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Let A be a contraction on a Hilbert space H. The defect index dj
of A is, by definition, the dimension of the closure of the range of
I — A*A. We prove that (1) dan < ndy for all n >0, (2) if, in addi-
tion, A" converges to 0 in the strong operator topology and d4 = 1,
thendsn = nforallfiniten, 0 <n<dimH,and (3)ds = da= implies
dan = dan+ for all n > 0. The norm-one index k4 of A is defined as
sup{n>0: ||A"|| = 1}.WhendimH = m < o0, alower bound for
ks was obtained before: kq >(m/ds) — 1. We show that the equal-
ity holds if and only if either A is unitary or the eigenvalues of A
are all in the open unit disc, ds divides m and ds» = nd4 for all
n, 1<n<m/dy. We also consider the defect index of f(A) for a
finite Blaschke product f and show that df4) = dan, where n is the
number of zeros of f.
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0. Introduction

Let H be a complex Hilbert space with inner product (-, -) and the associated norm || - ||, and let A
be a contraction (||A|| = sup{||Ax| : x € H, ||x|]| = 1} < 1) on H. The defect index of A is, by definition,
rank (I — A*A), that is, the dimension of the closure of the range ran (I — A*A) of | — A*A. It is a
measure of how far A is from the isometries, and plays a prominent role in the Sz.-Nagy-Foias theory

of canonical model for contractions [8].
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In this paper, we are concerned with the defect indices of powers of a contraction. We show that,
for a contraction A, dan is at most ndy for any n > 0. They are in general not equal. The equality does
hold in certain cases. For example, if A" converges to 0 in the strong operator topology and ds = 1,
then dan = n for all finite n, 0 < n < dim H. The equality (for some n’s) also arises in another situation,
namely, inrelation to the norm-one index. Recall that the norm-one index k4 of a contraction Ais defined
assup{n >0 : ||A"|| = 1}. It was proven in [3, Theorem 2.4] that if A acts on an m-dimensional space,
then ks >(m/ds) — 1.Here we complement this result by characterizing all the m-dimensional A with
ka = (m/ds) — 1: this is the case if and only if either A is unitary or the eigenvalues of A are all in the
open unitdisc D(= {z € C : |z| < 1}), d4 divides m and d4n = nd, for all n, 1 <n < m/ds. These will
be given in Sections 1 and 2 below, respectively. In Section 3, we consider contractive analytic functions
of a contraction, instead of just its powers. Among other things, we show that if f is a Blaschke product
with n zeros, then dfa) = dan.

1. Powers of a contraction

We start with some basic properties for the defect indices of powers of a contraction. These include
a “triangle inequality” and their increasingness.

Theorem 1.1. Let A be a contraction on H.

(a) The inequality dgm+n < dam + dan holds for any m, n > 0. In particular, dan < ndy forn > 0.

(b) The sequence {dan};2, is increasing in n. Moreover, if dan = dn+1 < 00 for somen, 0 <n<dimH,

then dge = dan forallk >n.
The proof depends on the following more general lemma.

Lemma 1.2. Let A = BC, where B and C are contractions. Then d¢c < da < dp + d¢. If B and C commute,
then we also have dg < dj.

Note that dg < d4 may not hold without the commutativity of B and C. For example, ifA = I, B = S§*
and C = S, where S denotes the (simple) unilateral shift, then A = BC,d4 = O and dg = 1.

Proof of Lemma 1.2. Since

[—A*A=1—C"B*BC>1—C*C>0,

where we used C*B*BC < C*C because B*B < I, we obtain ran (I — A*A) D ran (I — C*C) and thus
da > dc. If Band C commute, then A = CB and, therefore, dg < da follows from above.
On the other hand, since

I—A*A=1—C*B*BC = (I — C*C) + C*(I — B*B)C,
we have

ran (I — A*A) Cran (I — C*C) +ranC*(I — B*B)C.
Thus

da < dc + rank C*(I — B*B)C
<dc + rank (I — B*B)C
<dc +dp,

completing the proof. [
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We now prove Theorem 1.1. For any contraction A, let H, = ran (I — A™A") for n >0 and Hyo, =
V,;";OHH. In the following, we will frequently use the fact that, for a contraction A, x is in ker(I — A*A)
if and only if ||Ax|| = ||x]|.

Proof of Theorem 1.1. (a) and the increasingness of the d4n’s in (b) follow immediately from Lemma
1.2. To prove the remaining part of (b), we check that H, = \/Z;(l]A"*H1 forn>1.Indeed, ifx = (I —
A™AM)y for some y in H, then x = _j_) A¥*(I — A*A)AXy, which shows that x is in V{_)AX*Hj. For
the converse containment, note that A maps ker(I — AKt1*4k+1) to ker(I — A¥*A¥) isometrically for
each k > 0. Indeed, if x is in the former, then

lxll = A ] < [|Ax]) < [1x]].

Hence we have the equalities throughout and, in particular, [|A*(Ax)|| = ||Ax|| and ||Ax|| = ||x]|. The
former implies that Ax € ker(I — A*A¥). Together with the latter, this proves our assertion. Therefore,
A* maps Hy, to Hyy1 for k > 0. By iteration, we have that Ak* maps Hy to Hg4q for all k > 1. Arguing as
above, we also obtain ker(I — AKT1*Ak+1) C Kker(I — A¥*A¥) and thus Hy, C Hj1 for k > 0. Therefore,
A¥* maps Hy to H, for all k,0 <k <n — 1. This proves \/Z;éAk*m C H, and hence our assertion on
their equality.

If dan = dgnt1 < oo for some n, then H, = Hp11. Hence

Hn+2 = VZI&Ak*I‘h = (\/ZzoAk*H]) Vv (An+1*H1)
CHny1V (A"Hpy1) = Hygq V (A*Hp)
€ Hpt1 V Hny1 = Hpq1 € Hiqa.

Therefore, we have equalities throughout. This implies that d,+1 = dp42. Repeating this argument
gives us dyx = dan for all k > n. O

Note that, in Theorem 1.1 (a), dgm+n < dam + da» may happen even for m = n = 1. For example, if

0 0 1
A=|0 0 0],
0 0 O

thends = 2anddy2 = 3. Thusdy2 < da + da.
The following corollary is an easy consequence of Theorem 1.1 (b).

Corollary 1.3. If A is a contraction with A" isometric (resp., unitary), then A itself is isometric (resp.,
unitary).

The next theorem says that the equalities d4» = nda, n >0, do hold for certain contractions A. It
generalizes [3, Theorem 3.1] and [4, Theorem 3.4].

Theorem 1.4. IfAis a contraction on H with A" converging to 0 in the strong operator topology and ds = 1,
then dgn = n for all finiten,0 <n < dimH.

Proof. Under our assumption that d4 = 1, we have da» < n for all n > 0 by Theorem 1.1 (a). Assume
that dano < ng for some finite ng, 1 < ng <dim H. Since dan increases in n, the pigeonhole principle
and Theorem 1.1 (b) yield that djng—1 = dano = dan < ng < oo for all n > ng. Hence

ker(I — A"™*A™) = ran (I — A”O*A”O)L =ran(l — A”*A")J' = ker(I — A™A")

for n > ng. Let K denote this common subspace. For x in K, we have ||A"x|| = ||x|| for all n > ng. On the
other hand, the assumption that A" — 0inthe strong operator topology yields that ||A"x|| — Oasn —
o0o. From these, we conclude that x = 0 and hence K = {0}. This is the same as ker(I — A™*A™) = {0}
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orran (I — A"*A") = H. Thusdim H = dan < ng, which is a contradiction. Therefore, we must have
dgn = nforall finiten,0<n<dimH. O

Let A be a contraction on H. Since A* maps H,, to H,11 for n >0 as shown in the proof of Theorem
1.1 (b), we have A*Hy C Heo. Hence

/
A:[ 0} onH = Hoo ® HS.

B V
Note that, for any x in Hé‘o = N2, ker(I — A™A™), we have A*Ax = x, which implies that ||Vx|| =
|Ax|| = ||x||. Thus V is isometric on Héo. Recall that a contraction is completely nonunitary (c.n.u.) if it

has no nontrivial reducing subspace on which it is unitary. A can be uniquely decomposed as A; & U
onK @ K+, where A; is c.n.u.on K and U is unitary on K- = N, (ker(I — A™A") N ker(I — A"A™))

n=0
(cf. [8, Theorem 1.3.2]). Thus the above decomposition can be further refined as

A 0 0
A= Bl Sm 0 ,
0 0 U

/
where S;;; denotes the unilateral shift with multiplicity m(0 <m < 00),A; = [gl S?J is c.n.u., and

V = Sy @ U corresponds to the Wold decomposition of V (cf. [8, Theorem 1.1.1]).

Corollary 1.5. If A is a contraction on a finite-dimensional space with dy = 1, then
{n if0<n<ng,
dAH =

ng ifn > ng,
where ng = dim Hyo.

Proof. On a finite-dimensional space, the above representation of A becomes A=A" @V on H =
Hoo Holo with V unitary.Itis easily seen that A" has no eigenvalue of modulus one. Hence A™ converges
to 0 in norm (cf. [6, Problem 88]). Our assertion on ds» then follows from Theorems 1.4 and 1.1 (b). [

The next theorem characterizes those contractions A for which dan = n for finitely many n’s or for
all n > 0. It generalizes Corollary 1.5.

Recall that an operator A on an n-dimensional space is said to be of class Sy, if A is a contraction, its
eigenvalues are all in D and d4 = 1. The n-by-n Jordan block

0 1

1
0

is one example. Such operators and their infinite-dimensional analogues S(¢) (¢ an inner function)
are first studied by Sarason [7]. They play the role of the building blocks of the Jordan model for Cy
contractions [1,8].

Theorem 1.6. Let A be a contraction on H.

(a) Let ng be a nonnegative integer. Then

{n if1<n<n,
dA”:

ng ifn>ng
if and only if Py A|Hoo, the compression of A to Heo, is of class Sp,. In this case, dim Hoo = no.
(b) dan = nforalln,0<n < oo, ifand only ifdy = 1 and dim Hy, = 00.
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Proof. (a) Let

' 0
A:[B v] onH = Hoo ® HZ,

where V is isometric. First assume that the dan’s are as asserted. We need to show that A’ = Py AlHx
is of class Sy,. Our assumption on da» implies that Ho, = Hy, is of dimension ng. Moreover, for any
n >0, we have

[— A™A" = | — |:A/n* Bﬁ i| |:A/n 0 :|

0 V™||B, V"

_ [1 — A/”*‘/;\;’l - BBy, —Bé‘V”]
- n

_ [I—A™A™ —B*B, 0

= 0 0]’

where the last equality holds because I — A™A" > 0. Hence
n=dg = rank (I — A™A™ — B}B,) <rank (I — A™A™) = dyn

for1<n<np.Ifn; < dym forsome ny, 1 <nj < ng, then the pigeonhole principle and Theorem 1.1 (b)
yield thatdmg—1 = dgm.From [3,Lemma 2.3] and the fact thatA’ has no eigenvalue of modulus one, we
conclude that | — A™0~1*Am0~1 5 one-to-one and hence d4me—1 = ng, contradicting our assumption.
Hence dqn = n for all n, 1 <n<np. [3, Theorem 3.1] implies that A’ is of class Sy,. This proves one
direction.

For the converse, we derive as above to obtain [ — A™A" = (I — A™A™ — B}B,) ®0 on H =

Hoo @ H and

n if 1<n<ny,
dAn gdA/n = {no lfn > np (*)
by [3, Theorem 3.1]. Assume thatdan < nq for someny, 1 < ny < ngp.Then the pigeonhole principle and
Theorem 1.1 (b)yielddan = dano < ng foralln > ng. Thisimplies that H, = Hy, foralln > ng. Therefore,
Hoo = Hp, has dimension strictly less than ng, which contradicts the fact that dim Hoo = dgmp = ng
(cf. [3, Theorem 3.1]). Hence we have dan = n for all n, 1 <n < ng.If n > ng, then dan > dgno = ng by
Theorem 1.1 (b) and what we have just proven. This, together with (x), yields dg» = ng for n > ny.

(b) Since dim Hy, > dan for all n, the necessity is obvious. Conversely, assume that d4 = 1 and
dim Ho, = 00.Then dan < ndg = nbyTheorem 1.1 (a). If dam1 < ny for some ny > 2, then an argument
analogous to the one for the second half of (a) yields that Ho, = Hp, is of dimension less than ny. This

contradicts our assumption. Hence we must have dgn = nforalln. [

We now proceed to consider contractions A with dy4 = da+ and start with the following lemma
giving conditions of the equality of dy4 and ds+ for an arbitrary operator A. Note that, in this case, the
definition of the defect index still makes sense.

Lemma 1.7. Let A be an operator on H.

(a) Ifdimker A = dim ker A*, then ds = da+. In particular, if A acts on a finite-dimensional space, then
dy = dax.
(b) If dg is finite, then the following conditions are equivalent:

(1) da = dax;

(2) dimker A = dim ker A*;

(3) A*A and AA* are unitarily equivalent;

(4) Ais the sum of a unitary operator and a finite-rank operator.
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Proof. (a)Ifdim ker A = dim ker A*, thenA = U(A”‘A)l/2 for some unitary operator U (cf. [6, Problem
135]). Hence AA* = U(A*A)U* is unitarily equivalent to A*A. Then the same is true for I — A*A and
| — AA*. Thus dg = da+.

(b) It was proven in [4, Lemma 1.4] that if A*A = A; @ 0 (resp., AA* = A, ® 0) on H = ranA* ®
ker A (resp., H = ran A @ ker A*), then A and A, are unitarily equivalent. If dy = da+ < 00, then

rank (I — A;) + dimker A= rank (I — A*A) = rank (I — AA™)
= rank (I — Ay) + dim ker A*

and hence dim ker A = dim ker A*. This proves that (1) implies (2). If (2) holds, then the unitary
equivalence of A; and A, implies the same for A*A and AA*, that is, (2) implies (3). Now assume
that (3) holds. Since ker A*A = ker A and ker AA* = ker A*, the unitary equivalence of A*A and AA*
implies that dim ker A = dim ker A*. Hence d4 = da+ by (a), that is, (1) holds. Finally, the equivalence
of (1) and (4) was proven in [10, Lemma 3.3]. [

Note that, in the preceding lemma, dy = dqx = 0o does not imply dim ker A = dim ker A* in
general. For example, if A = diag (1,1/2,1/3,...) @ S, where S is the (simple) unilateral shift, then
da = dg+ = 0o, dimker A = 0 and dim ker A* = 1.

Theorem 1.8. LetAbe a contraction withdsy = da+ < 00.Thendim Hyo < o0 ifand only ifthe completely
nonunitary part of A acts on a finite-dimensional space.

Proof. Assume that dim Hy, < 00 and let

"0 0
A=|B Sy 0| onH=Hyx®K ®K>,
0 0 U

where S, denotes the unilateral shift with multiplicity m, 0 < m < 0o, and U is unitary. We need to
show that S;; does not appear in this representation of A or, equivalently, m = 0. We first prove that
m is finite. Indeed, since

[—AA™* —A'B* 0
I—AA* = | —BA™ I—BB* =SSy 0f,
0 0 0

we have

m = rank (I — SpSp) < rank (I — BB* — S;,S») + rank BB*
rank (I — AA®) + rank BB*

<
<
<dg+ +dimHy < 00

as asserted. Now to show that m = 0, consider S, as

~ / ~
Then B is of the form [B' 00 ---]". Let A = [g/ g]. Since A acts on a finite-dimensional space, we

have dj = dj« by Lemma 1.7 (a). Then

dax = rank (I — AA®)
I _ A/A/* _A/B* ]

= rank [ —BA* [ —BB* —S,S
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I_A/*A/_B/*B/ O]

= dj» = dj = rank [ 0 I

m + rank (I — A*A’' — B*B)
m + rank (I — A*A’ — B*B)

1—A*A'—B*B 0 O
= m + rank 0 0 O
0 0 0

= m-+rank (I — A*A) = m +dj,.

We infer from the assumption dy = da+ < oo thatm = 0.ThusA = A’ @ U, where A’ is the c.n.u. part
of A acting on the finite-dimensional space Hxo.
The converse is trivial. [

The next two results are valid for any operators.
Proposition 1.9. If A is an operator with dg = d*, then dan = dan« foralln > 1.

Proof. Ifdy = dj+ < 00,thenA = U + F, where U is unitary and F has finite rank, by Lemma 1.7 (b).
For any n > 1, we have A" = U" 4 F,, where F; is some finite-rank operator. By Lemma 1.7 (b) again,
this implies that dgn = dgn+. On the other hand, if dg = dax = 00, thendgn = danx = ocoforanyn>1
by Theorem 1.1 (b). This completes the proof. [

Two operators A on H and B on K are said to be quasi-similar if there are operators X : H — K and
Y : K — H which are one-to-one and have dense range such that XA = BX and YB = AY.
We conclude this section with the following result on quasi-similar operators.

Proposition 1.10. Let A and B be quasi-similar operators. If d4 = da+ < 00, then dg = dp+.
Proof. Our assumption of dy = ds+ < oo implies, by Lemma 1.7 (b), that dim ker A = dim ker A*. The
quasi-similarity of A and B then yields

dim ker B = dim ker A = dim ker A* = dim ker B*.

Then dg = dg+ by Lemma 1.7 (a). O
Note that the preceding proposition is false if dg = dg+ = 00.

Example 1.11. Let {a,}32; be a sequence of distinct complex numbers in D with }_, (1 — |a,|) < oo.
Let A = diag (ay,ay,...) @ S, where S denotes the (simple) unilateral shift. Let ¢ be the Blaschke
product with zeros aj:

4, z—a

6@ =11~

—, ze D,
a1 1o 1 —@nz

and let B = S(¢) @ S, where S(¢) denotes the compression of the shift

S(@)f = P(zf(2)), f € H* © ¢H?,

P being the (orthogonal) projection from H? onto H?> & ¢H?2. It is known that diag (a,) is itself a
Co contraction which is quasi-similar to S(¢) (cf. [9, Theorem 3]). Thus A is quasi-similar to B. But
dA = dA* = OO,dB =1 anddg* = 2.
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2. Relation to norm-one index

As defined in [3, p. 364], the norm-one index of a contraction Aon His ka = sup{n>0: ||A"|| = 1}.
This number is to measure how far the powers of A remain to have norm one. It is easily seen that (1)
0<ky<00,(2)ks = Oifand onlyif ||A|| < 1,and (3) k4 = ooifand onlyifo (A) N 9D # @. The main
results in [3] say that if dimH = m < oo, then (4) 0< ks <m — 1 or k4 = o0 [3, Proposition 2.1 or
Theorem 2.2], (5) ks = m — 1 if and only if A is of class Sp, [3, Theorem 3.1], and (6) ks >(m/ds) — 1
[3, Theorem 2.2]. The purpose of this section is to determine when the equality holds in (6).

Theorem 2.1. Let A be a contraction on an m-dimensional space. Then ky = (m/da) — 1 if and only if
one of the following holds:

(a) Ais unitary,
(b) o (A) C D, dy divides m, and dgn = nda foralln, 1 <n<m/d,.

Proof. Assumethatky = (m/dy) — 1.Ifo (A) N 9D # @,then (m/dy) — 1 = ks = oo, whichimplies
thatdq = OorAis unitary. Hence we may assume that o (A) € D.Thenks < co.Fromks = (m/ds) —
1, we have d4|m. By the pigeonhole principle and Theorem 1.1 (b), there is a smallest integer [, 1 <1< m,
such that dy = dg+1. Since A has no unitary part, this is equivalent to I — Al being one-to-one
(cf. [3, Lemma 2.3]) or ||A’|| < 1. As | is the smallest such integer, we obtain ks = [ — 1. From k4 =
(m/da) — 1, we have m/dy = I. Note that dan < ndy for 1 <n <Iby Theorem 1.1 (a). If dano < ngdy for
some ng, 1 <ng <1, then

dg <dgno + dA’—"O < ngdp + (I —ng)dy = ldg =m

again by Theorem 1.1 (a). This contradicts the fact that I — A™A! is one-to-one. Hence we must have
dan = ndy for 1 <n <m/dy. This proves (b).

Conversely, if (a) holds, that is, if A is unitary, then k4 = oo and dy = 0. Hence kg = (m/ds) — 1.
Now assume that (b) holds. If| = m/d,, then our assumptionsimply that 1 <dy < dg2 < --- <dy =
m. Hence I — A" Al is one-to-one, but I — A"=1*A!=1 is not. Thus ||A!|| < 1 and ||A™'|| = 1. This yields
ka =1—1= (m/ds) — 1asrequired. [J

On an m-dimensional space, other than unitary operators, Sy-operators and strict contractions
(operators with norm strictly less than one), which correspond to d4 = 0, 1 and m, respectively, there
are other contractions A satisfying ks = (m/ds) — 1.Forexample, ifA = J; @ - - - @ J;, where [ divides

————

m/l
m, then kg =1 — 1 = (m/ds) — 1. The same is true for the more general B = A; & - - - @ A;, where
—_—
m/l
A1 is an Sj-operator. Another generalization of the contraction A is
0 ay
0
C= ,
am—1
0

where |aj| < 1forj = kI, 1<k<(m/I) — 1(I|m), and |g;| = 1 for all other j’s. In this case, it is easily
seen that dc equals m minus the number of j's for which |g;| = 1 and hence d¢c = m/I. On the other
hand, k¢ equals the maximum number of consecutive j's with |aj| = 1,and thus kc = I — 1. Therefore,
kc = (m/dc¢) — 1 holds.

3. Contractive functions of a contraction

In this section, we consider the defect indices of contractive functions of a contraction, instead of
just its powers. The first one is finite Blaschke products:
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n

f@=1T]

j=1

z—aj
z€ D,

1—az’
where |q;| < 1 for allj.

Theorem 3.1. If A is a contraction on H and f is a Blaschke product with n zeros (counting multiplicity),
then dray = dan.

Note thatiff isasabove, thenf(A) = H}Ll A—aDhd - EJ-A)” isalsoa contraction (cf. [8, Theorem
111.2.1 (b)]).

Proof of Theorem 3.1. Let f be as above and let fj(z) = (z — a;)/(1 — @jz),z € D, for each j. Let
X = ]'[}1:] (I — @A), K1 = ker(I — A™A™) and K, = ker(I — f(A)*f(A)). We first show that XK; C K.
Indeed, if x is in K7, then ||A"x|| = ||x||. Applying [3, Lemma 1.2] once (with ¢, there as f; and the
remaining ¢;'s given by ¢;(z) = z) yields ||f; (AA™ (1 — a@1A)x| = || — a1A)x]||. We then apply [3,
Lemma 1.2] repeatedly to obtain ||f; (A) - - - fu(A)Xx|| = ||Xx||. This means that Xx is in K,. Hence we
have XK; C K> as asserted. Since X is invertible, if

X1 o] 1 1
xz[o XJ.H:IG@K] — H=K @Ky,

then X, has dense range. Thus X : K3~ — Kj- is one-to-one. Therefore,
dpay = dimKy" <dim K- = dan

(cf. [6, Problem 56]). In a similar fashion, if Y = 1_[]’7:1(1 + @A), then successive applications of
[3, Lemma 1.2] also yield YK, C K;. We can then infer as above that dan < df(s). This proves their
equality. [

For more general functions, we use the Sz.-Nagy-Foias functional calculus for contractions [8, Sec-
tion II1.2]. For any absolutely continuous contraction A (this means that A has no nontrivial reducing
subspace on which A is a singular unitary operator) and any function f in H® with ||f]|s <1, the
operator f (A) can be defined and is again a contraction. Note that every function in H* can be factored
as the product of an inner and an outer function, and every inner function is the product of a Blaschke
product and a singular inner function (cf. [8, Section IIL.1]).

Theorem 3.2. Let A be an absolutely continuous contraction on H and f be a function in H*® with ||f || oo < 1.

(@) Iff has an infinite Blaschke product factor, then dfy > sup{dan : n > 0}.
(b) If f is a (nonconstant) inner function, then dfy <sup{dan : n > 0}. In particular, if f is an inner
function with an infinite Blaschke product factor, then d(a) = sup{dan : n >0}.

Proof. (a) For each n > 1, let f = f,,g,, where f; is a finite Blaschke product with n zeros and g, is in
H®.Then f(A) = fu(A)gn(A). Theorem 3.1 and Lemma 1.2 imply that da» = df,(a) < dja) foralln>1.
Thus df(a) > sup{dan : n > 0}.

(b) We may assume that ng = sup{da» : n >0} < oo. This means that dim Hy, = ng is finite. Let

0 o0
A=|B Su 0| onH=Hx®K DK,
0 0 U

where S, is the unilateral shift with multiplicity m, 0 < m < 00, and U is unitary. Then

@y o 0
f(A)=[ C  fGm) 0]
0 0 fU)
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Note that f(S;;) is itself a unilateral shift, say, S;(0 <1< o0) (cf. [2,5]) and f(U) is unitary because f is
inner. Hence

I—fA)*f(A)—C*C —C*S; 0

I—fA)fA) = —Sfc 0 0
0 0 o0

I—fA)*fA)—C*C 0 0

— 0 0 0

0 0 0

since I — f(A)*f(A) > 0. Therefore,

dpay = rank (I — f(A)*f(A") — C*C) <rank (I — f(A)*f(A"))
= dfy < p.

This completes the proof. []

Note that Theorem 3.2 (a) is in general false if f is a finite Blaschke product. For example, if A =
[8 (1]] and f(z) = z, then df(a) = ds = 1, but sup{da» : n >0} = 2. Theorem 3.2 (b) is also false for

general f in H* with ||f||co < 1. As an example, let A be the (simple) unilateral shift. Then sup{dsn :
n >0} = 0.0nthe other hand, f (A) is an analytic Toeplitz operator with symbol f, which is an isometry
if and only if f is inner (cf. [2]). Thus df4) = 0 can happen only when f is inner.

The next corollary generalizes Proposition 1.9.

Corollary 3.3. If A is an absolutely continuous contraction and f is either a finite Blaschke product or an
inner function with an infinite Blaschke product factor, then dfa)y = df(ay=.

Proof. Since f(A)* = f(A*), wheref(z) = f(Z) forz € D, the assertion follows easily from Theorems
31and3.2. UJ
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