Defect indices of powers of a contraction

Hwa-Long Gau ${ }^{\mathrm{a}, *, 1}$, Pei Yuan Wu ${ }^{\mathrm{b}, 2}$
${ }^{\text {a }}$ Department of Mathematics, National Central University, Chung-Li 320, Taiwan
${ }^{\text {b }}$ Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

A R T I C L E I N F O

Article history:

Received 23 August 2009
Accepted 15 December 2009
Available online 12 January 2010
Submitted by R. Bhatia
In memory of our colleague and friend Sen-Yen Shaw (1945-2009)

AMS classification:

15A03
47A30

Keywords:
Contraction
Defect index
Norm-one index
Blaschke product

Abstract

Let A be a contraction on a Hilbert space H. The defect index d_{A} of A is, by definition, the dimension of the closure of the range of $I-A^{*} A$. We prove that (1) $d_{A^{n}} \leqslant n d_{A}$ for all $n \geqslant 0$, (2) if, in addition, A^{n} converges to 0 in the strong operator topology and $d_{A}=1$, then $d_{A^{n}}=n$ for all finite $n, 0 \leqslant n \leqslant \operatorname{dim} H$, and (3) $d_{A}=d_{A^{*}}$ implies $d_{A^{n}}=d_{A^{n *}}$ for all $n \geqslant 0$. The norm-one index k_{A} of A is defined as $\sup \left\{n \geqslant 0:\left\|A^{n}\right\|=1\right\}$. When $\operatorname{dim} H=m<\infty$, a lower bound for k_{A} was obtained before: $k_{A} \geqslant\left(m / d_{A}\right)-1$. We show that the equality holds if and only if either A is unitary or the eigenvalues of A are all in the open unit disc, d_{A} divides m and $d_{A^{n}}=n d_{A}$ for all $n, 1 \leqslant n \leqslant m / d_{A}$. We also consider the defect index of $f(A)$ for a finite Blaschke product f and show that $d_{f(A)}=d_{A^{n}}$, where n is the number of zeros of f.

© 2009 Elsevier Inc. All rights reserved.

0. Introduction

Let H be a complex Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and the associated norm $\|\cdot\|$, and let A be a contraction $(\|A\| \equiv \sup \{\|A x\|: x \in H,\|x\|=1\} \leqslant 1$) on H. The defect index of A is, by definition, $\operatorname{rank}\left(I-A^{*} A\right)$, that is, the dimension of the closure of the range $\overline{\operatorname{ran}\left(I-A^{*} A\right)}$ of $I-A^{*} A$. It is a measure of how far A is from the isometries, and plays a prominent role in the Sz.-Nagy-Foiaş theory of canonical model for contractions [8].

[^0]In this paper, we are concerned with the defect indices of powers of a contraction. We show that, for a contraction $A, d_{A^{n}}$ is at most $n d_{A}$ for any $n \geqslant 0$. They are in general not equal. The equality does hold in certain cases. For example, if A^{n} converges to 0 in the strong operator topology and $d_{A}=1$, then $d_{A^{n}}=n$ for all finite $n, 0 \leqslant n \leqslant \operatorname{dim} H$. The equality (for some n 's) also arises in another situation, namely, in relation to the norm-one index. Recall that the norm-one index k_{A} of a contraction A is defined as $\sup \left\{n \geqslant 0:\left\|A^{n}\right\|=1\right\}$. It was proven in [3, Theorem 2.4] that if A acts on an m-dimensional space, then $k_{A} \geqslant\left(m / d_{A}\right)-1$. Here we complement this result by characterizing all the m-dimensional A with $k_{A}=\left(m / d_{A}\right)-1$: this is the case if and only if either A is unitary or the eigenvalues of A are all in the open unit disc $\mathbb{D}(\equiv\{z \in \mathbb{C}:|z|<1\}), d_{A}$ divides m and $d_{A^{n}}=n d_{A}$ for all $n, 1 \leqslant n \leqslant m / d_{A}$. These will be given in Sections 1 and 2 below, respectively. In Section 3, we consider contractive analytic functions of a contraction, instead of just its powers. Among other things, we show that if f is a Blaschke product with n zeros, then $d_{f(A)}=d_{A^{n}}$.

1. Powers of a contraction

We start with some basic properties for the defect indices of powers of a contraction. These include a "triangle inequality" and their increasingness.

Theorem 1.1. Let A be a contraction on H.
(a) The inequality $d_{A^{m+n}} \leqslant d_{A^{m}}+d_{A^{n}}$ holds for any $m, n \geqslant 0$. In particular, $d_{A^{n}} \leqslant n d_{A}$ for $n \geqslant 0$.
(b) The sequence $\left\{d_{A^{n}}\right\}_{n=0}^{\infty}$ is increasing in n. Moreover, if $d_{A^{n}}=d_{A^{n+1}}<\infty$ for some $n, 0 \leqslant n \leqslant \operatorname{dim} H$, then $d_{A^{k}}=d_{A^{n}}$ for all $k \geqslant n$.

The proof depends on the following more general lemma.
Lemma 1.2. Let $A=B C$, where B and C are contractions. Then $d_{C} \leqslant d_{A} \leqslant d_{B}+d_{C}$. If B and C commute, then we also have $d_{B} \leqslant d_{A}$.

Note that $d_{B} \leqslant d_{A}$ may not hold without the commutativity of B and C. For example, if $A=I, B=S^{*}$ and $C=S$, where S denotes the (simple) unilateral shift, then $A=B C, d_{A}=0$ and $d_{B}=1$.

Proof of Lemma 1.2. Since

$$
I-A^{*} A=I-C^{*} B^{*} B C \geqslant I-C^{*} C \geqslant 0,
$$

where we used $C^{*} B^{*} B C \leqslant C^{*} C$ because $B^{*} B \leqslant I$, we obtain $\overline{\operatorname{ran}\left(I-A^{*} A\right)} \supseteq \overline{\operatorname{ran}\left(I-C^{*} C\right)}$ and thus $d_{A} \geqslant d_{C}$. If B and C commute, then $A=C B$ and, therefore, $d_{B} \leqslant d_{A}$ follows from above.

On the other hand, since

$$
I-A^{*} A=I-C^{*} B^{*} B C=\left(I-C^{*} C\right)+C^{*}\left(I-B^{*} B\right) C
$$

we have

$$
\operatorname{ran}\left(I-A^{*} A\right) \subseteq \operatorname{ran}\left(I-C^{*} C\right)+\operatorname{ran} C^{*}\left(I-B^{*} B\right) C
$$

Thus

$$
\begin{aligned}
d_{A} & \leqslant d_{C}+\operatorname{rank} C^{*}\left(I-B^{*} B\right) C \\
& \leqslant d_{C}+\operatorname{rank}\left(I-B^{*} B\right) C \\
& \leqslant d_{C}+d_{B},
\end{aligned}
$$

completing the proof.

We now prove Theorem 1.1. For any contraction A, let $H_{n}=\overline{\operatorname{ran}\left(I-A^{n *} A^{n}\right)}$ for $n \geqslant 0$ and $H_{\infty}=$ $\vee_{n=0}^{\infty} H_{n}$. In the following, we will frequently use the fact that, for a contraction A, x is in $\operatorname{ker}\left(I-A^{*} A\right)$ if and only if $\|A x\|=\|x\|$.

Proof of Theorem 1.1. (a) and the increasingness of the $d_{A^{n}}$'s in (b) follow immediately from Lemma 1.2. To prove the remaining part of (b), we check that $H_{n}=\vee_{k=0}^{n-1} A^{k *} H_{1}$ for $n \geqslant 1$. Indeed, if $x=(I-$ $\left.A^{n *} A^{n}\right) y$ for some y in H, then $x=\sum_{k=0}^{n-1} A^{k *}\left(I-A^{*} A\right) A^{k} y$, which shows that x is in $\vee_{k=0}^{n-1} A^{k *} H_{1}$. For the converse containment, note that A maps $\operatorname{ker}\left(I-A^{k+1 *} A^{k+1}\right)$ to $\operatorname{ker}\left(I-A^{k *} A^{k}\right)$ isometrically for each $k \geqslant 0$. Indeed, if x is in the former, then

$$
\|x\|=\left\|A^{k+1} x\right\| \leqslant\|A x\| \leqslant\|x\| .
$$

Hence we have the equalities throughout and, in particular, $\left\|A^{k}(A x)\right\|=\|A x\|$ and $\|A x\|=\|x\|$. The former implies that $A x \in \operatorname{ker}\left(I-A^{k *} A^{k}\right)$. Together with the latter, this proves our assertion. Therefore, A^{*} maps H_{k} to H_{k+1} for $k \geqslant 0$. By iteration, we have that $A^{k *}$ maps H_{1} to H_{k+1} for all $k \geqslant 1$. Arguing as above, we also obtain $\operatorname{ker}\left(I-A^{k+1 *} A^{k+1}\right) \subseteq \operatorname{ker}\left(I-A^{k *} A^{k}\right)$ and thus $H_{k} \subseteq H_{k+1}$ for $k \geqslant 0$. Therefore, $A^{k *}$ maps H_{1} to H_{n} for all $k, 0 \leqslant k \leqslant n-1$. This proves $\vee_{k=0}^{n-1} A^{k *} H_{1} \subseteq H_{n}$ and hence our assertion on their equality.

If $d_{A^{n}}=d_{A^{n+1}}<\infty$ for some n, then $H_{n}=H_{n+1}$. Hence

$$
\begin{aligned}
H_{n+2} & =\vee_{k=0}^{n+1} A^{k *} H_{1}=\left(\vee_{k=0}^{n} A^{k *} H_{1}\right) \vee\left(A^{n+1 *} H_{1}\right) \\
& \subseteq H_{n+1} \vee\left(A^{*} H_{n+1}\right)=H_{n+1} \vee\left(A^{*} H_{n}\right) \\
& \subseteq H_{n+1} \vee H_{n+1}=H_{n+1} \subseteq H_{n+2}
\end{aligned}
$$

Therefore, we have equalities throughout. This implies that $d_{n+1}=d_{n+2}$. Repeating this argument gives us $d_{A^{k}}=d_{A^{n}}$ for all $k \geqslant n$.

Note that, in Theorem 1.1 (a), $d_{A^{m+n}}<d_{A^{m}}+d_{A^{n}}$ may happen even for $m=n=1$. For example, if

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

then $d_{A}=2$ and $d_{A^{2}}=3$. Thus $d_{A^{2}}<d_{A}+d_{A}$.
The following corollary is an easy consequence of Theorem 1.1 (b).
Corollary 1.3. If A is a contraction with A^{n} isometric (resp., unitary), then A itself is isometric (resp., unitary).

The next theorem says that the equalities $d_{A^{n}}=n d_{A}, n \geqslant 0$, do hold for certain contractions A. It generalizes [3, Theorem 3.1] and [4, Theorem 3.4].

Theorem 1.4. If A is a contraction on H with A^{n} converging to 0 in the strong operator topology and $d_{A}=1$, then $d_{A^{n}}=n$ for all finite $n, 0 \leqslant n \leqslant \operatorname{dim} H$.

Proof. Under our assumption that $d_{A}=1$, we have $d_{A^{n}} \leqslant n$ for all $n \geqslant 0$ by Theorem 1.1 (a). Assume that $d_{A^{n_{0}}}<n_{0}$ for some finite $n_{0}, 1<n_{0} \leqslant \operatorname{dim} H$. Since $d_{A^{n}}$ increases in n, the pigeonhole principle and Theorem 1.1 (b) yield that $d_{A^{n_{0}-1}}=d_{A^{n} 0}=d_{A^{n}}<n_{0}<\infty$ for all $n \geqslant n_{0}$. Hence

$$
\operatorname{ker}\left(I-A^{n_{0} *} A^{n_{0}}\right)=\overline{\operatorname{ran}\left(I-A^{n_{0} *} A^{n_{0}}\right)}{ }^{\perp}=\overline{\operatorname{ran}\left(I-A^{n *} A^{n}\right)}{ }^{\perp}=\operatorname{ker}\left(I-A^{n *} A^{n}\right)
$$

for $n \geqslant n_{0}$. Let K denote this common subspace. For x in K, we have $\left\|A^{n} x\right\|=\|x\|$ for all $n \geqslant n_{0}$. On the other hand, the assumption that $A^{n} \rightarrow 0$ in the strong operator topology yields that $\left\|A^{n} x\right\| \rightarrow 0$ as $n \rightarrow$ ∞. From these, we conclude that $x=0$ and hence $K=\{0\}$. This is the same as $\operatorname{ker}\left(I-A^{n_{0} *} A^{n_{0}}\right)=\{0\}$
or $\overline{\operatorname{ran}\left(I-A^{n_{0} *} A^{n_{0}}\right)}=H$. Thus $\operatorname{dim} H=d_{A^{n_{0}}}<n_{0}$, which is a contradiction. Therefore, we must have $d_{A^{n}}=n$ for all finite $n, 0 \leqslant n \leqslant \operatorname{dim} H$.

Let A be a contraction on H. Since A^{*} maps H_{n} to H_{n+1} for $n \geqslant 0$ as shown in the proof of Theorem 1.1 (b), we have $A^{*} H_{\infty} \subseteq H_{\infty}$. Hence

$$
A=\left[\begin{array}{cc}
A^{\prime} & 0 \\
B & V
\end{array}\right] \text { on } H=H_{\infty} \oplus H_{\infty}^{\perp}
$$

Note that, for any x in $H_{\infty}^{\perp}=\cap_{n=0}^{\infty} \operatorname{ker}\left(I-A^{n *} A^{n}\right)$, we have $A^{*} A x=x$, which implies that $\|V x\|=$ $\|A x\|=\|x\|$. Thus V is isometric on H_{∞}^{\perp}. Recall that a contraction is completely nonunitary (c.n.u.) if it has no nontrivial reducing subspace on which it is unitary. A can be uniquely decomposed as $A_{1} \oplus U$ on $K \oplus K^{\perp}$, where A_{1} is c.n.u. on K and U is unitary on $K^{\perp}=\cap_{n=0}^{\infty}\left(\operatorname{ker}\left(I-A^{n *} A^{n}\right) \cap \operatorname{ker}\left(I-A^{n} A^{n *}\right)\right)$ (cf. [8, Theorem I.3.2]). Thus the above decomposition can be further refined as

$$
A=\left[\begin{array}{ccc}
A^{\prime} & 0 & 0 \\
B_{1} & S_{m} & 0 \\
0 & 0 & U
\end{array}\right]
$$

where S_{m} denotes the unilateral shift with multiplicity $m(0 \leqslant m \leqslant \infty), A_{1}=\left[\begin{array}{cc}A^{\prime} & 0 \\ B_{1} & S_{m}\end{array}\right]$ is c.n.u., and $V=S_{m} \oplus U$ corresponds to the Wold decomposition of V (cf. [8, Theorem I.1.1]).

Corollary 1.5. If A is a contraction on a finite-dimensional space with $d_{A}=1$, then

$$
d_{A^{n}}= \begin{cases}n & \text { if } 0 \leqslant n \leqslant n_{0}, \\ n_{0} & \text { if } n>n_{0},\end{cases}
$$

where $n_{0}=\operatorname{dim} H_{\infty}$.
Proof. On a finite-dimensional space, the above representation of A becomes $A=A^{\prime} \oplus V$ on $H=$ $H_{\infty} \oplus H_{\infty}^{\perp}$ with V unitary. It is easily seen that A^{\prime} has no eigenvalue of modulus one. Hence $A^{\prime \prime}$ converges to 0 in norm (cf. [6, Problem 88]). Our assertion on $d_{A^{n}}$ then follows from Theorems 1.4 and 1.1 (b).

The next theorem characterizes those contractions A for which $d_{A^{n}}=n$ for finitely many n 's or for all $n \geqslant 0$. It generalizes Corollary 1.5 .

Recall that an operator A on an n-dimensional space is said to be of class \mathcal{S}_{n} if A is a contraction, its eigenvalues are all in \mathbb{D} and $d_{A}=1$. The n-by- n Jordan block

$$
J_{n}=\left[\begin{array}{llll}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right]
$$

is one example. Such operators and their infinite-dimensional analogues $S(\phi)$ (ϕ an inner function) are first studied by Sarason [7]. They play the role of the building blocks of the Jordan model for C_{0} contractions [1,8].

Theorem 1.6. Let A be a contraction on H.
(a) Let n_{0} be a nonnegative integer. Then
$d_{A^{n}}= \begin{cases}n & \text { if } 1 \leqslant n \leqslant n_{0}, \\ n_{0} & \text { if } n>n_{0}\end{cases}$
if and only if $P_{H_{\infty}} A \mid H_{\infty}$, the compression of A to H_{∞}, is of class $\mathcal{S}_{n_{0}}$. In this case, $\operatorname{dim} H_{\infty}=n_{0}$.
(b) $d_{A^{n}}=n$ for all $n, 0 \leqslant n<\infty$, if and only if $d_{A}=1$ and $\operatorname{dim} H_{\infty}=\infty$.

Proof. (a) Let

$$
A=\left[\begin{array}{cc}
A^{\prime} & 0 \\
B & V
\end{array}\right] \text { on } H=H_{\infty} \oplus H_{\infty}^{\perp}
$$

where V is isometric. First assume that the $d_{A^{n}}$'s are as asserted. We need to show that $A^{\prime}=P_{H_{\infty}} A \mid H_{\infty}$ is of class $\mathcal{S}_{n_{0}}$. Our assumption on $d_{A^{n}}$ implies that $H_{\infty}=H_{n_{0}}$ is of dimension n_{0}. Moreover, for any $n \geqslant 0$, we have

$$
\begin{aligned}
I-A^{n *} A^{n} & =I-\left[\begin{array}{cc}
A^{\prime n *} & B_{n}^{*} \\
0 & V^{n *}
\end{array}\right]\left[\begin{array}{cc}
A^{\prime n} & 0 \\
B_{n} & V^{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
I-A^{\prime n *} A^{\prime n}-B_{n}^{*} B_{n} & -B_{n}^{*} V^{n} \\
-V^{n *} B_{n} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
I-A^{\prime n *} A^{\prime n}-B_{n}^{*} B_{n} & 0 \\
0 & 0
\end{array}\right],
\end{aligned}
$$

where the last equality holds because $I-A^{n *} A^{n} \geqslant 0$. Hence

$$
n=d_{A^{n}}=\operatorname{rank}\left(I-A^{\prime n *} A^{\prime n}-B_{n}^{*} B_{n}\right) \leqslant \operatorname{rank}\left(I-A^{\prime n *} A^{\prime n}\right)=d_{A^{\prime n}}
$$

for $1 \leqslant n \leqslant n_{0}$. If $n_{1}<d_{A^{\prime \prime}}$ for some $n_{1}, 1 \leqslant n_{1} \leqslant n_{0}$, then the pigeonhole principle and Theorem 1.1 (b) yield that $d_{A^{\prime n} n_{0}-1}=d_{A^{\prime n_{0}}}$. From [3, Lemma 2.3] and the fact that A^{\prime} has no eigenvalue of modulus one, we conclude that $I-A^{\prime n_{0}-1 *} A^{\prime n_{0}-1}$ is one-to-one and hence $d_{A^{\prime n_{0}-1}}=n_{0}$, contradicting our assumption. Hence $d_{A^{\prime} n}=n$ for all $n, 1 \leqslant n \leqslant n_{0}$. [3, Theorem 3.1] implies that A^{\prime} is of class $\mathcal{S}_{n_{0}}$. This proves one direction.

For the converse, we derive as above to obtain $I-A^{n *} A^{n}=\left(I-A^{\prime n *} A^{\prime n}-B_{n}^{*} B_{n}\right) \oplus 0$ on $H=$ $H_{\infty} \oplus H_{\infty}^{\perp}$ and

$$
d_{A^{n}} \leqslant d_{A^{\prime n}}= \begin{cases}n & \text { if } 1 \leqslant n \leqslant n_{0} \tag{*}\\ n_{0} & \text { if } n>n_{0}\end{cases}
$$

by [3, Theorem 3.1]. Assume that $d_{A^{n_{1}}}<n_{1}$ for some $n_{1}, 1 \leqslant n_{1} \leqslant n_{0}$. Then the pigeonhole principle and Theorem 1.1 (b) yield $d_{A^{n}}=d_{A^{n_{0}}}<n_{0}$ for all $n \geqslant n_{0}$. This implies that $H_{n}=H_{n_{0}}$ for all $n \geqslant n_{0}$. Therefore, $H_{\infty}=H_{n_{0}}$ has dimension strictly less than n_{0}, which contradicts the fact that $\operatorname{dim} H_{\infty}=d_{A^{\prime n_{0}}}=n_{0}$ (cf. [3, Theorem 3.1]). Hence we have $d_{A^{n}}=n$ for all $n, 1 \leqslant n \leqslant n_{0}$. If $n>n_{0}$, then $d_{A^{n}} \geqslant d_{A^{n} 0}=n_{0}$ by Theorem 1.1 (b) and what we have just proven. This, together with $(*)$, yields $d_{A^{n}}=n_{0}$ for $n>n_{0}$.
(b) Since $\operatorname{dim} H_{\infty} \geqslant d_{A^{n}}$ for all n, the necessity is obvious. Conversely, assume that $d_{A}=1$ and $\operatorname{dim} H_{\infty}=\infty$. Then $d_{A^{n}} \leqslant n d_{A}=n$ by Theorem 1.1 (a). If $d_{A^{n_{1}}}<n_{1}$ for some $n_{1} \geqslant 2$, then an argument analogous to the one for the second half of (a) yields that $H_{\infty}=H_{n_{1}}$ is of dimension less than n_{1}. This contradicts our assumption. Hence we must have $d_{A^{n}}=n$ for all n.

We now proceed to consider contractions A with $d_{A}=d_{A^{*}}$ and start with the following lemma giving conditions of the equality of d_{A} and $d_{A^{*}}$ for an arbitrary operator A. Note that, in this case, the definition of the defect index still makes sense.

Lemma 1.7. Let A be an operator on H.
(a) If $\operatorname{dim} \operatorname{ker} A=\operatorname{dim} \operatorname{ker} A^{*}$, then $d_{A}=d_{A^{*}}$. In particular, if A acts on a finite-dimensional space, then $d_{A}=d_{A^{*}}$.
(b) If d_{A} is finite, then the following conditions are equivalent:
(1) $d_{A}=d_{A^{*}}$;
(2) $\operatorname{dim} \operatorname{ker} A=\operatorname{dim} \operatorname{ker} A^{*}$;
(3) $A^{*} A$ and $A A^{*}$ are unitarily equivalent;
(4) A is the sum of a unitary operator and a finite-rank operator.

Proof. (a) If $\operatorname{dim} \operatorname{ker} A=\operatorname{dim} \operatorname{ker} A^{*}$, then $A=U\left(A^{*} A\right)^{1 / 2}$ for some unitary operator U (cf. [6, Problem 135]). Hence $A A^{*}=U\left(A^{*} A\right) U^{*}$ is unitarily equivalent to $A^{*} A$. Then the same is true for $I-A^{*} A$ and $I-A A^{*}$. Thus $d_{A}=d_{A^{*}}$.
(b) It was proven in [4, Lemma 1.4] that if $A^{*} A=A_{1} \oplus 0$ (resp., $A A^{*}=A_{2} \oplus 0$) on $H=\overline{\operatorname{ran} A^{*}} \oplus$ $\operatorname{ker} A$ (resp., $H=\overline{\operatorname{ran} A} \oplus \operatorname{ker} A^{*}$), then A_{1} and A_{2} are unitarily equivalent. If $d_{A}=d_{A^{*}}<\infty$, then

$$
\begin{aligned}
\operatorname{rank}\left(I-A_{1}\right)+\operatorname{dim} \operatorname{ker} A & =\operatorname{rank}\left(I-A^{*} A\right)=\operatorname{rank}\left(I-A A^{*}\right) \\
& =\operatorname{rank}\left(I-A_{2}\right)+\operatorname{dim} \operatorname{ker} A^{*}
\end{aligned}
$$

and hence $\operatorname{dim} \operatorname{ker} A=\operatorname{dim} \operatorname{ker} A^{*}$. This proves that (1) implies (2). If (2) holds, then the unitary equivalence of A_{1} and A_{2} implies the same for $A^{*} A$ and $A A^{*}$, that is, (2) implies (3). Now assume that (3) holds. Since $\operatorname{ker} A^{*} A=\operatorname{ker} A$ and $\operatorname{ker} A A^{*}=\operatorname{ker} A^{*}$, the unitary equivalence of $A^{*} A$ and $A A^{*}$ implies that $\operatorname{dim} \operatorname{ker} A=\operatorname{dim} \operatorname{ker} A^{*}$. Hence $d_{A}=d_{A^{*}}$ by (a), that is, (1) holds. Finally, the equivalence of (1) and (4) was proven in [10, Lemma 3.3].

Note that, in the preceding lemma, $d_{A}=d_{A^{*}}=\infty$ does not imply $\operatorname{dim} \operatorname{ker} A=\operatorname{dim} \operatorname{ker} A^{*}$ in general. For example, if $A=\operatorname{diag}(1,1 / 2,1 / 3, \ldots) \oplus S$, where S is the (simple) unilateral shift, then $d_{A}=d_{A^{*}}=\infty, \operatorname{dim} \operatorname{ker} A=0$ and $\operatorname{dim} \operatorname{ker} A^{*}=1$.

Theorem 1.8. Let A be a contraction with $d_{A}=d_{A^{*}}<\infty$. Then $\operatorname{dim} H_{\infty}<\infty$ if and only if the completely nonunitary part of A acts on a finite-dimensional space.

Proof. Assume that $\operatorname{dim} H_{\infty}<\infty$ and let

$$
A=\left[\begin{array}{ccc}
A^{\prime} & 0 & 0 \\
B & S_{m} & 0 \\
0 & 0 & U
\end{array}\right] \quad \text { on } H=H_{\infty} \oplus K_{1} \oplus K_{2},
$$

where S_{m} denotes the unilateral shift with multiplicity $m, 0 \leqslant m \leqslant \infty$, and U is unitary. We need to show that S_{m} does not appear in this representation of A or, equivalently, $m=0$. We first prove that m is finite. Indeed, since

$$
I-A A^{*}=\left[\begin{array}{ccc}
I-A^{\prime} A^{\prime *} & -A^{\prime} B^{*} & 0 \\
-B A^{\prime *} & I-B B^{*}-S_{m} S_{m}^{*} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

we have

$$
\begin{aligned}
m=\operatorname{rank}\left(I-S_{m} S_{m}^{*}\right) & \leqslant \operatorname{rank}\left(I-B B^{*}-S_{m} S_{m}^{*}\right)+\operatorname{rank} B B^{*} \\
& \leqslant \operatorname{rank}\left(I-A A^{*}\right)+\operatorname{rank} B B^{*} \\
& \leqslant d_{A^{*}}+\operatorname{dim} H_{\infty}<\infty
\end{aligned}
$$

as asserted. Now to show that $m=0$, consider S_{m} as

$$
\left[\begin{array}{cccc}
0 & & & \\
I_{m} & 0 & & \\
& I_{m} & 0 & \\
& & \ddots & \ddots
\end{array}\right]
$$

Then B is of the form $\left[\begin{array}{llll}B^{\prime} & 0 & 0 & \cdots\end{array}\right]^{T}$. Let $\widetilde{A}=\left[\begin{array}{ll}A^{\prime} & 0 \\ B^{\prime} & 0\end{array}\right]$. Since \widetilde{A} acts on a finite-dimensional space, we have $d_{\tilde{A}}=d_{\tilde{A}^{*}}$ by Lemma 1.7 (a). Then

$$
\begin{aligned}
d_{A^{*}} & =\operatorname{rank}\left(I-A A^{*}\right) \\
& =\operatorname{rank}\left[\begin{array}{cc}
I-A^{\prime} A^{*} & -A^{\prime} B^{*} \\
-B A^{*} & I-B B^{*}-S_{m} S_{m}^{*}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =d_{\widetilde{A}^{*}}=d_{\tilde{A}}=\operatorname{rank}\left[\begin{array}{cc}
I I-A^{\prime *} A^{\prime}-B^{\prime *} B^{\prime} & 0 \\
0 & I_{m}
\end{array}\right] \\
& =m+\operatorname{rank}\left(I-A^{*} A^{\prime}-B^{\prime *} B^{\prime}\right) \\
& =m+\operatorname{rank}\left(I-A^{\prime *} A^{\prime}-B^{*} B\right) \\
& =m+\operatorname{rank}\left[\begin{array}{ccc}
I-A^{*} A^{\prime}-B^{*} B & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =m+\operatorname{rank}\left(I-A^{*} A\right)=m+d_{A} .
\end{aligned}
$$

We infer from the assumption $d_{A}=d_{A^{*}}<\infty$ that $m=0$. Thus $A=A^{\prime} \oplus U$, where A^{\prime} is the c.n.u. part of A acting on the finite-dimensional space H_{∞}.

The converse is trivial.
The next two results are valid for any operators.
Proposition 1.9. If A is an operator with $d_{A}=d_{A^{*}}$, then $d_{A^{n}}=d_{A^{n *}}$ for all $n \geqslant 1$.
Proof. If $d_{A}=d_{A^{*}}<\infty$, then $A=U+F$, where U is unitary and F has finite rank, by Lemma 1.7 (b). For any $n \geqslant 1$, we have $A^{n}=U^{n}+F_{n}$, where F_{n} is some finite-rank operator. By Lemma 1.7 (b) again, this implies that $d_{A^{n}}=d_{A^{n} *}$. On the other hand, if $d_{A}=d_{A^{*}}=\infty$, then $d_{A^{n}}=d_{A^{n *}}=\infty$ for any $n \geqslant 1$ by Theorem 1.1 (b). This completes the proof.

Two operators A on H and B on K are said to be quasi-similar if there are operators $X: H \rightarrow K$ and $Y: K \rightarrow H$ which are one-to-one and have dense range such that $X A=B X$ and $Y B=A Y$.

We conclude this section with the following result on quasi-similar operators.
Proposition 1.10. Let A and B be quasi-similar operators. If $d_{A}=d_{A^{*}}<\infty$, then $d_{B}=d_{B^{*}}$.
Proof. Our assumption of $d_{A}=d_{A^{*}}<\infty$ implies, by Lemma 1.7 (b), that $\operatorname{dim} \operatorname{ker} A=\operatorname{dim} \operatorname{ker} A^{*}$. The quasi-similarity of A and B then yields

$$
\operatorname{dim} \operatorname{ker} B=\operatorname{dim} \operatorname{ker} A=\operatorname{dim} \operatorname{ker} A^{*}=\operatorname{dim} \operatorname{ker} B^{*} .
$$

Then $d_{B}=d_{B^{*}}$ by Lemma 1.7 (a).
Note that the preceding proposition is false if $d_{A}=d_{A^{*}}=\infty$.
Example 1.11. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of distinct complex numbers in \mathbb{D} with $\sum_{n}\left(1-\left|a_{n}\right|\right)<\infty$. Let $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right) \oplus S$, where S denotes the (simple) unilateral shift. Let ϕ be the Blaschke product with zeros a_{n} :

$$
\phi(z)=\prod_{n=1}^{\infty} \frac{\bar{a}_{n}}{\left|a_{n}\right|} \frac{z-a_{n}}{1-\bar{a}_{n} z}, \quad z \in \mathbb{D}
$$

and let $B=S(\phi) \oplus S$, where $S(\phi)$ denotes the compression of the shift

$$
S(\phi) f=P(z f(z)), \quad f \in H^{2} \ominus \phi H^{2}
$$

P being the (orthogonal) projection from H^{2} onto $H^{2} \ominus \phi H^{2}$. It is known that diag $\left(a_{n}\right)$ is itself a C_{0} contraction which is quasi-similar to $S(\phi)$ (cf. [9, Theorem 3]). Thus A is quasi-similar to B. But $d_{A}=d_{A^{*}}=\infty, d_{B}=1$ and $d_{B^{*}}=2$.

2. Relation to norm-one index

As defined in [3, p. 364], the norm-one index of a contraction A on H is $k_{A} \equiv \sup \left\{n \geqslant 0:\left\|A^{n}\right\|=1\right\}$. This number is to measure how far the powers of A remain to have norm one. It is easily seen that (1) $0 \leqslant k_{A} \leqslant \infty$, (2) $k_{A}=0$ if and only if $\|A\|<1$, and (3) $k_{A}=\infty$ if and only if $\sigma(A) \cap \partial \mathbb{D} \neq \emptyset$. The main results in [3] say that if $\operatorname{dim} H=m<\infty$, then (4) $0 \leqslant k_{A} \leqslant m-1$ or $k_{A}=\infty$ [3, Proposition 2.1 or Theorem 2.2], (5) $k_{A}=m-1$ if and only if A is of class \mathcal{S}_{m} [3, Theorem 3.1], and (6) $k_{A} \geqslant\left(m / d_{A}\right)-1$ [3, Theorem 2.2]. The purpose of this section is to determine when the equality holds in (6).
Theorem 2.1. Let A be a contraction on an m-dimensional space. Then $k_{A}=\left(m / d_{A}\right)-1$ if and only if one of the following holds:
(a) A is unitary,
(b) $\sigma(A) \subseteq \mathbb{D}$, d_{A} divides m, and $d_{A^{n}}=n d_{A}$ for all $n, 1 \leqslant n \leqslant m / d_{A}$.

Proof. Assume that $k_{A}=\left(m / d_{A}\right)-1$.If $\sigma(A) \cap \partial \mathbb{D} \neq \emptyset$, then $\left(m / d_{A}\right)-1=k_{A}=\infty$, which implies that $d_{A}=0$ or A is unitary. Hence we may assume that $\sigma(A) \subseteq \mathbb{D}$. Then $k_{A}<\infty$. From $k_{A}=\left(m / d_{A}\right)-$ 1 , we have $d_{A} \mid m$. By the pigeonhole principle and Theorem 1.1 (b), there is a smallest integer $l, 1 \leqslant l \leqslant m$, such that $d_{A^{l}}=d_{A^{l+1}}$. Since A has no unitary part, this is equivalent to $I-A^{l *} A^{l}$ being one-to-one (cf. [3, Lemma 2.3]) or $\left\|A^{l}\right\|<1$. As l is the smallest such integer, we obtain $k_{A}=l-1$. From $k_{A}=$ $\left(m / d_{A}\right)-1$, we have $m / d_{A}=l$. Note that $d_{A^{n}} \leqslant n d_{A}$ for $1 \leqslant n \leqslant l$ by Theorem 1.1 (a). If $d_{A^{n} 0}<n_{0} d_{A}$ for some $n_{0}, 1 \leqslant n_{0} \leqslant l$, then

$$
d_{A^{l}} \leqslant d_{A^{n_{0}}}+d_{A^{l-n_{0}}}<n_{0} d_{A}+\left(l-n_{0}\right) d_{A}=l d_{A}=m
$$

again by Theorem 1.1 (a). This contradicts the fact that $I-A^{l *} A^{l}$ is one-to-one. Hence we must have $d_{A^{n}}=n d_{A}$ for $1 \leqslant n \leqslant m / d_{A}$. This proves (b).

Conversely, if (a) holds, that is, if A is unitary, then $k_{A}=\infty$ and $d_{A}=0$. Hence $k_{A}=\left(m / d_{A}\right)-1$. Now assume that (b) holds. If $l=m / d_{A}$, then our assumptions imply that $1 \leqslant d_{A}<d_{A^{2}}<\cdots<d_{A^{l}}=$ m. Hence $I-A^{l *} A^{l}$ is one-to-one, but $I-A^{l-1 *} A^{l-1}$ is not. Thus $\left\|A^{l}\right\|<1$ and $\left\|A^{l-1}\right\|=1$. This yields $k_{A}=l-1=\left(m / d_{A}\right)-1$ as required.

On an m-dimensional space, other than unitary operators, \mathcal{S}_{m}-operators and strict contractions (operators with norm strictly less than one), which correspond to $d_{A}=0,1$ and m, respectively, there are other contractions A satisfying $k_{A}=\left(m / d_{A}\right)-1$. For example, if $A=\underbrace{J_{l} \oplus \cdots \oplus J_{l}}_{m / l}$, where l divides
m, then $k_{A}=l-1=\left(m / d_{A}\right)-1$. The same is true for the more general $B=\underbrace{A_{1} \oplus \cdots \oplus A_{1}}_{m / l}$, where A_{1} is an \mathcal{S}_{l}-operator. Another generalization of the contraction A is

$$
C=\left[\begin{array}{cccc}
0 & a_{1} & & \\
& 0 & \ddots & \\
& & \ddots & a_{m-1} \\
& & & 0
\end{array}\right]
$$

where $\left|a_{j}\right|<1$ for $j=k l, 1 \leqslant k \leqslant(m / l)-1(l \mid m)$, and $\left|a_{j}\right|=1$ for all other j 's. In this case, it is easily seen that d_{C} equals m minus the number of j 's for which $\left|a_{j}\right|=1$ and hence $d_{C}=m / l$. On the other hand, k_{C} equals the maximum number of consecutive j 's with $\left|a_{j}\right|=1$, and thus $k_{C}=l-1$. Therefore, $k_{C}=\left(m / d_{C}\right)-1$ holds.

3. Contractive functions of a contraction

In this section, we consider the defect indices of contractive functions of a contraction, instead of just its powers. The first one is finite Blaschke products:

$$
f(z)=\prod_{j=1}^{n} \frac{z-a_{j}}{1-\bar{a}_{j} z}, \quad z \in \mathbb{D},
$$

where $\left|a_{j}\right|<1$ for all j.
Theorem 3.1. If A is a contraction on H and f is a Blaschke product with n zeros (counting multiplicity), then $d_{f(A)}=d_{A^{n}}$.

Note that if f is as above, then $f(A)=\prod_{j=1}^{n}\left(A-a_{j} I\right)\left(I-\bar{a}_{j} A\right)^{-1}$ is also a contraction (cf. [8, Theorem III.2.1 (b)]).

Proof of Theorem 3.1. Let f be as above and let $f_{j}(z)=\left(z-a_{j}\right) /\left(1-\bar{a}_{j} z\right), z \in \mathbb{D}$, for each j. Let $X=\prod_{j=1}^{n}\left(I-\bar{a}_{j} A\right), K_{1}=\operatorname{ker}\left(I-A^{n *} A^{n}\right)$ and $K_{2}=\operatorname{ker}\left(I-f(A)^{*} f(A)\right)$. We first show that $X K_{1} \subseteq K_{2}$. Indeed, if x is in K_{1}, then $\left\|A^{n} x\right\|=\|x\|$. Applying [3, Lemma 1.2] once (with ϕ_{1} there as f_{1} and the remaining ϕ_{j} 's given by $\left.\phi_{j}(z)=z\right)$ yields $\left\|f_{1}(A) A^{n-1}\left(I-\bar{a}_{1} A\right) x\right\|=\left\|\left(I-\bar{a}_{1} A\right) x\right\|$. We then apply [3, Lemma 1.2] repeatedly to obtain $\left\|f_{1}(A) \cdots f_{n}(A) X x\right\|=\|X x\|$. This means that $X x$ is in K_{2}. Hence we have $X K_{1} \subseteq K_{2}$ as asserted. Since X is invertible, if

$$
X=\left[\begin{array}{cc}
X_{1} & * \\
0 & X_{2}
\end{array}\right]: H=K_{1} \oplus K_{1}^{\perp} \rightarrow H=K_{2} \oplus K_{2}^{\perp}
$$

then X_{2} has dense range. Thus $X_{2}^{*}: K_{2}^{\perp} \rightarrow K_{1}^{\perp}$ is one-to-one. Therefore,

$$
d_{f(A)}=\operatorname{dim} K_{2}^{\perp} \leqslant \operatorname{dim} K_{1}^{\perp}=d_{A^{n}}
$$

(cf. [6, Problem 56]). In a similar fashion, if $Y=\prod_{j=1}^{n}\left(I+\bar{a}_{j} A\right)$, then successive applications of [3, Lemma 1.2] also yield $Y K_{2} \subseteq K_{1}$. We can then infer as above that $d_{A^{n}} \leqslant d_{f(A)}$. This proves their equality.

For more general functions, we use the Sz.-Nagy-Foiaş functional calculus for contractions [8, Section III.2]. For any absolutely continuous contraction A (this means that A has no nontrivial reducing subspace on which A is a singular unitary operator) and any function f in H^{∞} with $\|f\|_{\infty} \leqslant 1$, the operator $f(A)$ can be defined and is again a contraction. Note that every function in H^{∞} can be factored as the product of an inner and an outer function, and every inner function is the product of a Blaschke product and a singular inner function (cf. [8, Section III.1]).

Theorem 3.2. Let A be an absolutely continuous contraction on H andf be a function in H^{∞} with $\|f\|_{\infty} \leqslant 1$.
(a) Iff has an infinite Blaschke product factor, then $d_{f(A)} \geqslant \sup \left\{d_{A^{n}}: n \geqslant 0\right\}$.
(b) If f is a (nonconstant) inner function, then $d_{f(A)} \leqslant \sup \left\{d_{A^{n}}: n \geqslant 0\right\}$. In particular, if f is an inner function with an infinite Blaschke product factor, then $d_{f(A)}=\sup \left\{d_{A^{n}}: n \geqslant 0\right\}$.

Proof. (a) For each $n \geqslant 1$, let $f=f_{n} g_{n}$, where f_{n} is a finite Blaschke product with n zeros and g_{n} is in H^{∞}. Then $f(A)=f_{n}(A) g_{n}(A)$. Theorem 3.1 and Lemma 1.2 imply that $d_{A^{n}}=d_{f_{n}(A)} \leqslant d_{f(A)}$ for all $n \geqslant 1$. Thus $d_{f(A)} \geqslant \sup \left\{d_{A^{n}}: n \geqslant 0\right\}$.
(b) We may assume that $n_{0} \equiv \sup \left\{d_{A^{n}}: n \geqslant 0\right\}<\infty$. This means that $\operatorname{dim} H_{\infty}=n_{0}$ is finite. Let

$$
A=\left[\begin{array}{ccc}
A^{\prime} & 0 & 0 \\
B & S_{m} & 0 \\
0 & 0 & U
\end{array}\right] \quad \text { on } H=H_{\infty} \oplus K_{1} \oplus K_{2},
$$

where S_{m} is the unilateral shift with multiplicity $m, 0 \leqslant m \leqslant \infty$, and U is unitary. Then

$$
f(A)=\left[\begin{array}{ccc}
f\left(A^{\prime}\right) & 0 & 0 \\
C & f\left(S_{m}\right) & 0 \\
0 & 0 & f(U)
\end{array}\right]
$$

Note that $f\left(S_{m}\right)$ is itself a unilateral shift, say, $S_{l}(0 \leqslant l \leqslant \infty)$ (cf. [2,5]) and $f(U)$ is unitary because f is inner. Hence

$$
\begin{aligned}
I-f(A)^{*} f(A) & =\left[\begin{array}{ccc}
I-f\left(A^{\prime}\right)^{*} f\left(A^{\prime}\right)-C^{*} C & -C^{*} S_{l} & 0 \\
-S_{l}^{*} C & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
I-f\left(A^{\prime}\right)^{*} f\left(A^{\prime}\right)-C^{*} C & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

since $I-f(A)^{*} f(A) \geqslant 0$. Therefore,

$$
\begin{aligned}
d_{f(A)} & =\operatorname{rank}\left(I-f\left(A^{\prime}\right)^{*} f\left(A^{\prime}\right)-C^{*} C\right) \leqslant \operatorname{rank}\left(I-f\left(A^{\prime}\right)^{*} f\left(A^{\prime}\right)\right) \\
& =d_{f\left(A^{\prime}\right)} \leqslant n_{0} .
\end{aligned}
$$

This completes the proof.
Note that Theorem 3.2 (a) is in general false if f is a finite Blaschke product. For example, if $A=$ $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $f(z)=z$, then $d_{f(A)}=d_{A}=1$, but $\sup \left\{d_{A^{n}}: n \geqslant 0\right\}=2$. Theorem $3.2(\mathrm{~b})$ is also false for general f in H^{∞} with $\|f\|_{\infty} \leqslant 1$. As an example, let A be the (simple) unilateral shift. Then $\sup \left\{d_{A^{n}}\right.$: $n \geqslant 0\}=0$. On the other hand, $f(A)$ is an analytic Toeplitz operator with symbol f, which is an isometry if and only if f is inner (cf. [2]). Thus $d_{f(A)}=0$ can happen only when f is inner.

The next corollary generalizes Proposition 1.9.
Corollary 3.3. If A is an absolutely continuous contraction and f is either a finite Blaschke product or an inner function with an infinite Blaschke product factor, then $d_{f(A)}=d_{f(A)^{*}}$.

Proof. Since $f(A)^{*}=\tilde{f}\left(A^{*}\right)$, where $\tilde{f}(z)=\overline{f(\bar{z})}$ for $z \in \mathbb{D}$, the assertion follows easily from Theorems 3.1 and 3.2.

References

[1] H. Bercovici, Operator Theory and Arithmetic in H^{∞}, Amer. Math. Soc., Providence, RI, 1988.
[2] A. Brown, R.G. Douglas, Partially isometric Toeplitz operators, Proc. Amer. Math. Soc. 16 (1965) 681-682.
[3] H.-L. Gau, P.Y. Wu, Finite Blaschke products of contractions, Linear Algebra Appl. 368 (2003) 359-370.
[4] H.-L. Gau, P.Y. Wu, Unitary part of a contraction, J. Math. Anal. Appl., submitted for publication.
[5] R. Goor, On Toeplitz operators which are contractions, Proc. Amer. Math. Soc. 34 (1972) 191-192.
[6] P.R. Halmos, A Hilbert Space Problem Book, second ed., Springer, New York, 1982.
[7] D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc. 127 (1967) 179-203.
[8] B. Sz.-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
[9] P.Y. Wu, Quasi-similarity of weak contractions, Proc. Amer. Math. Soc. 69 (1978) 277-282.
[10] P.Y. Wu, K. Takahashi, Singular unitary dilations, Integral Equations Operator Theory 33 (1999) 231-247.

[^0]: * Corresponding author.

 E-mail addresses: hlgau@math.ncu.edu.tw (H.-L. Gau), pywu@math.nctu.edu.tw (P.Y. Wu).
 ${ }^{1}$ Research supported by the National Science Council of the Republic of China under NSC 97-2115-M-008-014.
 ${ }^{2}$ Research supported by the National Science Council of the Republic of China under NSC $96-2115-\mathrm{M}-009-013-\mathrm{MY} 3$ and by the MOE-ATU project.

