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a b s t r a c t

The problem addressed in this paper is to compare the minimum cost of the two
randomized control policies in the M/G/1 queueing system with an unreliable server, a
second optional service, and general startup times. All arrived customers demand the first
required service, and only someof the arrived customers demand a second optional service.
The server needs a startup time before providing the first required service until the system
becomes empty. After all customers are served in the queue, the server immediately takes
a vacation and the system operates the (T , p)-policy or (p, N)-policy. For those two policies,
the expected cost functions are established to determine the joint optimal threshold values
of (T , p) and (p, N), respectively. In addition, we obtain the explicit closed form of the joint
optimal solutions for those two policies. Based on the minimal cost, we show that the
optimal (p, N)-policy indeed outperforms the optimal (T , p)-policy. Numerical examples
are also presented for illustrative purposes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper dealswith the comparison of the optimal (T , p)- and the optimal (p,N)-policyM/G/1 queueswith an unreliable
server, a second optional service (here abbreviated as SOS), and general startup times. Both policies provide the exhaustive
service discipline, i.e., the server is turned off when there is no customer in the system. The (T , p)-policy is characterized
by the following requirements: (i) switch the server off when the system becomes empty; (ii) if the server is turned off, the
server takes a vacation of time T whenever the system becomes empty. If at least one customer is present in the system,
then switch the server on with probability p (0 ≤ p ≤ 1), and leave the server off with probability (1− p). After the server
is turned off, the server will take another vacation of time T until the system becomes empty; and (iii) do not switch the
server on/off at other epochs. In other words, the (T , p)-policy is to control the server randomly at the beginning epoch of
the service when at least one customer appears. Based on the definition of the (T , p)-policy, the (T , 1)-policy coincides with
the T -policy introduced in [1], and the (T , 0)-policy is identical to the 2T -policy.
On the other hand, the (p, N)-policy for controlling the system is defined as follows: (i) turn the server off when the

system is empty; (ii) turn the server on if N (N ≥ 1) or more customers are present; (iii) if the server is turned off and the
number of customers in the system reaches N , turn the server on with probability p and leave the server off with probability
(1− p); and (iv) do not turn the server on/off at other epochs. If the server finds at least N customers present in the system,
the server starts to provide service for the waiting customers whenever it completes its startup. That is to say, the (p, N)-
policy is to control the server randomly at the arrival epoch if theNth customer finds that the server is idle. If the probability
p is one, then we have the N-policy introduced in [2]. In case p = 0, we have the (N + 1)-policy.
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There are many real-world situations in which the server is subject to breakdowns and repairs. In the literature,
controllable queueing systemswith an unreliable server have been studied extensively. Exact steady state solutions of theN-
policy M/Ek/1 and M/Hk/1 queueing systems subject breakdowns were developed in [3,4], respectively. Wang and Ke [5]
analyzed an M/G/1 queue with server breakdowns operating under the N-policy, T -policy and Min (N , T )-policy. Later,
Pearn et al. [6] obtained the analytical results for sensitivity analysis in the N-policy M/G/1 queueing system with server
breakdowns. The server startup corresponds to the preparatorywork of the server before starting the service. In some actual
situations, the server often needs a startup time before providing service. The N-policy M/G/1 queueing system with server
startupwas studied by several researchers such asMinh [7], Takagi [8], Lee and Park [9], Hur and Paik [10], and so on. Ke [11]
studied the M[x]/G/1 queueing systems under bi-level policy with an unreliable server and early startup. Wang et al. [12]
considered the optimal control of the N-policy M/G/1 queueing system with server breakdowns and general startup times.
Ke [13] examined a modified T -policy for the M/G/1 queue with an unreliable server and startup. Ke [14] extended Ke’s
model [13] to the M[x]/G/1 queue with an unreliable server, startup and closedown. Recently, Wang et al. [15] focused
mainly on performing a sensitivity analysis for the T -policyM/G/1 queuewith server breakdowns and general startup times.
Extensive literature exist on the M/G/1 queue with SOS, where all arrived customers demand the main service and only

some of them require subsidiary service provided by the server. The pioneering work on the M/G/1 queue with SOS was
studied in [16]. Such queueing situations occur in many practical applications (see for details, [16]). Medhi [17] extended
Madan’s model [16] that the SOS time follows a general distribution. Medhi’s model [17] was also analyzed in [18], in which
they obtained the time-dependent probability generating functions and the corresponding steady state results. Using the
supplementary variable technique, Wang [19] investigated the reliability behaviour in an M/G/1 queue with SOS and an
unreliable server. Wang and Zhao [20] examined a discrete-time Geo/G/1 retrial queue with an unreliable server and SOS. In
their work [20], they obtained explicit formulas for the stationary distribution and some performance measures in steady
state. Furthermore, Choudhury and Dekaa [21] investigated the steady state behaviour of an M/G/1 retrial queue with SOS
and server breakdowns. Dimitriou and Langaris [22] generalized their previous work of a retrial queue with two-phase
service and server vacations (Dimitriou and Langaris [23]) by considering a server breakdowns and startup times. For such
a system the stability conditions and steady state analysis are also derived by Dimitriou and Langaris [22]. More recently,
Choudhury et al. [24] generalized both the classicalMX/G/1 retrial queue with service interruption as well as theMX/G/1
queue with SOS and service interruption.
As for the randomized server control problem, Feinberg and Kim [25] first introduced the (p, N)- and the (N , p)-policy

M/G/1 queues with a removable sever. Subsequently, Kim and Moon [26] considered the queueing system with the (p, T )-
policy, exploited its properties and obtained the optimal values of T and p for a constrained problem. Ke et al. [27] performed
the estimation of the expected busy period for the (p, N)-policy M/G/1 queueing system by using the bootstrap methods.
Wang and Huang [28] utilized the maximum entropy approach to derive analytic maximum entropy results for the (p, N)-
policy queue with a removable and unreliable server. Yang et al. [29] applied the same approach to investigate the (N ,
p)-policy M/G/1 queue with server breakdowns and general startup times. Ke and Chu [30] optimized the operating cost of
the (p, T )-policy for an M/G/1 queueing system with SOS. Recently, Ke and Chu [31] compared the operating cost of the two
bicriterion policies, (p, T ) and (p, N), for anM/G/1 queue with a reliable server and SOS. Such comparative work between the
randomized N- and T -policy M/G/1 queues with SOS, server breakdown and general startup times is rarely explored in the
literature. In this paper, we perform such comparative work, which may be viewed as an extension of that done in [31].
The objectives of this paper are follows. First, we present the system performances for the T - and the N-policy M/G/1

queues with SOS, server breakdowns and general startup times. Second, we develop the system performances for the (T ,
p)- and the (p, N)-policy M/G/1 queues with SOS, server breakdowns, and general startup times. Third, we construct cost
functions for the (T , p)- and the (p, N)-policy to obtain explicit forms for the joint optimal threshold values of the (T , p) and
(p, N) at the minimum cost, respectively. Finally, an analytical comparison is made between the optimum costs for those
two randomized control policies. We show that the optimal (p, N)-policy outperforms the optimal (T , p)-policy.

2. The model description

In this paper, we consider the (T , p)- and the (p,N)-policyM/G/1 queueswith SOS, server breakdowns, and general startup
times. It is assumed that arrivals of customers follow a Poisson process with parameter λ. Arrived customers form a single
waiting line at a server based on the order of their arrivals; that is, in a first-come, first-served (FCFS) discipline. A single
server needs to serve all arrived customers for the first required service (here abbreviated as FRS), denoted by S1. As soon
as the FRS of a customer is completed, a customer may leave the system with probability 1− θ or may opt for SOS, denoted
by S2, with probability θ(0 ≤ θ ≤ 1), at the completion of which the customer departs from the system and the next
customer, if any, is taken up for the FRS. The service times S1, S2 of two channels are independent and identically distributed
(i.i.d.) random variables obeying a general distribution function Si(t)(t ≥ 0), i = 1, 2, mean service time µSi , i = 1, 2,
the Laplace–Stieltjes (abbreviated LS) transform f̄Si(s) i = 1, 2, and the k-th moment E[S

k
i ], k ≥ 1, i = 1, 2, where the

sub-index i = 1 denotes the FRS and i = 2 denotes the SOS. Furthermore, the same server is assumed to serve both service
channels. Thus, a total service time provided to a customer is defined as:

S =
{
S1 + S2, with probability θ,
S1, with probability (1− θ),
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and its LS transform f̄S(s) = (1− θ)f̄S1(s)+ θ f̄S1(s)f̄S2(s)with the first two moments of S are

E[S] = E[S1] + θE[S2] = µS1 + θµS2 , (1)

E[S2] = E[S21 ] + 2θE[S1]E[S2] + θE[S
2
2 ]. (2)

When the server is providing the FRS or SOS, the server may meet unpredictable breakdowns at any time but is
immediately repaired. We assume that a server’s breakdown time has an exponential distribution with rate α1 in the FRS
channel. In the SOS channel, the server fails at an exponential rate α2. The repair times of the FRS and SOS channels are
independent general distributions with distribution functions R1(t), R2(t), (t ≥ 0), the LS transforms f̄R1(s), f̄R2(s), the mean
repair times µR1 , µR2 , and the k-th moment E[R

k
1], E[R

k
2], k ≥ 1, respectively. Although no service occurs during the repair

period of the server, customers continue to arrive following a Poisson process. Once the failed server is repaired, the server
immediately returns to serve a customer until the system becomes empty. After completion of the FRS or SOS, the server
again is turned off when there are no customers in the system. Then, the server operates the (T , p)-policy or (p, N)-policy.
The server requires a startup timewith random length before starting the FRS. Again, the startup times are independent and
identically distributed random variables obeying a general distribution function U(t)(t ≥ 0) and the k-th moment E[Uk],
k ≥ 1. As soon as the server completes startup, it begins serving the waiting customers until the system is empty. Various
stochastic processes involved in the system are assumed to be independent of each other.
Conveniently, we will present those two queueing models as the (T , p)-policy and the (p, N)-policy M/G(G, G)/1 queues,

respectively. It is noted that the second symbol denotes service time distributions for both FRS and SOS channels, the third
symbol denotes the repair time distributions for both FRS and SOS channels and the fourth symbol is the startup time
distribution.

3. T -policy and N-policy queues

Let H1 and H2 be random variables representing the completion time of the FRS and SOS, respectively. The completion
time of a customer includes both the service time of a customer and the repair time of a server. Now, we define that
f̄H1(s) = E[e

−sH1 ] and f̄H2(s) = E[e
−sH2 ] as the LS transforms of H1 and H2, respectively. Thus, we have

f̄Hi(s) =
∫
∞

0

∞∑
n=0

e−αit (αit)n

n!
e−st

[
f̄Ri(s)

]n
dSi(t)

= f̄Si [s+ αi − αi f̄Ri(s)], i = 1, 2. (3)

From Eq. (3), we obtain the first two moments of H1 and H2 as follows:

E[Hi] = −
d
ds

[
f̄Hi(s)

]∣∣
s=0 = µSi(1+ αiµRi), i = 1, 2, (4)

and

E[H2i ] =
d2

ds2
[
f̄Hi(s)

]∣∣
s=0 = (1+ αiµRi)

2E[S2i ] + αiµSiE[R
2
i ], i = 1, 2. (5)

Let H be the total completion time, and the LS transform of H is given by

f̄H(s) = (1− θ)f̄H1(s)+ θ f̄H1(s)f̄H2(s). (6)

The first two moments of H are found to be

E[H] = −
d
ds

[
f̄H(s)

]∣∣
s=0 = E[H1] + θE[H2] (7)

and

E[H2] =
d2

ds2
[
f̄H(s)

]∣∣
s=0 = E[H

2
1 ] + 2θE[H1]E[H2] + θE[H

2
2 ], (8)

where E[Hi], E[H2i ], i = 1, 2, are given in Eqs. (4) and (5), respectively.
Applying the well-known formula for the probability generating function (p.g.f.) of the number of customers in the

ordinary M/G/1 queue with an reliable server and SOS, the p.g.f. of the number of customers in the ordinary M/G/1 queue
with an unreliable server and SOS is given by

G(s) =
(1− ρH)(1− s)f H(λ− λs)

f H(λ− λs)− s
, (9)

where ρH = λE[H]. It has to be noted that ρH is assumed to be less than unity.
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3.1. T -policy queue

3.1.1. Expected number of customers in the system
According to the results of Yang et al. [32], we obtain the p.g.f. of the number of customers found in the T -policy M/G(G,

G)/1 queue as follows:

GT (s) = G(s)
[
1−W1(z)
W ′1(1)(1− s)

]
, (10)

where

GT (s) = the p.g.f. of number of customers in the T -policy M/G(G, G)/1 queueing system.
W1(s) = the p.g.f. of the number of customers that arrive during the during a period length T and the startup period;

= e−(1−z)λT f U(λ− λs), where f U(·) is the LS transform of the startup time.

Let LT be the expected number of customers in the T -policyM/G(G,G)/1 queue. Thus, it follows that

LT = G′T (s)
∣∣
s=1 =

1
(T + µU)

[
λT 2

2
+ ρUT +

λE(U2)
2

]
+ LH , (11)

where ρU = λµU and

LH = ρH +
λ2E(H2)
2(1− ρH)

. (12)

3.1.2. Expected length of the idle and startup periods
The idle period begins when all the customers in the system are served and no customers are waiting for service. It

terminates at least one customer arrives at the period length T . We can easily see that

E[IT ] = T . (13)

On the other hand, the server begins startup when there is at least one waiting customer at the end of the fixed period T
in the system. We call this startup period and denote it by UT . It follows that

E[UT ] = µU . (14)

3.1.3. Expected length of the busy and breakdown periods
The completion period is from the end of the startup period to no customers in the system, which occurs before the

system becomes empty and can be represented as the sum of the busy period and the breakdown period. A time interval
when the server is working continuously is called busy period. During the busy period, the server may break down when
FES or SOS is provided and start its repair immediately. This is called the breakdown period. After the server is repaired, it
returns and provides service until there are no customers in the system. Let E[HT ] be the expected length of the completion
period the T -policy M/G(G,G)/1 queue. Again, we know from et al. [32] that

E[HT ] =
(T + µU)ρH
1− ρH

=
(λT + ρU)[µS1(1+ α1µR1)+ θµS2(1+ α2µR2)]

1− ρH
. (15)

We also denote the expected length of the busy and breakdown periods by E[BT ] and E[DT ], respectively. Since the
completion period is composed of the busy period and the breakdown period, which implies that E[HT ] = E[BT ] + E[DT ].
From Eq. (15), we obtain

E[BT ] =
(λT + ρU)(µS1 + θµS2)

1− ρH
, (16)

and

E[DT ] =
(λT + ρU)(α1µS1µR1 + θα2µS2µR2)

1− ρH
. (17)

3.1.4. Expected length of the busy cycle
The expected length of busy cycle for the T -policy M/G(G,G)/1 queue is denoted by E[CT ]. Since the busy cycle consists

of the idle period (IT ), the startup period (UT ), the busy period (BT ) and the breakdown period (DT ). Hence, it can be shown
that

E[CT ] = E[IT ] + E[UT ] + E[BT ] + E[DT ] =
T + µU
1− ρH

. (18)



816 K.-H. Wang et al. / Journal of Computational and Applied Mathematics 234 (2010) 812–824

3.2. N-policy queue

3.2.1. Expected number of customers in the system
Following the result of Wang et al. [12], we obtain

GN(s) = G(s)
[1−W2(s)]
W ′2(1)(1− s)

, (19)

where

GN(s) = the p.g.f. of number of customers in the N-policyM/G(G,G)/1 queueing system.
W2(s) = the p.g.f. of the number of customers that arrive during the turned-off period plus the startup period;

= sN f U(λ− λs), where f U(·) is the LS transform of the startup time.

Let LN denote the expected number of customers in the N-policyM/G(G,G)/1 queue. Thus, we obtain

LN = G′N(s)
∣∣
s=0 =

1
N + ρU

[
N(N − 1)
2

+ NρU +
λ2E[U2]
2

]
+ LH , (20)

where LH is given in Eq. (12).

3.2.2. Expected length of the idle and complete startup periods
Let us define the expected length of the idle and complete startup periods by IN and VN for the N-policy M/G(G,G)/1

queue, respectively. We know that the turned-off period IN terminates when the Nth customer arrives in system. Since the
length of times between two successive arrivals are independently, identically and exponentially distributed with mean
1/λ, the expected length of the turned-off period, E[IN ], for the N-policy M/G/1 queueing system with server breakdowns
and general startup times is given by

E [IN ] =
N
λ
. (21)

The complete startup period is the sum of the complete period and the startup period which implies VN = HN + UN ,
where HN and UN are the complete period and the startup period, respectively. Again, using the results of Wang et al. [12],
it yields that

E[VN ] =
(N + λµU)[µS1(1+ α1µR1)+ θµS2(1+ α2µR2)]

1− ρH
+ µU . (22)

Since VN = HN + UN , it follows that E[VN ] = E[HN ] + E[UN ]. From Eq. (22), we have

E[HN ] =
(N + λµU)[µS1(1+ α1µR1)+ θµS2(1+ α2µR2)]

1− ρH
, (23)

E[UN ] = µU . (24)

3.2.3. Expected length of the busy and breakdown periods
Recall that the completion period is composed of the busy period and the breakdown period, which implies that

E[HN ] = E[BN ] + E[DN ]. From Eq. (23), it gives

E [BN ] =
(N + ρU)(µS1 + θµS2)

1− ρH
, (25)

E [DN ] =
(N + ρU)(α1µS1µR1 + θα2µS2µR2)

1− ρH
. (26)

3.2.4. Expected length of the busy cycle
The busy cycle for the N-policy M/G(G,G)/1 queue is denoted by CN , is the length of time from the beginning of the last

idle period to the beginning of the next idle period. Because the busy cycle consists of the idle period (IN ), the startup period
(UN ), the busy period (BN ) and the breakdown period (DN ), we get from Eqs. (21) and (24)–(26)

E [CN ] = E [IN ]+ E [UN ]+ E [BN ]+ E [DN ] =
N + ρU
λ(1− ρH)

. (27)
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4. (T , p)-policy and (p,N)-policy queues

4.1. (T , p)-policy queue

The primary objective of this subsection is to develop the various system performances for the (T , p)-policyM/G(G,G)/1
queue, including (i) the expected length of the idle, startup, busy, breakdownperiods and the busy cycle; and (ii) the expected
number of customers in the system.

4.1.1. Expected length of the idle, startup, busy, breakdown periods and the busy cycle
We denote by (I2T , IT ,p), (U2T ,UT ,p), (B2T , BT ,p), (D2T ,DT ,p) the idle, startup, busy, breakdown periods for the 2T -policy

and (T , p)-policy M/G(G,G)/1 queues, respectively. Let C2T and CT ,p be the busy cycle for the 2T -policy and (T , p)-policy
M/G(G,G)/1 queues, respectively. Based on the results of Feinberg and Kim [25], the system performances for the (T , p)-
policy queue are the convex combinations of the system performances for the T -policy queue and the 2T -policy queue.
Using the above formulas (13)–(14) and (16)–(18), we have

E[IT ,p] = pE[IT ] + (1− p)E[I2T ] = T (2− p), (28)

E[UT ,p] = pE[UT ] + (1− p)E[U2T ] = µU , (29)

E[BT ,p] = pE[BT ] + (1− p)E[B2T ] =
[λT (2− p)+ ρU ](µS1 + θµS2)

1− ρH
, (30)

E[DT ,p] = pE[DT ] + (1− p)E[D2T ] =
[λT (2− p)+ ρU ](α1µS1µR1 + θα2µS2µR2)

1− ρH
, (31)

E[CT ,p] = pE[CT ] + (1− p)E[C2T ] =
T (2− p)+ µU
1− ρH

. (32)

4.1.2. Expected number of customers in the system
We denote ΠT , Π2T and ΠT ,p by the cumulative amount of time that all customers spent in the system during a busy

cycle for the T -, 2T - and (T , p)-policy M/G(G,G)/1 queues, respectively. By using the renewal-reward theorem, we obtain

E[ΠT ] = LTE[CT ] =
1

1− ρH

[
λT 2

2
+ TρU +

λE(U2)
2
+ LH(T + µU)

]
, (33)

where LH is given in Eq. (12). It follows that

E[ΠT ,p] = pE[ΠT ] + (1− p)E[Π2T ]

=
1

1− ρH

[
λT 2

(
2−

3
2
p
)
+ TρU(2− p)+

λE(U2)
2
+ LH [T (2− p)+ µU ]

]
. (34)

Let LT ,p denote the expected number of customers in the (T , p)-policy M/G(G,G)/1 queue. Again, form the renewal-
reward theorem, we have

LT ,p =
E[ΠT ,p]
E[CT ,p]

=
1

T (2− p)+ µU

[
λT 2

(
2−

3
2
p
)
+ TρU(2− p)+

λE(U2)
2

]
+ LH . (35)

Based on the result of Feinberg and Kim [25], LT ,p is a convex combination of LT for a T -policy and L2T for a 2T -policy. Thus,
we get

LT ,p = ΘLT + (1−Θ)L2T , (36)

where

Θ =
p(T + µU)

(2− p)T + µU
.

One can demonstrate that Eq. (36) is identical to Eq. (35) easily. Moreover, Eq. (35) is in accordance with the expression
(3) of Wang et al. [15] if we set p = 1 and θ = 0.

4.2. (p,N)-policy queue

We develop various system performances for the (p, N)-policy M/G(G,G)/1 queue, including (i) the expected length of
the idle, startup, busy, breakdown periods and the busy cycle; and (ii) the expected number of customers in the system.
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4.2.1. Expected length of the idle, startup, busy, breakdown periods and the busy cycle
We denote by (IN+1, Ip,N ), (UN+1,Up,N ), (BN+1, Bp,N ), (DN+1,Dp,N ) the idle, startup, busy, breakdown periods for the

(N+1)-policy and (p,N)-policy M/G(G,G)/1 queue, respectively. Let CN+1 and Cp,N be the busy cycle for the (N+1)-policy
and (p,N)-policyM/G(G,G)/1 queues, respectively. Based on the results of Feinberg and Kim [25], the system performances
for the (p,N)-policy queue are the convex combinations of the system performances for theN-policy queue and the (N+1)-
policy queue. Applying the above formulas (21) and (24)–(27), we have

E
[
Ip,N
]
= pE [IN ]+ (1− p)E [IN+1] =

N + 1− p
λ

, (37)

E
[
Up,N

]
= pE [UN ]+ (1− p)E [UN+1] =

ρU

λ
, (38)

E
[
Bp,N

]
= pE [BN ]+ (1− p)E [BN+1] =

E [S] (N + 1− p+ ρU)
1− ρH

, (39)

E
[
Dp,N

]
= pE [DN ]+ (1− p)E [DN+1] =

(N + 1− p+ ρU)(α1µS1µR1 + θα2µS2µR2)
1− ρH

, (40)

E
[
Cp,N

]
= pE [CN ]+ (1− p)E [CN+1] =

N + 1− p+ ρU
λ(1− ρH)

. (41)

4.2.2. Expected number of customers in the system
LetΠ cN ,Π

c
N+1 andΠ

c
p,N denote the cumulative amount of time that all customers spent in the system during a busy cycle

for the N-, (N + 1)- and (p, N)-policy M/G(G,G)/1 queues, respectively. Following the results of Feinberg and Kim [25], we
can obtain

E
[
Π cN
]
= LNE [CN ]

=
1

λ(1− ρH)

[
N(N − 1)
2

+ NρU +
λ2E(U2)
2

]
+
LH(N + ρU)
λ(1− ρH)

, (42)

where LH is given in Eq. (12).
It follows that

E
[
Π cp,N

]
= pE

[
Π cN
]
+ (1− p)E

[
Π cN+1

]
=

1
λ(1− ρH)

[
N(N + 1− 2p)

2
+ (N + 1− p)ρU +

λ2E(U2)
2

]
+
LH(N + 1− p+ ρU)

λ(1− ρH)
. (43)

Let Lp,N denote the expected number of customers in the (p,N)-policyM/G(G,G)/1 queue. Applying the renewal-reward
theorem, it yields that

Lp,N =
E[Π cp,N ]

E[Cp,N ]

=
1

N + 1− p+ ρU

[
N(N + 1− 2p)

2
+ (N + 1− p)ρU +

λ2E[U2]
2

]
+ LH , (44)

where LH is given in Eq. (12).
Note that Lp,N is a convex combination of LN for an N-policy and LN+1 for an (N + 1)-policy. Thus, we have

Lp,N = ΩLN + (1−Ω)LN+1, (45)

whereΩ = p(N + ρU)/(N + 1− p+ ρU).
It is easy to show that Eq. (44) is identical to Eq. (45). Additionally, Eq. (45) is coincided with the expression (3) of Wang

et al. [12] if we set p = 1 and θ = 0.

5. The optimal (T , p)- and (p,N)-policies

5.1. Determining the optimal (T , p)-policy

We develop the expected cost function per unit time for the (T , p)-policy M/G(G,G)/1 queue, in which T and p are
decision variables. Our objective is to determine the optimum threshold valuesT and p, say T ∗ and p∗, to minimize this cost
function.
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Since E[BT ,p]/E[CT ,p] and E[DT ,p]/E[CT ,p] are not functions of the decision variables T and p, the operating cost and the
breakdown cost for the server are ignored in the cost function. Therefore,wewill restrict ourselves to select the cost elements
as follows:
Ch ≡ holding cost per unit time for each customer present in the system;
Cf ≡ cost per unit time for keeping the server off;
Cs ≡ startup cost per unit time for the preparatory work of the server before starting the service;
Cl ≡ setup cost per busy cycle.

Without loss of generality, we assume that Cs > Cf . Utilizing the definition of each cost element listed above and the
corresponding system performances, the expected cost with threshold values (T , p) is given by

F1(T , p) = ChLT ,p + Cf
E[IT ,p]
E[CT ,p]

+ Cs
E[UT ,p]
E[CT ,p]

+ Cl
1

E[CT ,p]

= ChLH + Ch
1

T (2− p)+ µU

[
λT 2

(
2−

3
2
p
)
+ TρU(2− p)+

λE(U2)
2

]
+ Cf

T (1− ρH)(2− p)
T (2− p)+ µU

+ Cs
µU(1− ρH)
T (2− p)+ µU

+ Cl
1− ρH

T (2− p)+ µU
(46)

where E[IT ,p], E[UT ,p], E[CT ,p] and LT ,p are given in Eqs. (28), (29), (32) and (35), respectively.
In Theorem 1 in the paper of Yang et al. [32], it claims that the joint optimal threshold values (T ∗, p∗) exist, which

minimize the expected cost function analytically. It follows that p∗ is equal to 0 or 1, and T ∗ can be written as

T ∗ = Ψ

−µU +
√
σ 2U +

2
[
(Cs − Cf )µU + Cl

]
(1− ρH)

λCh

 , (47)

where Ψ =
{
1/2, if p = 0,
1, if p = 1.

Substituting p∗ and T ∗ into Eq. (46), we have the minimal value of F1(T , p), say MinF1, which is given by

MinF1 = F1(T ∗, p∗) = ChLH + Cf (1− ρH)+ Ch

√
λ2σ 2U +

2λ
[
(Cs − Cf )µU + Cl

]
(1− ρH)

Ch
. (48)

5.2. Determining the optimal (p,N)-policy

We establish the expected cost function per unit time for the (p, N)-policy M/G(G,G)/1 queue, in which p and N are
decision variables. Our objective is to determine the optimum threshold values p and N , say p∗ and N∗, to minimize this cost
function.
Since E[Bp,N ]/E[Cp,N ], E[Dp,N ]/E[Cp,N ] are not functions of the decision variables p and N , the operating cost and the

breakdown cost for the server are ignored in the cost function. The expected cost function is given by

F2(p,N) = ChLp,N + Cf
E[Ip,N ]
E[Cp,N ]

+ Cs
E[Up,N ]
E[Cp,N ]

+ Cl
1

E[CT ,p]

= ChLH +
1

N + 1− p+ ρU

[
N(N + 1− 2p)

2
+ (N + 1− p)ρU +

λ2E[U2]
2

]
Ch +

(N + 1− p)(1− ρH)
N + 1− p+ ρU

Cf

+
ρU(1− ρH)

N + 1− p+ ρU
Cs +

λ(1− ρH)
N + 1− p+ ρU

Cl, (49)

where E[Ip,N ], E[Up,N ], E[Cp,N ] and Lp,N are given in Eqs. (37), (38), (41) and (44), respectively.
With the cost structure being constructed, our objective is to determine optimal threshold values (p∗,N∗) to minimize

this cost function. To this end, we first differentiate the cost function (49) with respect to p in the following:

∂F2(p,N)
∂p

=
Ch

2 (N + 1− p+ ρU)2

{
−N (N + 1+ 2ρU)+

2
[
ρU
(
Cs − Cf

)
+ λCl

]
(1− ρH)+ λ2

(
σ 2U − µ

2
U

)
Ch

Ch

}

=
Ch

2 (N + 1− p+ ρU)2
{$ − N (N + 1+ 2ρU)} , (50)

where

ω =
2
[
ρU
(
Cs − Cf

)
+ λCl

]
(1− ρH)+ λ2

(
σ 2U − µ

2
U

)
Ch

Ch
. (51)

Obviously, the following results can be conducted from Eq. (50).
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(1) As$ > N (N + 1+ 2ρU), F2(p,N) is an increasing function in p ∈ [0, 1]. It implies that

min
0≤p≤1

F1(p,N) = F1(0,N)

= ChLH +

{(
N(N+1)
2 + (N + 1)ρU + λ2E[U2]

2

)
Ch +

(
(N + 1)Cf + ρUCs + λCl

)
(1− ρH)

}
N + 1+ ρU

. (52)

(2) Asω = N(N+1+2ρU), F2(p,N) is independent of p ∈ [0, 1]. If there exists anN = N0 such thatω = N0(N0+1+2ρU).
We obtain

(i) F2(p,N0) = ChLH + (N0 + ρU) Ch + (1− ρH)Cf .
(ii) MinF2 = min

0≤p≤1
F2(p,N0) = ChLH + (N0 + ρU) Ch + (1− ρH)Cf .

(3) As$ < N (N + 1+ 2ρU), F2(p,N) is a decreasing function in p ∈ [0, 1]. It indicates that

min
0≤p≤1

F2(p,N) = F2(1,N)

= ChLH +

{(
N(N−1)
2 + NρU + λ2E[U2]

2

)
Ch +

(
NCf + ρUCs + λCl

)
(1− ρH)

}
N + ρU

. (53)

(4) It is noted that$ > N (N + 1+ 2ρU), which is equivalent to 0 < N < ξ , where

ξ = −0.5− ρU +
√
0.25+ ρU + ρ2U + ω

= −0.5− ρU +

√
0.25+ ρU + λ2σ 2U +

2
[
ρU
(
Cs − Cf

)
+ λCl

]
(1− ρH)

Ch
. (54)

We define that H(N) = F1(0,N)when 0 < N < ξ . Hence, we have

H(N) = ChLH +
1

N + 1+ ρU

(
N(N + 1)
2

+ (N + 1)ρU +
λ2E[U2]
2

)
Ch +

(
(N + 1)Cf + ρUCs + λCl

)
(1− ρH)

N + 1+ ρU
. (55)

Using Eq. (55) yields

H(N)− H(N − 1) =
ChN(N + 1+ 2ρU)

2(N + 1+ ρU)(N + ρU)

(
1−

ω

N(N + 1+ 2ρU)

)
< 0. (56)

One can see that H(N) is a decreasing function of N . Thus, we get

minH = H ([ξ ])

= ChLH +
Ch
(
[ξ ] ([ξ ] + 1)+ 2([ξ ] + 1)ρU + λ2E[U2]

)
2 ([ξ ] + 1+ ρU)

+

(
([ξ ] + 1) Cf + ρUCs + λCl

)
(1− ρH)

[ξ ] + 1+ ρU
, (57)

where [ ] denotes the Gaussian notation, i.e., [ξ ] is the greatest integer less than or equal to ξ .
(5) When$ < N (N + 1+ 2ρU), it is equivalent to N > ξ . Let us define that M(N) = F1(1,N) when N > ξ , and M(N)

can be expressed as

M(N) = ChLH +
1

N + ρU

{(
N(N − 1)
2

+ NρU +
λ2E[U2]
2

)
Ch +

(
NCf + ρUCs + λCl

)
(1− ρH)

}
. (58)

Using Eq. (58), we have

M(N + 1)−M(N) =
ChN(N + 1+ 2ρU)

2(N + 1+ ρU)(N + ρU)

(
1−

ω

N(N + 1+ 2ρU)

)
> 0. (59)

Hence, M(N) is an increasing function of N with the following result.

minM = M ([ξ ] + 1)

= ChLH +
Ch
{
[ξ ] ([ξ ] + 1)+ 2([ξ ] + 1)ρU + λ2E[U2]

}
2 ([ξ ] + 1+ ρU)

+

{
([ξ ] + 1) Cf + ρUCs + λCl

}
(1− ρH)

[ξ ] + 1+ ρU
. (60)

Overall, we conclude that

(i) MinF2 = F2(p,N0) = ChLH + (N0 + ρU) Ch + (1− ρH)Cf if ω = N0(N0 + 1+ 2ρU) for some integer N0.
(ii) MinF2 = F2(0, [ξ ]) = minH = F2(1, [ξ ] + 1) = minM if ω 6= N(N + 1+ 2ρU) for all integers N .
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Generally, an integer N0 does not exist to satisfy ω = N0(N0+ 1+ 2ρU). According to the above listed results, we obtain
the following theorem.

Theorem 1. Let (p∗,N∗) be the joint optimal threshold values thatminimize the expected cost function in Eq. (49), i.e., F2(p∗,N∗)
is the minimizer of F2(p,N). Let us define that

δ =

{
0, if p = 0,
1, if p = 1.

Then p∗ is equal to zero or one and

N∗ =

−0.5− ρU +
√
0.25+ ρU + λ2σ 2U +

2
(
ρU
(
Cs − Cf

)
+ λCl

)
(1− ρH)

Ch

+ δ, (61)

where [ ] is the Gaussian notation.

6. Comparison between the optimal (T , p)- and (p,N)-policies

The purpose of this section is to compare F1(T ∗, p∗) for the (T , p)-policy and F2(p∗,N∗) for the (p, N)-policy. Based on Eq.
(48), the optimal value of the expected cost function for the (T , p)-policy is given by

MinF1 = F1(T ∗, p∗) = ChLH + Cf (1− ρH)+ Ch

√
λ2σ 2U +

2λ
[
(Cs − Cf )µU + Cl

]
(1− ρH)

Ch

= ChLH + Cf (1− ρH)+ Ch
√
ω + ρ2U , (62)

where ω is given in Eq. (51).
From Eqs. (57) and (60), the optimal value of the expected cost function for the (p, N)-policy yields

MinF2 = F2(p∗,N∗) = ChLH +
Ch
{
[ξ ] ([ξ ] + 1)+ 2([ξ ] + 1)ρU + λ2E[U2]

}
2 ([ξ ] + 1+ ρU)

+

{
([ξ ] + 1) Cf + ρUCs + λCl

}
(1− ρH)

[ξ ] + 1+ ρU
. (63)

The result summarized in the following theorem show that the optimal (p, N)-policy is superior to the optimal (T , p)-
policy.

Theorem 2. Fixing the same values of cost elements and system parameters in the (T , p)- and the (p, N)-policy M/G(G,G)/1
queues. Then theminimum expected cost per unit time of the (p, N)-policy is less than that of (T , p)-policy, that is,MinF2 < MinF1.

Proof. Since Eq. (54) is equivalent to ξ (ξ + 1+ 2ρU) = ω, we have

2 (ξ + ρU) ([ξ ] + 1+ ρU)− [ξ ] ([ξ ] + 1)− ω − 2([ξ ] + 1+ ρU)ρU = ([ξ ] + 1− ξ) (ξ − [ξ ]) > 0. (64)

We know from Eq. (64) that

2 (ξ + ρU) ([ξ ] + 1+ ρU) > [ξ ] ([ξ ] + 1)+ ω + 2([ξ ] + 1+ ρU)ρU . (65)

From Eq. (54), again, one can easily verify that√
ω + ρ2U =

√
ξ 2 + ξ + 2ξρU + ρ2U > ξ + ρU . (66)

Combining Eqs. (65) and (66), it implies that

[ξ ] ([ξ ] + 1)+ ω + 2([ξ ] + 1+ ρU)ρU < 2
√
ω + ρ2U ([ξ ] + 1+ ρU) . (67)

Eq. (67) leads the following result:

[ξ ] ([ξ ] + 1)+ ω + 2([ξ ] + 1+ ρU)ρU√
ω + ρ2U ([ξ ] + 1+ ρU)

< 2. (68)
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Table 1
Comparison of the minimum costs and the optimal threshold values for two different policies. (Ch = 5, Cs = 300, Cl = 400, Cf = 100, E[H] = 0.3,
E[H2] = 0.5).

(λ, γ ) (1.0, 3.0) (1.5, 3.0) (2.0, 3.0) (2.0, 4.0) (2.0, 5.0) (2.0, 6.0)

p∗ = 0 T ∗ 5.55 3.97 2.89 2.88 2.87 2.86
p∗ = 1 T ∗ 11.10 7.94 5.78 5.75 5.73 5.72

F1(T ∗, p∗) 130.449 124.429 116.631 115.517 114.841 114.386

p∗ = 0 N∗ 10 11 11 11 10 10
p∗ = 1 N∗ 11 12 12 12 11 11

F2(p∗,N∗) 128.024 122.030 114.301 113.167 112.477 112.003

Table 2
Comparison of the minimum costs and the optimal threshold values for two different policies. (Cl = 400, Cf = 100, λ = 1.0, γ = 3.0, E[H] = 0.3,
E[H2] = 0.5).

(Ch, Cs) (100, 200) (50, 200) (10, 200) (10, 400) (10, 600) (10, 800)

p∗ = 0 T ∗ 1.07 1.58 3.73 4.02 4.29 4.54
p∗ = 1 T ∗ 2.14 3.16 7.46 8.04 8.58 9.08

F1(T ∗, p∗) 382.771 277.287 154.484 160.260 165.661 170.754

p∗ = 0 N∗ 1 2 6 7 8 8
p∗ = 1 N∗ 2 3 7 8 9 9

F2(p∗,N∗) 340.317 254.968 149.854 155.460 160.937 165.937

Table 3
Comparison of the minimum costs and the optimal threshold values for two different policies. (Ch = 5, Cs = 300, λ = 1.0, γ = 3.0, E[H] = 0.3,
E[H2] = 0.5).

(Cl, Cf ) (100, 100) (300, 100) (500, 100) (400, 150) (400, 200) (400, 250)

p∗ = 0 T ∗ 3.25 4.90 6.13 5.45 5.34 5.23
p∗ = 1 T ∗ 6.50 9.80 12.26 10.89 10.68 10.47

F1(T ∗, p∗) 107.456 123.957 136.275 164.419 198.370 232.301

p∗ = 0 N∗ 6 9 11 10 10 9
p∗ = 1 N∗ 7 10 12 11 11 10

F2(p∗,N∗) 105.154 121.547 133.856 161.995 195.966 229.935

After some simplification efforts, it finally yields that

MinF1 −MinF2 = Cf (1− ρH)+ Ch
√
ω + ρ2U −

Ch
{
[ξ ] ([ξ ] + 1)+ 2([ξ ] + 1)ρU + λ2E[U2]

}
2 ([ξ ] + 1+ ρU)

−

{
([ξ ] + 1) Cf + ρUCs + λCl

}
(1− ρH)

[ξ ] + 1+ ρU

= Ch
√
ω + ρ2U

1− 12
 ([ξ ]) ([ξ ] + 1)+ 2ρU ([ξ ] + 1+ ρU)+ ω√

ω + ρ2U ([ξ ] + 1+ ρU)

 > 0. (69)

Therefore, it follows that MinF2 < MinF1, that is, the minimum expected cost per unit time of the (p, N)-policy is less
than that of (T , p)-policy. �

Numerical examples
In order to illustrate Theorem 2, we perform a numerical comparison between the optimal (T , p)-policy and the optimal

(p, N)-policy. For convenience of computations, we assume that the distribution of the startup time to be E3 (3-stage Erlang
distribution), i.e., E[U] = 1/γ and E[U2] = 4/(3γ 2). First, we fix cost elements Ch = 5, Cs = 300, Cl = 400, Cf = 100, select
E[H] = 0.3, E[H2] = 0.5, and change in specific values (λ, γ ). The numerical results of the joint optimal threshold values
and the minimum cost are summarized in the Tables 1–4. From Table 1, it indicates that (i) T ∗ decreases as λ increases; (ii)
N∗ increases as λ increases; (iii) T ∗ and N∗ are insensitive to γ ; (iv) F1(T ∗, p∗) and F2(p∗,N∗) decrease as λ or γ increases;
and (v)F2(p∗,N∗) is less than F1(T ∗, p∗), that is, MinF2 < MinF1.
Next, we fix cost elements Cl = 400, Cf = 100, select λ = 1.0, γ = 3.0, E[H] = 0.3, E[H2] = 0.5, and change in specific

values of (Ch, Cs). Table 2 shows that the numerical results of the joint optimal threshold values and theminimum cost. From
Table 2, we observe that (i) T ∗ and N∗ increase as Ch decreases; (ii) T ∗ and N∗ increase as Cs increases; (iii) F1(T ∗, p∗) and
F2(p∗,N∗) increase as Ch or Cs increases; and (iv) F2(p∗,N∗) is less than F1(T ∗, p∗).



K.-H. Wang et al. / Journal of Computational and Applied Mathematics 234 (2010) 812–824 823

Table 4
Comparison of the minimum costs and the optimal threshold values for two different policies. (Ch = 5, Cs = 300, Cl = 400, Cf = 100, λ = 1.0, γ = 3.0).

(E[H], E[H2]) (0.2, 0.4) (0.5, 0.4) (0.8, 0.4) (0.5, 0.2) (0.5, 0.5) (0.5, 1.0)

p∗ = 0 T ∗ 5.94 4.66 2.89 4.66 4.67 4.66
p∗ = 1 T ∗ 11.89 9.33 5.78 9.33 9.33 9.33

F1(T ∗, p∗) 143.359 102.814 59.566 101.814 103.314 105.814

p∗ = 0 N∗ 11 8 5 8 8 8
p∗ = 1 N∗ 12 9 6 9 9 9

F2(p∗,N∗) 140.929 100.433 57.216 99.433 100.933 103.433

Furthermore, we fix cost elements Ch = 5, Cs = 300, select λ = 1.0, γ = 3.0, E[H] = 0.3, E[H2] = 0.5, and change in
specific values of (Cl, Cf ). The numerical results of the joint optimal threshold values and theminimum cost are summarized
in the Table 3. One can see from Table 3 that (i) T ∗ and N∗ increase as Cl increases; (ii) T ∗ and N∗ decrease as Cf increases;
(iii) F1(T ∗, p∗) and F2(p∗,N∗) increase as Cl or Cf increases; and (iv) F2(p∗,N∗) is less than F1(T ∗, p∗).
Finally, we fix cost elements Ch = 5, Cs = 300, Cl = 400, Cf = 100, select λ = 1.0, γ = 3.0, and change in specific

values of (E[H], E[H2]). Table 4 shows that the numerical results of the joint optimal threshold values and the minimum
cost. From Table 4, it appears that (i) T ∗ and N∗ decrease as E[H] increases; (ii) T ∗ and N∗ are unchanged as E[H2] changes;
and (iii) F1(T ∗, p∗) and F2(p∗,N∗) decrease as E[H] increases or E[H2] decreases; and (iv) F2(p∗,N∗) is less than F1(T ∗, p∗),
that is MinF2 < MinF1.

7. Conclusions

In this paper, we investigated the optimal (T , p)-policy and the optimal (p, N)-policy M/G/1 queues with SOS, server
breakdown and general startup times. We first developed various system performances for those two policies. We then
established cost functions to determine the joint optimal threshold values (T , p) and (p, N). The explicit closed forms of the
joint optimal solutions for those two policies were obtained. In particular, we showed that under the optimal operating
conditions, the (p, N)-policy indeed has less cost than the (T , p)-policy. Numerical comparisons are provided to illustrate
that the optimal (p, N)-policy outperforms the optimal (T , p)-policy.
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