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摘 要 

許多自動車的應用中，定位是欲操控自動車所必備的功能。一個廣泛採用的

方法是利用電腦視覺來作自動車定位，其方法是藉由電腦分析攝影機所攝得的影

像來推算自動車本身的位置。近來新型態的環場攝影機漸漸被廣泛地應用在自動

車定位上。相較於傳統攝影機，環場攝影機寬廣的視角可讓更大的景物範圍出現

在視野中，更有助於利用視覺作定位的計算。然而，實際上環場攝影機擷取到的

影像是扭曲的，造成影像處理上的困難，使定位工作變得難以進行，因此需要進

行影像修正。 

在本論文中，我們提出了一系列基於環場視覺的新的自動車定位與環場影像

修正技術，並將其應用在各種自動車的用途上。我們使用了雙曲面反射鏡式與魚

眼透鏡式的環場攝影機，而且，我們採用了路標式定位法，該法使用環境中明顯

路標來作自動車的定位。在另一方面，我們在環場影像上，直接分析基本的路標

幾何特徵（如直線與圓形等）的投影與投影之間的相互關係（如平行與垂直等）。

並將前述所提出的方法應用在多種自動車的導航上，包含室內自動車導航、直升
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機降落、汽車輔助駕駛等。更進一步地，我們提出了解決影像定位技術應用在自

動車上常見的兩個問題的方法，一個是所謂扭曲環場影像的轉正方法，可用以解

決自動車震動所導致的影像扭曲，另一個是一所謂空間與影像間的對映方法，此

法可解決應用場合中攝影機重新安裝所導致的定位失效問題。這兩個方法讓前述

所提自動車定位方法在實際應用中變得更為有效。茲將前述所提各種方法分為兩

類⎯新自動車定位技術與新影像修正技術⎯詳細說明如下。 

(A)針對自動車新定位技術 --- 

(a)我們提出了一個描述環場影像中的圓形路標投影的新方法。在此法中，我們

證明了此一投影可用橢圓來加以逼近，其中我們用了泰勒展開的技巧。以此，

我們得以提出一個新法則來抽取環場影像中的橢圓狀投影。 

(b)我們提出了一個利用圓錐曲線來描述環場影像中的直線投影的新方法。在此

方法中我們推導出簡單而且有公式解的直線投影方程式，並接著提出可用以

從環場影像中抽取圓錐曲線的簡便方法，其原理乃基於赫夫轉換。 

(c)我們提出了一個以環場影像中的天花板圓形圖案，作為路標的室內自動車定

位與導航之方法。此利用此路標具有容易偵測與辨識，且不易被遮蔽等優點。 

(d)我們提出了一個利用環場影像中的 Y 形屋角影像，作為路標的室內自動車定

位與導航之方法。因為燈光或拍攝角度的關係，Y 形直角並非每次都能完整

的出現在環場影像中，所以我們分析了 Y 型屋角在環場影像中，所有可能出

現的樣式，如點、垂直線、水平線及其可能組合樣式，並分別提出相對應的

定位方法。 

(e)我們提出了一個利用環場影像中的標準停機坪影像，作為路標的直升機降落

之定位方法。在充分且有效的分析環場影像中停機坪圖案的幾何特徵，包含
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圓形、水平線，加以參考直升機距離停機坪的遠近，我們提出了包含接近、

對正與觸地的三階段定位方法。其中，求出的定位資訊包含高度、方位、與

距離。 

(f)我們提出了一個利用環場影像中的小客車車輪影像，作車側車輛定位方法。

只要利用本身車輛上的一台環場攝影機所拍到的鄰車影像，再經分析中車輪

影像後，此方法即可推算出鄰車相對於本身車輛的位置及方向，並具有公式

解。 

(B)針對新影像修正技術 --- 

(a)我們提出了一個針對非置中環場攝影機所拍攝的扭曲影像，將其轉正的方

法。造成非置中環場攝影機的現象，乃因在置中環場攝影結構中，原先的透

鏡/反射鏡相對位置改變。造成此一改變的原因，常常是因為自動車的震動或

攝影機的重新安裝。我們的方法可以當場解決此問題，而不必送回當初的攝

影機製造廠作校正。 

(b)我們提出了一個可應用於物體定位或自動車定位的空間對映方法，並能在實

際應用時，適應攝影機高度與角度的改變。此方法基於空間對應表，可求出

於多種型攝影機的影像座標與空間座標的對應關係，使得面臨實際環境時，

該方法更加具有應用價值。 

實驗結果顯示本論文提出的所有方法，皆具有優越性及有效性。最後，討論

與未來可能研究方向也附於本論文中。 



vi 
 

 

New Localization and Image Adjustment 
Techniques Using Omni-Cameras for 

Autonomous Vehicle Applications  
 

Student: Chih-Jen Wu Advisor: Dr. Wen-Hsiang Tsai 
 
 

Institute of Computer Science and Engineering 
College of Computer Science 

National Chiao Tung University 

 
Abstract 

Vehicle localization is essential for autonomous vehicle guidance in many 

applications. A widely adopted approach is the vision-based technique by which the 

locations of vehicles can be computed by analyzing the images captured by cameras. 

Omni-cameras have become more and more popular recently for their wider field of 

views (FOVs). Wider FOVs make the job of localization easier because a larger scene 

range can be taken in a single shot. However, due to the distortion in the images taken 

by omni-cameras, it is difficult to use omni-cameras in vehicle localization 

applications unless taken omni-images are properly adjusted. 

In this study, investigation of new omni-vision based vehicle localization 

techniques and omni-image adjustment, as well as their applications is conducted. 

Two types of omni-camera are used, including hyperboloidal omni-camera and 

fish-eye camera. Also, the landmark based approach to localization is adopted, in 

which obvious landmarks in vehicle navigation environments are utilized. On the 
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other hand, the projections of basic landmark features (lines, circles, etc.) in 

omni-images, and their relations (parallelism, perpendicularity, etc.) are analyzed 

mathematically. Accordingly, methods for varoius vehicle localization applications 

using the basic landmark features are proposed, including indoor vehicle guidance, 

helicopter landing, car driving assistance, etc. Furthermore, solutions to two vehicle 

localization problems frequently encountered with in real applications are also 

proposed, one being an omni-image unwarping method for dealing with image 

distortions caused by a misaligned omni-camera, and the other being a space-to-image 

mapping method which is adaptive to camera setup changes found in in-field 

environments. These two solutions make the proposed vehicle localization methods 

more effective in real environments. The above-mentioned proposed methods are 

summarized in the following, classified into two categories: new vehicle localization 

techniques and image adjustment techniques. 

A. New vehicle localization techniques 

(a) A new method for describing the projection of a circular-shaped landmark in 

omni-images is proposed. It is shown that such a projection may be approximated 

by an ellipse based on the application of Taylor expansion. In accordance, a new 

algorithm is designed for extracting the elliptical-shaped projections from 

omni-images of circular-shaped landmarks. 

(b) A new method for describing the projection of a line in an omni-image as a conic 

section is proposed. Equations of such a projection are derived to be simple and 

analytic, and consequently uncomplicated effective image analysis algorithms are 

designed for extracting such conic sections out of omni-images by the Hough 

transform. 

(c) A new method for vehicle localization by omni-vision for autonomous vehicle 
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navigation in indoor environments using circular landmarks on ceilings is 

proposed. Such landmarks have several advantages can be identified, including 

ease to detect and recognize, and freedom from oclussion. 

(d) Systematic vision-based vehicle localization techniques by hyperboloidal 

omni-cameras using Y-shaped house corners in indoor environments as landmarks 

are proposed. All possible partial structures of a house corner consisting of a 

corner point, a horizontal line, and a vertical one are considered, facilitating 

flexible vehicle localization under various lighting, occlusion, and imaging 

posture conditions. 

(e) An omni-vision-based self-localization method for automatic helicopter landing on 

a helipad with a circled H-shape is proposed. The landing process includes three 

stages: approaching, alignment, and docking. Three types of image features, circle, 

line, and point, are used to derive skillfully analytic equations for computing the 

helicopter height, distance, and orientation with respect to the landing site. 

(f) A lateral vehicle localization method by omni-image analysis is proposed for car 

driving assistance. The method estimates analytically the position and orientation 

of a lateral vehicle by utilizing the geometric properties of a circular-shaped 

wheel image of the lateral car taken by a single omni-camera. 

B. Image adjustment techniques 

(a) A new method for solving the problem of unwarping a distorted omni-image taken 

by a lateral-directionally misaligned omni-camera is proposed. Such camera 

misalignment is a frequently encountered problem of vision-based localization in 

real applications due to vehicle vibrations or camera redeployments. The method 

can solve this problem without camera calibration which is usually done in 

advance in the factory. 
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(b) A new space-mapping method for object location estimation or vehicle 

localization, which is adaptive to camera setup changes in application 

environments is proposed. The method, which is general for various types of 

cameras, estimates the location of an object appearing in an image by mapping the 

image coordinates of an object point to the real-world coordinates of the point 

using a space-mapping table. Such a method makes the space-mapping based 

approach to object localization more useful to real applications. 

Good experimental results are shown to prove the feasibility and effectiveness of 

all the proposed methods. Discussions on possible future research directions are also 

included. 

 



x 
 

Acknowledgements 

I would like to express my sincere appreciation to my advisor, Professor 

Wen-Hsiang Tsai, for his patience and kind guidance throughout the course of this 

dissertation study and the invaluable training. Thanks are also extended to the 

colleagues in the Computer Vision Laboratory at National Chiao Tung University for 

their valuable help during this study. 

Finally, I am so grateful to my wife and family for their love, support, and 

endurance. This dissertation is dedicated to them. 

 



xi 
 

 

Table of Contents 

Chinese Abstract  ................................................................................. iii 

English Abstract .................................................................................... vi 

Acknowledgements ................................................................................. x 

Table of Contents .................................................................................. xi 

List of Tables ...................................................................................... xvii 

List of Figures ................................................................................. xviiiii 

Chapter 1  Introduction ........................................................................ 1 

1.1  Motivation of Study ....................................................................................... 1 

1.2  Survey of Related Works ............................................................................... 3 

1.2.1 Survey of Types of Omni-cameras ....................................................... 4 

1.2.2 Survey of Localization Methods for Different Vehicle Applications .. 7 

1.2.3 Survey of Image Adaptation Methods for Adjusting Images Taken by 
Misaligned or Posture-Slanted Cameras ............................................. 12 

1.3  Contributions of This Study ......................................................................... 14 

1.4  Dissertation Organization ............................................................................ 16 

Chapter 2  Location Estimation for Indoor Autonomous Vehicle 
Guidance by Omni-vision Using Circular Landmarks on 
Ceilings .............................................................................. 18 

2.1  Idea of Proposed Method ............................................................................. 18 

2.2  Approximation of Irregular Shape in Omni-image Taken of Circular-shaped 
Landmark by Ellipse ................................................................................... 20 



xii 
 

2.2.1 Approximation of Distorted Circular Shapes in Omni-images by 
Ellipses ........................................................................................................ 21 

2.2.2. Effectiveness of Shape Approximation ............................................. 27 

2.3  Vehicle Location Estimation ........................................................................ 28 

2.3.1 Vehicle Location Estimation by Axis Lengths of Ellipse .................. 29 

2.3.2 Estimation of Vehicle Moving Distances and Orientation Changes .. 32 

2.4  Experimental Results ................................................................................... 33 

2.5  Identification and arrangement of the proposed landmarks in real 
applications ................................................................................................. 39 

2.6  Concluding Remarks .................................................................................... 40 

Chapter 3  A Systematic Approach to Indoor Vision-Based Robot 
Localization Using Corner Features in Omni Images .. 43 

3.1  Idea of Proposed Method ............................................................................. 43 

3.2  Properties of Projections of Space Points and Lines on Omni-Images ....... 48 

3.2.1 Derivation of Equation of Space-Point Projection on Omni-image ... 48 

3.2.2. Derivation of General Equation of A Space Line Projection on 
Omni-image ......................................................................................... 50 

3.2.3 Derivation of Specific Equation of A Space Vertical Line Projection on 
Omni-image ......................................................................................... 53 

3.2.4 Detection of Conic-section Projection of A Horizontal Space Line by 
Hough Transform ................................................................................ 54 

3.2.5 Detection of Radial-line Projection of A Vertical Space Line ............ 55 

3.3  Robot Localization by Partial House Corner Structures .............................. 56 

3.3.1 Case (1) Robot Localization Using A Single Horizontal Line with No 
Endpoint .............................................................................................. 56 

3.3.2 Case (2) Robot Localization Using A Single Vertical Line with No 
Endpoint .............................................................................................. 60 

3.3.3 Case (3) Two Horizontal Lines Intersecting at A Corner Point .......... 62 



xiii 
 

3.3.4 Case (4) A Horizontal Line And A Vertical One Intersecting at A 
Corner Point ........................................................................................ 64 

3.3.5 Case (5): A Horizontal Line with A Corner Point as An Endpoint .... 65 

3.3.6 Case (6): A Vertical Line with A Corner Point as An Endpoint ........ 67 

3.4  Experimental Results ................................................................................... 68 

3.5  Concluding Remarks .................................................................................... 71 

Chapter 4  An Omni-vision Based Self-localization Method for 
Automatic Helicopter Landing on Standard Helipads . 73 

4.1  Idea of Proposed Method ............................................................................. 73 

4.2  Idea of Three-stage Helicopter Self-localization Method ............................ 75 

4.3  Proposed Self-localization Techniques for Automatic Helicopter Landing 78 

4.3.1 Proposed Techniques for the Approaching Stage .............................. 78 

4.3.2 Proposed Techniques for the Aligning Stage ..................................... 81 

4.3.3 Proposed Techniques for the Docking Stage ..................................... 89 

4.4  Experimental Results ................................................................................... 91 

4.5  Concluding Remarks .................................................................................... 95 

Chapter 5  Omni-vision Based Localization of Lateral Vehicles for 
Car Driving Assistance ..................................................... 98 

5.1  Idea of Proposed Method ............................................................................. 98 

5.2  Lateral Car Localization by Frontal Omni-camera ...................................... 98 

5.2.1 Estimation of Lateral Car Position Using Rotational Invariance 
Property ............................................................................................... 99 

5.2.2 Estimation of Lateral Car Orientation Using Wheel Shape Information
 ................................................................................................................... 104 

5.3  Experimental Results ................................................................................. 106 

5.4  Concluding Remarks .................................................................................. 107 



xiv 
 

Chapter 6  Adaptation of Space-Mapping Methods for Object 
Location Estimation to Camera Setup Changes ......... 109 

6.1  Idea of Proposed Method ........................................................................... 109 

6.2  Idea of Proposed Method ........................................................................... 112 

6.3  Proposed Techniques for Basic Mapping Table Construction and 
Modifications for Ceiling Height and Camera Orientation Adaption ....... 115 

6.3.1 Basic Mapping Table Construction by Quadrilateral Mapping ....... 115 

6.3.2 Mapping Table Modification According to Change of Floor Height
 ................................................................................................................... 119 

6.3.3 Mapping Table Modification According to Change of Camera 
Orientation ................................................................................................. 120 

6.4  Experimental Results ................................................................................. 125 

6.5  Concluding Remarks .................................................................................. 130 

Chapter 7  Unwarping of Images Taken by Misaligned 
Omni-cameras without Camera Calibration by Curved 
Quadrilateral Morphing Using Quadratic Pattern 
Classifiers ........................................................................ 133 

7.1  Idea of Proposed Method ........................................................................... 133 

7.2  Proposed Mapping-based Image Unwarping Method ............................... 137 

7.3  Curved Quadrilateral Morphing Using Quadratic Classifiers ................... 146 

7.4  Experimental Results ................................................................................. 154 

7.5  Concluding Remarks .................................................................................. 158 

Chapter 8  Conclusions and Suggestions for Future Research ..... 160 

8.1  Conclusions ................................................................................................ 160 

8.2  Suggestions for Future Research ............................................................... 161 

 

 



xv 
 

Reference.............................................................................................163 
Publication List...................................................................................171 
Vita.......................................................................................................173 



xvi 
 

 

List of Tables 

Table 2.1 Rates of successful detections of landmark shapes taken by cameras with 

different shapes of hyperboloidal reflection mirror (c = 20mm)..................41 

Table 2.2 Error ratios in location estimations with landmarks located in the same 

directions but at different distance...............................................................41 

Table 2.3 Errors in location estimations with the landmarks located in the same 

directions and at the same distances but with different camera heights.......42 

Table 3.1 Robot Location computation results for Case (4).........................................70 

Table 3.2 Parameters involved or computed in extraction of projections in Fig. 10....70 

Table 3.3 Robot location computation results for Case (1)..........................................71 

Table 4.1 Experimental result of stage-1 simulation....................................................94 

Table 4.2 Experimental result of stage-2 simulation....................................................95 

Table 4.3 Experimental result of stage-3 simulation....................................................97 

Table 5.1 Lateral car location estimation results........................................................108 

Table 5.2 Simulation results of estimating lateral car position using a fixed wheel 

radius value 20.75 cm.................................................................................108 

Table 6.1 A basic space-mapping table which records relations between coordinates of 

corresponding image points and real-world points....................................115 

Table 6.2 Error ratios with camera looking downward at ceiling height 200cm.......129 

Table 6.3 Error ratios with camera looking downward at ceiling height 250cm.......129 

Table 6.4 Error ratios with camera looking downward at ceiling height 250cm.......130 

Table 6.5 Error ratios with camera at ceiling height 200cm for different tilted angle 

90o (looking down), 70o, and 50o...............................................................131 



xvii 
 

Table 7.1 A pano-mapping table of size M×N............................................................139 

Table 7.2 A misalignment adjustment table of size M×N...........................................146 



xviii 
 

 

List of Figures 

Fig. 1.1 A catadioptric camera. (a) Structure of camera. (b) Acquired image...............4 

Fig. 1.2 Illustration of camera and reflective mirror type.............................................5 

Fig. 1.3 FOVs of different camera types [14]. (a) Dioptric camera. (b) Traditional 

(perspective) camera. (c) Catadioptric camera.................................................5 

Fig. 1.4 An image acquired by a fish-eye camera..........................................................6 

Fig. 1.5 Two-mirror omni-camera [15]. (a) Structure of camera. (b) Acquired image..6 

Fig. 1.6 Omni-camera pairs. (a) Laterally paralell combinaiton. (b) Longitudinally 

coaxial combinaiton..........................................................................................7 

Fig. 1.7 Illustration of automatic helicopter landing on a helipad with a circled 

H-shape............................................................................................................11 

Fig. 1.8 Calibration objects used for mapping table construction. (a) A point pattern 

used in Takeshita, et al. [59], laid on a floor. (b) A grid pattern used in Wang 

and Tsai [60], attached on a wall.....................................................................13 

Fig. 1.9 Example of unwarping an omni-image into a panoramic perspective image. (a) 

Original omni-image. (b) Unwarping result of (a) which is a panoramic 

image...............................................................................................................14 

Fig. 1.10 Relations among proposed techniques in this study.....................................16 

Fig. 2.1 Relative positions of camera, ceiling, and circular landmark for providing 

sufficient field of view and avoiding unexpected objects and humans 

appearing in acquired images..........................................................................20 

Fig. 2:2 Coordinate systems involved in this study......................................................23 

Fig 2.3 Top view from the Z direction showing the relationship between new and 

original coordinate system with the new image coordinate system (u′, v′) 



xix 
 

obtained by rotating the u-axis through an angle of θw = tan−1(Yw/Xw) with 

respect to the center of the circular-shaped landmark W................................24 

Fig. 2.4 Simulation of a series of circular shapes of the landmark at different places, 

showing that the distorted landmark shape may be approximated well by 

ellipses. (a) illustration of the simulation results. (b) partially enlarged view of 

(a)....................................................................................................................28 

Fig. 2.5 Top view from the Z direction illustrating the relation between the axes of the 

approximating ellipse and the horizontal distance of the circular-shaped 

landmark.........................................................................................................30 

Fig. 2.6 Illustration of the relative ALV location estimation. (a) and (b): the 

displacement D of the vehicle. (c) and (d): the orientation of the vehicle......34 

Fig. 2.7 Examples of successful detection of elliptical shapes. In (a)-(f), the elliptical 

shapes of simulated landmark images are marked by white pixels. Black 

pixels are approximate ellipse points computed by the ellipse detection 

algorithm [17]. In (b)-(f), both horizontal and vertical grid lines are added in 

order to indicate the level of geometric distortion in each simulated image..36 

Fig 2.8 All the experimental images were taken by an autonomous land vehicle 

equipped with an upward-looking omni-camera. (a): the autonomous land 

vehicle. (b): a close look of the camera on the vehicle...................................37 

Fig. 2.9 Two example images acquired by the camera equipped on the vehicle. (a) and 

(c): images acquired at different positions. (b) and (d): the enlarged images of 

the landmarks in (a) and (c), respectively.......................................................38 

Fig. 2.10 Coloring scheme for identification of multiple circular shapes...................40 

Fig. 3.1 A house corner with a Y-shaped structure. (a) An omni-image of a corridor 

ceiling with corners. (b) An image part of a corner. (c) Illustration of Y-shape 

of the corner....................................................................................................44 



xx 
 

Fig. 3.2 Six types of partial house corner structures. (a) A horizontal line with no 

endpoint. (b) A vertical line with no endpoint. (c) Two horizontal lines 

intersecting at a point. (d) A horizontal line and a vertical one intersecting at a 

point. (e) A horizontal line with an endpoint. (f) A vertical line with an 

endpoint...........................................................................................................46 

Fig. 3.3 Camera and image coordinate systems...........................................................50 

Fig. 3.4 Illustration of a space line projected on to the image plane............................51 

Fig. 3.5 Case (1)  a single horizontal line with no endpoint used for robot localization 

..........................................................................................................................57 

Fig. 3.6 Finding minimum-distance point Pmin on horizontal line L for Case (1)......57 

Fig. 3.7 A vertical line with no endpoint used in robot localization.............................61 

Fig. 3.8.Two horizontal lines intersecting at a corner point used in robot localization  

..........................................................................................................................63 

Fig. 3.8 A horizontal line and a vertical one intersecting at a corner point used in robot 

localization......................................................................................................64 

Fig. 3.9 A horizontal line with a corner point as an endpoint used in robot localization  

.........................................................................................................................66 

Fig. 3.10 A vertical line with a corner point as an endpoint used in robot localization 

.........................................................................................................................68 

Fig. 3.11 Extraction of horizontal and vertical lines by proposed Hough transform 

techniques for robot localization of Case (4). (a) An omni-image with a 

corner consisting of a horizontal line and a vertical one. (b) Extracted 

conic-section and radial-line projections shown as purple curves. (c) Five 

more images used in experiments................................................................70 

Fig. 3.12 Images used in experiment of robot localization of Case (1). (a) An image of 

a corridor with horizontal line segments as ceiling edges. (b) Extracted 



xxi 
 

conic-section projection shown as purple curve. (c) Five more images used 

in experiments.............................................................................................71 

Fig. 4.1 Detail of a circled H-shape on a standard helipad.........................................74 

Fig. 4.2 An omni-image of a simulated helipad..........................................................75 

Fig. 4.3 Top view of image plane and circular shape S illustrating side proportionality 

relation between approximating ellipse S′ and circular shape S....................82 

Fig. 4.4 Illustration of a space line projected onto the image plane............................84 

Fig. 4.5 Finding minimum-distance point Pmin on a boundary line L........................86 

Fig. 4.6 A view of a simulated helipad used in experiments of this study...................92 

Fig. 4.7 Four images of approaching stage of helicopter landing process. (a)-(d) 

Images 1-4......................................................................................................93 

Fig. 4.8 Circular shape detection result of image 1.....................................................94 

Fig. 4.9 Four images of aligning stage of helicopter landing process. (a)-(d) Images 

5-8..................................................................................................................94 

Fig. 4.10 Circular shape and boundary line detection results of image 7. (a) Circular 

shape detection result. (b) Boundary line detection result.............................95 

Fig. 4.11 Four images of docking stage of helicopter landing process. (a)-(d) Images 

9-12..............................................................................................................96 

Fig. 4.12 Circular shape and boundary line detection results of image 11. (a) Circular 

shape detection result. (b) Boundary line detection result...........................97 

Fig. 5.1 Relative coordinate systems. (a) Omni-camera and image coordinate systems. 

(b) Omni-camera and wheel coordinate systems.........................................102 

Fig. 5.2 Definition of corresponding image and space points...................................103 

Fig. 5.3 A lateral car image with wheel shape detected as an elliptical shape..........107 

Fig. 6.1 Illustration of camera setup for space-mapping table construction in Stage 1 

of proposed method......................................................................................112 



xxii 
 

Fig. 6.2 Illustration of camera orientation change (with a tilt angle of θ).................113 

Fig. 6.3 Illustration of quadrilateral extraction using a grid pattern on floor. (a) An 

image of the grid pattern. (b) The lines approximating the grid lines..........116 

Fig. 6.4 Mapping of a pair of corresponding quadrilaterals in image and in calibration 

pattern...........................................................................................................118 

Fig. 6.5 Location estimation of a real-world point by inverse bilinear interpolation  

......................................................................................................................118 

Fig. 6.6 Illustration of using side proportionality to compute coordinates of point P1 

on a floor F1 with ceiling height H1............................................................120 

Fig. 6.7 Illustration of a tilted camera with angle  with respect to the x　 -axis of the 

real-world coordinate system.......................................................................122 

Fig. 6.8 Lateral view (from the positive y-axis direction) of rotation result of floor 

surface F1 in Fig. 6.7 through an angle of 90o − θ with P1 as the rotation pivot 

point.............................................................................................................122 

Fig. 6.9 Illustration for verification of correctness of Eq. (6.11)..............................124 

Fig. 6.10 Lateral view of Fig. 6.8 from direction of positive x-axis for verification of 

correctness of Eq. (6.14)............................................................................125 

Fig. 6.11 Fish-eye camera used in this study, which is attached to a rod fixed on 

ceiling and can be tilted and moved up and down.....................................126 

Fig. 6.12 Images used for experiments reported here. (a) Taken with camera looking 

downward at ceiling height of 200cm. (b) Taken with camera looking 

downward at ceiling height of 250cm. (c) Taken with camera tilted for 50o at 

ceiling height of 200cm..............................................................................128 

Fig. 6.13 Effective field of view of camera measured by radius of an enclosing red 

circle...........................................................................................................128 

Fig. 6.14 Illustrative images of applications of proposed location estimation method 



xxiii 
 

for autonomous vehicle guidance in an indoor environment (a laboratory 

where this study was conducted). (a) An image acquired by a 

downward-looking camera affixed on ceiling. (b) A processed image in 

which autonomous vehicle center (white point) was detected for vehicle 

location estimation.....................................................................................132 

Fig. 7.1 Alignment of catadioptric omni-camera. (a) Correct alignment. (b) 

Axial-directional misalignment. (c) Lateral-directional misalignment.......135 

Fig. 7.2 Images of a color pattern acquired by a catadioptric omni-camera. (a) Image 

taken with the camera correctly-aligned. (b) Image taken the camera 

misaligned....................................................................................................135 

Fig. 7.3 Omni-camera system....................................................................................138 

Fig. 7.4 Mapping between pano-mapping table and omni-image.............................139 

Fig. 7.5 Lateral-view configuration for generating a panoramic image....................141 

Fig. 7.6 Configuration of an omni-camera wrapped with a calibration pattern. (a) A 

calibration pattern wrapping transparent cylinder of camera. (b) Image of 

calibration pattern consisting of “fan-shaped” curved quadrilaterals..........142 

Fig. 7.7 Curved quadrilaterals forming a mutual corresponding pair........................145 

Fig. 7.8 Illustration of a curved quadrilateral with boundaries and interpolating curves 

segmented into equal-lengthed segments (a through d are all of equal lengths; 

e through h are similar, and so on)...............................................................147 

Fig. 7.9 Illustrations of finding the central quadrilateral point M in a curved 

quadrilateral.................................................................................................149 

Fig. 7.10. Interpolating curve (blue) for two curve boundaries (red) found by a 

quadratic classifier using coordinate data as patterns (the axes specify x- and 

y-coordinates)............................................................................................150 

Fig. 7.11 Illustration of proposed algorithm for morphing one curved quadrilateral to a 



xxiv 
 

corresponding curved quadrilateral...........................................................153 

Fig. 7.12 Results of curved quadrilateral morphing by Algorithm 7.2 using simulated 

data. (a) A simulated curved quadrilateral. (b) Result of 1st iteration. (c) 

Result of 2nd iteration. (d) Result of 3rd iteration....................................154 

Fig. 7.13 Results of quadrilateral morphing for real data using Algorithm 7.2. (a) A 

curved quadrilaterals. (b) Result of 1st iteration. (c) Result of 2nd iteration. 

(d) Result of 3rd iteration with intermediate curves removed...................155 

Fig. 7.14 Image unwarping results using Algorithm 7.1 and Algorithm 7.2. (a) 

Reference image. (b) Working image. (c) Segmented calibration lines in (a) 

in thinned form. (d) Segmented calibration lines in (b) in thinned form. (e) 

Result of applying Algorithm 7.2 to (b) using the misalignment adjustment 

table. (f) A panoramic image generated form (e). (g) A panoramic image 

generated from...........................................................................................157 

Fig. 7.15 Results of distorted image unwarping using Algorithm 7.2. (a) Distorted 

omni-image. (b) Created panoramic image with correction by Algorithm 7.2. 

(c) Created panoramic image without misalignment correction...............158 

 

 

 



1 
 

Chapter 1                    

Introduction 

1.1 Motivation of Study 

In the era of automation today, autonomous vehicles have been adopted in many 

application domains. Types of autonomous vehicles include mobile robot, land 

vehicle, computer-assisted car, helicopter, airplane, unmanned airborne vehicle, etc. In 

the study of autonomous vehicles, vehicle localization is indispensable in many 

applications, like navigation guidance, collision avoidance, automatic landing, driving 

assistance, etc. This problem is mentioned in the literature alternatively as robot 

location, vehicle location estimation, object posture estimation, etc. A widely adopted 

approach to vehicle localization is the vision-based technique, in which visual sensors 

like still and video cameras are used for environment sensing. 

Most existing vision-based techniques deal only with frontal scenes acquired by 

traditional cameras and are easily interfered by unexpected objects around the vehicle. 

A feasible solution to this problem is to use an omni-directional camera (abbreviated 

as omni-camera in the sequel) [1][2][3][4][5][6][7] which looks at certain target 

shapes, usually called landmarks, attached on some objects in the environment. Uses 

of omni-cameras for solving this problem have the advantage of obtaining larger 

fields of view (FOVs) in the acquired omni-directional images (omni-images). Several 

factors should be considered in a solution of this kind, as discussed in the following. 

(1) Types of omni-cameras ---  

With the advance of camera technology, many types of omni-camera have been 

proposed. A survey of them will be given later in this chapter. The larger variety of 

them in general provides more convenience and effectiveness for vehicle location 
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estimation. A systematic investigation of them is advantageous for improving the 

location estimation techniques. 

(2) Types of landmarks ---  

Many types of landmarks have been proposed in the past [1][6][10]. Although 

some specially-designed landmarks with good properties, like ease to extract from 

images of them, leading to analytic solutions, etc., have been proposed, they are not 

commonly seen in daily environments and need special arrangements which 

sometimes cause inconvenience. It is more desirable to use naturally-existing features 

in the environment, like straight lines, circles, rectangle, etc. The straight line might 

be the most commonly used landmark in the environment. It appears in indoor 

building structures such as baseboards, house corners, etc. Parameters from straight 

lines are widely studied for use in camera calibration. However, how to precisely and 

constantly acquire the parameters of lines is an important issue to solve. Circle is also 

a popular landmark shape. A circular-shaped landmark can be observed from any 

direction. Such rotational symmetry of the circle is a good landmark property, 

resulting in more precise and robust location. 

(3) Locations of landmarks ---  

Most landmarks proposed so far are located on the ground or attached on 

building walls, and so are apt to be occluded by people or objects around. An 

improper choice of the landmark location could lead to unreliable vehicle location 

estimation. On the contrary, a good landmark location will result in less landmark 

occlusion and image noise. Therefore, it is more convenient to use landmarks attached 

on the ceiling or affixed to other higher positions like house corners [8][9]. 

(4) Postures of omni-cameras --- 

A conventional solution to the vehicle location estimation problem is to conduct 
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a work of omni-cameras calibration to obtain a set of camera parameters, followed by 

the use the parameters to compute the object location work  [1][23][55][56][57][58]. 

However, the calibration process is sensitive to camera posture changes. To solve 

such a camera-posture sensitive problem, a commonly way is to abandon the original 

calibration results and reconstruct a new one in the new camera-environment 

configuration. 

(5) Misalignment of omni-cameras --- 

In real applications like vision-based autonomous vehicle navigation or security 

surveillance [13][46][65][66][67], a camera equipped on a vehicle might be shaken 

due to vehicle vibrations or one installed on a wall might be removed due to 

re-employment, causing possibly destruction of the camera structure and resulting in 

camera misalignment, which causes displacements or/and re-orientations of the CCD 

camera with respect to the reflective mirror of the omni-camera. A feasible solution is 

to unwarp a distorted omni-image taken by a misaligned omni-camera. 

 

In this dissertation study, we investigate vehicle localization and related image 

analysis techniques for autonomous vehicle applications using new types of 

omni-cameras. We try to design methods to solve the related problems mentioned 

above, aiming at providing more effective techniques or algorithms for practical 

application uses. 

1.2 Survey of Related Works 

In this section, we survey works related to our study, including the categories of: 

(1) structures of various omni-cameras; (2) approaches to location estimation for 

different types of vehicle applications; and (3) image adaptation methods for adjusting 
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images taken by misaligned or posture-slanted cameras for the purpose of precise 

vehicle localization. These three categories of related works will be reviewed in 

Sections 1.2.1, 1.2.2, and 1.2.3, respectively.  

1.2.1. Survey of Types of Omni-cameras 

New types of omni-cameras can be categorized into the following categories: (1) 

catadioptric camera; (2) dioptric camera; (3) two-mirror catadioptric camera; and (4) 

omni-camera pair. More details about each category are described as follows. 

(1) Catadioptric camera --- 

A catadioptric omni-camera is a combination of a reflective mirror and a CCD 

camera as shown in Fig. 1.1(a). An image taken by such a kind of camera is shown in 

Fig. 1.1(b). With the aid of reflective surface from the mirror, a camera of this type 

can obtain larger FOVs in the acquired images. The lens of the CCD camera may be 

of a perspective or orthographic projection type, and the mirror surface of a 

catadioptric omni-camera may be in various shapes such as hyperbolic, circular, 

parabolic, or ellipsoidal, as illustrated in Fig. 1.2. With distinctive mirrors or lens, the 

images and calibration methods of the cameras are different in this category. Some 

works of vehicle location and image unwarping for this type of camera can be found 

in [1][2][3][4][5][6][7][8][9][10]. 

 

    
 (a)                         (b) 

Fig. 1.1 A catadioptric camera. (a) Structure of camera. (b) Acquired image. 
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Fig. 1.2 Illustration of camera and reflective mirror type. 

 

(2) Dioptric camera --- 

A dioptric omni-camera, looking like a traditional camera, has no reflective 

mirror, but with a “wider-angle” lens. It can capture incoming light rays from a wider 

FOV to form an omni-image. An illustration of such imaging difference from 

traditional and catadioptric cameras is shown in Fig. 1.3. The lens shape design of this 

group of cameras decides the formed images and their calibration methods. An 

example of this kind of omni-camera is the fish-eye camera. An image acquired by an 

fish-eye camera is shown in Fig. 1.4. Some works of vehicle location and image 

unwarping for fish-eye cameras can be found in [11][12][13]. 

 

 

 

(a)       (b)       (c) 

Fig. 1.3 FOVs of different camera types [14]. (a) Dioptric camera. (b) Traditional 
(perspective) camera. (c) Catadioptric camera. 

FOVFOV
FOV 
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Fig. 1.4 An image acquired by a fish-eye camera. 

 
 

(3) Two-mirror catadioptric camera --- 

Recently, the design trend of the catadioptric camera is to combine two 

reflective mirrors in a single camera. We call the resulting camera a two-mirror 

omni-camera [15]. An example is shown in Fig. 1.5. The lights coming from a scene 

point in the real world space are reflected by each mirror into the CCD camera, 

causing two corresponding image points in the resulting single image. Such image 

pairs form two “image belts” of the same scene with different scales. 

 

 

           
(a)                           (b) 

Fig. 1.5 Two-mirror omni-camera [15]. (a) Structure of camera. (b) Acquired image. 
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(4) Omni-camera pair --- 

An omni-camera pair consists of two omni-cameras with different locations. An 

illustration is shown in Fig. 1.6, where two kinds of such camera pairs are seen. In 

theory, by using the corresponding pixels in the two images acquired from the 

cameras, stereo information can be derived stereo information. However, most 

research works in the past focus on omni-camera pairs with hyperbolic-shaped 

reflective mirrors [16]; works for pairs with other mirror shapes are yet to be 

completed. 

 

          

(a)                         (b) 
Fig. 1.6 Omni-camera pairs. (a) Laterally paralell combinaiton. (b) Longitudinally 

coaxial combinaiton. 
 

1.2.2. Survey of Localization Methods for Different Vehicle 

Applications 

There are many appilications of autonomous vehicle localization techniques, 

such as: (1) indoor vehicle or robot guidance; (2) automatic helicopter landing; and (3) 

car driving assistance, etc. We review studies about these applications and related 

techniques in the following. 
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(1) Indoor vehicle or robot guidance --- 

Indoor vehicle or robot guidance has been studied intensively in the past two 

decades. A frequently-adopted solution to this problem is to localize the vehicle or 

robot continuously in its navigation sessions, and guide its navigation path 

accordingly. The most commonly adopted vision-based approach aims to locate robots 

by analyzing images acquired with visual cameras [20][21][22]. Many kinds of 

techniques of this approach have been proposed, among which a popular one is the 

use of landmark images [1][23][24]. This kind of technique aims to compute the 

relative location of the vehicle or robot with respect to a landmark by analyzing the 

geometric hint exhibited by the landmark appearing in the acquired image. In such 

techniques, the location of the vehicle or robot is represented by both its position with 

respect to a reference point and its orientation with respect to a reference line included 

in the landmark, respectively, as we do in this study. 

For indoor vision-based vehicle or robot localization, environmental structures 

abundant in buildings are often taken as landmarks. Among them, ceiling corners are 

the most commonly seen. They are good for vehicle localization because they are high 

and not easily occluded. In the past, there are few studies on house corners for robot 

localization [23][25], though there are related studies on using point and line features 

which compose the shapes of house corners [24][26]. For robot localization, Chou and 

Tsai [23] used a house corner which consists of three lines forming a shape of “Y”; 

Parlaktuna, et al. [25] used a range finder to detect the wall edges forming a house 

corner; Chen and Tsai [24] used lines on common object surfaces; and Park et al. [26] 

used scale-invariant feature points as visual landmarks. On the other hand, some 

studies on camera calibration, which is conceptually equivalent to the work of robot 

localization, focused on the investigation of using a sufficient number of 
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corresponding lines for solving camera parameters [28]. 

The previously-mentioned studies were mostly based on the use of traditional 

projective cameras. There are only a few studies on the use of omni-cameras for 

vehicle localization [1][29][31]. Most of them are based on using global 

environmental features and matching them against environmental maps to locate the 

robot. There are also related camera calibration works [32][33], which were 

conducted from the viewpoint of enhancing calibration precision, and, when applied 

to vehicle localization, are too complicated for real-time navigation applications. 

Most vehicle localization using omni-images proposed up to now can be 

grouped into three types: triangulation, full-scene matching, and mirror-lens 

projection, in accordance with the way of image information. In triangulation 

techniques [1][2], a standard location method is to identify surrounding landmarks in 

the environment and find their corresponding locations in the environment map built 

in advance. By the measured bearings of the landmarks [1], the location of an 

autonomous vehicle can be obtained. Yagi [2] correlated the angle of the vertical edge 

in an omni-image to the environment map to acquire the location of the vehicle. 

However, sometimes it is difficult to find natural landmarks which can be identified 

stably from omni-images. 

In full-scene matching techniques [3][4], a vehicle locates itself by comparing 

images taken at its current location with reference images stored in its memory. 

Full-scene matching provides better feasibility by the use of omni-cameras. However, 

it takes a lot of reference memory space to raise location precision. Gasper [3] showed 

that the position of the vehicle in the environment can be determined by comparing 

the vehicle’s current view with previously learned images, using a low-dimensional 

subspace of the input images obtained from a principal component analysis process. 
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Menegatti [4] simplified the location problem by using the Fourier components of 

omni-images as the signatures of the acquired views. 

The unique mirror-lens projection relation of the omni-camera also can be used 

to derive the location of an autonomous vehicle by 3-D computer vision techniques 

[5][6]. In Koyasu [5], the range information, which is obtained by an omni-directional 

stereo vision system composed of a pair of vertically-aligned omni-cameras, helps not 

only creating a 3-D map but also locating the vehicle itself. In [6], Cauchois compared 

synthetic landmark images with real landmark images taken from a calibrated 

omni-camera to accomplish absolute vehicle location works. However, these methods 

might be unstable or inapplicable for locating a vehicle in a space crowded with 

people or full of objects, like in an exhibition room or in a library. 

(2) Automatic helicopter landing ---- 

Many studies have been conducted for unmanned helicopter flying in the past 

[38][39][40][41][42][43][44][45]. Tsai and Yang [38] used parallel line information 

on a standard helipad as a hint for helicopter self-localization with respect to the 

circled H-shape on the helipad. See Fig. 1.7 for an illustration. The AVATAR project 

described in Saripalli, Montgomery, and Sukhatme [39] designed methods for landing 

a UAV in unstructured 3D environments using visual cues of the helipad described by 

moments. The work done by Shakernia, et al. [40] used point correspondence 

techniques to estimate the height and position of a UAV using multiple images. 

Garcia-Pardo et al. [41] presented techniques for locating circular landing areas using 

image processing operations like the contrast descriptor and correlation function. 

Mejias et al. [42] presented a vision-based feature tracking system for an autonomous 

helicopter, which estimates the position and velocity of window features in images 

and combines the result with GPS-positioning references to navigate the helicopter. 
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Tsai, Gibbens, and Stone [43] used the geometric properties of a standard landing 

mark of the T-shape to decide the vehicle position using single images. Yakimenko et 

al. [44] designed a method for shipboard landing of a UAV using infrared vision. Hespanha et 

al. [45] presented an integrated system to estimate the relative position and velocity of 

a UAV with respective to a ship using IR vision, inertial, and air data sensors. 

 

 

Fig. 1.7 Illustration of automatic helicopter landing on a helipad with a circled 
H-shape. 

 
 

All the above methods used the traditional projective camera for visual sensing, 

which has a fixed FOV, compared with that of the recently commonly-used 

omni-camera. It is advantageous to use the omni-camera in automatic helicopter 

landing to enlarge the viewing scope and consequently speed up the automatic landing 

process. In this direction, Hrabar and Sukhatme [46] designed an omni-vision system 

which tries to find the centroid of the H-shape on the helipad to generate appropriate 

commands for guiding the helicopter. Demonceaux, Vasserur, and Pegard [47] 

proposed a helicopter posture computation method using catadioptric omni-images of 

the horizon line to estimate the pitch and roll angles of the helicopter. Bazin et al. [48] 

extended the method of [47] to estimate further the yaw angle of the helicopter using 
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the information of vanishing points for automatic flight in urban areas. 

(3) Car driving assistance --- 

Car driving assistance using traditional cameras has been studied intensively 

[50][51][52][53]. Recently, omni-cameras with wider views become popular. They are 

more suitable for car driving assistance because fewer cameras need be equipped. For 

example, Lai and Tsai [52] affixed a traditional camera on the right-frontal side of a 

host car to take the image of a lateral car. To acquire a full frontal view, two more 

traditional cameras should be used. Instead, one frontal omni-camera is sufficient. 

Additionally, car wheels are circular-shaped, providing geometric hints for lateral car 

localization [52]. However, when a circle appears in an omni-image, it becomes 

irregular in shape and cannot be described mathematically [54], leading to difficulty 

of extending the existing vehicle localization methods for omni-images. This problem 

has been solved in this study. 

1.2.3. Survey of Image Adaptation Methods for Adjusting Images 

Taken by Misaligned or Posture-Slanted Cameras 

Variou image adaptation methods for adjusting images taken by 

non-standardly-postured cameras, including: (1) adaptation to camera posture changes 

and (2) adjustment for misaligned omni-cameras, are surveyed as follows. 

(1) Image adaptation to camera posture changes --- 

A conventional solution to the object location estimation problem, which a 

reverse of the vehicle localization problem in concept, is to conduct a work of camera 

calibration to obtain a set of camera parameters, followed by the use of the parameters 

to compute the object location [1][23][55][56][57][58]. Camera calibration methods 

often use specially landmarks or environment features to derive formulas or 

algorithms to compute camera parameters. The computation process is in general 
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complicated and time-consuming. The camera used in such methods is usually 

mounted on a robot or vehicle and so is mobile, while the landmark or feature used by 

the methods is usually fixed in the environment. 

An alternative solution to the object location estimation problem is to use a 

space-mapping approach [36][59][60][61] which transforms the image space into the 

real-world space according to a space-mapping table. That is, the coordinates of an 

object point in an acquired image is mapped to the corresponding real-world 

coordinates of the point by a table lookup scheme. Thus, the above-mentioned camera 

calibration process is avoided, and the approach may be said to conduct direct object 

location estimation. The space-mapping table is constructed in advance, usually with 

the aid of a certain calibration pattern, before the camera is deployed in an 

application environment. Two examples of calibration patterns used in [59][60] are 

shown in Fig. 1.8, where a point pattern laid on the floor with a camera affixed on a 

ceiling was used in Takeshita, Tomizawa, and Ohya [59], and a grad pattern attached 

on a wall with the camera mounted on an autonomous vehicle was used in Wang and 

Tsai [60]. 

       
(a)                              (b) 

Fig. 1.8 Calibration objects used for mapping table construction. (a) A point pattern 
used in Takeshita, et al. [59], laid on a floor. (b) A grid pattern used in Wang 
and Tsai [60], attached on a wall. 

 

(2) Image adjustment for misaligned omni-cameras --- 
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Omni-camera misalignment occurs, for example, when the optical axis of the 

perspective camera of an omni-camera system are not coincident with the mirror axis 

which is perpendicular to the mirror base and through the mirror base center. Camera 

misalignment causes conventional image unwarping methods for image rectification 

inapplicable because of the resulting changes of the camera parameters. For an 

example of convenctional image unwarping, see Fig. 1.9. To solve this problem, Jeng 

and Tsai [71] proposed an omni-image unwarping method for dealing with the 

axial-directional camera misalignment problem. On the other hand, there are very few 

studies on image unwarping for lateral-directional camera misalignment so far except 

Mashita, Iwai, and Yachida [34] in which camera calibration is conducted first before 

image unwarping is carried out. In this study, we propose another method which is 

more convenient to apply and yields more accurate results. 

 

     

(a)                               (b) 

Fig. 1.9 Example of unwarping an omni-image into a panoramic perspective image. (a) 
Original omni-image. (b) Unwarping result of (a) which is a panoramic 
image. 

 

1.3 Contributions of This Study 

The major contributions of this study include proposing of the following 

techniques:  
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(1) A new method for proving and approximating circular shape images acquired by 

hyperboloidal omni-cameras as ellipses is proposed. 

(2) A novel method for describing the projection of a space line on the omni-image 

plane as a conic-section and extracting it by a low-dimensional Hough transform 

is derived. 

(3) A new localization method for indoor autonomous vehicle guidance using 

omni-images of circular landmarks on ceilings is proposed. 

(4) A systematic investigation of possible indoor corner structures for applications 

of vehicle localization is conducted and relevant image analysis techniques are 

proposed. 

(5) Analytic formulas for vehicle localization using single-view images of all 

possible house corner structures are derived for fast computation and real-time 

indoor vehicle guidance. 

(6) A novel omni-vision based self-localization method for automatic helicopter 

landing on standard helipads is proposed. 

(7) A new method for localization of lateral vehicles for car driving assistance using 

omni-images is proposed. 

(8) A new approach to adaptation of existing space-mapping methods for object 

localization to camera setup changes is proposed.  

(9) An unwarping method for images taken by misaligned omni-cameras without 

camera calibration by curved quadrilateral morphing using quadratic pattern 

classifiers is proposed. 

An illustration of the relations of the above-mentioned techniques is shown in 

Fig 1.10 where each technique is categorized into three groups: image adjustment, 

new feature analysis, and new localization techniques and applications, colored by 

three different blocks. Moreover, the mutual relations among the techniques are 
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annotated by arrows. That is, between two neighboring techniques, the direction of 

the arrow means that the previous technique can be applied to the following one. 

 

Fig. 1.10 Relations among the proposed techniques in this study. 

 

1.4 Dissertation Organization 

In the remainder of this thesis, we describe the proposed methods for various 

applications in the chapters, respectively. In Chapter 2, we propose a method for 

location estimation for indoor autonomous vehicle navigation by omni-directional 

vision using circular landmarks on ceilings. In Chapter 3, we propose a systematic 

approach to indoor vision-based robot localization using corner features in omni- 

images. In Chapter 4, we propose an omni-vision based self-localization method for 
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automatic helicopter landing on standard helipads. In Chapter 5, we propose a method 

for omni-vision based localization of lateral vehicles for car driving assistance. In 

Chapter 6, we propose a technique for adaptation of space-mapping methods for 

object location estimation to camera setup changes. In Chapter 7, we propose a 

method for unwarping of images taken by misaligned omni-cameras without camera 

calibration by curved quadrilateral morphing using quadratic pattern classifiers. In 

each chapter, we describe relevant techniques and applications of the proposed 

methods, and include experimental results to show the feasibility of the methods. 

Discussions and suggestions for future studies are also included. 
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Chapter 2                          

Location Estimation for Indoor 

Autonomous Vehicle Guidance by 

Omni-vision Using Circular Landmarks on 

Ceilings 

2.1 Idea of Proposed Method 

Vehicle localization is essential for guidance of autonomous vehicles in many 

indoor navigation applications. Most existing vision-based techniques deal only with 

frontal scenes acquired by traditional cameras and are easily interfered by unexpected 

objects around the vehicle. A feasible solution to this problem is to use an 

omni-camera which looks upward at certain landmarks attached on the ceiling [7]. 

This solution has the unique advantage of providing wide-angle views with fewer 

objects appearing in the FOV, thus reducing the guidance error coming from 

landmark occlusion, noise inference, etc. This is important for applications of 

intelligence robots such as cleaning robots, pet robots, tour guide robots, etc., which 

must work among humans or objects at close distances. On the other hand, even 

though obtaining the distance and orientation of the circular landmarks on the ceiling 

can be easily realized with a traditional perspective camera [8][9], a well-designed 

single omni-camera system may be used to replace several standard cameras so far as 

the image taking range is concerned. 

In this study, a location estimation method for indoor autonomous vehicle 

guidance using omni-images of circular landmarks on ceilings is proposed. Analysis 

of circular shapes in omni-images is not well studied so far. It is found in this study 
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that a circular shape, which becomes an irregular shape in an omni-image with no 

known shape descriptor, can be well approximated analytically by an elliptical shape. 

Consequently, it is appropriate to guide a vehicle equipped with an upward-looking 

omni-camera using a circular shape attached on a ceiling as a landmark, as is done in 

this study. Several merits can be identified in this approach, including: (1) the 

circular-shaped landmark attached on the ceiling is identically observable from every 

direction; (2) the circular shape, being elliptical when imaged, is easier to detect in 

low-resolution omni-images; (3) the elliptical shape provides more precise parameters 

for location estimation; (4) the elliptical shape does not get mixed up easily with other 

shapes found in the environment. Owing to these merits, stable and precise relative 

vehicle location estimation can be achieved for navigation. An illustration of the 

experimental navigation environment for this study, including a vehicle, a ceiling, and 

a landmark, is shown in Fig. 2.1. 

In the proposed method, at first an upward-looking omni-camera on a vehicle is 

used to take an image of a circular-shaped landmark attached on the ceiling of an 

indoor space. An ellipse detection algorithm [17] is applied next to detect the 

projected shape of the landmark in the image. The irregular shape formed from the 

circular shape in the omni-image is approximated by an elliptical shape. The location 

of the landmark, including its distance and orientation, with respect to the camera on 

the vehicle are then derived analytically in terms of the major axis length and the 

center coordinates of the approximating ellipse. Finally, the move distance and the 

orientation change of the vehicle between two consecutive observations of the 

landmark are derived, which are useful for a number of autonomous vehicle 

applications. 

The remainder of this chapter is organized as follows. In Section 2.2, we derive 

the analytic equations for approximating as an elliptical shape the irregular shape in 
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an omni-image taken of a circular-shaped landmark. In Section 2.3, we describe how 

we estimate the vehicle location from the acquired image using the derived analytic 

equation, and show an application of the results to autonomous vehicle guidance. In 

Section 2.4, some experimental results are described to show the precision and 

feasibility of the proposed method. Finally, some conclusions are given in Section 2.5. 

 

 

2.2 Approximation of Irregular Shape in Omni-image 

Taken of Circular-shaped Landmark by Ellipse 

The circular shape attached on the ceiling of the vehicle navigation environment 

for use as a landmark becomes irregular with no mathematical shape descriptor in an 

omni-image taken with a hyperboloidal omni-camera. We can approximate the 

Fig. 2.1 Relative positions of camera, ceiling, and circular landmark for providing 
sufficient field of view and avoiding unexpected objects and humans 
appearing in acquired images. 

Camera 
1.0m~6.5m 

Ceiling 
Circular 

0.5~1.5m 
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irregular shape well by an ellipse, as mentioned previously, and this fact will be 

proved here. Specifically, an equation of the approximating elliptical shape in the 

image will be derived. The validity of this ellipse approximation will become clear in 

the derivation. The precision of the approximation will also be proved by some 

experimental results. 

In Section 2.2.1, the projection transformation between the camera coordinate 

system and the image coordinate system will be described first. Then, the coordinate 

systems will be rotated horizontally to derive the equation of an ellipse in the image. 

In Section 2.2.2 a simulated shape of the circular landmark computed with the derived 

equation will be compared with the shape obtained by an imaging projection based on 

[5] to show the effectiveness of the proposed elliptical shape approximation. 

2.2.1. Approximation of Distorted Circular Shapes in Omni-images 

by Ellipses 

The camera and image coordinate systems involved in this study using a 

hyperboloidal omni-camera are depicted in Fig. 2.2, with their coordinates specified 

by (X, Y, Z), and (u, v), respectively. The hyperbolic shape of the omni-directional 

mirror in the camera coordinate system may be described as:  

12

2

2

2

−=−
b
Z

a
R

,    22 YXR += . (2.1) 

The focal point OM of the mirror is located at (0, 0, −c) and the camera center OC at (0, 

0, +c), in the camera coordinate system, where 22 bac += . The projection 

relationship between the image coordinates (u, v) and the camera coordinates (X, Y, Z) 

can be described as follows [5][34][35][36]: 
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2 2

2 2 2 2 2

( )
( )(Z ) 2 (Z )

Xf b cu
b c c bc c X Y

−
=

+ − − − + +
, 

2 2

2 2 2 2 2

( )
( )(Z ) 2 (Z )

Yf b cv
b c c bc c X Y

−
=

+ − − − + +
, (2.2) 

where f is the focal length of the camera. 

In Fig. 2.2, let the circular-shaped landmark and its center and radius be denoted 

by W, Pw and Rw, respectively. And let the image of W in the hyperboloidal image be 

denoted by Q. Also, let (Xw, Yw, Zw) denote the camera coordinates of Pw. In this study, 

the normal vector of the landmark is assumed to be parallel to the optical axis of the 

camera. To simplify the derivation described later, we rotate, as shown in Fig. 2.3, 

horizontally the camera coordinate system and the image coordinate system through 

an angle of θw defined by: 

1- w
w

w

Ytan
X

θ = . (2.3) 

Then, the relation between the original camera coordinates (X, Y, Z) and the resulting 

ones (X′, Y′, Z′) may be described by:  

X′ = Xcosθw + Ysinθw, Y′ = Ycosθw  − Xsinθw, Z′ = Z (2.4) 

and the relation between the original image coordinates (u, v) and the resulting ones 

(u′, v′) may be described by: 

u′ = ucosθw + vsinθw, v′ = usinθw − vcosθw. (2.5) 

Also, after this rotation, the circular shape of W in the new camera coordinate system 

may be expressed by: 

(X′ − Xw′)2 + (Y′ − Yw′)2 = Rw
2, Z′ = Zw′,  
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OM

Oc

Zw

X

Y

Z

u

v

Focal
Point

Camera 
Center

Image 
Plane

Camera 
Coordinate 

origin

Ceiling

Hyperbolical 
Mirror

Circular 
Landmark W

Fig. 2:2 Coordinate systems involved in this study. 

 (X′ − Xw′)2 + (Y′ − Yw′)2 = Rw
2, Z′ = Zw′,  

given that the center point Pw of W is located at (Xw′, Yw′, Zw′) with Xw′ = Xwcosθw + 

Ywsinθw, Yw′ = Xwsinθw − Ywcosθw, Zw′ = Zw according to (2.4). Notice that Yw′ is now 

zero after the rotation according to Fig. 2.3, so that the above equation becomes 

(X′ − Xw′)2 + Y′2 = Rw
2, Z′ = Zw′. (2.6) 

Also, by the optical geometry of the camera described by (2.2), we have 

Z'
Y'=

u'
v'

, (2.7) 

or equivalently, 
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Y'
X'
u'='v . (2.8) 

Eq. (2.8) will be used in Section 2.3.1 later. 

We are now ready to prove the previously-mentioned fact that the irregular 

shape of the circular landmark W appearing in the omni-image may be well 

approximated by an ellipse. After horizontally rotating the camera and the image 

coordinate systems for the angle of θw = tan−1(Yw/Xw) described by Eq. (2.3), Eq. (2.2) 

becomes 

2 2

2 2 2 2 2

( )
( )(Z ) 2 (Z )

X ' f b cu'
b c ' c bc ' c X ' Y '

−
=

+ − − − + +
 

2 2( )
2 2 2 2 2( )(Z ) 2 (Z )

Y ' f b cv'
b c ' c bc ' c X ' Y '

−
=

+ − − − + +
. (2.2A) 

Fig 2.3 Top view from the Z direction showing the relationship between new and 
original coordinate system with the new image coordinate system (u′, v′) 
obtained by rotating the u-axis through an angle of θw = tan−1(Yw/Xw) with 
respect to the center of the circular-shaped landmark W. 
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In addition, the new Y-coordinates Yw' of the landmark circle center is 0. Then, 

by assuming that the horizontal distance from the origin of the camera coordinate 

system to the landmark is much larger than the radius of the landmark, we have Y' << 

X' and the circle (X' − Xw')2 + (Y' − Yw')2 = Rw
2 with Yw' = 0 may be regarded relatively 

as a point which is its center located at (Xw', Yw') so that X'2 + Y'2 ≈ Xw'2 + Yw'2 = Xw'2. 

Also, Z' is a constant (denoted as hw now) because the ceiling on which the landmark 

is attached is assume to be parallel to the camera coordinate system. As a 

consequence, the second Eq. in (2.2A) above for v' can be simplified to 

2 2( )
2 2 2 2( )(Z ) 2 (Z )

Y ' f b cv'
b c c bc c x 'w

−
=

+ − − − +
 

or equivalently, 

Y' = v'M (2.9) 

where M is 

2 2( )
2 2 2 2( )(Z ) 2 (Z )

f b cM
b c c bc c X 'w

−
=

+ − − − +
. 

The other coordinate u′ of each shape pixel of the landmark W may also be 

derived by approximation, but in a different way. Under the same assumption 

mentioned above that the radius of the landmark is relatively very small with respect 

to the horizontal distance from the origin of the camera coordinate system to the 

landmark, the magnitude of X′ of each shape pixel of the circular landmark W in the 

camera coordinate system is much larger than that of Y′. Therefore, we may neglect 

the influence of the magnitude of Y′ in the computation of u′ described by the first 

equation in (2.2A) so that 
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2 2

2 2 2 2

( )
( )(Z ) 2 (Z )

X ' f b cu'
b c c bc c X '

−
=

+ − − − +
 

and compute u' just in terms of X'. Regarding the above equation in the form u' = 

F(X′), we may use the Taylor series to expand the function around Xw' as 

u' = F(X′) = F(Xw′) + [(X′ − Xw′)/1!]F'(Xw′) + [(X′ − Xw′)2/2!]F''(Xw′) + …. 

Ignoring the terms after the second, we have 

u' ≈ F(Xw′) + [(X′ − Xw′)/1!]F'(Xw′) = uw' + (X′ − Xw′)F'(Xw′). (2.10) 

Eq. (2.10) may be transformed easily into 

X′ ≈ Xw′ + (u′ − uw′)/F'(Xw′) (2.11) 

with the first derivative F' calculated to be: 

F'(Xw′) = 2
1( )E w

E
E E E w

C X 'A
B B D X '

−
+

, (2.12) 

where 

2 2( )EA f b c= − , 

2 2 2( )( )E wB b c z c C D X '= + − − + , 

2EC bc= , 

2( )ED z c= −  

wZ h= . 

Now with X' and Y' available, we come to the final stage of the derivation of the 

equation of the ellipse for approximating the distorted circular shape of the landmark 

in the omni-image. By substituting Eqs. (2.9) and (2.11) into Eq. (2.6) and rearranging 

the result, we can get 
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( )

22 2

2 22

( ) 1w

ww w

u' u ' v' M
RR F' X '

−
+ =  (2.13) 

which obviously specifies exactly an elliptical shape centered at (uw′, 0) with the 

lengths of the major and minor axes being RwF'(Xw′) and Rw/M, respectively. This 

completes the proof. 

2.2.2. Effectiveness of Shape Approximation 

To check the effectiveness of the approximation of the circular shape of the 

landmark by the elliptical shape using Eq. (2.13), we show in Fig. 2.4 an example of 

the simulation results obtained in this study, in which both the original circular shape 

and the approximating elliptical one are drawn and superimposed on each other for 

comparison: the former shape being drawn by Eq. (2.6) and then projected into the 

image plane by Eq. (2.2), and the latter being drawn directly by Eq. (2.13). The outer 

big circle in the figure marks the field of view of the camera. Inside the big circle, the 

original distorted circular shapes of W at different positions are drawn with white 

pixels, and the approximate elliptical shapes are computed using the coordinates of 

the white pixels and drawn by black pixels. 

From the figure, we can see that each black ellipse overlaps the corresponding 

white distorted circle quite well. This shows that the distorted circular shape of the 

landmark in the omni-image indeed may be approximated by the ellipse described by 

Eq. (2.13). This discovery offers great helps, as found in this study, in utilizing this 

kind of circular landmark to provide the location information for vehicle guidance, as 

described in the following section. 
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(a) 

 

 

(b) 

Fig. 2.4 Simulation of a series of circular shapes of the landmark at different places,
showing that the distorted landmark shape may be approximated well by 
ellipses. (a) illustration of the simulation results. (b) partially enlarged view 
of (a). 

 

2.3 Vehicle Location Estimation 

In this section we describe the proposed method for vehicle location estimation 

using the detected landmark as a known reference point. From each acquired image of 

the ceiling, we extract the circular landmark shape by image processing techniques, 
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including thresholding, edge detection, and ellipse detection. For thresholding, since 

the artificially-made circular-shaped landmark contrasts well with the background in 

the image, a threshold value is selected to segment the distorted circular shape of the 

landmark in the image. And for edge detection in the image, the Sobel edge detector 

is applied. Since the landmark shape in the image can be regarded as an ellipse 

according to Section 2.2, an ellipse detection algorithm [17] is employed to extract the 

landmark, yielding an approximating ellipse with its axis lengths computed. 

2.3.1. Vehicle Location Estimation by Axis Lengths of Ellipse 

We will derive here the location of the landmark, including its distance and 

orientation, with respect to the camera coordinate system on the vehicle for use in 

vehicle guidance. We derive first the horizontal distance of the landmark in terms of 

the lengths of the two axes of the approximating ellipse. As depicted in Fig 2.3, the X′ 

axis is directed to the landmark center Pw′. For a better view of the involved situation, 

Fig.2.3 is redrawn as Fig. 2.5 in which d is the horizontal distance between the camera 

and the center of the landmark W to be derived; ′′
βα PP  is a diameter of W 

perpendicular to the X′ axis; point Iα' is the image of point Pα'; and point Iβ' is the 

image of point Pβ'. It follows from Eq. (2.7) that 

'X
'Y=

'u
'v

α

α

α

α  (2.14) 

where (uα′, vα′) are the coordinates of Iα′ in the (u′, v′) coordinate system and (Xα′, Yα′) 

are the coordinates of Pα′ in the (X′, Y′) coordinate system. Similarly, we have 

'X
'Y

=
'u
'v

β

β

β

β
 (2.15) 

where (uβ′, vβ′) are the coordinates of Iβ′ in the (u′, v′) coordinate system and (Xβ′, Yβ′) 
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Fig. 2.5 Top view from the Z direction illustrating the relation between the axes of the 
approximating ellipse and the horizontal distance of the circular-shaped
landmark. 

 

are the coordinates of Pβ′ in the (X′, Y′) coordinate system. Since ′′
βα PP  is the 

diameter of W perpendicular to the X′ axis, we have Xα′ = Xβ′ and so uα′ = uβ′. 

Therefore, Eqs. (2.14) and (2.15) can be merged and rearranged to result in 

v '  v ' Y '  Y '
=

u ' X '
α β α β

α α

− −
 (2.16) 

where Yα′−  Yβ′ is the length of ′′
βα PP  (denoted as ''

βα PP ) which is the known in 

advance; vα′− vβ′ is the length of ′′
βα II  (denoted as ''

βα II ) which is the major axis 

of the approximating ellipse in the image plane; and uα' is the u' coordinate of the 

center of the ellipse. The latter two parameters ''
βα II  and uα' can be computed right 

after the approximating ellipse is obtained. Also, as seen from the figure, Xα' is just 
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the desired relative horizontal distance d between the camera and the center of the 

landmark W, or equivalently, the desired horizontal distance d of the landmark with 

respect to the vehicle. Therefore, we can derive from Eq. (2.16) the desired value of d 

as 

d = '
''

''

α

βα

βα
u

II

PP
× . (2.17) 

Furthermore, using the ellipse makes it easier to solve the orientation θw of the 

landmark with respect to the camera coordinate system, or equivalently, with 

respective to the vehicle. Given that the center of the found ellipse in the image is 

located at (uw, vw), from Eq. (2.3) and the following equation derived from Equation 

(2.7), 

w

w

w

w

u
v

X
Y

= , 

we can calculate θw by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −−

w

w

w

w
w u

v
X
Y 11 tantanθ . (2.18) 

A merit of the above procedure is that there is no need of the vertical height 

value Zw of the landmark with respect to the camera coordinate system in computing 

the distance d and the orientation θw of the landmark. This provides an advantage of 

allowing dynamic changes of the camera height for the purpose of avoiding camera 

view occlusion by surrounding people or objects. Taking this advantage, we have 

included a shaft in the vehicle system for adjusting the height of the camera 

dynamically: if the landmark shape cannot be well extracted from the image taken at a 

certain camera height to yield an approximating ellipse, then the camera is lifted up 

automatically and gradually until a good result is obtained. 
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Another merit of vehicle location estimation by Eqs. (2.17) and (2.18) is that the 

exact hyperbolic mirror shape of the omni-camera, as described in Eq. (2.1), need not 

be considered. This reduces the estimation error caused by using the possibly 

imprecise shape parameters of the mirror obtained from calibration, and simplifies the 

computation process involved in the estimation. Also, it provides a nature of 

generality of the proposed location estimation process using a given type of camera, 

so that it is unnecessary to re-design the location estimation process when a camera 

with a different hyperbolic mirror shape is used. 

2.3.2. Estimation of Vehicle Moving Distances and Orientation 

Changes 

In the previous section, we show how to estimate the distance and orientation of 

the landmark with respect to the vehicle. In this section we show how to find out, as 

an application of the previous results, the relative distance and orientation of the 

vehicle in a navigation cycle with respect to its location in the previous cycle, which 

we call the move distance and orientation change of the vehicle, respectively. 

Derivations of these parameters are useful for a number of autonomous vehicle 

applications, including recording of navigation paths, path planning for vehicle 

guidance, measurement of guidance errors, etc. 

As shown in Figs. 2.6(a) and 2.6(b), we denote the move distance of the vehicle 

between two consecutive observation times T1 and T2 as D. Using the approximating 

ellipse, we can, according to Section 2.3.1, calculate the horizontal distances d1, d2 

and the orientations θ1, θ2 of the landmark at T1 and T2, respectively, with respect to 

the vehicle. Based on the cosine theorem, we have  

d1
2 + D2 − 2d1×D×cosθ1 = d2

2, 
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which may be solved to get the desired move distance D as 

2
2

2
11

22
111 coscos ddddD +−−= θθ    if θ2 ≤ 90o; or (2.19) 

2
2

2
11

22
111 coscos ddddD +−+= θθ      if 2 > 90　 o. (2.20) 

Next, to find the desired orientation change of the vehicle, which we denote as γ, 

caused by a vehicle turning between the two consecutive observations, we acquire 

first, using Eq. (2.18), the orientations of the landmark with respect to the vehicle 

before and after the vehicle turning, denoted as θ2 and φ, respectively, as depicted in 

Figs. 2.6 (c) and 2.6(d). Then, γ can be computed easily by 

γ = θ2 − φ. (2.21) 

2.4 Experimental Results 

The effectiveness of the proposed location estimation method has been tested by 

some experiments conducted in this study, which include two parts: (1) using 

computer simulations to test if the circular shape of the landmark in the acquired 

images taken with omni-cameras with different shapes of hyperboloidal mirrors can 

be detected by the proposed ellipse approximation method; (2) using real images to 

determine the precision of the estimated vehicle locations relative to the landmark. 

(A) Simulations 

In the first experiment of landmark shape approximation by ellipses, the first 

step was to create landmark shapes at different locations. A series of virtual 

circular-shaped landmarks with a radius of 20cm were created and projected onto the 

image plane, in which the centers of these landmarks are located in a range of 300cm 

in intervals of 50cm with the orientation angles θ ranging from 0o to 360o in intervals 

of 5o. Two kinds of common distortion, the barrel and the pincushion distortion as 
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described in [18][19], were added to make the simulation more realistic. In our 

simulations, the original image coordinates (u, v) are inherently normal and 

distortion-free, as described by Eq. (2.2). 

D

2d
1d

1θ

2θ

 

(a) Case I: θ2 ≤ 90o. 

1d
2d

D1θ

2θ

 

(b) Case II: θ2 > 90o. 
                                                                     

γ

 

(c) 

2θ

φ γ

 

(d) 
 

Fig. 2.6 Illustration of the relative ALV location estimation. (a) and (b): the 
displacement D of the vehicle. (c) and (d): the orientation of the vehicle. 

Then, we add barrel and pincushion distortion to them by the following 

equations: 

2 2 2 2 2
1 2[ ( ) ( ) ]u u u k u v k u v( = + + + + ; 

2 2 2 2 2
1 2[ ( ) ( ) ]v v v k u v k u v( = + + + +  

where (u( , v( ) are the distorted image coordinates, and k1 and k2 are two parameters to 

control the shape of the geometric distortion. The coordinates (u( , v( ) then are taken 

as input to our method. 
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Second, an ellipse detection algorithm [17] was used to detect these landmarks. 

Third, a rate of successful ellipse detections was computed. And at last, the three steps 

were repeated to compute the rates of successful ellipse detections for different kinds 

of omni-cameras which were created virtually only by changing the parameters of 

their hyperboloidal mirrors. More specifically, we changed only the mirror parameter 

b in (1) while maintaining the value of c invariant (= 20 in our simulations) since the 

position and the focus of the cameras need not be changed. The  

smallest value of b was taken to be 146mm since otherwise the landmark image will 

exceed the range of the image plane. And the largest value of b was taken to be 

158mm because otherwise the rate of successful ellipse detection will drop 

dramatically owing to the shrinking of the landmark shape to a point in the image. 

The results are shown in Table 2.1. Examples of successful detections of ellipses in 

both original and distorted images are shown in Fig. 2.7. 

The simulation shows that the lens distortion has only a minor influence on the 

landmark detection. As indicated by Table 2.1, given shapes with proper sizes and 

reasonable image distortions like the examples shown in Fig. 2.7, almost all 

landmarks can be successfully detected from the omni-images, even when the images 

are taken with cameras with different hyperboloidal mirrors. 

(B) Experimental Results of Real Images for Vehicle Location Estimation 

The proposed method was also applied to two sets of real images. As shown in Fig. 

2.8, both sets of images were taken with an upward-looking omni-camera mounted on 

an expandable vertical shaft on an autonomous vehicle. The relative positions of the 

camera, ceiling, and landmark are illustrated in Fig. 2.1. When 
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(a)                   (b) 

(c)                                   (d) 

(e)                                           (f) 

Fig. 2.7 Examples of successful detection of elliptical shapes. In (a)-(f), the elliptical 
shapes of simulated landmark images are marked by white pixels. Black 
pixels are approximate ellipse points computed by the ellipse detection 
algorithm [17]. In (b)-(f), both horizontal and vertical grid lines are added in 
order to indicate the level of geometric distortion in each simulated image. 

 

performing location estimation, the shaft was lifted to raise the camera to the height of 

1.4m. Then, a landmark with a radius of 40cm attached on the ceiling with a height of 



37 
 

2.9m from the ground was imaged and its shape in the image detected. All the images 

in the first set were taken from an identical orientation but with different distances 

from the camera to the landmark for the purpose of investigating the relation  

 

            (a)                                      (b) 

Fig 2.8 All the experimental images were taken by an autonomous land vehicle
equipped with an upward-looking omni-camera. (a): the autonomous land 
vehicle. (b): a close look of the camera on the vehicle. 

between the landmark distance and the estimation error. The results of this experiment 

are shown in Table 2.2. All the images in the second set like those shown in Fig. 2.9 

were taken from an identical orientation and at an identical location but with different 

camera heights for the purpose of investigating the relation between the depth 

variation with respect to the estimation. For measurement of the estimation precision, 

we define a distance error ratio and an orientation error as follows: 

distance error ratio = (real distance − estimated distance)/(real distance); 

orientation error = real orientation − estimated orientation. 



38 
 

  

                   (a)                                    (b) 

 
                   (c)                                    (d) 
Fig. 2.9 Two example images acquired by the camera equipped on the vehicle. (a) and 

(c): images acquired at different positions. (b) and (d): the enlarged images of 
the landmarks in (a) and (c), respectively. 

The distance error ratios and orientation errors computed from the two sets of images 

are shown in Tables 2.2 and 2.3, respectively. The resolution of image is 640 by 480.  

The number of times of experiments is five, that is, each distance or orientation value 

in Table 2.2 and Table 2.3 is the average of the data measured from the same 
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orientation for five times. From the tables, we see that all the distance error ratios are 

smaller than 5% and that all the orientation errors are smaller than 2o. Such estimation 

precisions are sufficient for the purpose of autonomous vehicle guidance and 

navigation purposes. 

2.5 Identification and arrangement of the proposed 

landmarks in real applications 

With a consideration of the integrity of a landmark-based navigation system, 

solving the identification and arrangement problems of the proposed landmarks is 

inevitable for our system. For example, how does the robot identify some landmark at 

which it is looking at a certain moment if it was taught the arrangement of landmarks 

in advance? In this section, we will discuss the identification and arrangement of the 

proposed landmarks in real applications.  

We solve the identification problem of individual landmarks by creating a color 

coding system. Each landmark is colored by two colors forming two concentric 

circles with each color being with one of nine pre-selected colors, as illustrated in Fig. 

2.10. Furthermore, the nine colors are equally spaced in the hue attribute of the HSI 

color system, in order to make them more separable and reduce the influence of the 

lighting condition. Consequently, there are 81 different color combinations for use as 

the identification numbers to differentiate the landmarks in the map. 

Moreover, since the location accuracy using our method becomes worse than  



40 
 

 

Fig. 2.10 Coloring scheme for identification of multiple circular shapes. 

4% at distances of about 5m, we suggest repeating the circular landmark on the 

ceiling at intervals of 10m. Also, the repetitions should be done in two dimensions, 

forming a pattern of square grids with 10m sides. The diameter of the circular 

landmark is 80cm for a ceiling at a height of 2.9m. If the ceiling height is changed, 

then the size of the circle may be changed proportionally. 

2.6 Concluding Remarks 

In this study, a new approach to location estimation of an autonomous vehicle 

for navigation guidance in an indoor environment using a circular-shaped landmark 

on the ceiling by omni-directional vision techniques has been proposed. It is proved 

both by theoretical derivations and experimental results that the distorted landmark 

shape appearing in the image may be well approximated, based on the application of 

Taylor series expansion, by an ellipse. After the elliptical shape is extracted by an 

ellipse extraction algorithm, a location estimation approach is proposed by using the 

ellipse parameters for autonomous vehicle applications. 

The proposed location estimation approach with a unique ability of allowing 

dynamic camera height changes increases the flexibility of creating an occlusion-free  

camera view in unknown complex environments with obstacles. Additionally, the 

exact hyperbolic mirror shape of the omni-camera need not be considered which  
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Table 2.1 Rates of successful detections of landmark shapes taken 
by cameras with different shapes of hyperboloidal reflection 
mirror (c = 20mm). 

b (unit mm) Detection rate 
146 100% 
147 100% 
148 100% 
149 100% 
150 100% 
151 100% 
152 100% 
153 100% 
154 100% 
155 100% 
156 100% 
157 100% 
158 95% 
159 <66% 

 

Table 2.2 Error ratios in location estimations with landmarks located in the same 
directions but at different distances. 

estimated 
distance: d real distance: d estimated 

orientation real orientation distance error 
ratio (%)

orientation error 
(degree) 

0.985 1.000 -80.8 -81.5 1.5 0.7 

1.474 1.500 -81.4 -81.5 1.7 0.2 

1.959 2.000 -83.0 -81.5 2.0 1.5 

2.440 2.500 -83.0 -81.5 2.4 1.5 

2.925 3.000 -82.8 -81.5 2.5 1.3 

3.384 3.500 -81.7 -81.5 3.3 0.2 

3.862 4.000 -80.9 -81.5 3.5 0.6 

4.359 4.500 -81.6 -81.5 3.1 0.1 

4.859 5.000 -81.1 -81.5 2.8 0.4 

5.281 5.500 -81.6 -81.5 4.0 0.1 

5.801 6.000 -81.8 -81.5 3.3 0.3 

6.212 6.500 -81.1 -81.5 4.4 0.4 
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Table 2.3 Errors in location estimations with the landmarks located in the same 
directions and at the same distances but with different camera heights. 

height of 
landmark 

from camera 
(m) 

estimated 
distance: d 

real distance: 
d 

estimated 
orientation 

real 
orientation 

distance error 
ratio (%) 

orientation 
error (degree) 

2.5 3.076 3.000 -43.5 -42 2.5% -1.5 

2.25 3.032 3.000 -44.2 -42 1.1% -2.2 

2 3.074 3.000 -43.802 -42 2.5% -1.802 

1.75 3.039 3.000 -41.845 -42 1.3% 0.155 

1.5 3.051 3.000 -40.569 -42 1.7% 1.431 

1.25 3.097 3.000 -42.466 -42 3.2% -0.466 

1 2.942 3.000 -41.388 -42 -1.9% 0.612 

 

reduces the estimation error caused by the use of the imprecise shape parameters of 

the mirror obtained from calibration. The computation of the proposed approach is 

analytic, thus speeding up the estimation process and so reducing the navigation cycle 

time. Both simulated and real images were tested and good experimental results prove 

the effectiveness of the proposed approach. 
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Chapter 3                             

A Systematic Approach to Indoor 

Vision-Based Robot Localization Using 

Corner Features in Omni Images 

3.1 Idea of Proposed Method 

Robot localization, also termed robot location, using landmarks has been 

studied intensively in the past two decades. Many kinds of vision-based techniques 

have been proposed, in which the location of a robot is represented by both its 

position with respect to a reference point and its orientation with respect to a reference 

shape included in the landmark, respectively, as we do in this study. 

In this study, a systematic approach to indoor omni-vision based robot 

localization using house corners as landmarks is proposed. We derive simple analytic 

solutions to speed up omni-image analysis and robot location computation. An 

omni-image of the ceiling of a house, which includes many corners, is shown in Fig. 

3.1(a). Specifically, we use an omni-camera with a hyperboloidal mirror for image 

acquisition, and derive systematically the solutions for various structures of house 

corners appearing images. A complete structure of a commonly-seen house corner is 

usually formed by a ceiling and two walls which are all planes, as shown in Fig. 

3.1(b). An edge line appears at the intersection of every two planes, resulting in three 

lines forming a shape of “Y” and intersecting at the corner point, as shown in Fig. 

3.1(c). Two of the lines are horizontal, and one vertical. Here, by vertical and 

horizontal, we mean respectively “perpendicular” and “parallel” to the floor surface 

on which the robot navigates. 
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Due to ill lighting conditions, spatial occlusions, or inappropriate image-taking 

directions or positions, a corner structure in an acquired image may appear to be 

incomplete, e.g., with only one edge line and the corner point, or even with just a 

partial edge line in the extreme case. Robot guidance and navigation will be much 

more flexible if incomplete corner structures are still used for robot localization. 

Therefore, in this study we conduct a systematic analysis of the adequacy of every 

possible partial corner structure for robot localization (including computations of the 

robot position and orientation), and propose accordingly an appropriate robot location 

computation technique for each case. Incomplete house corner structures as appearing 

in images include the following cases, where it is assumed that the omni-camera is 

equipped to look upward and that the height of the ceiling is known in advance.  

 

 
(a) (b) (c) 

Fig. 3.1 A house corner with a Y-shaped structure. (a) An omni-image of a corridor 
ceiling with corners. (b) An image part of a corner. (c) Illustration of Y-shape 
of the corner. 

 

(1) A single horizontal line with no endpoint --- this case happens when the robot 

takes images in a long corridor or in a large room space, with only part of an edge 

line between two house corners appearing in the image. Neither of the two corner 

points is within the circular omni-image scope; or they may be within the scope 

but very close to the circular scope border where the image resolution is low so 

that they are difficult to be extracted, or, even when extracted, are no good for 
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precise robot location computation. See Fig. 3.2(a) for an illustration. 

(2) A single vertical line with no endpoint --- this case happens when the ceiling is too 

high so that the projection of a corner point, which is one endpoint of a vertical 

line, falls into the scope of the “black hole” in the central part of the omni-image. 

The corner point so does not appear in the image and cannot be extracted. Note 

that the other endpoint, the foot of the vertical line, is also invisible because the 

camera is “looking upward” as mentioned previously. See Fig. 3.2(b) for an 

illustration. 

(3) Two horizontal lines intersecting at a corner point --- this case includes a 

“V”-shaped structure with the vertical line of the original Y-structure missing or 

difficult to extract from the image, possibly due to bad lighting on the lower part 

of the corner. See Fig. 3.2(c) for an illustration. 

(4) A horizontal line and a vertical one intersecting at a corner point --- this case 

comes from missing of either of the two horizontal lines, possibly due to bad 

lighting, directional occlusion, or improper image-taking locations. See Fig. 3.2(d) 

for an illustration. 

(5) A horizontal line with a corner point as an endpoint --- only one of the two 

horizontal lines with the corner point is left in this case, with the other horizontal 

line and the vertical one both missing, possibly due to lighting or view occlusion. 

See Fig. 3.2(e) for an illustration. 

(6) A vertical line with a corner point as an endpoint --- the two horizontal lines in a 

corner are missing in this case, possibly due to ill lighting, leaving the vertical line 

with the corner point. See Fig. 3.2(f) for an illustration. 

As found in this study, all the above cases of house corner structures can be used 

to derive both the position and orientation of a robot, except Cases (2) and (6). In 
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Case (2), only the relative orientation of the robot can be derived; the robot position is 

undecidable. And in Case (6), though the absolute robot position can be derived, again 

only the relative robot orientation is derivable. Here, by relative orientation, we mean 

the direction angle of a reference point with respect to a coordinate system on the 

robot, instead of that of the robot with respect to a reference line mentioned 

previously. 

The six cases, as identified, are all significant in the sense that a distinct solution 

is required to solve the problem of each of them, as done in this study. It is noted that 

a complete house corner is not included as a case in the above. The reason is that it 

contains more information than needed for computing the robot location, and 

whenever it is available in an image, we can take just part of its structure to locate the 

robot according to one of the four cases of (1), and (3) through (5), or more precisely, 

compute the solutions of all the four cases and average them as the final result of the 

robot localization process. 

               
(a)                  (b)                  (c) 

               
(d)                  (e)                   (f) 

Fig. 3.2 Six types of partial house corner structures. (a) A horizontal line with no 
endpoint. (b) A vertical line with no endpoint. (c) Two horizontal lines 
intersecting at a point. (d) A horizontal line and a vertical one intersecting at 
a point. (e) A horizontal line with an endpoint. (f) A vertical line with an 
endpoint. 

 



47 
 

More details and the merits of the proposed approach are described in the 

following. 

(1) A simple quadratic equation for describing the conic-section projection of a space 

line on the image plane is derived, leading to the possibility of designing a simple 

algorithm for extracting conic sections out of images using simple 

low-dimensional Hough transform techniques, in contrast with some complicated 

conic-section fitting methods adopted in [32][33]. 

(2) A systematic investigation of all possible indoor corner structures, i.e., the 

above-mentioned six cases, for use in robot localization is conducted, and 

corresponding robot location computation and image analysis techniques are 

proposed for flexible applications of robot localization in different lighting, 

occlusion, and imaging posture conditions. 

(3) Formulas for computing robot positions and orientations for the six cases are 

skillfully derived by appropriate uses of direction vectors of space lines and 

normals of space planes, all resulting in analytic forms appropriate for fast 

computation and real-time robot guidance and navigation. 

(4) The proposed techniques are all based on the use of single-view images taken by 

hyperboloidal omni-cameras, enabling faster robot localization in contrast with 

some approaches using multiple views [1][20]. 

In the remainder of this chapter, in Section 3.2 we derive equations for 

computing the positions and orientations of points and lines. Then, in Section 3.3 we 

propose techniques for using each of the above-mentioned six cases of partial house 

corner structures to compute the locations of a robot. Some experimental results are 

shown in Section 3.4, followed by conclusions in Section 3.5. 
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3.2 Properties of Projections of Space Points and Lines on 

Omni-Images 

In the proposed approach to robot localization using house corners, first an 

omni-image of a house corner is acquired, and the projection of the corner in the 

image is extracted. Then, the projection is fitted into points, lines, and/or curves, and 

the equations describing them are extracted. Finally, the coefficients of the equations 

are used to compute the robot location according to some formulas. 

In this section, based on some optics and geometry of the omni-camera, first 

some equations for describing the projections of space points and lines on 

omni-images will be derived, in a novel way such that the resulting equations become 

simple for designing uncomplicated algorithms to extract line and curve projections 

easily, as well as analytic for fast computation of the robot location. Then, algorithms 

for extracting two types of projections of space lines, namely, conic section and radial 

line, using the Hough transform technique are proposed. Proposed environments for 

computation of the robot location using the coefficients of the derived analytic 

equations will be described in the next section. 

3.2.1. Derivation of Equation of Space-Point Projection on 

Omni-image 

Two coordinate systems, namely, the camera coordinate system and the 

image coordinate system, are involved in the omni-camera used in this study, which 

includes a traditional perspective camera and a hyperboloidal-shaped mirror, as 

depicted in Fig. 3.3. The camera coordinates, denoted as (X, Y. Z), are used to specify 

the location of each space point in the real world and the image coordinates, denoted 

as (u, v), to specify that of the corresponding image point. The perspective camera and 
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the mirror are assumed to be properly aligned such that the omni-camera becomes 

single-viewpointed and the optical axis of the perspective camera coincides with the 

mirror axis, defined to be the line going through the mirror surface center and 

perpendicular to the mirror base plane. The middle point between the perspective 

camera’s lens center Ol and the mirror’s focus point Om is taken to be the origin Oa of 

the camera coordinate system. Then, the hyperboloidal mirror shape may be described 

by (2.1) where a and b are two parameters; and Om is located at (0, 0, −c) and Ol at (0, 

0, +c) in the camera coordinate system where 2 2c a b= + . 

According to [34][35], the relation between the camera coordinates (X, Y. Z) of a 

space point P and the image coordinates (u, v) of its corresponding projection point p 

in the image may be described by 

2 2

2 2

( ) sin 2tan
( )cos

b c bc
b c

βα
β

+ −
=

−
; (3.1) 

22
cos

fr
r
+

=β ; (3.2) 

22
sin

fr
f
+

=β ; (3.3) 

22
tan

YX
cZ

+

−
=α , (3.4) 

where 22 vur +=  and f is the camera’s focal length. We assume that a, b, c, and 

f are known in advance. Also, according to the rotational invariance property of the 

omni-camera [36], we have 
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2 2
cos u

u v
θ =

+
; (3.7) 

22
sin

vu

v

+
=θ , (3.8) 

where θ is both the angle of space point P with respect to the X-axis, and that of 

image point p in the image coordinate system with respect to the u-axis. The above 

equations may be used to derive the relation between (u, v) and (X, Y, Z) as by Eqs. 

(2.2). 

 

Fig. 3.3 Camera and image coordinate systems. 
 

3.2.2. Derivation of General Equation of A Space Line Projection on 

Omni-image 

As shown in Fig. 3.4, given a space line L with an end point P0 with camera 

coordinates (X0, Y0, Z0), any point P on L with camera coordinates (X, Y, Z) and point 

P0 together form a vector V0 = (X − X0, Y − Y0, Z − Z0). On the other hand, let the 

direction vector of L be denoted as VL = (dX, dY, dZ). Then, since V0 and VL are parallel, 
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we get the equality V0 = λVL, or equivalently, 

(X, Y, Z) = (X0 + λdX, Y0 + λdY, Z0 + λdZ) (3.9) 

where λ is a parameter. Also, let S be the space plane going through line L and the 

mirror base center Om at camera coordinates (0, 0, c), and let NS = (l, m, n) be the 

normal of S. Then, any point P' at camera coordinates (X, Y, Z) on S and point Om 

together form a vector Vm = (X − 0, Y − 0, Z − c) = (X, Y, Z – c) which is perpendicular 

to NS so that the inner product of Vm and N becomes zero, leading to the following 

equality: 

 

Fig. 3.4 Illustration of a space line projected on to the image plane. 

 

lX + mY + n(Z − c) = 0, (3.10) 

or equivalently, 

lX mYZ c
n
+

− = − . (3.11) 
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Now we want to derive the equation of the projection of space line L on the 

image, which expresses the relation between the camera coordinates (X, Y, Z) of a 

space point P′ on L and the image coordinates (u, v) of the image point p′ 

corresponding to P′. Note that P′ is also on plane S. Combining (3.4) through (3.8) 

and (3.11), we get 

2 2
tan Z c

X Y
α −

=
+

 = 
2 2 2 2
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On the other hand, substituting (3.2) and (3.3) into (3.1), we get 

2 2
2 2

2 2

2 2

( ) 2

tan
( )

fb c bc
f r

rb c
f r

α

+ −
+

=
−

+

 = 
2 2 2 2 2

2 2 2 2

( ) 2
.

( )

b c f bc f u v

b c u v

+ − + +

− +
 (3.13) 

Equating (3.12) and (3.13) leads to 
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which may be squared and reduced to get the following desired result: 
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Multiplying (3.14) by n2, we can get an alternative form of (3.14) without A and B as 

follows: 
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(l2 − n2D2)u2 + 2lmuv + (m2 − n2D2)v2 + 2lnCu + 2mnCv + n2E = 0. (3.14a) 

Eq. (3.14) or (3.14a) shows that the projection of a space line on the image is a 

conic section curve. And (3.15) shows that the coefficients of the equation may be 

described indirectly in terms of the parameters of the normal NS = (l, m, n) of plane S. 

These coefficients actually are related to the elements of the direction vector VL⋅= (dX, 

dY, dZ) of L by the equality NS⋅VL = (l, m, n)⋅(dX, dY, dZ) = 0 because NS and VL are 

perpendicular, or equivalently, 

ldX + mdY + ndZ = 0. (3.16) 

Furthermore, Eq. (3.14), as derived above, has a good property that the unknown 

parameters l, m, and n are confined to appear in just two variables A and B, as shown 

by (3.15). This facilitates the extraction of the conic section curve by a simple 

technique using a 2D Hough transform proposed in this study, which will be presented 

later in this section. 

3.2.3. Derivation of Specific Equation of A Space Vertical Line 

Projection on Omni-image 

When the space line L is vertical, the projection equation described by (3.14a) 

may be simplified further. Specifically, the direction vector of the vertical line L is VL 

= (dX, dY, dZ) = (0, 0, 1). Therefore, (16) leads to 0×l + 0×m + 1×n = 0, or equivalently, 

n = 0. Accordingly, (3.14a) becomes l2u2 + 2lmuv + m2v2 = 0, or equivalently, (lu + 

mv)2 = 0 which describes a line going through the image center at (0, 0) of the form v 

= −(l/m)u. That is, every vertical line in the real-world space becomes a radial line in 

the image space going through the image center, which can be described by 

v = −Ku, (3.17) 
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where 

K = l
m

. (3.18) 

Eq. (3.17) above has only one parameter K, the slope of the radial line, and this fact 

facilitates the extraction of the radial line from the image, as described later in Section 

3.2.5. 

3.2.4. Detection of Conic-section Projection of A Horizontal Space 

Line by Hough Transform 

The algorithm which we propose to extract the conic-section projection of a 

horizontal line described by Eq, (3.14) is presented in the following, where the goal is 

to estimate the two parameters A and B, the only two unknowns in (3.14). 

Algorithm 3.1 Extraction of conic-section projection onf an image by Hough 

transform. 

Input: the conic section projection L′ in an image I of a horizontal space line L. 

Output: the values of the two parameters A and B in Eq, (3.14) which describes L′. 

Step 1. Extract the points of L′ out of I, by thresholding or edge detection, to form a 

new image I′. 

Step 2. Set up a 2D Hough space with two parameters A and B and set all cell values 

to be zero. 

Step 3. For each point in I′ at coordinates (u, v) and for each cell at parameters (A, B), 

if u, v, A, and B satisfy Eq. (3.14), then increment the cell value by one. 

Step 4. Detect the peak cell value in the Hough space and take the parameters (A, B) 

of the cell with the peak value as output to draw a conic-section curve 

described by (3.14). 
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Note that the above conic-section detection process using the Hough transform 

is simple, much less complicated than those used in the related studies of [32][33], as 

mentioned previously. This merit comes from the simplicity of the form of (3.14) 

derived in this study, in which there are only two variables A and B. In the sequel, 

whenever a conic section described by (3.14) is mentioned, we assume that the two 

parameters A and B in (3.14) have been obtained by Algorithm 3.1 above. This means 

in turn that the ratios l/n and m/n are known because l/n = A and m/n = B according to 

(3.15). 

3.2.5. Detection of Radial-line Projection of A Vertical Space Line 

To extract a radial line described by (3.17), which is the projection of a 

vertical space line, again we can use the Hough transform technique [37] in a very 

simple way, as described by the following algorithm. 

Algorithm 3.2 Extraction of radial line projection on an image by Hough 

transform. 

Input: the radial line projection L′ in an image I of a vertical space line L. 

Output: the value of the parameter K in Eq. (3.17) which describes L′. 

Step 1. Extract the points of L′ out of I, by thresholding or edge detection, to form a 

new image I′. 

Step 2. Set up a 1D Hough space with a parameter K and set all cell values to be 

zero. 

Step 3. For each point in I′ at coordinates (u, v) and for each cell at parameter K, if u, 

v and K satisfy Eq. (3.17), then increment the cell value by one. 

Step 4. Detect the peak cell value in the Hough space and take the parameter K of the 

cell with peak cell as output to draw a radial line described by (3.17). 
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In the sequel, whenever a radial line described by Eq. (3.17) is mentioned, we 

assume that the parameter K in (3.17) have been obtained according to Algorithm 3.2 

above. This means also that the ratio l/m is known according to (3.18). 

3.3 Robot Localization by Partial House Corner Structures 

We now describe one by one the robot localization technique we propose for 

each of the six cases of partial house corner structures mentioned previously. In each 

case, we have to compute the position and orientation of the robot with respect to a 

reference point and a reference line, respectively, included in a house corner structure. 

For convenience, we compute reversely the position of the reference point and the 

orientation of the reference line with respect to the camera coordinate system on the 

robot. The formulas we derive in these techniques for such robot location 

computations are all analytic. 

3.3.1. Case (1) Robot Localization Using A Single Horizontal Line 

with No Endpoint 

In this case as shown in Fig. 3.5, we are given a single horizontal line L at a 

known height h with no endpoint. To compute the robot position, we have to find a 

reference point, which we propose to be the minimum-distance point Pmin on L to the 

origin Oa of the camera coordinate system, as illustrated by Fig. 3.6. And we compute 

the direction angle θ of L with respect to the X-axis of the camera coordinate system 

as the desired robot orientation. 
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X

Y

Z

 

Fig. 3.5 Case (1) − a single horizontal line with no endpoint used for robot 

localization. 

 

minP ′
 

Fig. 3.6 Finding minimum-distance point Pmin on horizontal line L for Case (1). 

 

To find Pmin on L, since L is parallel to the floor, the value of dZ of the direction 

vector VL = (dX, dY, dZ) is zero. So, (3.16) may be transformed into 

/ /
X Yd d s

m n l n
= − =  (3.19) 

where s is a parameter. Combining (3.9) and (3.19), we get a parametric equation for 
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L as 

(X, Y, Z) = (X0 + m
n

sλ, Y0  − 
l
n

sλ, Z0 + dZλ) (3.20) 

where (X0, Y0, Z0) specify the coordinates of another point P0 on L yet to be 

determined. Since L is at the height h, Z =0 for all points on L, and so (3.20) above 

may be rewritten as 

(X, Y, Z) = (X0 + m
n

t, Y0  − 
l
n

t, h) (3.21) 

where the new parameter t = sλ. The distance from the origin Oa at (0, 0, 0) to an 

arbitrary point on L at (X, Y, Z) therefore is 

d(t) = ||(X, Y, Z) − (0, 0, 0)|| = 2 2 2
0 0( ) ( )m lX t Y t h

n n
+ + − + . 

And the minimum distance dmin from Oa to L may be obtained by taking the derivative 

of the square of d(t) above, setting it to be zero, and solving the resulting equation, 

which is of the following form, for the corresponding parameter tmin: 

0 02( )( ) 2( )( ) 0m m l lX t Y t
n n n n

+ + − − = . (3.21) 

The solution tmin of (3.21) is 

0 0

min
2 2( ) ( )

m lX Y
n nt m l
n n

− +
=

+
 (3.22) 

in which the two parameters X0 and Y0 are yet to be solved. To determine X0 and Y0, 

we may regard L as an infinite-length line going through the space plane Q described 

geometrically by the equation X0 = 0, and take the intersection point of L and Q as the 

point P0 with coordinates (X0, Y0, Z0) where X0 = 0 and Z0 = h. Accordingly, (3.11) 
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may be reduced to be 
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so that (3.22) becomes 
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Therefore, the coordinates (Xmin, Ymin, Zmin) of the minimum-distance point Pmin on L 

to Oa may now be calculated from (3.21) and (3.24) to be 

(Xmin, Ymin, Zmin) = ( m
n 2 2

( )

( ) ( )

l h c
m

m l
n n

− −

×
+

, ( )n h c
m

− −
  − 

l
n 2 2

( )

( ) ( )

l h c
m

m l
n n

− −

×
+

, h) 

= (
2 2

( )

( ) ( )

l h c
n

m l
n n

− −

+
,  

2 2

( )

( ) ( )

m h c
n

m l
n n

− −

+
, h) = ( 2 2

( )A h c
A B

− −
+

,  2 2

( )B h c
A B

− −
+

, h) (3.25) 

where A = l/n, B = m/n are known values obtained from Algorithm 3.1, as mentioned 

previously. Therefore, the desired robot position with respect to projection Pmin′ of the 

reference point Pmin on the floor is specified by 

(Xmin, Ymin) = ( 2 2

( )A h c
A B

− −
+

, 2 2

( )B h c
A B

− −
+

). (3.26) 

As to the robot orientation which is the angle θ of line L with respect to the 

X-axis of the camera coordinate system, it can be computed from 

cosθ  = 
|| || || ||

L X

L X

V V
V V

⋅
×

 (3.27) 

where VL and VX are the direction vectors of L and the X-axis, respectively. We know 
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VX = (1, 0, 0). And VL = (dX, dY, dZ) may be computed to be the unit vector from point 

P0 to point Pmin in the following way: 

VL = min 0 min 0 min 0

min 0 min 0 min 0

( , , )
|| ( , , ) ||

X X Y Y Z Z
X X Y Y Z Z

− − −
− − −

 

where 

(X0, Y0, Z0) = (0, 
( )n h c
m

− −
, h) = (0, 

( )h c
B

− −
, h); 

(Xmin, Ymin, Zmin) = ( 2 2

( )A h c
A B

− −
+

,  2 2

( )B h c
A B

− −
+

, h). 

Consequently, because Zmin − Z0 = h − h = 0, we get finally the desired θ as 

θ  = cos−1

|| || || ||
L X

L X

V V
V V

⎛ ⎞⋅
⎜ ⎟×⎝ ⎠

 = cos−1 min 0
2 2

min 0 min 0( ) ( )
X X

X X Y Y

⎛ ⎞−⎜ ⎟
⎜ ⎟− + −⎝ ⎠

 

which may be reduced to be  

θ = cos−1
2 2

B
A B

⎛ ⎞−
⎜ ⎟

+⎝ ⎠
. (3.28) 

3.3.2. Case (2) Robot Localization Using A Single Vertical Line with 

No Endpoint 

In this case as shown in Fig. 3.7, we are given a vertical line L with no endpoint. 

As proven previously, the projection of L on the image, according to (3.17) and (3.18), 

is a radial line L′ described by v = −Ku, where the slope K may be extracted by 

Algorithm 3.2. Because the plane S going through L and Oa (the origin of the camera 

coordinate system) is vertical to the floor, all lines lying in S are projected on the 

image plane identically to form the radial line L′. Therefore, L′ cannot be used to 
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compute unambiguously the position of the robot. Furthermore, because the 

projection of L on the floor is just a point P and not a line, L′ is also insufficient for 

determining the orientation of the robot. 

However, the slope information K is not totally useless; instead, it can be 

utilized to find the relative orientation θ  of the vertical line L with respect to the robot 

(actually with respect to the X-axis of the camera coordinate system). Specifically, let 

the projection point P′ have camera coordinates (X0, Y0) which, we know, are identical 

to the camera coordinates (X, Y) of any point P on L. Then, according to the rotational 

invariance property described by (3.5), (3.6), (3.7), and (3.8), we have 

 

Fig. 3.7 A vertical line with no endpoint used in robot localization. 

 

0
2 2 2 2 2 2

0 0

cos XX u
X Y u vX Y

θ = = =
+ ++

;  

0
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sin YY v
X Y u vX Y

θ = = =
+ ++

, 

where (u, v) are the coordinates of the image point p corresponding to P. Though (X0, 

Y0) cannot be solved from the above equations, their ratio is related to the value of θ 

by tanθ  =  Y0/X0 = v/u = −K according to (3.17) and (3.18). Therefore, the desired 

robot orientation is 
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θ = tan−1(−Κ) (3.29) 

where K is obtained by Algorithm 3.2. 

3.3.3. Case (3) Two Horizontal Lines Intersecting at A Corner Point 

In this case as shown in Fig. 3.8, we have two horizontal lines L1 and L2 both at 

a known height h and intersecting at a corner point P0. Assume that the camera 

coordinates of P0 are (X0, Y, Z0) where Z0 = h. Let the plane formed by L1 and Om be 

denoted as S1, and that by L2 and Om as S2. If the normals of S1 and S2 are (l1, m1, n1) 

and (l2, m2, n2), respectively, then by (10) we have liX + miY + ni(Z − c) = 0, i = 1, 2, or 

equivalently, 

i i

i i

l mX Y Z c
n n

+ + = , i = 1, 2, (3.30) 

By replacing li/ni and mi/ni respectively with Ai and Bi which are obtained by 

Algorithm 3.1, and knowing that L1 and L2 intersect at P0 with coordinates (X0, Y0, Z0) 

where Z0 = h, we may transform Eqs. (3.30) into the following simultaneous 

equations: 

AiX0 + BiY0 + h = c, i = 1, 2 (3.31) 

which may then be solved to get X0 and Y0 as the robot position as follows: 

X0 = 1 2

1 2 2 1

( )( )
( )
h c B B
A B A B
− −

−
; (3.32) 

Y0 = 1 2

1 2 2 1

( )( )
( )
h c A A
A B A B
− −

−
. (3.33) 
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(X0, Y0)
X

Y

Z

P0

 

Fig. 3.8. Two horizontal lines intersecting at a corner point used in robot 

localization. 

 

As to the robot orientation, we take it to be the angle θ1 of L1 with respect to the 

X-axis of the camera coordinate system, which may be computed according to the 

process we proposed for Case (1). According to (3.28), the result is as follows: 

θ1 = cos−1 1
2 2

1 1

B

A B

⎛ ⎞−⎜ ⎟
⎜ ⎟+⎝ ⎠

. (3.34) 

Notice the simplicity and analyticity of the above solutions for robot position and 

orientation, which we have mentioned before. 

In practical applications of this case, we first have to extract the conic-section 

projections of the two horizontal lines from an image of them by Algorithm 3.1. But 

we do not have to compute the intersection point using the two extracted 

conic-section curves. Instead, by the above-proposed process, we can compute 

directly the position and orientation of the robot according to Eqs. (3.32), (3.33), and 

(3.34) using the parameters A1, B1, A2, and B2 extracted by Algorithm 3.1 as well. This 

is a merit of the above-proposed technique for this case. 
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3.3.4. Case (4) A Horizontal Line And A Vertical One Intersecting at 

A Corner Point 

In this case as shown in Fig. 3.9, we have a horizontal line L1 and a vertical one 

L2 at a known height h and intersecting at a corner point P0. Assume that the camera 

coordinates of P0 are (X0, Y, Z0) where Z0 = h. Let the plane formed by L1 and Om be 

denoted as S1, and that by L2 and Om as S2. If the normals of S1 and S2 respectively are 

(l1, m1, n1) and (l2, m2, n2), then since P0 is on L1, similarly to the derivation of (3.31) 

we can get 

A1X0 + B1Y0 + h = c (3.35) 

where A1 = l1/n1 and B1 = m1/n1 are obtained by Algorithm 3.1 from an image I of L1 

and L2. 

 

 

Fig. 3.8 A horizontal line and a vertical one intersecting at a corner point used in 
robot localization. 

 

On the other hand, since L2 is a vertical line, according to the analysis of Section 

2.3, we have n2 = 0 so that (3.10) becomes l2X + m2Y = 0, or equivalently, Y = 

(−l2/m2)X. Using the known value K1 = l2/m2 obtained by Algorithm 3.2, we may 

rewrite the equality Y = (−l2/m2)X just derived to be Y = −KX. Accordingly, since P0 

with coordinates (X0, Y0, Z0) is also on the vertical line, we get 
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Y0 = −KX0. (3.36) 

Now, (3.35) and (3.36) may be solved to get the solution (X0, Y0) to specify the robot 

position as follows: 

X0 = 
1 1

( )
( )

h c
A KB

−
−

−
; (3.37) 

Y0 = 
1 1

( )
( )

h c K
A KB

−
−

. (3.38) 

As to the robot orientation, we take it to be the angle θ1 of L1 with respect to the 

X-axis of the camera coordinate system, which may be computed according to the 

process we proposed for Case (1). According to (3.28), the result is as follows: 

θ1 = cos−1 1
2 2

1 1

B

A B

⎛ ⎞−⎜ ⎟
⎜ ⎟+⎝ ⎠

. (3.39) 

Notice again the simplicity and analyticity of the above solutions for robot 

localization. 

In practical applications of this case, we have to extract the conic-section and 

radial-line projections of the horizontal and vertical lines from an image of the two 

lines by Algorithms 3.1 and 3.2, respectively. Similar to the last case, we do not have 

to compute the intersection point using the two extracted projections in the image. 

Instead, we compute directly the position and orientation of the robot according to 

Eqs. (3.37), (3.38), and (3.39) using the parameters A1, B1, and K extracted from the 

image by the algorithms as well. This is again a merit of the above-proposed 

technique for this case. 

3.3.5. Case (5): A Horizontal Line with A Corner Point as An 

Endpoint 
As shown in Fig. 3.9, in this case we are given a horizontal line L with a corner 
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point P0 as an endpoint at a known height h. Assume that the camera coordinates of P0 

are (X0, Y0, Z0) where Z0 = h. Using Algorithm 3.1, the conic-section projection L′ of L 

on the input image I can be extracted to get the two parameters A and B as in Case (1). 

However, a difference here is that the image point p0 corresponding to P0 is 

observable, which may be reached by tracing L′ to an end of it. Let the image 

coordinates of p0 so obtained be (u0, v0). Then, we may derive the robot position (X0, 

Y0) in terms of the values of u0, v0, h, A, and B, as done in the following. 

 

 

Fig. 3.9 A horizontal line with a corner point as an endpoint used in robot localization. 
 

First, being derived for a horizontal line in Case (4), Eq. (3.35) is valid as well 

here, but in the form of 

AX0 + BY0 + h = c. (3.40) 

Next, by substituting (X0, Y0, Z0) and (u0, v0) into (3.5) ~ (3.8) which describe the 

rotational invariance property of the omni-camera, the result may be combined to get 

u0/v0 = X0/Y0. (3.41) 

Finally, the two Eqs. (3.40) and (3.41) above may be solved to obtain the following 

desired solution for (X0, Y0): 

X0 = 0

0 0

( )
( )

u h c
Au Bv

−
−

+
; (3.42) 
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Y0 = 0

0 0

( )
( )

v h c
Au Bv

−
−

+
. (3.43) 

As to the robot orientation θ, it can be obtained similarly by the process 

proposed for Case (1) using L as a reference line. The result is described by (3.28) 

which is repeated here: 

θ = cos−1
2 2

B
A B

⎛ ⎞−
⎜ ⎟

+⎝ ⎠
. (3.44) 

3.3.6. Case (6): A Vertical Line with A Corner Point as An Endpoint 

As shown in Fig. 3.10, in this case we are given a vertical line L with a corner 

point P0 as an endpoint at a known height h. Let the camera coordinates of P0 be (X0, 

Y0, Z0) where Z0 = h. We want to compute (X0, Y0) as the robot position using an 

image I of L and P0. Using Algorithm 3.2, the radial-line projection L′ of L on I can be 

extracted to obtain its slope K, as in Case (2). However, different from Case (2) here 

is that the image point p0 corresponding to P0 is observable, which may be reached by 

tracing L′ outward from the image center. Let the image coordinates of p0 be (u0, v0). 

The hint that p0 is the projection of P0 at the height of h gives us the possibility to 

derive the values of X0 and Y0 as the robot position, as done in the following. 

First, substituting (X0, Y0, Z0) and (u0, v0) into (3.4) and (3.13) with Z0 = h, we 

get 

2 2
0 0

h c

X Y

−

+
 = 

2 22 2 2
0 0

2 22 2
0 0

( ) 2

( )

b c f bc f u v

b c u v

+ − + +

− +
 = 

2 22
0 0

2 2
0 0

C D f u v

u v

− + +

+
 (3.44) 

where 

2 2

2 2

( )
( )
b c fC
b c

+
=

−
, 2 2

2
( )

bcD
b c

=
− . 
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Fig. 3.10 A vertical line with a corner point as an endpoint used in robot localization. 
 

Next, by (3.41) which is also true here, we get 

Y0 = (v0/u0)X0. (3.45) 

Eqs. (3.44) and (3.45) above may be solved to get the following solution for the robot 

position: 

0
0 2 22

0 0

( )u h cX
C D f u v

−
=

− + +
; (3.46) 

0
0 2 22

0 0

( )v h cY
C D f u v

−
=

− + +
. (3.47) 

Similar to Case (2), only the relative orientation θ of the robot can be obtained 

because no line can be used as a reference line. The result is described by (3.29) 

which is repeated below, where K is the slope of the radial line projection L′ of L: 

θ = tan−1(−Κ). (3.48) 

3.4 Experimental Results 

A series of experiments have been conducted, and some of the results are 

reported here. The omni-camera with a hyperboloidal mirror we used is MapCam 

MRC530N produced by EeRise Co. The images were taken from the laboratory 

where this study was conducted. Each image was processed by Algorithms 3.1 and 
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3.2. An experimental result of Case (4) is shown in Fig. 3.11, where Fig. 3.11(a) is the 

original omni-image of an indoor scene with a large L-shape corner formed by a 

horizontal line and a vertical one on a wall, and Fig. 3.11(b) is the extraction result of 

the conic-section and radial-line projections respectively of the horizontal and vertical 

lines using Algorithms 3.1 and 3.2. The extracted radial line goes through the image 

center as expected, and the extracted conic-section curve is part of an ellipse, with 

their equations specified by (3.14) and (3.17), respectively, being computed to be: 

v = −1.3537u; 

−16.314u2 + 0.0318uv − 13.786v2 − 41.360u − 13152.511v + 998036 = 0, 

where the values of the extracted A, B, and K, and the camera parameters are shown in 

Table 3.2. These results show that the two Hough transforms proposed in Algorithms 

3.1 and 3.2 are effective and yield good projection extraction results. 

To test the accuracy of the robot localization results computed by the formulas 

derived in this study, we took five more images of the scene as shown in Fig. 3.10(c), 

processed them to extract the projections, and used the results to compute the robot 

position and orientation for each of the six images according to Eqs. (3.37), (3.38), 

and (3.39). Comparisons of these results against the real position and orientation data 

measured manually are shown in Table 3.1, from which we can see that the average 

error ratios for the computed X and Y coordinates of the robot position are both 

smaller than 3%, and the average error of the computed orientations is smaller than 

0.6 degree, all good enough for robot guidance and navigation. The errors might come 

from imprecise camera parameter calibration results, inaccurate manual measures of 

the real position and orientation data, low resolutions of acquired omni-images, etc. 
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(a) (b) 

  
(c) 

Fig. 3.11 Extraction of horizontal and vertical lines by proposed Hough transform 
techniques for robot localization of Case (4). (a) An omni-image with a 
corner consisting of a horizontal line and a vertical one. (b) Extracted 
conic-section and radial-line projections shown as purple curves. (c) Five 
more images used in experiments. 

 

Table 3.1 Robot Location computation results for Case (4). 

Real X Computed 
X  

Error ratio 
of X Real Y Computed 

Y  
Error ratio 

of Y 
Real θ 

(degree) 
Computed 
θ (degree) 

Angle error 
(degree) 

15.0  15.5  4.0% 20.5 21.0 2.9% 0.0 0.4  0.4 
31.0  29.6  4.3% 28.5 28.7 0.9% 0.0 0.5  0.5 
35.0  34.1  2.4% 28.5 29.3 2.8% 0.0 0.5  0.5 
44.1  43.2  2.0% 9.5 9.6 1.3% 27.0 27.4  0.4 
29.7  29.8  0.4% -33.9 -34.3 1.0% 88.0 89.5  1.5 
26.4  26.7  1.1% 36.5 37.1 1.6% -15.0 -15.5  0.5 

average error 2.4% average error 1.8% average error 0.6 
 

Table 3.2 Parameters involved or computed in extraction of projections in Fig. 3.10. 

B c f C D E A B K 

3.6 4.6 994 -4136.01 -4.0390 988036 0.01 1.59 1.3537
 

Another experimental result we show here is for Case (1) where only a single 

horizontal line is used. Six omni-images, as shown in Fig. 3.11, were taken from a 

long corridor ceiling with unconnected horizontal edge line segments, fitting the 

description of the partial corner structure of Case (1). The robot localization results 

using Eqs. (3.26) and (3.28) are shown in Table 3.3, from which we see again that the 



71 
 

accuracy of the position and orientation computation results are sufficient for general 

robot navigation applications. 

 

 
(a) (b) 

  
(c) 

Fig. 3.12 Images used in experiment of robot localization of Case (1). (a) An image of 
a corridor with horizontal line segments as ceiling edges. (b) Extracted 
conic-section projection shown as purple curve. (c) Five more images used 
in experiments.  

 
Table 3.3 Robot location computation results for Case (1). 

Real X Computed 
X  

Error ratio 
of X Real Y Computed 

Y  
Error ratio 

of Y 
Real θ 

(degree) 
Computed 
θ (degree) 

Angle error 
(degree) 

101.5  102.8  1.3% 101.5 102.8 1.3% 45.0 45.0  0.0 
184.3  190.8  3.6% -89.9 -92.3 2.7% 116.0 115.8  0.2 
41.5  42.6  2.7% -74.8 -77.2 3.2% 151.0 151.1  0.1 

137.7  136.2  1.1% -42.1 -41.7 1.0% 107.0 107.0  0.0 
198.9  208.9  5.0% 49.6 50.7 2.1% 76.0 76.4  0.4 
143.9  145.9  1.4% -143.9 -140.3 2.5% 135.0 133.9  1.1 

average error 2.5% average error 2.1% average error 0.3
 

3.5 Concluding Remarks 

A systematic investigation of vision-based robot localization techniques by 

omni-cameras using indoor house corners as landmarks has been conducted. An 

omni-camera with a hyperboloidal mirror was used for omni-image acquisition. 

Equations for describing conic-section projections of space lines on omni-images 

were carefully derived by the use of space lines’ direction vectors and related space 
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planes’ normals to be simple and analytic. The simple forms of the equations with 

only one or two unknown parameters to be determined makes possible the design of 

uncomplicated low-dimensional Hough transform-based algorithms for effective 

extraction of conic-section or radial-line projections out of omni-images. The 

analyticity of the equations makes possible fast computations of robot positions and 

orientations, facilitating real-time robot guidance and navigation applications. 

Identification of all possible partial structures of house corners appearing images 

has also been conducted, resulting in six significant types: (1) a horizontal line with 

no endpoint, (2) a vertical line with no endpoint, (3) two horizontal lines intersecting 

at a point, (4) a horizontal line and a vertical one intersecting at a point, (5) a 

horizontal line with an endpoint, and (6) a vertical line with an endpoint. Such 

variations of corner structures in images may come from ill lighting conditions, 

spatial occlusions, or inappropriate image-taking directions or positions. A distinct 

robot localization technique has been proposed for each partial corner type, including 

a process for curve or line projection extraction as well as one for analytic robot 

localization computation. Experimental results show that the robot position 

computation results have average position error ratios smaller than 2.5%, and 

orientation errors smaller than 0.6 degree, which are accurate enough for robot 

guidance and navigation applications. Further researches may be directed to uses of 

more complicated house structures for robot localization, like multiple parallel lines, 

combinations of multiple structures, etc. 
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Chapter 4                             

An Omni-vision Based Self-localization 

Method for Automatic Helicopter Landing 

on Standard Helipads 

4.1 Idea of Proposed Method 

Automatic helicopter landing is one of the desired techniques for safe helicopter 

aviation or unmanned air vehicle (UAV) applications. Among the many possible ways 

for solving this problem, the vision-based approach is a promising one, which uses 

cameras to acquire environment images and applies appropriate image analysis 

techniques to conduct helicopter self-localization and flight guidance during the 

landing process. See Fig. 1.7 for an illustration. 

Many studies conducted for unmanned helicopter flying in the past used parallel 

line information on a standard helipad as a hint for helicopter self-localization with 

respect to the circled H-shape on the helipad. See Fig. 4.1 for an illustration. However, 

these studies did not fully use the shape information on the helipad. Also, many of the 

methods used the traditional projective camera for visual sensing, which has a fixed 

FOV, compared with that of the omni-camera. An example of omni-images of a 

simulated helipad acquired with an omni-camera is shown in Fig. 4.2. It is 

advantageous to use the omni-camera in automatic helicopter landing to enlarge the 

viewing scope and consequently speed up the automatic landing process. Furthermore, 

most of the above methods do not investigate the full details of the automatic landing 

process. 

In this study, we investigate omni-vision based self-localization techniques 
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using the circled H-shape on a helipad as the landmark. The features on the landmark, 

including point, line, and circle, and their mutual relation properties are used 

systematically for helicopter location estimation. The helicopter landing process is 

divided into three stages, namely, approaching the helipad, aligning with the H-shape 

boundaries, and docking on the helipad center. Analytic equations are derived for 

faster computation of the helicopter location, including its the position, orientation, 

and height, for automatic flight guidance in each stage. More details and merits of the 

proposed method are described in the following. 

 

 

Fig. 4.1 Detail of a circled H-shape on a standard helipad. 

 
1. A simple conic-section equation for describing a line in an omni-image is 

derived, leading to the possibility of extracting the boundary lines of the 

H-shape using a simple low-dimensional Hough transform technique. 

2. Skillful combinations of possible features are carried out for effective helicopter 

self-localization in each stage of the proposed automatic landing process. 

3. Formulas for computing the helicopter location parameters for the three landing 
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stages are derived, all resulting in analytic forms for fast computations in real 

applications. 

4. The proposed techniques are all based on the use of single-view omni-images 

taken with omni-cameras which enables faster helicopter localization in general, 

in contrast with approaches using multiple views taken by projective cameras. 

 

 

Fig. 4.2 An omni-image of a simulated helipad. 
 

In the remainder of this chapter, in Section 4.2 we introduce the idea of the 

proposed helicopter self-localization method. Then, in Section 4.3 we present the 

techniques for estimations of the helicopter position, orientation, and height in the 

proposed three-stage helicopter landing process. Some experimental results are 

presented in Section 4.4 to show the feasibility of the proposed method, followed by 

conclusions in Section 4.5. 

 

4.2 Idea of Three-stage Helicopter Self-localization Method 

The proposed three-stage automatic helicopter landing process is described as 

follows, each stage utilizing certain geometric information contained in single 

omni-images of the circled H-shape to estimate the real-world location information 

(including the position, orientation, or/and height) of the helicopter. 
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Stage 1. (Approaching) maneuver the helicopter to approach the helipad. 

Stage 2. (Aligning) maneuver the helicopter to fly between, and then in alignment 

with, the two outmost boundary lines of the H-shape. 

Stage 3. (Docking) maneuver the helicopter to land on the center C of the H-shape. 

More details in each stage are described in the following algorithm. For 

mentioned notations in the algorithm, see Fig. 4.1. 

Algorithm 4.1 Three-stage process of automatic helicopter landing. 

Stage 1. Approaching the helipad. 

Step 1. Take an omni-image I1 of the helipad M. 

Step 2. Find the circular shape S in I1 by approximating it as an ellipse S′ by the 

Hough transform. 

Step 3. Compute the orientation θ1 and distance d1 of the helicopter with respect to 

the center C of the H-shape using the information of the radius of S and the 

parameters of S′. 

Step 4. Maneuver the helicopter to approach M using the information of θ1 and d1. 

Step 5. Repeat Steps 1 through 4 until the helicopter is at a pre-defined distance to 

M. 

Stage 2. Aligning with the H-shape boundaries. 

Step 6. Take an image I2 of M. 

Step 7. Find the leftmost and rightmost boundary lines Ll and Lr of the H-shape in I2 

by approximating them as conic sections Ll′ and Lr′ using the Hough 

transform. 

Step 8. Compute the helicopter height h over the helipad using the information of the 

known distance dm between Ll and Lr. 
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Step 9. Compute the distances dl and dr of the helicopter with respect to Ll and Lr, 

respectively, as well as the orientation θ2 of the helicopter with respect to Ll, 

using the information of Ll′, Lr′, and h. 

Step 10. Maneuver the helicopter to fly between Ll and Lr and align its flying direction 

to be parallel to Ll using the information of dl, dr, andθ2. 

Step 11. Repeat Steps 6 through 10 until θ2 approaches zero (i.e., until it is equal to a 

pre-selected small value). 

Stage 3. Docking on the helipad center. 

Step 12. Take an image I3 of M. 

Step 13. Perform Steps 6 through 8 using I3 to detect Ll′ and Lr′ in I3 and obtain the 

helicopter height h. 

Step 14. Trace Ll′ and Lr′ found in the last step to find the four outmost corners C1′ 

through C4′ of the H-shape in I3. 

Step 15. Locate the four outmost corners C1 through C4 of the H-shape in the 

real-world space using the information of Ll′, Lr′, and C1′ through C4′. 

Step 16. Locate the center C of the H-shape using the location information of C1 

through C4. 

Step 17. Compute the real-world distance dC of the helicopter to C using the 

information of the location of C and the helicopter height h. 

Step 18. Maneuver the helicopter toward C and lower its height gradually until both 

dC and h becomes zero, i.e., until the plane is touchdown. 
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4.3 Proposed Self-localization Techniques for Automatic 

Helicopter Landing 

The respective self-localization techniques proposed for the 

previously-described three stages of the helicopter landing process are described in 

this section. 

4.3.1. Proposed Techniques for the Approaching Stage 

The major steps in the first stage for approaching the helipad include the 

following tasks. 

A. (Circular shape detection) finding the circular shape S in an omni-image by 

approximating it as an ellipse S′ using the Hough transform (Step 2 of Algorithm 

4.1). 

B. (Helicopter orientation and distance computation) computing the orientation θ1 

and distance d1 of the helicopter with respect to the center C of the H-shape using 

S′ and the known radius value R of S (Step 3 of Algorithm 4.1). 

The details of these tasks are described in the following. 

A. Circular shape detection 

Two coordinate systems, namely, the camera coordinate system and the image 

coordinate system, are set up on the omni-camera system used in this study, which 

includes a traditional perspective camera and a hyperboloidal-shaped mirror, as 

depicted in Fig. 3.3. The camera coordinates, denoted as (X, Y, Z), are used to specify 

the position of each space point in the real world, and the image coordinates, denoted 

as (u, v), are used to specify the position of the corresponding image point in the 

image. The perspective camera and the mirror are assumed to be properly aligned so 

that the omni-camera system becomes single-viewpointed and that the optical axis of 
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the perspective camera coincides with the mirror axis. Here, the mirror axis is defined 

as the line going through the mirror surface center and perpendicular to the mirror 

base plane. The middle point between the perspective camera’s lens center Ol and the 

mirror’s focus point Om is taken to define the origin Oa of the camera coordinate 

system. Accordingly, the hyperboloidal mirror shape may be described by (2.1) where 

a and b are two parameters, and Om is located at (0, 0, +c) and Ol at (0, 0, −c) in the 

camera coordinate system where 2 2c a b= + . 

According to [34][35], the relation between the camera coordinates (X, Y, Z) of a 

space point P and the image coordinates (u, v) of its corresponding image point p may 

be described by Eqs. (3.1), (3.2), (3.3), and (3.4), where α and β are two space angles 

as illustrated in Fig. 3.3, where 22 vur +=  and f is the camera’s focal length. We 

assume that a, b, c, and f are known in advance, which may be obtained by proper 

camera calibration processes. Also, according to the rotational invariance property of 

the omni-camera system [36], we have (3.5), (3.6), (3.7), and (3.8) where θ is the 

angle of space point P with respect to the X-axis and is also that of image point p with 

respective to the u-axis. The above equations may be used to derive two equalities 

describing direct relation between (u, v) and (X, Y, Z) as Eqs. (2.1). 

When the helicopter is not too close to the helipad, according to Wu and Tsai 

[49], the circle S enclosing the H-shape, though irregular in shape when appearing in a 

given omni-image I, may be approximated well as an ellipse S′, and the length of the 

major axis of the extracted ellipse gives a hint for computing the distance of the 

helicopter to the H-shape. Accordingly, in this study we use the Hough transform 

technique to detect S′ in I after I is processed into an edge-point image using the Sobel 

edge detection operator. Examples of such ellipse detection results can be seen in Figs. 
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4.9, 4.11, and 4.13 in Section 4.4. Specifically, the coordinates (uC, vC) of the center 

C′ of the detected ellipse S′ as well as the values U and V of the major and minor axes 

of S′ may be obtained as the output of the Hough transform process for use in 

helicopter orientation and distance computations described next. 

B. Helicopter orientation and distance computation 

While referring to Fig. 4.3 which is a top view of the omni-camera system and 

the circular shape S, let the known radius of S be denoted by RS and let the camera 

coordinates of the center C of S be denoted by (XC, YC, ZC). In the entire automatic 

landing process, it is assumed that the omni-camera is looking downward, so that the 

normal vector of the helipad is parallel to the optical axis of the omni-camera. We will 

now derive the distance and orientation of the helicopter to the helipad, or more 

precisely in a reverse way, the distance d1 and orientation θ1 of the center C of the 

circle with respect to the camera coordinate system on the helicopter. The two 

parameters d1 and θ1 can then be used for maneuvering the helicopter to approach S 

(Step 4 of Algorithm 4.1). 

First, we know that the projection of the center C of S on an image I is just the 

center C′ of the detected ellipse S′ whose coordinates (uC, vC) can be obtained by the 

Hough transform process as mentioned previously. Then, according to the rotational 

invariance property described by (3.5), (3.6), (3.7), and (3.8), we can get the desired 

parameter θ1, which is both the angle of S′ with respect to the u-axis and the angle of 

S with respect to the X-axis, to be: 

1 1
1 2 2 2 2

cos cosC C

C C C C

X u

X Y u v
θ − −= =

+ +
; (4.1) 

or 

1 1
1 2 2 2 2

sin sinC C

C C C C

Y v

X Y u v
θ − −= =

+ +
. (4.2) 
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As to the desired parameter d1, to make the derivation of it easier, we rotate S′ 

by the angle of θ1, with the rotation result being shown in the image plane depicted in 

Fig. 4.3. Then, the rotated S′ may be described by the following equation: 

2 2

2 2

( ) 1Cu' u ' v'
U V
−

+ =  (4.3) 

where the new image coordinates are described by (u′, v′) and the new ellipse center is 

located at (uC′, 0). Furthermore, let the two endpoints of the major axis of S′ be 

denoted as pα and pβ, and their corresponding space points be denoted as Pα and Pβ, 

respectively. Then, by the rotational invariance property again, it is not difficult to 

figure out that the following side proportionality property is truth as illustrated by Fig. 

4.3: 

i

i

O

O

C P P

C' p p
α β

α β

=  (4.4) 

where Oi is the origin of the image coordinate system (also the origin of the camera 

coordinate system seen from the top view), iO C  is the desired real-world distance 

d1 on the floor from C to the camera, iO C' is the image distance from C′ to Oi which 

is equal to 2 2
C Cu v+ , P Pα β  is the diameter value 2Rs of S, and p pα β  is the 

length U of the major axis of S′. Accordingly, the desired value d1 can be computed 

finally from (4.4) as: 

d1 = 2 sR
U

2 2
C Cu v+ . (4.5) 

4.3.2. Proposed Techniques for the Aligning Stage 

The major steps in the second stage for helicopter alignment with the outmost 
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boundary lines of the H-shape include the following three tasks. 

A. (Boundary line detection) finding the leftmost boundary line Ll of the H-shape in 

an image by approximating it as a conic section Ll′ using the Hough transform, 

and doing the same to extract the rightmost boundary line Lr′ (Step 7 of Algorithm 

4.1). 

B. (Helicopter height computation) computing the height h of the helicopter over the 

helipad using the information of the extracted Ll′, Lr′ and the known distance dm 

between Ll and Lr in the real world (Step 8 of Algorithm 4.1). 

C. (Helicopter distance and orientation computation) computing the distances dl and 

dr to Ll and Lr, respectively, as well as the orientation θ2 of the helicopter with 

respect to Ll, using the information of h, Ll′, and Lr′ (Step 9 of Algorithm 4.1). 

The details are described respectively in the following. 

u X

v

Y

Pα

Pβ

S′

p
α

p
β

 
Fig. 4.3 Top view of image plane and circular shape S illustrating side proportionality 
relation between approximating ellipse S′ and circular shape S. 
 

A. Boundary line detection 

Based on some optics and geometry of the omni-camera, detection of an 
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outmost boundary line L (either of Ll or Lr) of the H-shape in an omni-image I is 

accomplished in this study first by deriving an equation to describe the projection L′ 

of L in I, which is a conic section, as will proved later. The derivation is conducted in 

a novel way in this study so that the resulting equation becomes simple and analytic, 

facilitating design of an uncomplicated Hough transform algorithm to extract L′ and 

computation of the helicopter location in a faster speed for practical applications. 

In more detail, as shown in Fig. 4.4, suppose that the boundary line L has a 

specific point P0 located at camera coordinates (X0, Y0, Z0), and let P be an arbitrary 

point on L with camera coordinates (X, Y, Z). Then P and P0 together form a vector V0 

= (X − X0, Y − Y0, Z − Z0). Also, let the direction vector of L be denoted as VL = (dX, dY, 

dZ). Then, by the fact that V0 and VL are parallel, we get the equality V0 = λVL which 

leads to Eq. (3.9) where λ is a parameter. 

Also, let Q be the space plane going through both the line L and the mirror base 

center Om which is located at camera coordinates (0, 0, +c); Nq be the normal vector 

of Q with components (l, m, n); and P′ be an arbitrary point on Q with camera 

coordinates (X, Y, Z). Then, P′ and Om together form a vector Vm = (X − 0, Y − 0, Z − c) 

= (X, Y, Z − c) which is perpendicular to Nq, so that the inner product of Vm and Nq 

becomes zero, leading to the following equality (3.10) which is equivalent to Eq. 

(3.11). 

Now we want to derive an equation for describing the projection of the space 

line L on the image, which also expresses the relation between the camera coordinates 

(X, Y, Z) of a space point P on L and the image coordinates (u, v) of the image point p 

corresponding to P. Note that P is also on plane Q. Combining (3.4) through (3.8) and 

(3.11), we get Eq. (3.12). On the other hand, substituting (3.2) and (3.3) into (3.1), we 

get Eq. (3.13) 
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Fig. 4.4 Illustration of a space line projected onto the image plane. 

 

Equating (3.12) and (3.13) leads to 

)(
2

)(
)(

22

222

22

22

cb
vufbc

cb
fcb

n
mv

n
lu

−
++

=
−

+
++  

which may be squared and reduced to become Eqs. (3.14) and (3.15). Multiplying 

(3.14) by n2, we get an alternative form of (3.14) without A and B as (3.14a). 

Eq. (3.14) or (3.14a) shows that the projection of a space line on an image is a 

conic section curve. And (3.15) shows that the coefficients of the equation may be 

described indirectly in terms of the parameters of the normal Nq = (l, m, n) of plane Q. 

These coefficients actually are related to the elements of the direction vector VL⋅= (dX, 

dY, dZ) of L by the equality (3.16) because Nq and VL are perpendicular. Furthermore, 

Eq. (3.14), as derived above, has a good property that the unknown parameters l, m, 

and n are confined to appear in just two variables A and B, as shown by (3.15). This 

facilitates the extraction of the conic section curve by a simple technique using a 2D 
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Hough transform described in Algorithm 3.1. 

In the sequel, whenever a conic section described by (3.14) is mentioned, we 

assume that the two parameter values A and B in (3.14) have been obtained by 

Algorithm 3.1 above. This means that the ratios l/n and m/n are also known because 

l/n = A and m/n = B according to (3.15). 

B. Helicopter height computation 

Suppose that we are dealing with one of the two outmost boundary lines Ll and 

Lr of the H-shape and let the line be denoted as L. We want to find a reference point, 

which we propose to be the minimum-distance point Pmin on L to the origin Oa of the 

camera coordinate system, as illustrated by Fig. 4.5. This point Pmin will be used later 

for the purpose of helicopter height computation here. 

To find Pmin on L, we know that L is on the floor, so L is parallel to the X-Y 

plane of the camera coordinate system. Consequently, the component dZ of the 

direction vector VL = (dX, dY, dZ) of L is zero, and Eq. (3.16), which is ldX + mdY + ndZ 

= 0, may be transformed accordingly into Eq. (3.19) where s is a new parameter. 

Combining (3.9) and (3.19), we get a parametric equation for L as Eq. (3.20) where 

(X0, Y0, Z0) specify the coordinates of point P0 on L yet to be determined. Since L is 

on the landing floor with the helicopter being at a certain height h which we want to 

find out here, we have Z = −h for all points on L, and so (3.20) above may be 

rewritten as (3.21) where t = sλ. The distance from the camera coordinate system 

origin Oa at (0, 0, 0) to an arbitrary point on L at (X, Y, Z) therefore is 

d(t) = ||(X, Y, Z) − (0, 0, 0)|| = 2 2 2
0 0( ) ( )m lX t Y t h

n n
+ + − + . 
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Fig. 4.5 Finding minimum-distance point Pmin on a boundary line L. 

And the minimum distance dmin from Oa to L may be obtained by taking the derivative 

of the square of d(t) above, setting it to be zero, and solving the resulting equation 

(3.21). The solution tmin of (3.21) above is (3.22). To decide the values of X0 and Y0 in 

the above equality, we may regard L as a line with an infinite length and going 

through the space plane Q0 described geometrically by the equation X = 0. We then 

take the intersection point of L and Q0 to be the point P0, which has coordinates (X0, 

Y0, Z0) with X0 = 0 and Z0 = −h. Accordingly, (3.11) may be reduced to be (3.23), so 

that (3.22) becomes (3.24). Therefore, the coordinates (Xmin, Ymin, Zmin) of the 

minimum-distance point Pmin on L to Oa may now be calculated from (3.21) and 

(3.24) to be 

(Xmin, Ymin, Zmin) = (
2 2

( )

( ) ( )

l h c
n

m l
n n

+

+
,  

2 2

( )

( ) ( )

m h c
n

m l
n n

+

+
, −h) = ( 2 2

( )A h c
A B

+
+

,  2 2

( )B h c
A B

+
+

, −h) (4.6) 

where A = l/n, B = m/n are known values as mentioned previously, of the coefficients 

of the projection L′ of L on the image described by (3.14) and (3.15). Accordingly, we 

can get from (4.6) the following values for the coordinates of the minimum-distance 
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points Pmin
1 and Pmin

2 of L1 = Ll and L2 = Lr, respectively, with respect to Oa: 

(Xmin
1, Ymin

1, Zmin
1) = ( 1

2 2
1 1

( )A h c
A B

+
+

,  1
2 2

1 1

( )B h c
A B

+
+

, −h); (4.7) 

(Xmin
2, Ymin

2, Zmin
2) = ( 2

2 2
2 2

( )A h c
A B

+
+

,  2
2 2

2 2

( )B h c
A B

+
+

, −h), (4.8) 

where A1 and B1 are the coefficients of the projection L1′ = Ll′ of L1 = Ll on the image 

described by (3.14) and (3.15), and A2 and B2 are those of the projection L2′ = Lr′ of L2 

= Lr. By the fact that Ll and Lr are parallel and are separated with a known distance dm, 

it is not difficult to figure out that the points Pmin
1, Pmin

2, and the projection point of 

Oa on the landing floor are all on an identical line which is perpendicular both to Ll 

and to Lr, so that the distance between Pmin
1 and Pmin

2 on the landing floor is just dm, 

leading to the following equality: 

2 2

21 2 1 2
m2 2 2 2 2 2 2 2

1 1 2 2 1 1 2 2

( ) ( ) ( ) ( )A h c A h c B h c B h c+ = d
A B A B A B A B

⎛ ⎞ ⎛ ⎞+ + + +
− −⎜ ⎟ ⎜ ⎟

+ + + +⎝ ⎠ ⎝ ⎠
. (4.9) 

Furthermore, parallelism of Ll and Lr means that their directional vectors are 

identical, which we assume to be (dX, dY, dZ) with dZ = 0. So, if (l1, m1, n1) is the 

normal vector of the space plane including L1 = Ll and Om and (l2, m2, n2) is that for 

the plane including L2 = Lr and Om, then according to (3.19) we get 

1 1 2 2

1 1 2 2

/ /
/ /

Y

X

d l n l n
d m n m n

= − = − , 

which yields 

1 1 1 1

2 2 2 2

/ /
/ /

l n m n
l n m n

=  (4.10) 

or equivalently, 

1 1

2 2

A B
A B

=  
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because A1 = l1/n1, A2 = l2/n2, B1 = m1/n1, B2 = m2/n2 according to (3.15). Define λ as 

λ = 1 1

2 2

A B
A B

=  (4.11) 

which is equivalent to  

A1 = λA2, B1 = λB2. (4.12) 

Then, substituting (4.12) into (4.9) to eliminate the terms of A1 and B1, we get 

2 2
m 2 2=

1
h d A Bλ

λ
⎛ ⎞ +⎜ ⎟−⎝ ⎠

− c. (4.13) 

And using (4.12) again, we can rewrite the above equation in terms of the known 

values of A1, B1, A2, and B2 in two ways to describe finally the desired helicopter 

height h as 

h = 2 21 m
2 2

2 1

A d A B
A A

+
−

− c = 2 21 m
2 2

2 1

B d A B
B B

+
−

− c. (4.14) 

C. Helicopter orientation and height computation 

From (4.7), we know that the helicopter position on the landing floor with respect 

to the reference point Pmin on L1 = Ll is described by 

(Xmin
1, Ymin

1) = ( 1
2 2

1 1

( )A h c
A B

+
+

,  1
2 2

1 1

( )B h c
A B

+
+

). 

And the desired distance dl of the helicopter with respect to L1 = Ll on the landing 

floor is just 

dl = 1 2 1 2
min min( ) ( )X Y+  = 

2 2
1 1

( )h c

A B

+

+
. (4.15) 

Similarly, the desired distance of the helicopter to L2 = Lr on the landing floor is 

dr = 2 2 2 2
min min( ) ( )X Y+  = 

2 2
2 2

( )h c

A B

+

+
. (4.16) 

As to the helicopter orientation seen from the top view, it is taken to be the angle 

θ2 of line L = Ll with respect to the X-axis of the camera coordinate system, which 
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may be computed from the following equality: 

cosθ2 = 
|| || || ||

L X

L X

V V
V V

⋅
×

 

where VL and VX are the direction vectors of L = Ll and the X-axis, respectively. We 

know that VX = (1, 0, 0). And VL = (dX, dY, dZ) may be computed to be the unit vector 

from the point P0 found previously on L (see discussions in Section B above) to the 

point Pmin also on L (see Fig. 4.5) in the following way: 

VL = 
1 1 1
min 0 min 0 min 0
1 1 1
min 0 min 0 min 0

( , , )
|| ( , , ) ||

X X Y Y Z Z
X X Y Y Z Z

− − −
− − −

 

where 

(X0, Y0, Z0) = (0, 
( )n h c

m
+

, h) = (0, 
2

( )h c
B
+

, −h); 

(Xmin
2, Ymin

2, Zmin
2) = ( 2

2 2
2 2

( )A h c
A B

+
+

,  2
2 2

2 2

( )B h c
A B

+
+

, −h). 

Consequently, we get the desired θ as 

θ2 = cos−1

|| || || ||
L X

L X

V V
V V

⎛ ⎞⋅
⎜ ⎟×⎝ ⎠

 = cos−1
1
min 0

1 2 1 2
min 0 min 0( ) ( )

X X
X X Y Y

⎛ ⎞−⎜ ⎟
⎜ ⎟− + −⎝ ⎠

 

which, after some reduction, becomes 

θ2 = cos−1
2 2

B
A B

⎛ ⎞
⎜ ⎟

+⎝ ⎠
. (4.17) 

 

4.3.3. Proposed Techniques for the Docking Stage 

The steps in the third stage for helicopter docking include three major tasks, as 

described in the following. 

A. (Detection of corner points) finding the four outmost corners of the H-shape 

in an image to locate their corresponding space points in the real-world 
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space. (Steps 14 and 15 of Algorithm 4.1). 

B. (Helicopter distance computation) locating the center of the H-shape as the 

geometric center of the four corner points, and computing the distance of the 

helicopter to the H-shape center (Steps 16 and 17 of Algorithm 4.1). 

The details are described respectively in the following. 

A. Detection of corner points 

Given an image I, suppose that we have already detected in it a boundary line L′ 

of the H-shape using the Hough transform (Algorithm 3.1) as described previously, 

and have traced L′ to obtain one of its endpoint, p0, in the image, which is just one of 

four corners of the H-shape in the image. The real-world versions L and P0 of L′ and 

p0, respectively, may be illustrated again by Fig. 4.5. Assume that the helicopter 

height has been computed already to be h (Step 13 of Algorithm 4.1), and that the 

image coordinates of p0 are (u0, v0) and the camera coordinates of P0 are (X0, Y0, Z0), 

where Z0 = −h. With L′ already detected by Algorithm 3.1 as a conic section described 

by (3.14) and (3.15) with the two parameters A and B, we want to derive the 

real-world location (X0, Y0) of the corner point P0 on the landing floor in terms of the 

values of u0, v0, h, A, and B in the following. 

First, let Q be the plane including L and Om with the normal (l, m, n). Then, by 

(3.11), we have 

l mX Y Z c
n n

+ + =  (4.18) 

where (X, Y, Z) specify an arbitrary space point P′ on Q. Taking P′ to be P0 and 

replacing l/n and m/n respectively with A and B according to (3.15), we may 

transform Eq. (4.18) into the following equation: 

AX0 + BY0 − h = c. (4.19) 
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Next, by substituting (X0, Y0, Z0) and (u0, v0) into (4.5) and (4.6) which describe the 

rotational invariance property of the omni-camera, we get 

u0/v0 = X0/Y0. (4.20) 

Finally, (4.19) and (4.20) may be solved to obtain the following solution for (X0, Y0) 

which specify the on-floor position of a corner point of the H-shape in terms of 

known values: 

X0 = 0

0 0

( )u h c
Au Bv

+
+

; (4.21) 

Y0 = 0

0 0

( )v h c
Au Bv

+
+

. (4.22) 

In similar ways, we may derive the real-world positions (X1, Y1), (X2, Y2), and 

(X3, Y3) for the other three corner points of the H-shape, respectively. 

B. Helicopter distance computation 

The coordinates (XC, YC) of the center point C of the H-shape on the landing 

floor can be derived by averaging the coordinates of the four corner points derived 

above to be XC = (X0 + X1 + X2 + X3)/4 and YC = (Y0 + Y1 + Y2 + Y3)/4 because C is just 

the geometric center of the four corner points. And the distance dC of the helicopter to 

C, which we need to maneuver the helicopter to land right on top of C, is just dC = 

2 2
C CX Y+ . 

4.4 Experimental Results 

Experiments in a small-scaled simulation environment as shown in Fig. 4.6 have  
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Fig. 4.6 A view of a simulated helipad used in experiments of this study. 

been conducted to verify the correctness of the formulas derived previously. A 

simulated helipad was constructed and the proportion of its size is 1:100. The 

omni-camera with a hyperboloidal mirror we used for image acquisition was 

MapCam MRC530N produced by EeRise Co. 

In the experiment we conducted for the first stage, a series of images of the 

simulated helipad with different postures with respect to the omni-camera was taken. 

Four of them are shown in Fig. 4.7. The real distance and orientation of each posture 

were measured manually as reference data. Then, each image was processed to extract 

the circular shape and the derived formulas were used to compute the distance and 

orientation of the center of the H-shape with respect to the simulated helicopter, 

which is regarded to be located at the origin of the camera coordinate system origin. 

An example of the processing results is shown in Fig. 4.8 where Fig. 4.8(a) is the 

original image, and Fig. 4.8(b) is the result of circular shape extraction using an 

approximating ellipse. The computation results together with the reference data are 

shown in Table 4.1. The error of a computed orientation is defined as the difference 

between the real and the computed ones, and the error ratio of a computed distance as 

the ratio of the absolute difference between the real and the computed distances over 

the real one. From the table, we can see that all the computed orientations have errors 

smaller than 0.5 degree and that all the computed distances have error ratios smaller 
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than 4.5%. Such results may be considered to be within allowable tolerance for the 

helipad approaching stage in which the helicopter is maneuvered at a farther distance 

from the helipad. 

Four images taken for the second stage for helicopter alignment are shown in 

Fig. 4.9. And an example of image processing results is shown in Fig. 4.10 where Fig. 

4.10(a) shows the circular shape extraction result and Fig. 4.10(b) shows the outmost 

boundary line extraction result. Table 4.2 shows the reference and computed data of 

the helicopter height h, the distances dl and dr of the helicopter with respect to the two 

outmost boundary lines of the H-shape, and the orientation θ2 of the helicopter with 

respect to the leftmost boundary line. From the table, we can see that the error ratios 

of h, dl, and dr are all smaller than 5%, and the errors of θ2 all smaller than 2.5 degrees. 

Such errors or error ratios are again considered to be within tolerance for helicopter 

flying guidance in the helicopter alignment process. 

As to the third stage for helicopter docking, four images used in the simulation 

are shown in Fig. 4.11, and one example of image processing results is shown in Fig. 

4.12 which is similar to Fig. 4.10. A comparison of the reference and the computed 

data of the helicopter height and its distance to the center of the H-shape is shown in 

Table 4.3, from which again we see the error ratios of the computed data are all 

smaller than 5%. 

    
(a)              (b)               (c)               (d) 

Fig. 4.7 Four images of approaching stage of helicopter landing process. (a)-(d) 
Images 1-4. 
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               (a) Image 1.             (b) Detected shape as an ellipse. 

Fig. 4.8 Circular shape detection result of image 1. 
 

Table 4.1 Experimental result of stage-1 simulation. 

 

    
(a)              (b)               (c)               (d) 

Fig. 4.9 Four images of aligning stage of helicopter landing process. (a)-(d) Images 
5-8. 
 

Data Image 1 Image 2 Image 3 Image 4 

real orientation -86.6  -88.2  -87.2  -88.9  

computed orientation -86.0  -87.9  -87.1  -89.3  

error of computed orientation 0.5  0.3  0.2  -0.4  

real distance 104.1 95.2 85.2 76.9 

compute distance 99.8 96.8 87.7 80.4 

error ratio of computed distance 4.1% 1.6% 3.0% 4.5% 
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    (a) Circular shape detection result.      (b) Boundary line detection result. 

Fig. 4.10 Circular shape and boundary line detection results of image 7. 
 

Table 4.2 Experimental result of stage-2 simulation. 

Data Image 5 Image 6 Image 7 Image 8 

real height h 39.0 39.0 39.0 39.0 

computed height h 38.1 40.3 40.2 40.0 

error ratio of height h -2.3% 3.3% 3.1% 2.6% 

real dr 39.7  17.7  27.8  18.7  

computed dr 38.0  17.9  27.4  19.2  

error ration of dr 4.2% 1.0% 1.5% 2.6% 

real  dl 49.7  27.7  37.8  28.7  

computed dl 47.6  26.7  36.2  28.6  

error ration of dl -4.1% -3.5% -4.1% -0.3% 

real orientation θ2 -38.0 -17.0 -35.0 -22.0 

computed orientation θ2 -40.3 -19.3 -33.6 -23.0 

error of orientation θ2 -2.3 -2.3 1.4 -1.0 

 

4.5 Concluding Remarks 

A novel self-localization method for automatic helicopter landing on a standard 

helipad using omni-images has been proposed. A helipad with a circled H-shape is 

used as the landmark for helicopter location estimation. The proposed automatic 

landing process is divided into three stages: helipad approaching, aligning with the 
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outmost boundary lines of the H-shape, and docking on the center of the H-shape. In 

each stage, proper geometric features of point, line, and circle on the landmark are 

used as hints for deriving formulas for computing the location (including the height, 

distance, or/and orientation) of the helicopter with respect to the landing site. 

Specifically, a simple conic-section equation for describing a line in an omni-image is 

derived, which makes possible simple extraction of the H-shape boundary lines by the 

Hough transform. Formulas for computing helicopter locations for the three stages 

were skillfully derived, all resulting in analytic forms for faster computations. The 

proposed techniques are all based on the use of single-view omni-images taken by a 

hyperboloidal omni-camera, in contrast with traditional methods using multiple views 

taken by projective cameras. Experimental results with good location estimation 

precisions have been shown to prove the feasibility of the proposed method. Future 

researches may be directed to implementing the proposed techniques on a real 

helicopter test-bed, removing the requirement of maneuvering the helicopter 

horizontally in the landing process, self-localization using other combinations of the 

shape features on the helipad, etc. 

 

     
(a)              (b)               (c)               (d) 

Fig. 4.11 Four images of docking stage of helicopter landing process. (a)-(d) Images 
9-12. 

 



97 
 

              
    (a) Circular shape detection result.        (b) Boundary line detection result. 

Fig. 4.12 Circular shape and boundary line detection results of image 11. 
 

Table 4.3 Experimental result of stage-3 simulation. 

Data Image 9 Image 10 Image 11 Image 12 

real height h 26.5 26.5 26.5 26.5 

computed height h 27.6 26.7 26.8 26.7 

error ratio of height h 4.1% 0.8% 0.9% 0.8% 

real distance dC 44.5 34.1 24.9 15.2 

compute distance dC 43.1 33.0 24.4 15.4 

error ratio of distance dC 3.1% 3.5% 1.9% 1.3% 
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Chapter 5                             

Omni-vision Based Localization of Lateral 

Vehicles for Car Driving Assistance 

5.1 Idea of Proposed Method 

Car driving assistance using traditional cameras has been studied intensively  

in the past two decades, as surveyed in Chapter 1. Recently, omni-cameras with wider 

FOVs become popular. They are more suitable for car driving assistance because 

fewer cameras need be equipped. For example, some studies like Lai and Tsai [52] 

affixed a traditional camera on the right-frontal side of a host car to take the image of 

a lateral car. To acquire a larger frontal view, more traditional cameras should be used. 

Instead, one frontal omni-camera is sufficient. In addition, car wheels are 

circular-shaped, providing geometric hints for lateral car localization [52]. However, 

when a circle appears in an omni-image, it becomes irregular in shape, leading to 

difficulty of extending the existing vehicle localization methods for omni-images. 

In this study, we try to solve this problem. The omni-camera is equipped on the 

frontal bumper at the height of the wheel so that the mathematics involved in 

circular-shape image analysis becomes maneuverable to get analytic solutions for fast 

computation. 

In the remainder of this chapter, the proposed method is described in Section 5.2, 

followed by some experimental results in Section 5.3 and conclusions in Section 5.4. 

5.2 Lateral Car Localization by Frontal Omni-camera 

The basic idea of the proposed method is to utilize the geometric properties of a 
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circular-shaped wheel image of the lateral car taken by a single omni-camera to 

estimate the position and orientation of the lateral car with respect to the host car. The 

omni-camera, affixed to the frontal bumper of the host car at the height of the wheel, 

includes a hyperboloidal-shaped mirror. Also, the optical axis of the camera is set to 

be horizontal to the ground plane. Such an arrangement of the camera makes the 

resulting irregular shape of the wheel in the omni-image to be extractable as an ellipse 

using the Hough transform, as proved in [54]. More details are described by the 

following algorithm. 

 
Algorithm 5.1 Lateral car localization by a frontal omni-camera on a host car. 

Step 1. Affix an omni-camera to the frontal bumper of the host car at the height of 

the wheel center with the camera’s optical axis adjusted to be horizontal to 

the ground plane and pointing to the frontal direction of the host car. 

Step 2. Take an image of a wheel of the lateral car and find out the vertical height h 

of the wheel in the image. 

Step 3. With the radius of the wheel and the value of h as input, estimate the 

position of the lateral car (details described in Section 5.2.1). 

Step 4. Find out the farthest and the closest points, If and Ic, of the wheel in the 

image with respect to the image center. 

Step 5. With If and Ic as input, derive the direction of the lateral car with respect to 

the host car (details described in Section 5.2.2). 

5.2.1. Estimation of Lateral Car Position Using Rotational Invariance 

Property 

The coordinate systems involved in an omni-camera system, including a 

traditional perspective camera and a hyperboloidal-shaped mirror, are depicted in Fig. 
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5.1(a), where the omni-camera and the image coordinates are specified by (X, Y, Z), 

and (u, v), respectively. The perspective camera and the mirror are properly aligned, 

as assumed, so that the omni-camera becomes a single-viewpoint system, and that the 

optical axis of the perspective camera coincides with the mirror axis which is the line 

going through the mirror center and perpendicular to the mirror base. 

The middle point between the camera lens center Ol and the mirror focus point 

Om is taken to be the origin Oa of the omni-camera coordinate system. The 

hyperboloidal mirror shape may so be described by Eq. (2.1), and Om is located at (0, 

0, −c) and Ol at (0, 0, +c) in the camera coordinate system where 2 2c a b= + . The 

relationship between (u, v) and (X, Y, Z) may be described [54] by Eqs. (2.2) where f 

is the camera’s focal length, and b, c, and f are parameters assumed to be known in 

advance. 

Also, as illustrated in Fig. 5.1(b), the omni-camera is affixed to the car bumper 

with the Z-axis of the omni-camera adjusted to be at the height of the wheel center, 

the negative Z-axis directed to the car driving direction, and the Y-axis set 

perpendicular to the ground surface. A wheel coordinate system x-y-z is defined on the 

left-frontal wheel of the lateral car with its origin Ow being the wheel center and its 

x-y plane being the wheel plane. The orientation of the wheel plane is denoted by θ 

with θ = 0o meaning that the lateral car moves in parallel. The wheel’s radius is 

assumed to be Re. Then, defining (Xc, Yc, Zc) as the wheel center’s coordinates in the 

omni-camera coordinate system, we get 

Yc = 0; (5.1) 
Y = y. (5.2) 

From the above omni-camera geometry, it is not to difficult to figure out the 

validity of the so-called rotational invariance property, which means that the angle of 
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an incoming light ray formed by a space point at coordinates (X, Y, Z) onto the mirror 

surface in the omni-camera coordinate system is identical to the angle of the 

corresponding image point at coordinates (u, v) in the image coordinate system, 

leading to the following equality: 

v Y
u X= . (5.3) 

The lateral car localization problem now is to derive the wheel position and 

orientation parameters Xc, Zc, and θ of the lateral car in the omni-camera coordinate 

system. First, define P1 through P4 as the four extreme points on the wheel circle so 

that the segments 21PP  and 43PP  are perpendicular and parallel to the ground 

surface, respectively, as illustrated by Fig. 5.2. Obviously, P1 and P2 are at (Xc, +Re, 

Zc) and (Xc, −Re, Zc), respectively. Next, it can be figured out that the Y-coordinates of 

P3 and P4 are equal to Yc, which is zero, because the wheel center Ow at (Xc, Yc, Zc) is 

at the height of the omni-camera coordinate system origin Oa at coordinates (0, 0, 0), 

as assumed. Denote the image point corresponding to Pi as Ii and its coordinates as (ui, 

vi), i = 1, 2, 3, 4. Applying (5.3) to I1 and I2, we get 

e e1 2

1 2
; .

c c

v vR R
u X u X

−= =  (5.4) 

Also, from (2.2) and the omni-camera coordinates of P1 and P2, we get 

u1 = u2. (5.5) 

Combining (5.4) and (5.5), we get the solution for Xc as 

e
1

1 2

2 .c
RX u

v v
=

−
 (5.6) 
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(a)                         

 

θ

 

 (b) 

Fig. 5.2 Relative coordinate systems. (a) Omni-camera and image coordinate systems. 
(b) Omni-camera and wheel coordinate systems. 
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Note that v1 − v2 is just the value h mentioned in Step 3 of Algorithm 5.1. 
 
 

 
Fig. 5.2 Definition of corresponding image and space points. 

 
To derive Zc, let 

Zc' = Zc − c. (5.7) 

Then, (2.2) for I1 may be transformed into 

[u1
2(b2 + c2)2 − u1

2(−2bc)2](Zc')2 − [2u1Xcf(b2 − c2)(b2 + c2)](Zc') 
+ [f 2(b2 − c2)2Xc

2 − u1
2(−2bc)2Xc

2] = 0 

which leads to 

A(Zc')2 + B(Zc') + C = 0 (5.8) 

where 

2 2 2 2
1

2 2 2 2
1

2 22 2 2 2 2 2
1

( ) ;
2 ( )( );

[ ( ) 4 ].
c

c

A u b c
B u X f b c b c
C X f b c b c u

= −
= − − +

= − −

 (5.9) 

So, we get 

Zc' 
2 4

2
B B AC

A
− ± −=  (5.10) 

which may be simplified to be 
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Zc′ 
22 2 2

1
2 2

1

[ ( ) 2 ]
.

( )
cX f b c bc f u

u b c
+ ± +

=
−  

(5.11)
 

With the solution for Xc in (5.6), Zc' = Zc − c in (5.7), and the equation of (5.11) 

above, we get finally the solution for Zc as 

Zc = Zc′ + c 

22 2 2
1

2 2
1

[ ( ) 2 ]
( )

cX f b c bc f u c
u b c

+ ± +
= +

−
 

e
22 2 2

1
2 2

1 2

2 [ ( ) 2 ] .
( )( )

R f b c bc f u c
v v b c

+ ± +
= +

− −
 (5.12) 

The sign (+ or −) in (5.12) may be decided experimentally. 

5.2.2. Estimation of Lateral Car Orientation Using Wheel Shape 

Information 

Now, we want to use the image coordinates (u3, v3) and (u4, v4) of I3 and I4 

(denoted as If and Ic respectively in Step 4 of Algorithm 5.1) to derive the wheel 

orientation θ based on the values of Xc and Zc obtained previously. First, according to 

(2.2) and because Y3 = Y4 = Yc = 0, we get v3 = v4 = 0 and 

2 2
3

3 2 22 2 2
3 3 3 3

( ) ;
( )( ) 2 ( )

X f b cu
b c Z c bc Z c X Y

−=
+ − − − + +

 (5.13) 

2 2
4

4 2 22 2 2
4 4 4 4

( ) .
( )( ) 2 ( )

X f b cu
b c Z c bc Z c X Y

−=
+ − − − + +

 (5.14) 

Also, define  

Z3′ = Z3 − c; (5.15) 
Z4′ = Z4 − c. (5.16) 

Using (5.13) and (5.14) and through a similar process to that for deriving (5.11), we 

get 
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Z3′ 
22 2 2

3 3
2 2

3

[ ( ) 2 ]
( )

X f b c bc f u
u b c
+ ± +

=
−

; (5.17) 

Z4' 
22 2 2

4 4
2 2

4

[ ( ) 2 ]
( )

X f b c bc f u
u b c
+ ± +

=
−

. (5.18) 

Furthermore, with the middle point of 43PP  as the wheel center Ow, we get 

X4 = 2Xc − X3; (5.19) 

Z4 = 2Zc − Z3. (5.20) 

Combining (5.15), (5.16) and (5.20), we have 

Z4' = 2Zc − Z3' − 2c. (5.21) 

Also, (5.17) and (5.18) may be transformed into 

Z3' = X3A3; (5.22) 
Z4' = X4A4 (5.23) 

where 

22 2 2
3

3 2 2
3

[ ( ) 2 ];
( )

f b c bc f uA
u b c

+ ± +
=

−
 (5.24) 

22 2 2
4

4 2 2
4

[ ( ) 2 ].
( )

f b c bc f uA
u b c

+ ± +
=

−
 (5.25) 

Combining (5.19) and (5.21) through (5.23), we get 

3 4 3 42( ) /( ).c cX Z X A c A A= − − −  (5.26) 

And from (5.15), (5.22), and (5.26), we get 

3 3 3 4 3 4 3 4(2 2 ) /( ).c cZ Z A X A A cA cA A A= − − − −  (5.27) 

And from (5.20) and (5.27), we get 

4 3 4 3 4 4 3 4(2 2 ) /( ).c cZ X A A cA cA Z A A A= + + − −  (5.28) 

Accordingly, from (5.23) we get 

X4 = Z4'/A4 = (Z4 − c)/A4 
= (2XcA3A4 + cA3 + cA4 − 2ZcA4 − c)/[(A3 − A4)A4]. (5.31) 

With (5.26) through (5.31), we finally get the desired result 
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1 3 4

3 4
tan ( ).X X

Z Z
θ − −=

−
 

5.3 Experimental Results 

In our experiments a set of real location data of a lateral car in different postures 

were measured before corresponding images were taken to estimate the posture 

parameters Xc, Zc, and θ using the previously-derived equations. An example of the 

acquired images is shown in Fig. 5.3, in which detection of a wheel shape as an 

ellipse is also shown. Some estimation results are shown in Table 5.1. The error for Xc 

or Zc is computed as the ratio of the difference between the estimated value and the 

real one with respect to the real value. And the angle error for θ is computed similarly 

but with respect to 180o which is the angle range of the lateral car. The table shows 

that the estimated values of Xc and Yc are within 5% errors which are good enough for 

practical applications. But some angle errors are larger. The reason is that the wheel 

size in the images of these cases appeared to be small, so that the estimated angle θ is 

sensitive to the width of the horizontal wheel diameter 43 PP . 

Moreover, in Section 5.2.1 the radius of the wheel should be known in advance 

for estimating the vehicle location. However, in real cases of applying the proposed 

vehicle localization method, the type of the wheel on the vehicle is unknown in 

advance. A solution is to assume an average wheel radius, which is 20.75cm 

according to our measurement of a lot of car wheel radiuses. But this way will 

introduce errors in the estimated position values. Therefore, a simulation experiment 

was conducted to test whether the errors are tolerable or not. For this, first we project 

the wheel shape of a lateral car onto the image plane using a set of different real wheel 

radius parameters (ranging from 19.75cm to 21.75cm as measured by us). Then the 

proposed method was applied to estimate the position of the lateral car, under the 
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assumption that the radius of the wheel of the car is of the above-mentioned average 

value 20.75cm. The results are shown in Table 5.2. The average error rates of the 

position parameters are all smaller than 5%, so the use of a fixed wheel radius in 

deriving the lateral car location is considered feasible in practice. 

 

Fig. 5.3 A lateral car image with wheel shape detected as an elliptical shape. 

5.4 Concluding Remarks 

A lateral vehicle localization method by the use of a single frontal omni-camera 

has been proposed. The basic concept is to affix a single omni-camera on the bumper 

at the height of the wheel so that the mathematics involved in the analysis of the 

irregular shape of the circular wheel in the image becomes maneuverable, leading to 

the possibility of deriving analytic solutions. Experimental results show that most 

location estimation results are with error ratios smaller than 6%, which means that the 

proposed method is feasible for practical applications. 
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Table 5.2 Lateral car location estimation results. 

 

Table 5.2 Simulation results of estimating lateral car position using a fixed wheel 
radius value 20.75 cm. 

input radius of 
wheel (cm) 19.75 20.41 21.08 21.75 

position 
coordinates X Z X Z X Z X Z 

input real 
values (cm) 400 100 400 100 400 100 400 100 

estimated 
values (cm) 419.24 104.81 405.55 101.39 392.73 98.18 380.69 95.17 

error ratio 4.81% 4.81% 1.39% 1.39% −1.82% −1.82% −4.82% −4.82%
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Chapter 6                             

Adaptation of Space-Mapping Methods for 

Object Location Estimation to Camera 

Setup Changes 

6.1 Idea of Proposed Method 

The use of video cameras for various purposes, like security surveillance, 

autonomous vehicle navigation, and mobile robot applications, has been studied 

intensively in recent years. One problem encountered in these applications is object 

localization in an indoor environment using an image of the object acquired by a 

camera on an autonomous vehicle or affixed to a wall or a ceiling. The result of such 

object localization is useful for target monitoring, range finding, vehicle or robot 

guidance, etc.  

A conventional solution to the object localization problem is to conduct a work 

of camera calibration to obtain a set of camera parameters, followed by the use the 

parameters to compute the object location. In this sense, the object location estimation 

problem is regarded as equivalent to the camera calibration problem. Camera 

calibration methods often use specially landmarks or environment features to derive 

formulas or algorithms to compute camera parameters. The computation process is in 

general complicated and time-consuming. The camera used in such methods is usually 

mounted on a robot or vehicle and so is mobile, while the landmark or feature used by 

the methods is usually fixed in the environment. 

An alternative way, as mentioned previously in Chapter 1, is to use a 

space-mapping approach which transforms the image space into the real-world space 
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according to a space-mapping table. That is, the coordinates of an object point in an 

acquired image is mapped to the corresponding real-world coordinates of the point by 

a table lookup scheme. Thus, the above-mentioned camera calibration process is 

avoided, and the approach may be said to conduct direct object location estimation. 

The space-mapping table is constructed in advance, usually with the aid of a certain 

calibration pattern, before the camera is deployed in an application environment, as 

mentioned in the survey of related studies by Takeshita, Tomizawa, and Ohya [59], 

and Wang and Tsai [60]. 

The space-mapping approach to object location estimation, though faster and 

more convenient, is however sensitive to camera setup changes. That is, after a 

space-mapping table is constructed for a specific camera which was set up in an 

environment according to a certain camera-environment configuration, the camera 

should be used in the same configuration thereafter; otherwise the space-mapping 

table will not work. For example, if a space-mapping table was constructed for a 

downward-looking camera attached on a ceiling at a certain height from the floor, 

then the camera should be kept downward-looking and at the same height all the time 

when it is used for image acquisition; otherwise, object point locations in the 

real-world space obtained by table lookup will be incorrect. This weakness causes 

serious application flexibility problems in using the camera because the camera might 

be moved to different environments and set up in different ways. 

To solve such a camera-setup sensitive problem, a commonly way is to abandon 

the original space-mapping table and reconstruct a new one in the new 

camera-environment configuration. But this solution is often difficult or impossible to 

carry out after the camera is delivered to a user who does not know the mapping table 

construction process or/and has no calibration pattern for use in the process. 
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In this study, we investigate the possibility of modifying the original 

space-mapping table for use in new environments with different camera setups for 

object location estimation, without using the original calibration pattern to repeat the 

space-mapping table construction process. The camera is assumed to be affixed to the 

ceiling in this study. Note that this problem of adapting the space-mapping table to 

new camera setups has not been studied so far. 

More specifically, a method is proposed in this study to solve the 

space-mapping table adaptation problem. The original space-mapping table is not 

abandoned, but utilized instead, in such a way that its content of real-world 

coordinates is mapped further to correct values for use in the new camera setup 

environment. From the viewpoint of object location estimation, the proposed method 

may be regarded as a two-stage solution. In the first stage which is supposed to be 

conducted in the factory, the camera is set up according to a specific configuration, 

and a corresponding space-mapping table is constructed using a calibration pattern 

and a bilinear interpolation technique. Then the camera is allowed to be set up in a 

possibly different way, including ceiling height or camera orientation changes, and the 

second stage is carried out to deal with such changes by modifying the space-mapping 

table content using some formulas which are derived according to principles of image 

formation, geometry, and trigonometry. The proposed method is applicable to various 

types of cameras, including conventional camera, fish-eye camera, catadioptric 

cameras, etc. 

In the remainder of this chapter, we first describe the idea of the proposed 

two-stage object location estimation method as an algorithm in Section 6.2. 

Techniques for constructions and modifications of space-mapping tables are presented 

in Section 6.3. Some experimental results showing the feasibility of the proposed 
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method and the precision of location estimation data yielded by the method are given 

in Section 6.4, followed by conclusions and suggestions for further studies in Section 

6.5. 

6.2 Idea of Proposed Method 

The proposed object location estimation method includes two stages, one 

conducted in in-factory environments and the other in in-field ones. In the first stage 

where a camera is supposed to be manufactured, a basic space-mapping table is 

constructed using a pre-selected calibration pattern with the camera being affixed to a 

ceiling at a certain height and with its optical axis pointing downward to the floor, as 

illustrated by Fig. 6.1. In the second stage, the basic mapping table is applicable if the 

camera setup is unchanged; if not, then the change of the camera setup is identified 

into two types, namely, a ceiling height change or a camera orientation change as 

illustrated by Fig. 6.2. The basic mapping table is modified accordingly. More details 

are described in the following algorithm. 

floor

ceiling

calibration 
pattern

optical axis

camera

 
Fig. 6.1 Illustration of camera setup for space-mapping table construction in Stage 1 

of proposed method. 
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Fig. 6.2 Illustration of camera orientation change (with a tilt angle of θ). 
 

Algorithm 6.1 Space-mapping table construction and modification for object 

location estimation. 

Stage 1. Construction of a basic mapping table in the factory. 

Step 1. Affix the camera to the ceiling at height H0 with the camera’s optical axis 

pointing to the floor perpendicularly, assuming that the surfaces of the floor 

and the ceiling are both flat and mutually parallel. 

Step 2. Place a calibration pattern O right under the camera, take an image of it, 

extract all the feature points in the image, and find the image coordinates of 

them. 

Step 3. Measure the real-world coordinates of the points in the calibration pattern, 

which correspond to the extracted feature points in the image. 

Step 4. (Quadrilateral mapping) With the corresponding image and real-world 

coordinates obtained above as input, use a quadrilateral mapping technique 

to construct a basic space-mapping table T in a form like Table 6.1, which 

maps each image coordinate pair (ui, vj) to a real-world coordinate pair (xij, 

yij), that is, T: (ui, vj) → (xij, yij). 
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Stage 2. Construction of a modified space-mapping table for a new ceiling height 

or a new camera orientation in in-field environment. 

Step 5. (Ceiling-height adaptation) If the in-field camera setup to be carried out 

includes just a change of the original ceiling height H0, then perform the 

following operations to modify the basic space-mapping table T; else, go to 

the next step (Step 6). 

5.1 Affix the camera to the ceiling, measure the ceiling height with 

respective to the floor, and denote it as H1. 

5.2 Modify table T to construct a new one with H1 as input by a technique 

called ceiling height adaptation using some error-correcting formulas. 

5.3 Skip the next step and Go to Step 7 

Step 6. (Camera-orientation adaptation) Perform the following operations to 

modify the basic space-mapping table T. 

6.1 Affix the camera to the ceiling, measure the ceiling height and the 

camera’s orientation with respective to the floor, and denote them as L 

and θ. 

6.2 Modify table T with L and θ as input by a technique called camera 

orientation adaptation using some error-correcting formulas derived 

later. 

6.3 Go to the next step. 

Step 7. (Location estimation using space-mapping table T) Locate an object B in the 

real-world space using T1 in the following way. 

7.1 Acquired an image I of B with the camera. 

7.2 Detect B in I and find a feature point p on it with image coordinates (u, 

v). 
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7.3 Use (u, v) to look up T to get the real-world coordinates (x, y) of the 

real-world point P corresponding to p as the desired object location. 

 

Table 6.1 A basic space-mapping table which records relations between coordinates 
of corresponding image points and real-world points. 

 u1 u2 ... um 
v1 (x11, y11) (x21, y21) ... (xm1, ym1) 
v2 (x12, y12) (x22, y22) ... (xm2, ym2) 
... ... ... ... ... 
vn (x1n, y1n) (x2n, y2n) ... (xmn, ymn) 

 

 

6.3 Proposed Techniques for Basic Mapping Table 

Construction and Modifications for Ceiling Height and 

Camera Orientation Adaption 

6.3.1. Basic Mapping Table Construction by Quadrilateral Mapping 

The quadrilateral mapping technique mentioned in Step 4 of Algorithm 6.1 

proposed in this study constructs a space-mapping table T like Table 1 by two steps: 

finding pairs of corresponding quadrilaterals in the calibration pattern in the image 

and in that in the real world, followed by transformations of image and real-world 

coordinates of corresponding points within the quadrilaterals based on the use of a 

bilinear interpolation technique. The calibration pattern used in this study is a grid 

pattern formed by tiles on the floor, as shown in Fig. 6.3(a). Each grid is of the shape 

of a rectangle. The camera used in this study is a fish-eye one. Each grid in an image 

acquired by the camera becomes a quadrilateral when the grid is small enough, as 

assumed in this study. The quadrilateral shapes in an acquired image are extracted by 

detecting the tile corners, connecting the extracted corner points with approximating 
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quadratic curves, and segmenting areas enclosed by two orthogonal pairs of opposite 

boundary curve segments. As an example, the extraction result of Fig. 6.3(a) is shown 

in Fig. 6.3(b). in which each extracted quadrilateral consists of a pair of “vertical” red 

boundary segments and a pair of “horizontal” blue boundary segments. 

 

   
(a)                           (b) 

 
Fig. 6.3 Illustration of quadrilateral extraction using a grid pattern on floor. (a) An 

image of the grid pattern. (b) The lines approximating the grid lines. 
 

Suppose that the quadrilateral in the image plane shown in Fig. 6.4 is one of the 

quadrilaterals so extracted, corresponding to a grid on the floor. The points p1, p2, p3, 

and p4 are the four corners of the quadrilateral within which a point p lies. The 

location of the point P in the real world corresponding to p is what we want to 

estimate. The image coordinates of the corners and the point p in the image are 

denoted by (u1, v1), (u2, v2), (u3, v3), (u4, v4), and (up, vp), respectively, and their 

corresponding real-world coordinates are denoted by(x1, y1), (x2, y1), (x1, y2), (x2, y2), 

and (xP, yP), respectively, as shown in Fig. 6.5. Note that we assume the grid is a 

rectangle. 

To compute (x, y) of the real-world point P corresponding to p, we adopt the 

technique of inverse bilinear interpolation [62] We formulate first a forward bilinear 

transformation T from the real-world space to the image space and then find its 

reverse T−1, as described in the following (see Fig. 6.5 for the notations). 
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(1) Compute the weights x = (xP − x1)/(x2 − x1), y = (yP − y1)/(y2 − y1). 

(2) Perform linear interpolation in the x-direction for the upper and lower 

boundaries of the quadrilateral to get ūu = (1 − x)ū1 + xū2 and ūL = (1 − x)ū3 + 

xū4 where the vectors ū1 = [u1 v1]t, ū2 = [u2 v2]t, ū3 = [u3 v3]t, ū4 = [u4 v4]t and 

“t” means the vector transpose operation. 

(3) Perform linear interpolation in the y-direction for the line Li going through p to 

get ū = (1 − y)ūu + yūL where ū = [up vp]t. 

(4) Expand the equalities obtained in the above two steps to get ū = (1 − y)ūu + 

yūL = (1 − x)(1 − y)ū1 + x(1 − y)ū2 + (1 − x)yū3 + xyū4, or equivalently, 

up = axy + bx + cy + d; vp = exy + fx + gy + h 

where a = u3 − u2 + u1 − u4, b = u2 − u1, c = u4 − u1, d = u1, e = v3 − v2 + v1 − 

v4, f = v2 − v1, g = v4 − v1, h = v1. 

(5) Use the two equalities in the above step with the known image coordinates (up, 

vp) to solve the values of (x, y) as follows (the details omitted): 

x=
2 4

2
B B AC

A
− ± − ; y= u gx d

ax c
− −

+
 

where A = af − be, B = eup − avp + ah − de + cf − bg, C = gup − cvp + ch − 

dg. 

(6) Solve the equalities established in Step (1) to get the desired values of xP and 

yP as  

xP = x(x2 − x1) + x1; yP = y(y2 − y1) + y1. 
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Fig. 6.4 Mapping of a pair of corresponding quadrilaterals in image and in calibration 
pattern. 

 

 
Fig. 6.5 Location estimation of a real-world point by inverse bilinear interpolation. 
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6.3.2. Mapping Table Modification According to Change of Floor 

Height 

After the basic space-mapping table is obtained with the camera affixed to a 

ceiling at a certain height H0 with respect to a parallel floor surface F0, if the camera 

is used later in an environment with the ceiling height changed to another value H1 

with respect to a second parallel floor surface F1, then the basic space-mapping table 

is no more applicable, the table lookup result for location estimation becomes 

incorrect, and modification of the table content is necessary, which we call 

ceiling-height adaptation in Step 6 in Algorithm 6.1. The idea behind the proposed 

technique for this purpose is described first in the following. 

It is known that an image point p is formed in principle by any of the real-world 

points which all lie on a light ray R going into the camera’s lens and then onto the 

image plane. As illustrated in Fig. 6.6, suppose that this light ray R intersects both the 

floor surface F0 at P0 and the floor surface F1 at P1. If the image coordinates of p are 

(u, v), then the real-world coordinates (x0, y0) in the basic mapping table 

corresponding to (u, v) actually are those of P0 on F0 instead of being the desired ones, 

(x1, y1), of P1 on F1. To correct this erroneous result, we have the following equalities 

according to the concept of side proportionality in a triangle: 

0 0 0 0

1 1 1 1

;x H y H
x H y H

= = , (6.1) 

or equivalently, 

1 1
1 0 1 0

0 0

; .H Hx x y y
H H

= =  (6.2) 

That is, the table lookup result (x0, y0) corresponding to the image coordinates (u, v) of 

a real-world point P1 on floor surface F1 should be magnified in proportion to H1/H0 
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to be (x1, y1) as the desired result. Note that in the above discussion, we assume that 

the real-world coordinate system x-y-z is set up at the camera’s lens with the lens 

center as the origin and the optical axis as the z-axis. And the location of the object  

 

Fig. 6.6 Illustration of using side proportionality to compute coordinates of point P1 
on a floor F1 with ceiling height H1. 

point P described by (x1, y1) is measured with respect to this coordinate system. Also, 

by a camera height, we mean more precisely the distance from the lens center right 

down to the floor. 

6.3.3. Mapping Table Modification According to Change of Camera 

Orientation 

Assume now that the camera is affixed to the ceiling with a tilt angle of θ and a 

height of L with respect to floor F1, as illustrated in Fig. 6.7. Here, the location of the 

object point P1 on F1, which we want to estimate, is specified by the real-world 
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coordinates (x1, y1) with respect to the downward projection point O of the camera’s 

lens center onto F1, where the x-axis is assumed to be coincident with the projection 

of the camera’s optical axis on F1. Let the coordinates of P1 in the acquired image be 

(u, v). Again the space-mapping table is inapplicable here; the table lookup result, the 

real-world coordinates (x0, y0), are actually those of a real-world point on a floor 

surface F0 at a distance of H0 to the camera’s lens center, instead of being the desired 

real-world coordinates (x1, y1) of P1 on F1. Table modification is necessary, which is 

called camera orientation adaptation in Step 6 of Algorithm 6.1. 

To correct the values (x0, y0) into (x1, y1), we rotate floor surface F1 through an 

angle of 90o − θ with P1 as the rotation pivot point, such that the resulting surface 

plane F1' becomes perpendicular to the camera’s optical axis and the lateral view of 

the rotation result seen from the positive y-axis direction becomes the one shown in 

Fig. 6.8. The original floor surface F0 is also shown in the figure. 

Assume that the distance of P1 on F1' to the camera’s optical axis is x'. Then, 

according to the concept of side proportionality again, we have 

0 0

1

x H
x' H

= . (6.3) 

Also, by geometry and trigonometry we have 

sin x'
M

θ = ; (6.4) 

0

sin L
N H

θ =
+

; (6.5) 

1

0

cos x M
N H

θ −
=

+
; (6.6) 

1 0( )cos H N H
M

θ − +
= . (6.7) 
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Fig. 6.7 Illustration of a tilted camera with angle θ with respect to the x-axis of the 
real-world coordinate system. 

 

 

Fig. 6.8 Lateral view (from the positive y-axis direction) of rotation result of floor 
surface F1 in Fig. 6.7 through an angle of 90o − θ with P1 as the rotation 
pivot point. 
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From (6.5) and (6.6), we get N +H0 = L/sinθ = (x1 − M)/cosθ, or equivalently,  

(x1 − M)sinθ = Lcosθ. (6.8) 

Also, from (6.3) and (6.4), we get x0M/sinθ = H0/H1, or equivalently,  

0
1

0

sinHH
x M

θ
= . (6.9) 

And from (6.5), (6.7) and (6.9), we get 

0

0

sincos
sin

H M LM
x

θθ
θ

= − , 

or equivalently, 

0

0 0sin sin cos
xLM

H xθ θ θ
= ×

−
. (6.10) 

From (6.8) and (6.10), we get 

x1 = 0

0 0

(cot csc )
cos sin

xL
x H

θ θ
θ θ

− ×
−

 

which can be reduced to be 

x1 = 0 0

0 0

cos sin
sin cos

H xL
H x

θ θ
θ θ

+
×

−
. (6.11) 

As a verification of the above equality, when θ = 90o, it reduces to x1 = L×(x0/H0) = 

x0×(L/H0), which exactly is the case described by Eqs. (6.2) and depicted by Fig. 6.6. 

The correctness of (6.11) may also be seen from Fig. 6.9 because according to 

trigonometry we have H0cosθ = a, x0sinθ = b, H0sinθ = c + d, x0cosθ = d, so that 

0 0

0 0

cos sin
sin cos

H xL
H x

θ θ
θ θ

+
×

−
 = 

( )
a bL

c d d
+

×
+ −

 = a bL
c
+

×  = Lcotθ' = x1 (6.12) 

which is just (6.11). 
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Fig. 6.9 Illustration for verification of correctness of Eq. (6.11). 

 

On the other hand, because the x-axis on F1 is assumed to be coincident with the 

projection of the camera’s optical axis on F1, and because the rotation of F1 into F1' is 

pivoted in the y-direction, we have y' = y1. Also, according to Eqs. (6.2) we have 

1

0 0 0

y' H x'
y H x

= = . Therefore, 

y1 = y'= 0
0

x'y
x

. (6.13) 

From (6.4), (6.10) and (6.13), we can get 

y1 = 0

0 0sin cos
yL

H xθ θ
×

−
. (6.14) 

As a verification of (6.14), when θ = 900, it reduces to y1 = L×(y0/H0) = y0×(L/H0) 

which is again exactly the case described by Eqs. (6.2) and depicted by Fig. 6.6. The 

correctness of (6.14) may also be seen from Fig. 6.10 which is a lateral view of Fig. 
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6.8 from the positive x-axis direction, because from the previous analysis of (6.12), 

we have H0sinθ − x0cosθ = c so that 

0

0 0sin cos
yL

H xθ θ
×

−
= 0yL

c
×  = Lcotθ1 = y1 (6.15) 

which is just (6.14). 

 

Fig. 6.10 Lateral view of Fig. 6.8 from direction of positive x-axis for verification of 
correctness of Eq. (6.14). 

 

6.4 Experimental Results 

A series of experiments have been conducted to test the correctness and 

precision of the proposed method for object location estimation. The fish-eye camera 

used in the experiments is shown in Fig. 6.11. It is attached to a rotator connected to a 

rod with an adjustable length. The camera can so be tilted arbitrarily by rotating the 

rotator, and raised to any height by adjusting the rod length, to simulate environments 
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of different ceiling heights and camera orientations. An image taken with the camera 

looking right downward (i.e., with the tilt angle of 90o) is shown in Fig. 6.3. We show 

additionally here three images (Figs. 6.12(a) through 12(c)) taken with the camera in 

three distinct setups, which are used in our experiments reported in this section: (1) 

looking downward at the ceiling height of 200cm; (2) looking downward at the 

ceiling height of 250cm; (3) tilted for the angle of 50o at the ceiling height of 200cm. 

The images are all of the resolution of 1280×1024. 

 

 

Fig. 6.11 Fish-eye camera used in this study, which is attached to a rod fixed on 
ceiling and can be tilted and moved up and down. 

 

Case (1) is regarded as the original camera setup configuration used in the 

factory for building a basic space-mapping table. After the image of Fig. 6.12(a) was 

taken with the downward-looking camera at the ceiling height of 200cm, all the grid 

points in the image are extracted to get their image coordinates, forming a set denoted 

by Ic. Also, the real-world coordinates of each grid point are measured manually to 

form a set denoted by Wc. The two sets Ic and Wc of coordinate data are then used to 

construct a basic space-mapping table T by the process described in Section 6.3.1. To 

test the precision of the constructed table T, nine non-grid points among the grid ones, 
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which also appear in Fig. 6.12(a), were selected and their image coordinates collected 

to form a set Ic'. Also, the real-world coordinates of these non-grid points are 

measured manually to form another set Wc'. The set Ic' then is used to obtain their 

corresponding real-world coordinates by table lookup using T, forming a set denoted 

Wc''. Finally, the two sets Wc' and Wc'' are compared and two types of error ratio 

measures are defined to compute the similarity between them as follows. 

(1) Type 1 --- location error ratio with respect to the distance from the real-world 

point to the camera’s lens center: 

location error ratio =
2 2

2 2 2

( ) ( )i i i i

i i

real x estimated x real y estimated y

real x real y L

− + −

+ +
 

where real xi and real yi are data in Wc' and estimated xi and estimated yi are 
data in Wc''. 
 

(2) Type 2 --- location error ratio with respect to the effective field of view of the 

camera (see Fig. 6.13):  

location error ratio =
2 2( ) ( )

radius of effective camera's field of view
i i i ireal x estimated x real y estimated y− + −

. 

 

The computed results for the two types of error ratios are summarized as a table 

as shown in Table 6.2, from which we can see that the ratios are all small then 5% 

which is practical for object location estimation applications like robot or vehicle 

guidance in indoor environments. 

For Case (2), the camera, still looking downward, was affixed at a different 

height of 250cm and the previously-mentioned process of error ratio computation was 
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(a)                              (b) 

 

 
(c) 

Fig. 6.12 Images used for experiments reported here. (a) Taken with camera looking 
downward at ceiling height of 200cm. (b) Taken with camera looking 
downward at ceiling height of 250cm. (c) Taken with camera tilted for 50o 
at ceiling height of 200cm. 

 

 

Fig. 6.13 Effective field of view of camera measured by radius of an enclosing red 
circle. 

 

repeated after the proposed method was applied to the image of Fig. 6.12(b). The 

results were again summarized as a table shown in Table 6.3, from which we can see 

that the ratios are all small then 5% as well. 
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Table 6.2 Error ratios with camera looking downward at ceiling height 200cm. 

real x  
(cm) 

estimated x 
(cm) real y (cm) estimated y  

(cm) 
distance to 
origin (cm)

type-1 error 
ratio 

type-2 error 
ratio 

-7 -8 -24 -23 25 0.7% 0.4% 

-37 -36 36 36 52 0.5% 0.3% 

-20 -20 96 94 98 0.9% 0.6% 

-45 -44 -107 -106 116 0.6% 0.4% 

-111 -112 -55 -56 124 0.6% 0.4% 

-140 -140 62 60 153 0.8% 0.6% 

-229 -228 -101 -104 250 1.0% 1.0% 

-253 -257 76 82 264 2.2% 2.3% 

-320 -317 -15 -15 320 0.8% 0.9% 

Table 6.3 Error ratios with camera looking downward at ceiling height 250cm. 

real x  
(cm) 

estimated x 
(cm) real y (cm) estimated y  

(cm) 
distance to 
origin (cm)

type-1 error 
ratio 

type-2 error 
ratio 

-7 -9 -24 -23 25 0.9% 0.7% 

-37 -38 36 37 52  0.6% 0.4% 

-20 -21 96 94 98  0.8% 0.7% 

-45 -48 -107 -109 116  1.3% 1.1% 

-111 -117 -55 -57 124  2.3% 2.0% 

-140 -145 62 62 153  1.7% 1.6% 

-229 -238 -101 -110 250  3.6% 4.0% 

-253 -264 76 80 264  3.2% 3.7% 

-320 -335 -15 -14 320  3.9% 4.7% 

Similarly, for Case (3) where the camera was affixed at the ceiling height 200cm 

and tilted for 50o, the error ratio table constructed for the image of Fig. 6.12(c) is 

shown in Table 6.4, from which we see that the ratios are not all small then 5% this 

time; some are larger (6.0% and 7.1% for the last row in the table). The reason for this 

phenomenon is that the object point dealt with is located at (-320, -15) which is quite 

far away from the center of the image, falls within a distorted-shaped quadrilateral, 

and so incurs a larger error in the process of quadrilateral mapping described in 

Section 6.3.1. 
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Table 6.4 Error ratios with camera looking downward at ceiling height 250cm. 

real x  
(cm) 

estimated x 
(cm) real y (cm) estimated y  

(cm) 
distance to 
origin (cm)

type-1 error 
ratio 

type-2 error 
ratio 

-7 -7 -24 -22 25 1.0% 0.6% 

-37 -38 36 34 52  1.1% 0.7% 

-20 -21 96 90 98  2.7% 1.9% 

-45 -42 -107 -103 116  2.2% 1.6% 

-111 -110 -55 -60 124  2.2% 1.6% 

-140 -141 62 58 153  1.6% 1.3% 

-229 -238 -101 -110 250  4.0% 4.0% 

-253 -271 76 81 264  4.5% 4.6% 

-320 -340 -15 -26 320  6.0% 7.1% 

 

For Case (4) where the camera was affixed at the ceiling height 200cm but tilted 

for 90o (looking down), 70o, and 50o, respectively, the error ratio table is shown in 

Table 6.5, from which we see that the average error ratios are slightly increased by 

1~2% as the titled angle changes. For the similar reason as Case (3), the larger change 

occurs only in the positions far away from the image center. 

Two possible applications of the proposed method are guidance of autonomous 

vehicles for human tracking and security patrolling, which were conducted in our 

laboratory. Two images taken in such application studies are shown in Fig. 6.14. The 

vehicle location estimation results using the proposed method were used for path 

correction and planning in these studies. 

6.5 Concluding Remarks 

A general space-mapping method for object location estimation by modifications 

of the basic space-mapping table to adapt it to camera setup changes has been 

proposed. The method does not require the conventional camera calibration process, 

and is general for any type of camera. The method estimates the location of an object 

by mapping the image coordinates of an object point to the real-world coordinates of 
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the point using a space-mapping table. An algorithm is designed to construct the table, 

which consists of two stages with the first stage for constructing a basic 

space-mapping table using a bilinear interpolation technique and the second stage for 

modifying the basic table to adapt it to changes of camera setups, including camera  

Table 6.5 Error ratios with camera at ceiling height 200cm for different tilted angle 
90o (looking down), 70o, and 50o. 

real x,y  
(cm) 

Titled for 90o Titled for 70o Titled for 50o 

estimated 
(x,y) (cm) 

error ratio 
(type-1, 
type-2) 

estimated 
(x,y) (cm) 

error ratio 
(type-1, 
type-2) 

estimated 
(x,y) (cm) 

error ratio 
(type-1, 
type-2) 

(-7,-24) (-8,-23) (0.7%,0.4%) (-7, -22) (1.0%,0.6%) (-7,-22) (1.0%,0.6%)

(-37,36) (-36 36) (0.5%,0.3%) (-37,52) (1.5%,0.9%) (-38,34) (1.1%,0.7%)

(-20,96) (-20,94) (0.9%,0.6%) (-22,94) (1.3%,0.9%) (-21,90) (2.7%,1.9%)

(-45,-107) (-44,-106) (0.6%,0.4%) (-45,103) (1.7%,1.2%) (-42,-103) (2.2%,1.6%)

(-111,-55) (-112,-56) (0.6%,0.4%) (-115,-58) (2.1%,1.6%) (-110,-60) (2.2%,1.6%)

(-140,62) (-140,60) (0.8%,0.6%) (-144,66) (2.2%,1.8%) (-141,58) (1.6%,1.3%)

(-229,-101) (-228,-104) (1.0%,1.0%) (-224,-95) (2.4%,2.4%) (-238,-110) (4.0%,4.0%)

(-253,76) (-257,82) (2.2%,2.3%) (-259,82) (2.6%,2.6%) (-271,81) (4.5%,4.6%)

(-320,-15) (-317,-15) (0.8%,0.9%) (-330,-16) (2.7%,3.1%) (-340,-26) (6.0%,7.1%)

average error ratio 

 (type-1, type-2) 
(0.9%,0.7%)  (1.9%,1.7%)  (2.8%,2.6%)

 

height and orientation adjustments, which often occur after the camera is delivered to 

a user for uses in the application environment. The proposed techniques for table 

modifications are based on a concept of image formation by light rays as well as 

several properties of geometry and trigonometry. Such a problem of adapting the 

space-mapping method to camera-setup changes has not been studies before. 

Experimental results show that the method yields location estimation results with 

error ratios smaller than 5% in most cases, which means that the proposed method is 

practical for applications like robot or vehicle guidance. Future studies may be 

directed to applying the proposed method to more application fields, as well as 
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extending the method to outdoor environments. Modifications of the method for more 

complicated camera structures like omni-camera pairs [16] or two-mirror 

omni-cameras [63] are also worth investigations. 

 

        
(a) (b) 

Fig. 6.14 Illustrative images of applications of proposed location estimation method 
for autonomous vehicle guidance in an indoor environment (a laboratory 
where this study was conducted). (a) An image acquired by a 
downward-looking camera affixed on ceiling. (b) A processed image in 
which autonomous vehicle center (white point) was detected for vehicle 
location estimation. 
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Chapter 7                             

Unwarping of Images Taken by Misaligned 

Omni-cameras without Camera Calibration 

by Curved Quadrilateral Morphing Using 

Quadratic Pattern Classifiers 

7.1 Idea of Proposed Method 

As mentioned previously, omni-cameras are getting popular for various 

applications owing to their advantage in providing greater FOVs in acquired 

omni-images. A dioptric omni-camera captures incoming light through the camera 

lens to form images. An example is the fish-eye camera [13]. A catadioptric 

omni-camera has, in addition to a CCD camera, a reflective mirror, and captures 

indirect light reflected by the mirror to form images. The mirror surface may be of 

various shapes, like conic, parabolic, hyperbolic, spheric, etc. A catadioptric 

omni-camera with a parabolic mirror used in this study is shown in Fig. 1.1(a), in 

which a transparent plastic hollow cylinder is used to support the mirror at a distance 

from the CCD camera placed on a platform. The structure of the camera is illustrated 

in Fig. 7.1(a). If all the reflected light rays go through a common point, the camera is 

said additionally to have a single-viewpoint (SVP) [64]; otherwise, a 

non-single-viewpoint (non-SVP) [3]. 

Omni-images, though providing wider FOVs, are warped in nature. In many 

applications, it is necessary to transform them into unwarped images. Such an image 

unwarping work usually involves camera calibration, in which the intrinsic and 
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extrinsic camera parameters are estimated, followed by the derivation of equations to 

transform image coordinates into unwarped versions [71]. The camera calibration 

process, presumably conducted in the camera manufacturing process, is in general 

complicated and time-consuming. After a calibrated camera is equipped in an 

application environment (e.g., installed on a vehicle, attached on a house ceiling, etc.) 

and used for application purposes, it is usually assumed that the camera structure is 

fixed stably forever, incurring no change of the camera parameters. 

However, in real applications like vision-based autonomous vehicle navigation 

or security surveillance, a camera equipped on a vehicle might be shaken due to 

vehicle vibrations or one installed on a wall might be removed due to re-employment, 

causing possibly camera misalignment as mentioned previously, which causes 

displacements or/and re-orientations of the CCD camera with respect to the reflective 

mirror. The previously-mentioned non-SVP property is actually a type of camera 

misalignment with both the optical axis through the lens center and the mirror axis 

through the mirror center being axially displaced with respect to each other, resulting 

in destruction of the SVP into a locus called a caustic surface [3]. We will call such a 

kind of camera structure change axial-directional camera misalignment. An 

illustration is shown in Fig. 1(b). Note that usually the optical axis is assumed to be 

coincident with the mirror axis and that the distance of the CCD camera to the mirror 

surface is usually adjusted properly in advance to form the SVP property. 

Another type of camera misalignment is re-orientation of the CCD camera with 

respect to the mirror surface, resulting in destruction of the coincidence of the optical 

axis with the mirror axis. Such misalignment, seldom studied, not only destructs the 

SVP property [34] but also the rotational invariance property in omni-images, used 

by almost all existing image unwarping methods to simplify computation [71]. We 
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will call such a kind of camera structure change lateral-directional camera 

misalignment. An illustration is shown in Fig. 7.1(c). Note that the rotational 

invariance property says that the angle of an incoming light ray of a scene point is 

identical to that of the corresponding image point in the image space. An image taken 

by a correctly-aligned catadioptric omni-camera and another taken by a 

lateral-directionally misaligned one are shown in Figs. 3(a) and 3(b), respectively, for 

illustration. 

 

 

(a)                     (b)                    (c) 

Fig. 7.1 Alignment of catadioptric omni-camera. (a) Correct alignment. (b) 
Axial-directional misalignment. (c) Lateral-directional misalignment. 

 

      
(a)                            (b) 

Fig. 7.2 Images of a color pattern acquired by a catadioptric omni-camera. (a) Image 
taken with the camera correctly-aligned. (b) Image taken the camera 
misaligned. 

 

Camera misalignment causes conventional image unwarping methods 

inapplicable because of the resulting changes of the camera parameters. It is desired in 
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this study to design a general image unwarping method which can solve this problem 

in the application environment without camera calibration which is usually done in 

the factory. Such an in-field method is useful for applications where sending 

misaligned cameras back to factories for re-calibration is undesirable or impractical. 

For this goal, the idea of a mapping-based approach proposed recently by Jeng 

and Tsai [36] is adopted. This approach does not conduct camera calibration to 

estimate camera parameters, but creates a so-called pano-mapping table as a 

substitute of camera parameters for image unwarping. It is unified and integrated in 

nature, applicable to unwarping of images taken by any type of CCD camera as well 

as any type of reflective mirror surface. 

More specifically, the proposed method has two stages, the first being assumed 

to be conducted in the factory and the second in the in-field environment. In the first 

stage, it assumed that the camera is correctly aligned to take images, which we call 

undistorted images. A pano-mapping table is then created according to Jeng and Tsai 

[36], which defines a coordinate mapping function from the real-world space to the 

omni-image space. It can be used to unwarp an omni-image into a panoramic or a 

perspective-view image. In the second stage where the camera is lateral-directionally 

misaligned, a distortion correction table is created first, which maps undistorted 

images to distorted ones taken by the camera. The table then is combined with the 

pano-mapping table to create a composite mapping from the real-world space to the 

distorted image space, in the form of a third table, called misalignment adjustment 

table. Such a table is finally used for unwarping distorted images into panoramic 

images in the real-world space. 

In generating the distortion correction table which is essentially an image 

mapping between patches of a distorted image and those of an undistorted one, a new 
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image morphing technique proposed in this study is applied. The technique is based 

on the use of the quadratic classifier in pattern recognition theory for two-class pattern 

classification. The use of such quadratic classifiers improves the precision of the 

morphing result of the conventionally-adopted bilinear mapping technique, because 

the corresponding patches in this study have curved boundaries instead of linear ones. 

Furthermore, the misalignment adjustment table is invariant in nature with respective 

to the camera position, so that the table is applicable wherever the camera is moved. 

In the remainder of this chapter, we describe the proposed two-stage 

mapping-based image unwarping method as an algorithm in Section 7.2, present the 

proposed image patch morphing technique using quadratic classifiers in Section 7.3, 

show some experimental results in Section 7.4, and make concluding remarks finally 

in Section 7.5. 

7.2 Proposed Mapping-based Image Unwarping Method 

In this section, Jeng and Tsai’s method [36] used in the proposed image 

unwarping method are reviewed first, followed by the description of the proposed 

method. 

A. Review of a mapping-based image unwarping method 

The pano-mapping table proposed by Jeng and Tsai [36] is created once forever 

by a simple learning process for a non-lateral-directionally misaligned omni-camera 

with any type of reflective mirror surface as a summary of the information conveyed 

by all the camera parameters. The learning process takes as input a set of landmark 

points on a calibration object in the world space and the set of corresponding points 

in a given image. For example, as illustrated in Fig. 7.3, P1 and P2 are two landmark 

points in the real world, and p1 and p2 are the corresponding image points, 
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respectively. More generally, let the coordinates of each real-world point P be denoted 

as (θ, ρ), and those of its corresponding image pixel p as (u, v). The pair (θ, ρ) 

describes the azimuth angle and the elevation angle of an incident light ray coming 

from P and reflected by the mirror surface to go through the lens center, yielding the 

corresponding image pixel at (u, v) on the image plane. Accordingly, the 

pano-mapping table is designed to be 2D in nature with the horizontal and vertical 

axes specifying the possible ranges of θ and ρ in M and N increments, respectively, as 

shown in Table 7.1. Each entry Eij with indices (i, j) in the table specifies a pair (θi, ρj), 

which defines an infinite set Sij of real-world points on the light ray with azimuth 

angle θi and elevation angle ρj. These real-world points in Sij are all projected onto an 

identical pixel pij in an omni-image taken by the camera, forming a pano-mapping, 

denoted as fpm, from Sij to pij. An illustration of this mapping is shown in Fig. 7.4. This 

mapping is shown in the table by filling entry Eij with the coordinates (uij, vij) of pixel 

pij in the omni-image. 
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Table 7.1 A pano-mapping table of size M×N. 

 θ1 θ2 θ3 θ4 … θM 
ρ1 (u11, v11) (u21, v21) (u31, v31) (u41, v41) … (uM1, vM1) 
ρ2 (u12, v12) (u22, v22) (u32, v32) (u42, v42) … (uM2, vM2) 
ρ3 (u13, v13) (u23, v23) (u33, v33) (u43, v43) … (uM3, vM3) 
ρ4 (u14, v14) (u24, v24) (u34, v34) (u44, v44) … (uM4, vM4) 
... … … … … … … 
ρN (u1N, v1N) (u2N, v2N) (u3N, v3N) (u4N, v4N) … (uMN, vMN)
 

 

Fig. 7.4 Mapping between pano-mapping table and omni-image. 
 

Under the assumption of correct camera alignment which leads to the rotational 

invariance property, Jeng and Tsai [36] derived the following equations for computing 

the values (uij, vij) of each entry in the table: 

 θi = i × (2π/M), for i = 0, 1, …, M − 1; 

 ρj = j × [(ρe − ρs)/N] + ρs, for j = 0, 1, …, N − 1; 

 rj = fr(ρj) = a0 + a1×ρ1 + a2×ρ2 + a3×ρ3 + a4ρ4; 

 uij = rj×cosθi; 

 vij = rj×sinθi 

where ρe and ρs specify the maximum and the minimum of the elevation angles of the 

omni-camera, respectively; fr(ρ) is a nonlinear function specifying the relation 

between the elevation angle ρ of a real-world point P and the radial distance r from 

the corresponding image pixel p at coordinates (u, v) in the omni-image to the image 
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center; and the coefficients a0 through a4 of fr(ρ) are estimated using the image and 

real-world coordinate data of the previously-mentioned corresponding landmark point 

pairs. Note that the rotational invariance property notationally means the azimuth 

angle θ of each real-world point P on the light ray is identical to the angle φ of the 

corresponding image pixel p with respect to the u-axis in the input image. That is, the 

azimuthal mapping is just an identity function fa such that fa(θ) = φ =θ. 

As illustrated laterally in Fig. 7.5, with the pano-mapping table Tpm generated as 

above and a given omni-image G, a panoramic image Q of size MQ×NQ with height H 

at distance D from the omni-camera may generated by mapping first each image pixel 

qkl in Q at coordinates (k, l) to an entry Eij in Tpm filled with coordinates (uij, vij) using 

the parameters MQ, NQ, D, and H, followed by assigning the color value of the image 

pixel pij of G at (uij, vij) to pixel qkl. The formulas for computing the indices i and j in 

this process are as follows: 

i = 
Q

Mk
M

× ;   Hq = 
Q

Hl
N

× ;   ρq = 1tan ( )qH
D

− ;   j = 
( )

( )
q s

e s

Nρ ρ
ρ ρ
− ×

−
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B. Proposed method for unwarping images taken by a misaligned omni-camera 

When the omni-camera is lateral-directionally misaligned as illustrated in Fig. 

7.1(c), the taken image is distorted with respect to the undistorted image taken with a 

correctly-aligned or axially-misaligned omni-camera as illustrated in Figs. 1(a) and 

1(b), respectively. For the above Jeng and Tsai method [36], which essentially is the 

pano-mapping fpm: (θq, ρq) → (uij, vij), to be applicable, the distorted image 

coordinates (uij', vij') must be corrected in advance. From the viewpoint of image 

unwarping, each undistorted image pixel has a corresponding distorted one, so that 

there exists a distortion-mapping function fdm: (uij, vij) → (uij', vij'), resulting in a 

composite mapping fdm。fpm: (θq, ρq) → (uij, vij) → (uij', vij'), or integrally, fma: (θq, ρq) → 

(uij', vij') as the overall solution to the image unwarping problem investigated in this 

study, where fma = fdm。fpm. The function fma will be called misalignment adjustment 

function. 

One way to construct the nonlinear distortion-mapping function fdm is to 

decompose the involved image part piecewisely into very small patches so that the 

ρe 

Fig. 7.5 Lateral-view configuration for generating a panoramic image. 
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resulting subimage mappings become approximately linear. This requires implicitly 

the creation of a lot of feature points in the involved image part for use in the image 

decomposition. Instead of adopting this linearization technique, the solution proposed 

in this study allows the subimages to be processed nonlinearly. Such subimages come 

from the segmentation of the image of a calibration pattern designed for use in this 

study, consisting of parallel straight lines and attached on the transparent cylinder of 

the camera, as shown in Fig. 7.6(a). Each subimage is a “fan-shaped” curved 

quadrilateral appearing in image part of the calibration pattern, as shown in Fig. 

7.6(b). 

 
(a) A calibration pattern wrapping transparent cylinder of camera. 

 

 
(b) Image of calibration pattern consisting of “fan-shaped” curved quadrilaterals. 

Fig. 7.6 Configuration of an omni-camera wrapped with a calibration pattern. 
 

The calibration pattern consists of two sets of calibration lines, one set 

horizontal and the other set vertical. The lines are drawn in two colors: blue and 
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purple. The blue ones, called start lines, are provided for facilitating line 

correspondence. The proposed image unwarping procedure are described in the 

following. 

Algorithm 7.1 Creation of misalignment adjustment table and image unwarping. 

Stage 1. Generation of a pano-mapping table in the factory for a non-lateral- 

directionally misaligned omni-camera. 

Step 1. Wrap the transparent cylinder of the camera with the calibration pattern Oc 

shown in Fig. 7.6(a), take an image of Oc as a reference image, and denote it 

as Io. 

Step 2. Apply Jeng and Tsai [36] to Io to yield a pano-mapping table with mapping 

function fpm. 

Stage 2. Generation of a misalignment adjustment table and unwarping of input 

distorted omni-images in the field. 

Step 3. Wrap the transparent cylinder of the omni-camera, already 

lateral-directionally misaligned, with the calibration pattern Oc, take an 

image of Oc as a working image, and denote it as Iw. 

Step 4. (Calibration line correspondence) Perform the following steps to find 

corresponding calibration lines in Io and Iw. 

4.1 Segment the calibration lines in images Io and Iw (appearing as curves), 

based on the color information (blue and purple) and the edge strengths 

of the lines --- classify a pixel with a sufficiently large weighted sum 

of its color and edge values as belonging to a calibration line. 

4.2 Find corresponding horizontal and vertical calibration lines in Io and Iw 

respectively by numbering the lines starting from the blue start lines --- 
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decide two lines numbered the same from two corresponding blue start 

lines as a corresponding pair. 

Step 5. (Curved Quadrilateral correspondence) Perform the following steps to find 

corresponding curved quadrilaterals in Io and Iw, like those illustrated in Fig. 

7.7. 

5.1 Cut each corresponding horizontal calibration line pairs in Io and Iw into 

corresponding curve segments using the intersection points of each 

horizontal line with all the vertical calibration lines. 

5.2 Find in order every corresponding curved quadrilateral pair in Io and Iw 

by use of the corresponding curve segments. 

Step 6. (Curved Quadrilateral morphing) For each pair of corresponding curved 

quadrilaterals, find corresponding points between them with a quadratic 

classification scheme (described later in the next section), resulting in a 

quadrilateral-morphing function. 

Step 7. (Creation of a distortion-mapping function) Perform the following steps to 

create a distortion-mapping function. 

7.1 Collect all the quadrilateral-morphing functions to create a 

distortion-mapping function fdm, which maps the coordinates of Io to 

those of Iw. 

7.2 Compose fdm and fpm to create a misalignment adjustment function fma = 

fdm。fpm in the form of a table Tma, called misalignment adjustment table, 

as the desired mapping from the real-world space to the distorted 

image space. 

Step 8. (Unwarping input distorted omni-images) Perform the following steps to 

unwarp input distorted images into panoramic ones. 
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8.1 Remove the calibration pattern Oc from the omni-camera and take an 

image If. 

8.2 Define a panoramic image Ip to be generated and compute the azimuth 

angle θ and elevation angle ρ for each pixel P in Ip according to the 

posture of Ip. 

8.3 Acquire from the misalignment adjustment table Tma the coordinate pair 

(u', v') at the entry indexed by the pair (θ, ρ). 

8.4 Fill the pixel P in Ip with the color value of the pixel at coordinates (u', 

v') in If. 

 

 
Fig. 7.7 Curved quadrilaterals forming a mutual corresponding pair. 

 
The misalignment adjustment table created in Step 7 of the above algorithm is 

designed to be of the same form as that of the pano-mapping table as shown in Table 

6.1, except that the table entries are filled with “distorted” coordinates (u', v') of the 

working image and that the index for the entries is the coordinate pair (u, v) of the 

reference image, like Table 7.2. 
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7.3 Curved Quadrilateral Morphing Using Quadratic 

Classifiers 

In this section, the idea of the proposed technique for curved quadrilateral 

morphing using quadratic classifiers mentioned in Step 6 of Algorithm 7.1 is 

presented first. Then the adopted quadratic classification technique [73] is reviewed, 

followed by a detailed description of the proposed curved quadrilateral morphing 

technique as an algorithm. 

A. Basic idea 

A curved quadrilateral in the reference image Io or in the working image Iw is a 

region enclosed by four curve boundaries. Fig. 7.7 illustrates two corresponding 

curved quadrilaterals Ho and Hw from Io and Iw, respectively. The goal of curved 

quadrilateral morphing is to find corresponding pixels in Ho and Hw for use in the 

distortion mapping function mentioned Step 7 in Algorithm 7.1. 

Table 7.2 A misalignment adjustment table of size M×N. 

 v1 v2 v3 v4 … vM 
u1 (u11', v11') (u21', v21') (u31', v31') (u41', v41') … (uM1', vM1')
u2 (u12', v12') (u22', v22') (u32', v32') (u42', v42') … (uM2', vM2')
u3 (u13', v13') (u23', v23') (u33', v33') (u43', v43') … (uM3', vM3')
u4 (u14', v14') (u24', v24') (u34', v34') (u44', v44') … (uM4', vM4')
... … … … … … … 
uN (u1N', v1N') (u2N', v2N') (u3N', v3N') (u4N', v4N') … (uMN', vMN')

 

Since the boundaries of the curved quadrilaterals here are all curves, the usual 

way of bilinear transformation for morphing quadrilaterals with line boundaries [65] 

is inapplicable here. It is desired to generate interpolating curves between the two 

opposite curves of each boundary pairs, with the interpolating curves dividing each 

boundary curve into equal-distanced segments, as illustrated by Fig. 7.8. That is, for 

example, the curve segments a, b, c, and d of the upper boundary of the quadrilateral 
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resulting from such boundary division in Fig. 7.8 are all of equal lengths, and so are 

the four curve segments e, f, g, and h of the left boundary of the quadrilateral. 

Furthermore, the curve segments formed by mutual intersections of the interpolating 

curves within the four boundaries also all have this equal-lengthed property. 

 

 
Fig. 7.8 Illustration of a curved quadrilateral with boundaries and interpolating curves 

segmented into equal-lengthed segments (a through d are all of equal lengths; 
e through h are similar, and so on). 

 
We propose to accomplish the above idea of interpolating curve generation in a 

recursive manner instead of directly dividing each boundary curve into a number of 

equal-lengthed segments. That is, we divide recursively each of every pair of 

corresponding curved quadrilaterals into smaller quarter ones and consider the centers 

of the resulting quarter curved quadrilaterals as corresponding points in the original 

corresponding curved quadrilaterals. For this purpose, we try to find the middle point 

of each boundary curve, resulting in two pairs of “opposite” middle boundary points. 

For example, in Fig. 7.8 the two pairs are (A, C) and (B, D). The center of a curved 

quadrilateral is defined to be the point at equal distances to the two middle boundary 

points in each pair. This point in Fig. 7.8 is M. It will be called the central 

quadrilateral point in the sequel. 

To find the middle boundary point of a curve boundary V of a curved 

quadrilateral, say, with two end points E and F, we adopt an approximation method as 

follows: (1) connect E and F into a line segment EF ; (2) find the bisecting point G 
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of EF ; (3) find the line LEF going through G and perpendicular to EF , and call it 

the perpendicular bisecting line of E and F; and (4) find the intersection point S of 

LEF and V as the desired middle boundary point. Note that S is at equal distances to A 

and C because of the bisection and perpendicularity property of L. The point S found 

in this way is just an approximation of the real middle boundary point, but it will 

become more accurate when the boundary curve is more symmetric with respect to 

the perpendicular bisecting line, as can be easily figured out. For our study here, since 

the distortion owing to camera misalignment is usually not too serious, this 

approximation is within allowable tolerance according to our experimental experience. 

An illustration of finding the middle boundary points of a quadrilateral is shown in 

Fig. 7.9(a). 

To find the central quadrilateral point, say, for the case shown in Fig. 7.9(a), we 

adopt another approximation process which finds the perpendicular bisecting line LAC 

of the middle boundary points A and C as well as the perpendicular bisecting line LBD 

of the middle boundary points B and D, and then compute the intersection point M of 

LAC and LBD as the desired result. An illustration of the result of this process for Fig. 

7.9(a) is shown in Fig. 7.9(b). 

After the central quadrilateral point is found, the next step is to cut the original 

curved quadrilateral into four quarter ones. For this purpose, we have to find the 

curves which enclose each quarter curved quadrilateral. Such curves should go 

through the central quadrilateral point, as illustrated by the two blue curves in Fig. 7.8. 

To find such interpolating curves, we adopt the quadratic classification technique used 

in pattern recognition theory, as reviewed in the following. 
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(a) Finding middle boundary points A through D by perpendicular bisecting lines of 
every two neighboring corners. 

 

(b) Finding central quadrilateral point M by perpendicular bisecting line of A and C, 
and that of B and D. 

Fig. 7.9 Illustrations of finding the central quadrilateral point M in a curved 
quadrilateral. 

B. Review of quadratic classification technique 

The design of a two-class quadratic classifier in pattern recognition takes as 

input two sets of patterns and draws a curve as the decision boundary in the pattern 

space to separate the patterns into two classes in the sense of minimizing the Bayes 

probability of erroneously assigning the patterns into wrong classes. A good property 

of the classifier is its capability to generate a quadratic boundary curve which takes 

into consideration the shapes of the two pattern sets. That is, the decision boundary 

curve is roughly a blending result of the two shapes. 

For our problem here, if we take each pair of “opposite” curve boundaries of a 

curved quadrilateral as two pattern sets with the coordinates of each boundary point as 

a pattern, we can design a quadratic classifier to find a decision boundary curve going 

through the central quadrilateral point as a desired interpolating curve mentioned 

above. An illustration is shown in Fig. 7.10, where the red coordinate data points  
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Fig. 7.10. Interpolating curve (blue) for two curve boundaries (red) found by a 
quadratic classifier using coordinate data as patterns (the axes specify x- 
and y-coordinates). 

represent two simulated boundary curves of a curved quadrilateral as input pattern 

sets, and the blue curve is the decision boundary of a quadratic classifier designed for 

the two pattern sets. Comparing the shapes of the three curves, we can see the effect 

of shape blending mentioned previously. 

Formally, a quadratic classifier for two pattern classes ωa and ωb in vector form 

X = [x1 x2]T is as follows: 

( ) T T
oh X X QX V X v= + +  

2 2 2

1 1
ij i j i i o

i i j i
q x x v x v

= = =

= + +∑∑ ∑  

which may be transformed into a linear form as follows [73]: 

h(X) = 
3 2

1
i i i i o

i i i
y v x vα

= =

+ +∑ ∑  

= [α1 α2 α3 v1 v2][y1 y2 y3 x1 x2]T + v0 

= AZT + v0 

= h(Z) 
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where Q = 11 12

21 22

q q
q q

⎡ ⎤
⎢ ⎥
⎣ ⎦

, V = [v1 v2]T, A = [α1 α2 α3 v1, v2]T=[q11 q12+q21 q22 v1 v2]T, and 

Z = [y1 y2 y3 x1 x2]T = [u2  uv  v2  u  v]T. By the linearity of h(Z) = AZT + v0, we 

can use the design technique for the linear classifier to find the coefficient vector A 

and v0. The result is as follows: 

A = [sKa + (1 − s)Kb]-1(Db − Da) 

v0 = −VT[sDa + (1 − s)Db] 

where s is a scaling factor between 0 and 1 for adjusting the location of the decision 

boundary (normally taken to be 0.5), and Da and Db and Ka and Kb are the means and 

variances of the new pattern vectors Za and Zb for classes ωa and ωb, respectively, 

which are computed as follows: 

a a 2 a a a 2 a a
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1 1

1 1 ( ) ( )
Tm m

i i i i i i i
i i

D Z u u v v u v
m m= =

⎡ ⎤= = ⎣ ⎦∑ ∑ ; 

b b 2 b b b 2 b b
b

1 1

1 1 ( ) ( )
Tn n

i i i i i i i
i i

D Z u u v v u v
n n= =

⎡ ⎤= = ⎣ ⎦∑ ∑ ; 

a a
a a a

1

1 ( )( )
m

T
i i

i
K Z D Z D

m =
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1
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= − −∑  

where m and n are the numbers of pattern vectors in ωa and ωb, respectively. By these 

equations, A and v0 can be obtained and the quadratic decision boundary h(Z) = 0, or 

originally h(X) = 0, can be obtained. 

C. Curved quadrilateral morphing 

We are now ready to describe the algorithm we propose for curved quadrilateral 

morphing. 
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Algorithm 7.2 Quadrilateral morphing by quadratic classification. 

Step 1. Acquire a curved quadrilateral Hw from the working image Iw, and its 

corresponding curved quadrilateral Ho from the reference image Io. 

Step 2. Compute the central quadrilateral points of Hw and Ho, denote them as Mc
w 

and Mc
o, respectively, and consider them as corresponding points. 

Step 3. Design the quadratic classifier h1
w for a pair of two opposite boundary curves 

of Hw so that the decision boundary curve of h1
w goes through the central 

quadrilateral point Mc
w (i.e., h1

w(Mc
w) = 0) by adjusting the scaling factor s 

mentioned previously. Do this similarly for the other pair of opposite 

boundary curves of Hw to derive another quadratic classifier h2
w which goes 

through Mc
w as well. 

Step 4. Use the decision boundary curves of h1
w and h2

w to divide the curved 

quadrilateral Hw into four quarter ones H1
w, H2

w, H3
w, and H4

w. 

Step 5. Perform Steps 3 and 4 to the curved quadrilateral Ho similarly to cut Ho into 

four quarter curved quadrilaterals H1
o, H2

o, H3
o, and H4

o; and take Hi
o as the 

curved quadrilateral corresponding to Hi
w for i = 1, 2, 3, and 4. 

Step 6. For each pair of corresponding quarter curved quadrilaterals Hi
w and Hi

o for i 

= 1, 2, 3, and 4, perform the previous steps recursively to find their 

respective corresponding central quadrilateral points, cut them into even 

smaller quarter curved quadrilaterals, and so on, until the area of any of the 

quarter curved quadrilaterals is smaller than a pre-selected threshold. 

 

An illustration of the above algorithm is shown in Fig. 7.11. The result of the 

algorithm is a mapping from a set of the central quadrilateral points of 

sub-quadrilaterals of Hw to a set of the corresponding central quadrilateral points of 
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sub-quadrilaterals of Ho. All the points are scattered in the original quadrilaterals Hw 

and Ho at non-discrete locations. For generation of a mapping between discrete 

coordinates of Hw and Ho, we apply the concept of nearest neighboring to substitute 

non-discrete locations with discrete ones. For example, given a point Pw in Hw with 

discrete coordinates (uw, vw), to find its corresponding point Po in Ho with coordinates 

(uo, vo), we perform the following steps: (1) find the central quadrilateral point Pw' at 

non-discrete position (uw', vw') in Hw which is nearest to Pw; (2) find the central 

quadrilateral point Po' in Ho at non-discrete position (uo', vo') corresponding to Pw'; 

and (3) find the point Po at discrete position (uo, vo) in Ho which is nearest to Po'. That 

is, we have the following series of mappings: 

Pw(uw, vw) → Pw'(uw', vw') → Po'(uo', vo') → Po(uo, vo); 

and we take the overall mapping (uw, vw) → (uo, vo) as the final result. 

 

 

(a) Finding corresponding central quadrilateral points in a pair of corresponding 
curved quadrilaterals 

 

 

(b) Finding more corresponding central quadrilateral points within recursively cut 
quarter curved quadrilaterals. 

 
Fig. 7.11 Illustration of proposed algorithm for morphing one curved quadrilateral to 

a corresponding curved quadrilateral. 
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7.4 Experimental Results 

A series of experiments have been conducted to verify the proposed method. 

The first experiment was conducted to test the proposed morphing algorithm 

(Algorithm 7.2) on some simulated data of curved quadrilaterals, which were drawn 

by hand and transformed into images. Fig. 7.12 shows one of the intermediate results 

of iterative central quadrilateral point computation, where a given input curved 

quadrilateral is shown in Fig. 7.12(a), and the results of the first three iterations are 

shown in Figs. 7.12(b) through 12(d), respectively. In each figure, the dark blue lines 

are the interpolating curves found by quadratic classifications, and the light blue 

points are the found central quadrilateral points. 

 

                   
(a)                                           (b) 

                  
(c)                                          (d) 

Fig. 7.12 Results of curved quadrilateral morphing by Algorithm 7.2 using simulated 
data. (a) A simulated curved quadrilateral. (b) Result of 1st iteration. (c) 
Result of 2nd iteration. (d) Result of 3rd iteration. 

 

In the second experiment, we use real data (a pair of curved quadrilaterals taken 
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from real omni-images acquired by a hyperbolic catadioptric omni-camera 

manufactured by Micro-star International Co.) to conduct the same process of the first 

experiment described above. The results are shown in Fig. 7.13, with Figs. 7.13(a) 

through 7.13(d) corresponding respectively to Figs. 7.12(a) through 7.12(d) in 

meaning. 

 

           
(a)                                        (b) 

           
(c)                                       (d) 

Fig. 7.13 Results of quadrilateral morphing for real data using Algorithm 7.2. (a) A 
curved quadrilaterals. (b) Result of 1st iteration. (c) Result of 2nd iteration. 
(d) Result of 3rd iteration with intermediate curves removed. 

 

In the third experiment, we tested Algorithm 7.1 and Algorithm 7.2 together 

using real image data. The calibration pattern we used is as the one attached on the 

transparent cylinder of the omni-camera shown in Fig. 7.6(a). An undistorted image 

of the calibration pattern assumed to be taken in a factory for use as the reference 

image is shown in Fig. 7.14(a). And a distorted version of Fig. 7.14(a) taken in field 

using a lateral-directionally misaligned omni-camera for use as the working image is 

shown in Fig. 7.14(b). Figs. 7.14(c) and 7.14(d) are intermediate results which show 

the segmented calibration lines of Figs. 7.14(a) and 7.14(b), respectively. Using the 

two figures and subsequent results, a misalignment adjustment table was created by 
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Stage 2 of Algorithm 7.1. And Figs. 15(e) is the result of applying Algorithm 7.2 to 

Fig. 7.14(b) using the table. This figure was used further to generate a panoramic 

image, which is shown in Fig. 7.14(f). 

As a contrast, we also generated a panoramic image from the distorted image of 

Fig. 7.14(b) without using the distortion mapping fdm (i.e., using the pano-mapping fpm 

only), and the result is shown in Fig. 7.14(g) which is quite unacceptable. This means 

that the proposed approach is quite significant in correcting image distortion caused 

by lateral-directional camera misalignment. 

In the fourth experiment, we tested the effect of Algorithm 7.2 on real image 

data misalignment adjustment table obtained in the last experiment. A result is shown 

in Fig. 7.15. The input distorted image, shown in Fig. 7.15(a), was acquired from the 

lateral-directionally misalignment camera used in the third experiment with the 

calibration pattern removed. The panoramic image created from this distorted 

omni-image using Algorithms 7.1 and 7.2 is shown in Fig. 7.15(b). For comparison 

again, we create another panoramic image using the pano-mapping function only 

without distortion correction, and the result is shown in Fig. 7.15(c). Comparing Fig. 

7.15(b) with Fig. 7.15(c), we see again that the proposed method is effect. 

 

 

 

 

 



157 
 

           
(a)                                (b) 

           
(c)                                (d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 7.14 Image unwarping results using Algorithm 7.1 and Algorithm 7.2. (a) 
Reference image. (b) Working image. (c) Segmented calibration lines in (a) 
in thinned form. (d) Segmented calibration lines in (b) in thinned form. (e) 
Result of applying Algorithm 7.2 to (b) using the misalignment adjustment 
table. (f) A panoramic image generated form (e). (g) A panoramic image 
generated from  
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(a) 

 
(b) 

 
(c) 

Fig. 7.15 Results of distorted image unwarping using Algorithm 7.2. (a) Distorted 
omni-image. (b) Created panoramic image with correction by Algorithm 
7.2. (c) Created panoramic image without misalignment correction. 

 

7.5 Concluding Remarks 

A method for solving the new problem of unwarping omni-images taken by 

lateral-directionally misaligned omni-cameras is proposed, which is based on the 

concept of direct pixel mapping instead of the conventional camera calibration 

approach. The method may be regarded as a generalization of that proposed by Jeng 

and Tsai [73] which is applicable to images taken by omni-cameras with no 

lateral-directional misalignment. The proposed method uses the misalignment 

adjustment table to map real-world space points to distorted image pixels in a 

table-lookup manner, thus speeding up the image unwarping process. The table is a 

composite of a distortion-mapping function defined in this study and a pano-mapping 

function generated by the Jeng and Tsai method. The distortion-mapping function is 
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generated by a new technique of curved quadrilateral morphing based on quadratic 

classification in pattern recognition theory. Quadratic classifiers are used to generate 

interpolating curves within corresponding curved quadrilaterals extracted from the 

reference and working images. Such curves are used to generate corresponding pixels 

in distorted and undistorted images, which are then used for generating the content of 

the misalignment adjustment table. Experimental results show the feasibility of the 

proposed method. Future studies may be directed to investigating the possibility of 

deriving the misalignment adjustment table directly without combining two tables and 

to using the proposed curved quadrilateral morphing technique for unwarping other 

types of image distortion. 
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Chapter 8                    

Conclusions and Suggestions for Future 

Research 

8.1 Conclusions 

In this study, new localization and image analysis techniques based on 

omni-vision for various applications of autonomous vehicles, including indoor vehicle 

and robot guidance, helicopter landing, car driving assistance, have been proposed. 

Landmark used in the proposed vehicle localization techniques include:  

(1) house corners, which include points, lines, and their combinations; 

(2) circular shapes on ceilings; 

(3) international standard helipads; 

(4) car wheel shapes, etc.  

Proposed new image analysis techniques for uses in the applications include: 

(1) approximating irregular projections of circles in omni-images by ellipses; 

(2) approximating irregular projections of lines in omni-images by 

conic-sectional shapes; 

(3) warping distorted omni-images acquired by misaligned omni-cameras into 

undistorted images;  

(4) adaptive adjustment of omni-images taken by posture-slanted omni-cameras 

into standard images, etc.  

Novel combinations of the proposed vehicle localization and image analysis 

techniques have been proposed for various applications, including: 

(1) location estimation for indoor autonomous vehicle navigation by 
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omni-directional vision using circular landmarks on ceilings; 

(2) a systematic approach to indoor vision-based robot localization using corner 

features in omni images; 

(3) an omni-vision based self-localization method for automatic helicopter 

landing on standard helipads; 

(4) omni-vision based localization of lateral vehicles for car driving assistance 

(5) adaptation of space-mapping methods for object location estimation to 

camera setup changes; 

(6) unwarping of images taken by misaligned omni-cameras without camera 

calibration by curved quadrilateral morphing using quadratic pattern 

classifiers. 

Good experimental results have been shown to prove the feasibility of the 

proposed techniques. 

8.2 Suggestions for Future Research 

The following topics may be investigated in the future: 

1. use of vanishing point information formed by long parallel lines; 

2. use of house beam information formed by mutually parallel lines; 

3. use of parallel line information in an image acquired by a two-mirror 

omni-camera; 

4. use of two perpendicular lines in an image acquired by a 

longitudinally-coxial omni-camera pair; 

5. use of new-typed omni-cameras in various applications for more precise and 

effective image acquisition and analysis; 

6. aplying applications of the proposed methods to other types of vehicles, such 



162 
 

as airplane, UAV, surveillance car, toy car, etc.; 

7. exploitations of other applications of autonomous vehicles, like automatic 

car parking and driving, security patrolling, intelligent transportation, 

airplane landing, outer space planet exploration, etc. 
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