univariate
spherical function, but the BRDF is intrinsically a bi-variate spherical function of illumination
and view directions. This implies that the scattered univariate SRBF representation can not
be directly applied to model a BRDF. Fortunately, a measured BRDF is one set of discrete re-
flectance observations in the most common case. The key idea is that if we collect all the BRDF
data of a single view direction, the resulting data set will be the observations of a univariate
spherical function, which describes the reflectance values in this view direction from different
illumination directions.

More formally, let Ωv = {ωv,i∈ S2}IΩvi=1 denote the set of sampled view directions for a mea-
sured BRDF ρ(ωl, ωv), where IΩv is the total number of sampled view directions. Then, all the
BRDF data of the i-th view direction ωv,i form a set of observations for the univariate spherical
function ρi(ωl) = ρ(ωl, ωv,i), which can be roughly interpreted as the function of exitant radi-
ance received in ωv,i from different illumination directions. Similar to the HDR environment
maps, each resulting univariate spherical function is separately approximated with a linear com-
bination of J univariate SRBFs as

∀i, ρi(ωl) ≈ ρ̂i(ωl) =
J∑
j=1

β
(ρi)
j G

(
ωl · ξ(ρi)

j |λ
(ρi)
j

)
, (7.3)

where
{
β

(ρi)
j ∈ R

}J
j=1

,
{
ξ

(ρi)
j ∈ S2

}J
j=1

, and
{
λ

(ρi)
j ∈ R

}J
j=1

are respectively the basis coefficient
set, the center set, and the bandwidth set of i-th illumination-dependent reflectance function
ρi(ωl). The SRBF parameters in Equation 7.3 thus can be obtained by solving the following set
of total IΩv distinct unconstrained least-squares optimization problems:

∀i, min{
β

(ρi)
j ,ξ

(ρi)
j ,λ

(ρi)
j

}J
j=1

1

2

∫
S2

(
ρi(ωl)− ρ̂i(ωl)

)2

dωl. (7.4)

Note that one may instead discretize the illumination domain of a BRDF and then respec-
tively optimize the resulting view-dependent spherical function of each sampled illumination
direction. The choice of discretizing which domain strongly depends on the target application.

79

We will further discuss this subject in Section 7.3 and present an application of the scattered
univariate SRBF representation for BRDFs based on discretized view domain in ray tracing
algorithms.

Run-Time Rendering

Based on the scattered univariate SRBF representation, the shading color of a pixel is obtained
from the SRBF parameters of discretized reflectance functions ρ1(ωl), ρ1(ω2), . . . , ρIΩv(ωl) at
run-time. All of the SRBF parameters are stored in one or more two-dimensional textures if
necessary. To achieve smooth view transitions, we apply linear interpolation on the recon-
structed results of the K nearest neighbors of a view direction. The rendering process thus
consists of the following steps:

1. Search for the K nearest neighbors of current novel view direction from Ωv.

2. For each neighboring direction, sample the texture(s) for all the corresponding SRBF pa-
rameters and then reconstruct the reflectance value of current novel illumination direction
as Equation 7.3.

3. The final shading color is then given by linearly interpolating the reconstructed reflectance
value of each neighboring direction.

To efficiently perform Step 1 on GPUs, we construct a two-dimensional index texture in the
parabolic parameterization [62] (or a cubic index texture) to record the indices of the K nearest
neighbors for the associated direction of each texel in this texture. In current implementation,
we only consider a single texel in the index texture, whose associated direction is nearest to
current novel view direction. Note that this approach requires a high-resolution index texture
(typically 256×256 in the parabolic parameterization or 6×128×128 for the cubic format) to
avoid visible artifacts and will increase the amount of data for rendering by a substantial factor.
For computing the interpolation weights, the coordinates of each element in Ωv also need to be
stored in a texture or transferred to buffers on GPUs.

7.2.2 Multivariate SRBFs

Problem Formulation

Although the scattered univariate SRBF representation can accurately approximate BRDFs, the
run-time rendering process still needs carefully designed interpolation techniques for smooth
transitions across novel illumination/view directions. It is also not compact and frequently
provides limited compression ratios when counting the additional auxiliary data for smooth
interpolation. Fortunately, an important observation is that BRDFs are intrinsically bi-variate
spherical functions. This implies that it would be better to represent BRDFs in their intrinsic
domain using multivariate SRBFs.

80

Table 7.1: Statistics and timing measurements of different SRBF representations for BRDFs,
including the scattered univariate SRBF (SU-SRBF) representation and the parameterized mul-
tivariate SRBF (PM-SRBF) representation. All compressed data were stored as half-precision
(16-bit) floating point numbers [65].

Material Blue Metallic Paint Krylon Blue Nickel

Illumination/view directions 1536 1536 1536

Raw data (MB) 27 27 27

Representation SU-SRBF PM-SRBF SU-SRBF PM-SRBF SU-SRBF PM-SRBF

SRBFs: J 5 6 4 8 5 6

Parameterized variates: N ′ - 3 - 4 - 3

Compressed data (KB) 90 0.15 72 0.25 90 0.15

Squared error ratio 0.36% 0.34% 1.01% 1.02% 0.51% 0.44%

Compression time (min.) 9.54 10.81 10.7 19.36 8.06 10.49

Based on the parameterized multivariate SRBF representation (Section 4.3), we can approx-
imate the BRDF ρ(ωl, ωv) with total J multivariate SRBFs by Equation 4.10 with the parameter-
ization functions defined in Equation 4.11. It is then straightforward to apply Algorithm 4.3 to
derive the SRBF parameters by solving the following unconstrained least-squares optimization
problem:

min
Υ(ρ)

1

2

∫
S2

∫
S2

(
ρ(ωl, ωv)− ρ̂′

(
Ψ(ρ)

))2

dωldωv, (7.5)

where Υ(ρ) =
{{
β

(ρ)
j ,Ξ

(ρ)
j ,Λ

(ρ)
j

}J
j=1
,
{

Θ
(ρ)
n

}N ′
n=1

}
for Ξ

(ρ)
j =

{
ξ

(ρ)
j,n

}N ′
n=1

and Λ
(ρ)
j =

{
λ

(ρ)
j,n

}N ′
n=1

.

Run-Time Rendering

Unlike univariate SRBFs, the rendering process of approximated BRDFs based on multivariate
SRBFs is quite simple and intuitive. Since the proposed parameterized multivariate SRBF rep-
resentation is a continuous functional model, no additional interpolation techniques for smooth
transitions across different illumination (or view) directions are required. This implies that there
is no need to generate auxiliary data for efficient run-time rendering. As a result, the rendering
process corresponds to directly evaluating Equations 4.10 and 4.11 on GPUs. Note that the de-
rived multivariate SRBF parameters are frequently compact enough to be stored in GPU buffers
rather than textures, which will slightly reduce data access time.

7.2.3 Experimental Results

The experiments and simulation timings of BRDF approximation were conducted and measured
on a workstation with an Intel Core 2 Extreme QX9650 CPU, an NVIDIA GeForce 9800 GX2
graphics card, and 8 gigabytes main memory under Microsoft Windows Vista operating sys-

81

Table 7.2: Comparisons of the rendering performance of different SRBF representations for
BRDFs, including the scattered univariate SRBF (SU-SRBF) representation and the parame-
terized multivariate SRBF (PM-SRBF) representation. The screen resolution and the number of
directional light sources were respectively set to 640×480 and 3. In the row Auxiliary data, we
list the amount of additional data for efficient run-time rendering. All floating point numbers
were stored in half precision [65].

Model Buddha Bunny Venus

Material Krylon Blue Blue Metallic Paint Nickel

Vertices 25k 36k 25k

Representation SU-SRBF PM-SRBF SU-SRBF PM-SRBF SU-SRBF PM-SRBF

Auxiliary data (KB) 1548 0 1548 0 1548 0

Total data (KB) 1620 0.25 1638 0.15 1638 0.15

Frames per second 129.35 270.54 112.23 548.79 142.41 672.36

tem. We also employed NVIDIA CUDA [128] to accelerate parts of the optimization process
and Microsoft Direct3D 10 [15] for run-time rendering on GPUs. In our experiments, the uni-
variate and multivariate Gaussian SRBFs were adopted to represent BRDFs with non-negative
constraints on basis coefficients. The SRBF center and bandwidth sets were also constrained
to be the same for red, green, and blue channels of a BRDF. To generate high-quality images,
we employed per-pixel lighting and performed the rendering process mostly in the pixel shader.
The measured BRDFs were provided in courtesy of Cornell University [140] and Mitsubishi

Electric Research Laboratories (MERL) [113, 114, 120].
Table 7.1 compares the statistics and timing measurements of different SRBF representa-

tions for BRDFs, including the scattered univariate SRBF representation (Section 7.2.1) and
the parameterized multivariate SRBF representation (Section 7.2.2). For parameterized multi-
variate SRBFs, the first three parameterization coefficient sets were initialized as the half-way,
illumination, and view parameterizations before optimization, while the remainders were set to
random real numbers. Figure 7.6 also plots the squared error ratio versus the number of SRBFs
for different SRBF representations. It particularly shows that with the same number of SRBFs,
the approximation errors of the parameterized multivariate SRBF representation are close to
those of the scattered univariate SRBF representation, but the amount of compressed data for
the parameterized multivariate SRBF representation is much more compact from Table 7.1.

In Figures 7.7–7.10, we further demonstrate the reconstructed and rendered images of var-
ious measured BRDFs based on the proposed SRBF representations. These figures show that
the proposed approaches can provide high-quality and accurate approximation for real-world
BRDFs with different reflectance properties. Table 7.2 also compares the rendering perfor-
mance of the proposed SRBF representations for BRDFs at run-time. It clearly reveals that both
SRBF representations can easily achieve real-time rendering rates for a medium-size model.

In general, the multivariate SRBF representation for BRDFs is superior to the univariate

82

0%

1%

2%

3%

4%

5%

6%

1 2 3 4 5 6 7 8 9 10

S
q

u
a

re
d

 e
rr

o
r

ra
ti

o

Number of SRBFs

SU-SRBF PM-SRBF

Representation

(a) Blue Metallic Paint

0%

2%

4%

6%

8%

10%

12%

14%

1 2 3 4 5 6 7 8 9 10

S
q

u
a

re
d

 e
rr

o
r

ra
ti

o

Number of SRBFs

SU-SRBF PM-SRBF

Representation

(b) Nickel

Figure 7.6: Plots of the squared error ratio versus the number of basis functions based on
different SRBF representations for BRDFs, including scattered univariate SRBFs (SU-SRBF)
and parameterized multivariate SRBFs (PM-SRBF).

model in terms of storage space and rendering performance. Univariate SRBFs usually re-
quire less number of basis functions to achieve approximation errors comparable to multivari-
ate SRBFs, but they have to respectively tabulate the parameters of different view directions.
This certainly results in a limited compression ratio for the univariate representation. Mean-
while, multivariate SRBFs can additionally exploit the coherence in different view directions
to provide a more compact representation for BRDFs. As for run-time rendering, univariate
SRBFs need auxiliary texture data to efficiently interpolate the reconstructed reflectance values
of nearby view directions for smooth transitions. While the auxiliary data consume GPU mem-
ory bandwidth, the interpolation process further increases the total computational costs. By
contrast, although the reconstruction costs of univariate SRBFs are theoretically lower, the ap-
proximated BRDFs based on multivariate SRBFs are much more compact so that GPU memory
bandwidth can be substantially saved. Interpolation is also inherent in the multivariate SRBF
model without additional memory or computational overhead. From the discussions above, it
might seem that the univariate SRBF representation for BRDFs is rather useless. However, the
univariate model is suitable for some graphics applications, such as importance sampling in ray
tracing algorithms. We will present more details about this topic in Section 7.3.

7.3 Importance Sampling of Direct Illumination

In computer graphics, one of the most representative global illumination algorithms might be
ray tracing. Pioneered by Whitted [202], ray tracing simulates global light transport by shooting
rays from the viewpoint, finding the nearest intersection points with the scene, and determinis-
tically generating new rays for further tracing from each intersection point. This process is then
repeated for each new ray in a recursive way until no intersection points are found. As a result,

83

(0.23%) (0.19%)
(a) View direction – zenith angle: 55.63◦, azimuth angle: 43.15◦

(0.29%) (0.41%)
(b) View direction – zenith angle: 80.72◦, azimuth angle: 299.36◦

(0.23%) (0.38%)
(c) View direction – zenith angle: 17.68◦, azimuth angle: 101.31◦

Figure 7.7: Reconstructed images of the BRDF Blue Metallic Paint based on different SRBF
representations. From left to right in each row: raw data; scattered univariate SRBFs; param-
eterized multivariate SRBFs. The squared error ratio of each reconstructed image is shown in
parentheses. For the configurations of each SRBF representation, please refer to Table 7.1.

84

(0.88%) (0.66%)
(a) View direction – zenith angle: 55.63◦, azimuth angle: 43.15◦

(1.73%) (1.72%)
(b) View direction – zenith angle: 80.72◦, azimuth angle: 299.36◦

(0.74%) (0.99%)
(c) View direction – zenith angle: 17.68◦, azimuth angle: 101.31◦

Figure 7.8: Reconstructed images of the BRDF Krylon Blue based on different SRBF repre-
sentations. From left to right in each row: raw data; scattered univariate SRBFs; parameterized
multivariate SRBFs. The squared error ratio of each reconstructed image is shown in parenthe-
ses. For the configurations of each SRBF representation, please refer to Table 7.1.

85

(0.39%) (0.3%)
(a) View direction – zenith angle: 55.63◦, azimuth angle: 43.15◦

(0.88%) (0.86%)
(b) View direction – zenith angle: 80.72◦, azimuth angle: 299.36◦

(0.24%) (0.42%)
(c) View direction – zenith angle: 17.68◦, azimuth angle: 101.31◦

Figure 7.9: Reconstructed images of the BRDF Nickel based on different SRBF representations.
From left to right in each row: raw data; scattered univariate SRBFs; parameterized multivariate
SRBFs. The squared error ratio of each reconstructed image is shown in parentheses. For the
configurations of each SRBF representation, please refer to Table 7.1.

86

(a) Buddha with
Krylon Blue

(b) Bunny with Blue Metallic Paint (c) Venus with Nickel

Figure 7.10: Rendered images based on different SRBF representations for BRDFs. From top
to bottom: raw data: scattered univariate SRBFs; parameterized multivariate SRBFs. For the
configurations of SRBF representations and run-time rendering, please refer to Tables 7.1 and
7.2.

87

many global illumination effects, such as reflection, refraction, and shadows, can be faithfully
captured as inherent parts of the simulation. Interested readers may refer to the book by Pharr
and Humphreys [137] for a comprehensive review on ray tracing algorithms.

Beyond the deterministic approach, ray tracing was later extended into a stochastic process
by Cook [24] and Kajiya [73] to prevent aliasing artifacts in synthesized images. The key con-
cept of the stochastic framework is to employ Monte Carlo sampling to estimate the integral in
the rendering equation [73]. Nevertheless, a brute-force Monte Carlo method based on random
samples is frequently time-consuming and tends to produce noisy results.

To solve this problem, importance sampling is a widely-adopted variance reduction tech-
nique for increasing the efficiency of Monte Carlo methods. It generates samples according
to their contributions to the final estimation, namely their ’importance’. If important samples
are considered more frequently, the variance of estimation can be greatly reduced even with
fewer number of samples. Based on this concept, we propose an importance sampling method
of direct illumination for stochastic ray tracing algorithms. Our approach relies on producing
new rays for intersection points from the distributions of their associated BRDFs. The proposed
univariate SRBF representation for BRDFs (Section 7.2.1) especially facilitates identifying im-
portant sampling rays in an efficient way.

Portions of the proposed importance sampling algorithm were also published in our paper
[178]. Nevertheless, we focus more on its mathematical part and describe the fundamental
concept from a different point of view in this dissertation.

7.3.1 Problem Formulation

For distant light sources and direct illumination, the rendering equation [73] over the unit sphere
S2 can be written as

Lo,p(ωv) =

∫
S2

Lin(ωl)ρp(ωl, ωv)Vp(ωl) |ωl · np| dωl, (7.6)

where Lo,p(ωv) ∈ R denotes the exitant radiance from a surface point p ∈ R3 in view direc-
tion ωv ∈ S2, Lin(ωl) ∈ R is the incident radiance from a distant light source in illumination
direction ωl ∈ S2. Moreover, ρp(ωl, ωv) ∈ R, Vp(ωl) ∈ {x ∈ R | 0 ≤ x ≤ 1}, and np ∈ S2 re-
spectively represent the BRDF, the visibility function from the light source in direction ωl, and
the surface normal at point p.

To estimate the integral in Equation 7.6 using important sampling, we can generate a set of
N illumination directions Ωl = {ωl,n}Nn=1 from a conditional probability distribution function
Pr(ωl|p, ωv) on S2, and apply the following Monte Carlo estimator:

Lo,p(ωv) ≈ L̂o,p(ωv) =
1

N

N∑
n=1

Lin(ωl,n)ρp(ωl,n, ωv)Vp(ωl,n) |ωl · np|
Pr(ωl,n|p, ωv)

. (7.7)

88

There are many choices of the distribution function Pr(ωl|p, ωv). For example, one may gener-
ate sampling directions from the distribution of the BRDF [88], the incident radiance [2], or the
product of them [22].

In this dissertation, we employ BRDF importance sampling and construct Pr(ωl|p, ωv) from
the distribution of ρp(ωl, ωv) for a given view direction. As described in Section 7.2.1, suppose
that ρp(ωl, ωv) is view discretized into a set of illumination-dependent reflectance functions
{ρp,i(ωl) ∈ R}IΩvi=1 with respect to a set of view directions Ωv = {ωv,i ∈ S2}IΩvi=1. Each discretized
reflectance function is then approximated with scattered univariate SRBFs by

∀i, ρp,i(ωl) ≈ ρ̂p,i(ωl) =
J∑
j=1

β
(ρp,i)
j G

(
ωl · ξ

(ρp,i)
j |λ(ρp,i)

j

)
, (7.8)

where
{
β

(ρp,i)
j ∈ R

}J
j=1

,
{
ξ

(ρp,i)
j ∈ S2

}J
j=1

, and
{
λ

(ρp,i)
j ∈ R

}J
j=1

respectively denote the basis
coefficient set, the center set, and the bandwidth set of ρp,i(ωl). Here, we choose to discretize
the view domain of ρp(ωl, ωv) just because rays are shot from the viewpoint. If the ray tracing
process begins from light sources, one should discretize the illumination domain of ρp(ωl, ωv)

instead. Note that to employ the approximated results for importance sampling, we need to ad-
ditionally constrain that all the basis coefficients are non-negative, namely ∀i, ∀j, β(ρp,i)

j ≥ 0.
Each approximated illumination-dependent reflectance function is then transformed into a con-
ditional probability distribution function as

∀i, Pr(ωl|p, ωv,i) =
J∑
j=1

β
′(ρp,i)
j G′

(
ωl · ξ

(ρp,i)
j |λ(ρp,i)

j

)
, (7.9)

where Pr(ωl|p, ωv,i) denotes the density distribution of ρ̂p,i(ωl), and

∀i, ∀j, β′(ρp,i)j =
β

(ρp,i)
j∑J

j=1 β
(ρp,i)
j

, (7.10)

∀i, ∀j, G′
(
ωl · ξ

(ρp,i)
j |λ(ρp,i)

j

)
=

G
(
ωl · ξ

(ρp,i)
j |λ(ρp,i)

j

)∫
S2

G
(
ωl · ξ

(ρp,i)
j |λ(ρp,i)

j

)
dωl

. (7.11)

From Equation 7.9, it is easy to verify that Pr(ωl|p, ωv,i) is in fact a mixture model for the
distribution of ρp,i(ωl). To sample an illumination direction from Pr(ωl|p, ωv,i), we can first
select the j-th univariate SRBF for sampling with probability β

′(ρp,i)
j , and then generate an

illumination direction on S2 from the j-th normalized univariate SRBF G′
(
ωl · ξ

(ρp,i)
j |λ(ρp,i)

j

)
.

Since a normalized univariate SRBF is circularly symmetric around its center, sampling a
direction on S2 from G′

(
ωl · ξ

(ρp,i)
j |λ(ρp,i)

j

)
can be solved by a two-stage process [178, 200].

First, G′
(
ωl · ξ

(ρp,i)
j |λ(ρp,i)

j

)
is transformed into a marginal density distribution in the interval

89

[0, π] by

Pr
(
φ1|λ

(ρp,i)
j

)
=

∫ 2π

0

G′
(
ωl · ξ

(ρp,i)
j |λ(ρp,i)

j

)
sinφ1dφ2

=

∫ 2π

0

G′
(

cosφ1|λ
(ρp,i)
j

)
sinφ1dφ2,

(7.12)

where φ1 and φ2 respectively denote the zenith and azimuth angles of the sampling direction ωl
in the spherical coordinate system. The zenith angle thus can be generated from Pr

(
φ1|λ

(ρp,i)
j

)
using the traditional inversion method or Metropolis-Hastings algorithm. Second, the azimuth
angle is then determined by uniformly generating a random real number in the interval [−π, π].
Note that the sampled zenith and azimuth angles are not absolute coordinates, but with respect to
the SRBF center ξ(ρp,i)

j . The final sampling direction thus is given by increasing (or decreasing)
the zenith angle of ξ(ρp,i)

j by φ1, and then rotating the resulting direction about ξ(ρp,i)
j by angle

φ2.

7.3.2 Importance Sampling Algorithm

Based on the scattered univariate SRBF representation for BRDFs (Equations 7.8 and 7.9), the
proposed importance sampling algorithm for stochastic ray tracing thus consists of the following
steps:

1. From the viewpoint, shoot a ray that passes a sample point on the image plane, and find
the nearest intersection point p of this ray with the scene.

2. At point p, search for the K nearest neighbors of current novel view direction ωv from
Ωv.

3. Linearly interpolate the density distribution (Equation 7.9) of each neighboring direction
to obtain Pr(ωl|p, ωv).

4. Sample total N illumination directions from Pr(ωl|p, ωv).

5. The final shading color is then given by evaluating Equation 7.7.

7.3.3 Experimental Results

The experiments and simulation timings of importance sampling were conducted and measured
on a workstation with an Intel Core 2 Extreme QX9650 CPU, an NVIDIA GeForce 9800 GX2
graphics card, and 8 gigabytes main memory under Microsoft Windows Vista operating sys-
tem. We modified the ray tracing program from the book by Pharr and Humphreys [137] to
support the proposed importance sampling algorithm on CPUs. Besides BRDF sampling, mul-
tiple importance sampling [186, 187] is additionally employed to combine the sampled results

90

of BRDFs and the lighting environment. In our experiments, the configurations of the scat-
tered univariate SRBF representation for BRDFs were the same as those in Table 7.1 (Section
7.2.3). For each intersection point, the number of nearest neighboring view directions for linear
interpolation was set to 4.

Figures 7.11–7.13 compare the rendered images with different numbers of samples per pixel
based on the proposed importance sampling algorithm, with the configurations of the scattered
univariate SRBF representation for each BRDF listed in Table 7.1. In all rendered images,
the screen resolution was set to 640×480. The reference images were generated on GPUs
from raw BRDF data by uniformly sampling a large number of rays over the unit sphere at
each intersection point. As for the results of importance sampling, half of the samples were
utilized for BRDF sampling, with the other half for incidence radiance sampling. Typically, a
configuration of 800 samples per pixel can provide a visually pleasing result, with a computation
time of less than 30 minutes on average. Since the current implementation of stochastic ray
tracing neither utilizes the multi-core capability of CPUs nor allows operations to be accelerated
on GPUs, there is still much room for improving the overall performance. Indeed, the bottleneck
of our system mostly lies in the fundamental ray tracing process, not in the proposed importance
sampling algorithm.

Note that one can also generate samples from the product of a BRDF and a lighting envi-
ronment [22]. It is rather intuitive to extend the proposed importance sampling algorithm to
support this concept. By exploiting the rotational invariance of univariate SRBFs, the product
of a BRDF and a lighting environment can be efficiently computed, and then analyzed using the
proposed approach to determine sampling directions. This approach typically requires much
fewer samples per pixel to achieve similar image quality. Its overall computation time is also
expected to be faster than previous importance sampling methods. A detailed description of the
product sampling based on the scattered univariate SRBF representation is beyond the scope of
this dissertation. Interested readers may refer to [71, 178].

91

(a) Reference image (∼400000 samples per pixel) (b) 200 samples per pixel

(c) 400 samples per pixel (d) 600 samples per pixel

(e) 800 samples per pixel (f) 1000 samples per pixel

Figure 7.11: Comparisons of rendered images with different numbers of samples per pixel
based on the proposed importance sampling algorithm for the model Bunny with the BRDF
Blue Metallic Paint.

92

(a) Reference image
(∼400000 samples per pixel)

(b) 200 samples per pixel (c) 400 samples per pixel

(d) 600 samples per pixel (e) 800 samples per pixel (f) 1000 samples per pixel

Figure 7.12: Comparisons of rendered images with different numbers of samples per pixel based
on the proposed importance sampling algorithm for the model Buddha with the BRDF Krylon
Blue.

93

(a) Reference image
(∼400000 samples per pixel)

(b) 200 samples per pixel (c) 400 samples per pixel

(d) 600 samples per pixel (e) 800 samples per pixel (f) 1000 samples per pixel

Figure 7.13: Comparisons of rendered images with different numbers of samples per pixel based
on the proposed importance sampling algorithm for the model Venus with the BRDF Nickel.

94

Chapter 8

Application II: Spatially-Varying
Appearance Models

Modeling spatially-varying surface appearance for real-time graphics and vision applications
is a more challenging problem than approximating illumination and reflectance functions. For
photo-realistic image synthesis, the large amount of appearance data not only consumes con-
siderable storage space but also frequently becomes the performance bottleneck of run-time
rendering process. In the first section of this chapter, we present two categories of powerful
compression methods for bidirectional texture functions (BTFs) [28], including tensor approx-
imation algorithms (Section 8.1.1) and multivariate spherical radial basis functions (SRBFs)
(Section 8.1.2). Experimental results further reveal that real-time rendering performance can be
easily achieved with the proposed methods.

Moreover, previous spatially-varying appearance materials, such as BTFs, only permit real-
istic illumination response of object surfaces at the meso-scale, but the complex surface micro-
geometry is not explicitly modeled. In the second section of this chapter, we thus introduce a
novel spatially-varying appearance model, namely view-dependent occlusion texture function

(VOTF), which records meso-scale visibility information from different view directions. In this
way, the proposed VOTFs can be easily combined with existing appearance models to visualize
silhouettes at the meso-scale.

8.1 Bidirectional Texture Functions

Bidirectional texture functions [28] generalize bidirectional reflectance distribution functions

(BRDFs) to contain textural patterns of real-world object surfaces. They capture spatially-
varying surface appearance and reflectance that change with respect to the illumination and
view directions. A BTF is frequently a six-dimensional function of three variables: ωl, ωv, and
t =

[
x, y
]T , where ωl and ωv are respectively the illumination and view directions on the unit

sphere S2, and t denotes the two-dimensional spatial coordinates, x and y, of a texel. Figure 8.1

95

Illumination Variations

V
ie

w
 V

ar
ia

tio
ns

Figure 8.1: An example of a BTF from the volumetric surface texture database [84]. Some
images of the material Sponge are shown in this figure. While images along the blue arrow
were captured from the same view direction but under different illumination conditions, those
along the gray arrow were acquired under the same illumination condition but from different
view directions.

shows an example of measured BTFs from the volumetric surface texture database [84].
Although the illumination effects of real-world object surfaces can be faithfully captured

with BTFs, we usually have to tabulate several gigabytes of raw data for a single BTF. This is
certainly impractical for photo-realistic image synthesis in real-time rendering applications. In
the following sub-sections, we therefore present two categories of powerful compression meth-
ods to reduce the amount of BTF data and accelerate run-time rendering performance. The
first category (Section 8.1.1) relies on organizing a BTF as a multi-dimensional array so that
tensor approximation algorithms, including clustered tensor approximation (Chapter 5) and K-
clustered tensor approximation (Chapter 6), can be directly applied to compress it. The second
category (Section 8.1.2) is instead based on the parameterized multivariate SRBF representation
introduced in Chapter 4. This parametric representation is especially suitable to high-speed ren-
dering on GPUs for performance-intensive applications. Finally, detailed comparisons of these
two categories of compression methods and the choice between them in a particular application
are discussed in Section 8.1.3.

8.1.1 Tensor Approximation Algorithms

Problem Formulation

For tensor approximation algorithms, we organize a BTF B(ωl, ωv, t) as a fourth order tensor
A(B)∈ RI

(B)
ωl
×I(B)

ωv ×I
(B)
x ×I(B)

y to retain its intrinsic structures, where I(B)
ωl and I

(B)
ωv denote the

numbers of sampled illumination and view directions, and I
(B)
x as well as I(B)

y specify the
spatially horizontal and vertical resolutions. Note that one may organize a BTF as a sixth order
tensor by using the spherical coordinate system for illumination and view directions. This will

96

not collapse the intrinsic structures of directions on S2, and could exploit the coherence in
different zenith/azimuth angles. Nevertheless, we do not adopt this approach since the sampled
illumination and view directions of a BTF are usually very sparse. There may not be much
room for reduction in the zenith and azimuth modes.

Given the reduced ranks of each mode, namely R(B)
ωl , R(B)

ωv , R(B)
x , and R(B)

y , we then directly
apply N -mode singular value decomposition (N -SVD) [33] to decompose A(B) as

A(B) ≈ Â(B)
= Z(B) ×ωl U(B)

ωl
×ωv U(B)

ωv ×x U(B)
x ×y U(B)

y , (8.1)

where Z(B)∈ RR
(B)
ωl
×R(B)

ωv ×R
(B)
x ×R(B)

y is the decomposed core tensor, and U
(B)
ωl ∈ RI

(B)
ωl
×R(B)

ωl ,
U

(B)
ωv ∈ RI

(B)
ωv ×R

(B)
ωv , U(B)

x ∈ RI
(B)
x ×R(B)

x , as well as U
(B)
y ∈ RI

(B)
y ×R(B)

y are respectively the mode-
ωl, mode-ωv, mode-x, and mode-y basis matrices. As described in Section 5.1.2, this decom-
position can be obtained by employing Algorithm 5.1.

For clustered tensor approximation (CTA) and K-clustered tensor approximation (K-CTA),
we set total C(B) clusters for the view mode and decompose A(B) as

A(B) ≈ Â(B)
=

C(B)∑
c=1

(
Z(B)
c ×ωl U(B)

ωl,c
×ωv U(B)

ωv ,c ×x U(B)
x,c ×y U(B)

y,c

)
, (8.2)

where Z(B)
c ∈ RR

(B)
ωl
×R(B)

ωv ×R
(B)
x ×R(B)

y denotes the core tensor of cluster c, and U
(B)
ωl,c∈ RI

(B)
ωl
×R(B)

ωl ,
U

(B)
ωv ,c∈ RI

(B)
ωv ×R

(B)
ωv , U

(B)
x,c ∈ RI

(B)
x ×R(B)

x , as well as U
(B)
y,c ∈ RI

(B)
y ×R(B)

y respectively represent the
mode-ωl, mode-ωv, mode-x, and mode-y basis matrices of cluster c. Note that the mode-ωv
basis matrices should satisfy the disjoint and membership constraints in Equation 5.6 for CTA,
or the sparse and membership constraints in Equation 6.1 for K-CTA with total K(B)

ωv mixture
clusters for a mode-ωv sub-tensor. Then, Algorithms 5.2 and 6.1 can be respectively applied to
derive the decomposition in Equation 8.2 for CTA and K-CTA.

The configurations of CTA and K-CTA for BTF compression are determined for the follow-
ing reasons:

• Efficient texture filtering techniques on GPUs can be directly utilized by not clustering
the x and y modes.

• For a complex BTF, a high mode-ωv reduced rank is usually required to model large
view-dependent variations in the appearance data, which substantially increases run-time
rendering costs on GPUs. Clustering along the view mode allows us to reduce the costs
in an adjustable manner.

• In our experience, the mode-ωv reduced rank often dominates the perceptual quality of
reconstructed BTFs and may need to be much higher than the mode-ωl reduced rank.

According to the reconstructed results of previous articles [185, 192], we identify that if the
mode-ωv reduced rank is too low to capture the view variations in the BTF, the reconstructed

97

images will become over-blurred or have strong ringing effects. Human eyes seem to be more
sensitive to these artifacts than unrealistic illumination effects. Therefore, clustering along the
view mode will reduce the performance penalty when we need a high mode-ωv reduced rank.

Rendering Issues

Meso-structure synthesis: Synthesis over object surfaces is an important issue of spatially-
varying materials due to the huge storage space required for high-resolution meso-structures.
By extending the appearance-space texture synthesis (ASTS) [97], the compressed BTFs based
on tensor approximation algorithms can be efficiently synthesized over object surfaces. Unlike
ASTS that focuses on low-frequency and diffuse materials, the proposed approach permits the
synthesis of all-frequency and view-dependent meso-structures over arbitrary surfaces. The key
observation is that the flexible ASTS framework allows synthesizing various types of input data
if the neighborhood similarity could be well estimated.

For a compressed BTF based on N -SVD, we first reconstruct the x and y modes of the
decomposed core tensor as

Ẑ(B)
= Z(B) ×x U(B)

x ×y U(B)
y , (8.3)

where Ẑ(B)∈ RR
(B)
ωl
×R(B)

ωv ×I
(B)
x ×I(B)

y denotes the reconstructed core tensor based on N -SVD.
After unfolding the illumination and view modes of Ẑ(B)

into one mode, Ẑ(B)
becomes a

third order tensor Ẑ ′(B)∈ R(R
(B)
ωl

R
(B)
ωv)×I(B)

x ×I(B)
y that can be utilized as the exemplar texture for

meso-structure synthesis. After that, we follow ASTS to transform the exemplar texture into an
appearance-space exemplar and finally synthesize a texture S of BTF spatial coordinates in the
object surface atlas domain.

For a compressed BTF based on CTA or K-CTA, we can follow the above approach in
almost the same way, but the pre-reconstruction in Equation 8.3 should be modified to let ASTS
accurately estimate the neighborhood similarity. For CTA, we respectively reconstruct the x
and y modes of each cluster core tensor as

∀c, Ẑ(B)

c = Z(B)
c ×x U(B)

x,c ×y U(B)
y,c , (8.4)

where Ẑ(B)

c ∈ RR
(B)
ωl
×R(B)

ωv ×I
(B)
x ×I(B)

y represents the reconstructed core tensor of cluster c based
on CTA. Then, each reconstructed cluster core tensor is unfolded as above and then concate-
nated along the unfolded mode to form a third order tensor as the exemplar texture for ASTS.
Therefore, ASTS actually compares the neighborhood similarity within each cluster. Since CTA
partitions the view mode of A(B) into disjoint clusters, there is no need to consider mode-ωv
sub-tensors across the cluster boundaries. Nevertheless, recall that the decomposed clusters of
K-CTA are overlapped. Thus for K-CTA, we also need to reconstruct the view mode, in addition

98

to the x and y modes, of each cluster core tensor as

∀c, Ẑ(B)

c = Z(B)
c ×ωv U(B)

ωv ,c ×x U(B)
x,c ×y U(B)

y,c , (8.5)

where Ẑ(B)

c ∈ RR
(B)
ωl
×I(B)

ωv ×I
(B)
x ×I(B)

y represents the reconstructed core tensor of cluster c based
on K-CTA.

Resampling: Due to the sparse sampling rates of the illumination and view modes, it is nec-
essary to resample the compressed BTF data for efficient run-time rendering under novel illumi-
nation and view conditions. Although N -SVD allows us to generate observations from a novel
illumination direction by resampling just the columns of the mode-ωl basis matrix, resampling
the view mode is complicated since CTA and K-CTA partition the view mode into different
regions. For CTA, we employ traditional linear interpolation from nearby view directions to
solve this issue, whereas the proposed K-CTA algorithm implicitly suggests a better resampling
scheme.

For a compressed BTF based on K-CTA, we can resample the view mode of the raw BTF
first and employ the greedy search and optimal projection in the clustering stage of K-CTA to
compute the mixing coefficients of each mode-ωv sub-tensor of the resampled BTF. Thus, the
overall effect is equivalent to resampling the columns of the mode-ωv basis matrices, so that the
BTF reconstruction and interpolation are combined together without reducing run-time perfor-
mance. Although one can continue to update the cluster sub-spaces of the compressed BTF and
follow the process of K-CTA on the resampled BTF until convergence, we do not recommend
applying this time-consuming iterative scheme. Moreover, to accelerate the resampling of the
raw BTF using sophisticated methods, such as cubic or thin-plate spline interpolation in the
spherical domain, we perform N -SVD on the BTF without approximation errors to obtain a
full-rank mode-ωv basis matrix of size I(B)

ωv × I
(B)
ωv , and then resample columns of this matrix

instead.

Run-time rendering: The rendering process of compressed BTFs based on tensor approx-
imation algorithms is rather straightforward. To employ texture filtering on GPUs and in-
crease performance, we reconstruct the x and y modes of each (cluster) core tensor, create their
mipmaps, and then concatenate the results into one or more two-dimensional texture arrays be-
fore rendering1. The mode-ωl and mode-ωv basis matrices are instead stored in two-dimensional
textures in the parabolic parameterization [62]. The run-time process on GPUs thus consists of
the following steps:

1If texture arrays are not supported in the graphics application programming interface, we may tile the mipmap
of each (cluster) core tensor into one or more two-dimensional textures. However, one should be careful not
to include texels out of the tile boundaries in the texture filtering. This can be achieved by clamping texture
coordinates into an appropriate range before sampling.

99

Table 8.1: Statistics and timing measurements of different tensor approximation algorithms for
BTFs. All decomposed data were stored as half-precision (16-bit) floating point numbers [65].
For the material RoughHole, we did not reduce its spatial x and y modes, hence no mode-x and
mode-y basis matrices were extracted.

Material Fiber RoughHole Sponge Wool

I
(B)
ωl
× I(B)

ωv × I
(B)
x × I(B)

y 100×100×96×96 100×100×96×96 120×90×128×128 81×81×128×128

Raw data (GB) 1.03 1.03 1.98 1.2

Algorithm N -SVD CTA K-CTA N -SVD CTA K-CTA N -SVD CTA K-CTA N -SVD CTA K-CTA

R
(B)
ωl
×R(B)

ωv 16×80 16×4 16×4 28×44 28×4 28×4 16×20 16×4 16×4 20×28 20×4 20×4

R
(B)
x ×R(B)

y 64×64 64×64 64×64 96×96 96×96 96×96 80×80 80×80 80×80 64×64 64×64 64×64

Clusters: C(B) 1 20 20 1 11 11 1 5 5 1 7 7

Mixture clusters: K(B)
ωv 1 1 3 1 1 3 1 1 3 1 1 3

Compressed data (MB) 10.05 10.48 10.48 21.68 21.67 21.67 3.96 4.11 4.11 4.42 4.6 4.6

Squared error ratio (%) 1.84 2.26 1.86 3.34 5.35 3.51 0.37 0.44 0.38 0.85 1.06 0.89

Compression time (min.) 11.23 21.87 42.37 3.15 12.48 15.25 20.58 26.03 28.73 13.72 12.53 18.75

1. In the pixel shader, sample the synthesized texture S for the BTF spatial coordinates tp

of current pixel p.

2. Sample the texture(s) of core tensor(s) for all the data that correspond to tp, and the
textures of mode-ωl and mode-ωv basis matrices for all the components of current novel
illumination and view directions.

3. The shading color of pixel p is then given by reconstructing the illumination and view
modes according to the tensor approximation algorithm.

For CTA and K-CTA, since mode-ωv basis matrices are sparse, the reconstruction in Step
3 can be computed from only their non-zero entries. We achieve this by packing only the non-
zero entries of mode-ωv basis matrices in the corresponding texture, and constructing another
two-dimensional texture to identify the cluster membership of each sampled/resampled view
direction. For CTA, we additionally include the cluster membership of nearby view directions
for linear interpolation, and thereby save the processing time of nearest neighbor searching.
As for K-CTA, since the reconstruction with mixture clusters and mixing coefficients already
resembles an interpolation process, we currently only utilize the nearest neighbor of the novel
view direction for rendering. In our experience, nearest neighbor interpolation is usually un-
necessary for K-CTA. The proposed resampling scheme effectively leads to smooth transitions
when the viewpoint changes, at the cost of a dense resampling rate for view directions (typically
256×256 in the parabolic parameterization).

Experimental Results

The experiments and simulation timings of tensor approximation algorithms for BTF compres-
sion were conducted and measured on a workstation with an Intel Core 2 Extreme QX9650

100

Table 8.2: Comparisons of the rendering performance of different tensor approximation al-
gorithms for BTFs. The screen resolution and the number of directional light sources were
respectively set to 640×480 and 2. Moreover, the resolution of each texture in the parabolic
parameterization was set to 256×256. In the row Coordinate texture, we list the resolution of
the synthesized coordinate texture of each BTF. Note that the statistics in the row Total data
also include the amount of synthesized texture data. All floating point numbers were stored in
half precision [65].

Model Bunny Cloth

Material Sponge Wool

Vertices 36k 30k

Coordinate texture 2048×2048 1024×1024

Algorithm N -SVD CTA K-CTA N -SVD CTA K-CTA

Total data (MB) 37.83 37.08 37.08 38.33 36.58 36.58

Frames per second 38.73 52.24 49.91 19.36 34.97 33.17

CPU, an NVIDIA GeForce GTX 280 graphics card, and 8 gigabytes main memory under Mi-
crosoft Windows Vista operating system. We employed Microsoft Direct3D 10 [15] application
programming interface for run-time rendering on GPUs. The measured BTFs, including Sponge

and Wool, were provided in courtesy of University of California at San Diego [81, 84] and Uni-
versity of Bonn [23, 153], whereas each simulated BTF, such as Fiber or RoughHole, was
obtained by rendering a geometric surface using the photon mapping [69, 70] implementation
from [137]. To improve quality, the meso-structure synthesis process was performed on CPUs
to allow a higher-dimensional appearance-space exemplar (typically twenty-four-dimensional
for a compressed BTF). In the experimental results of CTA and K-CTA, we adopted their itera-
tive variants and especially set a single global mode-ωl basis matrix for all clusters in Equation
8.2. This does not result in a perceptible loss of visual quality in our experience, but should lead
to a more compact and efficient representation for run-time rendering on GPUs. In Chapter 9,
we will further discuss the advantage of this configuration when using BTFs in bi-scale radiance
transfer.

Table 8.1 compares the statistics and timing measurements of different tensor approximation
algorithms, includingN -SVD, CTA, and K-CTA. Figure 8.2 further plots the squared error ratio
versus the mode-ωv reduced rank for the three multi-linear models with various configurations.
Note that we compare them based on the the same total number of mode-ωv reduced rank,
which leads to similar storage space. Moreover, while the run-time performance and rendered
images with the compressed BTFs are shown in Table 8.2 and Figure 8.3, we also present the
reconstructed BTFs in Figures 8.4–8.7.

In general, N -SVD provides the best perceptual quality among the three tensor approxima-
tion algorithms, but CTA and K-CTA allow much efficient rendering performance of complex
meso-structures on GPUs. Although the compression time of K-CTA is slightly longer than N -
SVD and CTA on average, K-CTA effectively compromises between image quality and run-time

101

0%

3%

6%

9%

12%

15%

18%

21%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

S
q

u
a

re
d

 e
rr

o
r

ra
ti

o

View mode reduced rank

N-SVD CTA

K-CTA (2) K-CTA (3)

K-CTA (4) K-CTA (5)

Approximation Algorithm

(a) Fiber

0%

3%

6%

9%

12%

15%

18%

21%

24%

27%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
q

u
a

re
d

 e
rr

o
r

ra
ti

o

View mode reduced rank

N-SVD CTA

K-CTA (2) K-CTA (3)

K-CTA (4) K-CTA (5)

Approximation Algorithm

(b) RoughHole

Figure 8.2: Plots of the squared error ratio versus the mode-ωv reduced rank based on different
tensor approximation algorithms for BTFs. Each value in parentheses for K-CTA specifies the
number of mixture clusters. For CTA and K-CTA, the horizontal axis in each plot represents
various total mode-ωv reduced ranks whose values correspond to R(B)

ωv C
(B), with R(B)

ωv = 4 for
each cluster. For other configurations of tensor approximation algorithms, please refer to Table
8.1.

performance. Moreover, when the viewpoint changes at run-time, CTA with linear interpola-
tion from the three nearest view directions sometimes produces noticeable seams. This is due
to the intrinsic nature of CTA in which the inter-cluster coherence is ignored, so that significant
discontinuities may occur at cluster boundaries, especially when inappropriate clustered results
were found. A dense sampling rate for the view mode of raw BTFs or increasing the mode-ωv
reduced rank would solve this issue for CTA, but both of them will increase the amount of com-
pressed data and rendering time. The acquisition of densely sampled BTFs is also a challenging
problem. By contrast, K-CTA is less sensitive to the quality of clustering since approximation
errors are compensated by additional mixture clusters. This compensation can be regarded as
an optimal interpolation scheme in the least-squares sense to enable smooth transitions across
different view directions.

8.1.2 Multivariate SRBFs

Problem Formulation

Besides tensor approximation algorithms, we may also apply multivariate SRBFs to approxi-
mate a BTF B(ωl, ωv, t). The key observation is that the appearance data of a BTF texel can be
viewed as a BRDF. It is then intuitive to model a BTF as a set of BRDFs, where each BRDF is
approximated based on the parameterized multivariate SRBF representation by using Algorithm
4.3 (Section 4.3). Nevertheless, such a brute-force approach may result in a computationally
intractable problem even if the optimization process is accelerated by GPUs. Moreover, the
spatial coherence in different BTF texels also can not be found with this approach.

102

(a) Bunny with Sponge (b) Cloth with Wool

Figure 8.3: Rendered images based on different tensor approximation algorithms for BTFs.
From top to bottom: raw data; N -SVD; CTA; K-CTA. For the configurations of tensor approx-
imation algorithms and run-time rendering, please refer to Tables 8.1 and 8.2.

103

(a) Illumination direction – zenith angle: 9◦, azimuth angle: 189◦; view direction – zenith angle:
27◦, azimuth angle: 279◦

(b) Illumination direction – zenith angle: 9◦, azimuth angle: 189◦; view direction – zenith angle:
45◦, azimuth angle: 9◦

Figure 8.4: Reconstructed images of the BTF for the material Fiber based on different tensor
approximation algorithms. From left to right: raw data; N -SVD; CTA; K-CTA. From top to
bottom in each row: reconstructed images; absolute difference images scaled by a factor of 5.

104

(a) Illumination direction – zenith angle: 9◦, azimuth angle: 189◦; view direction – zenith angle:
45◦, azimuth angle: 279◦

(b) Illumination direction – zenith angle: 9◦, azimuth angle: 189◦; view direction – zenith angle:
63◦, azimuth angle: 189◦

Figure 8.5: Reconstructed images of the BTF for the material RoughHole based on different
tensor approximation algorithms. From left to right: raw data; N -SVD; CTA; K-CTA. From
top to bottom in each row: reconstructed images; absolute difference images scaled by a factor
of 3.

105

(a) Illumination direction – zenith angle: 15◦, azimuth angle: 75◦; view direction – zenith angle:
60◦, azimuth angle: 70◦

(b) Illumination direction – zenith angle: 60◦, azimuth angle: 345◦; view direction – zenith angle:
0◦, azimuth angle: 70◦

Figure 8.6: Reconstructed images of the BTF for the material Sponge based on different tensor
approximation algorithms. From left to right: raw data; N -SVD; CTA; K-CTA. From top to
bottom in each row: reconstructed images; absolute difference images scaled by a factor of 4.

106

(a) Illumination direction – zenith angle: 0◦, azimuth angle: 0◦; view direction – zenith angle: 45◦,
azimuth angle: 0◦

(b) Illumination direction – zenith angle: 45◦, azimuth angle: 240◦; view direction – zenith angle:
0◦, azimuth angle: 0◦

Figure 8.7: Reconstructed images of the BTF for the material Wool based on different tensor
approximation algorithms. From left to right: raw data; N -SVD; CTA; K-CTA. From top to
bottom in each row: reconstructed images; absolute difference images scaled by a factor of 6.

107

Fortunately, it is reasonable to assume that if the observations of nearby BTF texels have
strong correlations, their derived SRBF parameters are also expected to be highly correlated.
Based on this assumption, although multivariate SRBFs only account for the directional vari-
ables of a BTF, its spatial correlations can be exploited using multi-resolution analysis. We thus
introduced a hierarchical fitting algorithm in Section 4.4 to solve this issue.

More formally, consider a hierarchical set of multi-resolution BTFs
{
Bi(ωl, ωv, t)

}Ih
i=0

,
where Ih is the number of levels, and the BTF at level i is denoted by Bi(ωl, ωv, t). Sup-
pose that BTFs in this set are ordered from the coarsest level 0 to the finest level Ih, while each
of them is generated by spatially downsampling B(ωl, ωv, t) by a factor of a user-specified con-
stant. Our goal is to model each texel of the BTFs in the hierarchical set using the parameterized
multivariate SRBF representation as

∀i, ∀t, Bi(ωl, ωv, t) ≈ B̂′i
(
Ψ(Bi)(t)

)
=

J∑
j=1

β
(Bi)
j (t)

N ′∏
n=1

G
(
ψ(Bi)
n

(
ωl, ωv|Θ(Bi)

n (t)
)
· ξ(Bi)

j,n (t)|λ(Bi)
j,n (t)

)
,

(8.6)

where Ψ(Bi)(t) =
{
ψ

(Bi)
n

(
ωl, ωv|Θ(Bi)

n (t)
)
∈ S2

}N ′
n=1

denotes the transformation function set for
a texel t of the BTF at level i,

{
β

(Bi)
j (t) ∈ R

}J
j=1

similarly specifies its basis coefficient set, and{
ξ

(Bi)
j,n (t) ∈ S2

}J
j=1

,
{
λ

(Bi)
j,n (t) ∈ R

}J
j=1

, as well as Θ
(Bi)
n (t) respectively represent the center set,

the bandwidth set, and the parameterization coefficient set for the n-th transformed variable.
Note that each SRBF parameter set now depends on a BTF texel t at level i.

We then apply Algorithm 4.4 to learn the SRBF parameters in Equation 8.6 with a top-down
approach (from the coarsest level to the finest one), while the parameters of a BTF texel t at
level i are derived by solving the following unconstrained least-squares optimization problem:

∀i, ∀t, min
Υ(Bi)(t)

1

2

∫
S2

∫
S2

(
Bi(ωl, ωv, t)− B̂′i

(
Ψ(Bi)(t)

))2

dωldωv + E
(Bi)
addl(t), (8.7)

where Υ(Bi)(t) =
{{
β

(Bi)
j (t),Ξ

(Bi)
j (t),Λ

(Bi)
j (t)

}J
j=1
,
{

Θ
(Bi)
n (t)

}N ′
n=1

}
is the set of all SRBF pa-

rameters of texel t at level i for Ξ
(Bi)
j (t) =

{
ξ

(Bi)
j,n (t)

}N ′
n=1

and Λ
(Bi)
j (t) =

{
λ

(Bi)
j,n (t)

}N ′
n=1

. To
learn SRBF parameters with spatial correlations, the additional energy term E

(Bi)
addl(t) of BTF

texel t at level i controls the smoothness of neighboring BTF texels and is defined as follows:

E
(Bi)
addl(t) = µ

(Bi)
β E

(Bi)
β (t) + µ

(Bi)
ξ E

(Bi)
ξ (t) + µ

(Bi)
λ E

(Bi)
λ (t) + µ

(Bi)
ξ,λ E

(Bi)
ξ,λ (t) + µ

(Bi)
θ E

(Bi)
θ (t),

(8.8)

E
(Bi)
β (t) =

∑
t′∈N ′i (t)

J∑
j=1

1

2

(
β

(Bi)
j (t)− β(Bi)

j (t′)
)2
, (8.9)

108

E
(Bi)
ξ (t) =

∑
t′∈N ′i (t)

J∑
j=1

N∑
n=1

(
1− ξ(Bi)

j,n (t) · ξ(Bi)
j,n (t′)

)
, (8.10)

E
(Bi)
λ (t) =

∑
t′∈N ′i (t)

J∑
j=1

N∑
n=1

1

2

(
λ

(Bi)
j,n (t)− λ(Bi)

j,n (t′)
)2
, (8.11)

E
(Bi)
ξ,λ (t) =

∑
t′∈N ′i (t)

J∑
j=1

N∑
n=1

1

2

∥∥∥λ(Bi)
j,n (t)ξ

(Bi)
j,n (t)− λ(Bi)

j,n (t′)ξ
(Bi)
j,n (t′)

∥∥∥2

2
, (8.12)

E
(Bi)
θ (t) =

∑
t′∈N ′i (t)

N ′∑
n=1

IΘn∑
j=1

1

2

(
θ

(Bi)
j,n (t)− θ(Bi)

j,n (t′)
)2
, (8.13)

where N ′i (t) denotes the set of participating BTF texels at levels i and i−1 for texel t at level
i, and µ(Bi)

β , µ(Bi)
ξ , µ(Bi)

λ , µ(Bi)
ξ,λ , as well as µ(Bi)

θ are respectively the user-defined weights for
E

(Bi)
β (t), E(Bi)

ξ (t), E(Bi)
λ (t), E(Bi)

ξ,λ (t), and E
(Bi)
θ (t). Note that the smoothness energy term

E
(Bi)
ξ,λ (t) is employed only for multivariate Abel-Poisson and Gaussian SRBFs.

Run-Time Rendering

The rendering process of approximated BTFs based on multivariate SRBFs is similar to BRDF
approximation (Section 7.2.1). To enable mipmap texture filtering on GPUs, we concatenate
the SRBF parameters at each level into several two-dimensional texture arrays, with one (or
more if necessary) texture array for one category of SRBF parameter sets2. For meso-structure
synthesis, we apply the proposed method in Section 8.1.1 to obtain the spatial coordinate tex-
ture S. Note that this approach needs to additionally compress the same BTFs using tensor
approximation algorithms. Performing meso-structure synthesis directly on the derived SRBF
parameters is left as a research direction in the future.

The rendering process thus consists of the following steps:

1. For current pixel p, sample the synthesized texture S for the BTF spatial coordinates tp.

2. Sample the texture(s) for all the SRBF parameters that correspond to tp.

3. The shading color of pixel p is then given by performing the reconstruction according to
the adopted multivariate SRBF representation.

For a pixel, note that we do not reconstruct the shading color of each participating texel
and then perform mipmap filtering, but instead filter the SRBF parameters of each participating
texel first and reconstruct the final shading color. When the derived SRBF parameters of each
BTF texel are smooth enough, this approach usually increases the rendering performance by
a factor of about 6 for trilinear mipmap filtering without noticeable artifacts. In general, the

2One may pack the SRBF center and bandwidth sets into one two-dimensional texture array to slightly reduce
texture access time.

109

Table 8.3: Statistics and timing measurements of the parameterized multivariate SRBF repre-
sentation for BTFs. In this table, we list the results of two different parameterization methods,
including fixed (Fix.) and optimized (Opt.) parameterization. The statistics and timing mea-
surements of a BTF were recorded with respect to the whole BTF data in a hierarchical set, and
all compressed data were stored as half-precision (16-bit) floating point numbers [65].

Material Carpet Impalla Sponge Wool

Illumination directions 120 81 120 81

View directions 90 81 90 81

Spatial resolution 128×128 128×128 128×128 128×128

Raw data (GB) 2.64 1.6 2.64 1.6

Parameterization Fix. Opt. Fix. Opt. Fix. Opt. Fix. Opt.

SRBFs: J 16 12 12 12 8 8 12 12

Parameterized variates: N ′ 3 4 3 3 3 3 3 3

Compressed data (MB) 8.0 7.83 6.0 6.25 4.0 4.25 6.0 6.25

Squared error ratio (%) 4.01 3.62 3.18 2.73 0.86 0.81 1.77 1.76

Compression time (hr.) 5.81 13.96 5.13 8.09 3.32 5.21 7.01 12.15

performance gain strongly depends on the utilized filtering technique. If the more sophisticated
the filtering technique is, the more performance gain this approach can provide.

Experimental Results

The experiments and simulation timings of BTF approximation based on the proposed parame-
terized multivariate SRBF representation were conducted and measured on a workstation with
an Intel Core 2 Extreme QX9650 CPU, an NVIDIA GeForce GTX 280 graphics card, and 8
gigabytes main memory under Microsoft Windows Vista operating system. We also employed
NVIDIA CUDA [128] to accelerate parts of the optimization process and Microsoft Direct3D
10 [15] for run-time rendering on GPUs. The multivariate Gaussian SRBFs were adopted to
represent BTFs, and the SRBF center as well as bandwidth sets were additionally constrained
to be the same for red, green, and blue channels of a BTF texel. The measured BTFs were
provided in courtesy of University of California at San Diego [81, 84] and University of Bonn
[23, 153].

Table 8.3 compares the statistics and timing measurements of the parameterized multivari-
ate SRBF representation for multi-resolution BTF data sets, which includes the experimental
results of traditional fixed parameterization and optimized parameterization (Section 4.3). In
our experiments, at most three traditional fixed parameterizations: half-way, illumination, and
view directions were employed. As for optimized parameterization, we instead utilized the
paramterization function defined in Equation 4.11 and set the initial guess of the first three pa-
rameterization coefficient sets as the half-way, illumination, and view parameterizations, while
the remainders were initialized to random real numbers. To account for the randomness of the

110

Table 8.4: Comparisons of the rendering performance of the parameterized multivariate SRBF
representation for BTFs. The performance of two different parameterization methods are shown
in this table, including fixed (Fix.) and optimized (Opt.) parameterization. The screen resolution
and the number of directional light sources were respectively set to 640×480 and 2. In the row
Coordinate texture, we list the resolution of the synthesized coordinate texture of each BTF.
Note that the statistics in the row Total data also include the amount of synthesized texture data.
All floating point numbers were stored in half precision [65].

Model Bunny Cloth

Material Sponge Wool

Vertices 36k 30k

Coordinate texture 2048×2048 1024×1024

Parameterization Fix. Opt. Fix. Opt.

Total data (MB) 20.0 20.25 10.0 10.25

Frames per second 294.79 269.63 122.18 116.42

initial guess, the optimization stage at the coarsest level 0 was performed multiple times if the
number of parameterization coefficient sets was more than 3, namely N ′ > 3. Then, only the
SRBF parameters with the lowest approximation errors for BTF texels at level 0 were employed
in the subsequent upsampling and optimization stages at higher levels.

While the run-time performance and rendered images based on the parameterized multi-
variate SRBF representation are respectively presented in Table 8.4 and Figure 8.8, we also
demonstrate the reconstructed BTFs in Figures 8.9–8.12. The proposed optimized parameteri-
zation generally outperforms the traditional fixed approach in terms of approximation errors and
visual quality, especially when the BTF data sets exhibit complex meso-structures, specular re-
flectance, or sharp shadows. Due to the access overhead of additional parameters, the rendering
performance of optimized parameterization is slightly slower than that of fixed parameteriza-
tion, but there are no significant differences between them. For a medium-size model, both
methods can easily achieve real-time rendering rates at run-time.

8.1.3 Comparisons and Discussions

In Sections 8.1.1 and 8.1.2, we introduced two categories of powerful compression methods for
BTFs, including tensor approximation algorithms and multivariate SRBFs. Nevertheless, the
decision on which one to use for a specific real-time application is still a non-trivial matter. In
the following context, we will compare these two categories and discuss their advantages and
disadvantages in details.

Table 8.5 summarizes the feature comparisons between tensor approximation algorithms
and multivariate SRBFs for BTFs. Comparisons between these two categories of compression
methods are similar to the traditional debates between parametric and non-parametric models in
the statistics and machine learning communities. In general, tensor approximation algorithms

111

(a) Bunny with Sponge (b) Cloth with Wool

Figure 8.8: Rendered images based on the parameterized multivariate SRBF representation for
BTFs. From top to bottom: raw data; fixed parameterization; optimized parameterization. For
the configurations of parameterizations and run-time rendering, please refer to Tables 8.3 and
8.4.

112

(a) Illumination direction – zenith angle: 15◦, azimuth angle: 15◦; view direction – zenith angle: 0◦,
azimuth angle: 10◦

(b) Illumination direction – zenith angle: 60◦, azimuth angle: 285◦; view direction – zenith angle:
40◦, azimuth angle: 230◦

Figure 8.9: Reconstructed images of the BTF for the material Carpet based on the parameter-
ized multivariate SRBF representation. From left to right: raw data; fixed parameterization;
optimized parameterization. From top to bottom in each row: reconstructed images; absolute
difference images scaled by a factor of 3.

113

(a) Illumination direction – zenith angle: 45◦, azimuth angle: 80◦; view direction – zenith angle:
45◦, azimuth angle: 180◦

(b) Illumination direction – zenith angle: 60◦, azimuth angle: 144◦; view direction – zenith angle:
0◦, azimuth angle: 0◦

Figure 8.10: Reconstructed images of the BTF for the material Impalla based on the parame-
terized multivariate SRBF representation. From left to right: raw data; fixed parameterization;
optimized parameterization. From top to bottom in each row: reconstructed images; absolute
difference images scaled by a factor of 3.

114

(a) Illumination direction – zenith angle: 15◦, azimuth angle: 75◦; view direction – zenith angle:
60◦, azimuth angle: 70◦

(b) Illumination direction – zenith angle: 60◦, azimuth angle: 345◦; view direction – zenith angle:
0◦, azimuth angle: 70◦

Figure 8.11: Reconstructed images of the BTF for the material Sponge based on the parame-
terized multivariate SRBF representation. From left to right: raw data; fixed parameterization;
optimized parameterization. From top to bottom in each row: reconstructed images; absolute
difference images scaled by a factor of 3.

115

(a) Illumination direction – zenith angle: 0◦, azimuth angle: 0◦; view direction – zenith angle: 45◦,
azimuth angle: 0◦

(b) Illumination direction – zenith angle: 45◦, azimuth angle: 240◦; view direction – zenith angle:
0◦, azimuth angle: 0◦

Figure 8.12: Reconstructed images of the BTF for the material Wool based on the parameter-
ized multivariate SRBF representation. From left to right: raw data; fixed parameterization;
optimized parameterization. From top to bottom in each row: reconstructed images; absolute
difference images scaled by a factor of 3.

116

Table 8.5: Feature comparisons between tensor approximation algorithms and multivariate
SRBFs for BTFs.

Method Multivariate SRBFs Tensor Approximation

Assumption Parametric Non-parametric

Compression error Moderate Low

Compression ratio Moderate∗ High

Compression time Time-consuming Moderate

Formulation Continuous Discrete

Missing data Yes Yes†

Auxiliary data for rendering No Yes

Rendering performance Fast Moderate

∗Recall that multivariate SRBFs can only handle directional variables, but tensor approximation algorithms can
reduce the dimensionality of all kinds of variables at the same time. We currently do not apply any other approx-
imation methods, such as wavelets, matrix factorization, or even tensor approximation, to compress the spatial
domain of SRBF parameters for a BTF. If these methods were additionally employed, the resulting compression
ratio is expected to be higher than merely tensor approximation algorithms. However, compression errors and
rendering costs would increase instead.
†One of the missing data handling methods for multi-linear models can be found in [189].

(non-parametric models) provide a more accurate representation for visual data sets, while mul-
tivariate SRBFs (parametric models) lead to more efficient rendering performance at run-time.

An additional major advantage of multivariate SRBFs is that approximating a hierarchical
set of multi-resolution BTFs can be achieved using the proposed hierarchical fitting algorithm,
while sophisticated run-time mipmap texture filtering on GPUs is allowed by including smooth-
ness energy terms in the objective function. By contrast, tensor approximation algorithms rely
on a post-process to construct a hierarchical set of compressed BTFs by downsampling the
spatial modes of the decomposed core tensor(s), but computational and memory overhead for
efficient interpolation and smooth transitions at run-time is inevitable. Moreover, if a non-linear
downsampling method is employed to obtain low-resolution BTFs with high quality, the recon-
structed BTFs at levels other than the finest one are not guaranteed to be optimal solutions in
the least-squares sense. In this case, tensor approximation algorithms should first create a hi-
erarchical set of raw BTFs, and then decompose each BTF in this set based on different tensor
models.

Except high-quality approximation, another obvious advantage of tensor approximation al-
gorithms is their low off-line computational costs. Since only linear algebra operations are
needed, it usually takes only tens of minutes to decompose a given BTF data set based on ten-
sor approximation algorithms. Nevertheless, approximating a BTF with multivariate SRBFs is
computationally expensive (typically several hours) due to the non-linear optimization process,
even if our implementation already achieves considerable acceleration with GPUs. Thus, there
is always a trade-off between off-line and run-time costs for these two categories of compression
methods.

117

8.2 View-Dependent Occlusion Texture Functions

BTFs mainly focus on modeling realistic fine-scale lighting and shadowing effects of object
surfaces, but neither contain shape information nor actually modify the surface micro-geometry.
As a result, meso-scale shape details and shadow boundaries owing to meso-structures can not
be faithfully captured. Apart from BTFs, we propose a spatially-varying appearance model,
namely the view-dependent occlusion texture function (VOTF), to visualize complex micro-
geometry of object surfaces. A VOTF is a set of two-dimensional textures in which each texture
contains spatially-varying meso-scale occlusions from a sampled view direction and can be
precomputed over a geometric surface by using ray tracing algorithms for visibility test. It is
therefore a four-dimensional function of two variables: ωv and t =

[
x, y
]T , where ωv represents

the view direction on the unit sphere S2, and t denotes the two-dimensional spatial coordinates,
x and y, of a texel. In this way, VOTFs can be employed to enhance the surface appearance of
objects with shape details and silhouettes. Examples of VOTFs are shown in Figure 8.13.

Although the amount of VOTF data is usually smaller than that of BTF data, a VOTF may
still consume tens of megabytes of storage space. An efficient and compact representation for
VOTFs still provides a prospect of performance gains. Therefore, we propose to adopt view-
dependent signed-distance functions rather than conventional binary values to encode the raw
occlusion information in VOTFs. Tensor approximation algorithms then can be directly applied
to decompose a VOTF for efficient run-time reconstruction.

8.2.1 Problem Formulation

To accurately approximate a VOTF, we represent it with a set of two-dimensional signed-
distance textures instead of conventional binary visibility masks. Signed-distance functions
[29] have been shown to successfully preserve sharp features in vector textures [142] and im-
age structures for texture synthesis [97]. Recently, they were also applied to the approximation
of visibility integrals for precomputed radiance transfer [206], further showing their potentials
for modeling occlusion information. According to our experiments, the advantages of signed-
distance functions still hold even after compression with tensor approximation algorithms. The
intuitive explanation for this outcome is that sharp boundaries in the binary visibility masks
are in fact high-frequency and discrete signals. Converting them into signed-distance functions
instead produces smooth and continuous functions that would facilitate subsequent approxima-
tion. Figure 8.13(b) shows examples of a VOTF in the signed-distance representation.

Therefore, the VOTF O(ωv, t) ∈ {0, 1} is first converted into signed-distance-to-boundary
textures from binary visibility masks, one texture for each view direction. For a given texel t in
the binary mask of a view direction, we compute its nearest distance to the boundaries. Positive
distance is stored if the value of texel t in the binary mask is equal to 0 (occluded). Otherwise,
negative distance is adopted instead. The transformed VOTF is then normalized into the interval
[−1,+1] and organized as a third order tensor A(O)∈ RI

(O)
ωv ×I

(O)
x ×I(O)

y for compression using

118

(a) Binary visibility masks

(b) Signed-distance functions

Figure 8.13: Examples of the proposed VOTFs. Each image records visibility information
from a sampled view direction. In this dissertation, we consider VOTFs encoded in (a) binary
visibility values or (b) signed-distance functions. The values of signed-distance functions were
normalized into the interval [−1,+1].

tensor approximation algorithms, where I(O)
ωv represents the number of sampled view directions,

and I(O)
x as well as I(O)

y are respectively the spatially horizontal and vertical resolutions.
Similar to BTF compression, given the reduced ranks of each mode, namelyR(O)

ωv , R(O)
x , and

R
(O)
y , A(O) is decomposed as the following equation based on N -SVD:

A(O) ≈ Â(O)
= Z(O) ×ωv U(O)

ωv ×x U(O)
x ×y U(O)

y , (8.14)

where Z(O)∈ RR
(O)
ωv ×R

(O)
x ×R(O)

y is the core tensor, and U
(O)
ωv ∈ RI

(O)
ωv ×R

(O)
ωv , U(O)

x ∈ RI
(O)
x ×R(O)

x , as
well as U

(O)
y ∈ RI

(O)
y ×R(O)

y are respectively the mode-ωv, mode-x, and mode-y basis matrices.
For CTA and K-CTA, A(O) is instead approximated with total C(O) clusters for the view

mode (and K(O)
ωv mixture clusters for K-CTA) by the following equation:

A(O) ≈ Â(O)
=

C(O)∑
c=1

(
Z(O)
c ×ωv U(O)

ωv ,c ×x U(O)
x,c ×y U(O)

y,c

)
, (8.15)

where Z(O)
c ∈ RR

(O)
ωv ×R

(O)
x ×R(O)

y representes the core tensor of cluster c, and U
(O)
ωv ,c∈ RI

(O)
ωv ×R

(O)
ωv ,

U
(O)
x,c ∈ RI

(O)
x ×R(O)

x , as well as U
(O)
y,c ∈ RI

(O)
y ×R(O)

y respectively specify the mode-ωv, mode-x, and
mode-y basis matrices of cluster c.

119

8.2.2 Rendering Issues

Meso-Structure Synthesis

The compressed VOTFs can be combined with other spatially-varying appearance models for
meso-structure synthesis over arbitrary surfaces. Similar to BTFs, we simply follow almost the
same approach as described in Section 8.1.1 to first reconstruct some modes of each (cluster)
core tensor of a compressed VOTF as

Ẑ(O)
= Z(O) ×x U

(O)
x ×y U

(O)
y (N -SVD),

∀c, Ẑ(O)

c = Z(O)
c ×x U

(O)
x,c ×y U

(O)
y,c (CTA),

∀c, Ẑ(O)

c = Z(O)
c ×ωv U

(O)
ωv ,c ×x U

(O)
x,c ×y U

(B)
y,c (K-CTA),

(8.16)

where Ẑ(O)∈ RR
(O)
ωv ×I

(O)
x ×I(O)

y and Ẑ(O)

c ∈ RR
(O)
ωv ×I

(O)
x ×I(O)

y respectively denote the reconstructed
core tensor based onN -SVD and the reconstructed core tensor of cluster c based on CTA (based
on K-CTA, Ẑ(O)

c ∈ RI
(O)
ωv ×I

(O)
x ×I(O)

y instead). Then, each reconstructed (cluster) core tensor is
concatenated along the view mode if necessary to form the VOTF exemplar for ASTS. Note
that we do not combine the VOTF exemplar with the exemplar of other appearance models
right now to compute the exemplar texture in the appearance space, but separately compute
their appearance-space exemplars in advance. For meso-structure synthesis based on ASTS, the
transformed results of the VOTF exemplar are finally included as additional image channels of
the appearance-space exemplar of other appearance models. In this way, the compressed VOTF
behaves as a set of view-dependent feature textures, so that ASTS can preserve both visible and
invisible image structures during meso-structure synthesis.

Run-Time Rendering

At run-time, the shading color of a pixel is computed on GPUs from the compressed VOTFs,
other appearance models, and the synthesized coordinate texture S. Here, we omit a detailed
description of the rendering pre-process, since it is similar to that discussed in Section 8.1.1,
except for steps that are related to mode-ωl basis matrices. In brief, the decomposed results of
VOTFs are densely resampled, and the spatial modes of each (cluster) core tensor are recon-
structed before rendering to take advantage of hardware texture filtering. For CTA and K-CTA,
the sparsity of mode-ωv basis matrices is also fully exploited with the aid of an index texture.

To combine VOTFs with other appearance models, the run-time rendering process should
be slightly modified to consist of the following steps:

1. In the pixel shader, sample the synthesized texture S for the VOTF spatial coordinates tp

of current pixel p.

2. Sample the texture(s) of VOTF core tensor(s) for all the data that correspond to tp, and

120

(a) Binary visibility masks (b) Signed-distance functions (c) Signed-distance functions
(anti-aliased)

Figure 8.14: Comparison between different encoding schemes for VOTFs, with inside triangle
faces culled to clearly show the difference. A threshold value of 0.5 was adopted to determine
the final meso-scale visibility for rendering. For visibility anti-aliasing, the threshold T (O) and
weight W (O) in Equation 8.17 were respectively set to 0.05 and 12.

the texture of VOTF mode-ωv basis matrices for all the components of current novel view
direction.

3. The approximated VOTF value of pixel p, Ôp, is given by reconstructing the view mode
according to the tensor approximation algorithm.

4. A user-defined visibility mapping function, for example Equation 8.17, is then applied to
map Ôp into a visibility value Ô′p within the interval [0, 1].

5. If pixel p is visible, namely Ô′p > 0, compute its shading color based on other appearance
models. Otherwise, discard it.

The purpose of the visibility mapping function in Step 4 is to avoid the aliasing problem that
results from meso-scale visibility. It should be designed to generate visually pleasing effects at
silhouette boundaries. In the experiments, we simply let Ô′p = Ôp for binary visibility masks,
while the mapping function for signed-distance functions is defined as

Ô′p =


1 if Ôp ≥ T (O) (fully visible),

W (O)Ôp if Ôp > 0 (partially visible),

0 otherwise (invisible),

(8.17)

where T (O) and W (O) are respectively the user-defined threshold and weight. In this way, Ô′p
can be utilized as an alpha value to blend a partially visible pixel with its background as shown
in Figure 8.14(c). To approximate the blending effects without sorting, fully visible pixels are
rendered first. We then keep the contents of frame buffer and blend partially visible pixels that
pass the depth test. This correctly captures the order of a fully visible pixel and a partially visible
pixel, but disregards the blending effects between two partially visible pixels. The resulting
artifacts are ignorable in practice since the amount of partially visible pixels is usually small.

121

8.2.3 Experimental Results

The experiments and simulation timings of tensor approximation algorithms for VOTF com-
pression were conducted and measured on a workstation with an Intel Core 2 Extreme QX9650
CPU, an NVIDIA GeForce GTX 280 graphics card, and 8 gigabytes main memory under Mi-
crosoft Windows Vista operating system. Each raw VOTF was obtained by ray-tracing a geo-
metric surface from different view directions. In the experimental results of CTA and K-CTA,
their iterative variants were employed instead of static ones. For meso-structure synthesis, we
typically transformed a compressed VOTF into a twelve-dimensional appearance-space exem-
plar.

Figure 8.15 plots the error texel ratio versus the mode-ωv reduced rank based on binary vis-
ibility masks or signed-distance functions for VOTFs. Note that we compare the two encoding
schemes based on the the same total number of mode-ωv reduced rank, which leads to similar
storage space. Figure 8.15 shows that signed-distance functions begin to outperform binary
visibility masks from a certain cross point, for example, 60 in Figure 8.15(a) and 36 in Figure
8.15(b). This implies that the high-frequency signals in binary visibility masks significantly
limit the approximation ability of tensor approximation algorithms. In practice, we have found
that a higher mode-ωv reduced rank than the value of this cross point is frequently necessary to
render a high-quality image.

Table 8.6 compares the statistics and timing measurements of different tensor approximation
algorithms, including N -SVD, CTA, and K-CTA. In Figures 8.16–8.18, we also demonstrate
the plots and the reconstructed VOTFs of the three multi-linear models. From these figures
and Table 8.6, signed-distance functions obviously outperform binary visibility masks in visual
quality and approximation errors (in the number of error texels) for encoding VOTFs. After
compression, signed-distance functions tend to reconstruct more continuous signals and less
noises at silhouette boundaries than traditional binary masks (Figure 8.14). In Chapter 9, we will
further present the experimental results of combining VOTFs with BTFs for run-time rendering
based on the proposed framework of bi-scale radiance transfer.

122

Table 8.6: Statistics and timing measurements of different tensor approximation algorithms for
VOTFs. We list the total number of error texels for the two representations: (B) binary visibility
masks; (S) signed-distance functions. For binary visibility masks, a threshold value of 0.5 was
adopted to determine the visibility of a texel from the reconstructed data, whereas a threshold
value of 0 was employed instead for signed-distance functions. All decomposed data were
stored as half-precision (16-bit) floating point numbers [65].

Material Fiber RoughHole

I
(O)
ωv × I

(O)
x × I(O)

y 100×96×96 100×96×96

Raw data (MB) 3.52 3.52

Algorithm N -SVD CTA K-CTA N -SVD CTA K-CTA

R
(O)
ωv 80 4 4 44 4 4

R
(O)
x ×R(O)

y 80×80 80×80 80×80 80×80 80×80 80×80

Clusters: C(O) 1 20 20 1 11 11

Mixture clusters: K(O)
ωv 1 1 3 1 1 3

Compressed data (MB) 1.02 1.58 1.61 0.57 0.87 0.88

Error texels (B) 732 2222 1046 572 1938 1029

Error texels (S) 71 2027 291 325 969 597

Compression time (sec.) 1.83 17.24 130.68 0.67 12.43 114.13

0%

5%

10%

15%

20%

25%

30%

35%

40%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

E
rr

o
r

te
x

el
 r

a
ti

o

View mode reduced rank

Binary Signed

Representation

(a) Fiber

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
rr

o
r

te
x

el
 r

a
ti

o

View mode reduced rank

Binary Signed

Representation

(b) RoughHole

Figure 8.15: Plots of the error texel ratio versus the mode-ωv reduced rank based on different
encoding schemes for VOTFs, including binary visibility masks (Binary) and signed-distance
functions (Signed). The VOTFs were approximated using K-CTA with three mixture clusters
for each mode-ωv sub-tensor. The horizontal axis in each plot represents various total mode-ωv
reduced ranks whose values correspond to R(O)

ωv C
(O), with R(O)

ωv = 4 for each cluster. For other
configurations of tensor approximation algorithms, please refer to Table 8.6.

123

0%

5%

10%

15%

20%

25%

30%

35%

40%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

E
rr

o
r

te
x

el
 r

a
ti

o

View mode reduced rank

N-SVD CTA

K-CTA (2) K-CTA (3)

K-CTA (4) K-CTA (5)

Approximation Algorithm

(a) Fiber (binary visibility masks)

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
q

u
a

re
d

 e
rr

o
r

ra
ti

o

View mode reduced rank

N-SVD CTA

K-CTA (2) K-CTA (3)

K-CTA (4) K-CTA (5)

Approximation Algorithm

(b) RoughHole (binary visibility masks)

0%

5%

10%

15%

20%

25%

30%

35%

40%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

E
rr

o
r

te
x

el
 r

a
ti

o

View mode reduced rank

N-SVD CTA

K-CTA (2) K-CTA (3)

K-CTA (4) K-CTA (5)

Approximation Algorithm

(c) Fiber (signed-distance functions)

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
q

u
a

re
d

 e
rr

o
r

ra
ti

o

View mode reduced rank

N-SVD CTA

K-CTA (2) K-CTA (3)

K-CTA (4) K-CTA (5)

Approximation Algorithm

(d) RoughHole (signed-distance functions)

Figure 8.16: Plots of the error texel ratio versus the mode-ωv reduced rank based on different
tensor approximation algorithms for VOTFs. Each value in parentheses for K-CTA specifies the
number of mixture clusters. For CTA and K-CTA, the horizontal axis in each plot represents
various total mode-ωv reduced ranks whose values correspond to R(O)

ωv C
(O), with R(O)

ωv = 4 for
each cluster. For other configurations of tensor approximation algorithms, please refer to Table
8.6.

124

(a) Binary visibility masks (view direction – zenith angle: 27◦, azimuth angle: 279◦)

(b) Signed-distance functions (view direction – zenith angle: 27◦, azimuth angle: 279◦)

Figure 8.17: Reconstructed images of the VOTF for the material Fiber based on different tensor
approximation algorithms. From left to right: raw data; N -SVD; CTA; K-CTA. From top to
bottom in each row: reconstructed images; absolute difference images (scaled by a factor of 20
for signed-distance functions).

125

(a) Binary visibility masks (view direction – zenith angle: 45◦, azimuth angle: 189◦)

(b) Signed-distance functions (view direction – zenith angle: 45◦, azimuth angle: 189◦)

Figure 8.18: Reconstructed images of the VOTF for the material RoughHole based on different
tensor approximation algorithms. From left to right: raw data; N -SVD; CTA; K-CTA. From
top to bottom in each row: reconstructed images; absolute difference images (scaled by a factor
of 20 for signed-distance functions).

126

Chapter 9

Application III: Radiance Transfer

Reflectance functions and spatially-varying appearance models only account for local illumi-
nation responses of object surfaces. They can not be utilized to cast shadows or simulate inter-
reflections, since global lighting interactions between different surface points or even different
objects are totally ignored. Nevertheless, rendering global illumination effects in real time re-
mains a major challenge in computer graphics. It usually requires a time-consuming iterative or
recursive algorithm to accurately simulate global light transport. Precomputed radiance trans-

fer (PRT) [162] has recently attracted much attention owing to its ability to solve this issue
in dynamic low-frequency lighting environments. The successive bi-scale radiance transfer

(BRT) [163] further integrated spatially-varying materials into the PRT framework to greatly
enhance the visual quality of rendered images.

In the first section of this chapter, we introduce a novel all-frequency PRT algorithm based
on the proposed univariate spherical radial basis functions (SRBFs) and tensor approxima-
tion algorithms to accurately approximate all-frequency signals. Compared with previous PRT
algorithms, the proposed approach allows real-time rendering with comparable quality in high-
frequency lighting environments. The data storage is also more compact than previous related
algorithms. In the second section of this chapter, we additionally present an all-frequency
BRT algorithm to enhance the rendered results with complex surface appearance and micro-
geometry. Our BRT algorithm not only extends previous all-frequency PRT methods with com-
plex meso-scale surface appearance, but also permits view-dependent rendering of complex
objects on GPUs at real-time rates.

9.1 Precomputed Radiance Transfer

PRT [125, 162] can capture complex global illumination effects, such as inter-reflections, sub-
surface scattering, caustics, and shadows, from dynamic lighting environments. As a pre-
process, PRT precomputes a solution to the global light transport of a static scene, and only
records the final incident/exitant radiance of each sample point on object surfaces in different

127

illumination/view directions. To further decrease storage space and computational costs, the
recorded data should be approximated for efficient run-time rendering. In this way, PRT trans-
forms the time-consuming global illumination problem into mainly a data compression and
decompression issue.

For photo-realistic image synthesis, although all-frequency PRT [125] provides significantly
better image quality than its low-frequency counterpart [162], the amount of raw all-frequency
PRT data frequently exceeds tens of gigabytes. In this section, we thus introduce a novel al-
gorithm to approximate the enormous all-frequency PRT data. Our approach relies on the pro-
posed univariate SRBFs to efficiently model high-frequency lighting information and clustered

tensor approximation (CTA) to exploit coherence in the PRT data of different sample points.
This section is a rewritten version of some parts of our published paper [179]. Here, we

focus on the PRT application of the proposed univariate SRBFs as well as tensor approximation
algorithms, and present the univariate SRBF representation for PRT in more details.

9.1.1 Problem Formulation

Consider a static scene and distant illumination. The direct illumination term in the rendering
equation [73] over the unit sphere S2 is defined as

Lo,p(ωv) =

∫
S2

Lin(ωl)ρp(ωl, ωv)Vp(ωl) |ωl · np| dωl, (9.1)

where Lo,p(ωv) ∈ R represents the exitant radiance from a sample point p ∈ R3 on an object
surface in view direction ωv ∈ S2, Lin(ωl) ∈ R is the incident radiance from distant illumina-
tion direction ωl ∈ S2, and ρp(ωl, ωv) ∈ R, Vp(ωl) ∈ {x ∈ R | 0 ≤ x ≤ 1}, as well as np ∈ S2

respectively denote the bidirectional reflectance distribution function (BRDF), the visibility
function from direction ωl, and the surface normal at point p.

Suppose that the BRDF at point p is approximated with total Iρp sets of illumination- and
view-dependent basis functions by using singular value decomposition [105, 195]:

ρp(ωl, ωv) ≈
Iρp∑
i=1

Dp,i(ωl)Ep,i(ωv), (9.2)

where Dp,i(ωl) ∈ R and Ep,i(ωv) ∈ R respectively specify the i-th set of illumination- and
view-dependent basis functions of the BRDF at point p. Equation 9.1 then becomes

Lo,p(ωv) ≈
Iρp∑
i=1

(
Ep,i(ωv)

∫
S2

Tp,i(ωl)Lin(ωl)dωl

)
, (9.3)

Tp,i(ωl) = Dp,i(ωl)Vp(ωl) |ωl · np| , (9.4)

where Tp,i(ωl) ∈ R is known as the radiance transfer function for the i-th illumination-dependent

128

basis function Dp,i(ωl) at point p, which describes the transport of light for Dp,i(ωl) between
the distant illumination source and the incident radiance to point p in direction ωl.

Our approach represents the distant illumination Lin(ωl) and the radiance transfer functions
Tp,1(ωl), Tp,2(ωl), . . . , Tp,Iρp(ωl) in univariate SRBF expansions as

Lin(ωl) ≈
J∑
j=1

β
(Lin)
j G

(
ωl · ξ(Lin)

j |λ(Lin)
j

)
, (9.5)

∀i, Tp,i(ωl) ≈
K∑
k=1

β
(Tp,i)
k G

(
ωl · ξ(Tp)

k |λ(Tp)
k

)
, (9.6)

where
{
β

(Lin)
j ∈ R

}J
j=1

,
{
ξ

(Lin)
j ∈ S2

}J
j=1

, and
{
λ

(Lin)
j ∈ R

}J
j=1

denote the basis coefficient set,

the center set, and the bandwidth set of the distant illumination Lin(ωl), and
{
β

(Tp,i)
k ∈ R

}K
k=1{

ξ
(Tp)
k ∈ S2

}K
k=1

, as well as
{
λ

(Tp)
k ∈ R

}K
k=1

are respectively the basis coefficient set, the center
set, and the bandwidth set of the i-th radiance transfer function Tp,i(ωl) at point p. To simplify
the proposed algorithm, note that we use the same center and bandwidth sets for all radiance
transfer functions at point p in Equation 9.6.

By combining Equation 9.3 with Equations 9.5 and 9.6, the exitant radiance at point p is
approximated by

Lo,p(ωv) ≈
Iρp∑
i=1

(
Ep,i(ωv)

J∑
j=1

K∑
k=1

∫
S2

β
(Lin)
j β

(Tp,i)
k G

(
ωl · ξ(Lin)

j |λ(Lin)
j

)
G
(
ωl · ξ(Tp)

k |λ(Tp)
k

)
dωl

)
.

(9.7)

For discrete observations, Equation 9.7 can be further rewritten in a matrix form as

lo,p ≈ EpTpAplin, (9.8)

where lo,p denotes the exitance radiance vector at point p, Ep specifies the view-dependent
basis matrix of the BRDF at point p, and

Tp =


β

(Tp,1)
1 · · · β

(Tp,1)
K

...

β
(Tp,Iρp

)

1 · · · β
(Tp,Iρp

)

K

 , (9.9)

Ap =


(G ?2 G)

(
ξ

(Lin)
1 · ξ(Tp)

1 |λ(Lin)
1 , λ

(Tp)
1

)
· · · (G ?2 G)

(
ξ

(Lin)
J · ξ(Tp)

1 |λ(Lin)
J , λ

(Tp)
1

)
...

(G ?2 G)
(
ξ

(Lin)
1 · ξ(Tp)

K |λ(Lin)
1 , λ

(Tp)
K

)
· · · (G ?2 G)

(
ξ

(Lin)
J · ξ(Tp)

K |λ(Lin)
J , λ

(Tp)
K

)
 ,
(9.10)

lin =
[
β

(Lin)
1 · · · β

(Lin)
J

]T
. (9.11)

129

PRT Computation
Tensor Approximation

Algorithms

Off-Line Process

Univariate SRBF

Rotation

PRT

Rendering

Run-Time Process

Univariate SRBF

Approximation

Input ModelLighting Environment

Figure 9.1: System diagram of the proposed all-frequency PRT algorithm.

Moreover, Ap is known as the interpolation matrix at point p between the radiance transfer
matrix Tp and the incident illumination vector lin. Since univariate SRBFs are non-orthonormal
basis functions, Ap is necessary to account for the spherical singular integral between two
univariate spherical functions in univariate SRBF expansions.

9.1.2 Algorithm

Overview

As illustrated in Figure 9.1, the proposed all-frequency PRT algorithm consists of off-line and
run-time processes. In the off-line process, the radiance transfer matrix at each object vertex is
precomputed based on a set of uniformly distributed univariate SRBFs. To exploit inter-vertex
coherence, the radiance transfer matrices are further organized as a tensor and then compressed
using the proposed CTA (or K-CTA) algorithm. The lighting environment, frequently a high
dynamic range environment map, is also modeled with scattered univariate SRBFs for efficient
run-time rendering. In the run-time process, the lighting environment is first rotated to align
with objects. The shading color of each vertex then can be reconstructed on GPUs from the
rotated lighting environment and the decomposed results of CTA.

Off-Line Process

PRT computation: For an input scene, we first precompute the radiance transfer matrix at
each vertex. The visibility function at vertex p, namely Vp(ωl), is obtained by rendering the
scene into a cube map with flat shading. To avoid aliasing artifacts, the cube map is super-
sampled with a 6×128×128 resolution, and then down-sampled to 6×32×32 texels. Our im-
plementation currently only considers direct illumination. Nevertheless, inter-reflections can

130

be handled by applying GPUs to render triangle index textures. It is thus quite intuitive to
incorporate indirect illumination into the proposed PRT framework.

The BRDF at vertex p, namely ρp(ωl, ωv), is assumed to be the same everywhere on an
object without losing generality, and approximated using singular value decomposition by re-
taining Iρp terms of illumination- and view-dependent basis functions with the first Iρp largest
singular values. This scheme will provide a preliminary data reduction for the raw PRT data
sets, while preserving most of the important information for further analysis in the following
CTA stage. In our current configuration, Iρp simply equals to 1 for diffuse objects, whereas Iρp
is set to 16 for glossy objects. The value of Iρp depends on the complexity of the BRDF, and a
setting of Iρp ≤ 16 is typically sufficient for analytic BRDFs [105, 195]. For complex BRDFs,
we can set Iρp to a value such that the sum of the first Iρp largest singular values exceeds a
certain percentage, for example 95%, of the total sum of all singular values.

The SRBF center set for approximating radiance transfer functions is generated by repeat-
edly subdividing an icosahedron, while the bandwidth set is assigned with the same value de-
termined from the minimum geodesic distance between two centers, which is related to the
variance with respect to the center of a univariate SRBF. We currently subdivide an icosahedron
into a mesh with 642 vertices as the centers, and set the variance to π/40 radians for deriving
the bandwidths. For more details about the relationship between the variance and the bandwidth
parameters for Abel-Poisson and Gaussian SRBFs, please refer to Section 3.4.2 and [45, 123].
Although this configuration is sufficient for general cases according to our experiments, a finer
mesh on S2 and a smaller value of variance (a larger value of bandwidth) can always be adopted
to handle more complicated radiance transfer functions. Finally, each radiance transfer func-
tion is projected onto the univariate SRBFs using ordinary or regularized least-squares projec-
tion (Section 3.3), and the resulting coefficients are converted to half-precision (16-bit) floating
point numbers [65].

The radiance transfer functions are not modeled with scattered univariate SRBFs for two
reasons. First, the non-linear optimization process (Section 3.4.1) is computationally too ex-
pensive to be performed at each object vertex, even accelerated with GPUs. Second, after
approximating radiance transfer matrices using CTA, if the SRBF center (or bandwidth) set of
each vertex is different, we must compute the interpolation matrix at each vertex, and can not
take advantage of the per-cluster operation at run-time (refer to next sub-section Run-Time Pro-

cess for more details about the per-cluster operation). We aim to investigate these issues in the
future.

Clustered tensor approximation: After approximating the radiance transfer matrix at each
vertex with uniform univariate SRBFs, the amount of PRT data is still cumbersome for real-time
rendering applications. To solve this problem, the radiance transfer matrices of an object are
further organized as a third order tensor A(T)∈ RI

(T)
ωv ×I

(T)
ωl
×I(T)

vert (Figure 9.2), where I(T)
ωv = Iρp ,

I
(T)
ωl = K, and I(T)

vert is the number of object vertices.

131

Radiance

Transfer Matrix

V
ie

w

Light

V
er

te
x

. . .

Figure 9.2: Tensor representation for radiance transfer matrices in the proposed all-frequency
PRT algorithm. The transfer matrices of an object are organized as a third order tensor A(T)

with three modes: view (the number of BRDF terms after singular value decomposition), light
(the number of univariate SRBFs), and vertex.

Given the reduced ranks of each mode, namely R(T)
ωv , R(T)

ωl , and R(T)
vert, we set total C(T)

clusters for the vertex mode, and then decompose A(T) based on CTA as

A(T) ≈ Â(T)
=

C(T)∑
c=1

(
Z(T)
c ×ωv U(T)

ωv ,c ×ωl U
(T)
ωl,c
×vert U(T)

vert,c

)
, (9.12)

where Z(T)
c ∈ RR

(T)
ωv ×R

(T)
ωl
×R(T)

vert denotes the core tensor of cluster c, and U
(T)
ωv ,c∈ RI

(T)
ωv ×R

(T)
ωv ,

U
(T)
ωl,c∈ RI

(T)
ωl
×R(T)

ωl , as well as U
(T)
vert,c∈ RI

(T)
vert×R

(T)
vert are respectively the mode-ωv, mode-ωl, and

mode-vert basis matrices of cluster c. Instead of CTA, note that one can also apply K-CTA to
approximate A(T), but the mode-vert basis matrices should additionally satisfy the sparse and
membership constraints in Equation 6.1.

Lighting environment: To efficiently shade objects whose radiance transfer functions are
represented in univariate SRBFs, the lighting environment Lin(ωl) is also modeled with uni-
variate SRBFs. Although Lin(ωl) can be approximated by adopting a set of uniform univariate
SRBFs, we propose to approximate Lin(ωl) with a compact set of scattered univariate SRBFs
as Equation 9.5. Similar to high dynamic range environment maps (Section 7.1), Algorithm 3.1
can be applied to obtain the SRBF parameters in Equation 9.5.

Run-Time Process

The run-time PRT rendering process consists of the following steps:

1. Align lin with objects. This includes rotating the SRBF center set
{
ξ

(Lin)
j ∈ S2

}J
j=1

, per-
forming the spherical singular integrals to acquire Ap, and computing the matrix-vector
product l′in = Aplin.

132

2. For each cluster c, obtain the representative radiance transfer matrix Ẑ
(T)
c by

∀c, Ẑ(T)
c = ufωv

(
Z(T)
c ×ωl

(
(l′in)TU(T)

ωl,c

))
. (9.13)

3. For each vertex p, reconstruct the radiance transfer vector rp by

∀p, rp =
C(T)∑
c=1

Ẑ(T)
c

(
U

(T)
vert,c

)T
p∗. (9.14)

4. For each pixel, sample the view-dependent basis matrix Ep for current novel view direc-
tion. The final shading color is then the dot product of the sampled results and rp.

Steps 1 and 2 are performed on CPUs, whereas the other two steps are executed on GPUs.
Step 1 is a per-object operation that is performed when the alignment of a lighting environment
with an object is required. Step 2 is a per-cluster operation rather than a per-vertex one. Since
the number of clusters is much smaller than the number of object vertices, Step 2 greatly reduces
the computational costs at run-time. After that, the representative radiance transfer matrix of
each cluster is transferred to GPUs for executing Step 3 in the vertex shader and Step 4 in
the pixel shader. Note that the per-vertex operation in Step 3 can be computed from only the
non-zero entries of U

(T)
vert,c. Moreover, the sampling of Ep in Step 4 can be conducted using a

pre-filtered two-dimensional texture in the parabolic parameterization [62]. To prevent aliasing
artifacts, this texture is super-sampled and then filtered down to a desired resolution (typically
256×256).

9.1.3 Experimental Results

The experiments and simulation timings of the proposed all-frequency PRT algorithm were
conducted and measured on a workstation with an Intel Core 2 Extreme QX6700 CPU, an
NVIDIA GeForce 8800 Ultra graphics card, and 4 gigabytes main memory under Microsoft
Windows Vista operating system. We employed NVIDIA CUDA [128] to accelerate the off-
line process and Microsoft Direct3D 9 for run-time rendering on GPUs. In our experiments, the
univariate Gaussian SRBFs were adopted to represent radiance transfer functions and lighting
environments. The SRBF center and bandwidth sets were also constrained to be the same
for red, green, and blue channels of a radiance transfer function or a lighting environment.
To improve rendering performance, the super-clustering technique [161] was also applied to
decrease the number of redrawn triangles.

Table 9.1 lists the statistics and timing measurements of the proposed all-frequency PRT
algorithm for various models. It shows that proposed approach can achieve high compression
ratios and real-time rendering performance using modern GPUs. For our configurations, the
uniform univariate SRBF representation followed by conversion to half-precision (16-bit) float-

133

Table 9.1: Statistics and timing measurements of the proposed all-frequency PRT algorithm us-
ing the Cook-Torrance model [25] and the high dynamic range lighting environment St. Peter’s
Basilica. In the row Frames per second, we list the rendering performance when the viewpoint
or the lighting environment changes.

Model Buddha Bunny Teapot

Vertices: I(T)
vert 52k 61k 41k

I
(T)
ωv × I

(T)
ωl 16×642 16×642 16×642

Raw PRT data (GB) 19.12 22.35 15.11

PRT data in SRBFs (GB) 1.00 1.17 0.79

R
(T)
ωv ×R

(T)
ωl ×R

(T)
vert 8×48×24 8×48×24 8×48×24

Clusters: C(T) 140 170 110

Mixture clusters: K(T)
vert 1 1 1

CTA compressed data (MB) 13.18 15.89 10.37

Squared error ratio (SRBF) 1.41% 1.28% 1.23%

Squared error ratio (SRBF + CTA) 3.75% 3.64% 3.91%

PRT computation time (hr.) 0.94 1.12 0.75

CTA compression time (hr.) 12.71 14.19 10.47

Frames per second (view/light) 99.81/19.47 96.43/16.93 129.07/19.64

ing point numbers reduces the raw PRT data by 94.7%, and CTA further compresses the PRT
data in SRBFs by a factor of 73 on average. The total compression ratio is thus beyond 1000:1.

Figures 9.3 and 9.4 demonstrate the rendered images based on the proposed approach. In
all rendered results, a diffuse plane was placed under each model to demonstrate the ability
of univariate SRBFs to handle all-frequency shadows. The uniform univariate SRBF represen-
tation typically provides visually pleasing shadows with only hundreds of univariate SRBFs.
Although occasionally the contours of shadow boundaries appear to be too smooth so that some
sharp features of shadowing objects are lost, a set of denser univariate SRBFs can always be
adopted to faithfully model the raw PRT data at the cost of more compression time and slightly
slower rendering performance when the lighting environment rotates.

Table 9.2 and Figure 9.5 compare the proposed algorithm with all-frequency clustered prin-

cipal component analysis (CPCA) [105]. While the proposed approach renders objects with
comparable quality in real time, the performance of all-frequency CPCA is only at interactive
rates. There are two main reasons that enable the proposed approach to achieve real-time per-
formance. First, we adopt univariate SRBFs to approximate radiance transfer functions with
much fewer coefficients. Second, to accelerate compression time and allow CPCA adaptive to
the large dimension of the illumination mode, all-frequency CPCA statically partitions the illu-
mination mode into several segments. Nevertheless, while performing per-vertex operations on
GPUs at run-time, objects should be rendered several times for each segment separately. Mem-
ory bandwidths are consumed for transferring the partially reconstructed data of each segment
to GPUs. By contrast, the proposed approach does not partition the illumination mode, since

134

Table 9.2: Comparisons of statistics and timing measurements between the proposed all-
frequency PRT algorithm and all-frequency CPCA [105] for the model Buddha. The raw PRT
data were obtained by setting the BRDF terms to 16. In the row Projection coefficients, we list
the mode-vert reduced rank R(T)

vert for the proposed approach, which can be regarded as analo-
gous to the projection coefficients for all-frequency CPCA. In the row Frames per second, we
also show the rendering performance when the viewpoint or the lighting environment changes.

Algorithm All-frequency CPCA [105] Proposed approach

Light basis dimensions 0 642×48

Vertex basis dimensions 256×8 48×8

Projection coefficients 12 24

Clusters 140×24 140

Compressed data (MB) 48.41 13.18

Squared error ratio 3.09% 3.75%

Frames per second (view/light) 18.53/2.38 99.81/19.47

the dimension of this mode is usually not so large. Instead, we increase the reduced rank of the
vertex mode to decrease approximation errors. Therefore, objects can be rendered on GPUs at
real-time rates, without much overhead.

The main off-line cost of the proposed approach lies in the clustering stage of CTA, since we
search for a locally optimal solution to the decomposed results of each cluster. Other heuristic
clustering approaches can be applied to decrease the compression time, while increasing the
number of clusters or the values of reduced ranks to obtain similar image quality. However, this
scheme generally leads to lower compression ratios as well as slower run-time performance.
We intend to reduce the compression time, or develop heuristic error metrics to approximate a
locally optimal solution in the future.

9.1.4 Discussions

Compared with previous all-frequency PRT algorithms, the advantages of the proposed ap-
proach are summarized as follows:

• The proposed method is able to render all-frequency effects from compact compressed
data at real-time rates.

• With the univariate SRBF representation, radiance functions can be modeled in their in-
trinsic domain to avoid false boundaries, distortions, and unnecessary parameterization.

• The univariate SRBFs behave as noise filters to prevent aliasing artifacts, and usually lead
to visually pleasing results.

• CTA can further reduce the light mode to exploit the data coherence that can not be found
by all-frequency CPCA.

135

(a) Bunny (b) Teapot

Figure 9.3: Rendered images based on the proposed all-frequency PRT algorithm. From top to
bottom: raw PRT data; compressed PRT data (SRBF); compressed PRT data (SRBF + CTA).
For algorithm configurations, please refer to Table 9.1.

136

(a) Raw PRT data (b) PRT data in univariate SRBF
expansions

(c) R(T)
ωl = 48, R(T)

vert = 24
(15.89 MB, 91.34/14.73 FPS)

(d) R(T)
ωl = 24, R(T)

vert = 24
(9.40 MB, 92.63/19.92 FPS)

(e) R(T)
ωl = 48, R(T)

vert = 12
(13.00 MB, 99.86/15.25 FPS)

(f) R(T)
ωl = 24, R(T)

vert = 12
(7.26 MB, 100.79/20.48 FPS)

Figure 9.4: Comparisons of rendered images with various configurations of CTA based on the
proposed all-frequency PRT algorithm for the model Bunny. The amount of compressed data
and rendering performance in frames per second (FPS) are shown in parentheses. For rendering
performance, we list the frame rate when the viewpoint or the lighting environment changes
(view/light). For algorithm configurations other than R(T)

ωl and R(T)
vert, please refer to Table 9.1.

137

(a) Raw PRT data (b) All-frequency CPCA (c) Proposed approach
(18.53 frames per second) (99.81 frames per second)

Figure 9.5: Comparison of rendered images between the proposed all-frequency PRT algorithm
and all-frequency CPCA [105] for the model Buddha. The lighting environment adopted in
the result of all-frequency CPCA was approximated with 324 basis functions (total 972 coef-
ficients) using the area-weighted Haar wavelet method [125], whereas the proposed approach
modeled the environment with 162 scattered univariate SRBFs (total 972 parameters). Note
that the proposed approach achieves real-time performance with image quality comparable to
all-frequency CPCA. For algorithm configurations, please refer to Tables 9.1 and 9.2.

When the lighting environment changes, CTA particularly allows efficient computation of
Step 2 (Section 9.1.2 on Page 132), whose computational cost roughly depends on I(T)

ωl ×R
(T)
ωl

and R(T)
ωv ×R

(T)
ωl ×R

(T)
vert. For all-frequency CPCA [105], the lighting environment is convoluted

with the vertex basis matrices of each cluster. Therefore, the computational cost instead depends
on I(T)

ωv ×I
(T)
ωl ×R

(T)
vert, which is more expensive than the proposed approach.

There are also some disadvantages of the proposed all-frequency PRT algorithm:

• The off-line computational costs are higher than previous PRT algorithms.

• Unlike zonal harmonics [164], per-vertex rotations of radiance transfer functions cur-
rently can not be efficiently handled.

• After modeling radiance transfer functions with uniform univariate SRBFs, some sharp
features, such as all-frequency shadows, may be slightly more blurred than wavelet-based
methods.

• For highly specular BRDFs, such as all-frequency mirroring effects, the technique pro-

138

posed by Green et al. [50] may be better than the proposed approach.

• The proposed method does not support fully dynamic changes of the lighting environment
at real-time rates. The lighting environment is only allowed to rotate efficiently at run-
time.

However, in Section 7.1, we showed that the scattered univariate SRBF representation can
outperform the area-weighted Haar wavelets [125] for modeling high dynamic range envi-
ronment maps. If the scattered univariate SRBF representation is applied to model the radi-
ance transfer function of each object vertex, the second and third disadvantages may be over-
whelmed. Our current scheme is merely a trade-off between approximation errors and com-
putational costs. As for highly specular BRDFs, the technique of Green et al. [50] and the
proposed approach could be integrated as a two-pass rendering process to overcome the fourth
disadvantage.

9.2 Bi-Scale Radiance Transfer

Although PRT can capture realistic global illumination effects for efficient run-time render-
ing at real-time rates, it only considers spatially-uniform surface appearance. BRT [163] thus
generalizs PRT with spatially-varying materials, which is called radiance transfer textures, in
low-frequency lighting environments to improve image quality with detailed surface appear-
ance. The main concept of BRT is to separate the light transport problem into macro-scale
radiance transfer (coarsely-sampled global illumination data) and meso-scale radiance trans-
fer (spatially-varying appearance models). This not only enriches PRT with illumination- and
view-dependent meso-textures, but also prevents full PRT simulation all over the object sur-
faces at the meso-scale. Nevertheless, previous BRT algorithms are limited to low-frequency
light transport and bump-mapping-like surface appearance. The radiance transfer textures only
model fine-scale lighting and shadowing effects, but neither contain shape information nor actu-
ally modify the surface geometry. Therefore, meso-scale shape details and shadow boundaries
owing to complex meso-structures can not be faithfully captured.

In this dissertation, we address the problem of all-frequency BRT with spatially-varying re-
flectance and complex meso-structures. The proposed approach combines bidirectional texture

functions (BTFs) and view-dependent occlusion texture functions (VOTFs) for meso-scale radi-
ance transfer to model not only spatially-varying illumination effects but also view-dependent
occlusions at the meso-scale. To obtain an accurate and compact representation, we apply ten-
sor approximation algorithms to decompose BTFs and VOTFs into a few low-order factors and
the reduced multi-dimensional core tensor(s).

As for macro-scale radiance transfer, a solution to global illumination based on all-frequency
PRT is precomputed. The low-order factors extracted by tensor approximation algorithms espe-
cially facilitate the computation of the radiance transfer matrix at each object vertex. Moreover,

139

Table 9.3: Feature comparisons of the proposed all-frequency BRT algorithm with various
meso-scale appearance models, including bidirectional texture functions (BTFs) [28], gener-
alized displacement maps (GDMs) [197], relief mapping (RM) [138, 139], radiance transfer
textures (RTTs) [163], radiance transfer volume (RTV) [197], shell radiance texture functions
(SRTFs) [166], shell texture functions (STFs) [21], and view-dependent displacement mapping
(VDM) [194].

Appearance models BTFs GDMs Proposed BRT RM RTTs RTV SRTFs STFs VDM

All-frequency
√ √ √ √ √ √

Bi-scale transfer
√ √ √ √ √

Complex geometry
√ √ √ √ √ √ √ √

Inter-reflections
√ √ √ √ √

Meso-scale occlusions
√ √ √ √ √∗ √

Meso-structure synthesis
√ † √ † √ † √ √ †

Real-time rendering
√ √ √ √ √ √ √ √

Shadows
√ √ √ √ √ √ √ √ √

Sub-surface scattering
√‡ √ √ √

∗For shell texture functions, meso-scale occlusions are determined by the ray tracing process at run-time.
†To the best of our knowledge, although it is possible to extend these appearance models for meso-structure

synthesis, no articles have conducted complete experiments on this issue.
‡One of the acquisition methods for spatially-varying sub-surface scattering materials can be found in [135].

we also employ the meso-scale occlusion information in VOTFs to cast shadows due to meso-
structures.

Table 9.3 lists the feature comparisons of the proposed all-frequency BRT algorithm with
several meso-scale appearance models. It can be shown from this table that the proposed BRT
algorithm supports most features, including sub-surface scattering if the utilized BTFs contain
this effect.

9.2.1 Problem Formulation

Consider a static scene, distant illumination, and spatially-varying appearance models. The
rendering equation [73] over the unit sphere S2 can be rewritten as

Lo,p(ωv) =

∫
S2

(
L(D)
o,p (ωv) + L(I)

o,p(ωv)
)
|ωl · np| dωl, (9.15)

L(D)
o,p (ωv) = Lin(ωl)Bp(ωl, ωv, tp)

∏
q∈Qp,ωl

Oq(−ωl, tq), (9.16)

L(I)
o,p(ωv) = L

o,q
(h)
p,ωl

(−ωl)Bp(ωl, ωv, tp)
(

1−
∏

q∈Qp,ωl

Oq(−ωl, tq)
)
, (9.17)

where Lo,p(ωv) ∈ R denotes the exitant radiance from a sample point p ∈ R3 on an object sur-
face in view direction ωv ∈ S2, L(D)

o,p (ωv) ∈ R and L(I)
o,p(ωv) ∈ R are respectively known as the

140

Object3

Object1

Object2

Object4

Object5

Direction ωl

p

qp,ωl

(1)

qp,ωl

(2)

qp,ωl

(3)

qp,ωl

(4)

Figure 9.6: The proposed all-frequency BRT algorithm determines visibility values at the meso-
scale. Black solid lines indicate true object surfaces. Red dotted lines instead show that there
are object surfaces at the macro-scale, but no occlusions at the meso-scale. From a surface point
p in direction ωl, the true intersection point thus is not q

(1)
p,ωl but q

(3)
p,ωl , which is the first point

whose exitant ray in direction −ωl is occluded at the meso-scale.

direct and indirect illumination terms of exitant radiance, Lin(ωl) ∈ R represents the incident
radiance from distant illumination direction ωl ∈ S2, and np ∈ S2 specifies the surface normal
at point p. The BTF Bp(ωl, ωv, tp) ∈ R and the VOTF Op(ωv, tp) ∈ {x ∈ R | 0 ≤ x ≤ 1} are
the meso-scale reflectance distributions and view-dependent occlusions at point p, where the
spatial coordinates of point p, denoted by tp, are obtained from the meso-structure synthesis.
Moreover, Qp,ωl =

{
q

(1)
p,ωl , . . . ,q

(h)
p,ωl

}
represents the set of intersection points from point p in

direction ωl. The elements of Qp,ωl are ordered according to their Euclidean distances to point
p, from the nearest hit point q

(1)
p,ωl to the first point q

(h)
p,ωl whose exitant ray in direction −ωl is

occluded at the meso-scale (Figure 9.6). Note that visibility values are determined at the meso-
scale, which is different from previous PRT methods that only model macro-scale visibility.

To obtain a compact representation for meso-scale radiance transfer, Bp(ωl, ωv, tp) and
Op(ωv, tp) are respectively organized as a fourth order tensor A(Bp)∈ RI

(Bp)
ωl

×I(Bp)
ωv ×I(Bp)

x ×I(Bp)
y

and a third order tensor A(Op)∈ RI
(Op)
ωv ×I(Op)

x ×I(Op)
y for compression using various tensor ap-

proximation algorithms as

N -SVD:

A(Bp) ≈ Â(Bp)
= Z(Bp) ×ωl U(Bp)

ωl
×ωv U(Bp)

ωv ×x U(Bp)
x ×y U(Bp)

y , (9.18)

A(Op) ≈ Â(Op)
= Z(Op) ×ωv U(Op)

ωv ×x U(Op)
x ×y U(Op)

y , (9.19)

CTA or K-CTA:

A(Bp) ≈ Â(Bp)
=

C(Bp)∑
c=1

(
Z(Bp)
c ×ωl U(Bp)

ωl,c
×ωv U(Bp)

ωv ,c ×x U(Bp)
x,c ×y U(Bp)

y,c

)
, (9.20)

141

A(Op) ≈ Â(Op)
=

C(Op)∑
c=1

(
Z(Op)
c ×ωv U(Op)

ωv ,c ×x U(Op)
x,c ×y U(Op)

y,c

)
. (9.21)

Here, we omit a detailed description of the notation in Equations 9.18–9.21. As described
in Sections 8.1.1 and 8.2.1, readers can refer to Equations 8.1, 8.2, 8.14, and 8.15 for the
mathematical notation.

Equations 9.18 and 9.20 can be further rewritten in matrix forms as

N -SVD:

ufωl

(
Â(Bp)

)T
= ufωl

(
Z(Bp) ×ωv U(Bp)

ωv ×x U(Bp)
x ×y U(Bp)

y

)T
UT
ωl
, (9.22)

CTA or K-CTA:

ufωl

(
Â(Bp)

)T
=

C(Bp)∑
c=1

ufωl

(
Z(Bp)
c ×ωv U(Bp)

ωv ,c ×x U(Bp)
x,c ×y U(Bp)

y,c

)T
UT
ωl,c
. (9.23)

From Equations 9.22 and 9.23, it is easy to identify that mode-ωl basis matrices resemble the
illumination-dependent basis functions in BRDF factorization [105, 196]. By following the
same approach as in the derivation of Equation 9.8, Equation 9.15 then becomes

N -SVD:

lo,p ≈ ufωl

(
Z(Bp) ×ωv U(Bp)

ωv ×x U(Bp)
x ×y U(Bp)

y

)T
TpAplin, (9.24)

CTA or K-CTA:

lo,p ≈
C(Bp)∑
c=1

ufωl

(
Z(Bp) ×ωv U(Bp)

ωv ×x U(Bp)
x ×y U(Bp)

y

)T
Tp,cAplin, (9.25)

where lo,p denotes the exitance radiance vector at point p, Tp (or Tp,c) denotes the radiance
transfer matrix at point p (for cluster c), and the interpolation matrix Ap as well as the incident
illumination vector lin are respectively defined in Equations 9.10 and 9.11.

From [196], Tp (or Tp,c) can be further modeled with the sum of direct radiance transfer
matrix T

(D)
p (or T

(D)
p,c) and an infinite series of j-bounce radiance transfer matrices

{
T

(j)
p

}∞
j=1

(or
{
T

(j)
p,c

}∞
j=1

) as

N -SVD: Tp = T(D)
p + T(1)

p + T(2)
p + · · · , (9.26)

CTA or K-CTA: Tp,c = T(D)
p,c + T(1)

p,c + T(2)
p,c + · · · . (9.27)

142

Macro-Scale

Radiance Transfer

Meso-Scale Radiance

Transfer & Synthesis

Off-Line Process

Univariate SRBF

Rotation

BRT

Rendering

Run-Time Process

Univariate SRBF

Approximation

Input ModelLighting Environment Meso-Structures

(a) System overview

Global

Illumination

Surface

Parameterization

Compressed

Meso-Structures

Simulated

Meso-Structures

Meso-Structure

Synthesis

Tensor Approximation

Algorithms

Input Scene

Input Model Surface Atlas Coordinate Texture

Measured
Meso-Structures

OR

(b) Meso-scale radiance transfer and synthesis

BRT

Computation

Compressed

BRT Data
Resampling

Raw BRT

Data

Univariate SRBF

Approximation

Tensor Approximation

Algorithms

Compressed

Meso-Structures

Coordinate Texture

Input Model

(c) Macro-scale radiance transfer

Figure 9.7: System diagrams of the proposed all-frequency BRT algorithm.

143

9.2.2 Algorithm

Overview

As illustrated in Figure 9.7(a), the proposed all-frequency BRT algorithm consists of off-line
and run-time processes. In the off-line process, the surface meso-structures, namely BTFs and
VOTFs, are either simulated by rendering three-dimensional scenes using global illumination
techniques or measured from real-world objects. After that, the meso-structures are compressed
using tensor approximation algorithms and then synthesized over object surfaces, as illustrated
in Figure 9.7(b). For macro-scale radiance transfer (Figure 9.7(c)), the all-frequency PRT algo-
rithm (Section 9.1) is extended to derive a global illumination solution that considers geometry
details at both scales. In the run-time process, the compressed meso-structures and macro-scale
BRT data, along with the synthesized results, are combined to render objects in all-frequency
lighting environments.

Off-Line Process

Meso-scale radiance transfer: To reduce storage space, the meso-scale surface appearance
models, including BTFs and VOTFs, are compressed using tensor approximation algorithms.
For VOTFs, view-dependent signed-distance representations are recommended instead of bi-
nary visibility masks to preserve sharp geometric features at the meso-scale (Section 8.2.1). Af-
ter compressing BTFs and VOTFs, we also employ the proposed resampling and meso-structure
synthesis methods as described in Section 8.1.1 to prepare necessary data for macro-scale radi-
ance transfer and run-time rendering.

Macro-scale radiance transfer: Based on the all-frequency PRT framework in Section 9.1,
the raw radiance transfer matrices are computed at each object vertex, approximated with a set
of uniform univariate SRBFs, and finally compressed using CTA (or K-CTA) to exploit inter-
vertex coherence. During BRT computation, the meso-scale visibility at point p in direction
ωv, namely Op(ωv, tp), is obtained by sampling Ẑ(Op)

(or Ẑ(Op)

c) at spatial coordinates tp in
direction ωv and performing construction on GPUs, where

N -SVD: Ẑ(Op)
= Z(Op) ×x U(Op)

x ×y U(Op)
y , (9.28)

CTA or K-CTA: ∀c, Ẑ(Op)

c = Z(Op)
c ×x U(Op)

x,c ×y U(Op)
y,c . (9.29)

For
{
T

(j)
p

}∞
j=1

(or
{
T

(j)
p,c

}∞
j=1

), a triangle index texture, a barycentric coordinate texture,
and a core transfer vector texture are rendered at each vertex on GPUs to identify the infor-
mation of hit points. These textures are sampled at low resolutions as suggested by Sun et al.
[171] to decrease precomputation time, and then employed for the computation of

{
T

(j)
p

}∞
j=1

(or
{
T

(j)
p,c

}∞
j=1

) on GPUs. The core transfer vector of point p in direction ωv is derived from

144

sampling Ẑ(Bp)
(or Ẑ(Bp)

c) at spatial coordinates tp in direction ωv, where

N -SVD: Ẑ(Bp)
= Z(Bp) ×x U(Bp)

x ×y U(Bp)
y , (9.30)

CTA or K-CTA: ∀c, Ẑ(Bp)

c = Z(Bp)
c ×x U(Bp)

x,c ×y U(Bp)
y,c . (9.31)

Similar to the off-line process of the proposed all-frequency PRT algorithm (Section 9.1.2),
the radiance transfer matrices of an object are approximated with a set of uniform univariate
SRBFs, and further organized as a third order tensor A(T)∈ RI

(T)
ωv ×I

(T)
ωl
×I(T)

vert . Given the reduced
ranks of each mode, namely R(T)

ωv , R(T)
ωl , and R(T)

vert, A(T) is then compressed using CTA (or
K-CTA) with total C(T) clusters for the vertex mode. Here, note that the utilized tensor approx-
imation algorithm for macro-scale radiance transfer (CTA or K-CTA) is independent of that for
meso-scale radiance transfer. One can always apply different tensor approximation algorithm
to model the radiance transfer data at each scale.

Run-Time Process

The BRT rendering process is similar to the run-time process of the proposed all-frequency PRT
algorithm and consists of the following steps:

1. Perform Steps 1–3 as described in the run-time process of the proposed all-frequency PRT
algorithm (Section 9.1.2 on Page 132) to obtain the per-vertex radiance transfer vector rp.

2. In the pixel shader, sample the synthesized texture S for the BTF/VOTF spatial coordi-
nates tp of current pixel p.

3. If the meso-structure of pixel p does not contain VOTF, set pixel p as visible and go to
Step 6. Otherwise, continue to execute Step 4.

4. Perform Steps 3 and 4 as described in the run-time process of VOTFs (Section 8.2.2 on
Page 121) to obtain the meso-scale visibility value Ô′p. Set pixel p to visible if Ô′p > 0.

5. If pixel p is visible, compute its shading color by Step 6. Otherwise, discard it.

6. Sample the texture of mode-ωv basis matrix for all the components of current novel view
direction. The shading color of pixel p is then given by the dot product of the sampled
results and rp.

Here, we omit a detailed description of the above rendering steps. Readers can refer to
Sections 8.1.1, 8.2.2, and 9.1.2 for more details about the rendering issues of BTFs, VOTFs,
and PRT.

145

Table 9.4: Statistics and timing measurements of the proposed all-frequency BRT algorithm.
In the row Frames per second, we list the rendering performance with/without visibility anti-
aliasing when the viewpoint changes. For the configurations of each meso-scale material, please
refer to Tables 8.1 and 8.6.

Model Bunny BunnyPlane Cloth Teapot

Material(s) Sponge Fiber + Sponge Wool + Sponge RoughHole + Sponge

Vertices: I(T)
vert 36k 98k 55k 75k

SRBFs: I(T)
ωl 642 2562 642 642

Raw BRT data (GB) 40.11 108.35 69.23 123.26

R
(T)
ωl ×R

(T)
vert 64×12 64×12 64×12 64×12

Clusters: C(T) 100 180 110 150

Compressed data (MB) 15.77 71.4 18.79 29.44

BRT computation time (hr.) 2.65 22.55 7.86 10.08

CTA compression time (hr.) 8.28 16.98 12.51 13.66

Frames per second (w/wo) -/50.45 21.38/28.13 -/31.83 19.46/24.21

9.2.3 Experimental Results

The experiments and simulation timings of the proposed all-frequency PRT algorithm were
conducted and measured on a workstation with an Intel Core 2 Extreme QX6700 CPU, an
NVIDIA GeForce 8800 Ultra graphics card, and 4 gigabytes main memory under Microsoft
Windows Vista operating system. We employed NVIDIA CUDA [128] to accelerate the off-
line process and Microsoft Direct3D 9 for run-time rendering on GPUs. In our experiments,
the univariate Gaussian SRBFs were adopted to represent the radiance transfer functions and
the lighting environments. The SRBF center and bandwidth sets were also constrained to be the
same for red, green, and blue channels of a radiance transfer function or a lighting environment.
To improve rendering performance, the super-clustering technique [161] was also applied to
decrease the number of redrawn triangles.

Table 9.4 lists the experimental statistics of the proposed all-frequency BRT algorithm in
various configurations. For macro-scale radiance transfer, we simulated light paths with at most
two inter-reflections to precompute a 6×32×32 radiance transfer matrix at each vertex and
approximated the raw BRT data with a set of uniform univariate SRBFs. Due to enormous
amount of BRT data, we did not directly employ CTA (or K-CTA) but first applied clustered
principal component analysis [161] to classify vertices, as suggested by Sun et al. [171], and
fine-tuned cluster membership using CTA (or K-CTA). The reduction of the view mode was
omitted to accelerate the compression process, and the reduced ranks of the light and vertex
modes were respectively set to 64 and 12.

Figure 9.8 compares the rendered images with different tensor approximation algorithms for
meso-structures based on the proposed approach. It shows that K-CTA achieves image quality
comparable to N -SVD, while providing almost the same rendering performance as CTA. Al-

146

(a) Raw BRT data (b) N -SVD (6.34 FPS)

(c) CTA (22.69 FPS) (d) K-CTA (21.38 FPS)

Figure 9.8: Comparisons of rendered images with different tensor approximation algorithms for
meso-structures based on the proposed all-frequency BRT algorithm for the model BunnyPlane
with the materials Fiber and Sponge. The rendering performance in frames per second (FPS)
are shown in parentheses. The configurations of macro- and meso-scale radiance transfer are
listed in Tables 8.1, 8.6, and 9.4.

though both CTA and K-CTA allow real-time rendering performance, CTA sometimes produces
noticeable seams when the viewpoint changes. This result is consistent with our experiments of
BTF and VOTF compression in Chapter 8.

Figure 9.9 compares the rendered images with/without indirect illumination based on the
proposed approach for the model Bunny. Without indirect illumination, as shown in Figure
9.9(a), inter-reflections between object surfaces can not be faithfully captured. This produces
some false hard and soft shadows that result in many over dark regions, especially around the
neck and forelegs of Bunny. In Figure 9.10, we further present more rendered images based
on the proposed approach. From these images, the proposed BRT algorithm certainly provides
more reflectance and geometric details of meso-scale surface appearance than previous PRT
methods. Futhermore, VOTFs particularly allow rendering complex geometric features without
consuming hundreds of thousands of polygons to explicitly model the surface micro-geometry.

147

(a) Direct illumination (b) Direct and indirect illumination

Figure 9.9: Comparisons of rendered images with/without indirect illumination based on the
proposed all-frequency BRT algorithm for the model Bunny with the material Sponge. From top
to bottom: raw BRT data; compressed BRT data (SRBF); compressed BRT data (SRBF + CTA).
The configurations of macro- and meso-scale radiance transfer are listed in Tables 8.1 and 9.4.

148

(a) Cloth with Wool and Sponge (b) Teapot with RoughHole and Sponge

Figure 9.10: Rendered images based on the proposed all-frequency BRT algorithm. From top
to bottom: raw BRT data; compressed BRT data (SRBF); compressed BRT data (SRBF + CTA).
The configurations of macro- and meso-scale radiance transfer are listed in Tables 8.1, 8.6, and
9.4.

149

Chapter 10

Conclusions and Future Work

10.1 Conclusions

In this dissertation, we have introduced two new data representations, univariate and multivari-
ate spherical radial basis functions (SRBFs), and two novel compression algorithms, clustered

tensor approximation (CTA) and K-clustered tensor approximation (K-CTA), for real-time data-
driven rendering. While SRBFs provide an intrinsic and efficient description of univariate or
multivariate spherical functions, CTA and K-CTA are powerful compression algorithms that
allow sophisticated data analysis, compact storage space, and fast data reconstruction. Further-
more, we have also described several important applications in computer graphics and vision.
Experimental results reveal that the proposed representations and approximation algorithms can
be seamlessly integrated to obtain practical solutions of photo-realistic rendering at real-time
rates.

10.1.1 Spherical Radial Basis Functions

Based on univariate/multivariate SRBFs, illumination and radiance functions can be modeled in
their intrinsic spherical domain to avoid artifacts that result from false boundaries, distortions,
and unnecessary parameterization. Most existing methods were not originally developed to
handle spherical functions and deficient in this important feature. Therefore, they frequently
have to model a spherical function in an inappropriate domain other than the unit hyper-sphere.
By contrast, the proposed SRBFs naturally bear the spherical domain in mind and are indeed
suitable for directional data analysis.

Furthermore, all-frequency signals can be efficiently modeled by adjusting the bandwidth
parameter of a SRBF. Previous articles have demonstrated that some high-frequency features,
such as sharp shadow boundaries and specular highlights, have significant contributions to hu-
man visual perception. Unfortunately, data representations based on the popular spherical har-
monics frequently rely on discarding high-frequency parts to achieve compact results. This
makes spherical harmonics difficult to adapt to various kinds of real-world illumination and

150

radiance functions. On the contrary, the proposed SRBFs allow localized high-frequency sig-
nals to be easily described by their bandwidth parameters. This spatial localization property
particularly distinguishes SRBFs from spherical harmonics. We thus expect that univariate and
multivariate SRBFs will have a great impact on data representations for illumination and radi-
ance functions in the future.

10.1.2 Tensor Approximation Algorithms

As for approximation algorithms, one major disadvantage of previous tensor-based approaches
for real-time applications is that the decomposed results are not compact enough to be employed
for efficient reconstruction on GPUs. We thus aim at overcoming this drawback by introducing
the concept of sparse representation into multi-linear models, and effectively integrate cluster-
ing, sparse coding, and tensor approximation into a unified framework. As a result, the pro-
posed CTA and K-CTA algorithms are especially appropriate for analyzing multi-dimensional
data sets in real-time applications. When compared to traditional tensor approximation, the
rendering performance of CTA and K-CTA is frequently improved by a substantial factor with
only slight increases in approximation errors and amounts of compressed data. Moreover, K-
CTA can also exploit inter-cluster coherence for smooth transitions across different physical
conditions by mixing the decomposed results of multiple clusters.

At first glance, CTA and K-CTA may seem to have similarities with previous matrix factor-
ization methods [90, 124]. Nayar et al. [124] introduced two-stage singular value decomposi-
tion to exploit inter-block coherence, but their approach does not allow sparse representations.
Lawrence et al. [90] instead proposed to include sparsity penalty in the objective function so
that the final results tend to be sparse. Nevertheless, the weighting parameter of sparsity penalty
should be tuned for different data sets in order to obtain a pre-defined number of non-zero terms.
By contrast, the proposed CTA and K-CTA algorithms permit sparse representations in which
the number of non-zero terms is inherently enforced. For K-CTA, the sparsity can even be
controlled by a user-defined threshold. In this way, an upper bound on run-time reconstruction
costs is guaranteed. We believe that this property of CTA and K-CTA is significant for real-time
applications, since run-time performance is predictable and totally under user control.

10.1.3 Summary

Additionally, we can further combine the advantages of SRBFs and CTA/K-CTA to provide
more compact compressed data, while still achieving real-time rendering rates at run-time. The
proposed all-frequency radiance transfer algorithms in Chapter 9 especially demonstrate that
tight corporation between SRBFs and tensor approximation algorithms is possible and often
favorable for practical real-time applications in computer graphics and vision. The successful
radiance transfer frameworks also indicate that parametric representations, such as univariate

151

and multivariate SRBFs, and non-parametric models, for example CTA and K-CTA, may not
actually conflict with each other.

In brief, we suggest that it is often preferable to employ univariate or multivariate SRBFs
for modeling spherical functions, as they usually lead to more compact storage space and faster
rendering performance on GPUs. Nevertheless, a slight quality loss and long computation time
are inevitable consequences. By contrast, CTA and K-CTA indeed provide a more general,
flexible, and accurate data analysis tool for various kinds of multi-dimensional visual data sets.
They are not restricted to a pre-defined functional form and only need efficient linear algebra
computation. However, CTA and K-CTA have higher reconstruction costs and often require
additional auxiliary data for efficient run-time rendering on GPUs.

10.2 Future Work

10.2.1 Flexible Data Representations

In this dissertation, we only consider univariate SRBFs that are circularly axis-symmetric. Such
’isotropic’ univariate SRBFs are inefficient in modeling axis-asymmetric signals on the unit
hyper-sphere. For example, we may need a lot of univariate SRBFs to accurately represent
an elliptically shaped data set around an axis, but it is easy to identify that only an elliptically
shaped univariate SRBF would be sufficient. In fact, this ’anisotropic’ univariate SRBF can be
constructed by introducing more parameters to the original isotropic univariate SRBF. Specif-
ically, we can rely on an additional SRBF center to control the orientation and anisotropy of a
univariate SRBF. Nevertheless, the impact of an extra SRBF center on approximation errors and
the non-linear optimization process is still unknown. More model parameters also imply more
computation time. We plan to verify and solve these practical issues of anisotropic univariate
SRBFs in the future.

In the current implementation, the proposed univariate/multivariate SRBF representations
only employ one type of SRBFs. An obvious question is that can we utilize more than one
type of SRBFs to model observations on the unit hyper-sphere? The answer is certainly ’yes’
to the question. We may achieve this simply by a weighted sum of different types of univari-
ate/multivariate SRBFs. For a multivariate SRBF, it can even be constructed from the product of
different types of univariate SRBFs. Nevertheless, the real question is that will this sophisticated
approach outperform current SRBF representations? This may need intensive experiments to
reach a final conclusion.

Last but not the least, although this dissertation introduces novel parametric representations
to model observations on the unit hyper-sphere, our ultimate goal is to develop flexible data rep-
resentations for various kinds of real-world visual data sets. The proposed univariate and mul-
tivariate SRBFs are only a small step toward this objective. Since a flexible data representation
should be adaptive to real-world observations with different characteristics, we are particularly

152

interested in an automatic model selection scheme based on univariate/multivariate SRBFs. Al-
though no significant differences were found between the univariate Gaussian and Abel-Poisson
SRBF kernels in our experiments, this outcome only exposes a small part of the real world. We
intend to extensively investigate the effects of different types of univariate/multivariate SRBFs
on more real-world visual data sets in the near future. As a result, one or more appropriate types
of univariate/multivariate SRBFs can be automatically determined for a given visual data set.

10.2.2 Powerful Approximation Algorithms

Unlike principal component analysis, one major disadvantage of tensor approximation algo-
rithms is that a globally optimal solution is not guaranteed. The alternating least-squares al-
gorithm for tensor decomposition will converge to the global optimum only when the starting
point is close enough to this optimum. Therefore, we aim to resolve an appropriate initial
guess for approximating the globally optimal solution. Moreover, the reduced ranks are cur-
rently specified by users to control the approximation quality. We seek to develop a method to
automatically determine the ’best’ reduced ranks for a given multi-dimensional visual data set.

There are many similarities between linear and multi-linear models in dimensionality reduc-
tion. For example, N -mode singular value decomposition [33] can be regarded as a natural ex-
tension of singular value decomposition for multi-dimensional data sets. The similarities in fact
imply that many techniques developed for linear models may be applied to multi-linear models
with mathematical reformulation or some modifications. Thus, we are particularly interested
in existing techniques of linear models that can be seamlessly integrated with CTA/K-CTA, or
in extending CTA/K-CTA to analyze multi-dimensional visual data sets with more general or
complicated structures.

Moreover, CTA and K-CTA are currently allowed to perform clustering along only one
mode of an input tensor. If there are large variations in more than one mode, users should
carefully choose an appropriate mode for partition, while leaving other modes unchanged. For
example, a bidirectional texture function that comprises of complex meso-structures and highly
specular materials would require high reduced ranks for the illumination and view modes.
Therefore, both modes may have to be partitioned in order to reduce run-time reconstruction
costs. This has inspired us with an interesting research direction in the future—generalizing
CTA/K-CTA for clustering along multiple modes of an input tensor.

Except for Tucker models [180, 181] adopted in this dissertation, there are also other popu-
lar multi-linear models, such as parallel factor analysis [57] and canonical decomposition [18].
In the present, we have no idea about which model is the ’best’ for a given multi-dimensional
visual data set. Intensive experiments should be conducted in order to make a general sugges-
tion.

In brief, the proposed CTA and K-CTA algorithms are not restricted to solve problems in
computer graphics and vision. They are indeed general approximation algorithms that can be

153

employed to analyze various multi-dimensional data sets. We believe that CTA/K-CTA can be
applied to other data-driven models, such as the analysis of time-varying materials and volume
data sets, and may have an impact on many fields outside computer graphics.

10.2.3 General Data-Driven Applications

In this dissertation, the proposed framework of optimized parameterization for multivariate
SRBFs only supports directional variables. However, real-world visual data sets frequently
depend on other types of physical factors. These non-directional factors should not be excluded
from parameterization. For example, a bidirectional texture function is a complex effect un-
der different spatial and directional conditions. We may additionally take the spatial variables
into account for parameterization. In this way, the surface appearance and geometric details
of meso-structures can be implicitly modeled in a unified framework by optimized parameter-
ization. Furthermore, the proposed parameterization framework also relies on a pre-defined
parametric model. Its optimality thus is built upon a specific functional form. Finding the truly

optimal parameterizations for a given visual data set is still a challenging problem. We plan
to investigate this issue using non-parametric models for multivariate SRBFs, or even extend
tensor approximation algorithms to support this concept in the future.

Moreover, recall that the Legendre expansions particularly facilitate the spherical singular
integral of two univariate SRBFs. An analytic solution to the convolution of two univariate
Gaussian SRBFs was also derived in Section 3.5.1. This special property of univariate SRBFs
is rather important to practical rendering applications in computer graphics. With this property,
we can efficiently evaluate the ubiquitous rendering equation [73] (or other similar mathemat-
ical formulation for rendering) when both the appearance model and the incident illumination
function are represented based on univariate SRBFs. However, many appearance models, such
as bidirectional reflectance distribution functions and bidirectional texture functions, are intrin-
sically multivariate functions that can be represented more efficiently with multivariate SRBFs.
It is unclear whether there is an efficient way to compute the spherical singular integral of a
multivariate SRBF and a univariate SRBF (or two multivariate SRBFs). For the parameterized
multivariate SRBF representation, this issue will become even more complicated. Therefore,
we are interested in deriving an analytic or approximate solution to this problem in the future.

There are also many possible applications of the proposed data representations and approx-
imation algorithms in computer graphics and vision. We especially aim at extending the pro-
posed all-frequency precomputed radiance transfer algorithm to account for dynamic scenes.
With some modifications, univariate SRBFs and CTA/K-CTA may be employed to achieve
real-time rendering rates for dynamic radiance transfer data sets. In addition to radiance trans-
fer, another possible research direction is to develop an importance sampling algorithm for
advanced materials. Based on the proposed multivariate SRBF representations, the distribu-
tions of spatially-varying materials, such as bidirectional texture functions, may be efficiently

154

analyzed for generating appropriate sampling directions.
In summary, general data-driven applications are one of the main purposes of this disser-

tation. For example, it is rather important whether artists could directly and intuitively edit
the derived parameters of univariate/multivariate SRBFs or the decomposed factors of CTA/K-
CTA. The results of the proposed methods also should be utilized as the input data to various
statistical or machine learning problems, such as feature selection, classification, and inference.
The overall effect actually corresponds to solving these problems in the parametric space of
univariate/multivariate SRBFs or in the reduced tensor space. Besides data reconstruction, we
thus seek to extend the proposed data representations and approximation algorithms to obtain
interpretable results or support more advanced features for a variety of data-driven applications.

155

Bibliography

[1] E. Acar and B. Yener, “Unsupervised Multiway Data Analysis: A Literature Survey,”
IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 1, pp. 6–20, 2009.

[2] S. Agarwal, R. Ramamoorthi, S. J. Belongie, and H. W. Jensen, “Structured Importance
Sampling of Environment Maps,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
605–612, 2003.

[3] M. Aharon, “Overcomplete Dictionaries for Sparse Representation of Signals,” Technion
- Israel Institute of Technology, Ph.D. dissertation, 2006.

[4] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: An Algorithm for Designing Over-
complete Dictionaries for Sparse Representation,” IEEE Transactions on Signal Process-

ing, vol. 54, no. 11, pp. 4311–4322, 2006.

[5] Z. Bai, J. W. Demmel, J. J. Dongarra, A. Ruhe, and H. A. Van Der Vorst, Templates for

the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial
and Applied Mathematics, 2000.

[6] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra, “Clustering on the Unit Hypersphere
Using Von Mises-Fisher Distributions,” Journal of Machine Learning Research, vol. 6,
pp. 1345–1382, 2005.

[7] D. Barber, “Machine Learning: A Probabilistic Approach,” 2006. [Online]. Available:
http://web4.cs.ucl.ac.uk/staff/D.Barber/courses/mlgm epfl book.pdf

[8] A. T. Basilevsky, Statistical Factor Analysis and Related Methods: Theory and Applica-

tions. Wiley Press, 1994.

[9] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral Techniques for Embedding
and Clustering,” in Advances in Neural Information Processing Systems 14, pp. 585–591.
MIT Press, 2002.

[10] A. Ben-Artzi, K. Egan, R. Ramamoorthi, and F. Durand, “A Precomputed Polynomial
Representation for Interactive BRDF Editing with Global Illumination,” ACM Transac-

tions on Graphics, vol. 27, no. 2, 2008.

156

http://web4.cs.ucl.ac.uk/staff/D.Barber/courses/mlgm_epfl_book.pdf

[11] A. Ben-Artzi, R. Overbeck, and R. Ramamoorthi, “Real-Time BRDF Editing in Complex
Lighting,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 945–954, 2006.

[12] D. Berman, J. T. Bartell, and D. Salesin, “Multiresolution Painting and Compositing,” in
Proceedings of ACM SIGGRAPH 1994, pp. 85–90, 1994.

[13] C. M. Bishop, “Bayesian PCA,” in Advances in Neural Information Processing Systems

11, pp. 382–388. MIT Press, 1999.

[14] C. M. Bishop, M. Svensén, and C. K. I. Williams, “GTM: The Generative Topographic
Mapping,” Neural Computation, vol. 10, no. 1, pp. 215–234, 1998.

[15] D. Blythe, “The Direct3D 10 System,” ACM Transactions on Graphics, vol. 25, no. 3,
pp. 724–734, 2006.

[16] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A Limited Memory Algorithm for Bound
Constrained Optimization,” SIAM Journal on Scientific Computing, vol. 16, no. 5, pp.
1190–1208, 1995.

[17] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum,
and T. R. Evans, “Reconstruction and Representation of 3D Objects with Radial Basis
Functions,” in Proceedings of ACM SIGGRAPH 2001, pp. 67–76, 2001.

[18] J. D. Carroll and J.-J. Chang, “Analysis of Individual Differences in Multidimensional
Scaling via an N-Way Generalization of ’Eckart-Younga’ Decomposition,” Psychome-

trika, vol. 35, no. 3, pp. 283–319, 1970.

[19] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic Decomposition by Basis Pur-
suit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

[20] W.-C. Chen, J.-Y. Bouguet, M. H. Chu, and R. Grzeszczuk, “Light Field Mapping: Ef-
ficient Representation and Hardware Rendering of Surface Light Fields,” ACM Transac-

tions on Graphics, vol. 21, no. 3, pp. 447–456, 2002.

[21] Y. Chen, X. Tong, J. Wang, S. Lin, B. Guo, and H.-Y. Shum, “Shell Texture Functions,”
ACM Transactions on Graphics, vol. 23, no. 3, pp. 343–353, 2004.

[22] P. Clarberg, W. Jarosz, T. Akenine-Möller, and H. W. Jensen, “Wavelet Importance Sam-
pling: Efficiently Evaluating Products of Complex Functions,” ACM Transactions on

Graphics, vol. 24, no. 3, pp. 1166–1175, 2005.

[23] Computer Graphics Group, University of Bonn, “BTF Database Bonn,” 2006. [Online].
Available: http://btf.cs.uni-bonn.de/

157

http://btf.cs.uni-bonn.de/

[24] R. L. Cook, “Stochastic Sampling in Computer Graphics,” ACM Transactions on Graph-

ics, vol. 5, no. 1, pp. 51–72, 1986.

[25] R. L. Cook and K. E. Torrance, “A Reflectance Model for Computer Graphics,” ACM

Transactions on Graphics, vol. 1, no. 1, pp. 7–24, 1982.

[26] T. F. Cox and M. A. A. Cox, Multidimensional Scaling, 2nd ed. CRC Press, 2000.

[27] O. G. Cula and K. J. Dana, “Compact Representation of Bidirectional Texture Functions,”
in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2001,
pp. 1041–1047, 2001.

[28] K. J. Dana, B. Van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and Texture
of Real-World Surfaces,” ACM Transactions on Graphics, vol. 18, no. 1, pp. 1–34, 1999.

[29] P.-E. Danielsson, “Euclidean Distance Mapping,” Computer Graphics and Image Pro-

cessing, vol. 14, pp. 227–248, 1980.

[30] K. Daubert, J. Kautz, H.-P. Seidel, W. Heidrich, and J.-M. Dischler, “Efficient Light
Transport Using Precomputed Visibility,” IEEE Computer Graphics and Applications,
vol. 23, no. 3, pp. 28–37, 2003.

[31] G. M. Davis, S. G. Mallat, and M. Avellaneda, “Adaptive Greedy Approximations,” Con-

structive Approximation, vol. 13, no. 1, pp. 57–98, 1997.

[32] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A Multilinear Singular Value De-
composition,” SIAM Journal on Matrix Analysis and Applications, vol. 21, no. 4, pp.
1253–1278, 2000.

[33] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the Best Rank-1 and Rank-
(R1, R2, . . . , Rn) Approximation of Higher-Order Tensors,” SIAM Journal on Matrix

Analysis and Applications, vol. 21, no. 4, pp. 1324–1342, 2000.

[34] P. E. Debevec, “Rendering Synthetic Objects into Real Scenes: Bridging Traditional and
Image-based Graphics with Global Illumination and High Dynamic Range Photography,”
in Proceedings of ACM SIGGRAPH 1998, pp. 189–198, 1998.

[35] P. E. Debevec, “Light Probe Image Gallery,” 2004. [Online]. Available: http:
//www.debevec.org/probes/

[36] P. E. Debevec and J. Malik, “Recovering High Dynamic Range Radiance Maps from
Photographs,” in Proceedings of ACM SIGGRAPH 1997, pp. 369–378, 1997.

[37] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete
Data via the EM Algorithm,” Journal of the Royal Statistical Society: Series B (Method-

ological), vol. 39, no. 1, pp. 1–38, 1977.

158

http://www.debevec.org/probes/
http://www.debevec.org/probes/

[38] H. Q. Dinh, G. Turk, and G. G. Slabaugh, “Reconstructing Surfaces by Volumetric Reg-
ularization Using Radial Basis Functions,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24, no. 10, pp. 1358–1371, 2002.

[39] M. Eck, T. D. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, “Mul-
tiresolution Analysis of Arbitrary Meshes,” in Proceedings of ACM SIGGRAPH 1995,
pp. 173–182, 1995.

[40] K.-L. Fang, “Bidirectional Texture Function Modeling Using Optimized Reparameter-
ization in the Lighting and Viewing Space,” National Chiao Tung University, Master’s
thesis, 2008.

[41] M. J. Fengler, W. Freeden, and V. Michel, “The Kaiserslautern Multiscale Geopotential
Model SWITCH-03 from Orbit Perturbations of the Satellite CHAMP and Its Compari-
son to the Models EGM96, UCPH2002 02 0.5, EIGEN-1s, and EIGEN-2,” Geophysical

Journal International, vol. 157, no. 2, pp. 499–514, 2004.

[42] J. Filip, M. J. Chantler, P. R. Green, and M. Haindl, “A Psychophysically Validated Met-
ric for Bidirectional Texture Data Reduction,” ACM Transactions on Graphics, vol. 27,
no. 5, 2008.

[43] A. Finkelstein and D. Salesin, “Multiresolution Curves,” in Proceedings of ACM SIG-

GRAPH 1994, pp. 261–268, 1994.

[44] W. Freeden, T. Gervens, and M. Schreiner, Constructive Approximation on the Sphere.
Oxford University Press, 1998.

[45] W. Freeden and U. Windheuser, “Combined Spherical Harmonic and Wavelet
Expansion—A Future Concept in Earth’s Gravitational Determination,” Applied and

Computational Harmonic Analysis, vol. 4, no. 1, pp. 1–37, 1997.

[46] D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz, “Shape and Spatially-Varying
BRDFs from Photometric Stereo,” in Proceedings of IEEE International Conference on

Computer Vision 2005, pp. 341–348, 2005.

[47] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph,” in Pro-

ceedings of ACM SIGGRAPH 1996, pp. 43–54, 1996.

[48] S. J. Gortler, P. Schröder, M. F. Cohen, and P. Hanrahan, “Wavelet Radiosity,” in Pro-

ceedings of ACM SIGGRAPH 1993, pp. 221–230, 1993.

[49] P. Green, J. Kautz, and F. Durand, “Efficient Reflectance and Visibility Approximations
for Environment Map Rendering,” Computer Graphics Forum, vol. 26, no. 3, pp. 495–
502, 2007.

159

[50] P. Green, J. Kautz, W. Matusik, and F. Durand, “View-Dependent Precomputed Light
Transport Using Nonlinear Gaussian Function Approximations,” in Proceedings of ACM

Symposium on Interactive 3D Graphics and Games 2006, pp. 7–14, 2006.

[51] J. Gu, C.-I. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. Nayar, “Time-
Varying Surface Appearance: Acquisition, Modeling and Rendering,” ACM Transactions

on Graphics, vol. 25, no. 3, pp. 762–771, 2006.

[52] M. Haindl and J. Filip, “Fast BTF Texture Modelling,” in Proceedings of the 3rd Inter-

national Workshop on Texture Analysis and Synthesis, pp. 47–52, 2003.

[53] M. Haindl and J. Filip, “Extreme Compression and Modeling of Bidirectional Texture
Function,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29,
no. 10, pp. 1859–1865, 2007.

[54] M. Haindl, J. Grim, P. Pudil, and M. Kudo, “A Hybrid BTF Model Based on Gaussian
Mixtures,” in Proceedings of the 4th International Workshop on Texture Analysis and

Synthesis, pp. 95–100, 2005.

[55] C. Han, B. Sun, R. Ramamoorthi, and E. Grinspun, “Frequency Domain Normal Map
Filtering,” ACM Transactions on Graphics, vol. 26, no. 3, 2007.

[56] K. Hara, K. Nishino, and K. Ikeuchi, “Mixture of Spherical Distributions for Single-View
Relighting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 1, pp. 25–35, 2008.

[57] R. A. Harshman, “Foundations of the PARAFAC Procedure: Models and Conditions
for an ’Explanatory’ Multimodal Factor Analysis,” UCLA Working Papers in Phonetics,
vol. 16, pp. 1–84, 1970.

[58] T. Hawkins, P. Einarsson, and P. E. Debevec, “Acquisition of Time-Varying Participating
Media,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 812–815, 2005.

[59] T. Hazan, S. Polak, and A. Shashua, “Sparse Image Coding Using a 3D Non-Negative
Tensor Factorization,” in Proceedings of IEEE International Conference on Computer

Vision 2005, pp. 50–57, 2005.

[60] X. He, D. Cai, H. Liu, and J. Han, “Image Clustering with Tensor Representation,” in
Proceedings of ACM Multimedia 2005, pp. 132–140, 2005.

[61] W. Heidrich, K. Daubert, J. Kautz, and H.-P. Seidel, “Illuminating Micro Geometry
Based on Precomputed Visibility,” in Proceedings of ACM SIGGRAPH 2000, pp. 455–
464, 2000.

160

[62] W. Heidrich and H.-P. Seidel, “Realistic, Hardware-Accelerated Shading and Lighting,”
in Proceedings of ACM SIGGRAPH 1999, pp. 171–178, 1999.

[63] P. O. Hoyer, “Non-Negative Matrix Factorization with Sparseness Constraints,” Journal

of Machine Learning Research, vol. 5, pp. 1457–1469, 2004.

[64] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. Wiley Press,
2001.

[65] Industrial Light & Magic (ILM), Technical Introduction to OpenEXR, 2006,
http://www.openexr.com/documentation.html.

[66] C. E. Jacobs, A. Finkelstein, and D. Salesin, “Fast Multiresolution Image Querying,” in
Proceedings of ACM SIGGRAPH 1995, pp. 277–286, 1995.

[67] D. L. James and K. Fatahalian, “Precomputing Interactive Dynamic Deformable Scenes,”
ACM Transactions on Graphics, vol. 22, no. 3, pp. 879–887, 2003.

[68] T. S. Jebara, “Images as Bags of Pixels,” in Proceedings of IEEE International Confer-

ence on Computer Vision 2003, pp. 265–272, 2003.

[69] H. W. Jensen, “Importance Driven Path Tracing Using the Photon Map,” in Proceedings

of Eurographics Workshop on Rendering 1995, pp. 326–335, 1995.

[70] H. W. Jensen, “Global Illumination Using Photon Maps,” in Proceedings of Eurographics

Workshop on Rendering 1996, pp. 21–30, 1996.

[71] Q.-Z. Jiang, “Importance Sampling from Product of the BRDF and the Illumination Us-
ing Spherical Radial Basis Functions,” National Chiao Tung University, Master’s thesis,
2007.

[72] I. T. Jolliffe, Principal Component Analysis, 2nd ed. Springer-Verlag Press, 2002.

[73] J. T. Kajiya, “The Rendering Equation,” in Proceedings of ACM SIGGRAPH 1986, pp.
143–150, 1986.

[74] J. T. Kajiya and B. P. Von Herzen, “Ray Tracing Volume Densities,” in Proceedings of

ACM SIGGRAPH 1984, pp. 165–174, 1984.

[75] N. Kambhatla and T. K. Leen, “Dimension Reduction by Local Principal Component
Analysis,” Neural Computation, vol. 9, no. 7, pp. 1493–1516, 1997.

[76] J. Kautz, J. Lehtinen, and T. Aila, “Hemispherical Rasterization for Self-Shadowing of
Dynamic Objects,” in Proceedings of Eurographics Symposium on Rendering 2004, pp.
179–184, 2004.

161

[77] J. Kautz and M. D. McCool, “Interactive Rendering with Arbitrary BRDFs Using Sep-
arable Approximations,” in Proceedings of Eurographics Workshop on Rendering 1999,
pp. 247–260, 1999.

[78] E. Kofidis and P. A. Regalia, “Tensor Approximation and Signal Processing Applica-
tions,” in Structured Matrices in Mathematics, Computer Science, and Engineering I,
pp. 103–134. American Mathematical Society, 2001.

[79] E. Kofidis and P. A. Regalia, “On the Best Rank-1 Approximation of Higher-Order Su-
persymmetric Tensors,” SIAM Journal on Matrix Analysis and Applications, vol. 23,
no. 3, pp. 863–884, 2002.

[80] T. Kohonen, Self-Organizing Maps, 3rd ed. Springer-Verlag Press, 2001.

[81] M. L. Koudelka, S. Magda, P. N. Belhumeur, and D. J. Kriegman, “Acquisition, Com-
pression, and Synthesis of Bidirectional Texture Functions,” in Proceedings of the 3rd

International Workshop on Texture Analysis and Synthesis, pp. 59–64, 2003.

[82] M. A. Kramer, “Nonlinear Principal Component Analysis Using Autoassociative Neural
Networks,” AIChE Journal, vol. 37, no. 2, pp. 233–243, 1991.

[83] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and T. J. Se-
jnowski, “Dictionary Learning Algorithms for Sparse Representation,” Neural Compu-

tation, vol. 15, no. 2, pp. 349–396, 2003.

[84] Kriegman Research Group, University of California at San Diego, “Volumetric Surface
Texture Database,” 2007. [Online]. Available: http://vision.ucsd.edu/kriegman-grp/
research/vst/

[85] A. W. Kristensen, T. Akenine-Möller, and H. W. Jensen, “Precomputed Local Radiance
Transfer for Real-Time Lighting Design,” ACM Transactions on Graphics, vol. 24, no. 3,
pp. 1208–1215, 2005.

[86] E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg, “Non-Linear Ap-
proximation of Reflectance Functions,” in Proceedings of ACM SIGGRAPH 1997, pp.
117–126, 1997.

[87] P. A. Lalonde and A. Fournier, “A Wavelet Representation of Reflectance Functions,”
IEEE Transactions on Visualization and Computer Graphics, vol. 3, no. 4, pp. 329–336,
1997.

[88] P. A. Lalonde and A. Fournier, “Generating Reflected Directionsfrom BRDF Data,” Com-

puter Graphics Forum, vol. 16, no. 3, pp. 293–300, 1997.

162

http://vision.ucsd.edu/kriegman-grp/research/vst/
http://vision.ucsd.edu/kriegman-grp/research/vst/

[89] L. Latta and A. Kolb, “Homomorphic Factorization of BRDF-Based Lighting Computa-
tion,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 509–516, 2002.

[90] J. Lawrence, A. Ben-Artzi, C. DeCoro, W. Matusik, H. Pfister, R. Ramamoorthi, and
S. Rusinkiewicz, “Inverse Shade Trees for Non-Parametric Material Representation and
Editing,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 735–745, 2006.

[91] J. Lawrence, S. Rusinkiewicz, and R. Ramamoorthi, “Efficient BRDF Importance Sam-
pling Using a Factored Representation,” ACM Transactions on Graphics, vol. 23, no. 3,
pp. 496–505, 2004.

[92] N. D. Lawrence, “Probabilistic Non-linear Principal Component Analysis with Gaussian
Process Latent Variable Models,” Journal of Machine Learning Research, vol. 6, pp.
1783–1816, 2005.

[93] D. D. Lee and H. S. Seung, “Learning the Parts of Objects by Non-Negative Matrix
Factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[94] D. D. Lee and H. S. Seung, “Algorithms for Non-Negative Matrix Factorization,” in
Advances in Neural Information Processing Systems 13, pp. 556–562. MIT Press, 2001.

[95] J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction. Springer-Verlag Press,
2007.

[96] S. Lefebvre and H. Hoppe, “Parallel Controllable Texture Synthesis,” ACM Transactions

on Graphics, vol. 24, no. 3, pp. 777–786, 2005.

[97] S. Lefebvre and H. Hoppe, “Appearance-Space Texture Synthesis,” ACM Transactions

on Graphics, vol. 25, no. 3, pp. 541–548, 2006.

[98] J. Lehtinen, “A Framework for Precomputed and Captured Light Transport,” ACM Trans-

actions on Graphics, vol. 26, no. 4, 2007.

[99] J. Lehtinen and J. Kautz, “Matrix Radiance Transfer,” in Proceedings of ACM Symposium

on Interactive 3D Graphics 2003, pp. 59–64, 2003.

[100] T. K.-H. Leung and J. Malik, “Representing and Recognizing the Visual Appearance of
Materials Using Three-Dimensional Textons,” International Journal of Computer Vision,
vol. 43, no. 1, pp. 29–44, 2001.

[101] M. Levoy and P. Hanrahan, “Light Field Rendering,” in Proceedings of ACM SIGGRAPH

1996, pp. 31–42, 1996.

[102] M. S. Lewicki and T. J. Sejnowski, “Learning Overcomplete Representations,” Neural

Computation, vol. 12, no. 2, pp. 337–365, 2000.

163

[103] E. Lindholm, M. J. Kligard, and H. P. Moreton, “A User-Programmable Vertex Engine,”
in Proceedings of ACM SIGGRAPH 2001, pp. 149–158, 2001.

[104] G. Liu, J. Zhang, W. Wang, and L. McMillan, “Human Motion Estimation from a Re-
duced Marker Set,” in Proceedings of ACM Symposium on Interactive 3D Graphics and

Games 2006, pp. 35–42, 2006.

[105] X. Liu, P.-P. J. Sloan, H.-Y. Shum, and J. Snyder, “All-Frequency Precomputed Radiance
Transfer for Glossy Objects,” in Proceedings of Eurographics Symposium on Rendering

2004, pp. 337–344, 2004.

[106] M. Lounsbery, T. D. DeRose, and J. D. Warren, “Multiresolution Analysis for Surfaces of
Arbitrary Topological Type,” ACM Transactions on Graphics, vol. 16, no. 1, pp. 34–73,
1997.

[107] W.-C. Ma, S.-H. Chao, Y.-T. Tseng, Y.-Y. Chuang, C.-F. Chang, B.-Y. Chen, and
M. Ouhyoung, “Level-of-Detail Representation of Bidirectional Texture Functions for
Real-Time Rendering,” in Proceedings of ACM Symposium on Interactive 3D Graphics

and Games 2005, pp. 187–194, 2005.

[108] W.-C. Ma, C.-T. Hsiao, K.-Y. Lee, Y.-Y. Chuang, and B.-Y. Chen, “Real-Time Triple
Product Relighting Using Spherical Local-Frame Parameterization,” The Visual Com-

puter, vol. 22, no. 9-11, pp. 682–692, 2006.

[109] D. Mahajan, I. K. Shlizerman, R. Ramamoorthi, and P. N. Belhumeur, “A Theory of
Locally Low Dimensional Light Transport,” ACM Transactions on Graphics, vol. 26,
no. 3, 2007.

[110] S. G. Mallat and Z. Zhang, “Matching Pursuits with Time-Frequency Dictionaries,” IEEE

Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[111] T. Malzbender, D. Gelb, and H. J. Wolters, “Polynomial Texture Maps,” in Proceedings

of ACM SIGGRAPH 2001, pp. 519–528, 2001.

[112] K. V. Mardia and P. E. Jupp, Directional Statistics. Wiley Press, 2000.

[113] W. Matusik, “A Data-Driven Reflectance Model,” Massachusetts Institute of Technology,
Ph.D. dissertation, 2003.

[114] W. Matusik, H. Pfister, M. Brand, and L. McMillan, “A Data-Driven Feflectance Model,”
ACM Transactions on Graphics, vol. 22, no. 3, pp. 759–769, 2003.

[115] D. K. McAllister, A. Lastra, and W. Heidrich, “Efficient Rendering of Spatial Bi-
Directional Reflectance Distribution Functions,” in Proceedings of Graphics Hardware

2002, pp. 79–88, 2002.

164

[116] M. D. McCool, J. Ang, and A. Ahmad, “Homomorphic Factorization of BRDFs for
High-Performance Rendering,” in Proceedings of ACM SIGGRAPH 2001, pp. 171–178,
2001.

[117] T. E. McGraw, B. C. Vemuri, R. Yezierski, and T. Mareci, “Segmentation of High An-
gular Resolution Diffusion MRI Modeled as a Field of Von Mises-Fisher Mixtures,” in
Proceedings of European Conference on Computer Vision 2006, pp. 463–475, 2006.

[118] J. Meseth, G. Müller, and R. Klein, “Reflectance Field Based Real-Time, High-Quality
Rendering of Bidirectional Texture Functions,” Computers & Graphics, vol. 28, no. 1,
pp. 105–112, 2004.

[119] G. S. P. Miller, S. M. Rubin, and D. B. Ponceleon, “Lazy Decompression of Surface Light
Fields for Precomputed Global Illumination,” in Proceedings of Eurographics Workshop

on Rendering 1998, pp. 281–292, 1998.

[120] Mitsubishi Electric Research Laboratories (MERL), “MERL BRDF Database,” 2006.
[Online]. Available: http://www.merl.com/brdf/

[121] G. Müller, J. Meseth, and R. Klein, “Fast Environmental Lighting for Local-PCA En-
coded BTFs,” in Proceedings of Computer Graphics International 2004, pp. 198–205,
2004.

[122] M. Müller, B. Heidelberger, M. Teschner, and M. H. Gross, “Meshless Deformations
Based on Shape Matching,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 471–478,
2005.

[123] F. J. Narcowich and J. D. Ward, “Nonstationary Wavelets on the m-Sphere for Scattered
Data,” Applied and Computational Harmonic Analysis, vol. 3, no. 4, pp. 324–336, 1996.

[124] S. K. Nayar, P. N. Belhumeur, and T. E. Boult, “Lighting Sensitive Display,” ACM Trans-

actions on Graphics, vol. 23, no. 4, pp. 963–979, 2004.

[125] R. Ng, R. Ramamoorthi, and P. Hanrahan, “All-Frequency Shadows Using Non-Linear
Wavelet Lighting Approximation,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
376–381, 2003.

[126] R. Ng, R. Ramamoorthi, and P. Hanrahan, “Triple Product Wavelet Integrals for All-
Frequency Relighting,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 477–487,
2004.

[127] H. T. Nguyen, Q. Ji, and A. W. M. Smeulders, “Robust Multi-Target Tracking Using
Spatio-Temporal Context,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition 2006, pp. 578–585, 2006.

165

http://www.merl.com/brdf/

[128] NVIDIA Corporation, “NVIDIA CUDA: Compute Unified Device Architecture,” 2008.
[Online]. Available: http://www.nvidia.com/cuda/

[129] H.-S. Oh and T.-H. Li, “Estimation of Global Temperature Fields from Scattered Obser-
vations by a Spherical-Wavelet-Based Spatially Adaptive Method,” Journal of the Royal

Statistical Society - Series B, vol. 66, no. 1, pp. 221–238, 2004.

[130] M. M. Oliveira, G. Bishop, and D. K. McAllister, “Relief Texture Mapping,” in Proceed-

ings of ACM SIGGRAPH 2000, pp. 359–368, 2000.

[131] J. D. Owens, D. P. Luebke, N. K. Govindaraju, M. J. Harris, J. Krüger, A. E. Lefohn,
and T. J. Purcell, “A Survey of General-Purpose Computation on Graphics Hardware,”
Computer Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.

[132] P. Paatero and U. Tapper, “Positive Matrix Factorization: A Non-Negative Factor Model
with Optimal Utilization of Error Estimates of Data Values,” Environmetrics, vol. 5, no. 2,
pp. 111–126, 1994.

[133] G. Patanè and M. Russo, “The Enhanced LBG Algorithm,” Neural Networks, vol. 14,
no. 9, pp. 1219–1237, 2001.

[134] M. Pauly, R. Keiser, B. Adams, P. Dutré, M. H. Gross, and L. J. Guibas, “Meshless
Animation of Fracturing Solids,” ACM Transactions on Graphics, vol. 24, no. 3, pp.
957–964, 2005.

[135] P. Peers, K. Vom Berge, W. Matusik, R. Ramamoorthi, J. Lawrence, S. Rusinkiewicz, and
P. Dutré, “A Compact Factored Representation of Heterogeneous Subsurface Scattering,”
ACM Transactions on Graphics, vol. 25, no. 3, pp. 746–753, 2006.

[136] H. Pfister, M. Zwicker, J. Van Baar, and M. H. Gross, “Surfels: Surface Elements as
Rendering Primitives,” in Proceedings of ACM SIGGRAPH 2000, pp. 335–342, 2000.

[137] M. M. Pharr and G. Humphreys, Physically Based Rendering: From Theory to Imple-

mentation. Morgan Kaufmann Press, 1996.

[138] F. Policarpo and M. M. Oliveira, “Relief Mapping of Non-Height-Field Surface Details,”
in Proceedings of ACM Symposium on Interactive 3D Graphics and Games 2006, pp.
55–62, 2006.

[139] F. Policarpo, M. M. Oliveira, and J. L. D. Comba, “Real-Time Relief Mapping on Arbi-
trary Polygonal Surfaces,” in Proceedings of ACM Symposium on Interactive 3D Graph-

ics and Games 2005, pp. 155–162, 2005.

[140] Program of Computer Graphics, Cornell University, “Reflectance Data,” 2002. [Online].
Available: http://www.graphics.cornell.edu/online/measurements/reflectance/

166

http://www.nvidia.com/cuda/
http://www.graphics.cornell.edu/online/measurements/reflectance/

[141] K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan, “A Real-Time Procedural Shad-
ing System for Programmable Graphics Hardware,” in Proceedings of ACM SIGGRAPH

2001, pp. 159–170, 2001.

[142] Z. Qin, M. D. McCool, and C. S. Kaplan, “Real-Time Texture-Mapped Vector Glyphs,”
in Proceedings of ACM Symposium on Interactive 3D Graphics and Games 2006, pp.
125–132, 2006.

[143] R. Ramamoorthi and P. Hanrahan, “A Signal-Processing Framework for Inverse Render-
ing,” in Proceedings of ACM SIGGRAPH 2001, pp. 117–128, 2001.

[144] R. Ramamoorthi and P. Hanrahan, “An Efficient Representation for Irradiance Environ-
ment Maps,” in Proceedings of ACM SIGGRAPH 2001, pp. 497–500, 2001.

[145] R. Ramamoorthi and P. Hanrahan, “Frequency Space Environment Map Rendering,”
ACM Transactions on Graphics, vol. 21, no. 3, pp. 517–526, 2002.

[146] R. Ramamoorthi and P. Hanrahan, “A Signal-Processing Framework for Reflection,”
ACM Transactions on Graphics, vol. 23, no. 4, pp. 1004–1042, 2004.

[147] J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2nd ed. Springer-Verlag
Press, 2005.

[148] L. Rebollo-Neira and D. Lowe, “Optimized Orthogonal Matching Pursuit Approach,”
IEEE Signal Processing Letters, vol. 9, no. 4, pp. 137–140, 2002.

[149] Z. Ren, R. Wang, J. Snyder, K. Zhou, X. Liu, B. Sun, P.-P. J. Sloan, H. Bao, Q. Peng,
and B. Guo, “Real-Time Soft Shadows in Dynamic Scenes Using Spherical Harmonic
Exponentiation,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 977–986, 2006.

[150] S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by Locally Linear
Embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[151] S. Rusinkiewicz, “A new change of variables for efficient brdf representation,” in Pro-

ceedings of Eurographics Workshop on Rendering 1998, pp. 11–22, 1998.

[152] S. Rusinkiewicz and M. Levoy, “QSplat: A Multiresolution Point Rendering System for
Large Meshes,” in Proceedings of ACM SIGGRAPH 2000, pp. 343–352, 2000.

[153] M. Sattler, R. Sarlette, and R. Klein, “Efficient and Realistic Visualization of Cloth,” in
Proceedings of Eurographics Symposium on Rendering 2003, pp. 167–178, 2003.

[154] L. K. Saul and S. T. Roweis, “Think Globally, Fit Locally: Unsupervised Learning of
Low Dimensional Manifold,” Journal of Machine Learning Research, vol. 4, pp. 119–
155, 2003.

167

[155] B. Schölkopf, A. J. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a Ker-
nel Eigenvalue Problem,” Neural Computation, vol. 10, no. 5, pp. 1299–1319, 1998.

[156] P. Schröder and W. Sweldens, “Spherical Wavelets: Efficiently Representing Functions
on the Sphere,” in Proceedings of ACM SIGGRAPH 1995, pp. 161–172, 1995.

[157] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. K. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan,
“Larrabee: A Many-Core x86 Architecture for Visual Computing,” ACM Transactions

on Graphics, vol. 27, no. 3, 2008.

[158] J. Shade, S. J. Gortler, L. wei He, and R. Szeliski, “Layered Depth Images,” in Proceed-

ings of ACM SIGGRAPH 1998, pp. 231–242, 1998.

[159] A. Shashua and T. Hazan, “Non-Negative Tensor Factorization with Applications to
Statistics and Computer Vision,” in Proceedings of International Conference on Machine

Learning 2005, pp. 792–799, 2005.

[160] F. X. Sillion, J. Arvo, S. H. Westin, and D. P. Greenberg, “A Global Illumination Solution
for General Reflectance Distributions,” in Proceedings of ACM SIGGRAPH 1991, pp.
187–196, 1991.

[161] P.-P. J. Sloan, J. Hall, J. C. Hart, and J. Snyder, “Clustered Principal Components for
Precomputed Radiance Transfer,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
382–391, 2003.

[162] P.-P. J. Sloan, J. Kautz, and J. Snyder, “Precomputed Radiance Transfer for Real-Time
Rendering in Dynamic, Low-Frequency Lighting Environments,” ACM Transactions on

Graphics, vol. 21, no. 3, pp. 527–536, 2002.

[163] P.-P. J. Sloan, X. Liu, H.-Y. Shum, and J. Snyder, “Bi-Scale Radiance Transfer,” ACM

Transactions on Graphics, vol. 22, no. 3, pp. 370–375, 2003.

[164] P.-P. J. Sloan, B. Luna, and J. Snyder, “Local, Deformable Precomputed Radiance Trans-
fer,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 1216–1224, 2005.

[165] A. K. Smilde, R. Bro, and P. Geladi, Multi-way Analysis: Applications in the Chemical

Sciences. Wiley Press, 2004.

[166] Y. Song, Y. Chen, X. Tong, S. Lin, J. Shi, B. Guo, and H.-Y. Shum, “Shell Radiance
Texture Functions,” The Visual Computer, vol. 21, no. 8-10, pp. 774–782, 2005.

[167] M. M. Stark, J. Arvo, and B. E. Smits, “Barycentric Parameterizations for Isotropic
BRDFs,” IEEE Transactions on Visualization and Computer Graphics, vol. 11, no. 2,
pp. 126–138, 2005.

168

[168] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, Wavelets for Computer Graphics: Theory

and Applications. Morgan Kaufmann Press, 1996.

[169] B. Sun, K. Sunkavalli, R. Ramamoorthi, P. N. Belhumeur, and S. K. Nayar, “Time-
Varying BRDFs,” IEEE Transactions on Visualization and Computer Graphics, vol. 13,
no. 3, pp. 595–609, 2007.

[170] W. Sun and A. Mukherjee, “Generalized Wavelet Product Integral for Rendering Dy-
namic Glossy Objects,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 955–966,
2006.

[171] X. Sun, K. Zhou, Y. Chen, S. Lin, J. Shi, and B. Guo, “Interactive Relighting with Dy-
namic BRDFs,” ACM Transactions on Graphics, vol. 26, no. 3, 2007.

[172] F. Suykens, K. vom Berge, A. Lagae, and P. Dutré, “Interactive Rendering with Bidi-
rectional Texture Functions,” Computer Graphics Forum, vol. 22, no. 3, pp. 463–472,
2003.

[173] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A Global Geometric Framework for
Nonlinear Dimensionality Reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[174] M. E. Tipping and C. M. Bishop, “Mixtures of Probabilistic Principal Component Anal-
ysers,” Neural Computation, vol. 11, no. 2, pp. 443–482, 1999.

[175] M. E. Tipping and C. M. Bishop, “Probabilistic Principal Component Analysis,” Journal

Of The Royal Statistical Society Series B, vol. 61, no. 3, pp. 611–622, 1999.

[176] J. A. Tropp, “Greed is Good: Algorithmic Results for Sparse Approximation,” IEEE

Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[177] J. A. Tropp, “Topics in Sparse Approximation,” The University of Texas at Austin, Ph.D.
dissertation, 2004.

[178] Y.-T. Tsai, C.-C. Chang, Q.-Z. Jiang, and S.-C. Weng, “Importance Sampling of Prod-
ucts from Illumination and BRDF Using Spherical Radial Basis Functions,” The Visual

Computer, vol. 24, no. 7-9, pp. 817–826, 2008.

[179] Y.-T. Tsai and Z.-C. Shih, “All-Frequency Precomputed Radiance Transfer Using Spher-
ical Radial Basis Functions and Clustered Tensor Approximation,” ACM Transactions on

Graphics, vol. 25, no. 3, pp. 967–976, 2006.

[180] L. R. Tucker, “The Extension of Factor Analysis to Three-Dimensional Matrices,” in
Contributions to Mathematical Psychology, pp. 110–127. Holt, Rinehart and Winston
Press, 1964.

169

[181] L. R. Tucker, “Some Mathematical Notes on Three-Mode Factor Analysis,” Psychome-

trika, vol. 31, no. 3, pp. 279–311, 1966.

[182] G. Turk and J. F. O’Brien, “Modelling with Implicit Surfaces that Interpolate,” ACM

Transactions on Graphics, vol. 21, no. 4, pp. 855–873, 2002.

[183] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear Analysis of Image Ensembles:
TensorFaces,” in Proceedings of European Conference on Computer Vision 2002, pp.
447–460, 2002.

[184] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear Subspace Analysis of Image En-
sembles,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion 2003, pp. 93–99, 2003.

[185] M. A. O. Vasilescu and D. Terzopoulos, “TensorTextures: Multilinear Image-Based Ren-
dering,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 336–342, 2004.

[186] E. Veach, “Robust Monte Carlo Methods for Light Transport Simulation,” Stanford Uni-
versity, Ph.D. dissertation, 1997.

[187] E. Veach and L. J. Guibas, “Optimally Combining Sampling Techniques for Monte Carlo
Rendering,” in Proceedings of ACM SIGGRAPH 1995, pp. 419–428, 1995.

[188] R. Vidal, Y. Ma, and S. Sastry, “Generalized Principal Component Analysis (GPCA),”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 12, pp.
1945–1959, 2005.

[189] D. Vlasic, M. Brand, H. Pfister, and J. Popović, “Face Transfer with Multilinear Models,”
ACM Transactions on Graphics, vol. 24, no. 3, pp. 426–433, 2005.

[190] H. Wang and N. Ahuja, “Facial Expression Decomposition,” in Proceedings of IEEE

International Conference on Computer Vision 2003, pp. 958–965, 2003.

[191] H. Wang and N. Ahuja, “A Tensor Approximation Approach to Dimensionality Reduc-
tion,” International Journal of Computer Vision, vol. 76, no. 3, pp. 217–229, 2008.

[192] H. Wang, Q. Wu, L. Shi, Y. Yu, and N. Ahuja, “Out-of-Core Tensor Approximation of
Multi-Dimensional Matrices of Visual Data,” ACM Transactions on Graphics, vol. 24,
no. 3, pp. 527–535, 2005.

[193] J. Wang, X. Tong, S. Lin, M. Pan, C. Wang, H. Bao, B. Guo, and H.-Y. Shum, “Appear-
ance Manifolds for Modeling Time-Variant Appearance of Materials,” ACM Transactions

on Graphics, vol. 25, no. 3, pp. 754–761, 2006.

170

[194] L. Wang, X. Wang, X. Tong, S. Lin, S.-M. Hu, B. Guo, and H.-Y. Shum, “View-
Dependent Displacement Mapping,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
334–339, 2003.

[195] R. Wang, J. Tran, and D. P. Luebke, “All-Frequency Relighting of Non-Diffuse Objects
Using Separable BRDF Approximation,” in Proceedings of Eurographics Symposium on

Rendering 2004, pp. 345–354, 2004.

[196] R. Wang, J. Tran, and D. P. Luebke, “All-Frequency Relighting of Glossy Objects,” ACM

Transactions on Graphics, vol. 25, no. 2, pp. 293–318, 2006.

[197] X. Wang, X. Tong, S. Lin, S.-M. Hu, B. Guo, and H.-Y. Shum, “Generalized Displace-
ment Maps,” in Proceedings of Eurographics Symposium on Rendering 2004, pp. 227–
234, 2004.

[198] G. J. Ward, “Measuring and Modeling Anisotropic Reflection,” in Proceedings of ACM

SIGGRAPH 1992, pp. 265–272, 1992.

[199] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge Univer-
sity Press, 1944.

[200] S.-C. Weng, “An Efficient BRDF Importance Sampling Method for Global Illuimation,”
National Chiao Tung University, Master’s thesis, 2006.

[201] S. H. Westin, J. Arvo, and K. E. Torrance, “Predicting Reflectance Functions from Com-
plex Surfaces,” in Proceedings of ACM SIGGRAPH 1992, pp. 255–264, 1992.

[202] T. Whitted, “An Improved Illumination Model for Shaded Display,” Communications of

the ACM, vol. 23, no. 6, pp. 343–349, 1980.

[203] T.-T. Wong, C.-W. Fu, P.-A. Heng, and C.-S. Leung, “The Plenoptic Illumination Func-
tion,” IEEE Transactions on Multimedia, vol. 4, no. 3, pp. 361–371, 2002.

[204] Q. Wu, T. Xia, C. Chen, H.-Y. S. Lin, H. Wang, and Y. Yu, “Hierarchical Tensor Ap-
proximation of Multi-Dimensional Visual Data,” IEEE Transactions on Visualization and

Computer Graphics, vol. 14, no. 1, pp. 186–199, 2008.

[205] D. Xu, S. Yan, L. Zhang, H. Zhang, Z. Liu, and H.-Y. Shum, “Concurrent Subspaces
Analysis,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition 2005, pp. 203–208, 2005.

[206] K. Xu, Y.-T. Jia, H. Fu, S.-M. Hu, and C.-L. Tai, “Spherical Piecewise Constant Basis
Functions for All-Frequency Precomputed Radiance Transfer,” IEEE Transactions on

Visualization and Computer Graphics, vol. 14, no. 2, pp. 454–467, 2008.

171

[207] S. Yan, D. Xu, S. Lin, T. S. Huang, and S.-F. Chang, “Element Rearrangement for Tensor-
Based Subspace Learning,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition 2007, 2007.

[208] J. Yang, D. Zhang, A. F. Frangi, and J.-Y. Yang, “Two-Dimensional PCA: A New Ap-
proach to Appearance-Based Face Representation and Recognition,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 131–137, 2004.

[209] J. Ye, “Generalized Low Rank Approximations of Matrices,” Machine Learning, vol. 61,
no. 1-3, pp. 167–191, 2005.

[210] R. Zass and A. Shashua, “Nonnegative Sparse PCA,” in Advances in Neural Information

Processing Systems 19, pp. 1561–1568. MIT Press, 2007.

[211] K. Zhou, Y. Hu, S. Lin, B. Guo, and H.-Y. Shum, “Precomputed Shadow Fields for
Dynamic Scenes,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 1196–1201, 2005.

[212] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-BFGS-B: Fortran Subrou-
tines for Large-Scale Bound-Constrained Optimization,” ACM Transactions on Mathe-

matical Software, vol. 23, no. 4, pp. 550–560, 1997.

[213] T. Zickler, S. Enrique, R. Ramamoorthi, and P. N. Belhumeur, “Reflectance Sharing:
Image-Based Rendering from a Sparse Set of Images,” in Proceedings of Eurographics

Symposium on Rendering 2005, pp. 253–264, 2005.

[214] T. Zickler, R. Ramamoorthi, S. Enrique, and P. N. Belhumeur, “Reflectance Sharing: Pre-
dicting Appearance from a Sparse Set of Images of a Known Shape,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1287–1302, 2006.

[215] M. Zwicker, H. Pfister, J. Van Baar, and M. H. Gross, “Surface Splatting,” in Proceedings

of ACM SIGGRAPH 2001, pp. 371–378, 2001.

172

	Abstract (in Chinese)
	Abstract (in English)
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	Introduction
	Background
	Motivations and Methods
	Applications of Data-Driven Rendering
	Contributions
	Dissertation Organization

	Literature Review
	Data Representations
	Functional Models
	Spherical Radial Basis Functions
	Parameterization

	Dimensionality Reduction
	Linear Models
	Non-Linear Models
	Multi-Linear Models

	Data-Driven Rendering
	Spatially-Varying Appearance Models
	Radiance Transfer

	Univariate Spherical Radial Basis Functions
	Mathematical Formulation
	Characteristics of Univariate SRBFs
	Spherical Singular Integral
	Spatial Localization
	Univariate Gaussian SRBFs and Von Mises-Fisher Distributions

	Uniform Univariate SRBF Representation
	Ordinary Least-Squares Projection
	Regularized Least-Squares Projection

	Scattered Univariate SRBF Representation
	Fitting Algorithm
	Initial Guess

	Mathematical Proofs
	Convolution of Univariate Gaussian SRBFs
	Relation between Univariate Gaussian SRBF and Von Mises-Fisher Distribution

	Multivariate Spherical Radial Basis Functions
	Mathematical Formulation
	Basic Definitions
	Example

	Scattered Multivariate SRBF Representation
	Fitting Algorithm
	Initial Guess

	Parameterized Multivariate SRBF Representation
	Overview
	Example
	Fitting Algorithm

	Hierarchical Fitting Algorithm
	Upsampling Stage
	Optimization Stage

	Clustered Tensor Approximation
	Preliminaries and Background
	Basic Definitions
	Tensor Approximation

	Mathematical Formulation
	Algorithm
	Overview
	Clustering Stage
	Update Stage

	Implementation Issues
	Initial Guess
	Global Basis Matrices

	Mathematical Proofs

	K-Clustered Tensor Approximation
	Mathematical Formulation
	Algorithm
	Overview
	Clustering Stage
	Update Stage

	Implementation Issues
	Initial Guess
	Degeneracy and Convergence

	Mathematical Proofs
	Greedy Search
	Optimal Projection

	Application I: Illumination and Reflectance Functions
	High Dynamic Range Environment Maps
	Problem Formulation
	Experimental Results

	Bidirectional Reflectance Distribution Functions
	Univariate SRBFs
	Multivariate SRBFs
	Experimental Results

	Importance Sampling of Direct Illumination
	Problem Formulation
	Importance Sampling Algorithm
	Experimental Results

	Application II: Spatially-Varying Appearance Models
	Bidirectional Texture Functions
	Tensor Approximation Algorithms
	Multivariate SRBFs
	Comparisons and Discussions

	View-Dependent Occlusion Texture Functions
	Problem Formulation
	Rendering Issues
	Experimental Results

	Application III: Radiance Transfer
	Precomputed Radiance Transfer
	Problem Formulation
	Algorithm
	Experimental Results
	Discussions

	Bi-Scale Radiance Transfer
	Problem Formulation
	Algorithm
	Experimental Results

	Conclusions and Future Work
	Conclusions
	Spherical Radial Basis Functions
	Tensor Approximation Algorithms
	Summary

	Future Work
	Flexible Data Representations
	Powerful Approximation Algorithms
	General Data-Driven Applications

	Bibliography

