Contents lists available at ScienceDirect

Linear Algebra and its Applications

journalhomepage:www.elsevier.com/locate/laa

Defect indices of powers of a contraction

Hwa-Long Gau^{a,*,1}, Pei Yuan Wu^{b,2}

^a Department of Mathematics, National Central University, Chung-Li 320, Taiwan
 ^b Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

ARTICLE INFO

Article history: Received 23 August 2009 Accepted 15 December 2009 Available online 12 January 2010

Submitted by R. Bhatia In memory of our colleague and friend Sen-Yen Shaw (1945–2009)

AMS classification: 15A03 47A30

Keywords: Contraction Defect index Norm-one index Blaschke product

0. Introduction

ABSTRACT

Let *A* be a contraction on a Hilbert space *H*. The defect index d_A of *A* is, by definition, the dimension of the closure of the range of $I - A^*A$. We prove that (1) $d_{A^n} \leq nd_A$ for all $n \geq 0$, (2) if, in addition, A^n converges to 0 in the strong operator topology and $d_A = 1$, then $d_{A^n} = n$ for all finite $n, 0 \leq n \leq \dim H$, and (3) $d_A = d_{A^*}$ implies $d_{A^n} = d_{A^{n*}}$ for all $n \geq 0$. The norm-one index k_A of *A* is defined as $\sup\{n \geq 0 : ||A^n|| = 1\}$. When dim $H = m < \infty$, a lower bound for k_A was obtained before: $k_A \geq (m/d_A) - 1$. We show that the equality holds if and only if either *A* is unitary or the eigenvalues of *A* are all in the open unit disc, d_A divides *m* and $d_{A^n} = nd_A$ for all $n, 1 \leq n \leq m/d_A$. We also consider the defect index of *f*(*A*) for a finite Blaschke product *f* and show that $d_{f(A)} = d_{A^n}$, where *n* is the number of zeros of *f*.

© 2009 Elsevier Inc. All rights reserved.

Let *H* be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and the associated norm $\|\cdot\|$, and let *A* be a contraction $(\|A\| \equiv \sup\{\|Ax\| : x \in H, \|x\| = 1\} \leq 1)$ on *H*. The *defect index* of *A* is, by definition, rank $(I - A^*A)$, that is, the dimension of the closure of the range ran $(I - A^*A)$ of $I - A^*A$. It is a measure of how far *A* is from the isometries, and plays a prominent role in the Sz.-Nagy–Foiaş theory of canonical model for contractions [8].

* Corresponding author.

² Research supported by the National Science Council of the Republic of China under NSC 96-2115-M-009-013-MY3 and by the MOE-ATU project.

0024-3795/\$ - see front matter $\ensuremath{\mathbb{S}}$ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2009.12.024

E-mail addresses: hlgau@math.ncu.edu.tw (H.-L. Gau), pywu@math.nctu.edu.tw (P.Y. Wu).

¹ Research supported by the National Science Council of the Republic of China under NSC 97-2115-M-008-014.

In this paper, we are concerned with the defect indices of powers of a contraction. We show that, for a contraction A, d_{A^n} is at most nd_A for any $n \ge 0$. They are in general not equal. The equality does hold in certain cases. For example, if A^n converges to 0 in the strong operator topology and $d_A = 1$, then $d_{A^n} = n$ for all finite $n, 0 \le n \le \dim H$. The equality (for some n's) also arises in another situation, namely, in relation to the norm-one index. Recall that the *norm-one index* k_A of a contraction A is defined as $\sup\{n \ge 0 : ||A^n|| = 1\}$. It was proven in [3, Theorem 2.4] that if A acts on an m-dimensional space, then $k_A \ge (m/d_A) - 1$. Here we complement this result by characterizing all the m-dimensional A with $k_A = (m/d_A) - 1$: this is the case if and only if either A is unitary or the eigenvalues of A are all in the open unit disc $\mathbb{D} (\equiv \{z \in \mathbb{C} : |z| < 1\})$, d_A divides m and $d_{A^n} = nd_A$ for all $n, 1 \le n \le m/d_A$. These will be given in Sections 1 and 2 below, respectively. In Section 3, we consider contractive analytic functions of a contraction, instead of just its powers. Among other things, we show that if f is a Blaschke product with n zeros, then $d_{f(A)} = d_{A^n}$.

1. Powers of a contraction

We start with some basic properties for the defect indices of powers of a contraction. These include a "triangle inequality" and their increasingness.

Theorem 1.1. Let A be a contraction on H.

- (a) The inequality $d_{A^{m+n}} \leq d_{A^m} + d_{A^n}$ holds for any $m, n \geq 0$. In particular, $d_{A^n} \leq nd_A$ for $n \geq 0$.
- (b) The sequence $\{d_{A^n}\}_{n=0}^{\infty}$ is increasing in n. Moreover, if $d_{A^n} = d_{A^{n+1}} < \infty$ for some $n, 0 \le n \le \dim H$, then $d_{A^k} = d_{A^n}$ for all $k \ge n$.

The proof depends on the following more general lemma.

Lemma 1.2. Let A = BC, where B and C are contractions. Then $d_C \leq d_A \leq d_B + d_C$. If B and C commute, then we also have $d_B \leq d_A$.

Note that $d_B \leq d_A$ may not hold without the commutativity of *B* and *C*. For example, if A = I, $B = S^*$ and C = S, where *S* denotes the (simple) unilateral shift, then A = BC, $d_A = 0$ and $d_B = 1$.

Proof of Lemma 1.2. Since

 $I - A^*A = I - C^*B^*BC \ge I - C^*C \ge 0,$

where we used $C^*B^*BC \leq C^*C$ because $B^*B \leq I$, we obtain $\overline{\operatorname{ran}(I - A^*A)} \supseteq \overline{\operatorname{ran}(I - C^*C)}$ and thus $d_A \geq d_C$. If *B* and *C* commute, then A = CB and, therefore, $d_B \leq d_A$ follows from above.

On the other hand, since

$$I - A^*A = I - C^*B^*BC = (I - C^*C) + C^*(I - B^*B)C,$$

we have

$$\operatorname{ran}\left(I-A^*A\right)\subseteq\operatorname{ran}\left(I-C^*C\right)+\operatorname{ran}C^*(I-B^*B)C.$$

Thus

$$d_A \leq d_C + \operatorname{rank} C^* (I - B^* B) C$$
$$\leq d_C + \operatorname{rank} (I - B^* B) C$$
$$\leq d_C + d_B,$$

completing the proof. \Box

We now prove Theorem 1.1. For any contraction *A*, let $H_n = \overline{\operatorname{ran} (I - A^{n*}A^n)}$ for $n \ge 0$ and $H_{\infty} = \bigvee_{n=0}^{\infty} H_n$. In the following, we will frequently use the fact that, for a contraction *A*, *x* is in ker $(I - A^*A)$ if and only if ||Ax|| = ||x||.

Proof of Theorem 1.1. (a) and the increasingness of the d_{A^n} 's in (b) follow immediately from Lemma 1.2. To prove the remaining part of (b), we check that $H_n = \bigvee_{k=0}^{n-1} A^{k*}H_1$ for $n \ge 1$. Indeed, if $x = (I - A^{n*}A^n)y$ for some y in H, then $x = \sum_{k=0}^{n-1} A^{k*}(I - A^*A)A^ky$, which shows that x is in $\bigvee_{k=0}^{n-1} A^{k*}H_1$. For the converse containment, note that A maps ker $(I - A^{k+1*}A^{k+1})$ to ker $(I - A^{k*}A^k)$ isometrically for each $k \ge 0$. Indeed, if x is in the former, then

 $||x|| = ||A^{k+1}x|| \le ||Ax|| \le ||x||.$

Hence we have the equalities throughout and, in particular, $||A^k(Ax)|| = ||Ax||$ and ||Ax|| = ||x||. The former implies that $Ax \in \ker(I - A^{k*}A^k)$. Together with the latter, this proves our assertion. Therefore, A^* maps H_k to H_{k+1} for $k \ge 0$. By iteration, we have that A^{k*} maps H_1 to H_{k+1} for all $k \ge 1$. Arguing as above, we also obtain $\ker(I - A^{k+1*}A^{k+1}) \subseteq \ker(I - A^{k*}A^k)$ and thus $H_k \subseteq H_{k+1}$ for $k \ge 0$. Therefore, A^{k*} maps H_1 to H_n for all $k, 0 \le k \le n - 1$. This proves $\bigvee_{k=0}^{n-1} A^{k*}H_1 \subseteq H_n$ and hence our assertion on their equality.

If $d_{A^n} = d_{A^{n+1}} < \infty$ for some *n*, then $H_n = H_{n+1}$. Hence

$$H_{n+2} = \bigvee_{k=0}^{n+1} A^{k*} H_1 = (\bigvee_{k=0}^n A^{k*} H_1) \lor (A^{n+1*} H_1)$$

$$\subseteq H_{n+1} \lor (A^* H_{n+1}) = H_{n+1} \lor (A^* H_n)$$

$$\subseteq H_{n+1} \lor H_{n+1} = H_{n+1} \subseteq H_{n+2}.$$

Therefore, we have equalities throughout. This implies that $d_{n+1} = d_{n+2}$. Repeating this argument gives us $d_{A^k} = d_{A^n}$ for all $k \ge n$.

Note that, in Theorem 1.1 (a), $d_{A^{m+n}} < d_{A^m} + d_{A^n}$ may happen even for m = n = 1. For example, if

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

then $d_A = 2$ and $d_{A^2} = 3$. Thus $d_{A^2} < d_A + d_A$.

The following corollary is an easy consequence of Theorem 1.1 (b).

Corollary 1.3. If A is a contraction with A^n isometric (resp., unitary), then A itself is isometric (resp., unitary).

The next theorem says that the equalities $d_{A^n} = nd_A$, $n \ge 0$, do hold for certain contractions *A*. It generalizes [3, Theorem 3.1] and [4, Theorem 3.4].

Theorem 1.4. If *A* is a contraction on *H* with A^n converging to 0 in the strong operator topology and $d_A = 1$, then $d_{A^n} = n$ for all finite $n, 0 \le n \le \dim H$.

Proof. Under our assumption that $d_A = 1$, we have $d_{A^n} \le n$ for all $n \ge 0$ by Theorem 1.1 (a). Assume that $d_{A^{n_0}} < n_0$ for some finite $n_0, 1 < n_0 \le \dim H$. Since d_{A^n} increases in n, the pigeonhole principle and Theorem 1.1 (b) yield that $d_{A^{n_0-1}} = d_{A^{n_0}} = d_{A^n} < n_0 < \infty$ for all $n \ge n_0$. Hence

$$\ker(I - A^{n_0 *} A^{n_0}) = \overline{\operatorname{ran} \left(I - A^{n_0 *} A^{n_0}\right)^{\perp}} = \overline{\operatorname{ran} \left(I - A^{n_0 *} A^{n_0}\right)^{\perp}} = \ker(I - A^{n_0 *} A^{n_0})$$

for $n \ge n_0$. Let *K* denote this common subspace. For *x* in *K*, we have $||A^n x|| = ||x||$ for all $n \ge n_0$. On the other hand, the assumption that $A^n \to 0$ in the strong operator topology yields that $||A^n x|| \to 0$ as $n \to \infty$. From these, we conclude that x = 0 and hence $K = \{0\}$. This is the same as ker $(I - A^{n_0*}A^{n_0}) = \{0\}$

or ran $(I - A^{n_0} * A^{n_0}) = H$. Thus dim $H = d_{A^{n_0}} < n_0$, which is a contradiction. Therefore, we must have $d_{A^n} = n$ for all finite $n, 0 \le n \le \dim H$. \Box

Let *A* be a contraction on *H*. Since A^* maps H_n to H_{n+1} for $n \ge 0$ as shown in the proof of Theorem 1.1 (b), we have $A^*H_{\infty} \subseteq H_{\infty}$. Hence

$$A = \begin{bmatrix} A' & 0 \\ B & V \end{bmatrix} \quad \text{on } H = H_{\infty} \oplus H_{\infty}^{\perp}.$$

Note that, for any x in $H_{\infty}^{\perp} = \bigcap_{n=0}^{\infty} \ker(I - A^{n*}A^n)$, we have $A^*Ax = x$, which implies that ||Vx|| = ||Ax|| = ||x||. Thus V is isometric on H_{∞}^{\perp} . Recall that a contraction is *completely nonunitary* (*c.n.u.*) if it has no nontrivial reducing subspace on which it is unitary. A can be uniquely decomposed as $A_1 \oplus U$ on $K \oplus K^{\perp}$, where A_1 is c.n.u. on K and U is unitary on $K^{\perp} = \bigcap_{n=0}^{\infty} (\ker(I - A^{n*}A^n) \cap \ker(I - A^nA^{n*}))$ (cf. [8, Theorem I.3.2]). Thus the above decomposition can be further refined as

$$A = \begin{bmatrix} A' & 0 & 0 \\ B_1 & S_m & 0 \\ 0 & 0 & U \end{bmatrix},$$

where S_m denotes the unilateral shift with multiplicity $m(0 \le m \le \infty)$, $A_1 = \begin{bmatrix} A' & 0\\ B_1 & S_m \end{bmatrix}$ is c.n.u., and $V = S_m \oplus U$ corresponds to the Wold decomposition of V (cf. [8, Theorem I.1.1]).

Corollary 1.5. If A is a contraction on a finite-dimensional space with $d_A = 1$, then

 $d_{A^n} = \begin{cases} n & \text{if } 0 \leq n \leq n_0, \\ n_0 & \text{if } n > n_0, \end{cases}$ where $n_0 = \dim H_{\infty}.$

Proof. On a finite-dimensional space, the above representation of *A* becomes $A = A' \oplus V$ on $H = H_{\infty} \oplus H_{\infty}^{\perp}$ with *V* unitary. It is easily seen that *A'* has no eigenvalue of modulus one. Hence *A'n* converges to 0 in norm (cf. [6, Problem 88]). Our assertion on d_{A^n} then follows from Theorems 1.4 and 1.1 (b).

The next theorem characterizes those contractions *A* for which $d_{A^n} = n$ for finitely many *n*'s or for all $n \ge 0$. It generalizes Corollary 1.5.

Recall that an operator A on an n-dimensional space is said to be of class S_n if A is a contraction, its eigenvalues are all in \mathbb{D} and $d_A = 1$. The n-by-n Jordan block

$$J_n = \begin{bmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}$$

is one example. Such operators and their infinite-dimensional analogues $S(\phi)$ (ϕ an inner function) are first studied by Sarason [7]. They play the role of the building blocks of the Jordan model for C_0 contractions [1,8].

Theorem 1.6. Let A be a contraction on H.

(a) Let n_0 be a nonnegative integer. Then

$$d_{A^n} = \begin{cases} n & \text{if } 1 \leq n \leq n_0, \\ n_0 & \text{if } n > n_0 \end{cases}$$

if and only if $P_{H_{\infty}}A|H_{\infty}$, the compression of A to H_{∞} , is of class S_{n_0} . In this case, dim $H_{\infty} = n_0$. (b) $d_{A^n} = n$ for all $n, 0 \le n < \infty$, if and only if $d_A = 1$ and dim $H_{\infty} = \infty$. Proof. (a) Let

$$A = \begin{bmatrix} A' & 0 \\ B & V \end{bmatrix} \text{ on } H = H_{\infty} \oplus H_{\infty}^{\perp},$$

where *V* is isometric. First assume that the d_{A^n} 's are as asserted. We need to show that $A' = P_{H_{\infty}}A|H_{\infty}$ is of class S_{n_0} . Our assumption on d_{A^n} implies that $H_{\infty} = H_{n_0}$ is of dimension n_0 . Moreover, for any $n \ge 0$, we have

$$I - A^{n*}A^{n} = I - \begin{bmatrix} A'^{n*} & B_{n}^{*} \\ 0 & V^{n*} \end{bmatrix} \begin{bmatrix} A'^{n} & 0 \\ B_{n} & V^{n} \end{bmatrix}$$
$$= \begin{bmatrix} I - A'^{n*}A'^{n} - B_{n}^{*}B_{n} & -B_{n}^{*}V^{n} \\ -V^{n*}B_{n} & 0 \end{bmatrix}$$
$$= \begin{bmatrix} I - A'^{n*}A'^{n} - B_{n}^{*}B_{n} & 0 \\ 0 & 0 \end{bmatrix},$$

where the last equality holds because $I - A^{n*}A^n \ge 0$. Hence

$$n = d_{A^n} = \operatorname{rank} (I - A'^{n*}A'^n - B_n^*B_n) \leq \operatorname{rank} (I - A'^{n*}A'^n) = d_{A'^n}$$

for $1 \le n \le n_0$. If $n_1 < d_{A'^{n_0}}$ for some n_1 , $1 \le n_1 \le n_0$, then the pigeonhole principle and Theorem 1.1 (b) yield that $d_{A'^{n_0-1}} = d_{A'^{n_0}}$. From [3, Lemma 2.3] and the fact that A' has no eigenvalue of modulus one, we conclude that $I - A'^{n_0-1*}A'^{n_0-1}$ is one-to-one and hence $d_{A'^{n_0-1}} = n_0$, contradicting our assumption. Hence $d_{A''} = n$ for all $n, 1 \le n \le n_0$. [3, Theorem 3.1] implies that A' is of class S_{n_0} . This proves one direction.

For the converse, we derive as above to obtain $I - A^{n*}A^n = (I - A'^{n*}A'^n - B_n^*B_n) \oplus 0$ on $H = H_{\infty} \oplus H_{\infty}^{\perp}$ and

$$d_{A^n} \leq d_{A'^n} = \begin{cases} n & \text{if } 1 \leq n \leq n_0, \\ n_0 & \text{if } n > n_0 \end{cases}$$
(*)

by [3, Theorem 3.1]. Assume that $d_{A^{n_1}} < n_1$ for some $n_1, 1 \le n_1 \le n_0$. Then the pigeonhole principle and Theorem 1.1 (b) yield $d_{A^n} = d_{A^{n_0}} < n_0$ for all $n \ge n_0$. This implies that $H_n = H_{n_0}$ for all $n \ge n_0$. Therefore, $H_{\infty} = H_{n_0}$ has dimension strictly less than n_0 , which contradicts the fact that dim $H_{\infty} = d_{A^{n_0}} = n_0$ (cf. [3, Theorem 3.1]). Hence we have $d_{A^n} = n$ for all $n, 1 \le n \le n_0$. If $n > n_0$, then $d_{A^n} \ge d_{A^{n_0}} = n_0$ by Theorem 1.1 (b) and what we have just proven. This, together with (*), yields $d_{A^n} = n_0$ for $n > n_0$.

(b) Since dim $H_{\infty} \ge d_{A^n}$ for all n, the necessity is obvious. Conversely, assume that $d_A = 1$ and dim $H_{\infty} = \infty$. Then $d_{A^n} \le nd_A = n$ by Theorem 1.1 (a). If $d_{A^{n_1}} < n_1$ for some $n_1 \ge 2$, then an argument analogous to the one for the second half of (a) yields that $H_{\infty} = H_{n_1}$ is of dimension less than n_1 . This contradicts our assumption. Hence we must have $d_{A^n} = n$ for all n. \Box

We now proceed to consider contractions A with $d_A = d_{A^*}$ and start with the following lemma giving conditions of the equality of d_A and d_{A^*} for an arbitrary operator A. Note that, in this case, the definition of the defect index still makes sense.

Lemma 1.7. Let A be an operator on H.

(a) If dim ker $A = \dim \ker A^*$, then $d_A = d_{A^*}$. In particular, if A acts on a finite-dimensional space, then $d_A = d_{A^*}$.

(b) If d_A is finite, then the following conditions are equivalent:

(1) $d_A = d_{A^*};$

- (2) dim ker $A = \dim \ker A^*$;
- (3) A^*A and AA^* are unitarily equivalent;
- (4) A is the sum of a unitary operator and a finite-rank operator.

2828

Proof. (a) If dim ker $A = \dim \ker A^*$, then $A = U(A^*A)^{1/2}$ for some unitary operator U (cf. [6, Problem 135]). Hence $AA^* = U(A^*A)U^*$ is unitarily equivalent to A^*A . Then the same is true for $I - A^*A$ and $I - AA^*$. Thus $d_A = d_{A^*}$.

(b) It was proven in [4, Lemma 1.4] that if $A^*A = A_1 \oplus 0$ (resp., $AA^* = A_2 \oplus 0$) on $H = \overline{\operatorname{ran} A^*} \oplus \ker A$ (resp., $H = \overline{\operatorname{ran} A} \oplus \ker A^*$), then A_1 and A_2 are unitarily equivalent. If $d_A = d_{A^*} < \infty$, then

rank
$$(I - A_1)$$
 + dim ker A = rank $(I - A^*A)$ = rank $(I - AA^*)$
= rank $(I - A_2)$ + dim ker A^*

and hence dim ker $A = \dim \ker A^*$. This proves that (1) implies (2). If (2) holds, then the unitary equivalence of A_1 and A_2 implies the same for A^*A and AA^* , that is, (2) implies (3). Now assume that (3) holds. Since ker $A^*A = \ker A$ and ker $AA^* = \ker A^*$, the unitary equivalence of A^*A and AA^* implies that dim ker $A = \dim \ker A^*$. Hence $d_A = d_{A^*}$ by (a), that is, (1) holds. Finally, the equivalence of (1) and (4) was proven in [10, Lemma 3.3].

Note that, in the preceding lemma, $d_A = d_{A^*} = \infty$ does not imply dim ker $A = \dim \ker A^*$ in general. For example, if $A = \text{diag}(1, 1/2, 1/3, ...) \oplus S$, where *S* is the (simple) unilateral shift, then $d_A = d_{A^*} = \infty$, dim ker A = 0 and dim ker $A^* = 1$.

Theorem 1.8. Let A be a contraction with $d_A = d_{A^*} < \infty$. Then dim $H_{\infty} < \infty$ if and only if the completely nonunitary part of A acts on a finite-dimensional space.

Proof. Assume that dim $H_{\infty} < \infty$ and let

$$A = \begin{bmatrix} A' & 0 & 0 \\ B & S_m & 0 \\ 0 & 0 & U \end{bmatrix} \quad \text{on } H = H_\infty \oplus K_1 \oplus K_2,$$

where S_m denotes the unilateral shift with multiplicity $m, 0 \le m \le \infty$, and U is unitary. We need to show that S_m does not appear in this representation of A or, equivalently, m = 0. We first prove that m is finite. Indeed, since

$$I - AA^* = \begin{bmatrix} I - A'A'^* & -A'B^* & 0\\ -BA'^* & I - BB^* - S_m S_m^* & 0\\ 0 & 0 & 0 \end{bmatrix},$$

we have

$$m = \operatorname{rank} (I - S_m S_m^*) \leq \operatorname{rank} (I - BB^* - S_m S_m^*) + \operatorname{rank} BB^*$$
$$\leq \operatorname{rank} (I - AA^*) + \operatorname{rank} BB^*$$
$$\leq d_{A^*} + \dim H_{\infty} < \infty$$

as asserted. Now to show that m = 0, consider S_m as

$$\begin{bmatrix} 0 & & & \\ I_m & 0 & & \\ & I_m & 0 & \\ & & \ddots & \ddots \end{bmatrix}$$

Then *B* is of the form $[B' \ 0 \ 0 \ \cdots]^T$. Let $\widetilde{A} = \begin{bmatrix} A' & 0 \\ B' & 0 \end{bmatrix}$. Since \widetilde{A} acts on a finite-dimensional space, we have $d_{\widetilde{A}} = d_{\widetilde{A}^*}$ by Lemma 1.7 (a). Then

$$d_{A^*} = \operatorname{rank} (I - AA^*)$$

= rank
$$\begin{bmatrix} I - A'A'^* & -A'B^* \\ -BA'^* & I - BB^* - S_m S_m^* \end{bmatrix}$$

$$= d_{\tilde{A}^*} = d_{\tilde{A}} = \operatorname{rank} \begin{bmatrix} I - A'^*A' - B'^*B' & 0 \\ 0 & I_m \end{bmatrix}$$

= $m + \operatorname{rank} (I - A'^*A' - B'^*B')$
= $m + \operatorname{rank} (I - A'^*A' - B^*B)$
= $m + \operatorname{rank} \begin{bmatrix} I - A'^*A' - B^*B & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
= $m + \operatorname{rank} (I - A^*A) = m + d_A.$

We infer from the assumption $d_A = d_{A^*} < \infty$ that m = 0. Thus $A = A' \oplus U$, where A' is the c.n.u. part of A acting on the finite-dimensional space H_{∞} .

The converse is trivial. \Box

The next two results are valid for any operators.

Proposition 1.9. If A is an operator with $d_A = d_{A^*}$, then $d_{A^n} = d_{A^{n*}}$ for all $n \ge 1$.

Proof. If $d_A = d_{A^*} < \infty$, then A = U + F, where *U* is unitary and *F* has finite rank, by Lemma 1.7 (b). For any $n \ge 1$, we have $A^n = U^n + F_n$, where F_n is some finite-rank operator. By Lemma 1.7 (b) again, this implies that $d_{A^n} = d_{A^{n*}}$. On the other hand, if $d_A = d_{A^*} = \infty$, then $d_{A^n} = d_{A^{n*}} = \infty$ for any $n \ge 1$ by Theorem 1.1 (b). This completes the proof. \Box

Two operators *A* on *H* and *B* on *K* are said to be *quasi-similar* if there are operators $X : H \to K$ and $Y : K \to H$ which are one-to-one and have dense range such that XA = BX and YB = AY. We conclude this section with the following result on quasi-similar operators.

Proposition 1.10. Let A and B be quasi-similar operators. If $d_A = d_{A^*} < \infty$, then $d_B = d_{B^*}$.

Proof. Our assumption of $d_A = d_{A^*} < \infty$ implies, by Lemma 1.7 (b), that dim ker $A = \dim \ker A^*$. The quasi-similarity of A and B then yields

 $\dim \ker B = \dim \ker A = \dim \ker A^* = \dim \ker B^*.$

Then $d_B = d_{B^*}$ by Lemma 1.7 (a).

Note that the preceding proposition is false if $d_A = d_{A^*} = \infty$.

Example 1.11. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of distinct complex numbers in \mathbb{D} with $\sum_n (1 - |a_n|) < \infty$. Let $A = \text{diag}(a_1, a_2, ...) \oplus S$, where S denotes the (simple) unilateral shift. Let ϕ be the Blaschke product with zeros a_n :

$$\phi(z) = \prod_{n=1}^{\infty} \frac{\overline{a}_n}{|a_n|} \frac{z - a_n}{1 - \overline{a}_n z}, \quad z \in \mathbb{D},$$

and let $B = S(\phi) \oplus S$, where $S(\phi)$ denotes the compression of the shift

$$S(\phi)f = P(zf(z)), f \in H^2 \ominus \phi H^2,$$

P being the (orthogonal) projection from H^2 onto $H^2 \ominus \phi H^2$. It is known that diag (a_n) is itself a C_0 contraction which is quasi-similar to $S(\phi)$ (cf. [9, Theorem 3]). Thus *A* is quasi-similar to *B*. But $d_A = d_{A^*} = \infty$, $d_B = 1$ and $d_{B^*} = 2$.

2. Relation to norm-one index

As defined in [3, p. 364], the *norm-one index* of a contraction A on H is $k_A \equiv \sup\{n \ge 0 : ||A^n|| = 1\}$. This number is to measure how far the powers of A remain to have norm one. It is easily seen that (1) $0 \le k_A \le \infty$, (2) $k_A = 0$ if and only if ||A|| < 1, and (3) $k_A = \infty$ if and only if $\sigma(A) \cap \partial \mathbb{D} \neq \emptyset$. The main results in [3] say that if dim $H = m < \infty$, then (4) $0 \le k_A \le m - 1$ or $k_A = \infty$ [3, Proposition 2.1 or Theorem 2.2], (5) $k_A = m - 1$ if and only if A is of class S_m [3, Theorem 3.1], and (6) $k_A \ge (m/d_A) - 1$ [3, Theorem 2.2]. The purpose of this section is to determine when the equality holds in (6).

Theorem 2.1. Let A be a contraction on an m-dimensional space. Then $k_A = (m/d_A) - 1$ if and only if one of the following holds:

- (a) A is unitary,
- (b) $\sigma(A) \subseteq \mathbb{D}$, d_A divides m, and $d_{A^n} = nd_A$ for all $n, 1 \leq n \leq m/d_A$.

Proof. Assume that $k_A = (m/d_A) - 1$. If $\sigma(A) \cap \partial \mathbb{D} \neq \emptyset$, then $(m/d_A) - 1 = k_A = \infty$, which implies that $d_A = 0$ or A is unitary. Hence we may assume that $\sigma(A) \subseteq \mathbb{D}$. Then $k_A < \infty$. From $k_A = (m/d_A) - 1$, we have $d_A | m$. By the pigeonhole principle and Theorem 1.1 (b), there is a smallest integer $l, 1 \leq l \leq m$, such that $d_{A^l} = d_{A^{l+1}}$. Since A has no unitary part, this is equivalent to $I - A^{l*}A^l$ being one-to-one (cf. [3, Lemma 2.3]) or $||A^l|| < 1$. As l is the smallest such integer, we obtain $k_A = l - 1$. From $k_A = (m/d_A) - 1$, we have $m/d_A = l$. Note that $d_{A^n} \leq nd_A$ for $1 \leq n \leq l$ by Theorem 1.1 (a). If $d_{A^{n_0}} < n_0d_A$ for some $n_0, 1 \leq n_0 \leq l$, then

$$d_{A^{l}} \leq d_{A^{n_{0}}} + d_{A^{l-n_{0}}} < n_{0}d_{A} + (l-n_{0})d_{A} = ld_{A} = m$$

again by Theorem 1.1 (a). This contradicts the fact that $I - A^{l*}A^{l}$ is one-to-one. Hence we must have $d_{A^n} = nd_A$ for $1 \le n \le m/d_A$. This proves (b).

Conversely, if (a) holds, that is, if *A* is unitary, then $k_A = \infty$ and $d_A = 0$. Hence $k_A = (m/d_A) - 1$. Now assume that (b) holds. If $l = m/d_A$, then our assumptions imply that $1 \le d_A < d_{A^2} < \cdots < d_{A^l} = m$. Hence $I - A^{l*}A^l$ is one-to-one, but $I - A^{l-1*}A^{l-1}$ is not. Thus $||A^l|| < 1$ and $||A^{l-1}|| = 1$. This yields $k_A = l - 1 = (m/d_A) - 1$ as required. \Box

On an *m*-dimensional space, other than unitary operators, S_m -operators and strict contractions (operators with norm strictly less than one), which correspond to $d_A = 0$, 1 and *m*, respectively, there are other contractions *A* satisfying $k_A = (m/d_A) - 1$. For example, if $A = J_l \oplus \cdots \oplus J_l$, where *l* divides

m, then $k_A = l - 1 = (m/d_A) - 1$. The same is true for the more general $B = \underbrace{A_1 \oplus \cdots \oplus A_1}_{m/l}$, where

 A_1 is an S_l -operator. Another generalization of the contraction A is

$$C = \begin{bmatrix} 0 & a_1 & & \\ & 0 & \ddots & \\ & & \ddots & a_{m-1} \\ & & & 0 \end{bmatrix},$$

where $|a_j| < 1$ for j = kl, $1 \le k \le (m/l) - 1$ (l|m), and $|a_j| = 1$ for all other *j*'s. In this case, it is easily seen that d_C equals *m* minus the number of *j*'s for which $|a_j| = 1$ and hence $d_C = m/l$. On the other hand, k_C equals the maximum number of consecutive *j*'s with $|a_j| = 1$, and thus $k_C = l - 1$. Therefore, $k_C = (m/d_C) - 1$ holds.

3. Contractive functions of a contraction

In this section, we consider the defect indices of contractive functions of a contraction, instead of just its powers. The first one is finite Blaschke products:

$$f(z) = \prod_{j=1}^{n} \frac{z - a_j}{1 - \overline{a}_j z}, \quad z \in \mathbb{D},$$

where $|a_j| < 1$ for all *j*.

Theorem 3.1. If *A* is a contraction on *H* and *f* is a Blaschke product with *n* zeros (counting multiplicity), then $d_{f(A)} = d_{A^n}$.

Note that if *f* is as above, then $f(A) = \prod_{j=1}^{n} (A - a_j I) (I - \overline{a}_j A)^{-1}$ is also a contraction (cf. [8, Theorem III.2.1 (b)]).

Proof of Theorem 3.1. Let *f* be as above and let $f_j(z) = (z - a_j)/(1 - \overline{a}_j z), z \in \mathbb{D}$, for each *j*. Let $X = \prod_{j=1}^n (I - \overline{a}_j A), K_1 = \ker(I - A^{n*}A^n)$ and $K_2 = \ker(I - f(A)^*f(A))$. We first show that $XK_1 \subseteq K_2$. Indeed, if *x* is in K_1 , then $||A^n x|| = ||x||$. Applying [3, Lemma 1.2] once (with ϕ_1 there as f_1 and the remaining ϕ_j 's given by $\phi_j(z) = z$) yields $||f_1(A)A^{n-1}(I - \overline{a}_1A)x|| = ||(I - \overline{a}_1A)x||$. We then apply [3, Lemma 1.2] repeatedly to obtain $||f_1(A) \cdots f_n(A)Xx|| = ||Xx||$. This means that Xx is in K_2 . Hence we have $XK_1 \subseteq K_2$ as asserted. Since *X* is invertible, if

$$X = \begin{bmatrix} X_1 & * \\ 0 & X_2 \end{bmatrix} : H = K_1 \oplus K_1^{\perp} \to H = K_2 \oplus K_2^{\perp},$$

then X_2 has dense range. Thus $X_2^*: K_2^\perp \to K_1^\perp$ is one-to-one. Therefore,

$$d_{f(A)} = \dim K_2^{\perp} \leq \dim K_1^{\perp} = d_{A^n}$$

(cf. [6, Problem 56]). In a similar fashion, if $Y = \prod_{j=1}^{n} (I + \overline{a}_j A)$, then successive applications of [3, Lemma 1.2] also yield $YK_2 \subseteq K_1$. We can then infer as above that $d_{A^n} \leq d_{f(A)}$. This proves their equality. \Box

For more general functions, we use the Sz.-Nagy–Foiaş functional calculus for contractions [8, Section III.2]. For any absolutely continuous contraction A (this means that A has no nontrivial reducing subspace on which A is a singular unitary operator) and any function f in H^{∞} with $||f||_{\infty} \leq 1$, the operator f(A) can be defined and is again a contraction. Note that every function in H^{∞} can be factored as the product of an inner and an outer function, and every inner function is the product of a Blaschke product and a singular inner function (cf. [8, Section III.1]).

Theorem 3.2. Let A be an absolutely continuous contraction on H and f be a function in H^{∞} with $\|f\|_{\infty} \leq 1$.

- (a) If *f* has an infinite Blaschke product factor, then $d_{f(A)} \ge \sup\{d_{A^n} : n \ge 0\}$.
- (b) If *f* is a (nonconstant) inner function, then $d_{f(A)} \leq \sup\{d_{A^n} : n \geq 0\}$. In particular, if *f* is an inner function with an infinite Blaschke product factor, then $d_{f(A)} = \sup\{d_{A^n} : n \geq 0\}$.

Proof. (a) For each $n \ge 1$, let $f = f_n g_n$, where f_n is a finite Blaschke product with n zeros and g_n is in H^{∞} . Then $f(A) = f_n(A)g_n(A)$. Theorem 3.1 and Lemma 1.2 imply that $d_{A^n} = d_{f_n(A)} \le d_{f(A)}$ for all $n \ge 1$. Thus $d_{f(A)} \ge \sup\{d_{A^n} : n \ge 0\}$.

(b) We may assume that $n_0 \equiv \sup\{d_{A^n} : n \ge 0\} < \infty$. This means that dim $H_\infty = n_0$ is finite. Let

$$A = \begin{bmatrix} A' & 0 & 0 \\ B & S_m & 0 \\ 0 & 0 & U \end{bmatrix} \quad \text{on } H = H_{\infty} \oplus K_1 \oplus K_2,$$

where S_m is the unilateral shift with multiplicity $m, 0 \le m \le \infty$, and U is unitary. Then

$$f(A) = \begin{bmatrix} f(A') & 0 & 0 \\ C & f(S_m) & 0 \\ 0 & 0 & f(U) \end{bmatrix}.$$

2832

Note that $f(S_m)$ is itself a unilateral shift, say, $S_I(0 \le l \le \infty)$ (cf. [2,5]) and f(U) is unitary because f is inner. Hence

$$I - f(A)^* f(A) = \begin{bmatrix} I - f(A')^* f(A') - C^* C & -C^* S_l & 0 \\ -S_l^* C & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} I - f(A')^* f(A') - C^* C & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

since $I - f(A)^* f(A) \ge 0$. Therefore,

$$d_{f(A)} = \operatorname{rank} (I - f(A')^* f(A') - C^* C) \leq \operatorname{rank} (I - f(A')^* f(A')) = d_{f(A')} \leq n_0.$$

This completes the proof. \Box

Note that Theorem 3.2 (a) is in general false if f is a finite Blaschke product. For example, if A =[0 0 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and f(z) = z, then $d_{f(A)} = d_A = 1$, but sup{ $d_{A^n} : n \ge 0$ } = 2. Theorem 3.2 (b) is also false for general f in H^{∞} with $\|f\|_{\infty} \leq 1$. As an example, let A be the (simple) unilateral shift. Then sup $\{d_{A^n}:$ $n \ge 0$ = 0. On the other hand, f(A) is an analytic Toeplitz operator with symbol f, which is an isometry if and only if *f* is inner (cf. [2]). Thus $d_{f(A)} = 0$ can happen only when *f* is inner.

The next corollary generalizes Proposition 1.9.

Corollary 3.3. If A is an absolutely continuous contraction and f is either a finite Blaschke product or an inner function with an infinite Blaschke product factor, then $d_{f(A)} = d_{f(A)^*}$.

Proof. Since $f(A)^* = \tilde{f}(A^*)$, where $\tilde{f}(z) = \overline{f(\overline{z})}$ for $z \in \mathbb{D}$, the assertion follows easily from Theorems 3.1 and 3.2.

References

- [1] H. Bercovici, Operator Theory and Arithmetic in H^{∞} , Amer. Math. Soc., Providence, RI, 1988.
- [2] A. Brown, R.G. Douglas, Partially isometric Toeplitz operators, Proc. Amer. Math. Soc. 16 (1965) 681–682.
- [3] H.-L. Gau, P.Y. Wu, Finite Blaschke products of contractions, Linear Algebra Appl. 368 (2003) 359–370.
- [4] H.-L. Gau, P.Y. Wu, Unitary part of a contraction, J. Math. Anal. Appl., submitted for publication.
- [5] R. Goor, On Toeplitz operators which are contractions, Proc. Amer. Math. Soc. 34 (1972) 191–192.
- [6] P.R. Halmos, A Hilbert Space Problem Book, second ed., Springer, New York, 1982. [7] D. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. 127 (1967) 179–203.
- [8] B. Sz.-Nagy, C. Foiaș, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
- [9] P.Y. Wu, Quasi-similarity of weak contractions, Proc. Amer. Math. Soc. 69 (1978) 277-282.
- [10] P.Y. Wu, K. Takahashi, Singular unitary dilations, Integral Equations Operator Theory 33 (1999) 231-247.