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Layered Multi-Population Genetic Programming and Its

Applications

Student: Jung Yi Lin Supervisor: Dr. Wei Pang Yang

Dr. Been Chian Chien

Institute of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

This study focuses on a proposed method based on genetic programming (GP). Ge-

netic programming is a prominent technique of evolutionary computation (EC). It mimics

the evolution mechanism of biological environment to determine optimal solutions for

given training instances. Many researchers have been devoted to enhance effectiveness

and efficiency of genetic programming.

The applications of the proposed method include classification and feature process-

ing. Classification problems play an important role in the development of knowledge

engineering. Hidden relations that can be used as a basis for classification are often un-

clear and not easily elucidated. Thus, many machine learning algorithms have arisen

to solve such problems. Feature selection and feature generation are two important

techniques dealing with features. Feature selection is capable of removing useless,

irrelevant, redundant, and noisy features. Feature generation generates new useful

features that could improve classification accuracy.
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In this study we propose a layered multi-population genetic programming method

to solve classification problems. The proposed method that can complete feature se-

lection and feature construction simultaneously is also proposed. The layered multi-

population genetic programming method employs layer architecture to arrange mul-

tiple populations. A layer is composed of a number of populations. Each population

evolves to generate a discriminant function. A set of discriminant functions gener-

ated by one layer will be integrated and be transformed by the successive layer. To

improve the learning performance, an adaptive mutation probability tuning method

is proposed. Moreover, a statistical-based method is proposed to solve multi-category

classification problems.

Several experiments on classical classification problems and real-world medical

problems are conducted using different configurations. Experimental results show that

the proposed methods are accurate and effective.

Keywords: Genetic programming; multi-population genetic programming; classification; clas-

sifier design; feature selection; feature construction; evolutionary computation.
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Chapter 1

Introduction

1.1 Genetic Programming

Information technology is helpful when dealing with large quantities of data. Peo-

ple and enterprizes are generating an ever increasing amount of data stemming from

applications as diverse as biological micro arrays, web documents, news articles, per-

sonal profiles, and diagnostic records. Both the extremely varied categories of data and

the vast number of features characterizing each category contribute to the prohibitive

difficulty of efficiently locating desired information. However, such information can

be obtained using computational models developed in the field of information tech-

nology (IT).

Machine learning [56] is a developing research area focusing on providing a com-

putational model to optimize given problems. Popular machine learning research in-

cludes neural network (NN), decision tree algorithms, and evolutionary computation

(EC). Genetic programming (GP), which is an important technique of evolutionary

computation, has been proposed for decades and is a popular topic of research. Evo-

lutionary computation techniques simulate evolutionary mechanisms in biological en-

vironments. Following the principle ”survival of the fittest”, an individual having the

best fitness value, specified by a properly designed fitness function, is determined as

the solution. Researchers have been working diligently to improve the effectiveness

1



Evolution Problem-solving

individual Candidate solution

Fitness Quality

Environment Problem

Figure 1.1: The analogy between Evolution and problem-solving

and efficiency of GP, such as new fitness functions, new architecture, new individual

expressions, and new evolutionary mechanisms.

EC research can be categorized into a branch of artificial intelligence, machine

learning, or problem solving. In [47], an analogy between problem-solving and evolu-

tionary computation is illustrated as Figure 1.1. According to the common concept of

machine learning [56]:

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks

in T , as measured by P , improves with experience E.

EC can be viewed as a field of machine learning because its individuals adapt to ”fit”

E, where fit means gaining high performance by the measure P .

Currently, multi-population GP is in early stages of development and is being

investigated by many researchers. Traditional GP maintains a single population to ob-

tain a solution. Multi-population GP, on the other hand, possesses greater diversity

among individuals and is capable of reducing computational effort by using multipro-

cessor parallel computing techniques. Having higher individual diversity is important

because it increases the possibility of finding better solutions. Multi-population GP

usually obtains better results than traditional GP does. GP will be described in Chap-

ter 2.

2



1.2 Classification

Classification is a widely used application in data mining tasks. Given a dataset and

a classifier, classified results usually contain some interesting information, for exam-

ple, ”what kind of customer would buy a that is very safe yet expansive?” can be modelled

as a classification problem. A classification algorithm can yield a list of customer can-

didates who meet specified conditions from past transaction records .

A classification algorithm or a classification model is called a classifier. It can be

compared and evaluated based on its predictive accuracy, speed, robustness, scalabil-

ity, and interpretability. Details of such criteria are described in Chapter 2. Some of

the classifiers produce classification rules during the training process. Given unclas-

sified objects could be classified into appropriate classes according to rules in the set.

However, for numerical instances, using discriminant functions is a better choice. A

discriminant function uses features of an instance to evaluate a real value, which in

turn determines the proper class of the instance.

1.3 Feature Selection and Feature Construction

Feature selection is an important technique for dealing with raw features. It focuses

on eliminating useless, irrelevant, redundant, and noisy features. Usually, feature se-

lection is performed as a preprocessor of classifiers. Classifiers can achieve lower train-

ing error rates from data with selected features only. There are two primary advan-

tages of using feature selection: to avoid noisy and to improve efficiency. First, some

classifiers might be adversely affected by noise. Such noisy features make classifiers

unable to generate good classification results. Second, due to the small quantify of fea-

tures, classifiers are efficient and not time-consuming. This stems from the fact that the

complexity, and thus time-consumption, of classification increases with the number of

features. For instance, colon dataset [2] is a dataset of 62 tumor tissue samples. Each

3



sample has 2000 gene features. However, it is unnecessary that using all features to

distinguish normal tissues from tumor tissues. Using feature selection, the classifier

could obtain similar classification accuracy efficiently from tens of selected features.

Feature construction is used to construct new features from original features. This

technique is useful when the representation of current features is different from the

input requirement of the classifiers used or when current features are not capable of

deriving good classification results.

1.4 Motivation and Contribution

In this work, we extend current multi-population GP concepts to construct a layered

architecture multi-population GP model. The proposed layered multi-population GP

will be used for solving classification problems and achieving feature selection tasks.

Single population GP has been used to generate classifiers in many different ways. We

believe that multi-population GP can be used to build effective and efficient classifiers.

The main contribution of the dissertation is to propose a novel general-purpose ge-

netic programming learning model. This is accomplished by a layered multi-population

GP technique. The layered architecture is inspired by neural network. We expect that

our GP learning model will outperform traditional GP systems. In this work, we aim

to solve classification problems through the proposed model. We also intend to use the

model to achieve feature selection and feature generation. The learning model can be

further investigated by researchers in evolutionary computation fields. The classifica-

tion results will be worth referencing for other researchers in data mining fields.

1.5 Overview of Chapters

The remainder of this dissertation is organized as follows. In Chapter 2, we briefly

4



review related research involving GP, classification, feature selection and feature con-

struction. Chapter 3 describes our research design. In this chapter, we start from

the single population GP, and then proceed to explain the proposed layered multi-

population GP method in detail. A brief example is provided in this chapter as well.

Experiments and evaluations are given in Chapter 4. We conduct many experiments on

classification, feature selection, and feature construction to illustrate the performance

of proposed method. A discussion of the experimental results are also given at Chapter

4. Finally, Chapter 5 concludes this work and points out directions for further research.

5



Chapter 2

Literature Review

2.1 Genetic Programming

In this section, we first introduce single population genetic programming. Multiple-

population genetic programming will be introduced in Section 2.1.2

2.1.1 Single Population Genetic Programming

Genetic programming (GP) was proposed by Koza in 1992 [40]. This evolutionary

computation has rapidly developed and led to such diverse applications as sumbolic

regression, robot-controlled programs, data mining, circuit design, and classification

[40] [41] [42] [43] [44] [4] [20]. GP can discover underlying relationships among given

data. Such relationships can be represented in variety of forms such as functional ex-

pressions or graphs.

GP, as well as genetic algorithm (GA), mimics evolutionary phenomena and follows

the principle ”survival of the fittest”. In biological environments, creatures that survive

and reproduce must exhibit advantageous characteristics. Given recurrent elimination,

the survivors are fittest individuals in the population. Inspired by such phenomena,

evolutionary computation techniques utilize similar elements: population, individuals,

6



the fitness function, generations, and the selection method.

2.1.1.1 The population and individuals

An individual stands for a potential solution for the given optimization problem. A

population is a set of individuals. Traditionally, an individual is represented by a tree-

structured expression; also the expression used by Koza [40]. Different expression struc-

tures have been proposed, such as[28] [78]. However, for numerical feature data, using

the tree-structured expression to represent a discriminant function is a good choice be-

cause it is compact and efficient. An individual is comprised of three sets: a variable set,

a constant set, and a operation set.

• Variable set

The variable set contains variable symbols that stand for features, for example,

in the case that a given instance has four features, we can use x1, x2, x3, and x4 to

denote those four features.

• Constant set

A constant set is a collection of constants. Constants could be mathematical con-

stants, such as π, e, or real-valued numbers of a predefined interval.

• Operation set

The operation set is a set of arithmetic operations, trigonometric functions, logical

operations, and other domain-specific user-defined functions. An individual is

represented by a binary tree if all of the operations are binary operations.

Example

Assume a variable set {x1, x2, x3, x4}, a constant set {1, 2, . . . , 10}, and operation set

{+,−,×,÷, sin, cos}. An individual constructed from these components represented as

7x1 + sin(x2) is shown in Figure 2.1.

7



+

×

7 x1

sin

x2

Figure 2.1: An individual representing 7x1 + sin(x2)

The number of individuals in a population is called population size. Larger popula-

tion size make the population cover a highly diverse individuals that in turn allows the

optimal solution to be found. However, larger population size also results in a larger

searching space which could increase computation efforts or even a waste [23] [22].

2.1.1.2 The fitness function

The fitness function is a domain-specific problem-driven function that evaluates per-

formance of individuals. The fitness value of an individual is derived from the fitness

function. For instance, the fitness value of an individual in a regression problem can

be calculated by the mean value of square errors (MSE). The function used for calcu-

lating the MSE is the fitness function in this case. An individual’s fitness value in this

problem is its MSE value.

2.1.1.3 Generations and selection methods

Ageneration, or iteration, indicates a process of replacing current population. This pro-

cess is accomplished by means of several genetic operators such as reproduction, crossover,

and mutation. New individuals are produced after one or two individuals applied one

of these operators. Each of them operates in accordance with a predefined probabil-

ity. When encountering a complex problem, more generations are required to find the

optimal solution.
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+

5 +

x y

parent 1

+

5 +

/

x y

y

offsprint 1

×

x /

x y

parent 2

×

x x

offsprint 2

Figure 2.2: An example of the crossover operator. Parents (5 + (x + y)) and (x× (x/y))

generate two offspring (5 + ((x/y) + y)) and (x× x)

• Reproduction

The idea behind the reproduction operator is that a good individual in the pop-

ulation should not be eliminated. This operator is responsible for propagating a

selected individual within a new population.

• Crossover

The crossover operator mimics the natural mating process but it always gener-

ates two offspring. This operator selects two individuals from the population

to be parents through the selection method. Parents are not necessary different.

The crossover points of each parent individual are decided randomly. Parents

swap their subtree to generate two new individuals. An example is shown at

Figure 2.2, the two individuals selected from the population, (5 + (x + y)) and

(x× (x/y)), are parents. After the crossover operator is executed, two offspring

(5 + ((x/y) + y)) and (x× x) are produced.
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Figure 2.3: An example of the mutation operator. Assume that give variable set is

{x, y, z}, the operation set is {+,−,×, /}, and the constant set is {0, 1}.

• Mutation

The reproduction operator and crossover operator use information from indi-

viduals in the current population. Through these two operators, terminals and

functions not extant in the current population will not emerge in the new popu-

lation . Mutation is the only way to create an individual with different elements.

It also can be used to escape local optimums because mutants may result in dif-

ferent structures to explorer different area of the searching space. The mutation

operator first selects a node of the individual, called mutation point. It then re-

places the subtree rooted at the mutation point by a new subtree. An example

shown in Figure 2.3 assumes that a give variable set is {x, y, z}, the operation set

is {+,−,×, /}, and the constant set is {0, 1}. The individual (1 + (x + y)) gener-

ates a mutant (1 + (0× z) + y) by the mutation operator.

Choosing the appropriate individual is problematic since there is no courtship

simulation. Many selection methods have been proposed to improve selection perfor-

mance such as fitness proportional selection, truncation selection, ranking selection,

and tournament selection [40][4][55]. Here, we utilize the commonly used method:

tournament selection[55]. Tournament selection first selects k individuals from the

population randomly. Then an individual Ii is selected via a probability pi associated

with its rank among the k individuals compared to their fitness values. In the case
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Initialize P, g = 1

g > G? Output

P ′ ← ∅ g ← g + 1

Replace P by P ′ Evaluate fitness values of all
individuals in P

|P ′| = m?
Select a gene operator by
probabilities

Insert offspring to P ′
execute reproduction

or crossover
or mutation

No

Yes

No

Yes

Figure 2.4: The flowchart of GP evolutionary processes. G is the maximum genera-

tion, P is the current population, P ′ is the population of next generation, and m is the

population size.

k = 1, tournament selection acts equally with the random selection which selects an

individual from the population randomly. In the case that the tournament selection

always selects the best individual against the k individuals, it called the deterministic

tournament selection.

After the passage of a sufficient number of generations, the population would

have individuals with high fitness values. Consequently, these individuals are taken as

as results. However, if the fitness values are not satisfied yet, the process of evolution

could be continued until such specified conditions are reached. The basic evolution

flowchart is shown in Figure 2.4.

2.1.2 Multi-Population Genetic Programming

Multi-population GP [3] [62] [7] [6] [18] [19], which employs several populations to
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P1

P2 P5

P3 P4

Figure 2.5: An example of a five-population multi-population GP with a circle topol-

ogy. An arrow indicates the direction of migration between two populations.

solve optimization problems, has been proposed. However, multi-population GP is

still an area of research under investigating. There are two primary multi-population

GP models [19]: parallel and distributed GP (PADGP), and isolated multipopulation

GP (IMGP).

• PADGP

PADGP mimics multiple population evolutionary environments. Intuitively, an

environment containing many populations would produce better individuals than

a single population. Given a proper migratory mechanism, good individuals of

a population could enhance the performance of others. Many different topolo-

gies of PADGP have been proposed, such as the circle topology and the random

topology. Figure 2.5 shows the circle topology in which circles stand for popu-

lations [6]. The arrows in Figure 2.5 indicate the direction of migration between

two populations. Basically, only the individuals that exceed a predefined fitness

threshold can migrate to other populations. The incoming good individuals not

only increase the diversity but also provide positively effect to the population.

However, a system implementing the migration mechanism is complex.. A par-

allel computation environment is more able to accomplish this task. The param-

eters of migration are experimentally investigated by [19].

• IMGP

A multi-population GP without migratory mechanism is called an isolated multi-

population GP. It simulates creature populations living on isolated islands be-

12



tween which no communication exists. Simulating an isolated multi-population

GP is easier because it is actually a number of independent single population GP

systems, and evolutionary process of all populations can be run in serially.

A sub-population, also called a dime, of PADGP searches different regions of the

searching space initially. Through the migratory mechanism, dimes falling in the local

optimum can escape via crossover with migrants. Note that it is very possible that

migrants are selected since they have high fitness values. However, it is also possible

that performance of all dimes grows slowly because the migrants already stay at a local

optimum region. On the other hand, each population of IMGP evolves independently.

They explore different regions of the searching space and escape local optimums by

mutation only. If one of them approaches the global optimum, such population will

not be obstructed by migrants.

Fernández et al. [19] performed several experiments with PADGP, IMGP, and tra-

ditional single population GP (SGP). Their experiments show that PADGP performs

better than IMGP, and that both PADGP and IMGP obtain better performance than

TSGP does in most situations. A comparison between PADGP and IMGP is shown in

Table 2.1.

2.2 Classification Algorithms

2.2.1 Classifiers

The term classifier usually indicates a classification algorithm or a classification model.

Classifiers can be compared and evaluated through following criteria [24]:

1. Predictive accuracy: A good classifier should have the ability of predicting the

class of new or previously unseen objects accurately.
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Pros Cons

IMGP

1. It is not necessary to change the

standard single GP population

evolution algorithm.

2. Different populations can use

different configurations such as

individual length or operators.

1. Small isolated populations have

limited diversity of individuals.

2. Good populations do not ben-

efit others. Some populations

may have good individuals but

others may be stuck on local op-

timums.

PADGP

1. More effective of finding good

solutions.

2. Individuals migrated from

other populations can help

the destination population

escape local optimum provided

migrants have higher fitness.

1. Many parameters need to be

considered such as

(a) Communication topology

(b) Frequency of migration

(c) The number of migrants

and each of them affects perfor-

mance.

Table 2.1: A comparison between PADGP and IMGP

2. Speed: The computation costs of a good classifier in constructing and executing

should be low.

3. Robustness: Given noisy data or data with missing values, a good classifier

should still make correct predictions.

4. Scalability: A good classifier should be constructed efficient even for large mount

of data.

5. Interpretability: A good classifier should provide high level of understanding

and insight.
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In general, the predictive accuracy is the most important factor. Most classifiers

are developed or improved with the goal of achieving high accuracy. There are many

accurate evaluation methods. Most of classification models are supervised in that they

require a set of training instances. They use a set of training data T to change param-

eters or to adapt themselves. This process is called training phase. The testing phase is

when the trained classifier acts on unclassified data to predict their proper class.

Usually, a training instance is an object whose class label is already known. Here

we define a training instance and the training set T by

T = {xi|1 ≤ xi ≤ N} , (2.1)

xi = {ai1, ai2, . . . , ain, ci} (2.2)

where ai stands for the i-th feature, n stands for the number of features, N is the num-

ber of training instances, and ci, ci ∈ C = {c1, c2, . . . , cK} stands for the class label of

the instance xi.

2.2.2 A Brief Review of Classifiers

In this section, we will briefly reviews some well-known and commonly-used classi-

fiers such as the instance-based classifier, the naı̈ve Bayesian, the support vector ma-

chine, and the neural network.

Instance-based Classifiers

The most famous instance-based classifier is the k-nearest neighbor classifier (kNN). It

is an intuitive and widely used classification approach of learning by analogy [15] [10]

[46] [57] [24]. In the training process, the nearest neighbor classifier stores the given

training instances in an n-dimensional space; where n is the number of features, or say

dimensions, of training instances. In the classification process, kNN calculates the dis-

tances between the new object and other training instances. The class label of the new
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object is determined by nearest k training instances, for example, if k = 5 and the most

frequent class label of such 5 instances is class C1, the new object is classified into class

C1. kNN is simple and accurate. Similar instances usually are separated into close re-

gions of the data space. However, kNN is time-consuming while evaluating distances

in high-dimensional vector space. If there are noisy features, the distance between ob-

jects might be a useless measure.

The Naı̈ve Bayesian Classifier

The Bayesian classifier is based on Bayes’ theorem [27] [14] [24] [57] [64]:

Theorem 1. P (A|B) =
P (A)P (B|A)

P (B)

The Bayesian network is a network-like scheme derived from Bayesian classifier

concepts. The Bayesian theorem provides a probability model of conditional probabil-

ity for constructing a classifier. Considering a given data object y = (g1, g2, . . . , gn), the

probability of y ∈ ck can be represented by P (ck|y) which we can re-write it as:

P (ck|y) =
P (ck)P (y|ck)

P (y)
=

P (ck)P (g1, g2, . . . , gn|ck)

P (g1, g2, . . . , gn)
(2.3)

where P (ck), P (g1, g2, . . . , gn|ck), and P (g1, g2, . . . , gn) can be derived from T . However,

estimating P (ck)P (g1, g2, . . . , gn|ck) from T can be difficult or computationally expan-

sive. The Naı̈ve Bayesian classifier assumes that the attribute values are conditionally

independent. Such assumption makes the estimation easy to construction without de-

creasing accuracy. The class of y can be therefore determined by equation 2.4, i.e., y is

classified into the class which has the highest probability.

argmax
ck =P (ck)P (g1, g2, . . . , gn|ck) = P (ck)

∏
i

P (gi|ck), (2.4)

where 1 ≤ k ≤ K, 1 ≤ i ≤ n.
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Support Vector Machine (SVM)

Support vector machine (SVM) [26] [76] [70] [67] is a popular classifier currently. For

training data (xi, yi), where xi is a training instance represented in R
n space, and

yi ∈ {+1,−1} is the class label, SVM tries to find an optimal hyperplane to separate

training instances if training instances are linearly separable. In the case that the train-

ing instances are not linearly separable, SVM maps them into a higher-dimensional

feature space H via a mapping Φ : R
n → H ; where H is a Hilbert space. Then SVM tries

to find a separating hyperplane with maximum margin on H . The margin is evaluated

by support vectors that are specific training instances. Since the hyperspace model is

used, here we denote a training instance xi as a vector −→xi . The objective is to find a

hyperplane in the form:

−→w · −→xi + b = 0 (2.5)

where −→w is the margin, b is a constant.

There are many possibilities of −→w but only the one that forms maximum margin is de-

sirable. This becomes an optimization problem:

min
1

2
‖−→w ‖2

subject to yi(
−→w · −→xi + b) ≥ 1, 1 ≤ i ≤ n (2.6)

Cortes and Vapnik [9] proposed the soft margin method which tolerates errors. They

modified the optimization problem by introducing a slack-variable ξ which measures

the misclassification degree w.r.t a training instance−→x :

yi(
−→w · −→x + b) ≥ 1− ξi, 1 ≤ i ≤ n

The optimization problem becomes

min
1

2
‖−→w ‖2 + ζ

∑
i

ξi

subject to yi(
−→w · −→xi + b) ≥ 1− ξi, ξ ≥ 0 (2.7)

where ζ is the penalty parameter.
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Figure 2.6: An illustration of SVM. Square points and circle points stand for instances

of different classes.

Once the −→w is obtained, we have a formula for a given unknown data object−→xj by

class of −→xj =

⎧⎪⎨
⎪⎩

+1 if −→w · −→xj + b ≥ 1

−1 if −→w · −→xj + b ≤ −1
(2.8)

The training phase of SVM attempts to find the hyperplane. After the hyperplane is

found, the built model can be used to classify unknown objects. We illustrate SVM in

Figure 2.6.

Different SVM architectures can be obtained through different kernels. This idea

is derived from the fact that SVM only deals with dot-products between data. Using

the kernel trick, the dot-products can be replaced by a kernel. Given a kernel function

K and two vectors −→xi and −→xj representing objects xi and xj in H , K is the dot-product

function:

K(xi, xj) = 〈Φ(−→xi ), Φ(−→xj )〉 (2.9)

Moreover, provided the data are normalized to unit norm in H , i.e., ∀x, ‖Φ(−→x )‖ = 1,
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we can then define the distance between −→xi and −→xj by d (Φ(−→xi ), Φ(−→xj )):

d (Φ(−→xi ), Φ(−→xj )) =〈Φ(−→xi )− Φ(−→xj ), Φ(−→xi )− Φ(−→xj )〉

=2 (1−K (−→xi ,
−→xj )) (2.10)

In summary, there are two main properties of using kernels: First, the exact form

of the function Φ is not necessary but rather the kernel function K. Once a valid ker-

nel is chosen, SVM can apply such a kernel to data and complete the classification. A

kernel is valid if and only if its corresponding kernel matrix is symmetric and positive

semi-definite [54]. Second, a kernel can be thought of as a similarity measurement. The

larger the K(−→xi ,
−→xj ), the more similar xi and xj .

SVM is a rapidly developing area because it provides a general framework for ker-

nels. For a given dataset, researchers only need to decide what kind of kernels should

be used. Moreover, the classification accuracy obtained by SVM is usually high.

Neural Network

Neural network (NN) [30][34][8] or neural computing, is inspired by the related bio-

logical concepts. NN adjusts its own parameters to suit a given problem.

The NN is constructed with nodes, which are called units, connected by links. Each

link has a weight associated with it. Units and links form the topology of the NN

model. A unit consists of three components: input function, activation function, and

output. The input function, denoted as
∑

, is a linear function that computes the

weighted sum of input links. It then sends the value to the activation function, which

is denoted as g. The activation function transforms the weighted sum to an activation

value as the output of this unit, denoted as ai. The activation function is the most im-

portant element of the process. Such function can be a step function, a sign function,

or a sigmoid function[11]. A typical sigmoid function is:

g(x) =
1

1 + e−x (2.11)

At the last step, the unit sends ai to all output links. We illustrate a unit in Figure 2.7,

where wj,i is the weight of the link from unit j to unit i, and wi,k is the weight of the
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Figure 2.7: An illustration of a NN unit.

link from unit i to unit k.

A multi-layer NN is organized in layers: an input layer, hidden layers, and an

output layer. A multi-layered NN can represent any continuous function with single

hidden layer, and represent any function with two hidden layers. We show a multi-

layer NN in Figure 2.8; such multi-layer network has one hidden layer, four input

units, three hidden units, and six output units.

A learning method called back-propagation is widely used to update weights of

links in multi-layer NN. The back-propagation first evaluates the error for the output

units. The evaluation of this error is accomplished by employing a gradient descent. It

starts in the output layer, propagates the error value back to previous layers, and then

updates the weights.

Classification problems are appropriate to NN. Many classifiers based on NN are

proposed [8] [49] [60] [73] [79]. Typically, the input layer has n units, that is the number

of features of an object. The classification result is obtained from the output vector

generated by the output layer. The number of units in the output layer depends on the

classification scheme used . In a one-to-many classification scheme, the output layer

should have K units that represent how many classes exists. In the case that a one-to-

one scheme is chosen, the output layer would have two units: accept and reject.

Parameters of an NN classifier should be carefully decided; for example, the

learning rate and the number of hidden units. The learning rate is used to control the

adaption degree. Small learning rates are capable of finding optimal weight but delay

the speed of training. Many disadvantages are caused by using too many hidden units.

One problem is that the efficiency is decreased. The back-propagation algorithm is

20



input layer

hidden layer

output layer

Figure 2.8: An example of multi-layer NN. This example shows one input layer, one

hidden layer, and one output layer. The input layer, the hidden layer, and the output

layer contain four units, three units, and six units, respectively.

slow to converge with since more computations are required. Excessive hidden units

may cause the overfitting problem become more serious. However, it is not difficult to

determine the proper number of hidden layers. Hayashi, et al. [25] claimed that ”Never

try a multilayer model for fitting data until you have first tried a single-layer model.” Since a

NN with two hidden layers can represent any function, using more than two hidden

layers is unnecessary. The constructed NN classifier and its result are both difficult to

be directly interpreted by humans. This makes the NN classifier a black box that has

difficulty presenting to represent knowledge to users.

2.3 Genetic Programming and Classification

Many accurate and efficient classifiers have been developed based on GP in recent

years [4] [6] [17] [21] [35] [38] [39] [51] [58] [59] [71] [75] [5]. Since GP itself cannot

be directly used as a classifier, researchers have used it to find optimal solutions with

certain classifier structures.

To generate classification rules, Freitas [21] proposed the Tuple-Set-Descriptor (TSD),

a logical formula to represent an individual. Bojarczuk et al. [5] used GP to generate

classification rules for medical problems. Falco et al. [17] published a more complete

work for generating classification rules by GP. They used a real-valued range opera-
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tion to deal with real-valued features. Kotani and Sherrah [39][71] used GP to perform

feature selection before using other classification methods. Multi-category classifica-

tion problems are more difficult than two-class classification problems. Kishore et al.

[35] have considered such problems as multiple two-class classification problems and

then generated corresponding expressions. They called it GPCE. A GPCE is actually

a discriminant function, which is efficient in dealing with real-valued features. Their

method requires K runs for a K-class classification problem because only one GPCE

is generated with respect to a target class in each run. Muni et al. [58][59] proposed

a novel method to solve K-class classification problems in a single run. Each indi-

vidual in their work is represented by a multitree structure. Adapting one multitree

individual is equivalent to K traditional individuals simultaneously. Once the evolu-

tionary process ends, the K trees of an individual represent K discriminant functions.

Loveard and Ciesielski [51] proposed five classification frameworks for solving multi-

category classification problems including binary decomposition, static range selec-

tion, dynamic range selection, class enumeration, and evidence enumeration. Tsakonas

[75] compares four different structures, including decision trees, fuzzy rules, neural

networks, and fuzzy Petri-nets; all evolved by GP with several different classification

problems selected from [65]. Brameier and Banzhaf [6] used linear GP and multi-

population GP techniques. Individuals are represented as strings of C-like codes. The

output of the codes stands for the classification result. They compared their method

to NN in many classification problems also cited from [65]. For most problems, GP

achieves significantly better classification accuracy than NN does.

2.4 Feature Selection and Feature Construction

Feature selection is an important technique of pattern recognition dealing with raw

features. It focuses on removing useless, irrelevant, redundant, and noisy features. The

classification accuracy of data with selected features is better than that with all features.
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Table 2.2: A comparison of feature selection evaluation functions

(cited from [12]).

Evaluation function Generality Time complexity Accuracy

Distance measure yes low -

Information measure yes low -

Dependance measure yes low -

Consistency measure yes moderate -

Classifier error rate no high very high

Research dealing with feature selection has been proposed [1] [12] [31] [32] [36] [37] [45]

[66]. John [32] divides feature selection methods into filter groups and wrapper groups.

Filter methods measure the degree of feature relevance and decide whether to leave

or remove it, for example, two similar features can be identified by their correlation

value. By contrast, wrapper methods[31] [37] cooperate with particular classifiers to

find features that affect the performance of the classifiers. Dash [12] did a solid survey

of many feature selection methods. They categorized feature selection methods into

five categories based on the evaluation of their features discrimination ability: distance

measure, information measure, dependence measure, consistency measure, and classifier error

rate. TABLE 2.2 shows the five categories cited from [12].

Both Dash and Jain proposed taxonomies of feature selection methods as shown

in Figure 2.9. In [31], experiments with 15 different feature selection algorithms on 18

extracted features of SAR images are made. Kudo and Sklansky also compared the dif-

ferences between many feature selection methods in [45]. There compared 16 different

feature selection methods with a 1-NN classifier, including sequential algorithms and

branch-and-bound algorithms. Moreover, they also investigated various techniques

for choosing feature selection methods for different problem types. Kittler and Pudil

[36][66] proposed many feature selection techniques, such as (generalized) sequential

forward selection, (generalized) sequential backward selection, (generalized) plus l-
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Figure 2.9: Taxonomy of feature selection algorithms (cited from [31]).

take away r selection, sequential forward floating selection, and sequential backward

floating selection. Pernkopf compared the accuracy of Bayesian network classifiers and

kNN classifiers with different feature selection methods in [64].

A different way to deal with features is feature construction, or feature generation [33]

[48] [52] [53] [63] [77] . This method generates representative features or classification-

oriented ones [52]. The former is mainly applied when the given data are not rep-

resented in a distinguishable form for the classifier on hand, e.g., handwriting and

images. The most common feature extraction methods are principle component analy-

sis (PCA) [33] and linear discriminant analysis (LDA). Ma et al., [52] proposed a general

feature extraction framework and two nonlinear feature extraction algorithms, kernel

function and mean-STD-norm, cooperating with a SVM classifier. Mao and Jain pro-

posed several artificial neural network models such as PCA-networks, LDA-networks,

and nonlinear discriminant analysis (NDA) networks in [53]. Wang [77] investigated the

performance of PCA, LDA, minimum classification error, and generalized minimum

classification error with SVM classifiers on vowel databases.
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2.5 Genetic Programming, Feature Selection and Feature

Construction

Research on feature selection and feature construction using evolutionary computa-

tion techniques have grown rapidly. In [61] [68] [72], genetic algorithm is applied to

achieve feature selection. Articles focusing on using GP can be found in [29] [39] [59]

[16] [69] [71] [74] . Sherrah [71] used GP to perform feature selection before applying

particular classifiers. The unused features in the result are removed. Kotani [39] and

Hong [29] used GP to generate new features and employed other classifiers with the

generated features to perform classification tasks. SVM and ANN were used as classi-

fiers with generated features on bearing faults problems. Rizki [69] proposed a hybrid

evolutionary learning algorithm, HELPR, to perform feature extraction from raw input

data. Smith [74] combined GP and GA to complete feature generation and feature se-

lection with the C4.5 classifier. Otero et al. [16] used GP to achieve feature construction

from inadequate features. Muni [59] proposed an approach to construct a multi-class

classifier with an online feature selection named GPmtfs, which is a multitree GP [58]

based feature selection. They proposed two crossover algorithms with the multitree

GP technique to find minimum number of useful features.

2.6 Research Questions

Using functional expressions to represent individuals is effective in GP. The tree-

expression representation is a common data structure for functional expressions[40].

Two problems occur when individuals are represented by tree-expression. The first

problem is that it is difficult to choose appropriate operations for a given problem be-

cause salient characteristics of the problem are completely unknown. If the operator

set contains many operations, there is a greater possibility of discovering optimal so-

lutions; but the searching space becomes larger and therefore may become an imprac-
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Figure 2.10: Two tree representations of function F =
∏32

i=1 xi. (a) A balance tree uses 6

of heights. (b) A skew tree uses 32 of heights.

ticable situation. Fortunately, as shown in [35], GP with an operation set comprising

only basic arithmetic operations, i.e. {+,−,×, /}, is capable of generating classification

results comparable to that of an operation set comprising additional operations. Sec-

ond, since we do not have prior knowledge about the optimal solution, as a matter of

course its length is unknown. Unfortunately, the tree depth is an important parameter

of tree-structured individuals. The predefined individual length, just as the length of

a string-expression individual or the number of available nodes of a tree-expression

individual, is usually chosen according to heuristic or empirical assumptions. The fol-

lowing is an example of a classification problem containing 32 dimensional data, i.e.,

a training instance x is represented by x = (a1, a2, . . . , a32). Suppose that an optimal

solution F is known as F (x) =
∏32

i=1 ai. F can be represented by a balance tree or a

skew. The balanced tree has a height of six, and the skew tree has a height of 32, as

shown in Figure 2.10. An individual can contain at most 232−1 = 4, 294, 967, 295 nodes

if the predefined maximum depth is 32. A population containing so many large trees is

highly complex and would be thereby impracticable. On the other hand, if the prede-

fined maximum depth is fixed at six, it is very difficult to generate the ideal balanced

tree. Moreover, the function F will never be obtained if the maximum depth is less

than six.

Using an acceptable and practicable individual size is a simple but dangerous way

to avoid this problem. This problem has motivated us to develop this work. Since
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×

G H︸ ︷︷ ︸
F (x) =

∏32
i=1 ai

×
×

a1 a3

×
a29 a31︸ ︷︷ ︸

G(x) =
∏2k−1

i=1 ai, 1 ≤ k ≤ 16.

×
×

a2 a4

×
a30 a32︸ ︷︷ ︸

H(x) =
∏2k

i=1 ai, 1 ≤ k ≤ 16.

Figure 2.11: Combining functions G and H to form function F . G and H are small

functions combined by a tree rooted by a × node.

a long function can be viewed as a composite of a number of small functions, it is

possible to combine a number of small GP solutions into a large one. Therefore, it is

desirable to generate those small solutions with a practicable size of individuals and

then use them to compose a larger solution. For example, consider the function F (as

above) and two functions G(x) =
∏2k−1

i=1 ai and H(x) =
∏2k

i=1 ai, where 1 ≤ k ≤ 16.

Clearly, F can be represented by F = (G×H), as shown in Figure 3 where the tree

representations of G and H have at most a height of 16 rather than 32. Functions G and

H can be generated by two separate GPs and then can be combined together to form

F . Here we attempt to develop a method by which we can determine a proper node to

combine small functions; for example, the root node × in Figure 2.11.

We are concerned with the problem of mutation rate. In general, to prevent GP

from acting as a random search algorithm, the mutation probability is much smaller

than the reproduction probability and the crossover probability. However, a small

probability of mutation not only limits the possibility of emergent new individuals

but also causes individuals to remain in the local optimums for an extended period of

time. An adaptive mutation probability tuning method would be useful and in fact

necessary in this case.
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As mentioned above, many different methods based on GP are proposed to solve

problems of classification, feature selection, and feature construction. However, among

those in our survey, only the work done by Muni et al. [59] integrates a classifier, a

feature selector, and a feature constructor in one approach. Combining feature selection

and feature construction can be useful because they are needed provided raw features

are not suitable for the target task. One may use feature construction techniques to

generate many features but most of them can be useless. On the other hand, features

remains after feature selection can be insufficient.

In summary, we have following research questions:

RQ 1. How can discriminant functions generated by GP achieve high classification

accuracy?

RQ 2. How to tune the mutation probability automatically and smoothly?

RQ 3. How to reduce training time?

RQ 4. How to combine several good short discriminant functions in order to obtain

one long function?

RQ 5. How to accomplish feature selection and feature generation?

RQ 6. How to integrate feature selection and feature generation techniques into one

system?

A layered multi-population GP method will be proposed and explained in the

next section. The proposed method not only solves classification problems by gener-

ating short discriminant functions efficiently, but also is capable of integrating feature

selection and feature construction.

28



Chapter 3

Research Design

3.1 Introduction

The method proposed in this paper is called layered genetic programming (LAGEP).

LAGEP arranges multiple populations in a layered architecture. Populations in the

same layer evolve themselves with an identical training set. They store the function

values of their best individuals within the training set into a new dataset. Such a

dataset becomes the training set of the successive layer. After all layers have finished

the evolutionary process, the output of the final layer is the result of LAGEP.

In this chapter, we at first introduce the design of single population GP. A muta-

tion probability tuning method is proposed. In section 3.3, the layered architecture is

explained. To deal with multiple-class classification problems, a method called Z-value

measure, ZM , is proposed to resolve the conflict problem. With a minor modification,

LAGEP is capable of completing feature selection. This will be shown in section 3.4.

3.2 LAGEP: Evolving a Population

First, we recall some symbol definitions. A training instance is an object whose class
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label is already known. We define a training instance and the training set T as:

T = {xi|1 ≤ x ≤ N} ,

xi = {ai1, ai2, . . . , ain, ci} ,

where ai stands for the i-th feature, n stands for the number of features, N is the num-

ber of training instances, and ci, ci ∈ C = {c1, c2, . . . , cK}, stands for the class label of

the instance xi.

3.2.1 Individual Definitions

As mentioned in Chapter 2, a population subjects to GP is a set of individuals. We

denote a population as P , and P = {I1, I2, ..., Im}; where Ii is an individual and m is

the number of individuals of P called population size. In this work, an individual is a

discriminant function represented by a tree structure. The individual tree is composed

of an operation set Sop, a variable set Sv, and constant set Sc. Variables are symbolic no-

tations related to features of training instances. Ai stands for the i-th feature of given

instances. Sc is a set of predefined constants. We define Sc as ten floating numbers

in [0, 1] because the attribute values of classification datasets used in this paper are

normalized to [0, 1]. (The classification dataset will be described in Chapter 4.) Sop

can contain logarithmic operations or trigonometric functions, but we use only simple

arithmetic operations for two reasons: First, Kishore et al. [35] performed experiments

to show that the classification accuracy of using only simple arithmetic operations is

sufficiently high. Second, using simple operations are able to reduce computational

cost because individuals generated by a compact operations set are simple and effi-

cient. Therefore, Sop, Sv, Sc, and I are defined as follows:

Sop ={+,−,×, /}

Sv ={A1, A2, . . . , An}

Sc ={0.1, 0.2, 0.3, . . . , 1.0}

I = (Sop, Sv, Sc)
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Note that the division ”/” of Sv is a protected division. It returns 1.0 when the denom-

inator is zero.

The structure of individuals is that of a binary tree because operations are binary

operations. The maximum number of available nodes of an individual is predefined

and is called the individual length, denoted as IL.

3.2.2 Fitness Function

The fitness function FitnessFunc is a function used to evaluate the fitness of every

individual. When we perform the training task of a classification problem, one needs

to know which class is the target class. The target class is the class label for which one

trains the system to find solutions. Training instances are divided into positive instances

if they belong to the target class and negative instances if they do not. For a given

training instance x, we say of an individual Ii:

Ii recognizes training instance x if and only if Ii(x) ≥ 0;

Ii repels training instance x if and only if Ii(x) < 0.

We try to find an individual that recognizes positive instances and repels negative in-

stances. An individual is capable of classifying a set of instances. We define a function

Acc with an individual I and a dataset S by:

Acc (I, S) =
the number of objects of Sthat are correctly classified by I

|S| (3.1)

The fitness function, FitnessFunc, used in this work is made by

fi = FitnessFunction (Ii) = Acc (Ii, T ) . (3.2)

We use such a fitness function for two reasons. First, an accurate discriminant function

is desired. Second, FitnessFunc will be computed many times so it should be as

simple as possible.
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3.2.3 Validation

The overfitting problem occurs when the trained solution excessively adapts to the train-

ing set. During the training phase, it is difficult to detect whether the overfitting occurs

or not because the test instances are totally unknown. Validation process can be used to

avoid overfitting. The validation process uses a set of validation instances, V , to check

the generalization of individuals. A good individual should derive good performance

from the training set, i.e., a high fitness value, and derive high classification accuracy

from the validation set. When all generations finish, the validation performance of the

best individual from within each generation can be obtained with V . For this purpose,

we define the measure scorei of an individual Ii as:

scorei = ScoreFunc(Ii) = fi + Acc (Ii, V ) . (3.3)

The population’s best individual is the one that has greatest score and is denoted

as Φ [75].

3.2.4 Elitism Evolution Strategy and the Evolutionary Flowchart

Many evolutionary strategies have been proposed. In this work we use the elitism

strategy in which only favored individuals remain to next generation. At first, repro-

duction is no longer governed by probability. Once the fitness evaluation process has

finished, a predefined number, r, of superior individuals are reproduced into next gen-

eration directly. In order to maintain the diversity of the population, r should be small.

The crossover operator and the mutation operator are also modified. For the

crossover, we compare the fitness values of the parent individuals, fi and fj , to the

fitness values of two offspring, fi′ and fj′ . The best two of these four individuals will

be inserted into the next population. Similarly, in the case of mutation, only the one

which has highest fitness value between the parent and the mutant can survive.

We use the deterministic tournament selection method to select individuals. This

32



Initialize P, g = 1 Evaluate fitness values
for individuals in P

Output

g > G? Evaluate score values
for all individuals in P

P ′ ← ∅ g ← g + 1

Replace P by P ′
Execute reproduction
on a predefined
number of best
individuals

|P ′| = N?
Select a gene operator
by probabilities

Insert better
individuals into P ′

Execute crossover
or mutation

Compare fitness values
Evaluate fitness values

of offspring

No

Yes

No

Yes

Figure 3.1: The flowchart of GP elitism evolution processes. G is the maximum gener-

ation, P is the current population, P ′ is the population of next generation, and N is the

population size.

method at first chooses a number of individuals, called tournament size, from the pop-

ulation at random and then returns the individual with the highest fitness value.

The modified GP evolution flowchart using elitism is shown in Figure 3.1.

3.2.5 AMPT: Adaptive Mutation Probability Tuning

The mutation operator is capable of generating individuals with new structures and

is mainly used to escape local optimums. Given a high probability of mutation, the

population tends to generate diverse individuals instead of utilizing solutions present
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in extant individuals. Moreover, a high probability of mutation makes the GP system

becomes a random search model, with it is difficult to converge and generate stable

results. Such problems rarely arise however because the probability of mutation is

usually much lower than the probability of crossover. As a result, there are insufficient

opportunities for an individual to be mutated so that the diversity of the population is

limited. We denote probabilities of executing crossover and mutation with pc and pm,

respectively. Since there is no guide to define pc and pm, we propose a method called

adaptive mutation probability tuning (AMPT) to raise pm so that the mutation operator

can perform more frequently when the generation increases.

The AMPT method tunes pm according to fitness values. In case individuals have

similar fitness values, AMPT is triggered to increase pm. Otherwise, the population

uses the initially given pm. Moreover, because pm +pc = 1, to increase pm implies to de-

crease pc. AMPT is performed every generation. At generation g the AMPT considers

remaining generations to change pm and pc by:

(pm, pc) =

⎧⎪⎨
⎪⎩

(pm, pc) if fMAX
fAVERAGE

> 2,(
α

pc + α, 1− α
pc + α

)
, α = pm

(
pc
pm

) g
G

otherwise.
(3.4)

where G is the maximum generation, fMAX is the fitness value of the best individual in

generation g; and fAVERAGE is the average fitness value of all individuals in generation

g. From this formula, pm increases smoothly and achieves a value of 1
2 at the final gen-

eration, which means that the mutation operator and the crossover operator have the

same chance to be selected.

We draw the curve of pm in Figure 3.2 under the following conditions: G = 100,

(pm, pc) = (0.05, 0.95); and fMAX should never exceed 2fAVERAGE during these 100 gener-

ations. This curve shows that pm increases smoothly and terminates at 0.5 at the 100th

generation.
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Figure 3.2: The growing curve of pm using AMPT.

3.3 LAGEP: Evolving Layers

At first, we illustrate the LAGEP architecture in Figure 3.3, which provides an overview

of the proposed method. Then we will introduce LAGEP in section 3.3.1. To solve the

multi-class problem, a conflict resolution method is proposed in section 3.3.3. Finally,

an example is given to demonstrate LAGEP.

3.3.1 Layered Architecture

LAGEP composes a number of layers. Each layer contains a set of populations. A

new training set is produced by the best individuals generated from such populations

with the training set of the layer. Populations in the successive layers will use the new

training set to evolve individuals. The results are obtained from the final layer.

A layer has a particular variable set and a particular training set. A layer Li is

defined by:
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Population 1 Population 2 Population l(1)T1

A set of populations evolving with T1

A set of best individuals { 1,..., l(1)}

Population 1 Population 2 Population l(2)T2

A set of populations evolving with T2

A set of best individuals { 1,..., l(2)}

Function value evaluation

Population 1
T

A population evolving with T

The best individuals of population 1: 1

Layer 1

Layer 2

Layer

TF

Function value evaluation

Figure 3.3: Flowchart of LAGEP. Γ is the number of layers, l(i) stands for the number

of populations in layer i.
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Li =
(
Pi1, Pi2, . . . , Pil(i), Ti, S

i
v

)

where Pij is a population, l (i) is the number of populations in Li, and Si
v is the variable

set used for populations of Li.

A layer is an isolated multi-population GP (IMGP) model. We use the IMGP model

[18] [19] because it is simpler than PADGP. Every population in the IMGP model is in-

dependent of others. The evolutionary algorithm of each single population does not

require any change.

A particular training set Ti of Li is prepared and is used for the evolutionary pro-

cesses of Li’s populations. For the first layer L1, its training set T1 is actually the origi-

nal given training set. Each population, as mentioned in previous sections, outputs an

individual whose score is the highest. Since an individual is a discriminant function, a

set of discriminant functions Φ∗ of Li is derived:

Φ∗
i =
{
Φi1, Φi2, . . . , Φil(i)

}

Based on these discriminant functions and training instances of Ti, a new training set

Ti+1 and a new variable set Si+1
v can be constructed by

Ti+1 =

⎧⎪⎨
⎪⎩x(i+1)j

∣∣∣∣∣∣∣
x(i+1)j =

(
a(i+1)j1, . . . , a(i+1)jk, . . . , a(i+1)jl(i), c(i+1)j

)
,

a(i+1)jk = Φik (xij) , c(i+1)j = cij , xij ∈ Ti, 1 ≤ j ≤ N

⎫⎪⎬
⎪⎭

Si+1
v =

{
A(i+1)1, A(i+1)2, . . . , A(i+1)l(i)

}

An attribute of an instance x(i+1)j of Ti+1 is made by a corresponding instance xij

of Ti and a corresponding discriminant function Φij . When Ti+1 has been constructed,

we say an era ends and then the layer Li+1 is able to begin its evolutionary process with

Ti+1.

We define LAGEP as:

LAGEP = {Li |1 ≤ i ≤ Γ}

where Γ is the number of layers. The last layer is designed to have only one population.

Although having more populations is possible, in this work, we use this design to

37



simplify the LAGEP system. The result of LAGEP is a single discriminant function and

is denoted as Φ. Such a function evaluates the training set to generate the set of training

results TF . For a K-class classification problem, LAGEP has to be trained K times

with K different target classes. The K different training results {TF1, TF2, . . . , TFK}
are collected to represent training results with respect to K classes.

3.3.2 Advantages of Using LAGEP

In this section, we describe the advantages of using LAGEP. First, we show that the

result of LAGEP is a composed of small discriminant functions. The result of the last

layer of LAGEP is a function Φ which can be represented by:

Φ =ΦΓ

(
AΓ1, AΓ2, . . . , AΓj, . . . , AΓl(Γ−1)

)

where

AΓj =Φ(Γ−1)j

(
A(Γ−1)1, A(Γ−1)2, . . . , A(Γ−1)j , . . . , A(Γ−1)l(Γ−2)

)
, Φ(Γ−1) ∈ Φ∗

(Γ−1)

A(Γ−1)j =Φ(Γ−2)j

(
A(Γ−2)1, A(Γ−2)2, . . . , A(Γ−2)j , . . . , A(Γ−2)l(Γ−3)

)
, Φ(Γ−2)j ∈ Φ∗

Γ−2

A(Γ−2)j =Φ(Γ−3)j

(
A(Γ−3)1, A(Γ−3)2, . . . , A(Γ−3)j , . . . , A(Γ−3)l(Γ−4)

)
, Φ(Γ−3)j ∈ Φ∗

Γ−3

...

A3j =Φ2j

(
A21, A22, . . . , A2j , . . . , A2l(1)

)
, Φ2j ∈ Φ∗

2

A2j =Φ1j (A11, A12, . . . , A1j, . . . , A1n) , Φ1j ∈ Φ∗
1.

A1j comes from the original given training set. Such expansion shows that the function

is a long function composed of a number of functions generated by layers.

Second, a layer has a high probability of having a higher fitness value than the

preceding layer. The training instance x(i+1)j ∈ Ti+1 is derived from xij ∈ Ti through

the set of discriminant functions, i.e., xij

Φ∗
i−→ x(i+1)j . Spaces of Ti+1 and Ti may be dif-

ferent. We illustrate this situation in Figure 3.4. In Figure 3.4, light gray points and

black points are training instances belonging to class C1 and C2, respectively. Training

instance of T1 may have interleaved disorderly in the space. After the discriminant
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Φ∗
1 Φ∗\Φ∗

1

An instance belonging to class C1

An instance belonging to class C2

T1 T2 TΓ

Figure 3.4: An example of feature transformation.

function Φ∗
1 transform T1 into a new space T2, training instances can distribute sepa-

rately with respect to different class. Finally, as what we expect, training instances can

be easily separated because those they have the same class are closely distributed over

the space.

Populations of Li produce a set of functions to separate instances of Ti. The func-

tional value of a discriminant function for an instance provides classification informa-

tion. The layer architecture is capable of sending such information to next layer, Li+1, to

discover a set of discriminant functions. Therefore, most of the positive instances will

have positive attributes and most of negative instances will have negative attributes.

Training instances in later layers should be easier to be classified. Consider two pop-

ulations, Pij and P(i+1)k, where Pij ∈ Li and P(i+1)k ∈ Li+1. Let TP , FP , FN , and

TN be the numbers of true positive, false positive, false negative, and true negative,

respectively, obtained by the function Φij . We have:

1. The feature A(i+1)j is positive in TP + FP training instances of Ti+1.

2. The feature A(i+1)j is negative in TN + FN training instances of Ti+1.

3. For positive instances, there are TP of them having positive A(i+1)j .

4. For negative instances, there are TN of them having negative A(i+1)j .

Considering an instance I ∈ P(i+1)k, I and Φij will have the same fitness value as long

as I = A(i+1)j . Since an individual containing only one variable is very likely to appear
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in a population, with sufficient number of individuals, the fitness value of the best

individual in P(i+1)k is very likely to be better than the maximum fitness value of Pij.

3.3.3 The Testing Phase and Z-value measure method, ZM

Defining the test set as U , to predict the class of a test instance yi ∈ U , we substitute yi

for K trained LAGEPs responding to K different classes. The classification result of yi

is represented by a vector ri:

ri = (ri1, ri2, . . . , riK) , rij =

⎧⎪⎨
⎪⎩

1 if Φk(yi) ≥ 0

0 otherwise
(3.5)

A problem called conflict occurs when
∑

j rij �= 1, yi is classified into two or more

classes. This problem can be avoided by executing functions in the proper sequence,

or be resolved by using additional techniques. Researchers have developed creative

methods to solve the conflict problem. Kishore et al. [35] proposed a method to eval-

uate strength of association (SA) measured by each GP classification expression (GPCE).

Ambiguous data is assigned to the class whose corresponding GPCE has the largest

SA. They further used heuristic rules to improve accuracy. Muni et al. [58] proposed

two methods to resolve the conflict problem: a heuristic rule-based scheme and a

weighting scheme. Here we propose a method called ZM using the Z-value mea-

surement based on statistical theorems. ZM employs means and standard deviations

of training results to estimate the Z-value of a conflict test instance. The class of such

instance is determined to be class Ci if its corresponding Z-value is the minimum. Fur-

thermore, in case the test instance is not classified to any class, we also use the Z-value

to find a probable class rather than to directly assign it to a special class REJECT. An

instance is assigned to class REJECT only when it has multiple minimum Z-values.

We introduce the main steps of Z-value measure in this section. First, we compute

the vectors μ, standing for the mean, and σ2, standing for the standard deviation, of

the training results {TF1, TF2, . . . , TFK}. Since every instance xi in a TF is a scalar, μ
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and σ2 can be computed by

μ = (μ1, μ2, . . . , μK) , where

μi =

∑
xk∈TFi,ck=Ci

xk

the number of training instances belonging to class Ci

σ2 =
(
σ2

1, σ
2
2, . . . , σ

2
K

)
, where

σ2
i =

∑
xk∈TFi,ck=Ci

(xk − μi)
2

the number of training instances belonging to class Ci

Second, for a test instance yi, if
∑

j rij = 1, we do not have to execute ZM for yi. If∑
j rij = 0, we change all elements of ri to 1. A K-dimensional vector Zi is computed

by

Zi = (Zi1, Zi2, . . . , ZiK),

Zij =

⎧⎪⎨
⎪⎩
|Φclass=j(yi)− μj|

σj
if rij = 1

∞ otherwise
, 1 ≤ j ≤ K (3.6)

where Φclass=j stands for the function whose target class is Cj. We assign yi to class Cj

if Zij is the minimum among Zi.

3.3.4 LAGEP: An Example

In this section, we illustrate LAGEP by solving a 2-class problem, i.e. K = 2, with nine

training instances selected from the first distribution of cancer problems [65]. TABLE

3.1 shows the training set T where M stands for the class malignant and B stands for
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Table 3.1: LAGEP example: Nine training instances selected from cancer

problem of Proben1 [65].

T = T1 A1 A2 A3 A4 A5 A6 A7 A8 A9 Class

x11 0.20 0.10 0.10 0.10 0.20 0.10 0.20 0.10 0.10 M

x12 0.20 0.10 0.10 0.10 0.20 0.10 0.30 0.10 0.10 M

x13 0.50 0.10 0.10 0.10 0.20 0.10 0.20 0.10 0.10 M

x14 0.50 0.40 0.60 0.80 0.40 0.10 0.80 1.00 0.10 B

x15 0.50 0.30 0.30 0.10 0.20 0.10 0.20 0.10 0.10 M

x16 0.20 0.30 0.10 0.10 0.30 0.10 0.10 0.10 0.10 M

x17 0.30 0.50 0.70 0.80 0.80 0.90 0.70 1.00 0.70 B

x18 1.00 0.50 0.60 1.00 0.60 1.00 0.70 0.70 1.00 B

x19 1.00 0.90 0.80 0.70 0.60 0.40 0.70 1.00 0.30 B

the class benign. The settings of this example are shown as follows:

the target class is M

Γ = 2

IL = 15

LAGEP = (L1, L2)

L1 =
(
P11, P12, P13, T1, S

1
v

)
L2 =

(
P21, T2, S

2
v

)
S1

v = {A1, A2, . . . , A9}

S2
v = {A11, A12, A13} . (3.7)

Step1: L1 performs evolutionary process. The set Φ∗
1 = {Φ11, Φ12, Φ13} containing
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Table 3.2: LAGEP example: New training set T2

generated by L1.

T2 A11 A12 A13 Class

x21 0.9000 0.7000 1.9000 M

x22 0.9000 0.3667 2.9000 M

x23 0.9000 0.4000 1.9000 M

x24 0.0000 −0.6000 −0.2000 B

x25 0.9000 0.2000 1.9000 M

x26 0.9000 2.7000 0.9000 M

x27 −0.2000 0.1429 −0.3000 B

x28 0.4286 −0.7429 0.3000 B

x29 −0.1000 −0.9429 −0.3000 B

the three best individuals generated by L1 is

Φ11 =(A9/A8)− A6

Φ12 =(A5/A7)− (A3 + A1)

Φ13 =(A7/A8)− A8

A new training set T2 can be constructed according to Φ∗
1. TABLE 3.2 shows T2.

Step2: L2 uses T2 to evolve its population and generates function Φ21

Φ21 = A11 + A12

TABLE 3.3 shows that Φ21 achieves perfect classification accuracy on T2 and shows

the training results as well. The solution of LAGEP for class M can be expanded as

Φ = A11 + A12 = (A9/A8) − A6 + (A5/A7) − (A3 + A1). Here we omit the details of the

training LAGEP with target class B and show its results along with the training results

of LAGEP with target class M in TABLE 3.4. The validation process is also omitted to

simplify this example.

For two given test instances y1 and y2, we use the two trained LAGEPs corre-
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Table 3.3: LAGEP example: Train-

ing results.

TF A21 Class

x31 1.6000 M

x32 1.2667 M

x33 1.3000 M

x34 −0.6000 B

x35 1.1000 M

x36 3.6000 M

x37 −0.0571 B

x38 −0.3143 B

x39 −1.0429 B

sponding to class M and B in y1 and y2 and obtain

ΦM(y1) = 0.3, ΦB(y1) = −0.4

ΦM (y2) = 0.3, ΦB(y2) = 0.2

We determine the class label of y1 to be class M. The conflict problem occurs at y2.

Through the ZM method, Z-values of y2 corresponding to class M and B are 1.5886

and 1.0215, respectively. y2 is classified into class B because Z2B is smaller than Z2M .

3.4 LAGEP-FS: LAGEP with Feature Construction and Fea-

ture Selection

In this section, we propose a type of LAGEP called LAGEP-FS to achieve feature con-

struction and feature selection simultaneously.

Feature construction is completed by producing new features using discriminant
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Table 3.4: LAGEP example: Training results for target class M and

B.

M B Class

x31 1.6000 −0.6000 M

x32 1.2667 −0.6000 M

x33 1.3000 −0.3000 M

x34 −0.6000 0.0000 B

x35 1.1000 −0.1000 M

x36 3.6000 −0.4000 M

x37 −0.0571 0.5000 B

x38 −0.3143 1.5000 B

x39 −1.0429 1.2000 B

functions generated from a layer as mentioned in previous sections. Instead of using

new features only, LAGEP-FS combines original features and new features into a new

training set Ti+1 after Li has finished its evolutionary process. Original features in ex-

isting individuals have chances to be used in successive layers so that the so-called

nesting problem can be avoided. LAGEP-FS combines feature construction and feature

selection in single system that can simplify these two major tasks of dealing with fea-

tures.

Differences between LAGEP and LAGEP-FS are introduced in the following sec-

tion. Two proposed feature selection methods are described afterward. Finally, a brief

example shows how LAGEP-FS works.

3.4.1 Architecture

LAGEP-FS not only uses layers to generate new features but also keeps original fea-

tures. As mentioned in LAGEP sections, layer Li evolves with a particular training set
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Ti, and generates a new training set Ti+1 as

Ti+1 =

⎧⎪⎨
⎪⎩x(i+1)j

∣∣∣∣∣∣∣
x(i+1)j =

(
a(i+1)j1, . . . , a(i+1)jk, . . . , a(i+1)jl(i), c(i+1)j ,

)
,

a(i+1)jk = Φik (xij) , c(i+1)j = cij , xij ∈ Ti, 1 ≤ j ≤ N

⎫⎪⎬
⎪⎭

Si+1
v =

{
A(i+1)1, A(i+1)2, . . . , A(i+1)l(i)

}

In LAGEP-FS, Ti+1 and Si+1
v have similar definitions:

Ti+1 =
{
x(i+1)1, . . . , x(i+1)j , . . . , x(i+1)n

}
where

x(i+1)j =
(
a(i+1)j1, . . . , a(i+1)jn, a(i+1)j(n+1), . . . , a(i+1)j(n+k), . . . , a(i+1)j(n+k+l(i)), c(i+1)j

)
,

a(i+1)jα =

⎧⎪⎨
⎪⎩

a1jα if 1 ≤ α ≤ n + k, k =
∑i−1

q=1 l(q)

Φi(α−m−k)(xij) otherwise

c(i+1)j = cij , xij ∈ Ti, Φiq ∈ Φ∗
i , 1 ≤ j ≤ N

Si+1
v =

i⋃
j=1

Sj
v =
{
A1, . . . , An, A11, . . . , A1l(1), A21, . . . , A(i+1)l(i)

}
,

The definition of Si+1
v may raise ambiguity in the case that n > 10 or l(i) > 10. A

symbol A11 could be the eleventh original feature or the feature constructed by first

layer. In order to avoid ambiguity, we define Si+1
v as

Si+1
v =

{
A1, . . . , An, An+1, . . . , An+l(1), An+l(1)+1, . . . , An+k+l(i)

}
, k =

i−1∑
q=1

l(q)

Each new training instance x(i+1)j ∈ Ti+1 have original features {aij1, . . . , aikm}, con-

structed features
{
aij(m+1), . . . , aij(m+k)

}
, k =

∑i−1
q=1 l(q) generated by L1, . . . , Li−1, and

new features
{
Φi1(xij), . . . , Φil(i)(xij)

}
generated by preceding layer Li.

After LAGEP-FS is completed, we will have
∑Γ

q=1 l(q) features. The last feature is

in fact constructed by the function ΦΓ1, which is the training result.

LAGEP-FS uses a different fitness function and the constant set Sc. In order to let

fitness values be more sensitive, the fitness function FitnessFunc in LAGEP-FS is

sensitivity =
TP

TP + TN
=

number of correctly classified positive instances
number of positive instances

specificity =
TN

FP + TN
=

number of correctly classified negative instances
number of negative instances

FitnessFunc(Ii) =sensitivity× specificity
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Moreover, since the number of used features is of the utmost concern, we reduce the

probability of returning a constant when an individual acquires a leaf node. Therefore,

Sc is enlarged to Sc = {1, 2, . . . , 100} because constants will not have much of a chance

to be used.

3.4.2 Proposed Feature Selection Methods

Two feature selection methods, M1 and M2, each based on different concepts are pro-

posed. M1 reduces fitness value of an individual using multiple features. M2, on the

other hand, controls for the possibility of a feature being selected by tuning its weights

during the evolutionary process.

M1

This method gives the individuals with more features a lower fitness value so as to

reduce their probability of being selected. Instead of adopting a new fitness function,

we assign new fitness values to individuals once a generation completed. Using a fit-

ness function that concerns only the number of features selected in an individual may

cause an unfit individual to be assigned a higher fitness. Since classification accuracy

is the most important factor, M1 takes a set of individuals rather than single individual

into consideration.

First, we partition the population into several subsets. Each subset collects indi-

viduals of similar fitness values. For a sorted population P = {I1, I2, . . . , Im}, where

fi ≥ fi+1, P is partitioned into subsets S1, S2, . . . , Sk as:

S1 = {I1, . . . , Ii}, S2 = {Ii+1, . . . , Ii+j}, . . . , Sk = {Ik, . . . , Im}

fi − fj ≤ 0.01∀Ii, Ij ∈ St, 1 ≤ t ≤ k

(3.8)

Afterward, individuals in a subset St are sorted by the number of features they have

used in ascending order. For a set St = {It1, It2, . . . , Itk}whose individuals are ordered
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in descending order, the new fitness of an individual Itj is

f ′
tj =

(
(fmax − fmin) (k − j + 1)

k

)
+ fmin (3.9)

Example

Suppose that in partition Si = {Ii1, . . . , Ii4}, the numbers of features used in each

individual are (12, 18, 19, 33). The fitness values of Ii1, Ii2, Ii3, and Ii4 are 0.792, 0.800,

0.797, and 0.799, respectively. Their new fitness values thus become

f ′
Ii1

=

(
(0.800− 0.792)(4− 1 + 1)

4

)
+ 0.792 = 0.800

f ′
Ii2

=

(
(0.800− 0.792)(4− 2 + 1)

4

)
+ 0.792 = 0.798

f ′
Ii3

=

(
(0.800− 0.792)(4− 3 + 1)

4

)
+ 0.792 = 0.796

f ′
Ii4

=

(
(0.800− 0.792)(4− 4 + 1)

4

)
+ 0.792 = 0.794

The fitness values of individuals in a partition become uniformly distributed. Ii1 has

the highest fitness value after M1 because it used the least number of features. On the

other hand, although Ii4 has a fitness value 0.799, its new fitness value is the lowest

one because it used the greatest number of features.

M2

Diversity of a population will be influenced by irrelevant features, especially when

the given problem is a high-dimensional one. This is explained by the limitation in

both the number of individuals of a population and the number of available nodes

of an individual. Instead of tuning the fitness value of each individual, M2 tunes the

weights of all features, generation by generation. Features with lower weights are

unlikely to be chosen when an individual acquires a new feature from the variable set.

For a population P ∈ Li, once a generation is completed we calculate the variable

usage of individuals. P is divided equally into two sets HF and LF ; where HF is the

set of better individuals and LF is the set of the remaining individuals. We further
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define the variable usage ϕH and ϕL by

ϕH =
(
ϕH

1 , ϕH
2 , . . . , ϕH

k

)
ϕL =

(
ϕL

1 , ϕL
2 , . . . , ϕL

k

)

k =

⎧⎪⎨
⎪⎩
∑i−1

q=1 l(q) if P /∈ L1

n otherwise

where ϕH
i and ϕL

i stand for frequency of variable Ai occurring in HF and LF , respec-

tively. The weight of variable Ai used in Li+1 is

weight of Ai =

⌈
ϕH

i + 1
ϕL

i + 1

⌉
⌈∑

ϕH + 1∑
ϕL + 1

⌉ (3.10)

Terminals always have positive weights. We do not remove any of them during

the evolutionary process.

Example

Assume that each training instance has three features {A1, A2, A3}. When a gener-

ation is completed, the frequencies of features occurring in HF and LF are (10, 3, 12)

and (2, 8, 12), respectively. The weight of A1 can be calculated by
⌈
10 + 1
2 + 1

⌉
⌈
25 + 1
22 + 1

⌉ =

3.6666�

1.1304� =

4

2
= 2.0

The weight of A2 is
⌈
3 + 1
8 + 1

⌉
⌈
25 + 1
22 + 1

⌉ =

0.4444�

1.1304� =

1

2
= 0.5

The weight of A3 is
⌈
12 + 1
12 + 1

⌉
⌈
25 + 1
22 + 1

⌉ =

1.0000�

1.1304� =

1

2
= 0.5

The probability of A1 being selected is 2/3. Clearly, A1 has four times higher weight

than A2 and A3 have.
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Table 3.5: LAGEP-FS example: Nine training instances selected from can-

cer problem of Proben1 [65].

T = T1 A1 A2 A3 A4 A5 A6 A7 A8 A9 Class

x11 0.20 0.10 0.10 0.10 0.20 0.10 0.20 0.10 0.10 M

x12 0.20 0.10 0.10 0.10 0.20 0.10 0.30 0.10 0.10 M

x13 0.50 0.10 0.10 0.10 0.20 0.10 0.20 0.10 0.10 M

x14 0.50 0.40 0.60 0.80 0.40 0.10 0.80 1.00 0.10 B

x15 0.50 0.30 0.30 0.10 0.20 0.10 0.20 0.10 0.10 M

x16 0.20 0.30 0.10 0.10 0.30 0.10 0.10 0.10 0.10 M

x17 0.30 0.50 0.70 0.80 0.80 0.90 0.70 1.00 0.70 B

x18 1.00 0.50 0.60 1.00 0.60 1.00 0.70 0.70 1.00 B

x19 1.00 0.90 0.80 0.70 0.60 0.40 0.70 1.00 0.30 B

3.4.3 An Example

This section demonstrates LAGEP-FS in the first distribution of cancer problems [65],

as used in the LAGEP example used in section 3.3.4. TABLE 3.5 shows the nine train-

ing samples of the training set T where M stands for the class malignant and B stands

for the class benign.

In this example, the target class is M; Γ = 2; IL = 255; LAGEP-FS= (L1, L2), L1 =

(P11, P12, T1, S
1
v);L2 = (P21, T2, S

2
v), S

1
v = {A1, A2, . . . , A9}; and S2

v = {A1, A2, . . . , A9, A11, A12}.

Step1: L1 evolves with T for G generations. We obtain two discriminant functions
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Table 3.6: LAGEP-FS example: New training set gener-

ated by L1.

T2 A1 · · · A9 A10 A11 Class

x21 0.20 · · · 0.10 0.1991 76.1066 M

x22 0.20 · · · 0.10 0.1991 76.1066 M

x23 0.50 · · · 0.10 1.6225 175.7748 M

x24 0.50 · · · 0.10 −7.4600 −24.2714 B

x25 0.50 · · · 0.10 0.2633 42.1644 M

x26 0.20 · · · 0.10 0.1364 22.7037 M

x27 0.30 · · · 0.70 −2.3482 −514.8546 B

x28 1.00 · · · 1.00 −440.0000 −9126.0333 B

x29 1.00 · · · 0.30 −192.1067 −1135.0109 B

Φ11 and Φ12 as

Φ11 =A9 −

⎛
⎜⎝ (((A1 × (70× (A4 ×A1)))× ((A1 + A6)− (A6 − A2)))× (A1/A2))×

((A1 + (A6 + (A2 + (A4 × A3))))− 1)

⎞
⎟⎠

Φ12 =

⎛
⎜⎝A1 ×

⎛
⎜⎝ ((9 + (40/A2))− (8/ ((A6/A4)− (A2/8))))−

((((29− A1) + A2)× (A1 × A9))× (((23× A6)× (15− A6)) + A4))

⎞
⎟⎠
⎞
⎟⎠

−A6

Note that we do not illustrate either of the feature selection methods M1 or M2

in this example. Such methods are performed during each generation not after all

generations are completed.

The original nine features and the two new features, A11 and A11, construct T2,

which is shown in 3.6.

Step2: Next, L2 uses T1 to evolve its populations and generates Φ21, which is

Φ21 = (41/ (((A10 + ((80× A10) + A4)) /A8) /A4)) + (9× (A1/A11))
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Table 3.7: LAGEP-FS example: Training results.

A1 · · · A9 A10 A11 A12 Class

x31 0.20 · · · 0.10 0.1991 76.1066 0.0489 M

x32 0.20 · · · 0.10 0.1991 76.1066 0.0489 M

x33 0.50 · · · 0.10 1.6225 175.7748 0.0287 M

x34 0.50 · · · 0.10 −7.4600 −24.2714 −0.2398 B

x35 0.50 · · · 0.10 0.2633 42.1644 0.1259 M

x36 0.20 · · · 0.10 0.1364 22.7037 0.1161 M

x37 0.30 · · · 0.70 −2.3482 −514.8546 −0.1784 B

x38 1.00 · · · 1.00 −440.0000 −9126.0333 −0.0018 B

x39 1.00 · · · 0.30 −192.1067 −1135.0109 −0.0098 B

Then we combines Φ21 and features A1, . . . , A11, A12 of T1 to build T2 which is shown in

TABLE 3.7, where A21 is the result of the training samples. Since A11 and A12 are made

from Φ11 and Φ12 as mentioned above, the set of used original features is

{A1, A2, A3, A4, A6, A8, A9}.
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Chapter 4

Experiment Study

4.1 Introduction

In this section we describe the experiments performed and analyze the experimen-

tal results of LAGEP and LAGEP-FS. To conduct the experiments described in this

section, we developed a system based on the LAGEP Project [50] executed under an

ACER VT7600GL, which is equipped with a single 3.0GHz processor and 1.5GB mem-

ory.

First we introduce the selected datasets. Then we have some hypotheses about

the experiments based on research questions, as described in Section 2.6. We following

conduct experiments to illustrate the performance of the proposed mutation probabil-

ity tuning method AMPT. Classification accuracies and analysis of LAGEP with dif-

ferent settings are demonstrated. Finally, the performance experiment and analysis of

LAGEP-FS is given.

4.2 Medical Classification Problems

2e used six diagnostic problems selected from the PROBEN1 benchmark set of real-

world problems [65], which was also used in [6]. These problems are originally from
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Table 4.1: Summary of selected problems.

Problem Number of Number of Training Validation Test
classes features instances instances instances

heart (HRT) 2 35 152 76 75

horse (HRS) 3 58 182 91 91

cancer (CAN) 2 9 350 175 174

diabetes (DBT) 2 8 384 192 192

gene (GEN) 3 120 1588 794 793

thyroid (TRD) 3 21 3600 1800 1800

the UCI repository [13] and have been preprocessed by [65]. The values of all sets are

normalized to the continuous range [0, 1]. Missing attributes are completed. Every at-

tribute having m possible values is encoded by the 1-of-m method, i.e., using m binary

attributes instead of the single original attribute.

Each problem prepared by PROBEN1 has been divided into three subsets: train-

ing, validation, and test. The training set contains the first half of instances. The valida-

tion set includes the next 25% of instances. The last 25% of instances are test instances.

Therefore, in this paper we do not need to use multi-fold cross-validation to re-separate

each problem into a new training set and a new test set. Furthermore, every problem

in PROBEN1 has three different compositions with different distributions of instances,

i.e., instances are separated into the training set, the validation set, and the test set by

three different orders. This should increase confidence that classification results are

not influenced by the distributions of the training set, the validation set, and the test

set. Therefore, we have 18 problems in total. We summarize these problems in TABLE

4.1.
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4.3 Hypotheses

we have some hypotheses for the experiments. As mentioned in Section 2.6, we have

six research questions:

RQ 1. How can discriminant functions generated by GP achieve high classification

accuracy?

RQ 2. How to tune the mutation probability automatically and smoothly?

RQ 3. How to reduce training time?

RQ 4. How to combine several good short discriminant functions in order to obtain

one long function?

RQ 5. How to accomplish feature selection and feature generation?

RQ 6. How to integrate feature selection and feature generation techniques into one

system?

Therefore, we have hypotheses corresponding to the six research questions:

H 1. SGP with AMPT can achieve higher classification accuracy to SGP without AMPT.

H 2. Using discriminant functions can obtain high classification accuracy.

H 3. A LAGEP-based classification requires less training time than a SGP-based clas-

sification without loss of classification accuracy.

H 4. Populations in successive layers have better learning performance.

H 5. LAGEP can accomplish feature selection and feature generation simultaneously.

Following experiments are conducted to test these hypotheses.
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Table 4.2: Experiment setting ES1 used for

AMPT experiments.

Parameter Value

Max generation, G 100

Population size, m 2000

Individual length, IL 511

Tournament size 6

Crossover probability, Pc 0.8

Mutation probability, Pm 0.2

4.4 Experiments of AMPT method

First, we show how performance was improved by using AMPT. AMPT is originally

designed for each population in LAGEP, thus this experiment is conducted with a sin-

gle population. TABLE 4.2 shows the experimental setting, which is denoted as ES1.

The population size, maximum generation, and the tournament size are referring to

that of [75]. However, the crossover probability and the mutation probability in [75]

are 0.35 and 0.65, respectively. Such a combination of Pc and Pm is not suitable for this

work. The mutation operator is not supposed to be the primary genetic operator be-

cause it is used to escape local optimums. Therefore, we consider the Pc and Pm from

[58]. The crossover probability, mutation probability, and reproduction probability of

[58] are 0.75, 0.15, and 0.1, respectively. In this paper, the reproduction operator is not

performed by probability. We divide the reproduction probability, 0.1, equally into pc

and pm. The number of available nodes of an individual used in [75] is 650 because the

structure of individuals is not the binary tree structure. We use the most approximate

number, 511, as the maximum number of available nodes of an individual.

Denoting the ES1 with AMPT and without AMPT as ES1.w and ES1.w/o, respec-

tively, we perform them on the 18 classification problems ten times. TABLE 4.3 and
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TABLE 4.4 shows score and accuracy comparisons and paired t-tests between ES1.w

and ES1.w/o. The three values in each cell stand for the highest accuracy, the average

accuracy, and the standard variation.

TABLE 4.3 illustrates ES1.w outperforms ES1.w/o in 11 problems out of 18 prob-

lems. TABLE 4.4 shows that AMPT is capable of improving the classification perfor-

mance of the single population GP. ES1.w has higher average accuracy than ES1.w/o

with the exception the CAN3 problem. TABLE 4.4 shows that for most problems,

ES1.w elucidates better discriminant functions. Hence, the hypothesis H1: ”SGP with

AMPT can achieve higher classification accuracy to SGP without AMPT.” is there-

fore confirmed. Based on these observations, all of the following experiments use the

AMPT method.

4.5 LAGEP Experiments

4.5.1 Experimental Settings

In this paper, we use five two-layer LAGEP experimental settings to illustrate the per-

formance of LAGEP. TABLE IX shows six experimental settings including ES1. In this

paper, we focus on investigating the behavior of the LAGEP architecture with differ-

ent numbers of populations rather than with different numbers of layers. TABLE 4.5

shows that all settings use similar numbers of individuals. These settings refer [75] be-

cause we compare the results we obtain with the results therein. LAGEP is proposed

to utilize short discriminant functions so as to obtain a longer one. We set the indi-

vidual length of them to be 255. Every classification problem is performed with each

experimental setting ten times.
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Table 4.3: Learning score and paired t-test comparisons between ES1 with

AMPT and ES1 without AMPT.

The three values in each cell stand for highest accuracy, average accuracy, and stan-

dard deviation.

Problem ES1.w ES1.w/o Paired Problem ES1.w ES1.w/o Paired
t-test t-test

1.8618 1.8553 1.6406 1.6302
HRT1 1.7898 1.8003 0.2283 DBT1 1.5901 1.5882 0.3969

0.0346 0.0396 0.0270 0.0233

1.7566 1.7763 1.6250 1.6094
HRT2 1.6875 1.7020 0.1157 DBT2 1.5866 1.5810 0.2555

0.0405 0.0328 0.0268 0.0199

1.8092 1.7763 1.6094 1.6120
HRT3 1.7477 1.7414 0.2583 DBT3 1.5645 1.5616 0.3727

0.0312 0.0242 0.0279 0.0266

1.7967 1.8242 1.9225 1.9320
HRS1 1.6762 1.6791 0.3695 GEN1 1.7915 1.7884 0.4304

0.0926 0.1014 0.1283 0.1187

1.8242 1.8022 1.9332 1.9200
HRS2 1.6868 1.6960 0.2055 GEN2 1.7732 1.7688 0.4235

0.0933 0.0793 0.1376 0.1144

1.8297 1.8407 1.9402 1.9188
HRS3 1.6908 1.6868 0.2921 GEN3 1.7786 1.7870 0.3997

0.0951 0.0910 0.1227 0.1146

1.9629 1.9686 1.9908 1.9908
CAN1 1.9537 1.9570 0.0231∗ TRD1 1.9779 1.9615 0.0084∗

0.0048 0.0061 0.0125 0.0370

1.9800 1.9771 1.9925 1.9931
CAN2 1.9707 1.9687 0.1317 TRD2 1.9719 1.9707 0.3681

0.0042 0.0064 0.0255 0.0264

1.9743 1.9771 1.9917 1.9964
CAN3 1.9609 1.9631 0.0440∗ TRD3 1.9685 1.9678 0.4488

0.0107 0.0088 0.0287 0.0287

∗ Significance level α = 0.05

58



Table 4.4: Accuracy and paired t-test comparisons between ES1 with AMPT

and ES1 without AMPT.

The three values in each cell stand for highest accuracy, average accuracy, and stan-

dard deviation. The better average accuracy is marked in bold face.

Problem ES1.w ES1.w/o Paired Problem ES1.w ES1.w/o Paired
t-test t-test

80.00 81.33 78.13 76.56
HRT1 76.80 76.67 0.4557 DBT1 72.50 72.34 0.4667

3.09 2.69 2.76 3.54

98.67 94.67 75.52 75.00
HRT2 93.33 92.27 0.2332 DBT2 71.25 71.15 0.4584

3.20 2.16 2.44 1.79

88.00 86.67 77.60 78.13
HRT3 84.40 82.93 0.0769∗∗ DBT3 75.16 74.53 0.2594

2.60 2.50 2.53 1.46

71.43 67.03 89.66 89.41
HRS1 64.51 62.53 0.1593 GEN1 85.31 85.21 0.4787

4.61 2.28 4.37 3.10

67.03 65.93 90.04 88.65
HRS2 61.98 60.77 0.2358 GEN2 85.98 83.32 0.0343∗

3.78 2.64 3.95 5.97

65.93 60.44 88.27 88.15
HRS3 61.21 55.27 0.0010∗ GEN3 84.59 81.78 0.0397∗

3.11 3.74 3.00 5.07

98.85 98.85 97.72 97.72
CAN1 97.70 97.70 0.5000 TRD1 97.15 95.94 0.0361∗

0.72 0.77 0.47 1.74

96.55 94.83 98.28 98.67
CAN2 94.89 94.08 0.0022∗ TRD2 97.33 96.84 0.0766∗∗

0.69 0.47 1.22 1.34

97.13 97.13 98.06 98.50
CAN3 96.32 96.44 0.3097 TRD3 96.95 96.69 0.3332

0.78 0.45 0.92 1.38

∗ Significance level α = 0.05

∗∗ Significance level α = 0.10.
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Table 4.5: Experimental settings of traditional single population GP and

LAGEP.

Setting Γ l(i) Population Total number IL
name size for each of individuals

Traditional SGP ES1 1 1 2000 2000 511

LAGEP ES2 2 2, 1 666 1998 255

LAGEP ES3 2 3, 1 500 2000 255

LAGEP ES4 2 4, 1 400 2000 255

LAGEP ES5 2 5, 1 333 1998 255

LAGEP ES6 2 6, 1 286 2000 255

Common settings

Max generation, G 100 Tournament size 6

Crossover probability, Pc 0.8 Mutation probability, Pm 0.2

4.5.2 Analysis and Discussion

TABLE 4.6 shows the accuracy comparisons of the six settings and four different GP

structures cited from [75]: G3P for decision trees (G3P D), G3P for fuzzy rule based sys-

tems (G3P F), G3P for artificial neural networks (G3P A), and G3P for fuzzy Petri-nets

(G3P P). The values in each cell stand for the highest accuracy, the average accuracy

and the standard deviation. TABLE 4.7 shows the paired t-test results between ES1

and other five LAGEP settings.

4.5.2.1 Comparing classification accuracy between SGP, LAGEP and four cited meth-

ods

The classification accuracies of the four cited methods are varied. LAGEP has a lower
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average accuracy than at least one of the four methods for problems HRS1, HRS3,

CAN2, DBT1, and DBT2. However, we found that LAGEP performs amazingly better

than the four cited methods for HRT2, HRT3, GEN2, and TRD1. For those problems,

the lowest average accuracy of the LAGEP setting is higher than the maximum highest

accuracy of any of the four methods.

Comparing SGP, i.e. ES1, with the four cited methods, the hypothesis H2: ”Using

discriminant functions can obtain high classification accuracy.” can be accepted since

SGP outperforms in many classification problems.

4.5.2.2 Comparing classification accuracy between LAGEP and ES1

First, we compare the classification accuracies between ES1 and LAGEP settings from

TABLE 4.6 and TABLE 4.7. ES1 has higher average accuracy than at least one LAGEP

setting in problems HRT1, HRT3, HRS2, CAN2, CAN3, DBT1, and TRD2. However,

the best average accuracy for each problem is obtained by one of the five LAGEP set-

tings. TABLE 4.7 shows that the significant p-value only occurs at the problem TRD3

(p = 0.0258) where ES6 has higher average accuracy. If the significance level α increases

to 0.1, four more significance p-values occur at ES5 with HRS3 (p = 0.0602), ES3 with

DBT1 (p = 0.0621), ES5 with GEN2 (p = 0.0567), and ES5 with TRD1 (p = 0.0552). By

contrast, ES1 does not significantly outperform any LAGEP setting in the 18 problems.

The classification accuracies obtained by LAGEP and ES1 are similar. The reason

for this situation can be explained by the inadequate generalization of LAGEP and the

inconsistent of instances of the training set, the validation set, and the test set. TA-

BLE 4.9 shows the average score values of ES1 and the population of the second layer

of LAGEP settings. The paired t-test between ES1’s score values and each LAGEP

setting’s score values is also conducted as shown in TABLE 4.9. LAGEP achieves sig-

nificantly better score values than ES1 except in the case of the TRD problems. ES1 has

higher average score values in TRD1 and TRD3 problems only, but it performs worse

than all LAGEP settings in these problems. Furthermore, ES2, ES5, and ES6 achieve
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significantly better average score values than ES1 in the CAN2 problem, but TABLE

4.6 shows that ES2, ES5, and ES6 have lower average accuracy. In summary, LAGEP

has been slightly affected by the overfitting problem even though the validation pro-

cess has already been applied. The overfitting problem is however not serious because

we found that some LAGEP settings having highest average score values obtain the

highest average accuracies. For instance, considering the CAN1 problem, ES3 and ES6

have the highest score values, 1.9627 and 1.9626, respectively, and they both achieve the

highest average accuracy, 97.82. If the test set could be more consistent with the train-

ing set and the validation set, the enhancement of classification accuracy that LAGEP

achieves would be considerable.

4.5.2.3 Comparing elapsed training time

LAGEP not only improves effectiveness but also reduces training time. TABLE 4.8

shows the elapsed training time of six experimental settings. Obviously, LAGEP set-

tings use much less time than single population GP does. The average elapsed training

time of every LAGEP setting is at least 10% less than that of ES1. The decrease in time

is huge for TRD problems where every LAGEP setting uses at most 64% of time that

ES1 does. This phenomenon could be explained by the number of instances present

in TRD problems. The evolutionary process of a population spends most of its time

evaluating fitness values for individuals. The individual length directly affects the re-

quired computation time. LAGEP settings and ES1 perform under the same conditions

with regard to the number of generations and the number of total individuals. LAGEP

requires less training time because it uses shorter individuals. Evaluating function val-

ues for a short function is efficient. From observations of the classification accuracy

and the elapsed time, one can conclude that LAGEP is more efficient than single pop-

ulation GP. Concluding this section and the previous section, the hypothesis H3: ”A

LAGEP-based classification requires less training time than a SGP-based classification

without loss of classification accuracy.” is confirmed.
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Table 4.6: Accuracy comparisons of six experiment settings and four cited methods [75].

The three values in each cell stand for highest accuracy, average accuracy, and standard deviation.

The better average accuracy is marked in bold face.

Problem ES1 ES2 ES3 ES4 ES5 ES6 G3P D G3P F G3P A G3P P

80.00 80.00 82.67 82.67 80.00 82.67 82.10 81.66 76.86 76.86
HRT1 76.80 77.47 78.27 76.67 76.00 77.33 78.13 77.88 76.86 74.37

3.09 2.98 3.45 2.90 2.18 3.27 2.12 1.93 0.00 1.44

98.67 94.67 97.33 96.00 96.00 96.00 82.10 79.04 80.35 78.17
HRT2 93.33 93.47 93.87 93.33 93.60 94.27 78.32 76.32 79.66 74.68

3.20 1.72 1.91 1.66 1.86 2.81 1.81 1.89 2.15 3.73

88.00 88.00 88.00 86.67 89.33 89.33 77.30 74.68 74.68 75.11
HRT3 84.40 85.20 83.87 84.13 84.40 84.80 74.24 74.24 71.40 74.10

2.60 2.31 1.83 1.33 2.27 2.45 1.46 0.61 1.59 1.76

71.43 73.63 68.13 71.43 68.13 73.63 71.12 61.12 71.12 63.33
HRS1 64.51 66.59 64.73 65.05 65.38 65.38 66.45 58.52 69.39 59.63

4.61 3.28 1.90 3.39 2.65 4.22 2.78 4.49 2.05 3.90

67.03 64.84 70.33 67.03 68.13 68.13 63.33 62.23 61.12 64.45
HRS2 61.98 61.98 62.31 62.31 61.65 63.63 57.73 59.73 56.50 61.12

3.78 2.15 3.81 2.98 3.61 3.38 3.48 4.29 2.55 4.84

65.93 68.13 68.13 63.74 67.03 62.64 71.11 72.23 68.89 63.33
HRS3 61.21 62.31 62.42 61.43 63.52 61.65 64.06 64.72 63.73 58.89

3.11 2.69 2.73 2.95 3.18 0.96 3.04 5.00 2.53 4.44

98.85 98.85 99.43 98.85 98.28 98.85 97.71 97.71 97.13 97.13
CAN1 97.70 97.70 97.82 97.76 97.70 97.82 96.21 95.61 94.34 95.69

0.72 0.54 0.85 0.79 0.77 0.80 1.01 1.42 1.24 0.94

96.55 95.40 95.98 95.98 95.98 95.40 98.28 98.28 97.13 97.71
CAN2 94.89 94.60 94.89 94.94 94.77 94.83 95.32 95.55 91.70 95.17

0.69 0.48 0.92 0.59 0.74 0.47 2.18 1.23 2.16 1.19

97.13 97.13 97.13 97.13 97.13 97.13 97.71 96.56 98.86 97.71
CAN3 96.32 96.09 96.38 96.61 96.32 96.03 95.61 95.10 94.72 95.58

0.78 0.71 0.61 0.57 0.40 0.69 1.36 0.83 1.70 1.43

Continue
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Continued Table 4.6

Problem ES1 ES2 ES3 ES4 ES5 ES6 G3P D G3P F G3P A G3P P

78.13 75.00 77.60 76.04 75.52 76.56 73.3 78.02 77.49 76.97
DBT1 72.50 72.71 73.91 73.13 72.08 71.98 68.3 73.53 75.46 73.18

2.76 2.04 2.24 1.98 1.94 2.44 3.24 3.40 1.26 2.56

75.52 75.00 73.96 73.96 75.00 74.48 74.35 76.44 76.97 76.97
DBT2 71.25 71.46 71.46 71.88 72.29 72.08 68.7 75.22 74.59 72.92

2.44 1.80 1.32 1.15 2.19 1.63 3.48 1.22 1.15 2.65

77.60 78.65 78.65 78.65 77.08 77.60 80.11 78.01 75.92 75.92
DBT3 75.16 75.99 75.36 75.16 75.16 75.47 71.21 75.75 71.24 71.79

2.53 2.72 1.32 2.13 1.04 1.91 5.11 1.64 1.84 2.16

89.66 88.65 90.92 89.66 88.27 87.77 77.68 88.03 68.23 87.27
GEN1 85.31 85.41 86.15 85.85 85.36 85.49 66.97 62.88 65.26 67.50

4.37 1.74 2.78 2.34 1.92 1.74 6.70 14.99 4.19 14.93

90.04 89.79 93.06 91.55 90.29 91.30 70.37 85.63 68.73 79.45
GEN2 85.98 86.61 87.69 86.80 88.25 87.93 62.97 62.73 58.52 70.88

3.95 2.77 2.25 3.33 1.58 3.52 4.71 11.44 4.08 12.12

88.27 91.43 86.13 88.78 88.40 87.14 73.52 88.03 67.47 75.11
GEN3 84.59 86.02 84.82 84.83 85.11 84.97 67.79 62.96 62.17 74.10

3.00 3.64 1.14 3.00 2.66 1.43 5.06 11.81 7.37 1.76

97.72 97.89 97.67 98.00 98.17 98.44 97.11 94.72 94.56 94.45
TRD1 97.15 97.19 97.16 97.18 97.52 97.19 95.04 93.92 94.50 93.74

0.47 0.28 0.49 0.55 0.55 0.66 0.81 0.57 0.80 0.69

98.28 98.28 98.28 98.50 98.78 98.33 97.34 94.56 94.44 94.56
TRD2 97.33 97.24 97.43 97.27 97.57 97.54 94.27 94.05 93.92 94.05

1.22 1.04 0.72 1.18 0.76 0.64 1.25 0.52 0.60 0.60

98.06 98.22 97.94 98.28 98.33 98.39 98.06 94.56 94.61 95.78
TRD3 96.95 97.06 97.21 97.20 97.04 97.64 94.55 93.97 94.28 94.51

0.92 0.89 0.58 0.82 1.34 0.58 1.37 0.82 0.50 0.84
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Table 4.7: Paired t-test results between ES1 and five other experimental settings.

Problem ES1 vs. ES2 ES1 vs. ES3 ES1 vs. ES4 ES1 vs. ES5 ES1 vs. ES6

HRT1 0.3004 0.1460 0.4576 0.2754 0.3392
HRT2 0.4576 0.3526 0.5000 0.3925 0.2358
HRT3 0.2125 0.3097 0.3902 0.5000 0.3817

HRS1 0.1759 0.4325 0.3819 0.2925 0.3429
HRS2 0.5000 0.4233 0.4254 0.4270 0.1762
HRS3 0.2007 0.2132 0.4427 0.0602∗∗ 0.3643

CAN1 0.5000 0.3925 0.4236 0.5000 0.3820
CAN2 0.1494 0.5000 0.4236 0.3849 0.3988
CAN3 0.2955 0.4361 0.1815 0.5000 0.2201

DBT1 0.4267 0.0621∗∗ 0.2608 0.3021 0.3021
DBT2 0.4076 0.4064 0.1606 0.1685 0.1966
DBT3 0.2907 0.3908 0.5000 0.5000 0.3888

GEN1 0.4772 0.2882 0.3807 0.4884 0.4549
GEN2 0.3073 0.1218 0.3299 0.0567∗∗ 0.1645
GEN3 0.1757 0.4143 0.4311 0.3359 0.3668

TRD1 0.4226 0.4794 0.4426 0.0552∗∗ 0.4328
TRD2 0.4445 0.4198 0.4620 0.3298 0.3254
TRD3 0.4075 0.2357 0.2526 0.4344 0.0258∗

∗ Significance level α = 0.05

∗∗ Significance level α = 0.10.

4.5.2.4 Comparing classification accuracy between LAGEP settings

The relation between the number of populations and classification accuracy is not

clear. ES5 achieves best average accuracy in five problems. ES2, ES3 and ES6 achieve

best average accuracy in four problems. From TABLE 4.6, it is not certain that using

more populations can obtain higher classification accuracy. Considering the training

performance shown in TABLE 4.9, both ES3 and ES5 have the best average score val-

ues in the five problems. ES2 has the best average score value in TRD3 only. Based on

these observations, the number of populations might be irrelevant to obtaining good
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Table 4.8: The average training time in seconds of six experimental settings and 18

problems.

Problem ES1 ES2 ES3 ES4 ES5 ES6

HRT1 299.12 179.61 169.50 183.20 180.49 164.36
HRT2 334.87 199.01 180.15 178.64 173.70 161.39
HRT3 299.17 200.42 179.19 166.39 170.32 168.22

HRS1 452.25 302.19 305.34 309.23 276.03 286.49
HRS2 429.87 281.04 308.62 290.77 258.99 265.44
HRS3 420.87 325.74 283.43 297.34 266.15 287.89

CAN1 313.05 238.19 235.37 226.36 239.20 239.61
CAN2 349.83 247.53 245.30 244.63 228.43 233.43
CAN3 314.57 206.97 215.00 230.19 222.49 225.88

DBT1 421.83 298.17 294.32 296.38 260.71 248.41
DBT2 344.72 270.59 265.95 282.44 277.93 251.84
DBT3 391.46 274.79 264.93 259.56 249.48 252.10

GEN1 1446.09 1232.41 1285.21 1190.22 1115.65 1157.48
GEN2 1615.26 1287.77 1262.48 1252.35 1118.27 1095.65
GEN3 1585.13 1212.39 1277.77 1157.58 1162.54 1110.59

TRD1 4410.35 2680.82 2789.47 2497.28 2612.90 2522.12
TRD2 5243.94 2774.68 2702.87 2738.57 2725.54 2649.07
TRD3 4451.99 2682.36 2613.43 2495.75 2670.19 2628.05
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discriminant functions.

4.5.2.5 The improvement of score values

The performance of the second layer is supposed to be better than the first layer be-

cause the population of the second layer uses transformed training instances. We use

ES2 to demonstrate this performance improvement. TABLE 4.10 illustrates the 18 prob-

lems and average score values of the three populations of ES2, where L1P1, L1P2, and

L2P1 implies the first and the second population of the first layer and the population

of the second layer, respectively. Both score values obtained by populations of the first

layer are lower than the score value of the population of the second layer. TABLE 4.10

also shows the paired t-test results between them. It is obvious that L2P1 is signifi-

cantly better than the two populations of the first layer. This result confirms that the

training performance, the accuracy of classifying the training set, and the validation

set, can be improved by the proposed layer architecture.
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Table 4.9: Comparison of training performance between ES1 and LAGEP set-

tings.

For each problem, ES1 column shows the average score value. Each cell containing

a LAGEP setting shows the average score of the population of the second layer and

paired t-tests result between it and ES1.

Problem ES1 ES2 ES3 ES4 ES5 ES6

HRT1 1.7898 1.8135 1.8280 1.8257 1.8191 1.8105
0.0023∗ 0.0015∗ 0.0006∗ 0.0300∗ 0.0275∗

HRT2 1.6875 1.7454 1.7438 1.7500 1.7155 1.7158
0.0001∗ 0.0005∗ 0.0000∗ 0.0161∗ 0.0030∗

HRT3 1.7477 1.7697 1.7944 1.7724 1.7727 1.7734
0.0438∗ 0.0004∗ 0.0183∗ 0.0211∗ 0.0146∗

HRS1 1.6762 1.7071 1.7247 1.7255 1.7108 1.7093
0.0011∗ 0.0001∗ 0.0001∗ 0.0086∗ 0.0004∗

HRS2 1.6868 1.7366 1.7385 1.7496 1.7372 1.7225
0.0007∗ 0.0011∗ 0.0001∗ 0.0001∗ 0.0028∗

HRS3 1.6908 1.7275 1.7432 1.7399 1.7357 1.7443
0.0095∗ 0.0004∗ 0.0008∗ 0.0005∗ 0.0007∗

CAN1 1.9537 1.9596 1.9627 1.9577 1.9610 1.9626
0.0048∗ 0.0017∗ 0.0324∗ 0.0022∗ 0.0001∗

CAN2 1.9707 1.9741 1.9743 1.9734 1.9736 1.9749
0.0127∗ 0.0017∗ 0.0532∗∗ 0.0005∗ 0.0085∗

CAN3 1.9560 1.9579 1.9610 1.9639 1.9649 1.9601
0.1154∗∗ 0.0038∗ 0.0001∗ 0.0001∗ 0.0169∗

Continue
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Continued Table 4.9

Problem ES1 ES2 ES3 ES4 ES5 ES6

DBT1 1.5901 1.6061 1.6301 1.6206 1.6090 1.6147
0.0446∗ 0.0002∗ 0.0091∗ 0.0081∗ 0.0071∗

DBT2 1.5866 1.6055 1.6206 1.6163 1.6096 1.6174
0.0763∗∗ 0.0018∗ 0.0048∗ 0.0036∗ 0.0043∗

DBT3 1.5645 1.5956 1.5885 1.5957 1.5980 1.5820
0.0060∗ 0.0109∗ 0.0043∗ 0.0012∗ 0.0556∗∗

GEN1 1.7915 1.8307 1.8262 1.8376 1.8435 1.8471
0.0778∗∗ 0.0761∗∗ 0.0299∗ 0.0100∗ 0.0310∗

GEN2 1.7732 1.8161 1.8392 1.8090 1.8432 1.8338
0.0089∗ 0.0044∗ 0.0959∗∗ 0.0018∗ 0.0291∗

GEN3 1.7786 1.8285 1.8391 1.8438 1.8406 1.8367
0.0516∗∗ 0.0409∗ 0.0176∗ 0.0354∗ 0.0401∗

TRD1 1.9779 1.9773 1.9769 1.9786 1.9804 1.9801
0.3867 0.3175 0.3699 0.2035 0.1924

TRD2 1.9719 1.9725 1.9746 1.9737 1.9769 1.9743
0.4627 0.2188 0.3581 0.0642∗∗ 0.2621

TRD3 1.9779 1.9773 1.9741 1.9726 1.9739 1.9752
0.3867 0.0909∗∗ 0.1151 0.1328 0.1676

∗ Significance level α = 0.05

∗∗ Significance level α = 0.10
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Table 4.10: The average score value of populations of ES2 and the paired t-test

results. LiPj indicates the jth population of the ith layer.

Problem ES2 ES2 ES2 Paired t-test Paired t-test
L1P1 L1P2 L2P1 L1P1 vs. L2P1 L1P2 vs. L2P1

HRT1 1.7576 1.7720 1.8135 0.0000∗ 0.0000∗
HRT2 1.6882 1.6737 1.7454 0.0000∗ 0.0000∗
HRT3 1.7329 1.7155 1.7697 0.0000∗ 0.0000∗

HRS1 1.6577 1.6423 1.7071 0.0000∗ 0.0000∗
HRS2 1.6795 1.6885 1.7366 0.0000∗ 0.0000∗
HRS3 1.6700 1.6723 1.7275 0.0000∗ 0.0000∗

CAN1 1.9519 1.9499 1.9596 0.0023∗ 0.0000∗
CAN2 1.9646 1.9664 1.9741 0.0005∗ 0.0001∗
CAN3 1.9511 1.9519 1.9579 0.0000∗ 0.0004∗

DBT1 1.5733 1.5754 1.6061 0.0004∗ 0.0001∗
DBT2 1.5660 1.5728 1.6055 0.0000∗ 0.0000∗
DBT3 1.5505 1.5434 1.5956 0.0000∗ 0.0000∗

GEN1 1.7897 1.7601 1.8307 0.0001∗ 0.0000∗
GEN2 1.7770 1.7585 1.8161 0.0077∗ 0.0003∗
GEN3 1.7824 1.7372 1.8285 0.0119∗ 0.0001∗

TRD1 1.9658 1.9694 1.9773 0.0000∗ 0.0028∗
TRD2 1.9582 1.9660 1.9725 0.0005∗ 0.0034∗
TRD3 1.9658 1.9694 1.9773 0.0000∗ 0.0028∗

∗ Significance level α = 0.05

4.6 LAGEP-FS Experiments

This section discusses the LAGEP-FS experiments and analyzes its performance. LAGEP-

FS focuses on the performances of feature selection and feature generation. Therefore,

rather than using all the same problems used in the LAGEP experiments, LAGEP-FS

experiments use two-class classification only. They are cancer, diabetes, and heart. The

conflict resolution method, ZM , does not apply in LAGEP-FS experiments.

The target class is required to be determined before starts training the LAGEP-FS.
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For each classification problem, we use the major class of it, i.e., the class with the most

training instances. The major classes of problems CAN, DBT, and HRT are C1,C2, and

C1, respectively.

4.6.1 Experimental Settings

Since the number of layers and the population size are determined empirically, we

design ten different configurations. Experimental settings and common parameters

are shown in TABLE 4.11. We perform every dataset with each experiment setting ten

times for each problem to evaluate its average performance. A large population con-

tains more individuals and usually has better performance. To eliminate the influence

of population size, we decrease the population sizes in 2-layer and 3-layer experiments

so that the number of total individuals of all populations approximate to 5000.

4.6.2 Analysis and Discussion

Classification accuracies of LAGEP-FS regarding CAN, DBT, and HRT problems are

shown in TABLE 4.12, TABLE 4.13 and TABLE 4.14, respectively. From those tables,

one can see that M1 is found to be better than M2 in either feature selection or accuracy

in most cases. In total 90 average accuracies, M1 outperforms M2 66 times. The best

accuracies are derived from the M1 method.

When M1 is used, an individual may decrease its fitness value because it has too

many features and loses its chance to surpass other individuals in the tournament se-

lection. M1 attempts to discover individuals that have used fewer features without

loss of fitness. On the other side, M2 aims to reduce the chance of poor features be-

ing selected. Weights of features might be converged provided enough generations for

M2.

In the following, we analyze the experimental results by grouping relevant exper-
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Table 4.11: Ten experimental settings of LAGEP-FS.

Setting Γ l(i) Population Total number
name size for each of individuals

ES1 1 1 5000 5000

ES2

2

1, 1 2500 5000

ES3 2, 1 1650 4950

ES4 3, 1 1250 5000

ES5 4, 1 1000 5000

ES6

3

1, 1, 1 1650 4950

ES7 2, 2, 1 1000 5000

ES8 3, 3, 1 700 4900

ES9 6, 3, 1 100 5000

ES10 3, 6, 1 100 5000

Common settings

Max generation, G 250 Tournament size 5

Crossover probability, Pc 0.95 Mutation probability, Pm 0.05

IL 255

imental settings.

4.6.2.1 Analyzing ES1

ES1 is the only experimental setting that uses a single population containing 5000 in-

dividuals. It obtains the best accuracies in both the CAN2 and the HRT1. ES1 is also

used to demonstrate the performance of traditional single population GP with the two

feature selection methods. M1 does not always outperform M2 with respect to classifi-

cation accuracy, and vice versa.
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Table 4.12: Accuracy and average number of used features of ten experi-

mental settings in CAN problems.

Best accuracy and fewest average number of used features are marked in bold

face; >, =, and < indicate the relation between accuracies of using M1 and M2.

Setting Feature CAN1 CAN2 CAN3
name selection

ES1
M1 0.9747(6.9)

>
0.9425(6.7)

>
0.9540(6.5)

<M2 0.9701(7.6) 0.9391(7.0) 0.9546(7.1)

ES2
M1 0.9695(4.3)

>
0.9362(4.3)

>
0.9534(4.6)

<M2 0.9598(8.4) 0.9356(8.2) 0.9552(7.7)

ES3
M1 0.9741(5.2)

>
0.9351(4.4)

>
0.9569(5.0)

>M2 0.9718(8.0) 0.9333(8.5) 0.9471(8.1)

ES4
M1 0.9701(5.2)

>
0.9305(4.6)

>
0.9592(5.6)

>M2 0.9557(8.6) 0.9414(7.3) 0.9529(8.5)

ES5
M1 0.9776(5.2)

>
0.9339(4.5)

<
0.9598(4.6)

>M2 0.9684(8.9) 0.9379(8.2) 0.9529(8.0)

ES6
M1 0.9747(4.8)

>
0.9356(4.0)

>
0.9598(5.2)

>M2 0.9713(7.5) 0.9017(8.5) 0.9218(7.9)

ES7
M1 0.9741(4.8)

>
0.9356(4.3)

>
0.9563(4.4)

>M2 0.9701(8.6) 0.9345(8.1) 0.9460(8.5)

ES8
M1 0.9730(5.0)

>
0.9333(4.7)

<
0.9557(4.7)

>M2 0.9621(8.3) 0.9402(7.9) 0.9517(8.2)

ES9
M1 0.9672(4.7)

<
0.9402(5.1)

>
0.9575(5.1)

>M2 0.9741(8.7) 0.9397(7.9) 0.9448(8.1)

ES10
M1 0.9713(5.1)

>
0.9408(4.8)

>
0.9592(4.8)

>M2 0.9339(8.6) 0.9391(8.2) 0.9517(7.8)
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Table 4.13: Accuracy and average number of used features of ten experi-

mental settings in DBT problems.

Best accuracy and fewest average number of used features are marked in bold

face; >, =, and < indicate the relation between accuracies using M1 and M2.

Setting Feature DBT1 DBT2 DBT3
name selection

ES1
M1 0.6885(6.8)

>
0.6969(6.5)

<
0.7052(5.7)

<M2 0.6833(7.2) 0.7063(7.1) 0.7078(7.3)

ES2
M1 0.7276(6.1)

>
0.7000(5.6)

>
0.7276(6.1)

>M2 0.6906(7.8) 0.6813(8.0) 0.6906(7.8)

ES3
M1 0.7146(6.8)

>
0.6948(6.8)

>
0.7354(6.4)

>M2 0.7078(7.9) 0.6917(8.0) 0.7307(8.0)

ES4
M1 0.6938(7.3)

>
0.7094(6.1)

>
0.7313(6.5)

>M2 0.6854(8.0) 0.6766(8.0) 0.7115(8.0)

ES5
M1 0.7026(7.6)

>
0.7005(6.5)

>
0.7307(7.2)

>M2 0.6818(8.0) 0.6693(8.0) 0.7068(8.0)

ES6
M1 0.6854(5.9)

<
0.7078(6.7)

>
0.7292(5.9)

>M2 0.6885(8.0) 0.6536(8.0) 0.6828(8.0)

ES7
M1 0.6729(7.0)

<
0.6969(6.8)

>
0.7240(6.9)

>M2 0.6792(8.0) 0.6677(8.0) 0.6885(8.0)

ES8
M1 0.6984(7.4)

>
0.6958(7.0)

>
0.7286(6.4)

>M2 0.6807(8.0) 0.6724(8.0) 0.6813(8.0)

ES9
M1 0.6958(6.9)

>
0.7104(7.0)

>
0.7266(5.8)

>M2 0.6750(8.0) 0.6734(8.0) 0.6974(7.7)

ES10
M1 0.6984(6.9)

>
0.6938(6.4)

>
0.7057(6.0)

>M2 0.6880(8.0) 0.6479(8.0) 0.6906(8.0)
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Table 4.14: Accuracy and average number of used features of ten experimental

settings in HRT problems.

Best accuracy and fewest average number of used features are marked in bold face;

>, =, and < indicate the relation between accuracies using M1 and M2.

Setting Feature HRT1 HRT2 HRT3
name selection

ES1
M1 0.7760(11.0)

>
0.9120(17.4)

<
0.8333(11.3)

>M2 0.7520(14.1) 0.9133(12.6) 0.8293(13.3)

ES2
M1 0.7387(13.6)

<
0.8973(16.4)

=
0.8387(14.4)

>M2 0.7680(18.1) 0.8973(19.2) 0.8333(17.0)

ES3
M1 0.7693(17.4)

>
0.9067(20.2)

>
0.8173(16.5)

<M2 0.7560(24.1) 0.9000(23.6) 0.8240(20.0)

ES4
M1 0.7533(18.9)

<
0.9040(18.2)

>
0.8120(16.8)

<M2 0.7560(22.4) 0.8947(24.7) 0.8133(21.9)

ES5
M1 0.7600(19.7)

>
0.8947(21.6)

>
0.8320(17.5)

>M2 0.7573(22.0) 0.8893(25.3) 0.8187(22.0)

ES6
M1 0.7547(15.9)

>
0.8987(16.9)

>
0.8320(15.2)

>M2 0.7520(18.6) 0.8960(20.8) 0.8200(18.1)

ES7
M1 0.7613(17.6)

>
0.8947(18.7)

<
0.8240(16.9)

>M2 0.7467(21.8) 0.8987(21.9) 0.8013(21.6)

ES8
M1 0.7467(20.4)

<
0.8560(22.5)

<
0.8227(18.2)

>M2 0.7480(23.9) 0.9027(25.8) 0.8000(23.9)

ES9
M1 0.7613(16.2)

<
0.9080(19.9)

=
0.8440(13.9)

>M2 0.7640(24.1) 0.9080(23.1) 0.8240(22.4)

ES10
M1 0.7440(17.6)

<
0.9200(16.3)

>
0.8453(12.7)

>M2 0.7493(21.4) 0.9133(19.8) 0.8240(17.9)
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4.6.2.2 Analyzing two-layer LAGEP-FS settings

These settings both use two layers. ES2 and ES3 achieve the best accuracies in DBT1

and DBT3, respectively. ES5 performs excellently in CAN1 and CAN3. It is found that

the improvement gained by increasing the number of populations in first layer is not

significant. Using a number of smaller populations compensates its lack of population

diversity compared to larger population.

4.6.2.3 Analyzing three-layer LAGEP-FS settings

These settings use three layers. ES6 achieves the best accuracy in CAN3. ES9 achieves

the best accuracy in DBT2. The best accuracies in both HRT2 and HRT3 are obtained

by ES10. Using more layers does not always infer better performance.

4.6.2.4 Analyzing LAGEP-FS settings that have the same number of populations

ES3 and ES6 have the same number of populations. ES5 and ES7 also have the same

number of populations. ES3 outperforms ES6 in four problems with M1 and in all

problems with M2. This phenomenon raises a hypothesis that using more populations

in first layer would be better than separating populations into more layers. Using

M1, ES5 outperforms ES7 in six problems. Using M2, ES5 performs better in seven

problems with M2. It seems that arranging populations within fewer layers might be

a better way.

4.6.2.5 Analyzing ES9 and ES10

The last group consists of ES9 and ES10. ES9’s first layer contains six populations,

which is the number of populations that ES10 uses in second layer. ES10 outperforms

ES9 in six problems with M1 and three problems with M2. Using more populations in
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first layer means that the training data for the second layer have more features. Con-

sider the high-dimensional heart problems and the eight-dimensional diabetes prob-

lems. For heart, the three populations in the second layer of ES9 evolve with data hav-

ing 41 features, including 35 original features and six new ones produced by LAGEP-

FS. However, ES10’s second layer uses six populations to evolve with data having only

38 features. This explains why ES9 performs worse than ES10 in heart. However, a dif-

ferent situation occurs in the diabetes problems. The three populations of the second

layer of ES9 are sufficient to obtain good results with the given 14 features where six

of them are generated by feature extraction. Once the proportion of new features com-

pared to the original ones becomes high enough, using more populations in first layer

might be a good configuration.

4.6.2.6 The effectiveness of new features

This section discusses the effectiveness of the new features. The evolutionary pro-

cess tends to generate a high score discriminant function. During the evolution, if a

constructed new feature impacts on the score, it is supposed to be kept in the output

function. Therefore, the effectiveness of new features can be defined as the following:

the number of new features in the final function
the number of features in the final function

× 100% (4.1)

We evaluate the effectiveness of new features of all generated discriminant functions

by the equation. Table 4.15 shows the average effectiveness corresponding to feature

selection methods, experimental settings, and the nine problems.

In TABLE 4.15, M1 seems to use more new features than M2 does. Above discusses

conclude that M1 has better classification accuracy than M2 does. We can conclude that

constructed new features are effective for obtaining successive discriminant functions.

In this chapter we conduct many experiments to illustrate performance of LAGEP
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Table 4.15: Comparison of new feature effectiveness. A higher value stands for a

greater effectiveness.

M1 M2

Problem CAN1 CAN2 CAN3 CAN1 CAN2 CAN3

ES2 100.00% 100.00% 100.00% 42.34% 38.54% 36.05%

ES3 100.00% 90.91% 100.00% 84.13% 63.93% 46.77%

ES4 100.00% 100.00% 100.00% 37.93% 42.42% 40.74%

ES5 100.00% 100.00% 100.00% 62.00% 53.85% 39.22%

ES6 100.00% 100.00% 100.00% 46.77% 64.52% 68.57%

ES7 73.68% 100.00% 100.00% 68.42% 77.78% 77.78%

ES8 100.00% 100.00% 91.67% 60.00% 61.90% 100.00%

ES9 100.00% 100.00% 100.00% 92.86% 100.00% 100.00%

ES10 100.00% 100.00% 100.00% 70.00% 100.00% 72.73%

Problem DBT1 DBT2 DBT3 DBT1 DBT2 DBT3

ES2 32.00% 59.09% 63.16% 21.85% 20.79% 22.61%

ES3 64.44% 64.29% 68.18% 40.00% 42.11% 38.01%

ES4 57.69% 50.00% 60.00% 27.49% 30.96% 35.59%

ES5 77.42% 71.43% 62.86% 60.23% 63.27% 50.55%

ES6 56.14% 72.50% 74.36% 61.81% 54.20% 58.04%

ES7 90.32% 84.62% 88.89% 57.21% 54.81% 55.61%

ES8 63.64% 84.62% 100.00% 68.24% 61.95% 64.22%

ES9 100.00% 82.14% 67.86% 62.81% 61.84% 85.93%

ES10 76.19% 100.00% 100.00% 72.22% 66.67% 66.23%

Problem HRT1 HRT2 HRT3 HRT1 HRT2 HRT3

ES2 26.56% 27.59% 21.36% 38.71% 23.21% 21.05%

ES3 50.00% 45.45% 85.71% 40.74% 33.33% 68.75%

ES4 27.27% 31.43% 47.06% 39.47% 33.85% 47.30%

ES5 54.90% 39.81% 49.30% 47.67% 62.60% 60.49%

ES6 57.14% 66.67% 54.84% 58.57% 52.59% 51.95%

ES7 58.62% 83.33% 59.09% 56.10% 71.43% 52.94%

ES8 79.17% 45.16% 100.00% 69.57% 37.50% 67.69%

ES9 73.68% 80.00% 62.50% 72.00% 88.37% 73.17%

ES10 48.00% 88.89% 82.76% 72.50% 45.65% 66.67%
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and LAGEP-FS with regard to different configurations. All hypotheses are confirmed

successfully. LAGEP is capable of combining short discriminant functions into a longer

one and which has high classification accuracy on test set. The layer architecture makes

the populations in the successive layer have higher score value. Moreover, the layer

architecture lets completing feature selection and feature generation simultaneously be

possible. Two feature selection methods are proposed. Performance of them are shown

and compared in above sections.
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Chapter 5

Conclusion and Future Work

In this paper, we propose two MGP methods, LAGEP and LAGEP-FS, to complete

classification, feature selection, and feature generation. Both methods arrange a num-

ber of populations into a layer. Every layer evolves its populations to generate a set of

discriminant functions. These functions transform the training set into a new training

set, which is used for the successive layer. The evolutionary process of every popula-

tion is efficient because it evolves within short individuals. We also propose a method

called AMPT to prevent falling into a local optimum.

An experiment comparing a single population with AMPT and without AMPT

shows that AMPT is significantly effective. Experimental results show that LAGEP is

capable of generating a high accuracy discriminant function efficiently. We found that

LAGEP is affected by the overfitting problem slightly; thus we show the average score

values of single population GP and LAGEP settings to illustrate that LAGEP settings

have significantly higher training performance. We also use one of the LAGEP settings

to show that training performance can be improved by layered architecture. Although

the classification accuracy is similar, the elapsed training time of LAGEP is much less

than single population GP. Experimental results also show that the number of popu-

lations could be irrelevant to either training performance or classification accuracy of

the test set.

By means of a number of experiments, we show that LAGEP-FS is capable of com-

pleting feature selection and feature generation simultaneously. Moreover, the classi-
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fication accuracy of LAGEP-FS is comparable to traditional single population genetic

programming. We also propose two feature selection methods. Through a series of

experiments, the proposed method M1 shows better performance than M2.

In this paper, LAGEP uses only two layers. We intend to investigate the perfor-

mance of LAGEP with more layers in future. Furthermore, we are interested in an

application of LAGEP with different population configurations that is called the het-

erogeneous MGP model. Our further research will focus on discovering the relation

between the number of original and the number of new features. Implementation of

LAGEP and LAGEP-FS can be achieved by either a parallel distribution computing en-

vironment or a serial computing environment. Since the populations are independent

of each other, we can perform the evolutionary process of each population on a num-

ber of different computers at different times and combine the results to build a layer

afterward. In the case that the training time can be greatly reduced, it is possible to

find high quality solutions within a vast searching space. Furthermore, it is interesting

to combine the LAGEP-FS method with other classification algorithms such as SVM or

NN.
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